X-Git-Url: http://git.rohieb.name/bachelor-thesis/written-stuff.git/blobdiff_plain/600380af57fe95132b89fbf21db1ef26258f955b..e29146877ebf1c77b2b31ad1fa804547286b2a21:/Ausarbeitung/experiment2.tex diff --git a/Ausarbeitung/experiment2.tex b/Ausarbeitung/experiment2.tex index ba75ff5..ad83cc8 100644 --- a/Ausarbeitung/experiment2.tex +++ b/Ausarbeitung/experiment2.tex @@ -13,19 +13,17 @@ the target distance resp. the target angle was adjusted, while the velocity remained unadjusted. Fitting the function\index{fit function} was done with \acs{GNU} R\index{GNU R} -through a wrapper script which is explained in section~\ref{sec:impl:eval}. In -this experiment, a linear fit of the form $o = a*v+b*i+c$ was used, with $o$ -being the measured value, $v$ the input velocity, $i$ the target distance or -angle, and $a,b,c \in \mathbb{R}$. The fitted values \todo{how? least -square?} for $a, b, c$ were then used in the algorithm to calculate the adapted -target distance or angle. +through the wrapper script \prog{graph.sh} which is explained in +section~\ref{sec:impl:eval}. In this experiment, a 2-dimensional linear fit for +the measured value was determined by the method of least squares, with target +value (angle or distance) and velocity as input parameters. The fit function was +then used in the algorithm to calculate the adapted target distance or angle. \section{Setup} The hardware setup was exactly the same as in Experiment 1. However, in this -experiment the application \cmd{mean\_correction\_test} was used to measure +experiment the application \prog{mean\_correction\_test} was used to measure data. It did exactly the same as the application from Experiment 1, except that -it adapted the target distance resp. target angle according to the algorithm -described above. +it adapted the target value according to the method described above. \section{Results} \begin{figure}[p!]