ARM Cortex M3 Debugging Codelite

Introduction

This technical note will go over the installation and operation of a Cortex M3 debug DLL in CodeLite.
With this DLL and a few configuration changes to start-up, it is possible to do Cortex M3 debugging in
CodeLite. It supports the following:

* Full Symbolic / Source Code based debugging

* Firmware Download

* Flash Breakpoints: The internal Cortex M3 breakpoints are not supported (yet).

* Run/ Break / Pause

* All the data display functions (read RAM/FLASH, stack frames, local variables, etc.).

My Configuration:

* Win7 x64

* YARGTO 18.03.2011 (Binutils-2.21, Newlib-1.19.0, GCC-4.6.0, GDB-7.2)
e CodeLite v3.0.5041 and v3.0.5181..5186 (via svn)

* SEGGER J-Link GDB Server V4.36b

* SEGGER J-link

* MicroBuilder LPC1343 Reference Design

* Firmware code base is the LPC1343 CodeBase from microbuilder.eu.

A.C. Verbeck Page: 1/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Physical Configuration

The physical system assembly is straightforward:
1. There are three or four components in the physical debugging configuration
2. Download / Debug PC. This PC has the following:
1. Target Development Tool Chain: In this case it is YARGTO.
2. Target Debugger: In this case it is YAGARTO GDB
3. Target firmware: In this case it's the Micro Builder LPC1343 Reference Design Firmware
4. Appropriate connection to the target hardware.

3. The JTAG debugger. In this case it is the Segger J-Link.
4. The target board itself. In this case it is the Micro Builder LPC1343 Reference Design.
5. USB I/O PC. This PC powers the target board. It also runs the target CLI via USB. This PC is

optional.

Wednesday, November 09, 2011 JTAG Debugger: Physical Configuration

Development
Debug

Company Confidential
I | Page 1

A.C. Verbeck Page: 2/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Software Configuration

There are three main software stacks involved in debugging:
1. On the PC
1. CodeLite
2. DebuggerGDB CM3. This has been customized to work with the the Segger GDB server.
3. GDB. In this case it's the YAGARTO GDB
4. GDB uses TCP/IP sockets to communicate to the GDB server.
2. J-Link
1. Segger J-Link GDB Server
2. To communicate to GDB, the Segger GDB server uses TCP/IP sockets.
3. Segger GDB server communicates to the target platform via a USB link to a JTAG device
3. On the Target
1. The target has JTAG hardware to interface with the Segger GDB server.
2. Target firmware. In this case it's the Micro Builder LPC1343 Reference Design Firmware

Wednesday, November 09, 2011 % JTAG Debugger: Software Configuration

: { TCR/IP l g

TCPIIP socket 2331
(can be local or remote computer) \ ITAG cable

Company Confidential
I | Page 2

A.C. Verbeck Page: 3/14 November 8, 2011

ARM Cortex M3 Debugging Codelite
Debugger DLL Installation
The debugger DLL installation is straightforward:
4. Make sure CodeLite is not running.
5. Open an explorer window.
6. Change to $(PROGRAMFILES)/CodeLite/debuggers.
(e.g. C:\Program Files (x86)\CodeLite\debuggers)
7. Copy in the new debugger DLL: DebuggerCM3.dll
On my system it looks like this:
[(=[=] =]
@uv| J ¥ Computer » O5(C:) » Program Files (x86) » Codelite » debuggers - |+?| Search deb... 0 |
Organize - Include in library = Share with - Burn Mew folder = - [0 @
A Favorites = Mame : Date modified Type Size
Bl Desktop %) DebuggerCM3.dll 11/8/201110:24 PM Application extension 797 KB
& Downloads % DebuggerGDB.dIl 8/25/2011 1:27 PM Application extension 793 KB
J Public
. Projects

1| Recent Places

=, Recent Places

= Libraries

3 Documents
rJ"- Music
| Pictures

E Videos

ﬂa Homegroup

18 Computer
& os(c)
wid Music Store (E:)
—a ACVY backup (L)

2 items

m

A.C. Verbeck

Page: 4/14

November 8§, 2011

ARM Cortex M3 Debugging Codelite

Initial CodeLite Configuration

In this section, we will do the following:

Enable the debugger DLL in the Project Settings

Configure the interface to GDB to work with the Cortex M3.

Modify the target code Makefile to place the elf in a CodeLite compatible location.
Rebuild the target with debugging enabled.

Start the debugger and begin debugging.

Nk v -

Here's how to configure CodeLite once DebuggerCM3.dll (Cortex M3 dll) is installed:
1. Start the J-Link DGDB Server.

Connect the target board: Power / USB and JTAG

Start CodelLite.

Load the target embedded project work space.

Open the project settings dialog.

Go to the General Dialog Page.

SNk Wb

A.C. Verbeck Page: 5/14 November 8, 2011

ARM Cortex M3 Debugging

Codelite

-

LPC1343 CodeBase Project Settings

==

[Debug

)

4 - Commeon Settings
General
Compiler
Linker
Environment
Debugger
. Resources

» - Pre / Post Build Commands

> Custornize

- Code Completion

- Global Settings

... JMake

Dynamic Library

Compiler: ’gnu gec

3

Debugger: |GNU gdb debugger Cortex M3

)

Output File:
Intermediate Folder: | ./Debug

Program to Debug / Run:

Program: firmware.elf
Working Folder: S{IntermediateDirectory)

Program Arguments:

[T Use separate debug arguments

Pause when execution ends

| Hep. || ok || cancel | Apply

1}

Configure the dialog to match. Specifically, make sure that the correct debugger is selected, the

Intermediate Folder and Working Folders are set. And last, set the program file.

A.C. Verbeck

Page: 6/14

November 8§, 2011

ARM Cortex M3 Debugging Codelite

Go to the Debugger Page and set the following commands.

LPC1343 CodeBase Project Settings | =

[Debug v]

“ Cinr'gmnn Tettmgs Select debugger path. Leave empty to use the default:
- Genera

Compiler arm-none-eabi-gdb :]

Linker
Environment

A — [#] Debugging remote target

‘... Resources Host / tty: | localhost Port: 2331
» - Pre / Post Build Commands

- Customize i Enter here any commands that should be passed to the debugger on startup:
- Code Completion
- Global Settings monitor interface SWD -
- QMake monitor endian little

moniter speed 1000

monitor reset

monitor f£lash dewvice = LPC1343

moniter flash downlcoad = 1

monitor flash breakpoints = 1

load "firmware.elf™

monitor reg rld = (0x00000000)

monitocr reg pec = (0x00000004)

monitor reset

Enter here any commands that should be passed to the debugger after attaching the remote target:

| Hep. || ok || cancel | Apply

These commands initialize the connection to the target and load the firmware (symbols are loaded
when gdb is started).

Apply changes and exit the dialog.

A.C. Verbeck Page: 7/14 November 8, 2011

ARM Cortex M3 Debugging

Codelite

Go to Settings — Debugger Settings dialog from the main menu and set the following switches:

Debugger Settings

-

22

a . GNU gdb debugger

Startup Commands
a - GMNU gdb debugger Cortex M3

i Startup Commands
.. Pre Defined Types

Debugger path:
Options:
["] Enable pending breakpoints
[] Apply breakpoints after main function is hit
[¥] Autornatically set breakpoint at main
[Break when C++ exception is thrown
Raise Codelite when a breakpoint is hit
Debugger Tooltip:
Use CTRL key to evaluate expressions under the cursor
["] Auto expand items under the cursor
Display:

Murmber of elements to display for arrays / strings: 200

[] Use 'PreDefined types for the 'Locals' view

[Auto cast ‘char[]' into 'char™

Lok |

Cancel

Browse

-

Debugger Settings

4 - GNU gdb debugger

i General

Misc

Startup Commands

GMU gdb debugger Cortex M3
i General

Misc

Startup Commands

.. Pre Defined Types

Enable full debugger logging
[Show debugger terminal
[] Use file name only for breakpoints (MO full paths)

MinGW / Cygwin:

[Break at assertion failure (MinGW anly)

Cygwin path cenversion command:

OK] [Cancel

A.C. Verbeck

Page: 8/14

November 8§, 2011

ARM Cortex M3 Debugging Codelite

Last, set the “Enable debugger full logging switch”.

1> i) usbcde R
by L nshhid-rnm Bt i <] | LI
,. EJ Builg/yﬁ Error;/VQ Searcb/VQ Replac;/VQ Referencg}/@ Gutpu;) # Debug]/{ Trac;/V@ Task;)/l_‘l Buildl;/VV CppChs
r Enable debugger full logging
=/
d
o
Q
=
%
€
< T
| Send
[Ln 222, Col0, Pos7319

A.C. Verbeck Page: 9/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Last, start the Segger GDB server and make sure that is configured to match GDB. The default is to
use port 2331. See the Segger J-Link ARM GDB Server PDF file for more information.

E SEGGER J-Link GDE Server V4.36b =l £
File Help
[Localhost anly
GDE |Waiting for connection I Iritial 5D zpeed |5 kHz *| [Stayontop
] [w Show log window
&Lmk|EDnneded I Current 54D speed |5 kHz ™ Generate lngfile
- ; - [v Cache reads
Target |Cortex3, Core |t 0x2B401477 || | 328% | Litle endian ¥ | = 2t® o
[v Init regs on start
Log output; Clear log
SEGGER J-Link GDE Serwver V4. 3gh P

JLinkARM dll V4 36b (DLL compiled Oct 14 2011 17:26:57)
Li=ztening on TCP-IP port 2331

J-Link connected

Firmware: J-Link AREM Vo compiled Feb 1 2011 14:28:14
Hardware: Ve .00

S<H: 56001071

4 }

0 Bytes downloaded 1 ITAG device

A.C. Verbeck Page: 10/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Here is another view of the Segger GDB server in action.

r F | hl
ES_'EGGER J-Lin = X
File Help
[Localhost anly
GDE |I:|:|nnected to 127.0.01 I Initial S'w/0 speed |5 kHz *| |+ Stayontop
] [v Show log window
J-Link, |Eu:unneu:teu:| I Current 5D speed |1000 kHz ™ Generate logfile
- - [v Cache reads
Target |CortexM3, Halted NEER | Litle endian —| = o™ o oad
[w Init regs an start
Log output; Clear log
S<H: 56001071 o

Connected to 127.0.0.1

Feading all registers

Fead 4 bytes @ address 0xz00000000 (Data = O0xl10001FF0)
Select SWD as= target interface

Target endianes==s =et to "little endian”

JTAG =peed =et to 1000 LkH=

Fesetting target

Select flash device: LPC1343

Flash download enabled

Flash brealpoints enabled

Downloading 10732 bytes @ address 0xz00000000
Dovnloading 136 bytes @ address 0x000029EC

Writing regi=ster (PC = 0x00002349)

Writing register (CPSE = 0=x01000000)

Writing regi=ster (SF O=10001FF0)

Writing register (PC 0=00002349)

Fe=etting target

Fead 4 bytes @ addres= 0x000023A8 (Data =4 A0AB508)
Fead 2 bytes @ address 0=xz00000138 (Data NxFO02%
Setting breakpoint @ addre=ss 0x00000138, Size = 2. BPFHandle
Starting target CPFU. ..

.. .Brealkpoint reached @ address 0x000001383

Feading all registers

Femowving breakpoint @ addres= 0x00000138, Size = 2
Fead 4 bytes @ address 0x00000138 (Data = 0xFBBAFO0Z)

m

r 1T} 3

10 KB downloaded 1 ITAG device

A.C. Verbeck Page: 11/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Once these changes have been made, set the configuration to debug, rebuild, start the Segger GDB
server and start the debugger. If it works properly, you will see the commands run and the code will
download, execute to main and break. Press the green arrow again and the target will begin execution
again. Press the break/pause button. The debugger will stop with a SIGINT and the current line will be
displayed. All the stack frames will be displayed and the local variables will be updated.

If you float the cursor over a function or a variable, then a tool-tip like window will be displayed that
has information about the object.

Supported Devices

The way ARM envisioned the Cortex world, it should be easy to change CPUs (e.g. go from a Cortex
MO to a Cortex M3 or vice-versa), change CPU vendors; and at the same time, continue to use the vast
majority of the code developed for the initial CPU. With this in mind, I believe that this DLL should be
compatible with nearly every Cortex M3 supported by SEGGER and the J-Link. Here is SEGGER
webpage that has all the devices supported by the J-Link.

http://www.segger.com/jlink_supported devices.html
It should be a matter of changing one line in the Project Settings — Debugger — Debugger Startup

Commands: Change the “monitor flash device “ from the LPC1343, to your target device. Ifit
supported by SEGGER, it should work.

A.C. Verbeck Page: 12/14 November 8, 2011

http://www.segger.com/jlink_supported_devices.html

ARM Cortex M3 Debugging Codelite

Cortex M3 Debugging Issues

Here is a list of issues that were addressed by the changes I made:
* The first thing that must be done is to put GDB into "async mode". This is to support async
calls to run / break. This must be done before a connection is made to the debugger.

* The connection to the debug service was done far too late in the process. It must be the second
thing done.

* Loading symbols and the code once initialization was complete.

* Not core but still useful was to remove the PC/Linux/OSX cruft commands to the Segger GDB
Server.

I modified four functions in DebuggerGDB.cpp:

* DoLocateGdbExecutable() -- this was mostly to remove codelite gdbinit.txt from the gdb
execution line. I wanted to re-enable the use of .gdbinit.

* DolnitializeGdb() -- this was modified to initialize gdb for embedded development.

* Run() -- this was modified to properly start the embedded target. The "target remote"
command was removed because it was sent far too late: It reset the connection to the GDB
server causing other issues.

* Break() -- this was modified to properly break the embedded target.

One caveat: While the updated DLL does support breakpoints in FLASH; the DLL does not (currently)
support the Cortex M3 hardware breakpoints. I'm not sure if there is a way to do this in gdb right now.

A.C. Verbeck Page: 13/14 November 8, 2011

ARM Cortex M3 Debugging Codelite

Command Line Debugging using GDB

Debugging from the command line is surprisingly easy and much more powerful than the GUI. The
GUI is nice for most things (setting breakpoints, looking at locals, etc.). However gdb and the
command line have an amazing flexibility.

To debug with GDB command line, do the following:

1.

5.

Connect up the LPC1343 development board to the Segger J-Link and power everything up.

2. Copy .gdbinit to the same directory as "firmware.elf".
3.
4

Start up the Segger "GDB server"

Start up "arm-none-eabi-gdb" from the command line. The .gdbinit file will be called at gdb
startup. It will properly initialize gdb and download the firmware.

If you aren't familar with the power of gdb, download the book "Debugging with GDB" from the
FSF. Almost all the commands in this book will work from the command line.

A.C. Verbeck Page: 14/14 November 8, 2011

