040128f1be383ef0895f3be44f3019f88213c018
[openwrt.git] / toolchain / gcc / patches / 4.4.5 / 600-ubicom_support.patch
1 --- a/configure
2 +++ b/configure
3 @@ -2688,6 +2688,9 @@ case "${target}" in
4 ip2k-*-*)
5 noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
6 ;;
7 + ubicom32-*-*)
8 + noconfigdirs="$noconfigdirs target-libffi"
9 + ;;
10 *-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu)
11 noconfigdirs="$noconfigdirs target-newlib target-libgloss"
12 ;;
13 --- /dev/null
14 +++ b/gcc/config/ubicom32/constraints.md
15 @@ -0,0 +1,149 @@
16 +; Constraint definitions for Ubicom32
17 +
18 +; Copyright (C) 2009 Free Software Foundation, Inc.
19 +; Contributed by Ubicom, Inc.
20 +
21 +; This file is part of GCC.
22 +
23 +; GCC is free software; you can redistribute it and/or modify it
24 +; under the terms of the GNU General Public License as published
25 +; by the Free Software Foundation; either version 3, or (at your
26 +; option) any later version.
27 +
28 +; GCC is distributed in the hope that it will be useful, but WITHOUT
29 +; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
30 +; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
31 +; License for more details.
32 +
33 +; You should have received a copy of the GNU General Public License
34 +; along with GCC; see the file COPYING3. If not see
35 +; <http://www.gnu.org/licenses/>.
36 +
37 +(define_register_constraint "a" "ALL_ADDRESS_REGS"
38 + "An An register.")
39 +
40 +(define_register_constraint "d" "DATA_REGS"
41 + "A Dn register.")
42 +
43 +(define_register_constraint "h" "ACC_REGS"
44 + "An accumulator register.")
45 +
46 +(define_register_constraint "l" "ACC_LO_REGS"
47 + "An accn_lo register.")
48 +
49 +(define_register_constraint "Z" "FDPIC_REG"
50 + "The FD-PIC GOT pointer: A0.")
51 +
52 +(define_constraint "I"
53 + "An 8-bit signed constant value."
54 + (and (match_code "const_int")
55 + (match_test "(ival >= -128) && (ival <= 127)")))
56 +
57 +(define_constraint "Q"
58 + "An 8-bit signed constant value represented as unsigned."
59 + (and (match_code "const_int")
60 + (match_test "(ival >= 0x00) && (ival <= 0xff)")))
61 +
62 +(define_constraint "R"
63 + "An 8-bit signed constant value represented as unsigned."
64 + (and (match_code "const_int")
65 + (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))")))
66 +
67 +(define_constraint "J"
68 + "A 7-bit unsigned constant value."
69 + (and (match_code "const_int")
70 + (match_test "(ival >= 0) && (ival <= 127)")))
71 +
72 +(define_constraint "K"
73 + "A 7-bit unsigned constant value shifted << 1."
74 + (and (match_code "const_int")
75 + (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)")))
76 +
77 +(define_constraint "L"
78 + "A 7-bit unsigned constant value shifted << 2."
79 + (and (match_code "const_int")
80 + (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)")))
81 +
82 +(define_constraint "M"
83 + "A 5-bit unsigned constant value."
84 + (and (match_code "const_int")
85 + (match_test "(ival >= 0) && (ival <= 31)")))
86 +
87 +(define_constraint "N"
88 + "A signed 16 bit constant value."
89 + (and (match_code "const_int")
90 + (match_test "(ival >= -32768) && (ival <= 32767)")))
91 +
92 +(define_constraint "O"
93 + "An exact bitmask of contiguous 1 bits starting at bit 0."
94 + (and (match_code "const_int")
95 + (match_test "exact_log2 (ival + 1) != -1")))
96 +
97 +(define_constraint "P"
98 + "A 7-bit negative constant value shifted << 2."
99 + (and (match_code "const_int")
100 + (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)")))
101 +
102 +(define_constraint "S"
103 + "A symbolic reference."
104 + (match_code "symbol_ref"))
105 +
106 +(define_constraint "Y"
107 + "An FD-PIC symbolic reference."
108 + (and (match_test "TARGET_FDPIC")
109 + (match_test "GET_CODE (op) == UNSPEC")
110 + (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT")
111 + (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC"))))
112 +
113 +(define_memory_constraint "T1"
114 + "A memory operand that can be used for .1 instruction."
115 + (and (match_test "memory_operand (op, GET_MODE(op))")
116 + (match_test "GET_MODE (op) == QImode")))
117 +
118 +(define_memory_constraint "T2"
119 + "A memory operand that can be used for .2 instruction."
120 + (and (match_test "memory_operand (op, GET_MODE(op))")
121 + (match_test "GET_MODE (op) == HImode")))
122 +
123 +(define_memory_constraint "T4"
124 + "A memory operand that can be used for .4 instruction."
125 + (and (match_test "memory_operand (op, GET_MODE(op))")
126 + (ior (match_test "GET_MODE (op) == SImode")
127 + (match_test "GET_MODE (op) == DImode")
128 + (match_test "GET_MODE (op) == SFmode"))))
129 +
130 +(define_memory_constraint "U1"
131 + "An offsettable memory operand that can be used for .1 instruction."
132 + (and (match_test "memory_operand (op, GET_MODE(op))")
133 + (match_test "GET_MODE (op) == QImode")
134 + (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
135 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
136 + (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
137 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
138 + (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
139 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
140 +
141 +(define_memory_constraint "U2"
142 + "An offsettable memory operand that can be used for .2 instruction."
143 + (and (match_test "memory_operand (op, GET_MODE(op))")
144 + (match_test "GET_MODE (op) == HImode")
145 + (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
146 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
147 + (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
148 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
149 + (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
150 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
151 +
152 +(define_memory_constraint "U4"
153 + "An offsettable memory operand that can be used for .4 instruction."
154 + (and (match_test "memory_operand (op, GET_MODE(op))")
155 + (ior (match_test "GET_MODE (op) == SImode")
156 + (match_test "GET_MODE (op) == DImode")
157 + (match_test "GET_MODE (op) == SFmode"))
158 + (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
159 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
160 + (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
161 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
162 + (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
163 + (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
164 +
165 --- /dev/null
166 +++ b/gcc/config/ubicom32/crti.S
167 @@ -0,0 +1,54 @@
168 +/* Specialized code needed to support construction and destruction of
169 + file-scope objects in C++ and Java code, and to support exception handling.
170 + Copyright (C) 1999 Free Software Foundation, Inc.
171 + Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
172 +
173 +This file is part of GCC.
174 +
175 +GCC is free software; you can redistribute it and/or modify
176 +it under the terms of the GNU General Public License as published by
177 +the Free Software Foundation; either version 2, or (at your option)
178 +any later version.
179 +
180 +GCC is distributed in the hope that it will be useful,
181 +but WITHOUT ANY WARRANTY; without even the implied warranty of
182 +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
183 +GNU General Public License for more details.
184 +
185 +You should have received a copy of the GNU General Public License
186 +along with GCC; see the file COPYING. If not, write to
187 +the Free Software Foundation, 59 Temple Place - Suite 330,
188 +Boston, MA 02111-1307, USA. */
189 +
190 +/* As a special exception, if you link this library with files
191 + compiled with GCC to produce an executable, this does not cause
192 + the resulting executable to be covered by the GNU General Public License.
193 + This exception does not however invalidate any other reasons why
194 + the executable file might be covered by the GNU General Public License. */
195 +
196 +/*
197 + * This file just supplies function prologues for the .init and .fini
198 + * sections. It is linked in before crtbegin.o.
199 + */
200 + .file "crti.o"
201 + .ident "GNU C crti.o"
202 +
203 + .section .init
204 + .align 2
205 + .globl _init
206 + .type _init, @function
207 +_init:
208 + move.4 -4(sp)++, a5
209 +#ifdef __UBICOM32_FDPIC__
210 + move.4 -4(sp)++, a0
211 +#endif
212 +
213 + .section .fini
214 + .align 2
215 + .globl _fini
216 + .type _fini, @function
217 +_fini:
218 + move.4 -4(sp)++, a5
219 +#ifdef __UBICOM32_FDPIC__
220 + move.4 -4(sp)++, a0
221 +#endif
222 --- /dev/null
223 +++ b/gcc/config/ubicom32/crtn.S
224 @@ -0,0 +1,47 @@
225 +/* Specialized code needed to support construction and destruction of
226 + file-scope objects in C++ and Java code, and to support exception handling.
227 + Copyright (C) 1999 Free Software Foundation, Inc.
228 + Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
229 +
230 +This file is part of GCC.
231 +
232 +GCC is free software; you can redistribute it and/or modify
233 +it under the terms of the GNU General Public License as published by
234 +the Free Software Foundation; either version 2, or (at your option)
235 +any later version.
236 +
237 +GCC is distributed in the hope that it will be useful,
238 +but WITHOUT ANY WARRANTY; without even the implied warranty of
239 +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
240 +GNU General Public License for more details.
241 +
242 +You should have received a copy of the GNU General Public License
243 +along with GCC; see the file COPYING. If not, write to
244 +the Free Software Foundation, 59 Temple Place - Suite 330,
245 +Boston, MA 02111-1307, USA. */
246 +
247 +/* As a special exception, if you link this library with files
248 + compiled with GCC to produce an executable, this does not cause
249 + the resulting executable to be covered by the GNU General Public License.
250 + This exception does not however invalidate any other reasons why
251 + the executable file might be covered by the GNU General Public License. */
252 +
253 +/*
254 + * This file supplies function epilogues for the .init and .fini sections.
255 + * It is linked in after all other files.
256 + */
257 +
258 + .file "crtn.o"
259 + .ident "GNU C crtn.o"
260 +
261 + .section .init
262 +#ifdef __UBICOM32_FDPIC__
263 + move.4 a0, (sp)4++
264 +#endif
265 + ret (sp)4++
266 +
267 + .section .fini
268 +#ifdef __UBICOM32_FDPIC__
269 + move.4 a0, (sp)4++
270 +#endif
271 + ret (sp)4++
272 --- /dev/null
273 +++ b/gcc/config/ubicom32/elf.h
274 @@ -0,0 +1,29 @@
275 +#undef STARTFILE_SPEC
276 +#define STARTFILE_SPEC "\
277 +%{msim:%{!shared:crt0%O%s}} \
278 +crti%O%s crtbegin%O%s"
279 +
280 +#undef ENDFILE_SPEC
281 +#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
282 +
283 +#ifdef __UBICOM32_FDPIC__
284 +#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
285 + asm (SECTION_OP); \
286 + asm ("move.4 a0, 0(sp);\n\t" \
287 + "call a5," USER_LABEL_PREFIX #FUNC ";"); \
288 + asm (TEXT_SECTION_ASM_OP);
289 +#endif
290 +
291 +#undef SUBTARGET_DRIVER_SELF_SPECS
292 +#define SUBTARGET_DRIVER_SELF_SPECS \
293 + "%{mfdpic:-msim} "
294 +
295 +#define NO_IMPLICIT_EXTERN_C
296 +
297 +/*
298 + * We need this to compile crtbegin/crtend. This should really be picked
299 + * up from elfos.h but at the moment including elfos.h causes other more
300 + * serous linker issues.
301 + */
302 +#define INIT_SECTION_ASM_OP "\t.section\t.init"
303 +#define FINI_SECTION_ASM_OP "\t.section\t.fini"
304 --- /dev/null
305 +++ b/gcc/config/ubicom32/linux.h
306 @@ -0,0 +1,80 @@
307 +/* Definitions of target machine for Ubicom32-uclinux
308 +
309 + Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
310 + 2009 Free Software Foundation, Inc.
311 + Contributed by Ubicom, Inc.
312 +
313 + This file is part of GCC.
314 +
315 + GCC is free software; you can redistribute it and/or modify it
316 + under the terms of the GNU General Public License as published
317 + by the Free Software Foundation; either version 3, or (at your
318 + option) any later version.
319 +
320 + GCC is distributed in the hope that it will be useful, but WITHOUT
321 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
322 + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
323 + License for more details.
324 +
325 + You should have received a copy of the GNU General Public License
326 + along with GCC; see the file COPYING3. If not see
327 + <http://www.gnu.org/licenses/>. */
328 +
329 +/* Don't assume anything about the header files. */
330 +#define NO_IMPLICIT_EXTERN_C
331 +
332 +#undef LIB_SPEC
333 +#define LIB_SPEC \
334 + "%{pthread:-lpthread} " \
335 + "-lc"
336 +
337 +#undef LINK_GCC_C_SEQUENCE_SPEC
338 +#define LINK_GCC_C_SEQUENCE_SPEC \
339 + "%{static:--start-group} %G %L %{static:--end-group} " \
340 + "%{!static: %G}"
341 +
342 +#undef STARTFILE_SPEC
343 +#define STARTFILE_SPEC \
344 + "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \
345 + "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}"
346 +
347 +#undef ENDFILE_SPEC
348 +#define ENDFILE_SPEC \
349 + "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s"
350 +
351 +/* taken from linux.h */
352 +/* The GNU C++ standard library requires that these macros be defined. */
353 +#undef CPLUSPLUS_CPP_SPEC
354 +#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
355 +
356 +#define TARGET_OS_CPP_BUILTINS() \
357 + do { \
358 + builtin_define_std ("__UBICOM32__"); \
359 + builtin_define_std ("__ubicom32__"); \
360 + builtin_define ("__gnu_linux__"); \
361 + builtin_define_std ("linux"); \
362 + builtin_define_std ("unix"); \
363 + builtin_assert ("system=linux"); \
364 + builtin_assert ("system=unix"); \
365 + builtin_assert ("system=posix"); \
366 + } while (0)
367 +
368 +#define OBJECT_FORMAT_ELF
369 +
370 +
371 +#undef DRIVER_SELF_SPECS
372 +#define DRIVER_SELF_SPECS \
373 + "%{!mno-fdpic:-mfdpic}"
374 +
375 +#undef LINK_SPEC
376 +#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \
377 + %{static:-dn -Bstatic} \
378 + %{shared:-G -Bdynamic} \
379 + %{!shared: %{!static: \
380 + %{rdynamic:-export-dynamic} \
381 + %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \
382 + %{static}} "
383 +
384 +/*
385 +#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h"
386 +*/
387 --- /dev/null
388 +++ b/gcc/config/ubicom32/predicates.md
389 @@ -0,0 +1,327 @@
390 +; Predicate definitions for Ubicom32.
391 +
392 +; Copyright (C) 2009 Free Software Foundation, Inc.
393 +; Contributed by Ubicom, Inc.
394 +
395 +; This file is part of GCC.
396 +
397 +; GCC is free software; you can redistribute it and/or modify it
398 +; under the terms of the GNU General Public License as published
399 +; by the Free Software Foundation; either version 3, or (at your
400 +; option) any later version.
401 +
402 +; GCC is distributed in the hope that it will be useful, but WITHOUT
403 +; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
404 +; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
405 +; License for more details.
406 +
407 +; You should have received a copy of the GNU General Public License
408 +; along with GCC; see the file COPYING3. If not see
409 +; <http://www.gnu.org/licenses/>.
410 +
411 +(define_predicate "ubicom32_move_operand"
412 + (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum")
413 +{
414 + if (CONST_INT_P (op))
415 + return true;
416 +
417 + if (GET_CODE (op) == CONST_DOUBLE)
418 + return true;
419 +
420 + if (GET_CODE (op) == CONST)
421 + return memory_address_p (mode, op);
422 +
423 + if (GET_MODE (op) != mode)
424 + return false;
425 +
426 + if (MEM_P (op))
427 + return memory_address_p (mode, XEXP (op, 0));
428 +
429 + if (GET_CODE (op) == SUBREG) {
430 + op = SUBREG_REG (op);
431 +
432 + if (REG_P (op))
433 + return true;
434 +
435 + if (! MEM_P (op))
436 + return false;
437 +
438 + /* Paradoxical SUBREG. */
439 + if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op)))
440 + return false;
441 +
442 + return memory_address_p (GET_MODE (op), XEXP (op, 0));
443 + }
444 +
445 + return register_operand (op, mode);
446 +})
447 +
448 +;; Returns true if OP is either a symbol reference or a sum of a
449 +;; symbol reference and a constant.
450 +
451 +(define_predicate "ubicom32_symbolic_address_operand"
452 + (match_code "symbol_ref, label_ref, const")
453 +{
454 + switch (GET_CODE (op))
455 + {
456 + case SYMBOL_REF:
457 + case LABEL_REF:
458 + return true;
459 +
460 + case CONST:
461 + op = XEXP (op, 0);
462 + return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
463 + || GET_CODE (XEXP (op, 0)) == LABEL_REF)
464 + && CONST_INT_P (XEXP (op, 1)));
465 +
466 + default:
467 + return false;
468 + }
469 +})
470 +
471 +;; Return true if operand is the uClinux FD-PIC register.
472 +
473 +(define_predicate "ubicom32_fdpic_operand"
474 + (match_code "reg")
475 +{
476 + if (! TARGET_FDPIC)
477 + return false;
478 +
479 + if (!REG_P (op))
480 + return false;
481 +
482 + if (GET_MODE (op) != mode && mode != VOIDmode)
483 + return false;
484 +
485 + if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER)
486 + return false;
487 +
488 + return true;
489 +})
490 +
491 +(define_predicate "ubicom32_fdpic_got_offset_operand"
492 + (match_code "unspec")
493 +{
494 + if (! TARGET_FDPIC)
495 + return false;
496 +
497 + if (GET_CODE (op) != UNSPEC)
498 + return false;
499 +
500 + if (XINT (op, 1) != UNSPEC_FDPIC_GOT
501 + && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC)
502 + return false;
503 +
504 + return true;
505 +})
506 +
507 +(define_predicate "ubicom32_arith_operand"
508 + (match_code "subreg, reg, const_int, lo_sum, mem")
509 +{
510 + return (ubicom32_move_operand (op, mode)
511 + && ! ubicom32_symbolic_address_operand (op, mode)
512 + && (! CONST_INT_P (op)
513 + || satisfies_constraint_I (op)));
514 +})
515 +
516 +(define_predicate "ubicom32_arith_operand_dot1"
517 + (match_code "subreg, reg, const_int, lo_sum, mem")
518 +{
519 + return (ubicom32_move_operand (op, mode)
520 + && ! ubicom32_symbolic_address_operand (op, mode)
521 + && (! CONST_INT_P (op)
522 + || satisfies_constraint_Q (op)));
523 +})
524 +
525 +(define_predicate "ubicom32_arith_operand_dot2"
526 + (match_code "subreg, reg, const_int, lo_sum, mem")
527 +{
528 + return (ubicom32_move_operand (op, mode)
529 + && ! ubicom32_symbolic_address_operand (op, mode)
530 + && (! CONST_INT_P (op)
531 + || satisfies_constraint_R (op)));
532 +})
533 +
534 +(define_predicate "ubicom32_compare_operand"
535 + (match_code "subreg, reg, const_int, lo_sum, mem")
536 +{
537 + return (ubicom32_move_operand (op, mode)
538 + && ! ubicom32_symbolic_address_operand (op, mode)
539 + && (! CONST_INT_P (op)
540 + || satisfies_constraint_N (op)));
541 +})
542 +
543 +(define_predicate "ubicom32_compare_operator"
544 + (match_code "compare"))
545 +
546 +(define_predicate "ubicom32_and_or_si3_operand"
547 + (match_code "subreg, reg, const_int, lo_sum, mem")
548 +{
549 + return (ubicom32_arith_operand (op, mode)
550 + || (CONST_INT_P (op)
551 + && ((exact_log2 (INTVAL (op) + 1) != -1
552 + && exact_log2 (INTVAL (op) + 1) <= 31)
553 + || (exact_log2 (INTVAL (op)) != -1
554 + && exact_log2 (INTVAL (op)) <= 31)
555 + || (exact_log2 (~INTVAL (op)) != -1
556 + && exact_log2 (~INTVAL (op)) <= 31))));
557 +})
558 +
559 +(define_predicate "ubicom32_and_or_hi3_operand"
560 + (match_code "subreg, reg, const_int, lo_sum, mem")
561 +{
562 + return (ubicom32_arith_operand (op, mode)
563 + || (CONST_INT_P (op)
564 + && exact_log2 (INTVAL (op) + 1) != -1
565 + && exact_log2 (INTVAL (op) + 1) <= 15));
566 +})
567 +
568 +(define_predicate "ubicom32_mem_or_address_register_operand"
569 + (match_code "subreg, reg, mem")
570 +{
571 + unsigned int regno;
572 +
573 + if (MEM_P (op)
574 + && memory_operand (op, mode))
575 + return true;
576 +
577 + if (REG_P (op))
578 + regno = REGNO (op);
579 + else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
580 + {
581 + int offset;
582 + if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
583 + offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
584 + else
585 + offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
586 + GET_MODE (SUBREG_REG (op)),
587 + SUBREG_BYTE (op),
588 + GET_MODE (op));
589 + regno = REGNO (SUBREG_REG (op)) + offset;
590 + }
591 + else
592 + return false;
593 +
594 + return (regno >= FIRST_PSEUDO_REGISTER
595 + || REGNO_REG_CLASS (regno) == FDPIC_REG
596 + || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
597 +})
598 +
599 +(define_predicate "ubicom32_data_register_operand"
600 + (match_code "subreg, reg")
601 +{
602 + unsigned int regno;
603 +
604 + if (REG_P (op))
605 + regno = REGNO (op);
606 + else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
607 + {
608 + int offset;
609 + if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
610 + offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
611 + else
612 + offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
613 + GET_MODE (SUBREG_REG (op)),
614 + SUBREG_BYTE (op),
615 + GET_MODE (op));
616 + regno = REGNO (SUBREG_REG (op)) + offset;
617 + }
618 + else
619 + return false;
620 +
621 + return ((regno >= FIRST_PSEUDO_REGISTER
622 + && regno != REGNO (virtual_stack_vars_rtx))
623 + || REGNO_REG_CLASS (regno) == DATA_REGS);
624 +})
625 +
626 +(define_predicate "ubicom32_address_register_operand"
627 + (match_code "subreg, reg")
628 +{
629 + unsigned int regno;
630 +
631 + if (REG_P (op))
632 + regno = REGNO (op);
633 + else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
634 + {
635 + int offset;
636 + if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
637 + offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
638 + else
639 + offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
640 + GET_MODE (SUBREG_REG (op)),
641 + SUBREG_BYTE (op),
642 + GET_MODE (op));
643 + regno = REGNO (SUBREG_REG (op)) + offset;
644 + }
645 + else
646 + return false;
647 +
648 + return (regno >= FIRST_PSEUDO_REGISTER
649 + || REGNO_REG_CLASS (regno) == FDPIC_REG
650 + || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
651 +})
652 +
653 +(define_predicate "ubicom32_acc_lo_register_operand"
654 + (match_code "subreg, reg")
655 +{
656 + unsigned int regno;
657 +
658 + if (REG_P (op))
659 + regno = REGNO (op);
660 + else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
661 + {
662 + int offset;
663 + if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
664 + offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
665 + else
666 + offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
667 + GET_MODE (SUBREG_REG (op)),
668 + SUBREG_BYTE (op),
669 + GET_MODE (op));
670 + regno = REGNO (SUBREG_REG (op)) + offset;
671 + }
672 + else
673 + return false;
674 +
675 + return ((regno >= FIRST_PSEUDO_REGISTER
676 + && regno != REGNO (virtual_stack_vars_rtx))
677 + || REGNO_REG_CLASS (regno) == ACC_LO_REGS);
678 +})
679 +
680 +(define_predicate "ubicom32_acc_hi_register_operand"
681 + (match_code "subreg, reg")
682 +{
683 + unsigned int regno;
684 +
685 + if (REG_P (op))
686 + regno = REGNO (op);
687 + else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
688 + {
689 + int offset;
690 + if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
691 + offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
692 + else
693 + offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
694 + GET_MODE (SUBREG_REG (op)),
695 + SUBREG_BYTE (op),
696 + GET_MODE (op));
697 + regno = REGNO (SUBREG_REG (op)) + offset;
698 + }
699 + else
700 + return false;
701 +
702 + return ((regno >= FIRST_PSEUDO_REGISTER
703 + && regno != REGNO (virtual_stack_vars_rtx))
704 + || REGNO_REG_CLASS (regno) == ACC_REGS);
705 +})
706 +
707 +(define_predicate "ubicom32_call_address_operand"
708 + (match_code "symbol_ref, subreg, reg")
709 +{
710 + return (GET_CODE (op) == SYMBOL_REF || REG_P (op));
711 +})
712 +
713 +(define_special_predicate "ubicom32_cc_register_operand"
714 + (and (match_code "reg")
715 + (match_test "REGNO (op) == CC_REGNUM")))
716 +
717 --- /dev/null
718 +++ b/gcc/config/ubicom32/t-ubicom32
719 @@ -0,0 +1,52 @@
720 +# Name of assembly file containing libgcc1 functions.
721 +# This entry must be present, but it can be empty if the target does
722 +# not need any assembler functions to support its code generation.
723 +CROSS_LIBGCC1 =
724 +
725 +# Alternatively if assembler functions *are* needed then define the
726 +# entries below:
727 +# CROSS_LIBGCC1 = libgcc1-asm.a
728 +
729 +LIB2FUNCS_EXTRA = \
730 + $(srcdir)/config/udivmodsi4.c \
731 + $(srcdir)/config/divmod.c \
732 + $(srcdir)/config/udivmod.c
733 +
734 +# If any special flags are necessary when building libgcc2 put them here.
735 +#
736 +# TARGET_LIBGCC2_CFLAGS =
737 +
738 +# We want fine grained libraries, so use the new code to build the
739 +# floating point emulation libraries.
740 +FPBIT = fp-bit.c
741 +DPBIT = dp-bit.c
742 +
743 +fp-bit.c: $(srcdir)/config/fp-bit.c
744 + echo '#define FLOAT' > fp-bit.c
745 + cat $(srcdir)/config/fp-bit.c >> fp-bit.c
746 +
747 +dp-bit.c: $(srcdir)/config/fp-bit.c
748 + cat $(srcdir)/config/fp-bit.c > dp-bit.c
749 +
750 +# Commented out to speed up compiler development!
751 +#
752 +# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4
753 +# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4
754 +
755 +MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
756 +MULTILIB_OPTIONS += mfdpic
757 +MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi
758 +MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore
759 +
760 +# Assemble startup files.
761 +$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES)
762 + $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
763 + -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S
764 +
765 +$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES)
766 + $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
767 + -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S
768 +
769 +# these parts are required because uClibc ldso needs them to link.
770 +# they are not in the specfile so they will not be included automatically.
771 +EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o
772 --- /dev/null
773 +++ b/gcc/config/ubicom32/t-ubicom32-linux
774 @@ -0,0 +1,35 @@
775 +# Name of assembly file containing libgcc1 functions.
776 +# This entry must be present, but it can be empty if the target does
777 +# not need any assembler functions to support its code generation.
778 +CROSS_LIBGCC1 =
779 +
780 +# Alternatively if assembler functions *are* needed then define the
781 +# entries below:
782 +# CROSS_LIBGCC1 = libgcc1-asm.a
783 +
784 +LIB2FUNCS_EXTRA = \
785 + $(srcdir)/config/udivmodsi4.c \
786 + $(srcdir)/config/divmod.c \
787 + $(srcdir)/config/udivmod.c
788 +
789 +# If any special flags are necessary when building libgcc2 put them here.
790 +#
791 +# TARGET_LIBGCC2_CFLAGS =
792 +
793 +# We want fine grained libraries, so use the new code to build the
794 +# floating point emulation libraries.
795 +FPBIT = fp-bit.c
796 +DPBIT = dp-bit.c
797 +
798 +fp-bit.c: $(srcdir)/config/fp-bit.c
799 + echo '#define FLOAT' > fp-bit.c
800 + cat $(srcdir)/config/fp-bit.c >> fp-bit.c
801 +
802 +dp-bit.c: $(srcdir)/config/fp-bit.c
803 + cat $(srcdir)/config/fp-bit.c > dp-bit.c
804 +
805 +# We only support v3 and v4 ISAs for uClinux.
806 +
807 +MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
808 +
809 +#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o
810 --- /dev/null
811 +++ b/gcc/config/ubicom32/t-ubicom32-uclinux
812 @@ -0,0 +1,35 @@
813 +# Name of assembly file containing libgcc1 functions.
814 +# This entry must be present, but it can be empty if the target does
815 +# not need any assembler functions to support its code generation.
816 +CROSS_LIBGCC1 =
817 +
818 +# Alternatively if assembler functions *are* needed then define the
819 +# entries below:
820 +# CROSS_LIBGCC1 = libgcc1-asm.a
821 +
822 +LIB2FUNCS_EXTRA = \
823 + $(srcdir)/config/udivmodsi4.c \
824 + $(srcdir)/config/divmod.c \
825 + $(srcdir)/config/udivmod.c
826 +
827 +# If any special flags are necessary when building libgcc2 put them here.
828 +#
829 +# TARGET_LIBGCC2_CFLAGS =
830 +
831 +# We want fine grained libraries, so use the new code to build the
832 +# floating point emulation libraries.
833 +FPBIT = fp-bit.c
834 +DPBIT = dp-bit.c
835 +
836 +fp-bit.c: $(srcdir)/config/fp-bit.c
837 + echo '#define FLOAT' > fp-bit.c
838 + cat $(srcdir)/config/fp-bit.c >> fp-bit.c
839 +
840 +dp-bit.c: $(srcdir)/config/fp-bit.c
841 + cat $(srcdir)/config/fp-bit.c > dp-bit.c
842 +
843 +# We only support v3 and v4 ISAs for uClinux.
844 +
845 +MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
846 +
847 +EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o
848 --- /dev/null
849 +++ b/gcc/config/ubicom32/ubicom32-modes.def
850 @@ -0,0 +1,30 @@
851 +/* Definitions of target machine for GNU compiler, Ubicom32 architecture.
852 + Copyright (C) 2009 Free Software Foundation, Inc.
853 + Contributed by Ubicom, Inc.
854 +
855 + This file is part of GCC.
856 +
857 + GCC is free software; you can redistribute it and/or modify it
858 + under the terms of the GNU General Public License as published
859 + by the Free Software Foundation; either version 3, or (at your
860 + option) any later version.
861 +
862 + GCC is distributed in the hope that it will be useful, but WITHOUT
863 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
864 + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
865 + License for more details.
866 +
867 + You should have received a copy of the GNU General Public License
868 + along with GCC; see the file COPYING3. If not see
869 + <http://www.gnu.org/licenses/>. */
870 +
871 +/* Some insns set all condition code flags, some only set the Z and N flags, and
872 + some only set the Z flag. */
873 +
874 +CC_MODE (CCW);
875 +CC_MODE (CCWZN);
876 +CC_MODE (CCWZ);
877 +CC_MODE (CCS);
878 +CC_MODE (CCSZN);
879 +CC_MODE (CCSZ);
880 +
881 --- /dev/null
882 +++ b/gcc/config/ubicom32/ubicom32-protos.h
883 @@ -0,0 +1,84 @@
884 +/* Function prototypes for Ubicom IP3000.
885 +
886 + Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
887 + 2009 Free Software Foundation, Inc.
888 + Contributed by Ubicom, Inc.
889 +
890 + This file is part of GNU CC.
891 +
892 + GNU CC is free software; you can redistribute it and/or modify it under
893 + the terms of the GNU General Public License as published by the Free
894 + Software Foundation; either version 2, or (at your option) any later
895 + version.
896 +
897 + GNU CC is distributed in the hope that it will be useful, but WITHOUT
898 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
899 + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
900 + for more details.
901 +
902 + You should have received a copy of the GNU General Public License along
903 + with GNU CC; see the file COPYING. If not, write to the Free Software
904 + Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
905 +
906 +#ifdef RTX_CODE
907 +
908 +#ifdef TREE_CODE
909 +extern void ubicom32_va_start (tree, rtx);
910 +#endif /* TREE_CODE */
911 +
912 +extern void ubicom32_print_operand (FILE *, rtx, int);
913 +extern void ubicom32_print_operand_address (FILE *, rtx);
914 +
915 +extern void ubicom32_conditional_register_usage (void);
916 +extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class);
917 +extern int ubicom32_regno_ok_for_index_p (int, int);
918 +extern void ubicom32_expand_movsi (rtx *);
919 +extern void ubicom32_expand_addsi3 (rtx *);
920 +extern int ubicom32_emit_mult_sequence (rtx *);
921 +extern void ubicom32_emit_move_const_int (rtx, rtx);
922 +extern bool ubicom32_legitimate_constant_p (rtx);
923 +extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int);
924 +extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode);
925 +extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int);
926 +extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1);
927 +extern int ubicom32_mode_dependent_address_p (rtx);
928 +extern void ubicom32_output_cond_jump (rtx, rtx, rtx);
929 +extern void ubicom32_expand_eh_return (rtx *);
930 +extern void ubicom32_expand_call_fdpic (rtx *);
931 +extern void ubicom32_expand_call_value_fdpic (rtx *);
932 +extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx);
933 +extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx);
934 +extern int ubicom32_shiftable_const_int (int);
935 +#endif /* RTX_CODE */
936 +
937 +#ifdef TREE_CODE
938 +extern void init_cumulative_args (CUMULATIVE_ARGS *cum,
939 + tree fntype,
940 + struct rtx_def *libname,
941 + int indirect);
942 +extern struct rtx_def *function_arg (CUMULATIVE_ARGS *,
943 + enum machine_mode, tree, int);
944 +extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *,
945 + enum machine_mode,
946 + tree, int);
947 +extern int function_arg_partial_nregs (CUMULATIVE_ARGS *,
948 + enum machine_mode, tree, int);
949 +extern struct rtx_def *ubicom32_va_arg (tree, tree);
950 +extern int ubicom32_reg_parm_stack_space (tree);
951 +#endif /* TREE_CODE */
952 +
953 +extern struct rtx_def * ubicom32_builtin_saveregs (void);
954 +extern void asm_file_start (FILE *);
955 +extern void ubicom32_expand_prologue (void);
956 +extern void ubicom32_expand_epilogue (void);
957 +extern int ubicom32_initial_elimination_offset (int, int);
958 +extern int ubicom32_regno_ok_for_base_p (int, int);
959 +extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode);
960 +extern int ubicom32_can_use_return_insn_p (void);
961 +extern rtx ubicom32_return_addr_rtx (int, rtx);
962 +extern void ubicom32_optimization_options (int, int);
963 +extern void ubicom32_override_options (void);
964 +extern bool ubicom32_match_cc_mode (rtx, enum machine_mode);
965 +
966 +extern int ubicom32_reorg_completed;
967 +
968 --- /dev/null
969 +++ b/gcc/config/ubicom32/ubicom32.c
970 @@ -0,0 +1,2881 @@
971 +/* Subroutines for insn-output.c for Ubicom32
972 +
973 + Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
974 + 2009 Free Software Foundation, Inc.
975 + Contributed by Ubicom, Inc.
976 +
977 + This file is part of GCC.
978 +
979 + GCC is free software; you can redistribute it and/or modify it
980 + under the terms of the GNU General Public License as published
981 + by the Free Software Foundation; either version 3, or (at your
982 + option) any later version.
983 +
984 + GCC is distributed in the hope that it will be useful, but WITHOUT
985 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
986 + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
987 + License for more details.
988 +
989 + You should have received a copy of the GNU General Public License
990 + along with GCC; see the file COPYING3. If not see
991 + <http://www.gnu.org/licenses/>. */
992 +
993 +#include "config.h"
994 +#include "system.h"
995 +#include "coretypes.h"
996 +#include "tm.h"
997 +#include "rtl.h"
998 +#include "tree.h"
999 +#include "regs.h"
1000 +#include "hard-reg-set.h"
1001 +#include "real.h"
1002 +#include "insn-config.h"
1003 +#include "conditions.h"
1004 +#include "insn-flags.h"
1005 +#include "output.h"
1006 +#include "insn-attr.h"
1007 +#include "insn-codes.h"
1008 +#include "flags.h"
1009 +#include "recog.h"
1010 +#include "expr.h"
1011 +#include "function.h"
1012 +#include "obstack.h"
1013 +#include "toplev.h"
1014 +#include "tm_p.h"
1015 +#include "tm-constrs.h"
1016 +#include "basic-block.h"
1017 +#include "integrate.h"
1018 +#include "target.h"
1019 +#include "target-def.h"
1020 +#include "reload.h"
1021 +#include "df.h"
1022 +#include "langhooks.h"
1023 +#include "optabs.h"
1024 +
1025 +static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
1026 +static void ubicom32_layout_frame (void);
1027 +static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT);
1028 +static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT);
1029 +static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed);
1030 +static bool ubicom32_fixed_condition_code_regs (unsigned int *,
1031 + unsigned int *);
1032 +static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode,
1033 + enum machine_mode);
1034 +static int ubicom32_naked_function_p (void);
1035 +static void ubicom32_machine_dependent_reorg (void);
1036 +static bool ubicom32_assemble_integer (rtx, unsigned int, int);
1037 +static void ubicom32_asm_init_sections (void);
1038 +static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree,
1039 + bool);
1040 +static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
1041 + enum machine_mode mode, const_tree type,
1042 + bool named ATTRIBUTE_UNUSED);
1043 +static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
1044 + enum machine_mode mode, const_tree type,
1045 + bool named ATTRIBUTE_UNUSED);
1046 +
1047 +static bool ubicom32_return_in_memory (const_tree type,
1048 + const_tree fntype ATTRIBUTE_UNUSED);
1049 +static bool ubicom32_is_base_reg (rtx, int);
1050 +static void ubicom32_init_builtins (void);
1051 +static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
1052 +static tree ubicom32_fold_builtin (tree, tree, bool);
1053 +static int ubicom32_get_valid_offset_mask (enum machine_mode);
1054 +static bool ubicom32_cannot_force_const_mem (rtx);
1055 +
1056 +/* Case values threshold */
1057 +int ubicom32_case_values_threshold = 6;
1058 +
1059 +/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
1060 +int ubicom32_v3 = 1;
1061 +
1062 +/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
1063 +int ubicom32_v4 = 1;
1064 +
1065 +/* Valid attributes:
1066 + naked - don't generate function prologue/epilogue and `ret' command. */
1067 +const struct attribute_spec ubicom32_attribute_table[] =
1068 +{
1069 + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
1070 + { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute },
1071 + { NULL, 0, 0, false, false, false, NULL }
1072 +};
1073 +
1074 +#undef TARGET_ASM_FUNCTION_PROLOGUE
1075 +#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue
1076 +
1077 +#undef TARGET_ASM_FUNCTION_EPILOGUE
1078 +#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue
1079 +
1080 +#undef TARGET_ATTRIBUTE_TABLE
1081 +#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table
1082 +
1083 +/* All addresses cost the same amount. */
1084 +#undef TARGET_ADDRESS_COST
1085 +#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
1086 +
1087 +#undef TARGET_RTX_COSTS
1088 +#define TARGET_RTX_COSTS ubicom32_rtx_costs
1089 +
1090 +#undef TARGET_FIXED_CONDITION_CODE_REGS
1091 +#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs
1092 +
1093 +#undef TARGET_CC_MODES_COMPATIBLE
1094 +#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible
1095 +
1096 +#undef TARGET_MACHINE_DEPENDENT_REORG
1097 +#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg
1098 +
1099 +#undef TARGET_ASM_INTEGER
1100 +#define TARGET_ASM_INTEGER ubicom32_assemble_integer
1101 +
1102 +#undef TARGET_ASM_INIT_SECTIONS
1103 +#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections
1104 +
1105 +#undef TARGET_ARG_PARTIAL_BYTES
1106 +#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes
1107 +
1108 +#undef TARGET_PASS_BY_REFERENCE
1109 +#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference
1110 +
1111 +#undef TARGET_CALLEE_COPIES
1112 +#define TARGET_CALLEE_COPIES ubicom32_callee_copies
1113 +
1114 +#undef TARGET_RETURN_IN_MEMORY
1115 +#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory
1116 +
1117 +#undef TARGET_INIT_BUILTINS
1118 +#define TARGET_INIT_BUILTINS ubicom32_init_builtins
1119 +
1120 +#undef TARGET_EXPAND_BUILTIN
1121 +#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin
1122 +
1123 +#undef TARGET_FOLD_BUILTIN
1124 +#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin
1125 +
1126 +#undef TARGET_CANNOT_FORCE_CONST_MEM
1127 +#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem
1128 +
1129 +struct gcc_target targetm = TARGET_INITIALIZER;
1130 +
1131 +static char save_regs[FIRST_PSEUDO_REGISTER];
1132 +static int nregs;
1133 +static int frame_size;
1134 +int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */
1135 +int ubicom32_can_use_calli_to_ret;
1136 +
1137 +#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT)
1138 +#define ROUND_CALL_BLOCK_SIZE(BYTES) \
1139 + (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1))
1140 +
1141 +/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
1142 + must report the mode of the memory reference from PRINT_OPERAND to
1143 + PRINT_OPERAND_ADDRESS. */
1144 +enum machine_mode output_memory_reference_mode;
1145 +
1146 +/* Flag for some split insns from the ubicom32.md. */
1147 +int ubicom32_reorg_completed;
1148 +
1149 +enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] =
1150 +{
1151 + DATA_REGS,
1152 + DATA_REGS,
1153 + DATA_REGS,
1154 + DATA_REGS,
1155 + DATA_REGS,
1156 + DATA_REGS,
1157 + DATA_REGS,
1158 + DATA_REGS,
1159 + DATA_REGS,
1160 + DATA_REGS,
1161 + DATA_REGS,
1162 + DATA_REGS,
1163 + DATA_REGS,
1164 + DATA_REGS,
1165 + DATA_REGS,
1166 + DATA_REGS,
1167 + FDPIC_REG,
1168 + ADDRESS_REGS,
1169 + ADDRESS_REGS,
1170 + ADDRESS_REGS,
1171 + ADDRESS_REGS,
1172 + ADDRESS_REGS,
1173 + ADDRESS_REGS,
1174 + ADDRESS_REGS,
1175 + ACC_REGS,
1176 + ACC_LO_REGS,
1177 + ACC_REGS,
1178 + ACC_LO_REGS,
1179 + SOURCE3_REG,
1180 + ADDRESS_REGS,
1181 + NO_REGS, /* CC_REG must be NO_REGS */
1182 + SPECIAL_REGS,
1183 + SPECIAL_REGS,
1184 + SPECIAL_REGS,
1185 + SPECIAL_REGS,
1186 + SPECIAL_REGS,
1187 + SPECIAL_REGS,
1188 + SPECIAL_REGS,
1189 + SPECIAL_REGS
1190 +};
1191 +
1192 +rtx ubicom32_compare_op0;
1193 +rtx ubicom32_compare_op1;
1194 +
1195 +/* Handle command line option overrides. */
1196 +
1197 +void
1198 +ubicom32_override_options (void)
1199 +{
1200 + flag_pic = 0;
1201 +
1202 + if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) {
1203 + /* If we have a version 1 architecture then we want to avoid using jump
1204 + tables. */
1205 + ubicom32_case_values_threshold = 30000;
1206 + ubicom32_v3 = 0;
1207 + ubicom32_v4 = 0;
1208 + } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) {
1209 + ubicom32_v3 = 0;
1210 + ubicom32_v4 = 0;
1211 + } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) {
1212 + ubicom32_v3 = 1;
1213 + ubicom32_v4 = 0;
1214 + } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) {
1215 + ubicom32_v3 = 1;
1216 + ubicom32_v4 = 1;
1217 + }
1218 +
1219 + /* There is no single unaligned SI op for PIC code. Sometimes we
1220 + need to use ".4byte" and sometimes we need to use ".picptr".
1221 + See ubicom32_assemble_integer for details. */
1222 + if (TARGET_FDPIC)
1223 + targetm.asm_out.unaligned_op.si = 0;
1224 +}
1225 +
1226 +void
1227 +ubicom32_conditional_register_usage (void)
1228 +{
1229 + /* If we're using the old ipOS ABI we need to make D10 through D13
1230 + caller-clobbered. */
1231 + if (TARGET_IPOS_ABI)
1232 + {
1233 + call_used_regs[D10_REGNUM] = 1;
1234 + call_used_regs[D11_REGNUM] = 1;
1235 + call_used_regs[D12_REGNUM] = 1;
1236 + call_used_regs[D13_REGNUM] = 1;
1237 + }
1238 +}
1239 +
1240 +/* We have some number of optimizations that don't really work for the Ubicom32
1241 + architecture so we deal with them here. */
1242 +
1243 +void
1244 +ubicom32_optimization_options (int level ATTRIBUTE_UNUSED,
1245 + int size ATTRIBUTE_UNUSED)
1246 +{
1247 + /* The tree IVOPTs pass seems to do really bad things for the Ubicom32
1248 + architecture - it tends to turn things that would happily use pre/post
1249 + increment/decrement into operations involving unecessary loop
1250 + indicies. */
1251 + flag_ivopts = 0;
1252 +
1253 + /* We have problems where DSE at the RTL level misses partial stores
1254 + to the stack. For now we disable it to avoid this. */
1255 + flag_dse = 0;
1256 +}
1257 +
1258 +/* Print operand X using operand code CODE to assembly language output file
1259 + FILE. */
1260 +
1261 +void
1262 +ubicom32_print_operand (FILE *file, rtx x, int code)
1263 +{
1264 + switch (code)
1265 + {
1266 + case 'A':
1267 + /* Identify the correct accumulator to use. */
1268 + if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM)
1269 + fprintf (file, "acc0");
1270 + else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM)
1271 + fprintf (file, "acc1");
1272 + else
1273 + abort ();
1274 + break;
1275 +
1276 + case 'b':
1277 + case 'B':
1278 + {
1279 + enum machine_mode mode;
1280 +
1281 + mode = GET_MODE (XEXP (x, 0));
1282 +
1283 + /* These are normal and reversed branches. */
1284 + switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
1285 + {
1286 + case NE:
1287 + fprintf (file, "ne");
1288 + break;
1289 +
1290 + case EQ:
1291 + fprintf (file, "eq");
1292 + break;
1293 +
1294 + case GE:
1295 + if (mode == CCSZNmode || mode == CCWZNmode)
1296 + fprintf (file, "pl");
1297 + else
1298 + fprintf (file, "ge");
1299 + break;
1300 +
1301 + case GT:
1302 + fprintf (file, "gt");
1303 + break;
1304 +
1305 + case LE:
1306 + fprintf (file, "le");
1307 + break;
1308 +
1309 + case LT:
1310 + if (mode == CCSZNmode || mode == CCWZNmode)
1311 + fprintf (file, "mi");
1312 + else
1313 + fprintf (file, "lt");
1314 + break;
1315 +
1316 + case GEU:
1317 + fprintf (file, "cs");
1318 + break;
1319 +
1320 + case GTU:
1321 + fprintf (file, "hi");
1322 + break;
1323 +
1324 + case LEU:
1325 + fprintf (file, "ls");
1326 + break;
1327 +
1328 + case LTU:
1329 + fprintf (file, "cc");
1330 + break;
1331 +
1332 + default:
1333 + abort ();
1334 + }
1335 + }
1336 + break;
1337 +
1338 + case 'C':
1339 + /* This is used for the operand to a call instruction;
1340 + if it's a REG, enclose it in parens, else output
1341 + the operand normally. */
1342 + if (REG_P (x))
1343 + {
1344 + fputc ('(', file);
1345 + ubicom32_print_operand (file, x, 0);
1346 + fputc (')', file);
1347 + }
1348 + else
1349 + ubicom32_print_operand (file, x, 0);
1350 + break;
1351 +
1352 + case 'd':
1353 + /* Bit operations we need bit numbers. */
1354 + fprintf (file, "%d", exact_log2 (INTVAL (x)));
1355 + break;
1356 +
1357 + case 'D':
1358 + /* Bit operations we need bit numbers. */
1359 + fprintf (file, "%d", exact_log2 (~ INTVAL (x)));
1360 + break;
1361 +
1362 + case 'E':
1363 + /* For lea, which we use to add address registers.
1364 + We don't want the '#' on a constant. */
1365 + if (CONST_INT_P (x))
1366 + {
1367 + fprintf (file, "%ld", INTVAL (x));
1368 + break;
1369 + }
1370 + /* FALL THROUGH */
1371 +
1372 + default:
1373 + switch (GET_CODE (x))
1374 + {
1375 + case MEM:
1376 + output_memory_reference_mode = GET_MODE (x);
1377 + output_address (XEXP (x, 0));
1378 + break;
1379 +
1380 + case PLUS:
1381 + output_address (x);
1382 + break;
1383 +
1384 + case REG:
1385 + fprintf (file, "%s", reg_names[REGNO (x)]);
1386 + break;
1387 +
1388 + case SUBREG:
1389 + fprintf (file, "%s", reg_names[subreg_regno (x)]);
1390 + break;
1391 +
1392 + /* This will only be single precision.... */
1393 + case CONST_DOUBLE:
1394 + {
1395 + unsigned long val;
1396 + REAL_VALUE_TYPE rv;
1397 +
1398 + REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1399 + REAL_VALUE_TO_TARGET_SINGLE (rv, val);
1400 + fprintf (file, "0x%lx", val);
1401 + break;
1402 + }
1403 +
1404 + case CONST_INT:
1405 + case SYMBOL_REF:
1406 + case CONST:
1407 + case LABEL_REF:
1408 + case CODE_LABEL:
1409 + case LO_SUM:
1410 + ubicom32_print_operand_address (file, x);
1411 + break;
1412 +
1413 + case HIGH:
1414 + fprintf (file, "#%%hi(");
1415 + ubicom32_print_operand_address (file, XEXP (x, 0));
1416 + fprintf (file, ")");
1417 + break;
1418 +
1419 + case UNSPEC:
1420 + switch (XINT (x, 1))
1421 + {
1422 + case UNSPEC_FDPIC_GOT:
1423 + fprintf (file, "#%%got_lo(");
1424 + ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
1425 + fprintf (file, ")");
1426 + break;
1427 +
1428 + case UNSPEC_FDPIC_GOT_FUNCDESC:
1429 + fprintf (file, "#%%got_funcdesc_lo(");
1430 + ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
1431 + fprintf (file, ")");
1432 + break;
1433 +
1434 + default:
1435 + abort ();
1436 + }
1437 + break;
1438 +
1439 + default:
1440 + abort ();
1441 + }
1442 + break;
1443 + }
1444 +}
1445 +
1446 +/* Output assembly language output for the address ADDR to FILE. */
1447 +
1448 +void
1449 +ubicom32_print_operand_address (FILE *file, rtx addr)
1450 +{
1451 + switch (GET_CODE (addr))
1452 + {
1453 + case POST_INC:
1454 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1455 + fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode));
1456 + break;
1457 +
1458 + case PRE_INC:
1459 + fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode));
1460 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1461 + fprintf (file, "++");
1462 + break;
1463 +
1464 + case POST_DEC:
1465 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1466 + fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode));
1467 + break;
1468 +
1469 + case PRE_DEC:
1470 + fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode));
1471 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1472 + fprintf (file, "++");
1473 + break;
1474 +
1475 + case POST_MODIFY:
1476 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1477 + fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1)));
1478 + break;
1479 +
1480 + case PRE_MODIFY:
1481 + fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1)));
1482 + ubicom32_print_operand_address (file, XEXP (addr, 0));
1483 + fprintf (file, "++");
1484 + break;
1485 +
1486 + case REG:
1487 + fputc ('(', file);
1488 + fprintf (file, "%s", reg_names[REGNO (addr)]);
1489 + fputc (')', file);
1490 + break;
1491 +
1492 + case PLUS:
1493 + {
1494 + rtx base = XEXP (addr, 0);
1495 + rtx index = XEXP (addr, 1);
1496 +
1497 + /* Switch around addresses of the form index * scaling + base. */
1498 + if (! ubicom32_is_base_reg (base, 1))
1499 + {
1500 + rtx tmp = base;
1501 + base = index;
1502 + index = tmp;
1503 + }
1504 +
1505 + if (CONST_INT_P (index))
1506 + {
1507 + fprintf (file, "%ld", INTVAL (index));
1508 + fputc ('(', file);
1509 + fputs (reg_names[REGNO (base)], file);
1510 + }
1511 + else if (GET_CODE (index) == MULT
1512 + || REG_P (index))
1513 + {
1514 + if (GET_CODE (index) == MULT)
1515 + index = XEXP (index, 0);
1516 + fputc ('(', file);
1517 + fputs (reg_names[REGNO (base)], file);
1518 + fputc (',', file);
1519 + fputs (reg_names[REGNO (index)], file);
1520 + }
1521 + else
1522 + abort ();
1523 +
1524 + fputc (')', file);
1525 + break;
1526 + }
1527 +
1528 + case LO_SUM:
1529 + fprintf (file, "%%lo(");
1530 + ubicom32_print_operand (file, XEXP (addr, 1), 'L');
1531 + fprintf (file, ")(");
1532 + ubicom32_print_operand (file, XEXP (addr, 0), 0);
1533 + fprintf (file, ")");
1534 + break;
1535 +
1536 + case CONST_INT:
1537 + fputc ('#', file);
1538 + output_addr_const (file, addr);
1539 + break;
1540 +
1541 + default:
1542 + output_addr_const (file, addr);
1543 + break;
1544 + }
1545 +}
1546 +
1547 +/* X and Y are two things to compare using CODE. Emit the compare insn and
1548 + return the rtx for the cc reg in the proper mode. */
1549 +
1550 +rtx
1551 +ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
1552 +{
1553 + enum machine_mode mode = SELECT_CC_MODE (code, x, y);
1554 + rtx cc_reg;
1555 +
1556 + cc_reg = gen_rtx_REG (mode, CC_REGNUM);
1557 +
1558 + emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
1559 + gen_rtx_COMPARE (mode, x, y)));
1560 +
1561 + return cc_reg;
1562 +}
1563 +
1564 +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1565 + return the mode to be used for the comparison. */
1566 +
1567 +enum machine_mode
1568 +ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y)
1569 +{
1570 + /* Is this a short compare? */
1571 + if (GET_MODE (x) == QImode
1572 + || GET_MODE (x) == HImode
1573 + || GET_MODE (y) == QImode
1574 + || GET_MODE (y) == HImode)
1575 + {
1576 + switch (op)
1577 + {
1578 + case EQ :
1579 + case NE :
1580 + return CCSZmode;
1581 +
1582 + case GE:
1583 + case LT:
1584 + if (y == const0_rtx)
1585 + return CCSZNmode;
1586 +
1587 + default :
1588 + return CCSmode;
1589 + }
1590 + }
1591 +
1592 + /* We have a word compare. */
1593 + switch (op)
1594 + {
1595 + case EQ :
1596 + case NE :
1597 + return CCWZmode;
1598 +
1599 + case GE :
1600 + case LT :
1601 + if (y == const0_rtx)
1602 + return CCWZNmode;
1603 +
1604 + default :
1605 + return CCWmode;
1606 + }
1607 +}
1608 +
1609 +/* Return TRUE or FALSE depending on whether the first SET in INSN
1610 + has source and destination with matching CC modes, and that the
1611 + CC mode is at least as constrained as REQ_MODE. */
1612 +bool
1613 +ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode)
1614 +{
1615 + rtx set;
1616 + enum machine_mode set_mode;
1617 +
1618 + set = PATTERN (insn);
1619 + if (GET_CODE (set) == PARALLEL)
1620 + set = XVECEXP (set, 0, 0);
1621 + gcc_assert (GET_CODE (set) == SET);
1622 + gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
1623 +
1624 + /* SET_MODE is the mode we have in the instruction. This must either
1625 + be the same or less restrictive that the required mode REQ_MODE. */
1626 + set_mode = GET_MODE (SET_DEST (set));
1627 +
1628 + switch (req_mode)
1629 + {
1630 + case CCSZmode:
1631 + if (set_mode != CCSZmode)
1632 + return 0;
1633 + break;
1634 +
1635 + case CCSZNmode:
1636 + if (set_mode != CCSZmode
1637 + && set_mode != CCSZNmode)
1638 + return 0;
1639 + break;
1640 +
1641 + case CCSmode:
1642 + if (set_mode != CCSmode
1643 + && set_mode != CCSZmode
1644 + && set_mode != CCSZNmode)
1645 + return 0;
1646 + break;
1647 +
1648 + case CCWZmode:
1649 + if (set_mode != CCWZmode)
1650 + return 0;
1651 + break;
1652 +
1653 + case CCWZNmode:
1654 + if (set_mode != CCWZmode
1655 + && set_mode != CCWZNmode)
1656 + return 0;
1657 + break;
1658 +
1659 + case CCWmode:
1660 + if (set_mode != CCWmode
1661 + && set_mode != CCWZmode
1662 + && set_mode != CCWZNmode)
1663 + return 0;
1664 + break;
1665 +
1666 + default:
1667 + gcc_unreachable ();
1668 + }
1669 +
1670 + return (GET_MODE (SET_SRC (set)) == set_mode);
1671 +}
1672 +
1673 +/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
1674 + that we can implement more efficiently. */
1675 +
1676 +void
1677 +ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1)
1678 +{
1679 + /* If we have a REG and a MEM then compare the MEM with the REG and not
1680 + the other way round. */
1681 + if (REG_P (*op0) && MEM_P (*op1))
1682 + {
1683 + rtx tem = *op0;
1684 + *op0 = *op1;
1685 + *op1 = tem;
1686 + *code = swap_condition (*code);
1687 + return;
1688 + }
1689 +
1690 + /* If we have a REG and a CONST_INT then we may want to reverse things
1691 + if the constant can be represented as an "I" constraint. */
1692 + if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1))
1693 + {
1694 + rtx tem = *op0;
1695 + *op0 = *op1;
1696 + *op1 = tem;
1697 + *code = swap_condition (*code);
1698 + return;
1699 + }
1700 +}
1701 +
1702 +/* Return the fixed registers used for condition codes. */
1703 +
1704 +static bool
1705 +ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
1706 +{
1707 + *p1 = CC_REGNUM;
1708 + *p2 = INVALID_REGNUM;
1709 +
1710 + return true;
1711 +}
1712 +
1713 +/* If two condition code modes are compatible, return a condition code
1714 + mode which is compatible with both. Otherwise, return
1715 + VOIDmode. */
1716 +
1717 +static enum machine_mode
1718 +ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
1719 +{
1720 + if (m1 == m2)
1721 + return m1;
1722 +
1723 + if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
1724 + return VOIDmode;
1725 +
1726 + switch (m1)
1727 + {
1728 + case CCWmode:
1729 + if (m2 == CCWZNmode || m2 == CCWZmode)
1730 + return m1;
1731 +
1732 + return VOIDmode;
1733 +
1734 + case CCWZNmode:
1735 + if (m2 == CCWmode)
1736 + return m2;
1737 +
1738 + if (m2 == CCWZmode)
1739 + return m1;
1740 +
1741 + return VOIDmode;
1742 +
1743 + case CCWZmode:
1744 + if (m2 == CCWmode || m2 == CCWZNmode)
1745 + return m2;
1746 +
1747 + return VOIDmode;
1748 +
1749 + case CCSmode:
1750 + if (m2 == CCSZNmode || m2 == CCSZmode)
1751 + return m1;
1752 +
1753 + return VOIDmode;
1754 +
1755 + case CCSZNmode:
1756 + if (m2 == CCSmode)
1757 + return m2;
1758 +
1759 + if (m2 == CCSZmode)
1760 + return m1;
1761 +
1762 + return VOIDmode;
1763 +
1764 + case CCSZmode:
1765 + if (m2 == CCSmode || m2 == CCSZNmode)
1766 + return m2;
1767 +
1768 + return VOIDmode;
1769 +
1770 + default:
1771 + gcc_unreachable ();
1772 + }
1773 +}
1774 +
1775 +static rtx
1776 +ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg)
1777 +{
1778 + int unspec;
1779 + rtx got_offs;
1780 + rtx got_offs_scaled;
1781 + rtx plus_scaled;
1782 + rtx tmp;
1783 + rtx new_rtx;
1784 +
1785 + gcc_assert (reg != 0);
1786 +
1787 + if (GET_CODE (orig) == SYMBOL_REF
1788 + && SYMBOL_REF_FUNCTION_P (orig))
1789 + unspec = UNSPEC_FDPIC_GOT_FUNCDESC;
1790 + else
1791 + unspec = UNSPEC_FDPIC_GOT;
1792 +
1793 + got_offs = gen_reg_rtx (SImode);
1794 + tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec);
1795 + emit_move_insn (got_offs, tmp);
1796 +
1797 + got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4));
1798 + plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled);
1799 + new_rtx = gen_const_mem (Pmode, plus_scaled);
1800 + emit_move_insn (reg, new_rtx);
1801 +
1802 + return reg;
1803 +}
1804 +
1805 +static rtx
1806 +ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg)
1807 +{
1808 + rtx addr = orig;
1809 + rtx new_rtx = orig;
1810 +
1811 + if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
1812 + {
1813 + rtx base;
1814 +
1815 + if (GET_CODE (addr) == CONST)
1816 + {
1817 + addr = XEXP (addr, 0);
1818 + gcc_assert (GET_CODE (addr) == PLUS);
1819 + }
1820 +
1821 + base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg);
1822 + return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1));
1823 + }
1824 +
1825 + return new_rtx;
1826 +}
1827 +
1828 +/* Code generation. */
1829 +
1830 +void
1831 +ubicom32_expand_movsi (rtx *operands)
1832 +{
1833 + if (GET_CODE (operands[1]) == SYMBOL_REF
1834 + || (GET_CODE (operands[1]) == CONST
1835 + && GET_CODE (XEXP (operands[1], 0)) == PLUS
1836 + && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
1837 + || CONSTANT_ADDRESS_P (operands[1]))
1838 + {
1839 + if (TARGET_FDPIC)
1840 + {
1841 + rtx tmp;
1842 + rtx fdpic_reg;
1843 +
1844 + gcc_assert (can_create_pseudo_p ());
1845 + tmp = gen_reg_rtx (Pmode);
1846 + fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
1847 + if (GET_CODE (operands[1]) == SYMBOL_REF
1848 + || GET_CODE (operands[1]) == LABEL_REF)
1849 + operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg);
1850 + else
1851 + operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg);
1852 + }
1853 + else
1854 + {
1855 + rtx tmp;
1856 + enum machine_mode mode;
1857 +
1858 + /* We want to avoid reusing operand 0 if we can because it limits
1859 + our ability to optimize later. */
1860 + tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
1861 +
1862 + mode = GET_MODE (operands[0]);
1863 + emit_insn (gen_rtx_SET (VOIDmode, tmp,
1864 + gen_rtx_HIGH (mode, operands[1])));
1865 + operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]);
1866 + if (can_create_pseudo_p() && ! REG_P (operands[0]))
1867 + {
1868 + tmp = gen_reg_rtx (mode);
1869 + emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1]));
1870 + operands[1] = tmp;
1871 + }
1872 + }
1873 + }
1874 +}
1875 +
1876 +/* Emit code for addsi3. */
1877 +
1878 +void
1879 +ubicom32_expand_addsi3 (rtx *operands)
1880 +{
1881 + rtx op, clob;
1882 +
1883 + if (can_create_pseudo_p ())
1884 + {
1885 + /* If we have a non-data reg for operand 1 then prefer that over
1886 + a CONST_INT in operand 2. */
1887 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
1888 + && CONST_INT_P (operands[2]))
1889 + operands[2] = copy_to_mode_reg (SImode, operands[2]);
1890 +
1891 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
1892 + operands[2] = copy_to_mode_reg (SImode, operands[2]);
1893 + }
1894 +
1895 + /* Emit the instruction. */
1896 +
1897 + op = gen_rtx_SET (VOIDmode, operands[0],
1898 + gen_rtx_PLUS (SImode, operands[1], operands[2]));
1899 +
1900 + if (! can_create_pseudo_p ())
1901 + {
1902 + /* Reload doesn't know about the flags register, and doesn't know that
1903 + it doesn't want to clobber it. We can only do this with PLUS. */
1904 + emit_insn (op);
1905 + }
1906 + else
1907 + {
1908 + clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
1909 + emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
1910 + }
1911 +}
1912 +
1913 +/* Emit code for mulsi3. Return 1 if we have generated all the code
1914 + necessary to do the multiplication. */
1915 +
1916 +int
1917 +ubicom32_emit_mult_sequence (rtx *operands)
1918 +{
1919 + if (! ubicom32_v4)
1920 + {
1921 + rtx a1, a1_1, a2;
1922 + rtx b1, b1_1, b2;
1923 + rtx mac_lo_rtx;
1924 + rtx t1, t2, t3;
1925 +
1926 + /* Give up if we cannot create new pseudos. */
1927 + if (!can_create_pseudo_p())
1928 + return 0;
1929 +
1930 + /* Synthesize 32-bit multiplication using 16-bit operations:
1931 +
1932 + a1 = highpart (a)
1933 + a2 = lowpart (a)
1934 +
1935 + b1 = highpart (b)
1936 + b2 = lowpart (b)
1937 +
1938 + c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
1939 + = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
1940 + ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^
1941 + Signed Signed Unsigned */
1942 +
1943 + if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
1944 + {
1945 + rtx op1;
1946 +
1947 + op1 = gen_reg_rtx (SImode);
1948 + emit_move_insn (op1, operands[1]);
1949 + operands[1] = op1;
1950 + }
1951 +
1952 + if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
1953 + {
1954 + rtx op2;
1955 +
1956 + op2 = gen_reg_rtx (SImode);
1957 + emit_move_insn (op2, operands[2]);
1958 + operands[2] = op2;
1959 + }
1960 +
1961 + /* a1 = highpart (a) */
1962 + a1 = gen_reg_rtx (HImode);
1963 + a1_1 = gen_reg_rtx (SImode);
1964 + emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16)));
1965 + emit_move_insn (a1, gen_lowpart (HImode, a1_1));
1966 +
1967 + /* a2 = lowpart (a) */
1968 + a2 = gen_reg_rtx (HImode);
1969 + emit_move_insn (a2, gen_lowpart (HImode, operands[1]));
1970 +
1971 + /* b1 = highpart (b) */
1972 + b1 = gen_reg_rtx (HImode);
1973 + b1_1 = gen_reg_rtx (SImode);
1974 + emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16)));
1975 + emit_move_insn (b1, gen_lowpart (HImode, b1_1));
1976 +
1977 + /* b2 = lowpart (b) */
1978 + b2 = gen_reg_rtx (HImode);
1979 + emit_move_insn (b2, gen_lowpart (HImode, operands[2]));
1980 +
1981 + /* t1 = (a1 * b2) << 16 */
1982 + t1 = gen_reg_rtx (SImode);
1983 + mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM);
1984 + emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2));
1985 + emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16)));
1986 +
1987 + /* t2 = (a2 * b1) << 16 */
1988 + t2 = gen_reg_rtx (SImode);
1989 + emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1));
1990 + emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16)));
1991 +
1992 + /* mac_lo = a2 * b2 */
1993 + emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2));
1994 +
1995 + /* t3 = t1 + t2 */
1996 + t3 = gen_reg_rtx (SImode);
1997 + emit_insn (gen_addsi3 (t3, t1, t2));
1998 +
1999 + /* c = t3 + mac_lo_rtx */
2000 + emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3));
2001 +
2002 + return 1;
2003 + }
2004 + else
2005 + {
2006 + rtx acc_rtx;
2007 +
2008 + /* Give up if we cannot create new pseudos. */
2009 + if (!can_create_pseudo_p())
2010 + return 0;
2011 +
2012 + if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
2013 + {
2014 + rtx op1;
2015 +
2016 + op1 = gen_reg_rtx (SImode);
2017 + emit_move_insn (op1, operands[1]);
2018 + operands[1] = op1;
2019 + }
2020 +
2021 + if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
2022 + {
2023 + rtx op2;
2024 +
2025 + op2 = gen_reg_rtx (SImode);
2026 + emit_move_insn (op2, operands[2]);
2027 + operands[2] = op2;
2028 + }
2029 +
2030 + acc_rtx = gen_reg_rtx (DImode);
2031 + emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2]));
2032 + emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx));
2033 +
2034 + return 1;
2035 + }
2036 +}
2037 +
2038 +/* Move the integer value VAL into OPERANDS[0]. */
2039 +
2040 +void
2041 +ubicom32_emit_move_const_int (rtx dest, rtx imm)
2042 +{
2043 + rtx xoperands[2];
2044 +
2045 + xoperands[0] = dest;
2046 + xoperands[1] = imm;
2047 +
2048 + /* Treat mem destinations separately. Values must be explicitly sign
2049 + extended. */
2050 + if (MEM_P (dest))
2051 + {
2052 + rtx low_hword_mem;
2053 + rtx low_hword_addr;
2054 +
2055 + /* Emit shorter sequence for signed 7-bit quantities. */
2056 + if (satisfies_constraint_I (imm))
2057 + {
2058 + output_asm_insn ("move.4\t%0, %1", xoperands);
2059 + return;
2060 + }
2061 +
2062 + /* Special case for pushing constants. */
2063 + if (GET_CODE (XEXP (dest, 0)) == PRE_DEC
2064 + && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
2065 + {
2066 + output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
2067 + output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
2068 + return;
2069 + }
2070 +
2071 + /* See if we can add 2 to the original address. This is only
2072 + possible if the original address is of the form REG or
2073 + REG+const. */
2074 + low_hword_addr = plus_constant (XEXP (dest, 0), 2);
2075 + if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1))
2076 + {
2077 + low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr);
2078 + MEM_COPY_ATTRIBUTES (low_hword_mem, dest);
2079 + output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands);
2080 + xoperands[0] = low_hword_mem;
2081 + output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
2082 + return;
2083 + }
2084 +
2085 + /* The original address is too complex. We need to use a
2086 + scratch memory by (sp) and move that to the original
2087 + destination. */
2088 + if (! reg_mentioned_p (stack_pointer_rtx, dest))
2089 + {
2090 + output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
2091 + output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
2092 + output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
2093 + return;
2094 + }
2095 +
2096 + /* Our address mentions the stack pointer so we need to
2097 + use our scratch data register here as well as scratch
2098 + memory. */
2099 + output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
2100 + output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
2101 + output_asm_insn ("move.4\td15, (sp)4++", xoperands);
2102 + output_asm_insn ("move.4\t%0, d15", xoperands);
2103 + return;
2104 + }
2105 +
2106 + /* Move into registers are zero extended by default. */
2107 + if (! REG_P (dest))
2108 + abort ();
2109 +
2110 + if (satisfies_constraint_N (imm))
2111 + {
2112 + output_asm_insn ("movei\t%0, %1", xoperands);
2113 + return;
2114 + }
2115 +
2116 + if (INTVAL (xoperands[1]) >= 0xff80
2117 + && INTVAL (xoperands[1]) < 0x10000)
2118 + {
2119 + xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000);
2120 + output_asm_insn ("move.2\t%0, %1", xoperands);
2121 + return;
2122 + }
2123 +
2124 + if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS
2125 + || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG)
2126 + && ((INTVAL (xoperands[1]) & 0x80000000) == 0))
2127 + {
2128 + output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands);
2129 + if ((INTVAL (xoperands[1]) & 0x7f) != 0)
2130 + output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands);
2131 + return;
2132 + }
2133 +
2134 + if ((INTVAL (xoperands[1]) & 0xffff0000) == 0)
2135 + {
2136 + output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
2137 + output_asm_insn ("move.2\t%0, %0", xoperands);
2138 + return;
2139 + }
2140 +
2141 + /* This is very expensive. The constant is so large that we
2142 + need to use the stack to do the load. */
2143 + output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
2144 + output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
2145 + output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
2146 +}
2147 +
2148 +/* Stack layout. Prologue/Epilogue. */
2149 +
2150 +static int save_regs_size;
2151 +
2152 +static void
2153 +ubicom32_layout_frame (void)
2154 +{
2155 + int regno;
2156 +
2157 + memset ((char *) &save_regs[0], 0, sizeof (save_regs));
2158 + nregs = 0;
2159 + frame_size = get_frame_size ();
2160 +
2161 + if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM))
2162 + {
2163 + save_regs[FRAME_POINTER_REGNUM] = 1;
2164 + ++nregs;
2165 + }
2166 +
2167 + if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO))
2168 + ubicom32_can_use_calli_to_ret = 1;
2169 + else
2170 + {
2171 + ubicom32_can_use_calli_to_ret = 0;
2172 + save_regs[LINK_REGNO] = 1;
2173 + ++nregs;
2174 + }
2175 +
2176 + /* Figure out which register(s) needs to be saved. */
2177 + for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++)
2178 + if (df_regs_ever_live_p(regno)
2179 + && ! call_used_regs[regno]
2180 + && ! fixed_regs[regno]
2181 + && ! save_regs[regno])
2182 + {
2183 + save_regs[regno] = 1;
2184 + ++nregs;
2185 + }
2186 +
2187 + save_regs_size = 4 * nregs;
2188 +}
2189 +
2190 +static void
2191 +ubicom32_emit_add_movsi (int regno, int adj)
2192 +{
2193 + rtx x;
2194 + rtx reg = gen_rtx_REG (SImode, regno);
2195 +
2196 + adj += 4;
2197 + if (adj > 8 * 4)
2198 + {
2199 + x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2200 + GEN_INT (-adj)));
2201 + RTX_FRAME_RELATED_P (x) = 1;
2202 + x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg);
2203 + }
2204 + else
2205 + {
2206 + rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
2207 + gen_rtx_PLUS (Pmode, stack_pointer_rtx,
2208 + GEN_INT (-adj)));
2209 + x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg);
2210 + }
2211 + RTX_FRAME_RELATED_P (x) = 1;
2212 +}
2213 +
2214 +void
2215 +ubicom32_expand_prologue (void)
2216 +{
2217 + rtx x;
2218 + int regno;
2219 + int outgoing_args_size = crtl->outgoing_args_size;
2220 + int adj;
2221 +
2222 + if (ubicom32_naked_function_p ())
2223 + return;
2224 +
2225 + ubicom32_builtin_saveregs ();
2226 +
2227 + ubicom32_layout_frame ();
2228 + adj = (outgoing_args_size + get_frame_size () + save_regs_size
2229 + + crtl->args.pretend_args_size);
2230 +
2231 + if (!adj)
2232 + ;
2233 + else if (outgoing_args_size + save_regs_size < 508
2234 + && get_frame_size () + save_regs_size > 508)
2235 + {
2236 + int i = 0;
2237 + x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2238 + GEN_INT (-adj));
2239 + x = emit_insn (x);
2240 + RTX_FRAME_RELATED_P (x) = 1;
2241 +
2242 + for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
2243 + if (save_regs[regno] && regno != LINK_REGNO)
2244 + {
2245 + x = gen_rtx_MEM (SImode,
2246 + gen_rtx_PLUS (Pmode,
2247 + stack_pointer_rtx,
2248 + GEN_INT (i * 4 + outgoing_args_size)));
2249 + x = emit_move_insn (x, gen_rtx_REG (SImode, regno));
2250 + RTX_FRAME_RELATED_P (x) = 1;
2251 + ++i;
2252 + }
2253 + if (save_regs[LINK_REGNO])
2254 + {
2255 + x = gen_rtx_MEM (SImode,
2256 + gen_rtx_PLUS (Pmode,
2257 + stack_pointer_rtx,
2258 + GEN_INT (i * 4 + outgoing_args_size)));
2259 + x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO));
2260 + RTX_FRAME_RELATED_P (x) = 1;
2261 + }
2262 + }
2263 + else
2264 + {
2265 + int regno;
2266 + int adj = get_frame_size () + crtl->args.pretend_args_size;
2267 + int i = 0;
2268 +
2269 + if (save_regs[LINK_REGNO])
2270 + {
2271 + ubicom32_emit_add_movsi (LINK_REGNO, adj);
2272 + ++i;
2273 + }
2274 +
2275 + for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno)
2276 + if (save_regs[regno] && regno != LINK_REGNO)
2277 + {
2278 + if (i)
2279 + {
2280 + rtx mem = gen_rtx_MEM (SImode,
2281 + gen_rtx_PRE_DEC (Pmode,
2282 + stack_pointer_rtx));
2283 + x = emit_move_insn (mem, gen_rtx_REG (SImode, regno));
2284 + RTX_FRAME_RELATED_P (x) = 1;
2285 + }
2286 + else
2287 + ubicom32_emit_add_movsi (regno, adj);
2288 + ++i;
2289 + }
2290 +
2291 + if (outgoing_args_size || (!i && adj))
2292 + {
2293 + x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2294 + GEN_INT (-outgoing_args_size - (i ? 0 : adj)));
2295 + x = emit_insn (x);
2296 + RTX_FRAME_RELATED_P (x) = 1;
2297 + }
2298 + }
2299 +
2300 + if (frame_pointer_needed)
2301 + {
2302 + int fp_adj = save_regs_size + outgoing_args_size;
2303 + x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx,
2304 + GEN_INT (fp_adj));
2305 + x = emit_insn (x);
2306 + RTX_FRAME_RELATED_P (x) = 1;
2307 + }
2308 +}
2309 +
2310 +void
2311 +ubicom32_expand_epilogue (void)
2312 +{
2313 + rtx x;
2314 + int regno;
2315 + int outgoing_args_size = crtl->outgoing_args_size;
2316 + int adj;
2317 + int i;
2318 +
2319 + if (ubicom32_naked_function_p ())
2320 + {
2321 + emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
2322 + LINK_REGNO)));
2323 + return;
2324 + }
2325 +
2326 + if (cfun->calls_alloca)
2327 + {
2328 + x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
2329 + GEN_INT (-save_regs_size));
2330 + emit_insn (x);
2331 + outgoing_args_size = 0;
2332 + }
2333 +
2334 + if (outgoing_args_size)
2335 + {
2336 + x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2337 + GEN_INT (outgoing_args_size));
2338 + emit_insn (x);
2339 + }
2340 +
2341 + i = 0;
2342 + for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
2343 + if (save_regs[regno] && regno != LINK_REGNO)
2344 + {
2345 + x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
2346 + emit_move_insn (gen_rtx_REG (SImode, regno), x);
2347 + ++i;
2348 + }
2349 +
2350 + /* Do we have to adjust the stack after we've finished restoring regs? */
2351 + adj = get_frame_size() + crtl->args.pretend_args_size;
2352 + if (cfun->stdarg)
2353 + adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
2354 +
2355 +#if 0
2356 + if (crtl->calls_eh_return && 0)
2357 + {
2358 + if (save_regs[LINK_REGNO])
2359 + {
2360 + x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
2361 + emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
2362 + }
2363 +
2364 + if (adj)
2365 + {
2366 + x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2367 + GEN_INT (adj));
2368 + x = emit_insn (x);
2369 + }
2370 +
2371 + /* Perform the additional bump for __throw. */
2372 + emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2373 + EH_RETURN_STACKADJ_RTX));
2374 + emit_jump_insn (gen_eh_return_internal ());
2375 + return;
2376 + }
2377 +#endif
2378 +
2379 + if (save_regs[LINK_REGNO])
2380 + {
2381 + if (adj >= 4 && adj <= (6 * 4))
2382 + {
2383 + x = GEN_INT (adj + 4);
2384 + emit_jump_insn (gen_return_from_post_modify_sp (x));
2385 + return;
2386 + }
2387 +
2388 + if (adj == 0)
2389 + {
2390 + x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
2391 + emit_jump_insn (gen_return_internal (x));
2392 + return;
2393 + }
2394 +
2395 + x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
2396 + emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
2397 + }
2398 +
2399 + if (adj)
2400 + {
2401 + x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2402 + GEN_INT (adj));
2403 + x = emit_insn (x);
2404 + adj = 0;
2405 + }
2406 +
2407 + /* Given that we've just done all the hard work here we may as well use
2408 + a calli to return. */
2409 + ubicom32_can_use_calli_to_ret = 1;
2410 + emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO)));
2411 +}
2412 +
2413 +void
2414 +ubicom32_expand_call_fdpic (rtx *operands)
2415 +{
2416 + rtx c;
2417 + rtx addr;
2418 + rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
2419 +
2420 + addr = XEXP (operands[0], 0);
2421 +
2422 + c = gen_call_fdpic (addr, operands[1], fdpic_reg);
2423 + emit_call_insn (c);
2424 +}
2425 +
2426 +void
2427 +ubicom32_expand_call_value_fdpic (rtx *operands)
2428 +{
2429 + rtx c;
2430 + rtx addr;
2431 + rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
2432 +
2433 + addr = XEXP (operands[1], 0);
2434 +
2435 + c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg);
2436 + emit_call_insn (c);
2437 +}
2438 +
2439 +void
2440 +ubicom32_expand_eh_return (rtx *operands)
2441 +{
2442 + if (REG_P (operands[0])
2443 + || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO)
2444 + {
2445 + rtx sp = EH_RETURN_STACKADJ_RTX;
2446 + emit_move_insn (sp, operands[0]);
2447 + operands[0] = sp;
2448 + }
2449 +
2450 + if (REG_P (operands[1])
2451 + || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO)
2452 + {
2453 + rtx ra = EH_RETURN_HANDLER_RTX;
2454 + emit_move_insn (ra, operands[1]);
2455 + operands[1] = ra;
2456 + }
2457 +}
2458 +
2459 +/* Compute the offsets between eliminable registers. */
2460 +
2461 +int
2462 +ubicom32_initial_elimination_offset (int from, int to)
2463 +{
2464 + ubicom32_layout_frame ();
2465 + if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
2466 + return save_regs_size + crtl->outgoing_args_size;
2467 +
2468 + if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
2469 + return get_frame_size ()/* + save_regs_size */;
2470 +
2471 + if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
2472 + return get_frame_size ()
2473 + + crtl->outgoing_args_size
2474 + + save_regs_size;
2475 +
2476 + return 0;
2477 +}
2478 +
2479 +/* Return 1 if it is appropriate to emit `ret' instructions in the
2480 + body of a function. Do this only if the epilogue is simple, needing a
2481 + couple of insns. Prior to reloading, we can't tell how many registers
2482 + must be saved, so return 0 then. Return 0 if there is no frame
2483 + marker to de-allocate.
2484 +
2485 + If NON_SAVING_SETJMP is defined and true, then it is not possible
2486 + for the epilogue to be simple, so return 0. This is a special case
2487 + since NON_SAVING_SETJMP will not cause regs_ever_live to change
2488 + until final, but jump_optimize may need to know sooner if a
2489 + `return' is OK. */
2490 +
2491 +int
2492 +ubicom32_can_use_return_insn_p (void)
2493 +{
2494 + if (! reload_completed || frame_pointer_needed)
2495 + return 0;
2496 +
2497 + return 1;
2498 +}
2499 +
2500 +/* Attributes and CC handling. */
2501 +
2502 +/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
2503 + struct attribute_spec.handler. */
2504 +static tree
2505 +ubicom32_handle_fndecl_attribute (tree *node, tree name,
2506 + tree args ATTRIBUTE_UNUSED,
2507 + int flags ATTRIBUTE_UNUSED,
2508 + bool *no_add_attrs)
2509 +{
2510 + if (TREE_CODE (*node) != FUNCTION_DECL)
2511 + {
2512 + warning ("'%s' attribute only applies to functions",
2513 + IDENTIFIER_POINTER (name));
2514 + *no_add_attrs = true;
2515 + }
2516 +
2517 + return NULL_TREE;
2518 +}
2519 +
2520 +/* A C expression that places additional restrictions on the register class to
2521 + use when it is necessary to copy value X into a register in class CLASS.
2522 + The value is a register class; perhaps CLASS, or perhaps another, smaller
2523 + class. On many machines, the following definition is safe:
2524 +
2525 + #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
2526 +
2527 + Sometimes returning a more restrictive class makes better code. For
2528 + example, on the 68000, when X is an integer constant that is in range for a
2529 + `moveq' instruction, the value of this macro is always `DATA_REGS' as long
2530 + as CLASS includes the data registers. Requiring a data register guarantees
2531 + that a `moveq' will be used.
2532 +
2533 + If X is a `const_double', by returning `NO_REGS' you can force X into a
2534 + memory constant. This is useful on certain machines where immediate
2535 + floating values cannot be loaded into certain kinds of registers. */
2536 +
2537 +enum reg_class
2538 +ubicom32_preferred_reload_class (rtx x, enum reg_class class)
2539 +{
2540 + /* If a symbolic constant, HIGH or a PLUS is reloaded,
2541 + it is most likely being used as an address, so
2542 + prefer ADDRESS_REGS. If 'class' is not a superset
2543 + of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */
2544 + if (GET_CODE (x) == PLUS
2545 + || GET_CODE (x) == HIGH
2546 + || GET_CODE (x) == LABEL_REF
2547 + || GET_CODE (x) == SYMBOL_REF
2548 + || GET_CODE (x) == CONST)
2549 + {
2550 + if (reg_class_subset_p (ALL_ADDRESS_REGS, class))
2551 + return ALL_ADDRESS_REGS;
2552 +
2553 + return NO_REGS;
2554 + }
2555 +
2556 + return class;
2557 +}
2558 +
2559 +/* Function arguments and varargs. */
2560 +
2561 +int
2562 +ubicom32_reg_parm_stack_space (tree fndecl)
2563 +{
2564 + return 0;
2565 +
2566 + if (fndecl
2567 + && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0
2568 + && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl))))
2569 + != void_type_node))
2570 + return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
2571 +
2572 + return 0;
2573 +}
2574 +
2575 +/* Flush the argument registers to the stack for a stdarg function;
2576 + return the new argument pointer. */
2577 +
2578 +rtx
2579 +ubicom32_builtin_saveregs (void)
2580 +{
2581 + int regno;
2582 +
2583 + if (! cfun->stdarg)
2584 + return 0;
2585 +
2586 + for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno)
2587 + emit_move_insn (gen_rtx_MEM (SImode,
2588 + gen_rtx_PRE_DEC (SImode,
2589 + stack_pointer_rtx)),
2590 + gen_rtx_REG (SImode, regno));
2591 +
2592 + return stack_pointer_rtx;
2593 +}
2594 +
2595 +void
2596 +ubicom32_va_start (tree valist, rtx nextarg)
2597 +{
2598 + std_expand_builtin_va_start (valist, nextarg);
2599 +}
2600 +
2601 +rtx
2602 +ubicom32_va_arg (tree valist, tree type)
2603 +{
2604 + HOST_WIDE_INT size, rsize;
2605 + tree addr, incr, tmp;
2606 + rtx addr_rtx;
2607 + int indirect = 0;
2608 +
2609 + /* Round up sizeof(type) to a word. */
2610 + size = int_size_in_bytes (type);
2611 + rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
2612 +
2613 + /* Large types are passed by reference. */
2614 + if (size > 8)
2615 + {
2616 + indirect = 1;
2617 + size = rsize = UNITS_PER_WORD;
2618 + }
2619 +
2620 + incr = valist;
2621 + addr = incr = save_expr (incr);
2622 +
2623 + /* FIXME Nat's version - is it correct? */
2624 + tmp = fold_convert (ptr_type_node, size_int (rsize));
2625 + tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp);
2626 + incr = fold (tmp);
2627 +
2628 + /* FIXME Nat's version - is it correct? */
2629 + incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr);
2630 +
2631 + TREE_SIDE_EFFECTS (incr) = 1;
2632 + expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
2633 +
2634 + addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
2635 +
2636 + if (size < UNITS_PER_WORD)
2637 + emit_insn (gen_addsi3 (addr_rtx, addr_rtx,
2638 + GEN_INT (UNITS_PER_WORD - size)));
2639 +
2640 + if (indirect)
2641 + {
2642 + addr_rtx = force_reg (Pmode, addr_rtx);
2643 + addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
2644 + set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
2645 + }
2646 +
2647 + return addr_rtx;
2648 +}
2649 +
2650 +void
2651 +init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
2652 + int indirect ATTRIBUTE_UNUSED)
2653 +{
2654 + cum->nbytes = 0;
2655 +
2656 + if (!libname)
2657 + {
2658 + cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0
2659 + && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
2660 + != void_type_node));
2661 + }
2662 +}
2663 +
2664 +/* Return an RTX to represent where a value in mode MODE will be passed
2665 + to a function. If the result is 0, the argument will be pushed. */
2666 +
2667 +rtx
2668 +function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
2669 + int named ATTRIBUTE_UNUSED)
2670 +{
2671 + rtx result = 0;
2672 + int size, align;
2673 + int nregs = UBICOM32_FUNCTION_ARG_REGS;
2674 +
2675 + /* Figure out the size of the object to be passed. */
2676 + if (mode == BLKmode)
2677 + size = int_size_in_bytes (type);
2678 + else
2679 + size = GET_MODE_SIZE (mode);
2680 +
2681 + /* Figure out the alignment of the object to be passed. */
2682 + align = size;
2683 +
2684 + cum->nbytes = (cum->nbytes + 3) & ~3;
2685 +
2686 + /* Don't pass this arg via a register if all the argument registers
2687 + are used up. */
2688 + if (cum->nbytes >= nregs * UNITS_PER_WORD)
2689 + return 0;
2690 +
2691 + /* Don't pass this arg via a register if it would be split between
2692 + registers and memory. */
2693 + result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
2694 +
2695 + return result;
2696 +}
2697 +
2698 +rtx
2699 +function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
2700 + int named ATTRIBUTE_UNUSED)
2701 +{
2702 + if (cfun->stdarg)
2703 + return 0;
2704 +
2705 + return function_arg (cum, mode, type, named);
2706 +}
2707 +
2708 +
2709 +/* Implement hook TARGET_ARG_PARTIAL_BYTES.
2710 +
2711 + Returns the number of bytes at the beginning of an argument that
2712 + must be put in registers. The value must be zero for arguments
2713 + that are passed entirely in registers or that are entirely pushed
2714 + on the stack. */
2715 +static int
2716 +ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
2717 + tree type, bool named ATTRIBUTE_UNUSED)
2718 +{
2719 + int size, diff;
2720 +
2721 + int nregs = UBICOM32_FUNCTION_ARG_REGS;
2722 +
2723 + /* round up to full word */
2724 + cum->nbytes = (cum->nbytes + 3) & ~3;
2725 +
2726 + if (targetm.calls.pass_by_reference (cum, mode, type, named))
2727 + return 0;
2728 +
2729 + /* number of bytes left in registers */
2730 + diff = nregs*UNITS_PER_WORD - cum->nbytes;
2731 +
2732 + /* regs all used up */
2733 + if (diff <= 0)
2734 + return 0;
2735 +
2736 + /* Figure out the size of the object to be passed. */
2737 + if (mode == BLKmode)
2738 + size = int_size_in_bytes (type);
2739 + else
2740 + size = GET_MODE_SIZE (mode);
2741 +
2742 + /* enough space left in regs for size */
2743 + if (size <= diff)
2744 + return 0;
2745 +
2746 + /* put diff bytes in regs and rest on stack */
2747 + return diff;
2748 +
2749 +}
2750 +
2751 +static bool
2752 +ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
2753 + enum machine_mode mode, const_tree type,
2754 + bool named ATTRIBUTE_UNUSED)
2755 +{
2756 + int size;
2757 +
2758 + if (type)
2759 + size = int_size_in_bytes (type);
2760 + else
2761 + size = GET_MODE_SIZE (mode);
2762 +
2763 + return size <= 0 || size > 8;
2764 +}
2765 +
2766 +static bool
2767 +ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
2768 + enum machine_mode mode, const_tree type,
2769 + bool named ATTRIBUTE_UNUSED)
2770 +{
2771 + int size;
2772 +
2773 + if (type)
2774 + size = int_size_in_bytes (type);
2775 + else
2776 + size = GET_MODE_SIZE (mode);
2777 +
2778 + return size <= 0 || size > 8;
2779 +}
2780 +
2781 +static bool
2782 +ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
2783 +{
2784 + int size, mode;
2785 +
2786 + if (!type)
2787 + return true;
2788 +
2789 + size = int_size_in_bytes(type);
2790 + if (size > 8)
2791 + return true;
2792 +
2793 + mode = TYPE_MODE(type);
2794 + if (mode == BLKmode)
2795 + return true;
2796 +
2797 + return false;
2798 +}
2799 +
2800 +/* Return true if a given register number REGNO is acceptable for machine
2801 + mode MODE. */
2802 +bool
2803 +ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
2804 +{
2805 + /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */
2806 + if (! ubicom32_v3)
2807 + {
2808 + if (regno == ACC0_HI_REGNUM)
2809 + return (mode == QImode || mode == HImode);
2810 + }
2811 +
2812 + /* Only the flags reg can hold CCmode. */
2813 + if (GET_MODE_CLASS (mode) == MODE_CC)
2814 + return regno == CC_REGNUM;
2815 +
2816 + /* We restrict the choice of DImode registers to only being address,
2817 + data or accumulator regs. We also restrict them to only start on
2818 + even register numbers so we never have to worry about partial
2819 + overlaps between operands in instructions. */
2820 + if (GET_MODE_SIZE (mode) > 4)
2821 + {
2822 + switch (REGNO_REG_CLASS (regno))
2823 + {
2824 + case ADDRESS_REGS:
2825 + case DATA_REGS:
2826 + case ACC_REGS:
2827 + return (regno & 1) == 0;
2828 +
2829 + default:
2830 + return false;
2831 + }
2832 + }
2833 +
2834 + return true;
2835 +}
2836 +
2837 +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2838 + and check its validity for a certain class.
2839 + We have two alternate definitions for each of them.
2840 + The usual definition accepts all pseudo regs; the other rejects
2841 + them unless they have been allocated suitable hard regs.
2842 + The symbol REG_OK_STRICT causes the latter definition to be used.
2843 +
2844 + Most source files want to accept pseudo regs in the hope that
2845 + they will get allocated to the class that the insn wants them to be in.
2846 + Source files for reload pass need to be strict.
2847 + After reload, it makes no difference, since pseudo regs have
2848 + been eliminated by then.
2849 +
2850 + These assume that REGNO is a hard or pseudo reg number.
2851 + They give nonzero only if REGNO is a hard reg of the suitable class
2852 + or a pseudo reg currently allocated to a suitable hard reg.
2853 + Since they use reg_renumber, they are safe only once reg_renumber
2854 + has been allocated, which happens in local-alloc.c. */
2855 +
2856 +int
2857 +ubicom32_regno_ok_for_base_p (int regno, int strict)
2858 +{
2859 + if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM)
2860 + || (!strict
2861 + && (regno >= FIRST_PSEUDO_REGISTER
2862 + || regno == ARG_POINTER_REGNUM))
2863 + || (strict && (reg_renumber
2864 + && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM
2865 + && reg_renumber[regno] <= STACK_POINTER_REGNUM)))
2866 + return 1;
2867 +
2868 + return 0;
2869 +}
2870 +
2871 +int
2872 +ubicom32_regno_ok_for_index_p (int regno, int strict)
2873 +{
2874 + if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM)
2875 + || (!strict && regno >= FIRST_PSEUDO_REGISTER)
2876 + || (strict && (reg_renumber
2877 + && reg_renumber[regno] >= FIRST_DATA_REGNUM
2878 + && reg_renumber[regno] <= LAST_DATA_REGNUM)))
2879 + return 1;
2880 +
2881 + return 0;
2882 +}
2883 +
2884 +/* Returns 1 if X is a valid index register. STRICT is 1 if only hard
2885 + registers should be accepted. Accept either REG or SUBREG where a
2886 + register is valid. */
2887 +
2888 +static bool
2889 +ubicom32_is_index_reg (rtx x, int strict)
2890 +{
2891 + if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict))
2892 + || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
2893 + && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict)))
2894 + return true;
2895 +
2896 + return false;
2897 +}
2898 +
2899 +/* Return 1 if X is a valid index for a memory address. */
2900 +
2901 +static bool
2902 +ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict)
2903 +{
2904 + /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2
2905 + or 4 depending on mode. */
2906 + if (CONST_INT_P (x))
2907 + {
2908 + switch (mode)
2909 + {
2910 + case QImode:
2911 + return satisfies_constraint_J (x);
2912 +
2913 + case HImode:
2914 + return satisfies_constraint_K (x);
2915 +
2916 + case SImode:
2917 + case SFmode:
2918 + return satisfies_constraint_L (x);
2919 +
2920 + case DImode:
2921 + return satisfies_constraint_L (x)
2922 + && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4));
2923 +
2924 + default:
2925 + return false;
2926 + }
2927 + }
2928 +
2929 + if (mode != SImode && mode != HImode && mode != QImode)
2930 + return false;
2931 +
2932 + /* Register index scaled by mode of operand: REG + REG * modesize.
2933 + Valid scaled index registers are:
2934 +
2935 + SImode (mult (dreg) 4))
2936 + HImode (mult (dreg) 2))
2937 + QImode (mult (dreg) 1)) */
2938 + if (GET_CODE (x) == MULT
2939 + && ubicom32_is_index_reg (XEXP (x, 0), strict)
2940 + && CONST_INT_P (XEXP (x, 1))
2941 + && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode))
2942 + return true;
2943 +
2944 + /* REG + REG addressing is allowed for QImode. */
2945 + if (ubicom32_is_index_reg (x, strict) && mode == QImode)
2946 + return true;
2947 +
2948 + return false;
2949 +}
2950 +
2951 +static bool
2952 +ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs)
2953 +{
2954 + if (offs < 0)
2955 + return false;
2956 +
2957 + switch (mode)
2958 + {
2959 + case QImode:
2960 + return offs <= 127;
2961 +
2962 + case HImode:
2963 + return offs <= 254;
2964 +
2965 + case SImode:
2966 + case SFmode:
2967 + return offs <= 508;
2968 +
2969 + case DImode:
2970 + return offs <= 504;
2971 +
2972 + default:
2973 + return false;
2974 + }
2975 +}
2976 +
2977 +static int
2978 +ubicom32_get_valid_offset_mask (enum machine_mode mode)
2979 +{
2980 + switch (mode)
2981 + {
2982 + case QImode:
2983 + return 127;
2984 +
2985 + case HImode:
2986 + return 255;
2987 +
2988 + case SImode:
2989 + case SFmode:
2990 + return 511;
2991 +
2992 + case DImode:
2993 + return 255;
2994 +
2995 + default:
2996 + return 0;
2997 + }
2998 +}
2999 +
3000 +/* Returns 1 if X is a valid base register. STRICT is 1 if only hard
3001 + registers should be accepted. Accept either REG or SUBREG where a
3002 + register is valid. */
3003 +
3004 +static bool
3005 +ubicom32_is_base_reg (rtx x, int strict)
3006 +{
3007 + if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict))
3008 + || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
3009 + && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict)))
3010 + return true;
3011 +
3012 + return false;
3013 +}
3014 +
3015 +static bool
3016 +ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
3017 +{
3018 + return TARGET_FDPIC;
3019 +}
3020 +
3021 +/* Determine if X is a legitimate constant. */
3022 +
3023 +bool
3024 +ubicom32_legitimate_constant_p (rtx x)
3025 +{
3026 + /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether
3027 + a constant can be entered into reg_equiv_constant[]. If we return true,
3028 + reload can create new instances of the constant whenever it likes.
3029 +
3030 + The idea is therefore to accept as many constants as possible (to give
3031 + reload more freedom) while rejecting constants that can only be created
3032 + at certain times. In particular, anything with a symbolic component will
3033 + require use of the pseudo FDPIC register, which is only available before
3034 + reload. */
3035 + if (TARGET_FDPIC)
3036 + {
3037 + if (GET_CODE (x) == SYMBOL_REF
3038 + || (GET_CODE (x) == CONST
3039 + && GET_CODE (XEXP (x, 0)) == PLUS
3040 + && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
3041 + || CONSTANT_ADDRESS_P (x))
3042 + return false;
3043 +
3044 + return true;
3045 + }
3046 +
3047 + /* For non-PIC code anything goes! */
3048 + return true;
3049 +}
3050 +
3051 +/* Address validation. */
3052 +
3053 +bool
3054 +ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
3055 +{
3056 + if (TARGET_DEBUG_ADDRESS)
3057 + {
3058 + fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n",
3059 + (strict) ? " (STRICT)" : "");
3060 + debug_rtx (x);
3061 + }
3062 +
3063 + if (CONSTANT_ADDRESS_P (x))
3064 + return false;
3065 +
3066 + if (ubicom32_is_base_reg (x, strict))
3067 + return true;
3068 +
3069 + if ((GET_CODE (x) == POST_INC
3070 + || GET_CODE (x) == PRE_INC
3071 + || GET_CODE (x) == POST_DEC
3072 + || GET_CODE (x) == PRE_DEC)
3073 + && REG_P (XEXP (x, 0))
3074 + && ubicom32_is_base_reg (XEXP (x, 0), strict)
3075 + && mode != DImode)
3076 + return true;
3077 +
3078 + if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
3079 + && ubicom32_is_base_reg (XEXP (x, 0), strict)
3080 + && GET_CODE (XEXP (x, 1)) == PLUS
3081 + && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))
3082 + && CONST_INT_P (XEXP (XEXP (x, 1), 1))
3083 + && mode != DImode)
3084 + {
3085 + HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1));
3086 + switch (mode)
3087 + {
3088 + case QImode:
3089 + return disp >= -8 && disp <= 7;
3090 +
3091 + case HImode:
3092 + return disp >= -16 && disp <= 14 && ! (disp & 1);
3093 +
3094 + case SImode:
3095 + return disp >= -32 && disp <= 28 && ! (disp & 3);
3096 +
3097 + default:
3098 + return false;
3099 + }
3100 + }
3101 +
3102 + /* Accept base + index * scale. */
3103 + if (GET_CODE (x) == PLUS
3104 + && ubicom32_is_base_reg (XEXP (x, 0), strict)
3105 + && ubicom32_is_index_expr (mode, XEXP (x, 1), strict))
3106 + return true;
3107 +
3108 + /* Accept index * scale + base. */
3109 + if (GET_CODE (x) == PLUS
3110 + && ubicom32_is_base_reg (XEXP (x, 1), strict)
3111 + && ubicom32_is_index_expr (mode, XEXP (x, 0), strict))
3112 + return true;
3113 +
3114 + if (! TARGET_FDPIC)
3115 + {
3116 + /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits
3117 + displacement operand:
3118 +
3119 + moveai a1, #%hi(SYM)
3120 + move.4 d3, %lo(SYM)(a1) */
3121 + if (GET_CODE (x) == LO_SUM
3122 + && ubicom32_is_base_reg (XEXP (x, 0), strict)
3123 + && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
3124 + || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */)
3125 + && mode != DImode)
3126 + return true;
3127 + }
3128 +
3129 + if (TARGET_DEBUG_ADDRESS)
3130 + fprintf (stderr, "\nNot a legitimate address.\n");
3131 +
3132 + return false;
3133 +}
3134 +
3135 +rtx
3136 +ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3137 + enum machine_mode mode)
3138 +{
3139 + if (mode == BLKmode)
3140 + return NULL_RTX;
3141 +
3142 + if (GET_CODE (x) == PLUS
3143 + && REG_P (XEXP (x, 0))
3144 + && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0)))
3145 + && CONST_INT_P (XEXP (x, 1))
3146 + && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1))))
3147 + {
3148 + rtx base;
3149 + rtx plus;
3150 + rtx new_rtx;
3151 + HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
3152 + HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
3153 + HOST_WIDE_INT high = val ^ low;
3154 +
3155 + if (val < 0)
3156 + return NULL_RTX;
3157 +
3158 + if (! low)
3159 + return NULL_RTX;
3160 +
3161 + /* Reload the high part into a base reg; leave the low part
3162 + in the mem directly. */
3163 + base = XEXP (x, 0);
3164 + if (! ubicom32_is_base_reg (base, 0))
3165 + base = copy_to_mode_reg (Pmode, base);
3166 +
3167 + plus = expand_simple_binop (Pmode, PLUS,
3168 + gen_int_mode (high, Pmode),
3169 + base, NULL, 0, OPTAB_WIDEN);
3170 + new_rtx = plus_constant (plus, low);
3171 +
3172 + return new_rtx;
3173 + }
3174 +
3175 + return NULL_RTX;
3176 +}
3177 +
3178 +/* Try a machine-dependent way of reloading an illegitimate address AD
3179 + operand. If we find one, push the reload and and return the new address.
3180 +
3181 + MODE is the mode of the enclosing MEM. OPNUM is the operand number
3182 + and TYPE is the reload type of the current reload. */
3183 +
3184 +rtx
3185 +ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode,
3186 + int opnum, int type)
3187 +{
3188 + /* Is this an address that we've already fixed up? If it is then
3189 + recognize it and move on. */
3190 + if (GET_CODE (ad) == PLUS
3191 + && GET_CODE (XEXP (ad, 0)) == PLUS
3192 + && REG_P (XEXP (XEXP (ad, 0), 0))
3193 + && CONST_INT_P (XEXP (XEXP (ad, 0), 1))
3194 + && CONST_INT_P (XEXP (ad, 1)))
3195 + {
3196 + push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL,
3197 + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
3198 + opnum, (enum reload_type) type);
3199 + return ad;
3200 + }
3201 +
3202 + /* Have we got an address where the offset is simply out of range? If
3203 + yes then reload the range as a high part and smaller offset. */
3204 + if (GET_CODE (ad) == PLUS
3205 + && REG_P (XEXP (ad, 0))
3206 + && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
3207 + && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))
3208 + && CONST_INT_P (XEXP (ad, 1))
3209 + && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1))))
3210 + {
3211 + rtx temp;
3212 + rtx new_rtx;
3213 +
3214 + HOST_WIDE_INT val = INTVAL (XEXP (ad, 1));
3215 + HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
3216 + HOST_WIDE_INT high = val ^ low;
3217 +
3218 + /* Reload the high part into a base reg; leave the low part
3219 + in the mem directly. */
3220 + temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high));
3221 + new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low));
3222 +
3223 + push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL,
3224 + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
3225 + opnum, (enum reload_type) type);
3226 + return new_rtx;
3227 + }
3228 +
3229 + /* If we're presented with an pre/post inc/dec then we must force this
3230 + to be done in an address register. The register allocator should
3231 + work this out for itself but at times ends up trying to use the wrong
3232 + class. If we get the wrong class then reload will end up generating
3233 + at least 3 instructions whereas this way we can hopefully keep it to
3234 + just 2. */
3235 + if ((GET_CODE (ad) == POST_INC
3236 + || GET_CODE (ad) == PRE_INC
3237 + || GET_CODE (ad) == POST_DEC
3238 + || GET_CODE (ad) == PRE_DEC)
3239 + && REG_P (XEXP (ad, 0))
3240 + && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
3241 + && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))))
3242 + {
3243 + push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0),
3244 + BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0,
3245 + opnum, RELOAD_OTHER);
3246 + return ad;
3247 + }
3248 +
3249 + return NULL_RTX;
3250 +}
3251 +
3252 +/* Compute a (partial) cost for rtx X. Return true if the complete
3253 + cost has been computed, and false if subexpressions should be
3254 + scanned. In either case, *TOTAL contains the cost result. */
3255 +
3256 +static bool
3257 +ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total,
3258 + bool speed ATTRIBUTE_UNUSED)
3259 +{
3260 + enum machine_mode mode = GET_MODE (x);
3261 +
3262 + switch (code)
3263 + {
3264 + case CONST_INT:
3265 + /* Very short constants often fold into instructions so
3266 + we pretend that they don't cost anything! This is
3267 + really important as regards zero values as otherwise
3268 + the compiler has a nasty habit of wanting to reuse
3269 + zeroes that are in regs but that tends to pessimize
3270 + the code. */
3271 + if (satisfies_constraint_I (x))
3272 + {
3273 + *total = 0;
3274 + return true;
3275 + }
3276 +
3277 + /* Bit clearing costs nothing */
3278 + if (outer_code == AND
3279 + && exact_log2 (~INTVAL (x)) != -1)
3280 + {
3281 + *total = 0;
3282 + return true;
3283 + }
3284 +
3285 + /* Masking the lower set of bits costs nothing. */
3286 + if (outer_code == AND
3287 + && exact_log2 (INTVAL (x) + 1) != -1)
3288 + {
3289 + *total = 0;
3290 + return true;
3291 + }
3292 +
3293 + /* Bit setting costs nothing. */
3294 + if (outer_code == IOR
3295 + && exact_log2 (INTVAL (x)) != -1)
3296 + {
3297 + *total = 0;
3298 + return true;
3299 + }
3300 +
3301 + /* Larger constants that can be loaded via movei aren't too
3302 + bad. If we're just doing a set they cost nothing extra. */
3303 + if (satisfies_constraint_N (x))
3304 + {
3305 + if (mode == DImode)
3306 + *total = COSTS_N_INSNS (2);
3307 + else
3308 + *total = COSTS_N_INSNS (1);
3309 + return true;
3310 + }
3311 +
3312 + if (mode == DImode)
3313 + *total = COSTS_N_INSNS (5);
3314 + else
3315 + *total = COSTS_N_INSNS (3);
3316 + return true;
3317 +
3318 + case CONST_DOUBLE:
3319 + /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
3320 + so their cost is very high. */
3321 + *total = COSTS_N_INSNS (6);
3322 + return true;
3323 +
3324 + case CONST:
3325 + case SYMBOL_REF:
3326 + case MEM:
3327 + *total = 0;
3328 + return true;
3329 +
3330 + case IF_THEN_ELSE:
3331 + *total = COSTS_N_INSNS (1);
3332 + return true;
3333 +
3334 + case LABEL_REF:
3335 + case HIGH:
3336 + case LO_SUM:
3337 + case BSWAP:
3338 + case PLUS:
3339 + case MINUS:
3340 + case AND:
3341 + case IOR:
3342 + case XOR:
3343 + case ASHIFT:
3344 + case ASHIFTRT:
3345 + case LSHIFTRT:
3346 + case NEG:
3347 + case NOT:
3348 + case SIGN_EXTEND:
3349 + case ZERO_EXTEND:
3350 + case ZERO_EXTRACT:
3351 + if (outer_code == SET)
3352 + {
3353 + if (mode == DImode)
3354 + *total = COSTS_N_INSNS (2);
3355 + else
3356 + *total = COSTS_N_INSNS (1);
3357 + }
3358 + return true;
3359 +
3360 + case COMPARE:
3361 + if (outer_code == SET)
3362 + {
3363 + if (GET_MODE (XEXP (x, 0)) == DImode
3364 + || GET_MODE (XEXP (x, 1)) == DImode)
3365 + *total = COSTS_N_INSNS (2);
3366 + else
3367 + *total = COSTS_N_INSNS (1);
3368 + }
3369 + return true;
3370 +
3371 + case UMOD:
3372 + case UDIV:
3373 + case MOD:
3374 + case DIV:
3375 + if (outer_code == SET)
3376 + {
3377 + if (mode == DImode)
3378 + *total = COSTS_N_INSNS (600);
3379 + else
3380 + *total = COSTS_N_INSNS (200);
3381 + }
3382 + return true;
3383 +
3384 + case MULT:
3385 + if (outer_code == SET)
3386 + {
3387 + if (! ubicom32_v4)
3388 + {
3389 + if (mode == DImode)
3390 + *total = COSTS_N_INSNS (15);
3391 + else
3392 + *total = COSTS_N_INSNS (5);
3393 + }
3394 + else
3395 + {
3396 + if (mode == DImode)
3397 + *total = COSTS_N_INSNS (6);
3398 + else
3399 + *total = COSTS_N_INSNS (2);
3400 + }
3401 + }
3402 + return true;
3403 +
3404 + case UNSPEC:
3405 + if (XINT (x, 1) == UNSPEC_FDPIC_GOT
3406 + || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC)
3407 + *total = 0;
3408 + return true;
3409 +
3410 + default:
3411 + return false;
3412 + }
3413 +}
3414 +
3415 +/* Return 1 if ADDR can have different meanings depending on the machine
3416 + mode of the memory reference it is used for or if the address is
3417 + valid for some modes but not others.
3418 +
3419 + Autoincrement and autodecrement addresses typically have
3420 + mode-dependent effects because the amount of the increment or
3421 + decrement is the size of the operand being addressed. Some machines
3422 + have other mode-dependent addresses. Many RISC machines have no
3423 + mode-dependent addresses.
3424 +
3425 + You may assume that ADDR is a valid address for the machine. */
3426 +
3427 +int
3428 +ubicom32_mode_dependent_address_p (rtx addr)
3429 +{
3430 + if (GET_CODE (addr) == POST_INC
3431 + || GET_CODE (addr) == PRE_INC
3432 + || GET_CODE (addr) == POST_DEC
3433 + || GET_CODE (addr) == PRE_DEC
3434 + || GET_CODE (addr) == POST_MODIFY
3435 + || GET_CODE (addr) == PRE_MODIFY)
3436 + return 1;
3437 +
3438 + return 0;
3439 +}
3440 +
3441 +static void
3442 +ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3443 +{
3444 + fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n",
3445 + get_frame_size (), crtl->args.pretend_args_size,
3446 + save_regs_size, crtl->outgoing_args_size,
3447 + current_function_is_leaf ? "leaf" : "nonleaf");
3448 +}
3449 +
3450 +static void
3451 +ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
3452 + HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3453 +{
3454 + ubicom32_reorg_completed = 0;
3455 +}
3456 +
3457 +static void
3458 +ubicom32_machine_dependent_reorg (void)
3459 +{
3460 +#if 0 /* Commenting out this optimization until it is fixed */
3461 + if (optimize)
3462 + {
3463 + compute_bb_for_insn ();
3464 +
3465 + /* Do a very simple CSE pass over just the hard registers. */
3466 + reload_cse_regs (get_insns ());
3467 +
3468 + /* Reload_cse_regs can eliminate potentially-trapping MEMs.
3469 + Remove any EH edges associated with them. */
3470 + if (flag_non_call_exceptions)
3471 + purge_all_dead_edges ();
3472 + }
3473 +#endif
3474 + ubicom32_reorg_completed = 1;
3475 +}
3476 +
3477 +void
3478 +ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target)
3479 +{
3480 + rtx note;
3481 + int mostly_false_jump;
3482 + rtx xoperands[2];
3483 + rtx cc_reg;
3484 +
3485 + note = find_reg_note (insn, REG_BR_PROB, 0);
3486 + mostly_false_jump = !note || (INTVAL (XEXP (note, 0))
3487 + <= REG_BR_PROB_BASE / 2);
3488 +
3489 + xoperands[0] = target;
3490 + xoperands[1] = cond;
3491 + cc_reg = XEXP (cond, 0);
3492 +
3493 + if (GET_MODE (cc_reg) == CCWmode
3494 + || GET_MODE (cc_reg) == CCWZmode
3495 + || GET_MODE (cc_reg) == CCWZNmode)
3496 + {
3497 + if (mostly_false_jump)
3498 + output_asm_insn ("jmp%b1.w.f\t%0", xoperands);
3499 + else
3500 + output_asm_insn ("jmp%b1.w.t\t%0", xoperands);
3501 + return;
3502 + }
3503 +
3504 + if (GET_MODE (cc_reg) == CCSmode
3505 + || GET_MODE (cc_reg) == CCSZmode
3506 + || GET_MODE (cc_reg) == CCSZNmode)
3507 + {
3508 + if (mostly_false_jump)
3509 + output_asm_insn ("jmp%b1.s.f\t%0", xoperands);
3510 + else
3511 + output_asm_insn ("jmp%b1.s.t\t%0", xoperands);
3512 + return;
3513 + }
3514 +
3515 + abort ();
3516 +}
3517 +
3518 +/* Return non-zero if FUNC is a naked function. */
3519 +
3520 +static int
3521 +ubicom32_naked_function_p (void)
3522 +{
3523 + return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
3524 +}
3525 +
3526 +/* Return an RTX indicating where the return address to the
3527 + calling function can be found. */
3528 +rtx
3529 +ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
3530 +{
3531 + if (count != 0)
3532 + return NULL_RTX;
3533 +
3534 + return get_hard_reg_initial_val (Pmode, LINK_REGNO);
3535 +}
3536 +
3537 +/*
3538 + * ubicom32_readonly_data_section: This routtine handles code
3539 + * at the start of readonly data sections
3540 + */
3541 +static void
3542 +ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED)
3543 +{
3544 + static int num = 0;
3545 + if (in_section == readonly_data_section){
3546 + fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP);
3547 + if (flag_data_sections){
3548 + fprintf (asm_out_file, ".rodata%d", num);
3549 + fprintf (asm_out_file, ",\"a\"");
3550 + }
3551 + fprintf (asm_out_file, "\n");
3552 + }
3553 + num++;
3554 +}
3555 +
3556 +/*
3557 + * ubicom32_text_section: not in readonly section
3558 + */
3559 +static void
3560 +ubicom32_text_section(const void *data ATTRIBUTE_UNUSED)
3561 +{
3562 + fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
3563 +}
3564 +
3565 +/*
3566 + * ubicom32_data_section: not in readonly section
3567 + */
3568 +static void
3569 +ubicom32_data_section(const void *data ATTRIBUTE_UNUSED)
3570 +{
3571 + fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP);
3572 +}
3573 +
3574 +/*
3575 + * ubicom32_asm_init_sections: This routine implements special
3576 + * section handling
3577 + */
3578 +static void
3579 +ubicom32_asm_init_sections(void)
3580 +{
3581 + text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL);
3582 +
3583 + data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL);
3584 +
3585 + readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL);
3586 +}
3587 +
3588 +/*
3589 + * ubicom32_profiler: This routine would call
3590 + * mcount to support prof and gprof if mcount
3591 + * was supported. Currently, do nothing.
3592 + */
3593 +void
3594 +ubicom32_profiler(void)
3595 +{
3596 +}
3597 +
3598 +/* Initialise the builtin functions. Start by initialising
3599 + descriptions of different types of functions (e.g., void fn(int),
3600 + int fn(void)), and then use these to define the builtins. */
3601 +static void
3602 +ubicom32_init_builtins (void)
3603 +{
3604 + tree endlink;
3605 + tree short_unsigned_endlink;
3606 + tree unsigned_endlink;
3607 + tree short_unsigned_ftype_short_unsigned;
3608 + tree unsigned_ftype_unsigned;
3609 +
3610 + endlink = void_list_node;
3611 +
3612 + short_unsigned_endlink
3613 + = tree_cons (NULL_TREE, short_unsigned_type_node, endlink);
3614 +
3615 + unsigned_endlink
3616 + = tree_cons (NULL_TREE, unsigned_type_node, endlink);
3617 +
3618 + short_unsigned_ftype_short_unsigned
3619 + = build_function_type (short_unsigned_type_node, short_unsigned_endlink);
3620 +
3621 + unsigned_ftype_unsigned
3622 + = build_function_type (unsigned_type_node, unsigned_endlink);
3623 +
3624 + /* Initialise the byte swap function. */
3625 + add_builtin_function ("__builtin_ubicom32_swapb_2",
3626 + short_unsigned_ftype_short_unsigned,
3627 + UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
3628 + BUILT_IN_MD, NULL,
3629 + NULL_TREE);
3630 +
3631 + /* Initialise the byte swap function. */
3632 + add_builtin_function ("__builtin_ubicom32_swapb_4",
3633 + unsigned_ftype_unsigned,
3634 + UBICOM32_BUILTIN_UBICOM32_SWAPB_4,
3635 + BUILT_IN_MD, NULL,
3636 + NULL_TREE);
3637 +}
3638 +
3639 +/* Given a builtin function taking 2 operands (i.e., target + source),
3640 + emit the RTL for the underlying instruction. */
3641 +static rtx
3642 +ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target)
3643 +{
3644 + tree arg0;
3645 + rtx op0, pat;
3646 + enum machine_mode tmode, mode0;
3647 +
3648 + /* Grab the incoming argument and emit its RTL. */
3649 + arg0 = TREE_VALUE (arglist);
3650 + op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
3651 +
3652 + /* Determine the modes of the instruction operands. */
3653 + tmode = insn_data[icode].operand[0].mode;
3654 + mode0 = insn_data[icode].operand[1].mode;
3655 +
3656 + /* Ensure that the incoming argument RTL is in a register of the
3657 + correct mode. */
3658 + if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
3659 + op0 = copy_to_mode_reg (mode0, op0);
3660 +
3661 + /* If there isn't a suitable target, emit a target register. */
3662 + if (target == 0
3663 + || GET_MODE (target) != tmode
3664 + || !(*insn_data[icode].operand[0].predicate) (target, tmode))
3665 + target = gen_reg_rtx (tmode);
3666 +
3667 + /* Emit and return the new instruction. */
3668 + pat = GEN_FCN (icode) (target, op0);
3669 + if (!pat)
3670 + return 0;
3671 + emit_insn (pat);
3672 +
3673 + return target;
3674 +}
3675 +
3676 +/* Expand a call to a builtin function. */
3677 +static rtx
3678 +ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
3679 + enum machine_mode mode ATTRIBUTE_UNUSED,
3680 + int ignore ATTRIBUTE_UNUSED)
3681 +{
3682 + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3683 + tree arglist = CALL_EXPR_ARGS(exp);
3684 + int fcode = DECL_FUNCTION_CODE (fndecl);
3685 +
3686 + switch (fcode)
3687 + {
3688 + case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
3689 + return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target);
3690 +
3691 + case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
3692 + return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target);
3693 +
3694 + default:
3695 + gcc_unreachable();
3696 + }
3697 +
3698 + /* Should really do something sensible here. */
3699 + return NULL_RTX;
3700 +}
3701 +
3702 +/* Fold any constant argument for a swapb.2 instruction. */
3703 +static tree
3704 +ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist)
3705 +{
3706 + tree arg0;
3707 +
3708 + arg0 = TREE_VALUE (arglist);
3709 +
3710 + /* Optimize constant value. */
3711 + if (TREE_CODE (arg0) == INTEGER_CST)
3712 + {
3713 + HOST_WIDE_INT v;
3714 + HOST_WIDE_INT res;
3715 +
3716 + v = TREE_INT_CST_LOW (arg0);
3717 + res = ((v >> 8) & 0xff)
3718 + | ((v & 0xff) << 8);
3719 +
3720 + return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
3721 + }
3722 +
3723 + return NULL_TREE;
3724 +}
3725 +
3726 +/* Fold any constant argument for a swapb.4 instruction. */
3727 +static tree
3728 +ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist)
3729 +{
3730 + tree arg0;
3731 +
3732 + arg0 = TREE_VALUE (arglist);
3733 +
3734 + /* Optimize constant value. */
3735 + if (TREE_CODE (arg0) == INTEGER_CST)
3736 + {
3737 + unsigned HOST_WIDE_INT v;
3738 + unsigned HOST_WIDE_INT res;
3739 +
3740 + v = TREE_INT_CST_LOW (arg0);
3741 + res = ((v >> 24) & 0xff)
3742 + | (((v >> 16) & 0xff) << 8)
3743 + | (((v >> 8) & 0xff) << 16)
3744 + | ((v & 0xff) << 24);
3745 +
3746 + return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0);
3747 + }
3748 +
3749 + return NULL_TREE;
3750 +}
3751 +
3752 +/* Fold any constant arguments for builtin functions. */
3753 +static tree
3754 +ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
3755 +{
3756 + switch (DECL_FUNCTION_CODE (fndecl))
3757 + {
3758 + case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
3759 + return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist);
3760 +
3761 + case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
3762 + return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist);
3763 +
3764 + default:
3765 + return NULL;
3766 + }
3767 +}
3768 +
3769 +/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to
3770 + tell the assembler to generate pointers to function descriptors in
3771 + some cases. */
3772 +static bool
3773 +ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p)
3774 +{
3775 + if (TARGET_FDPIC && size == UNITS_PER_WORD)
3776 + {
3777 + if (GET_CODE (value) == SYMBOL_REF
3778 + && SYMBOL_REF_FUNCTION_P (value))
3779 + {
3780 + fputs ("\t.picptr\t%funcdesc(", asm_out_file);
3781 + output_addr_const (asm_out_file, value);
3782 + fputs (")\n", asm_out_file);
3783 + return true;
3784 + }
3785 +
3786 + if (!aligned_p)
3787 + {
3788 + /* We've set the unaligned SI op to NULL, so we always have to
3789 + handle the unaligned case here. */
3790 + assemble_integer_with_op ("\t.4byte\t", value);
3791 + return true;
3792 + }
3793 + }
3794 +
3795 + return default_assemble_integer (value, size, aligned_p);
3796 +}
3797 +
3798 +/* If the constant I can be constructed by shifting a source-1 immediate
3799 + by a constant number of bits then return the bit count. If not
3800 + return 0. */
3801 +
3802 +int
3803 +ubicom32_shiftable_const_int (int i)
3804 +{
3805 + int shift = 0;
3806 +
3807 + /* Note that any constant that can be represented as an immediate to
3808 + a movei instruction is automatically ignored here in the interests
3809 + of the clarity of the output asm code. */
3810 + if (i >= -32768 && i <= 32767)
3811 + return 0;
3812 +
3813 + /* Find the number of trailing zeroes. We could use __builtin_ctz
3814 + here but it's not obvious if this is supported on all build
3815 + compilers so we err on the side of caution. */
3816 + if ((i & 0xffff) == 0)
3817 + {
3818 + shift += 16;
3819 + i >>= 16;
3820 + }
3821 +
3822 + if ((i & 0xff) == 0)
3823 + {
3824 + shift += 8;
3825 + i >>= 8;
3826 + }
3827 +
3828 + if ((i & 0xf) == 0)
3829 + {
3830 + shift += 4;
3831 + i >>= 4;
3832 + }
3833 +
3834 + if ((i & 0x3) == 0)
3835 + {
3836 + shift += 2;
3837 + i >>= 2;
3838 + }
3839 +
3840 + if ((i & 0x1) == 0)
3841 + {
3842 + shift += 1;
3843 + i >>= 1;
3844 + }
3845 +
3846 + if (i >= -128 && i <= 127)
3847 + return shift;
3848 +
3849 + return 0;
3850 +}
3851 +
3852 --- /dev/null
3853 +++ b/gcc/config/ubicom32/ubicom32.h
3854 @@ -0,0 +1,1564 @@
3855 +/* Definitions of target machine for Ubicom32
3856 +
3857 + Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3858 + 2009 Free Software Foundation, Inc.
3859 + Contributed by Ubicom, Inc.
3860 +
3861 + This file is part of GCC.
3862 +
3863 + GCC is free software; you can redistribute it and/or modify it
3864 + under the terms of the GNU General Public License as published
3865 + by the Free Software Foundation; either version 3, or (at your
3866 + option) any later version.
3867 +
3868 + GCC is distributed in the hope that it will be useful, but WITHOUT
3869 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
3870 + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
3871 + License for more details.
3872 +
3873 + You should have received a copy of the GNU General Public License
3874 + along with GCC; see the file COPYING3. If not see
3875 + <http://www.gnu.org/licenses/>. */
3876 +
3877 +\f
3878 +
3879 +#define OBJECT_FORMAT_ELF
3880 +
3881 +/* Run-time target specifications. */
3882 +
3883 +/* Target CPU builtins. */
3884 +#define TARGET_CPU_CPP_BUILTINS() \
3885 + do \
3886 + { \
3887 + builtin_define_std ("__UBICOM32__"); \
3888 + builtin_define_std ("__ubicom32__"); \
3889 + \
3890 + if (TARGET_FDPIC) \
3891 + { \
3892 + builtin_define ("__UBICOM32_FDPIC__"); \
3893 + builtin_define ("__FDPIC__"); \
3894 + } \
3895 + } \
3896 + while (0)
3897 +
3898 +#ifndef TARGET_DEFAULT
3899 +#define TARGET_DEFAULT 0
3900 +#endif
3901 +
3902 +extern int ubicom32_case_values_threshold;
3903 +
3904 +/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
3905 +extern int ubicom32_v3;
3906 +
3907 +/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
3908 +extern int ubicom32_v4;
3909 +
3910 +extern int ubicom32_stack_size;
3911 +
3912 +/* Flag for whether we can use calli instead of ret in returns. */
3913 +extern int ubicom32_can_use_calli_to_ret;
3914 +
3915 +/* This macro is a C statement to print on `stderr' a string describing the
3916 + particular machine description choice. Every machine description should
3917 + define `TARGET_VERSION'. */
3918 +#define TARGET_VERSION fprintf (stderr, " (UBICOM32)");
3919 +
3920 +/* We don't need a frame pointer to debug things. Doing this means
3921 + that gcc can turn on -fomit-frame-pointer when '-O' is specified. */
3922 +#define CAN_DEBUG_WITHOUT_FP
3923 +
3924 +/* We need to handle processor-specific options. */
3925 +#define OVERRIDE_OPTIONS ubicom32_override_options ()
3926 +
3927 +#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
3928 + ubicom32_optimization_options (LEVEL, SIZE)
3929 +
3930 +/* For Ubicom32 the least significant bit has the lowest bit number
3931 + so we define this to be 0. */
3932 +#define BITS_BIG_ENDIAN 0
3933 +
3934 +/* For Ubicom32 the most significant byte in a word has the lowest
3935 + number. */
3936 +#define BYTES_BIG_ENDIAN 1
3937 +
3938 +/* For Ubicom32, in a multiword object, the most signifant word has the
3939 + lowest number. */
3940 +#define WORDS_BIG_ENDIAN 1
3941 +
3942 +/* Ubicom32 has 8 bits per byte. */
3943 +#define BITS_PER_UNIT 8
3944 +
3945 +/* Ubicom32 has 32 bits per word. */
3946 +#define BITS_PER_WORD 32
3947 +
3948 +/* Width of a word, in units (bytes). */
3949 +#define UNITS_PER_WORD 4
3950 +
3951 +/* Width of a pointer, in bits. */
3952 +#define POINTER_SIZE 32
3953 +
3954 +/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use
3955 + SImode. */
3956 +#define Pmode SImode
3957 +
3958 +/* Normal alignment required for function parameters on the stack, in
3959 + bits. */
3960 +#define PARM_BOUNDARY 32
3961 +
3962 +/* We need to maintain the stack on a 32-bit boundary. */
3963 +#define STACK_BOUNDARY 32
3964 +
3965 +/* Alignment required for a function entry point, in bits. */
3966 +#define FUNCTION_BOUNDARY 32
3967 +
3968 +/* Alias for the machine mode used for memory references to functions being
3969 + called, in `call' RTL expressions. We use byte-oriented addresses
3970 + here. */
3971 +#define FUNCTION_MODE QImode
3972 +
3973 +/* Biggest alignment that any data type can require on this machine,
3974 + in bits. */
3975 +#define BIGGEST_ALIGNMENT 32
3976 +
3977 +/* this default to BIGGEST_ALIGNMENT unless defined */
3978 +/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/
3979 +#undef MAX_OFILE_ALIGNMENT
3980 +#define MAX_OFILE_ALIGNMENT (128 * 8)
3981 +
3982 +/* Alignment in bits to be given to a structure bit field that follows an empty
3983 + field such as `int : 0;'. */
3984 +#define EMPTY_FIELD_BOUNDARY 32
3985 +
3986 +/* All structures must be a multiple of 32 bits in size. */
3987 +#define STRUCTURE_SIZE_BOUNDARY 32
3988 +
3989 +/* A bit-field declared as `int' forces `int' alignment for the struct. */
3990 +#define PCC_BITFIELD_TYPE_MATTERS 1
3991 +
3992 +/* For Ubicom32 we absolutely require that data be aligned with nominal
3993 + alignment. */
3994 +#define STRICT_ALIGNMENT 1
3995 +
3996 +/* Make strcpy of constants fast. */
3997 +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
3998 + (TREE_CODE (EXP) == STRING_CST \
3999 + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
4000 +
4001 +/* Define this macro as an expression for the alignment of a structure
4002 + (given by STRUCT as a tree node) if the alignment computed in the
4003 + usual way is COMPUTED and the alignment explicitly specified was
4004 + SPECIFIED. */
4005 +#define DATA_ALIGNMENT(TYPE, ALIGN) \
4006 + ((((ALIGN) < BITS_PER_WORD) \
4007 + && (TREE_CODE (TYPE) == ARRAY_TYPE \
4008 + || TREE_CODE (TYPE) == UNION_TYPE \
4009 + || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
4010 +
4011 +#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN)
4012 +
4013 +/* For Ubicom32 we default to unsigned chars. */
4014 +#define DEFAULT_SIGNED_CHAR 0
4015 +
4016 +/* Machine-specific data register numbers. */
4017 +#define FIRST_DATA_REGNUM 0
4018 +#define D10_REGNUM 10
4019 +#define D11_REGNUM 11
4020 +#define D12_REGNUM 12
4021 +#define D13_REGNUM 13
4022 +#define LAST_DATA_REGNUM 15
4023 +
4024 +/* Machine-specific address register numbers. */
4025 +#define FIRST_ADDRESS_REGNUM 16
4026 +#define LAST_ADDRESS_REGNUM 22
4027 +
4028 +/* Register numbers used for passing a function's static chain pointer. If
4029 + register windows are used, the register number as seen by the called
4030 + function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
4031 + seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
4032 + are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
4033 +
4034 + The static chain register need not be a fixed register.
4035 +
4036 + If the static chain is passed in memory, these macros should not be defined;
4037 + instead, the next two macros should be defined. */
4038 +#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
4039 +
4040 +/* The register number of the frame pointer register, which is used to access
4041 + automatic variables in the stack frame. We generally eliminate this anyway
4042 + for Ubicom32 but we make it A6 by default. */
4043 +#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM)
4044 +
4045 +/* The register number of the stack pointer register, which is also be a
4046 + fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't
4047 + have a hardware requirement about which register this is, but by convention
4048 + we use A7. */
4049 +#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
4050 +
4051 +/* Machine-specific accumulator register numbers. */
4052 +#define ACC0_HI_REGNUM 24
4053 +#define ACC0_LO_REGNUM 25
4054 +#define ACC1_HI_REGNUM 26
4055 +#define ACC1_LO_REGNUM 27
4056 +
4057 +/* source3 register number */
4058 +#define SOURCE3_REGNUM 28
4059 +
4060 +/* The register number of the arg pointer register, which is used to access the
4061 + function's argument list. On some machines, this is the same as the frame
4062 + pointer register. On some machines, the hardware determines which register
4063 + this is. On other machines, you can choose any register you wish for this
4064 + purpose. If this is not the same register as the frame pointer register,
4065 + then you must mark it as a fixed register according to `FIXED_REGISTERS', or
4066 + arrange to be able to eliminate it. */
4067 +#define ARG_POINTER_REGNUM 29
4068 +
4069 +/* Pseudo-reg for condition code. */
4070 +#define CC_REGNUM 30
4071 +
4072 +/* Interrupt set/clear registers. */
4073 +#define INT_SET0_REGNUM 31
4074 +#define INT_SET1_REGNUM 32
4075 +#define INT_CLR0_REGNUM 33
4076 +#define INT_CLR1_REGNUM 34
4077 +
4078 +/* Scratchpad registers. */
4079 +#define SCRATCHPAD0_REGNUM 35
4080 +#define SCRATCHPAD1_REGNUM 36
4081 +#define SCRATCHPAD2_REGNUM 37
4082 +#define SCRATCHPAD3_REGNUM 38
4083 +
4084 +/* FDPIC register. */
4085 +#define FDPIC_REGNUM 16
4086 +
4087 +/* Number of hardware registers known to the compiler. They receive numbers 0
4088 + through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
4089 + really is assigned the number `FIRST_PSEUDO_REGISTER'. */
4090 +#define FIRST_PSEUDO_REGISTER 39
4091 +
4092 +/* An initializer that says which registers are used for fixed purposes all
4093 + throughout the compiled code and are therefore not available for general
4094 + allocation. These would include the stack pointer, the frame pointer
4095 + (except on machines where that can be used as a general register when no
4096 + frame pointer is needed), the program counter on machines where that is
4097 + considered one of the addressable registers, and any other numbered register
4098 + with a standard use.
4099 +
4100 + This information is expressed as a sequence of numbers, separated by commas
4101 + and surrounded by braces. The Nth number is 1 if register N is fixed, 0
4102 + otherwise.
4103 +
4104 + The table initialized from this macro, and the table initialized by the
4105 + following one, may be overridden at run time either automatically, by the
4106 + actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
4107 + command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
4108 +#define FIXED_REGISTERS \
4109 + { \
4110 + 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \
4111 + 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \
4112 + 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \
4113 + 0, 0, /* acc0 hi/lo */ \
4114 + 0, 0, /* acc1 hi/lo */ \
4115 + 0, /* source3 */ \
4116 + 1, /* arg */ \
4117 + 1, /* cc */ \
4118 + 1, 1, /* int_set[01] */ \
4119 + 1, 1, /* int_clr[01] */ \
4120 + 1, 1, 1, 1 /* scratchpad[0123] */ \
4121 + }
4122 +
4123 +/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
4124 + general) by function calls as well as for fixed registers. This macro
4125 + therefore identifies the registers that are not available for general
4126 + allocation of values that must live across function calls.
4127 +
4128 + If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
4129 + saves it on function entry and restores it on function exit, if the register
4130 + is used within the function. */
4131 +#define CALL_USED_REGISTERS \
4132 + { \
4133 + 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \
4134 + 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \
4135 + 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \
4136 + 1, 1, /* acc0 hi/lo */ \
4137 + 1, 1, /* acc1 hi/lo */ \
4138 + 1, /* source3 */ \
4139 + 1, /* arg */ \
4140 + 1, /* cc */ \
4141 + 1, 1, /* int_set[01] */ \
4142 + 1, 1, /* int_clr[01] */ \
4143 + 1, 1, 1, 1 /* scratchpad[0123] */ \
4144 + }
4145 +
4146 +/* How to refer to registers in assembler output.
4147 + This sequence is indexed by compiler's hard-register-number (see above). */
4148 +
4149 +/* A C initializer containing the assembler's names for the machine registers,
4150 + each one as a C string constant. This is what translates register numbers
4151 + in the compiler into assembler language. */
4152 +#define REGISTER_NAMES \
4153 + { \
4154 + "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
4155 + "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \
4156 + "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
4157 + "acc0_hi", "acc0_lo", \
4158 + "acc1_hi", "acc1_lo", \
4159 + "source3", \
4160 + "arg", \
4161 + "cc", \
4162 + "int_set0", "int_set1", \
4163 + "int_clr0", "int_clr1", \
4164 + "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \
4165 + }
4166 +
4167 +#define CONDITIONAL_REGISTER_USAGE \
4168 + ubicom32_conditional_register_usage ();
4169 +
4170 +/* Order of allocation of registers. */
4171 +
4172 +/* If defined, an initializer for a vector of integers, containing the numbers
4173 + of hard registers in the order in which GNU CC should prefer to use them
4174 + (from most preferred to least).
4175 +
4176 + For Ubicom32 we try using caller-clobbered data registers first, then
4177 + callee-saved data registers, then caller-clobbered address registers,
4178 + then callee-saved address registers and finally everything else.
4179 +
4180 + The caller-clobbered registers are usually slightly cheaper to use because
4181 + there's no need to save/restore. */
4182 +#define REG_ALLOC_ORDER \
4183 + { \
4184 + 0, 1, 2, 3, 4, /* d0 - d4 */ \
4185 + 5, 6, 7, 8, 9, /* d5 - d9 */ \
4186 + 14, /* d14 */ \
4187 + 10, 11, 12, 13, /* d10 - d13 */ \
4188 + 19, 20, 16, 21, /* a3, a4, a0, a5 */ \
4189 + 17, 18, 22, /* a1, a2, a6 */ \
4190 + 24, 25, /* acc0 hi/lo */ \
4191 + 26, 27, /* acc0 hi/lo */ \
4192 + 28 /* source3 */ \
4193 + }
4194 +
4195 +/* C expression for the number of consecutive hard registers, starting at
4196 + register number REGNO, required to hold a value of mode MODE. */
4197 +#define HARD_REGNO_NREGS(REGNO, MODE) \
4198 + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
4199 +
4200 +/* Most registers can hold QImode, HImode and SImode values but we have to
4201 + be able to indicate any hard registers that cannot hold values with some
4202 + modes. */
4203 +#define HARD_REGNO_MODE_OK(REGNO, MODE) \
4204 + ubicom32_hard_regno_mode_ok(REGNO, MODE)
4205 +
4206 +/* We can rename most registers aside from the FDPIC register if we're using
4207 + FDPIC. */
4208 +#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1)
4209 +
4210 +/* A C expression that is nonzero if it is desirable to choose register
4211 + allocation so as to avoid move instructions between a value of mode MODE1
4212 + and a value of mode MODE2.
4213 +
4214 + If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
4215 + ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
4216 + zero. */
4217 +#define MODES_TIEABLE_P(MODE1, MODE2) 1
4218 +
4219 +/* An enumeral type that must be defined with all the register class names as
4220 + enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
4221 + register class, followed by one more enumeral value, `LIM_REG_CLASSES',
4222 + which is not a register class but rather tells how many classes there are.
4223 +
4224 + Each register class has a number, which is the value of casting the class
4225 + name to type `int'. The number serves as an index in many of the tables
4226 + described below. */
4227 +
4228 +enum reg_class
4229 +{
4230 + NO_REGS,
4231 + DATA_REGS,
4232 + FDPIC_REG,
4233 + ADDRESS_REGS,
4234 + ALL_ADDRESS_REGS,
4235 + ACC_LO_REGS,
4236 + ACC_REGS,
4237 + CC_REG,
4238 + DATA_ACC_REGS,
4239 + SOURCE3_REG,
4240 + SPECIAL_REGS,
4241 + GENERAL_REGS,
4242 + ALL_REGS,
4243 + LIM_REG_CLASSES
4244 +};
4245 +
4246 +/* The number of distinct register classes. */
4247 +#define N_REG_CLASSES (int) LIM_REG_CLASSES
4248 +
4249 +/* An initializer containing the names of the register classes as C string
4250 + constants. These names are used in writing some of the debugging dumps. */
4251 +
4252 +#define REG_CLASS_NAMES \
4253 +{ \
4254 + "NO_REGS", \
4255 + "DATA_REGS", \
4256 + "FDPIC_REG", \
4257 + "ADDRESS_REGS", \
4258 + "ALL_ADDRESS_REGS", \
4259 + "ACC_LO_REGS", \
4260 + "ACC_REGS", \
4261 + "CC_REG", \
4262 + "DATA_ACC_REGS", \
4263 + "SOURCE3_REG", \
4264 + "SPECIAL_REGS", \
4265 + "GENERAL_REGS", \
4266 + "ALL_REGS", \
4267 + "LIM_REGS" \
4268 +}
4269 +
4270 +/* An initializer containing the contents of the register classes, as integers
4271 + which are bit masks. The Nth integer specifies the contents of class N.
4272 + The way the integer MASK is interpreted is that register R is in the class
4273 + if `MASK & (1 << R)' is 1.
4274 +
4275 + When the machine has more than 32 registers, an integer does not suffice.
4276 + Then the integers are replaced by sub-initializers, braced groupings
4277 + containing several integers. Each sub-initializer must be suitable as an
4278 + initializer for the type `HARD_REG_SET' which is defined in
4279 + `hard-reg-set.h'. */
4280 +#define REG_CLASS_CONTENTS \
4281 +{ \
4282 + {0x00000000, 0x00000000}, /* No regs */ \
4283 + {0x0000ffff, 0x00000000}, /* DATA_REGS */ \
4284 + {0x00010000, 0x00000000}, /* FDPIC_REG */ \
4285 + {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \
4286 + {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \
4287 + {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \
4288 + {0x0f000000, 0x00000000}, /* ACC_REGS */ \
4289 + {0x40000000, 0x00000000}, /* CC_REG */ \
4290 + {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \
4291 + {0x10000000, 0x00000000}, /* SOURGE3_REG */ \
4292 + {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \
4293 + {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \
4294 + {0xbfffffff, 0x0000007f} /* ALL_REGS */ \
4295 +}
4296 +
4297 +extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER];
4298 +
4299 +/* A C expression whose value is a register class containing hard register
4300 + REGNO. In general there is more than one such class; choose a class which
4301 + is "minimal", meaning that no smaller class also contains the register. */
4302 +#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO])
4303 +
4304 +#define IRA_COVER_CLASSES \
4305 +{ \
4306 + GENERAL_REGS, \
4307 + LIM_REG_CLASSES \
4308 +}
4309 +
4310 +/* Ubicom32 base registers must be address registers since addresses can
4311 + only be reached via address registers. */
4312 +#define BASE_REG_CLASS ALL_ADDRESS_REGS
4313 +
4314 +/* Ubicom32 index registers must be data registers since we cannot add
4315 + two address registers together to form an address. */
4316 +#define INDEX_REG_CLASS DATA_REGS
4317 +
4318 +/* A C expression which is nonzero if register number NUM is suitable for use
4319 + as a base register in operand addresses. It may be either a suitable hard
4320 + register or a pseudo register that has been allocated such a hard register. */
4321 +
4322 +#ifndef REG_OK_STRICT
4323 +#define REGNO_OK_FOR_BASE_P(regno) \
4324 + ubicom32_regno_ok_for_base_p (regno, 0)
4325 +#else
4326 +#define REGNO_OK_FOR_BASE_P(regno) \
4327 + ubicom32_regno_ok_for_base_p (regno, 1)
4328 +#endif
4329 +
4330 +/* A C expression which is nonzero if register number NUM is suitable for use
4331 + as an index register in operand addresses. It may be either a suitable hard
4332 + register or a pseudo register that has been allocated such a hard register.
4333 +
4334 + The difference between an index register and a base register is that the
4335 + index register may be scaled. If an address involves the sum of two
4336 + registers, neither one of them scaled, then either one may be labeled the
4337 + "base" and the other the "index"; but whichever labeling is used must fit
4338 + the machine's constraints of which registers may serve in each capacity.
4339 + The compiler will try both labelings, looking for one that is valid, and
4340 + will reload one or both registers only if neither labeling works. */
4341 +#ifndef REG_OK_STRICT
4342 +#define REGNO_OK_FOR_INDEX_P(regno) \
4343 + ubicom32_regno_ok_for_index_p (regno, 0)
4344 +#else
4345 +#define REGNO_OK_FOR_INDEX_P(regno) \
4346 + ubicom32_regno_ok_for_index_p (regno, 1)
4347 +#endif
4348 +
4349 +/* Attempt to restrict the register class we need to copy value X intoto the
4350 + would-be register class CLASS. Most things are fine for Ubicom32 but we
4351 + have to restrict certain types of address loads. */
4352 +#define PREFERRED_RELOAD_CLASS(X, CLASS) \
4353 + ubicom32_preferred_reload_class (X, CLASS)
4354 +
4355 +/* A C expression for the maximum number of consecutive registers of
4356 + class CLASS needed to hold a value of mode MODE. For Ubicom32 this
4357 + is pretty much identical to HARD_REGNO_NREGS. */
4358 +#define CLASS_MAX_NREGS(CLASS, MODE) \
4359 + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
4360 +
4361 +/* For Ubicom32 the stack grows downwards when we push a word onto the stack
4362 + - i.e. it moves to a smaller address. */
4363 +#define STACK_GROWS_DOWNWARD 1
4364 +
4365 +/* Offset from the frame pointer to the first local variable slot to
4366 + be allocated. */
4367 +#define STARTING_FRAME_OFFSET 0
4368 +
4369 +/* Offset from the argument pointer register to the first argument's
4370 + address. */
4371 +#define FIRST_PARM_OFFSET(FNDECL) 0
4372 +
4373 +/* A C expression whose value is RTL representing the value of the return
4374 + address for the frame COUNT steps up from the current frame, after the
4375 + prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
4376 + pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
4377 + defined.
4378 +
4379 + The value of the expression must always be the correct address when COUNT is
4380 + zero, but may be `NULL_RTX' if there is not way to determine the return
4381 + address of other frames. */
4382 +#define RETURN_ADDR_RTX(COUNT, FRAME) \
4383 + ubicom32_return_addr_rtx (COUNT, FRAME)
4384 +
4385 +/* Register That Address the Stack Frame. */
4386 +
4387 +/* We don't actually require a frame pointer in most functions with the
4388 + Ubicom32 architecture so we allow it to be eliminated. */
4389 +#define FRAME_POINTER_REQUIRED 0
4390 +
4391 +/* Macro that defines a table of register pairs used to eliminate unecessary
4392 + registers that point into the stack frame.
4393 +
4394 + For Ubicom32 we don't generally need an arg pointer of a frame pointer
4395 + so we allow the arg pointer to be replaced by either the frame pointer or
4396 + the stack pointer. We also allow the frame pointer to be replaced by
4397 + the stack pointer. */
4398 +#define ELIMINABLE_REGS \
4399 +{ \
4400 + {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
4401 + {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
4402 + {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
4403 +}
4404 +
4405 +/* Let the compiler know that we want to use the ELIMINABLE_REGS macro
4406 + above. */
4407 +#define CAN_ELIMINATE(FROM, TO) 1
4408 +
4409 +/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
4410 + initial difference between the specified pair of registers. This macro must
4411 + be defined if `ELIMINABLE_REGS' is defined. */
4412 +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
4413 + (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO)
4414 +
4415 +/* If defined, the maximum amount of space required for outgoing arguments will
4416 + be computed and placed into the variable
4417 + `current_function_outgoing_args_size'. No space will be pushed onto the
4418 + stack for each call; instead, the function prologue should increase the
4419 + stack frame size by this amount.
4420 +
4421 + Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
4422 + proper. */
4423 +#define ACCUMULATE_OUTGOING_ARGS 1
4424 +
4425 +/* Define this macro if functions should assume that stack space has been
4426 + allocated for arguments even when their values are passed in registers.
4427 +
4428 + The value of this macro is the size, in bytes, of the area reserved for
4429 + arguments passed in registers for the function represented by FNDECL.
4430 +
4431 + This space can be allocated by the caller, or be a part of the
4432 + machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
4433 + which. */
4434 +#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL)
4435 +
4436 +/* A C expression that should indicate the number of bytes of its own arguments
4437 + that a function pops on returning, or 0 if the function pops no arguments
4438 + and the caller must therefore pop them all after the function returns.
4439 +
4440 + FUNDECL is a C variable whose value is a tree node that describes the
4441 + function in question. Normally it is a node of type `FUNCTION_DECL' that
4442 + describes the declaration of the function. From this it is possible to
4443 + obtain the DECL_MACHINE_ATTRIBUTES of the function.
4444 +
4445 + FUNTYPE is a C variable whose value is a tree node that describes the
4446 + function in question. Normally it is a node of type `FUNCTION_TYPE' that
4447 + describes the data type of the function. From this it is possible to obtain
4448 + the data types of the value and arguments (if known).
4449 +
4450 + When a call to a library function is being considered, FUNTYPE will contain
4451 + an identifier node for the library function. Thus, if you need to
4452 + distinguish among various library functions, you can do so by their names.
4453 + Note that "library function" in this context means a function used to
4454 + perform arithmetic, whose name is known specially in the compiler and was
4455 + not mentioned in the C code being compiled.
4456 +
4457 + STACK-SIZE is the number of bytes of arguments passed on the stack. If a
4458 + variable number of bytes is passed, it is zero, and argument popping will
4459 + always be the responsibility of the calling function.
4460 +
4461 + On the Vax, all functions always pop their arguments, so the definition of
4462 + this macro is STACK-SIZE. On the 68000, using the standard calling
4463 + convention, no functions pop their arguments, so the value of the macro is
4464 + always 0 in this case. But an alternative calling convention is available
4465 + in which functions that take a fixed number of arguments pop them but other
4466 + functions (such as `printf') pop nothing (the caller pops all). When this
4467 + convention is in use, FUNTYPE is examined to determine whether a function
4468 + takes a fixed number of arguments. */
4469 +#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
4470 +
4471 +/* A C expression that controls whether a function argument is passed in a
4472 + register, and which register.
4473 +
4474 + The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
4475 + defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
4476 + arguments so far passed in registers; MODE, the machine mode of the argument;
4477 + TYPE, the data type of the argument as a tree node or 0 if that is not known
4478 + (which happens for C support library functions); and NAMED, which is 1 for an
4479 + ordinary argument and 0 for nameless arguments that correspond to `...' in the
4480 + called function's prototype.
4481 +
4482 + The value of the expression should either be a `reg' RTX for the hard
4483 + register in which to pass the argument, or zero to pass the argument on the
4484 + stack.
4485 +
4486 + For machines like the Vax and 68000, where normally all arguments are
4487 + pushed, zero suffices as a definition.
4488 +
4489 + The usual way to make the ANSI library `stdarg.h' work on a machine where
4490 + some arguments are usually passed in registers, is to cause nameless
4491 + arguments to be passed on the stack instead. This is done by making
4492 + `FUNCTION_ARG' return 0 whenever NAMED is 0.
4493 +
4494 + You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
4495 + this macro to determine if this argument is of a type that must be passed in
4496 + the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
4497 + returns non-zero for such an argument, the compiler will abort. If
4498 + `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
4499 + stack and then loaded into a register. */
4500 +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
4501 + function_arg (&CUM, MODE, TYPE, NAMED)
4502 +
4503 +#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
4504 + function_incoming_arg (&CUM, MODE, TYPE, NAMED)
4505 +
4506 +/* A C expression for the number of words, at the beginning of an argument,
4507 + must be put in registers. The value must be zero for arguments that are
4508 + passed entirely in registers or that are entirely pushed on the stack.
4509 +
4510 + On some machines, certain arguments must be passed partially in registers
4511 + and partially in memory. On these machines, typically the first N words of
4512 + arguments are passed in registers, and the rest on the stack. If a
4513 + multi-word argument (a `double' or a structure) crosses that boundary, its
4514 + first few words must be passed in registers and the rest must be pushed.
4515 + This macro tells the compiler when this occurs, and how many of the words
4516 + should go in registers.
4517 +
4518 + `FUNCTION_ARG' for these arguments should return the first register to be
4519 + used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
4520 + the called function. */
4521 +
4522 +/* A C expression that indicates when an argument must be passed by reference.
4523 + If nonzero for an argument, a copy of that argument is made in memory and a
4524 + pointer to the argument is passed instead of the argument itself. The
4525 + pointer is passed in whatever way is appropriate for passing a pointer to
4526 + that type.
4527 +
4528 + On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
4529 + definition of this macro might be
4530 + #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
4531 + MUST_PASS_IN_STACK (MODE, TYPE) */
4532 +
4533 +/* If defined, a C expression that indicates when it is the called function's
4534 + responsibility to make a copy of arguments passed by invisible reference.
4535 + Normally, the caller makes a copy and passes the address of the copy to the
4536 + routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
4537 + nonzero, the caller does not make a copy. Instead, it passes a pointer to
4538 + the "live" value. The called function must not modify this value. If it
4539 + can be determined that the value won't be modified, it need not make a copy;
4540 + otherwise a copy must be made. */
4541 +
4542 +/* A C type for declaring a variable that is used as the first argument of
4543 + `FUNCTION_ARG' and other related values. For some target machines, the type
4544 + `int' suffices and can hold the number of bytes of argument so far.
4545 +
4546 + There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
4547 + that have been passed on the stack. The compiler has other variables to
4548 + keep track of that. For target machines on which all arguments are passed
4549 + on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
4550 + however, the data structure must exist and should not be empty, so use
4551 + `int'. */
4552 +struct cum_arg
4553 +{
4554 + int nbytes;
4555 + int reg;
4556 + int stdarg;
4557 +};
4558 +#define CUMULATIVE_ARGS struct cum_arg
4559 +
4560 +/* A C statement (sans semicolon) for initializing the variable CUM for the
4561 + state at the beginning of the argument list. The variable has type
4562 + `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
4563 + of the function which will receive the args, or 0 if the args are to a
4564 + compiler support library function. The value of INDIRECT is nonzero when
4565 + processing an indirect call, for example a call through a function pointer.
4566 + The value of INDIRECT is zero for a call to an explicitly named function, a
4567 + library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
4568 + arguments for the function being compiled.
4569 +
4570 + When processing a call to a compiler support library function, LIBNAME
4571 + identifies which one. It is a `symbol_ref' rtx which contains the name of
4572 + the function, as a string. LIBNAME is 0 when an ordinary C function call is
4573 + being processed. Thus, each time this macro is called, either LIBNAME or
4574 + FNTYPE is nonzero, but never both of them at once. */
4575 +
4576 +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \
4577 + init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT);
4578 +
4579 +/* A C statement (sans semicolon) to update the summarizer variable CUM to
4580 + advance past an argument in the argument list. The values MODE, TYPE and
4581 + NAMED describe that argument. Once this is done, the variable CUM is
4582 + suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
4583 +
4584 + This macro need not do anything if the argument in question was passed on
4585 + the stack. The compiler knows how to track the amount of stack space used
4586 + for arguments without any special help. */
4587 +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4588 + ((CUM).nbytes += ((MODE) != BLKmode \
4589 + ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
4590 + : (int_size_in_bytes (TYPE) + 3) & ~3))
4591 +
4592 +/* For the Ubicom32 we define the upper function argument register here. */
4593 +#define UBICOM32_FUNCTION_ARG_REGS 10
4594 +
4595 +/* A C expression that is nonzero if REGNO is the number of a hard register in
4596 + which function arguments are sometimes passed. This does *not* include
4597 + implicit arguments such as the static chain and the structure-value address.
4598 + On many machines, no registers can be used for this purpose since all
4599 + function arguments are pushed on the stack. */
4600 +#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS)
4601 +
4602 +\f
4603 +/* How Scalar Function Values are Returned. */
4604 +
4605 +/* The number of the hard register that is used to return a scalar value from a
4606 + function call. */
4607 +#define RETURN_VALUE_REGNUM 0
4608 +
4609 +/* A C expression to create an RTX representing the place where a function
4610 + returns a value of data type VALTYPE. VALTYPE is a tree node representing a
4611 + data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
4612 + represent that type. On many machines, only the mode is relevant.
4613 + (Actually, on most machines, scalar values are returned in the same place
4614 + regardless of mode).
4615 +
4616 + If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
4617 + rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
4618 +
4619 + If the precise function being called is known, FUNC is a tree node
4620 + (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
4621 + possible to use a different value-returning convention for specific
4622 + functions when all their calls are known.
4623 +
4624 + `FUNCTION_VALUE' is not used for return vales with aggregate data types,
4625 + because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
4626 + related macros, below. */
4627 +#define FUNCTION_VALUE(VALTYPE, FUNC) \
4628 + gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM)
4629 +
4630 +/* A C expression to create an RTX representing the place where a library
4631 + function returns a value of mode MODE.
4632 +
4633 + Note that "library function" in this context means a compiler support
4634 + routine, used to perform arithmetic, whose name is known specially by the
4635 + compiler and was not mentioned in the C code being compiled.
4636 +
4637 + The definition of `LIBRARY_VALUE' need not be concerned aggregate data
4638 + types, because none of the library functions returns such types. */
4639 +#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
4640 +
4641 +/* A C expression that is nonzero if REGNO is the number of a hard register in
4642 + which the values of called function may come back.
4643 +
4644 + A register whose use for returning values is limited to serving as the
4645 + second of a pair (for a value of type `double', say) need not be recognized
4646 + by this macro. So for most machines, this definition suffices:
4647 +
4648 + #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
4649 +
4650 + If the machine has register windows, so that the caller and the called
4651 + function use different registers for the return value, this macro should
4652 + recognize only the caller's register numbers. */
4653 +#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM)
4654 +
4655 +\f
4656 +/* How Large Values are Returned. */
4657 +
4658 +/* A C expression which can inhibit the returning of certain function values in
4659 + registers, based on the type of value. A nonzero value says to return the
4660 + function value in memory, just as large structures are always returned.
4661 + Here TYPE will be a C expression of type `tree', representing the data type
4662 + of the value.
4663 +
4664 + Note that values of mode `BLKmode' must be explicitly handled by this macro.
4665 + Also, the option `-fpcc-struct-return' takes effect regardless of this
4666 + macro. On most systems, it is possible to leave the macro undefined; this
4667 + causes a default definition to be used, whose value is the constant 1 for
4668 + `BLKmode' values, and 0 otherwise.
4669 +
4670 + Do not use this macro to indicate that structures and unions should always
4671 + be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN'
4672 + to indicate this. */
4673 +#define RETURN_IN_MEMORY(TYPE) \
4674 + (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
4675 +
4676 +/* Define this macro to be 1 if all structure and union return values must be
4677 + in memory. Since this results in slower code, this should be defined only
4678 + if needed for compatibility with other compilers or with an ABI. If you
4679 + define this macro to be 0, then the conventions used for structure and union
4680 + return values are decided by the `RETURN_IN_MEMORY' macro.
4681 +
4682 + If not defined, this defaults to the value 1. */
4683 +#define DEFAULT_PCC_STRUCT_RETURN 0
4684 +
4685 +/* If the structure value address is not passed in a register, define
4686 + `STRUCT_VALUE' as an expression returning an RTX for the place
4687 + where the address is passed. If it returns 0, the address is
4688 + passed as an "invisible" first argument. */
4689 +#define STRUCT_VALUE 0
4690 +
4691 +/* Define this macro as a C expression that is nonzero if the return
4692 + instruction or the function epilogue ignores the value of the stack pointer;
4693 + in other words, if it is safe to delete an instruction to adjust the stack
4694 + pointer before a return from the function.
4695 +
4696 + Note that this macro's value is relevant only for functions for which frame
4697 + pointers are maintained. It is never safe to delete a final stack
4698 + adjustment in a function that has no frame pointer, and the compiler knows
4699 + this regardless of `EXIT_IGNORE_STACK'. */
4700 +#define EXIT_IGNORE_STACK 1
4701 +
4702 +/* A C statement or compound statement to output to FILE some assembler code to
4703 + call the profiling subroutine `mcount'. Before calling, the assembler code
4704 + must load the address of a counter variable into a register where `mcount'
4705 + expects to find the address. The name of this variable is `LP' followed by
4706 + the number LABELNO, so you would generate the name using `LP%d' in a
4707 + `fprintf'.
4708 +
4709 + The details of how the address should be passed to `mcount' are determined
4710 + by your operating system environment, not by GNU CC. To figure them out,
4711 + compile a small program for profiling using the system's installed C
4712 + compiler and look at the assembler code that results.
4713 +
4714 + This declaration must be present, but it can be an abort if profiling is
4715 + not implemented. */
4716 +
4717 +#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno)
4718 +
4719 +/* A C statement to output, on the stream FILE, assembler code for a block of
4720 + data that contains the constant parts of a trampoline. This code should not
4721 + include a label--the label is taken care of automatically. */
4722 +#if 0
4723 +#define TRAMPOLINE_TEMPLATE(FILE) \
4724 + do { \
4725 + fprintf (FILE, "\tadd -4,sp\n"); \
4726 + fprintf (FILE, "\t.long 0x0004fffa\n"); \
4727 + fprintf (FILE, "\tmov (0,sp),a0\n"); \
4728 + fprintf (FILE, "\tadd 4,sp\n"); \
4729 + fprintf (FILE, "\tmov (13,a0),a1\n"); \
4730 + fprintf (FILE, "\tmov (17,a0),a0\n"); \
4731 + fprintf (FILE, "\tjmp (a0)\n"); \
4732 + fprintf (FILE, "\t.long 0\n"); \
4733 + fprintf (FILE, "\t.long 0\n"); \
4734 + } while (0)
4735 +#endif
4736 +
4737 +/* A C expression for the size in bytes of the trampoline, as an integer. */
4738 +#define TRAMPOLINE_SIZE 0x1b
4739 +
4740 +/* Alignment required for trampolines, in bits.
4741 +
4742 + If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
4743 + aligning trampolines. */
4744 +#define TRAMPOLINE_ALIGNMENT 32
4745 +
4746 +/* A C statement to initialize the variable parts of a trampoline. ADDR is an
4747 + RTX for the address of the trampoline; FNADDR is an RTX for the address of
4748 + the nested function; STATIC_CHAIN is an RTX for the static chain value that
4749 + should be passed to the function when it is called. */
4750 +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
4751 +{ \
4752 + emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
4753 + (CXT)); \
4754 + emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
4755 + (FNADDR)); \
4756 +}
4757 +
4758 +/* Ubicom32 supports pre and post increment/decrement addressing. */
4759 +#define HAVE_POST_INCREMENT 1
4760 +#define HAVE_PRE_INCREMENT 1
4761 +#define HAVE_POST_DECREMENT 1
4762 +#define HAVE_PRE_DECREMENT 1
4763 +
4764 +/* Ubicom32 supports pre and post address side-effects with constants
4765 + other than the size of the memory operand. */
4766 +#define HAVE_PRE_MODIFY_DISP 1
4767 +#define HAVE_POST_MODIFY_DISP 1
4768 +
4769 +/* A C expression that is 1 if the RTX X is a constant which is a valid
4770 + address. On most machines, this can be defined as `CONSTANT_P (X)',
4771 + but a few machines are more restrictive in which constant addresses
4772 + are supported.
4773 +
4774 + `CONSTANT_P' accepts integer-values expressions whose values are not
4775 + explicitly known, such as `symbol_ref', `label_ref', and `high'
4776 + expressions and `const' arithmetic expressions, in addition to
4777 + `const_int' and `const_double' expressions. */
4778 +#define CONSTANT_ADDRESS_P(X) \
4779 + (GET_CODE (X) == LABEL_REF \
4780 + || (GET_CODE (X) == CONST \
4781 + && GET_CODE (XEXP (X, 0)) == PLUS \
4782 + && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF))
4783 +
4784 +/* Ubicom32 supports a maximum of 2 registers in a valid memory address.
4785 + One is always an address register while a second, optional, one may be a
4786 + data register. */
4787 +#define MAX_REGS_PER_ADDRESS 2
4788 +
4789 +/* A C compound statement with a conditional `goto LABEL;' executed if X (an
4790 + RTX) is a legitimate memory address on the target machine for a memory
4791 + operand of mode MODE.
4792 +
4793 + It usually pays to define several simpler macros to serve as subroutines for
4794 + this one. Otherwise it may be too complicated to understand.
4795 +
4796 + This macro must exist in two variants: a strict variant and a non-strict
4797 + one. The strict variant is used in the reload pass. It must be defined so
4798 + that any pseudo-register that has not been allocated a hard register is
4799 + considered a memory reference. In contexts where some kind of register is
4800 + required, a pseudo-register with no hard register must be rejected.
4801 +
4802 + The non-strict variant is used in other passes. It must be defined to
4803 + accept all pseudo-registers in every context where some kind of register is
4804 + required.
4805 +
4806 + Compiler source files that want to use the strict variant of this macro
4807 + define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
4808 + conditional to define the strict variant in that case and the non-strict
4809 + variant otherwise.
4810 +
4811 + Subroutines to check for acceptable registers for various purposes (one for
4812 + base registers, one for index registers, and so on) are typically among the
4813 + subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
4814 + subroutine macros need have two variants; the higher levels of macros may be
4815 + the same whether strict or not.
4816 +
4817 + Normally, constant addresses which are the sum of a `symbol_ref' and an
4818 + integer are stored inside a `const' RTX to mark them as constant.
4819 + Therefore, there is no need to recognize such sums specifically as
4820 + legitimate addresses. Normally you would simply recognize any `const' as
4821 + legitimate.
4822 +
4823 + Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
4824 + are not marked with `const'. It assumes that a naked `plus' indicates
4825 + indexing. If so, then you *must* reject such naked constant sums as
4826 + illegitimate addresses, so that none of them will be given to
4827 + `PRINT_OPERAND_ADDRESS'.
4828 +
4829 + On some machines, whether a symbolic address is legitimate depends on the
4830 + section that the address refers to. On these machines, define the macro
4831 + `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
4832 + then check for it here. When you see a `const', you will have to look
4833 + inside it to find the `symbol_ref' in order to determine the section.
4834 +
4835 + The best way to modify the name string is by adding text to the beginning,
4836 + with suitable punctuation to prevent any ambiguity. Allocate the new name
4837 + in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
4838 + remove and decode the added text and output the name accordingly, and define
4839 + `STRIP_NAME_ENCODING' to access the original name string.
4840 +
4841 + You can check the information stored here into the `symbol_ref' in the
4842 + definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
4843 + `PRINT_OPERAND_ADDRESS'. */
4844 +/* On the ubicom32, the value in the address register must be
4845 + in the same memory space/segment as the effective address.
4846 +
4847 + This is problematical for reload since it does not understand
4848 + that base+index != index+base in a memory reference. */
4849 +
4850 +#ifdef REG_OK_STRICT
4851 +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
4852 + if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR;
4853 +#else
4854 +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
4855 + if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR;
4856 +#endif
4857 +
4858 +/* Try machine-dependent ways of modifying an illegitimate address
4859 + to be legitimate. If we find one, return the new, valid address.
4860 + This macro is used in only one place: `memory_address' in explow.c.
4861 +
4862 + OLDX is the address as it was before break_out_memory_refs was called.
4863 + In some cases it is useful to look at this to decide what needs to be done.
4864 +
4865 + MODE and WIN are passed so that this macro can use
4866 + GO_IF_LEGITIMATE_ADDRESS.
4867 +
4868 + It is always safe for this macro to do nothing. It exists to recognize
4869 + opportunities to optimize the output.
4870 +
4871 + On RS/6000, first check for the sum of a register with a constant
4872 + integer that is out of range. If so, generate code to add the
4873 + constant with the low-order 16 bits masked to the register and force
4874 + this result into another register (this can be done with `cau').
4875 + Then generate an address of REG+(CONST&0xffff), allowing for the
4876 + possibility of bit 16 being a one.
4877 +
4878 + Then check for the sum of a register and something not constant, try to
4879 + load the other things into a register and return the sum. */
4880 +
4881 +#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
4882 +{ \
4883 + rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \
4884 + if (result != NULL_RTX) \
4885 + { \
4886 + (X) = result; \
4887 + goto WIN; \
4888 + } \
4889 +}
4890 +
4891 +/* Try a machine-dependent way of reloading an illegitimate address
4892 + operand. If we find one, push the reload and jump to WIN. This
4893 + macro is used in only one place: `find_reloads_address' in reload.c. */
4894 +#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
4895 +{ \
4896 + rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \
4897 + if (new_rtx) \
4898 + { \
4899 + (AD) = new_rtx; \
4900 + goto WIN; \
4901 + } \
4902 +}
4903 +
4904 +/* A C statement or compound statement with a conditional `goto LABEL;'
4905 + executed if memory address X (an RTX) can have different meanings depending
4906 + on the machine mode of the memory reference it is used for or if the address
4907 + is valid for some modes but not others.
4908 +
4909 + Autoincrement and autodecrement addresses typically have mode-dependent
4910 + effects because the amount of the increment or decrement is the size of the
4911 + operand being addressed. Some machines have other mode-dependent addresses.
4912 + Many RISC machines have no mode-dependent addresses.
4913 +
4914 + You may assume that ADDR is a valid address for the machine. */
4915 +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
4916 + if (ubicom32_mode_dependent_address_p (ADDR)) \
4917 + goto LABEL;
4918 +
4919 +/* A C expression that is nonzero if X is a legitimate constant for an
4920 + immediate operand on the target machine. You can assume that X
4921 + satisfies `CONSTANT_P', so you need not check this. In fact, `1' is
4922 + a suitable definition for this macro on machines where anything
4923 + `CONSTANT_P' is valid. */
4924 +#define LEGITIMATE_CONSTANT_P(X) \
4925 + ubicom32_legitimate_constant_p ((X))
4926 +
4927 +/* Moves between registers are pretty-much single instructions for
4928 + Ubicom32. We make this the default "2" that gcc likes. */
4929 +#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
4930 +
4931 +/* This is a little bit of magic from the S390 port that wins 2% on code
4932 + size when building the Linux kernel! Unfortunately while it wins on
4933 + that size the user-space apps built using FD-PIC don't improve and the
4934 + performance is lower because we put more pressure on the caches. We may
4935 + want this back on some future CPU that has higher cache performance. */
4936 +/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */
4937 +
4938 +/* Moves between registers and memory are more expensive than between
4939 + registers because we have caches and write buffers that slow things
4940 + down! */
4941 +#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2
4942 +
4943 +/* A fall-through branch is very low cost but anything that changes the PC
4944 + incurs a major pipeline hazard. We don't make the full extent of this
4945 + hazard visible because we hope that multiple threads will absorb much
4946 + of the cost and so we don't want a jump being replaced with, say, 7
4947 + instructions. */
4948 +#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
4949 + ((PREDICTABLE_P) ? 1 : 3)
4950 +
4951 +/* Define this macro as a C expression which is nonzero if accessing less than
4952 + a word of memory (i.e. a `char' or a `short') is no faster than accessing a
4953 + word of memory, i.e., if such access require more than one instruction or if
4954 + there is no difference in cost between byte and (aligned) word loads.
4955 +
4956 + When this macro is not defined, the compiler will access a field by finding
4957 + the smallest containing object; when it is defined, a fullword load will be
4958 + used if alignment permits. Unless bytes accesses are faster than word
4959 + accesses, using word accesses is preferable since it may eliminate
4960 + subsequent memory access if subsequent accesses occur to other fields in the
4961 + same word of the structure, but to different bytes. */
4962 +#define SLOW_BYTE_ACCESS 0
4963 +
4964 +/* The number of scalar move insns which should be generated instead of a
4965 + string move insn or a library call. Increasing the value will always make
4966 + code faster, but eventually incurs high cost in increased code size.
4967 +
4968 + If you don't define this, a reasonable default is used. */
4969 +/* According to expr.c, a value of around 6 should minimize code size. */
4970 +#define MOVE_RATIO(SPEED) 6
4971 +
4972 +/* We're much better off calling a constant function address with the
4973 + Ubicom32 architecture because we have an opcode for doing so. Don't
4974 + let the compiler extract function addresses as common subexpressions
4975 + into an address register. */
4976 +#define NO_FUNCTION_CSE
4977 +
4978 +#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y)
4979 +
4980 +#define REVERSIBLE_CC_MODE(MODE) 1
4981 +
4982 +/* Canonicalize a comparison from one we don't have to one we do have. */
4983 +#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
4984 + ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
4985 +
4986 +/* Dividing the output into sections. */
4987 +
4988 +/* A C expression whose value is a string containing the assembler operation
4989 + that should precede instructions and read-only data. Normally `".text"' is
4990 + right. */
4991 +#define TEXT_SECTION_ASM_OP "\t.section .text"
4992 +
4993 +/* A C expression whose value is a string containing the assembler operation to
4994 + identify the following data as writable initialized data. Normally
4995 + `".data"' is right. */
4996 +#define DATA_SECTION_ASM_OP "\t.section .data"
4997 +
4998 +
4999 +/* If defined, a C expression whose value is a string containing the
5000 + assembler operation to identify the following data as
5001 + uninitialized global data. If not defined, and neither
5002 + `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
5003 + uninitialized global data will be output in the data section if
5004 + `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
5005 + used. */
5006 +#define BSS_SECTION_ASM_OP "\t.section .bss"
5007 +
5008 +/* This is how we tell the assembler that a symbol is weak. */
5009 +
5010 +#define ASM_WEAKEN_LABEL(FILE, NAME) \
5011 + do \
5012 + { \
5013 + fputs ("\t.weak\t", (FILE)); \
5014 + assemble_name ((FILE), (NAME)); \
5015 + fputc ('\n', (FILE)); \
5016 + } \
5017 + while (0)
5018 +
5019 +/* The Overall Framework of an Assembler File. */
5020 +
5021 +#undef SET_ASM_OP
5022 +#define SET_ASM_OP "\t.set\t"
5023 +
5024 +/* A C string constant describing how to begin a comment in the target
5025 + assembler language. The compiler assumes that the comment will end at the
5026 + end of the line. */
5027 +#define ASM_COMMENT_START ";"
5028 +
5029 +/* A C string constant for text to be output before each `asm' statement or
5030 + group of consecutive ones. Normally this is `"#APP"', which is a comment
5031 + that has no effect on most assemblers but tells the GNU assembler that it
5032 + must check the lines that follow for all valid assembler constructs. */
5033 +#define ASM_APP_ON "#APP\n"
5034 +
5035 +/* A C string constant for text to be output after each `asm' statement or
5036 + group of consecutive ones. Normally this is `"#NO_APP"', which tells the
5037 + GNU assembler to resume making the time-saving assumptions that are valid
5038 + for ordinary compiler output. */
5039 +#define ASM_APP_OFF "#NO_APP\n"
5040 +
5041 +/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
5042 + explicit argument. If you define this macro, it is used in place of
5043 + `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
5044 + alignment of the variable. The alignment is specified as the number of
5045 + bits.
5046 +
5047 + Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
5048 + defining this macro. */
5049 +#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
5050 + asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
5051 +
5052 +/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
5053 + newly allocated string made from the string NAME and the number NUMBER, with
5054 + some suitable punctuation added. Use `alloca' to get space for the string.
5055 +
5056 + The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
5057 + an assembler label for an internal static variable whose name is NAME.
5058 + Therefore, the string must be such as to result in valid assembler code.
5059 + The argument NUMBER is different each time this macro is executed; it
5060 + prevents conflicts between similarly-named internal static variables in
5061 + different scopes.
5062 +
5063 + Ideally this string should not be a valid C identifier, to prevent any
5064 + conflict with the user's own symbols. Most assemblers allow periods or
5065 + percent signs in assembler symbols; putting at least one of these between
5066 + the name and the number will suffice. */
5067 +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
5068 + ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
5069 + sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
5070 +
5071 +#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
5072 + sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM))
5073 +/* A C statement to store into the string STRING a label whose name
5074 + is made from the string PREFIX and the number NUM.
5075 +
5076 + This string, when output subsequently by `assemble_name', should
5077 + produce the output that `(*targetm.asm_out.internal_label)' would produce
5078 + with the same PREFIX and NUM.
5079 +
5080 + If the string begins with `*', then `assemble_name' will output
5081 + the rest of the string unchanged. It is often convenient for
5082 + `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the
5083 + string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
5084 + output the string, and may change it. (Of course,
5085 + `ASM_OUTPUT_LABELREF' is also part of your machine description, so
5086 + you should know what it does on your machine.) */
5087 +
5088 +/* This says how to output assembler code to declare an
5089 + uninitialized external linkage data object. Under SVR4,
5090 + the linker seems to want the alignment of data objects
5091 + to depend on their types. We do exactly that here. */
5092 +
5093 +#define COMMON_ASM_OP "\t.comm\t"
5094 +
5095 +#undef ASM_OUTPUT_COMMON
5096 +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
5097 + do \
5098 + { \
5099 + fprintf ((FILE), "%s", COMMON_ASM_OP); \
5100 + assemble_name ((FILE), (NAME)); \
5101 + fprintf ((FILE), ", %u\n", (SIZE)); \
5102 + } \
5103 + while (0)
5104 +
5105 +/* This says how to output assembler code to declare an
5106 + uninitialized internal linkage data object. Under SVR4,
5107 + the linker seems to want the alignment of data objects
5108 + to depend on their types. We do exactly that here. */
5109 +#define LOCAL_ASM_OP "\t.lcomm\t"
5110 +
5111 +#undef ASM_OUTPUT_LOCAL
5112 +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
5113 + do \
5114 + { \
5115 + fprintf ((FILE), "%s", LOCAL_ASM_OP); \
5116 + assemble_name ((FILE), (NAME)); \
5117 + fprintf ((FILE), ", %u\n", (SIZE)); \
5118 + } \
5119 + while (0)
5120 +
5121 +/* Globalizing directive for a label. */
5122 +#define GLOBAL_ASM_OP ".global\t"
5123 +
5124 +/* Output the operand of an instruction. */
5125 +#define PRINT_OPERAND(FILE, X, CODE) \
5126 + ubicom32_print_operand(FILE, X, CODE)
5127 +
5128 +/* Output the address of an operand. */
5129 +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
5130 + ubicom32_print_operand_address (FILE, ADDR)
5131 +
5132 +/* A C expression to output to STREAM some assembler code which will push hard
5133 + register number REGNO onto the stack. The code need not be optimal, since
5134 + this macro is used only when profiling. */
5135 +#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)
5136 +
5137 +/* A C expression to output to STREAM some assembler code which will pop hard
5138 + register number REGNO off of the stack. The code need not be optimal, since
5139 + this macro is used only when profiling. */
5140 +#define ASM_OUTPUT_REG_POP(FILE, REGNO)
5141 +
5142 +/* This macro should be provided on machines where the addresses in a dispatch
5143 + table are relative to the table's own address.
5144 +
5145 + The definition should be a C statement to output to the stdio stream STREAM
5146 + an assembler pseudo-instruction to generate a difference between two labels.
5147 + VALUE and REL are the numbers of two internal labels. The definitions of
5148 + these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
5149 + printed in the same way here. For example,
5150 +
5151 + fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
5152 +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
5153 + fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
5154 +
5155 +/* This macro should be provided on machines where the addresses in a dispatch
5156 + table are absolute.
5157 +
5158 + The definition should be a C statement to output to the stdio stream STREAM
5159 + an assembler pseudo-instruction to generate a reference to a label. VALUE
5160 + is the number of an internal label whose definition is output using
5161 + `ASM_OUTPUT_INTERNAL_LABEL'. For example,
5162 +
5163 + fprintf (STREAM, "\t.word L%d\n", VALUE) */
5164 +#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
5165 + fprintf (STREAM, "\t.word .L%d\n", VALUE)
5166 +
5167 +/* Switch into a generic section. */
5168 +#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
5169 +
5170 +/* Assembler Commands for Alignment. */
5171 +
5172 +#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N)
5173 +/* A C statement to output to the stdio stream STREAM an assembler
5174 + instruction to advance the location counter by NBYTES bytes.
5175 + Those bytes should be zero when loaded. NBYTES will be a C
5176 + expression of type `int'. */
5177 +
5178 +/* A C statement to output to the stdio stream STREAM an assembler command to
5179 + advance the location counter to a multiple of 2 to the POWER bytes. POWER
5180 + will be a C expression of type `int'. */
5181 +#define ASM_OUTPUT_ALIGN(FILE, LOG) \
5182 + if ((LOG) != 0) \
5183 + fprintf (FILE, "\t.align %d\n", (LOG))
5184 +
5185 +/* A C expression that returns the DBX register number for the compiler
5186 + register number REGNO. In simple cases, the value of this expression may be
5187 + REGNO itself. But sometimes there are some registers that the compiler
5188 + knows about and DBX does not, or vice versa. In such cases, some register
5189 + may need to have one number in the compiler and another for DBX.
5190 +
5191 + If two registers have consecutive numbers inside GNU CC, and they can be
5192 + used as a pair to hold a multiword value, then they *must* have consecutive
5193 + numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
5194 + will be unable to access such a pair, because they expect register pairs to
5195 + be consecutive in their own numbering scheme.
5196 +
5197 + If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
5198 + preserve register pairs, then what you must do instead is redefine the
5199 + actual register numbering scheme.
5200 +
5201 + This declaration is required. */
5202 +#define DBX_REGISTER_NUMBER(REGNO) REGNO
5203 +
5204 +/* A C expression that returns the integer offset value for an automatic
5205 + variable having address X (an RTL expression). The default computation
5206 + assumes that X is based on the frame-pointer and gives the offset from the
5207 + frame-pointer. This is required for targets that produce debugging output
5208 + for DBX or COFF-style debugging output for SDB and allow the frame-pointer
5209 + to be eliminated when the `-g' options is used. */
5210 +#define DEBUGGER_AUTO_OFFSET(X) \
5211 + ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
5212 + + (frame_pointer_needed \
5213 + ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \
5214 + STACK_POINTER_REGNUM)))
5215 +
5216 +/* A C expression that returns the integer offset value for an argument having
5217 + address X (an RTL expression). The nominal offset is OFFSET. */
5218 +#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
5219 + ((GET_CODE (X) == PLUS ? OFFSET : 0) \
5220 + + (frame_pointer_needed \
5221 + ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \
5222 + STACK_POINTER_REGNUM)))
5223 +
5224 +/* A C expression that returns the type of debugging output GNU CC produces
5225 + when the user specifies `-g' or `-ggdb'. Define this if you have arranged
5226 + for GNU CC to support more than one format of debugging output. Currently,
5227 + the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
5228 + `DWARF2_DEBUG', and `XCOFF_DEBUG'.
5229 +
5230 + The value of this macro only affects the default debugging output; the user
5231 + can always get a specific type of output by using `-gstabs', `-gcoff',
5232 + `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
5233 +
5234 + Defined in svr4.h.
5235 +*/
5236 +#undef PREFERRED_DEBUGGING_TYPE
5237 +#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
5238 +
5239 +/* Define this macro if GNU CC should produce dwarf version 2 format debugging
5240 + output in response to the `-g' option.
5241 +
5242 + To support optional call frame debugging information, you must also define
5243 + `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
5244 + prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
5245 + and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you
5246 + don't.
5247 +
5248 + Defined in svr4.h. */
5249 +
5250 +#define DWARF2_DEBUGGING_INFO 1
5251 +/*#define DWARF2_UNWIND_INFO 1*/
5252 +#define DWARF2_UNWIND_INFO 0
5253 +#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO)
5254 +#define INCOMING_FRAME_SP_OFFSET 0
5255 +#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO)
5256 +#define EH_RETURN_FIRST 9
5257 +#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM)
5258 +
5259 +/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
5260 + location used to store the amount to ajdust the stack. This is
5261 + usually a registers that is available from end of the function's body
5262 + to the end of the epilogue. Thus, this cannot be a register used as a
5263 + temporary by the epilogue.
5264 +
5265 + This must be an integer register. */
5266 +#define EH_RETURN_STACKADJ_REGNO 11
5267 +#define EH_RETURN_STACKADJ_RTX \
5268 + gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
5269 +
5270 +/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
5271 + location used to store the address the processor should jump to
5272 + catch exception. This is usually a registers that is available from
5273 + end of the function's body to the end of the epilogue. Thus, this
5274 + cannot be a register used as a temporary by the epilogue.
5275 +
5276 + This must be an address register. */
5277 +#define EH_RETURN_HANDLER_REGNO 18
5278 +#define EH_RETURN_HANDLER_RTX \
5279 + gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
5280 +
5281 +/* #define DWARF2_DEBUGGING_INFO */
5282 +
5283 +/* Define this macro if GNU CC should produce dwarf version 2-style
5284 + line numbers. This usually requires extending the assembler to
5285 + support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the
5286 + assembler configuration header files. */
5287 +/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */
5288 +
5289 +
5290 +/* An alias for a machine mode name. This is the machine mode that elements
5291 + of a jump-table have. */
5292 +#define CASE_VECTOR_MODE Pmode
5293 +
5294 +/* Smallest number of different values for which it is best to use a
5295 + jump-table instead of a tree of conditional branches. For most Ubicom32
5296 + targets this is quite small, but for the v1 architecture implementations
5297 + we had very little data memory and so heavily prefer the tree approach
5298 + rather than the jump tables. */
5299 +#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold
5300 +
5301 +/* Register operations within the Ubicom32 architecture always operate on
5302 + the whole register word and not just the sub-bits required for the opcode
5303 + mode size. */
5304 +#define WORD_REGISTER_OPERATIONS
5305 +
5306 +/* The maximum number of bytes that a single instruction can move quickly from
5307 + memory to memory. */
5308 +#define MOVE_MAX 4
5309 +
5310 +/* A C expression that is nonzero if on this machine the number of bits
5311 + actually used for the count of a shift operation is equal to the number of
5312 + bits needed to represent the size of the object being shifted. When this
5313 + macro is non-zero, the compiler will assume that it is safe to omit a
5314 + sign-extend, zero-extend, and certain bitwise `and' instructions that
5315 + truncates the count of a shift operation. On machines that have
5316 + instructions that act on bitfields at variable positions, which may include
5317 + `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
5318 + deletion of truncations of the values that serve as arguments to bitfield
5319 + instructions.
5320 +
5321 + If both types of instructions truncate the count (for shifts) and position
5322 + (for bitfield operations), or if no variable-position bitfield instructions
5323 + exist, you should define this macro.
5324 +
5325 + However, on some machines, such as the 80386 and the 680x0, truncation only
5326 + applies to shift operations and not the (real or pretended) bitfield
5327 + operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
5328 + Instead, add patterns to the `md' file that include the implied truncation
5329 + of the shift instructions.
5330 +
5331 + You need not define this macro if it would always have the value of zero. */
5332 +#define SHIFT_COUNT_TRUNCATED 1
5333 +
5334 +/* A C expression which is nonzero if on this machine it is safe to "convert"
5335 + an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
5336 + than INPREC) by merely operating on it as if it had only OUTPREC bits.
5337 +
5338 + On many machines, this expression can be 1.
5339 +
5340 + When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
5341 + which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
5342 + case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
5343 + things. */
5344 +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
5345 +
5346 +/* A C string constant that tells the GNU CC driver program options to pass
5347 + to the assembler. It can also specify how to translate options you give
5348 + to GNU CC into options for GNU CC to pass to the assembler. See the
5349 + file `sun3.h' for an example of this.
5350 +
5351 + Defined in svr4.h. */
5352 +#undef ASM_SPEC
5353 +#define ASM_SPEC \
5354 + "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}"
5355 +
5356 +#define LINK_SPEC "\
5357 +%{h*} %{v:-V} \
5358 +%{b} \
5359 +%{mfdpic:-melf32ubicom32fdpic -z text} \
5360 +%{static:-dn -Bstatic} \
5361 +%{shared:-G -Bdynamic} \
5362 +%{symbolic:-Bsymbolic} \
5363 +%{G*} \
5364 +%{YP,*} \
5365 +%{Qy:} %{!Qn:-Qy}"
5366 +
5367 +#undef STARTFILE_SPEC
5368 +#undef ENDFILE_SPEC
5369 +
5370 +/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
5371 +
5372 +#undef LIB_SPEC
5373 +#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
5374 +
5375 +#undef HAVE_GAS_SHF_MERGE
5376 +#define HAVE_GAS_SHF_MERGE 0
5377 +
5378 +#define HANDLE_SYSV_PRAGMA 1
5379 +#undef HANDLE_PRAGMA_PACK
5380 +
5381 +typedef void (*ubicom32_func_ptr) (void);
5382 +
5383 +/* Define builtins for selected special-purpose instructions. */
5384 +enum ubicom32_builtins
5385 +{
5386 + UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
5387 + UBICOM32_BUILTIN_UBICOM32_SWAPB_4
5388 +};
5389 +
5390 +extern rtx ubicom32_compare_op0;
5391 +extern rtx ubicom32_compare_op1;
5392 +
5393 +#define TYPE_ASM_OP "\t.type\t"
5394 +#define TYPE_OPERAND_FMT "@%s"
5395 +
5396 +#ifndef ASM_DECLARE_RESULT
5397 +#define ASM_DECLARE_RESULT(FILE, RESULT)
5398 +#endif
5399 +
5400 +/* These macros generate the special .type and .size directives which
5401 + are used to set the corresponding fields of the linker symbol table
5402 + entries in an ELF object file under SVR4. These macros also output
5403 + the starting labels for the relevant functions/objects. */
5404 +
5405 +/* Write the extra assembler code needed to declare a function properly.
5406 + Some svr4 assemblers need to also have something extra said about the
5407 + function's return value. We allow for that here. */
5408 +
5409 +#ifndef ASM_DECLARE_FUNCTION_NAME
5410 +#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
5411 + do \
5412 + { \
5413 + ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
5414 + ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
5415 + ASM_OUTPUT_LABEL (FILE, NAME); \
5416 + } \
5417 + while (0)
5418 +#endif
5419 --- /dev/null
5420 +++ b/gcc/config/ubicom32/ubicom32.md
5421 @@ -0,0 +1,3753 @@
5422 +; GCC machine description for Ubicom32
5423 +;
5424 +; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
5425 +; Foundation, Inc.
5426 +; Contributed by Ubicom, Inc.
5427 +;
5428 +; This file is part of GCC.
5429 +;
5430 +; GCC is free software; you can redistribute it and/or modify
5431 +; it under the terms of the GNU General Public License as published by
5432 +; the Free Software Foundation; either version 3, or (at your option)
5433 +; any later version.
5434 +;
5435 +; GCC is distributed in the hope that it will be useful,
5436 +; but WITHOUT ANY WARRANTY; without even the implied warranty of
5437 +; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
5438 +; GNU General Public License for more details.
5439 +;
5440 +; You should have received a copy of the GNU General Public License
5441 +; along with GCC; see the file COPYING3. If not see
5442 +; <http://www.gnu.org/licenses/>.
5443 +
5444 +(define_constants
5445 + [(AUX_DATA_REGNO 15)
5446 + (LINK_REGNO 21)
5447 + (SP_REGNO 23)
5448 + (ACC0_HI_REGNO 24)
5449 + (ACC1_HI_REGNO 26)
5450 + (CC_REGNO 30)])
5451 +
5452 +(define_constants
5453 + [(UNSPEC_FDPIC_GOT 0)
5454 + (UNSPEC_FDPIC_GOT_FUNCDESC 1)])
5455 +
5456 +(define_constants
5457 + [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)])
5458 +
5459 +;; Types of instructions (for scheduling purposes).
5460 +
5461 +(define_attr "type" "mul,addr,other"
5462 + (const_string "other"))
5463 +
5464 +; Define instruction scheduling characteristics. We can only issue
5465 +; one instruction per clock so we don't need to define CPU units.
5466 +;
5467 +(define_automaton "ubicom32")
5468 +
5469 +(define_cpu_unit "i_pipeline" "ubicom32");
5470 +
5471 +; We have a 4 cycle hazard associated with address calculations which
5472 +; seems rather tricky to avoid so we go with a defensive assumption
5473 +; that almost anything can be used to generate addresses.
5474 +;
5475 +;(define_insn_reservation "ubicom32_other" 4
5476 +; (eq_attr "type" "other")
5477 +; "i_pipeline")
5478 +
5479 +; Some moves don't generate hazards.
5480 +;
5481 +;(define_insn_reservation "ubicom32_addr" 1
5482 +; (eq_attr "type" "addr")
5483 +; "i_pipeline")
5484 +
5485 +; We need 3 cycles between a multiply instruction and any use of the
5486 +; matching accumulator register(s).
5487 +;
5488 +(define_insn_reservation "ubicom32_mul" 4
5489 + (eq_attr "type" "mul")
5490 + "i_pipeline")
5491 +
5492 +(define_attr "length" ""
5493 + (const_int 4))
5494 +
5495 +(include "predicates.md")
5496 +(include "constraints.md")
5497 +
5498 +; 8-bit move with no change to the flags reg.
5499 +;
5500 +(define_insn "movqi"
5501 + [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
5502 + (match_operand:QI 1 "ubicom32_move_operand" "g"))]
5503 + ""
5504 + "move.1\\t%0, %1")
5505 +
5506 +; Combiner-generated 8-bit move with the zero flag set accordingly.
5507 +;
5508 +(define_insn "movqi_ccszn"
5509 + [(set (reg CC_REGNO)
5510 + (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
5511 + (const_int 0)))
5512 + (set (match_operand:QI 1 "nonimmediate_operand" "=rm")
5513 + (match_dup 0))]
5514 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
5515 + "ext.1\\t%1, %0")
5516 +
5517 +; Combine isn't very good at merging some types of operations so we
5518 +; have to make do with a peephole. It's not as effective but it's better
5519 +; than doing nothing.
5520 +;
5521 +(define_peephole2
5522 + [(set (match_operand:QI 0 "nonimmediate_operand" "")
5523 + (match_operand:QI 1 "nonimmediate_operand" ""))
5524 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
5525 + (match_operator 3 "ubicom32_compare_operator"
5526 + [(match_dup 0)
5527 + (const_int 0)]))]
5528 + "(GET_MODE (operands[2]) == CCSZNmode
5529 + || GET_MODE (operands[2]) == CCSZmode)"
5530 + [(parallel
5531 + [(set (match_dup 2)
5532 + (match_op_dup 3
5533 + [(match_dup 1)
5534 + (const_int 0)]))
5535 + (set (match_dup 0)
5536 + (match_dup 1))])]
5537 + "")
5538 +
5539 +; Combine isn't very good at merging some types of operations so we
5540 +; have to make do with a peephole. It's not as effective but it's better
5541 +; than doing nothing.
5542 +;
5543 +(define_peephole2
5544 + [(set (match_operand:QI 0 "nonimmediate_operand" "")
5545 + (match_operand:QI 1 "nonimmediate_operand" ""))
5546 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
5547 + (match_operator 3 "ubicom32_compare_operator"
5548 + [(match_dup 1)
5549 + (const_int 0)]))]
5550 + "(GET_MODE (operands[2]) == CCSZNmode
5551 + || GET_MODE (operands[2]) == CCSZmode)"
5552 + [(parallel
5553 + [(set (match_dup 2)
5554 + (match_op_dup 3
5555 + [(match_dup 1)
5556 + (const_int 0)]))
5557 + (set (match_dup 0)
5558 + (match_dup 1))])]
5559 + "")
5560 +
5561 +; 16-bit move with no change to the flags reg.
5562 +;
5563 +(define_insn "movhi"
5564 + [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
5565 + (match_operand:HI 1 "ubicom32_move_operand" "g"))]
5566 + ""
5567 + "*
5568 + {
5569 + if (CONST_INT_P (operands[1]))
5570 + return \"movei\\t%0, %1\";
5571 +
5572 + return \"move.2\\t%0, %1\";
5573 + }")
5574 +
5575 +; Combiner-generated 16-bit move with the zero flag set accordingly.
5576 +;
5577 +(define_insn "movhi_ccszn"
5578 + [(set (reg CC_REGNO)
5579 + (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
5580 + (const_int 0)))
5581 + (set (match_operand:HI 1 "nonimmediate_operand" "=rm")
5582 + (match_dup 0))]
5583 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
5584 + "ext.2\\t%1, %0")
5585 +
5586 +; Combine isn't very good at merging some types of operations so we
5587 +; have to make do with a peephole. It's not as effective but it's better
5588 +; than doing nothing.
5589 +;
5590 +(define_peephole2
5591 + [(set (match_operand:HI 0 "nonimmediate_operand" "")
5592 + (match_operand:HI 1 "nonimmediate_operand" ""))
5593 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
5594 + (match_operator 3 "ubicom32_compare_operator"
5595 + [(match_dup 0)
5596 + (const_int 0)]))]
5597 + "(GET_MODE (operands[2]) == CCSZNmode
5598 + || GET_MODE (operands[2]) == CCSZmode)"
5599 + [(parallel
5600 + [(set (match_dup 2)
5601 + (match_op_dup 3
5602 + [(match_dup 1)
5603 + (const_int 0)]))
5604 + (set (match_dup 0)
5605 + (match_dup 1))])]
5606 + "")
5607 +
5608 +; Combine isn't very good at merging some types of operations so we
5609 +; have to make do with a peephole. It's not as effective but it's better
5610 +; than doing nothing.
5611 +;
5612 +(define_peephole2
5613 + [(set (match_operand:HI 0 "nonimmediate_operand" "")
5614 + (match_operand:HI 1 "nonimmediate_operand" ""))
5615 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
5616 + (match_operator 3 "ubicom32_compare_operator"
5617 + [(match_dup 1)
5618 + (const_int 0)]))]
5619 + "(GET_MODE (operands[2]) == CCSZNmode
5620 + || GET_MODE (operands[2]) == CCSZmode)"
5621 + [(parallel
5622 + [(set (match_dup 2)
5623 + (match_op_dup 3
5624 + [(match_dup 1)
5625 + (const_int 0)]))
5626 + (set (match_dup 0)
5627 + (match_dup 1))])]
5628 + "")
5629 +
5630 +; 32-bit move with no change to the flags reg.
5631 +;
5632 +(define_expand "movsi"
5633 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
5634 + (match_operand:SI 1 "general_operand" ""))]
5635 + ""
5636 + "{
5637 + /* Convert any complexities in operand 1 into something that can just
5638 + fall into the default expander code. */
5639 + ubicom32_expand_movsi (operands);
5640 + }")
5641 +
5642 +(define_insn "movsi_high"
5643 + [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
5644 + (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))]
5645 + ""
5646 + "moveai\\t%0, #%%hi(%E1)")
5647 +
5648 +(define_insn "movsi_lo_sum"
5649 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
5650 + (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a")
5651 + (match_operand:SI 2 "immediate_operand" "s")))]
5652 + ""
5653 + "lea.1\\t%0, %%lo(%E2)(%1)")
5654 +
5655 +(define_insn "movsi_internal"
5656 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
5657 + (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))]
5658 + ""
5659 + "*
5660 + {
5661 + if (CONST_INT_P (operands[1]))
5662 + {
5663 + ubicom32_emit_move_const_int (operands[0], operands[1]);
5664 + return \"\";
5665 + }
5666 +
5667 + if (GET_CODE (operands[1]) == CONST_DOUBLE)
5668 + {
5669 + HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]);
5670 +
5671 + ubicom32_emit_move_const_int (operands[0], GEN_INT (i));
5672 + return \"\";
5673 + }
5674 +
5675 + if (ubicom32_address_register_operand (operands[0], VOIDmode)
5676 + && register_operand (operands[1], VOIDmode))
5677 + {
5678 + if (ubicom32_address_register_operand (operands[1], VOIDmode))
5679 + return \"lea.1\\t%0, 0(%1)\";
5680 +
5681 + /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */
5682 + if (ubicom32_v4)
5683 + return \"movea\\t%0, %1\";
5684 +
5685 + return \"move.4\\t%0, %1\";
5686 + }
5687 +
5688 + return \"move.4\\t%0, %1\";
5689 + }")
5690 +
5691 +; If we're not dependent on the state of the condition codes we can construct
5692 +; constants of value 2^n by using a bset.
5693 +;
5694 +(define_peephole2
5695 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
5696 + (match_operand:SI 1 "const_int_operand" ""))]
5697 + "(exact_log2 (INTVAL (operands[1])) > 14
5698 + && peep2_regno_dead_p (0, CC_REGNO))"
5699 + [(parallel
5700 + [(set (match_dup 0)
5701 + (ior:SI (const_int 0)
5702 + (match_dup 1)))
5703 + (clobber (reg:CC CC_REGNO))])]
5704 + "")
5705 +
5706 +; If we're not dependent on the state of the condition codes we can construct
5707 +; constants of value ~(2^n) by using a bclr.
5708 +;
5709 +(define_peephole2
5710 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
5711 + (match_operand:SI 1 "const_int_operand" ""))]
5712 + "(exact_log2 (~INTVAL (operands[1])) > 14
5713 + && peep2_regno_dead_p (0, CC_REGNO))"
5714 + [(parallel
5715 + [(set (match_dup 0)
5716 + (and:SI (const_int -1)
5717 + (match_dup 1)))
5718 + (clobber (reg:CC CC_REGNO))])]
5719 + "")
5720 +
5721 +; For 32-bit constants that have bits 0 through 24 and bit 31 set the same
5722 +; we can use swapb.4!
5723 +;
5724 +(define_peephole2
5725 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
5726 + (match_operand:SI 1 "const_int_operand" ""))]
5727 + "(ubicom32_v4
5728 + && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff
5729 + && (INTVAL (operands[1]) & 0xffffffff) != 0
5730 + && ((INTVAL (operands[1]) & 0x80ffffff) == 0
5731 + || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))"
5732 + [(set (match_dup 0)
5733 + (bswap:SI (match_dup 2)))]
5734 + "{
5735 + operands[2] = GEN_INT (INTVAL (operands[1]) >> 24);
5736 + }")
5737 +
5738 +; If this is a write of a constant to memory look to see if we can usefully
5739 +; transform this into 2 smaller writes.
5740 +;
5741 +(define_peephole2
5742 + [(set (match_operand:SI 0 "memory_operand" "")
5743 + (match_operand:SI 1 "const_int_operand" ""))]
5744 + "! satisfies_constraint_I (operands[1])
5745 + && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)"
5746 + [(set (match_dup 4) (match_dup 2))
5747 + (set (match_dup 5) (match_dup 3))]
5748 + "{
5749 + rtx low_hword_addr;
5750 +
5751 + operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
5752 + operands[3] = gen_lowpart (HImode, operands[1]);
5753 +
5754 + operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0));
5755 + MEM_COPY_ATTRIBUTES (operands[4], operands[0]);
5756 +
5757 + low_hword_addr = plus_constant (XEXP (operands[0], 0), 2);
5758 + operands[5] = gen_rtx_MEM (HImode, low_hword_addr);
5759 + MEM_COPY_ATTRIBUTES (operands[5], operands[0]);
5760 + }")
5761 +
5762 +; If we're writing memory and we've not found a better way to do this then
5763 +; try loading into a D register and then copying to memory. This will
5764 +; perform the fewest possible memory read/writes.
5765 +;
5766 +(define_peephole2
5767 + [(match_scratch:SI 2 "d")
5768 + (set (match_operand:SI 0 "memory_operand" "")
5769 + (match_operand:SI 1 "const_int_operand" ""))]
5770 + "! satisfies_constraint_I (operands[1])"
5771 + [(set (match_dup 2) (match_dup 1))
5772 + (set (match_dup 0) (match_dup 2))]
5773 + "")
5774 +
5775 +; If we're not dependent on the state of the condition codes we can construct
5776 +; constants of value (2^n - 1) by using an lsr.4.
5777 +;
5778 +(define_peephole2
5779 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
5780 + (match_operand:SI 1 "const_int_operand" ""))]
5781 + "(exact_log2 (INTVAL (operands[1]) + 1) > 14
5782 + && peep2_regno_dead_p (0, CC_REGNO))"
5783 + [(parallel
5784 + [(set (match_dup 0)
5785 + (lshiftrt:SI (const_int -1)
5786 + (match_dup 2)))
5787 + (clobber (reg:CC CC_REGNO))])]
5788 + "{
5789 + operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
5790 + }")
5791 +
5792 +; If we're not dependent on the state of the condition codes we can construct
5793 +; constants of value (2^n - 1) by using an lsr.4.
5794 +;
5795 +(define_peephole2
5796 + [(match_scratch:SI 2 "d")
5797 + (set (match_operand:SI 0 "nonimmediate_operand" "")
5798 + (match_operand:SI 1 "const_int_operand" ""))]
5799 + "(exact_log2 (INTVAL (operands[1]) + 1) > 14
5800 + && peep2_regno_dead_p (0, CC_REGNO))"
5801 + [(parallel
5802 + [(set (match_dup 2)
5803 + (lshiftrt:SI (const_int -1)
5804 + (match_dup 3)))
5805 + (clobber (reg:CC CC_REGNO))])
5806 + (set (match_dup 0)
5807 + (match_dup 2))]
5808 + "{
5809 + operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
5810 + }")
5811 +
5812 +; If we're not dependent on the state of the condition codes we can construct
5813 +; some other constants by using an lsl.4 to shift 7 bits left by some
5814 +; constant.
5815 +;
5816 +(define_peephole2
5817 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
5818 + (match_operand:SI 1 "const_int_operand" ""))]
5819 + "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
5820 + && peep2_regno_dead_p (0, CC_REGNO))"
5821 + [(parallel
5822 + [(set (match_dup 0)
5823 + (ashift:SI (match_dup 2)
5824 + (match_dup 3)))
5825 + (clobber (reg:CC CC_REGNO))])]
5826 + "{
5827 + int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
5828 + operands[2] = GEN_INT (INTVAL (operands[1]) >> shift);
5829 + operands[3] = GEN_INT (shift);
5830 + }")
5831 +
5832 +; If we're not dependent on the state of the condition codes we can construct
5833 +; some other constants by using an lsl.4 to shift 7 bits left by some
5834 +; constant.
5835 +;
5836 +(define_peephole2
5837 + [(match_scratch:SI 2 "d")
5838 + (set (match_operand:SI 0 "nonimmediate_operand" "")
5839 + (match_operand:SI 1 "const_int_operand" ""))]
5840 + "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
5841 + && peep2_regno_dead_p (0, CC_REGNO))"
5842 + [(parallel
5843 + [(set (match_dup 2)
5844 + (ashift:SI (match_dup 3)
5845 + (match_dup 4)))
5846 + (clobber (reg:CC CC_REGNO))])
5847 + (set (match_dup 0)
5848 + (match_dup 2))]
5849 + "{
5850 + int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
5851 + operands[3] = GEN_INT (INTVAL (operands[1]) >> shift);
5852 + operands[4] = GEN_INT (shift);
5853 + }")
5854 +
5855 +; For some 16-bit unsigned constants that have bit 15 set we can use
5856 +; swapb.2!
5857 +;
5858 +; Note that the movsi code emits the same sequence but by using a peephole2
5859 +; we split the pattern early enough to allow instruction scheduling to
5860 +; occur.
5861 +;
5862 +(define_peephole2
5863 + [(set (match_operand:SI 0 "register_operand" "")
5864 + (match_operand:SI 1 "const_int_operand" ""))]
5865 + "(ubicom32_v4
5866 + && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)"
5867 + [(set (match_dup 0)
5868 + (zero_extend:SI (bswap:HI (match_dup 2))))]
5869 + "{
5870 + HOST_WIDE_INT i = INTVAL (operands[1]) >> 8;
5871 + if (i >= 0x80)
5872 + i -= 0x100;
5873 + operands[2] = GEN_INT (i);
5874 + }")
5875 +
5876 +; In general for a 16-bit unsigned constant that has bit 15 set
5877 +; then we need a movei/move.2 pair unless we can represent it
5878 +; via just a move.2.
5879 +;
5880 +(define_peephole2
5881 + [(set (match_operand:SI 0 "register_operand" "")
5882 + (match_operand:SI 1 "const_int_operand" ""))]
5883 + "(INTVAL (operands[1]) & 0xffff8000) == 0x8000
5884 + && (INTVAL (operands[1]) & 0xffff) < 0xff80"
5885 + [(set (match_dup 2)
5886 + (match_dup 1))
5887 + (set (match_dup 0)
5888 + (zero_extend:SI (match_dup 2)))]
5889 + "{
5890 + operands[2] = gen_rtx_REG (HImode, REGNO (operands[0]));
5891 + }")
5892 +
5893 +; If we're not dependent on the state of the condition codes we can construct
5894 +; 32-bit constants that have bits 16 through 31 set to arbitrary values
5895 +; and have bits 0 through 15 set to something representable as a default
5896 +; source-1 immediate - we use movei/shmrg.2
5897 +;
5898 +(define_peephole2
5899 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
5900 + (match_operand:SI 1 "const_int_operand" ""))]
5901 + "(((INTVAL (operands[1]) >= 0x8000
5902 + && INTVAL (operands[1]) < 0xff80)
5903 + || INTVAL (operands[1]) >= 0x10000
5904 + || INTVAL (operands[1]) < -0x8000)
5905 + && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
5906 + || (INTVAL (operands[1]) & 0xffff) < 0x80)
5907 + && peep2_regno_dead_p (0, CC_REGNO))"
5908 + [(set (match_dup 0)
5909 + (match_dup 2))
5910 + (parallel
5911 + [(set (match_dup 0)
5912 + (ior:SI
5913 + (ashift:SI (match_dup 0)
5914 + (const_int 16))
5915 + (zero_extend:SI
5916 + (match_dup 3))))
5917 + (clobber (reg:CC CC_REGNO))])]
5918 + "{
5919 + operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
5920 + operands[3] = gen_lowpart (HImode, operands[1]);
5921 + }")
5922 +
5923 +; Exactly the same as the peephole2 preceding except that this targets a
5924 +; general register instead of D register. Hopefully the later optimization
5925 +; passes will notice that the value ended up in a D register first here
5926 +; and eliminate away the other register!
5927 +;
5928 +(define_peephole2
5929 + [(match_scratch:SI 2 "d")
5930 + (set (match_operand:SI 0 "register_operand" "")
5931 + (match_operand:SI 1 "const_int_operand" ""))]
5932 + "(((INTVAL (operands[1]) >= 0x8000
5933 + && INTVAL (operands[1]) < 0xff80)
5934 + || INTVAL (operands[1]) >= 0x10000
5935 + || INTVAL (operands[1]) < -0x8000)
5936 + && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
5937 + || (INTVAL (operands[1]) & 0xffff) < 0x80)
5938 + && peep2_regno_dead_p (0, CC_REGNO))"
5939 + [(set (match_dup 2)
5940 + (match_dup 3))
5941 + (parallel
5942 + [(set (match_dup 2)
5943 + (ior:SI
5944 + (ashift:SI (match_dup 2)
5945 + (const_int 16))
5946 + (zero_extend:SI
5947 + (match_dup 4))))
5948 + (clobber (reg:CC CC_REGNO))])
5949 + (set (match_dup 0)
5950 + (match_dup 2))]
5951 + "{
5952 + operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
5953 + operands[4] = gen_lowpart (HImode, operands[1]);
5954 + }")
5955 +
5956 +; If we have a load of a large integer constant which does not have bit 31
5957 +; set and we have a spare A reg then construct it with a moveai/lea.1 pair
5958 +; instead. This avoids constructing it in 3 instructions on the stack.
5959 +;
5960 +; Note that we have to be careful not to match anything that matches
5961 +; something we can do in a single instruction! There aren't many such
5962 +; constants but there are some.
5963 +;
5964 +(define_peephole2
5965 + [(match_scratch:SI 2 "a")
5966 + (set (match_operand:SI 0 "register_operand" "")
5967 + (match_operand:SI 1 "const_int_operand" ""))]
5968 + "(! (INTVAL (operands[1]) & 0x80000000)
5969 + && ((INTVAL (operands[1]) >= 0x8000
5970 + && INTVAL (operands[1]) < 0xff80)
5971 + || INTVAL (operands[1]) >= 0x10000))"
5972 + [(set (match_dup 2)
5973 + (match_dup 3))
5974 + (set (match_dup 0)
5975 + (plus:SI (match_dup 2)
5976 + (match_dup 4)))]
5977 + "{
5978 + HOST_WIDE_INT i = INTVAL (operands[1]);
5979 + operands[3] = GEN_INT (i & 0xffffff80);
5980 + operands[4] = GEN_INT (i & 0x7f);
5981 + }")
5982 +
5983 +; If we're not dependent on the state of the condition codes we can construct
5984 +; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible.
5985 +;
5986 +(define_peephole2
5987 + [(match_scratch:HI 2 "d")
5988 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "")
5989 + (match_operand:SI 1 "const_int_operand" ""))
5990 + (match_dup 2)]
5991 + "(INTVAL (operands[1]) & 0x80000000
5992 + && INTVAL (operands[1]) < -0x8000
5993 + && peep2_regno_dead_p (0, CC_REGNO))"
5994 + [(set (match_dup 0)
5995 + (match_dup 3))
5996 + (set (match_dup 2)
5997 + (match_dup 4))
5998 + (parallel
5999 + [(set (match_dup 0)
6000 + (ior:SI
6001 + (ashift:SI (match_dup 0)
6002 + (const_int 16))
6003 + (zero_extend:SI
6004 + (match_dup 2))))
6005 + (clobber (reg:CC CC_REGNO))])]
6006 + "{
6007 + operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
6008 + operands[4] = gen_lowpart (HImode, operands[1]);
6009 + }")
6010 +
6011 +; Exactly the same as the peephole2 preceding except that this targets a
6012 +; general register instead of D register. Hopefully the later optimization
6013 +; passes will notice that the value ended up in a D register first here
6014 +; and eliminate away the other register!
6015 +;
6016 +(define_peephole2
6017 + [(match_scratch:SI 2 "d")
6018 + (match_scratch:HI 3 "d")
6019 + (set (match_operand:SI 0 "register_operand" "")
6020 + (match_operand:SI 1 "const_int_operand" ""))
6021 + (match_dup 3)]
6022 + "(INTVAL (operands[1]) & 0x80000000
6023 + && INTVAL (operands[1]) < -0x8000
6024 + && peep2_regno_dead_p (0, CC_REGNO))"
6025 + [(set (match_dup 2)
6026 + (match_dup 4))
6027 + (set (match_dup 3)
6028 + (match_dup 5))
6029 + (parallel
6030 + [(set (match_dup 2)
6031 + (ior:SI
6032 + (ashift:SI (match_dup 2)
6033 + (const_int 16))
6034 + (zero_extend:SI
6035 + (match_dup 3))))
6036 + (clobber (reg:CC CC_REGNO))])
6037 + (set (match_dup 0)
6038 + (match_dup 2))]
6039 + "{
6040 + operands[4] = gen_highpart_mode (HImode, SImode, operands[1]);
6041 + operands[5] = gen_lowpart (HImode, operands[1]);
6042 + }")
6043 +
6044 +(define_insn "movsi_fdpic_got_offset"
6045 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
6046 + (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))]
6047 + ""
6048 + "movei\\t%0, %1")
6049 +
6050 +; The explicit MEM inside the UNSPEC prevents the compiler from moving
6051 +; the load before a branch after a NULL test, or before a store that
6052 +; initializes a function descriptor.
6053 +
6054 +(define_insn_and_split "load_fdpic_funcdesc"
6055 + [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
6056 + (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))]
6057 + UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))]
6058 + ""
6059 + "#"
6060 + "reload_completed"
6061 + [(set (match_dup 0)
6062 + (mem:SI (match_dup 1)))])
6063 +
6064 +; Combiner-generated 32-bit move with the zero flag set accordingly.
6065 +;
6066 +(define_insn "movsi_ccwzn"
6067 + [(set (reg CC_REGNO)
6068 + (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d")
6069 + (const_int 0)))
6070 + (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm")
6071 + (match_dup 0))]
6072 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6073 + "@
6074 + lsl.4\\t%1, %0, #0
6075 + add.4\\t%1, #0, %0")
6076 +
6077 +; Combiner-generated 32-bit move with all flags set accordingly.
6078 +;
6079 +(define_insn "movsi_ccw"
6080 + [(set (reg CC_REGNO)
6081 + (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
6082 + (const_int 0)))
6083 + (set (match_operand:SI 1 "nonimmediate_operand" "=rm")
6084 + (match_dup 0))]
6085 + "ubicom32_match_cc_mode(insn, CCWmode)"
6086 + "add.4\\t%1, #0, %0")
6087 +
6088 +; Combine isn't very good at merging some types of operations so we
6089 +; have to make do with a peephole. It's not as effective but it's better
6090 +; than doing nothing.
6091 +;
6092 +(define_peephole2
6093 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
6094 + (match_operand:SI 1 "nonimmediate_operand" ""))
6095 + (parallel
6096 + [(set (match_operand 2 "ubicom32_cc_register_operand" "")
6097 + (match_operator 3 "ubicom32_compare_operator"
6098 + [(match_dup 0)
6099 + (const_int 0)]))
6100 + (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
6101 + "(GET_MODE (operands[2]) == CCWZNmode
6102 + || GET_MODE (operands[2]) == CCWZmode)"
6103 + [(parallel
6104 + [(set (match_dup 2)
6105 + (match_op_dup 3
6106 + [(match_dup 1)
6107 + (const_int 0)]))
6108 + (set (match_dup 0)
6109 + (match_dup 1))])]
6110 + "")
6111 +
6112 +; Combine isn't very good at merging some types of operations so we
6113 +; have to make do with a peephole. It's not as effective but it's better
6114 +; than doing nothing.
6115 +;
6116 +(define_peephole2
6117 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
6118 + (match_operand:SI 1 "ubicom32_data_register_operand" ""))
6119 + (parallel
6120 + [(set (match_operand 2 "ubicom32_cc_register_operand" "")
6121 + (match_operator 3 "ubicom32_compare_operator"
6122 + [(match_dup 1)
6123 + (const_int 0)]))
6124 + (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
6125 + "(GET_MODE (operands[2]) == CCWZNmode
6126 + || GET_MODE (operands[2]) == CCWZmode)"
6127 + [(parallel
6128 + [(set (match_dup 2)
6129 + (match_op_dup 3
6130 + [(match_dup 1)
6131 + (const_int 0)]))
6132 + (set (match_dup 0)
6133 + (match_dup 1))])]
6134 + "")
6135 +
6136 +; Combine isn't very good at merging some types of operations so we
6137 +; have to make do with a peephole. It's not as effective but it's better
6138 +; than doing nothing.
6139 +;
6140 +(define_peephole2
6141 + [(set (match_operand:SI 0 "register_operand" "")
6142 + (match_operand:SI 1 "nonimmediate_operand" ""))
6143 + (parallel
6144 + [(set (match_operand 2 "ubicom32_cc_register_operand" "")
6145 + (match_operator 3 "ubicom32_compare_operator"
6146 + [(match_dup 0)
6147 + (const_int 0)]))
6148 + (set (match_operand:SI 4 "ubicom32_data_register_operand" "")
6149 + (match_dup 0))])]
6150 + "(peep2_reg_dead_p (2, operands[0])
6151 + && (GET_MODE (operands[2]) == CCWZNmode
6152 + || GET_MODE (operands[2]) == CCWZmode))"
6153 + [(parallel
6154 + [(set (match_dup 2)
6155 + (match_op_dup 3
6156 + [(match_dup 1)
6157 + (const_int 0)]))
6158 + (set (match_dup 4)
6159 + (match_dup 1))])]
6160 + "")
6161 +
6162 +; Register renaming may make a general reg into a D reg in which case
6163 +; we may be able to simplify a compare.
6164 +;
6165 +(define_peephole2
6166 + [(set (match_operand:SI 0 "register_operand" "")
6167 + (match_operand:SI 1 "nonimmediate_operand" ""))
6168 + (parallel
6169 + [(set (match_operand 2 "ubicom32_cc_register_operand" "")
6170 + (match_operator 3 "ubicom32_compare_operator"
6171 + [(match_dup 0)
6172 + (const_int 0)]))
6173 + (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
6174 + "(peep2_reg_dead_p (2, operands[0])
6175 + && (GET_MODE (operands[2]) == CCWZNmode
6176 + || GET_MODE (operands[2]) == CCWZmode))"
6177 + [(parallel
6178 + [(set (match_dup 2)
6179 + (match_op_dup 3
6180 + [(match_dup 1)
6181 + (const_int 0)]))
6182 + (clobber (match_dup 4))])]
6183 + "")
6184 +
6185 +(define_insn_and_split "movdi"
6186 + [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm")
6187 + (match_operand:DI 1 "general_operand" "rmi,ri"))]
6188 + ""
6189 + "#"
6190 + "reload_completed"
6191 + [(set (match_dup 2) (match_dup 3))
6192 + (set (match_dup 4) (match_dup 5))]
6193 + "{
6194 + rtx dest_low;
6195 + rtx src_low;
6196 +
6197 + dest_low = gen_lowpart (SImode, operands[0]);
6198 + src_low = gen_lowpart (SImode, operands[1]);
6199 +
6200 + if (REG_P (operands[0])
6201 + && REG_P (operands[1])
6202 + && REGNO (operands[0]) < REGNO (operands[1]))
6203 + {
6204 + operands[2] = gen_highpart (SImode, operands[0]);
6205 + operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
6206 + operands[4] = dest_low;
6207 + operands[5] = src_low;
6208 + }
6209 + else if (reg_mentioned_p (dest_low, src_low))
6210 + {
6211 + operands[2] = gen_highpart (SImode, operands[0]);
6212 + operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
6213 + operands[4] = dest_low;
6214 + operands[5] = src_low;
6215 + }
6216 + else
6217 + {
6218 + operands[2] = dest_low;
6219 + operands[3] = src_low;
6220 + operands[4] = gen_highpart (SImode, operands[0]);
6221 + operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
6222 + }
6223 + }"
6224 + [(set_attr "length" "8")])
6225 +
6226 +; Combiner-generated 64-bit move with all flags set accordingly.
6227 +;
6228 +(define_insn "movdi_ccwzn"
6229 + [(set (reg CC_REGNO)
6230 + (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
6231 + (const_int 0)))
6232 + (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
6233 + (match_dup 0))
6234 + (clobber (match_scratch:SI 2 "=X, d, d"))]
6235 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6236 + "*
6237 + {
6238 + operands[3] = gen_lowpart (SImode, operands[0]);
6239 + operands[4] = gen_lowpart (SImode, operands[1]);
6240 + operands[5] = gen_highpart (SImode, operands[0]);
6241 + operands[6] = gen_highpart (SImode, operands[1]);
6242 +
6243 + if (ubicom32_data_register_operand (operands[0], VOIDmode))
6244 + return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
6245 +
6246 + return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
6247 + }"
6248 + [(set_attr "length" "8")])
6249 +
6250 +(define_insn "movdi_ccw"
6251 + [(set (reg CC_REGNO)
6252 + (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
6253 + (const_int 0)))
6254 + (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
6255 + (match_dup 0))
6256 + (clobber (match_scratch:SI 2 "=X, d, d"))]
6257 + "ubicom32_match_cc_mode(insn, CCWmode)"
6258 + "*
6259 + {
6260 + operands[3] = gen_lowpart (SImode, operands[0]);
6261 + operands[4] = gen_lowpart (SImode, operands[1]);
6262 + operands[5] = gen_highpart (SImode, operands[0]);
6263 + operands[6] = gen_highpart (SImode, operands[1]);
6264 +
6265 + if (ubicom32_data_register_operand (operands[0], VOIDmode))
6266 + return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
6267 +
6268 + return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
6269 + }"
6270 + [(set_attr "length" "8")])
6271 +
6272 +(define_insn "movsf"
6273 + [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm")
6274 + (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))]
6275 + ""
6276 + "*
6277 + {
6278 + if (GET_CODE (operands[1]) == CONST_DOUBLE)
6279 + {
6280 + HOST_WIDE_INT val;
6281 + REAL_VALUE_TYPE rv;
6282 +
6283 + REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
6284 + REAL_VALUE_TO_TARGET_SINGLE (rv, val);
6285 +
6286 + ubicom32_emit_move_const_int (operands[0], GEN_INT (val));
6287 + return \"\";
6288 + }
6289 +
6290 + return \"move.4\\t%0, %1\";
6291 + }")
6292 +
6293 +(define_insn "zero_extendqihi2"
6294 + [(set (match_operand:HI 0 "register_operand" "=r")
6295 + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
6296 + ""
6297 + "move.1\\t%0, %1")
6298 +
6299 +(define_insn "zero_extendqisi2"
6300 + [(set (match_operand:SI 0 "register_operand" "=r")
6301 + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
6302 + ""
6303 + "move.1\\t%0, %1")
6304 +
6305 +(define_insn "zero_extendqisi2_ccwz_1"
6306 + [(set (reg CC_REGNO)
6307 + (compare
6308 + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))
6309 + (const_int 0)))
6310 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
6311 + (zero_extend:SI (match_dup 1)))]
6312 + "ubicom32_match_cc_mode(insn, CCWZmode)"
6313 + "shmrg.1\\t%0, %1, #0")
6314 +
6315 +(define_insn "zero_extendhisi2"
6316 + [(set (match_operand:SI 0 "register_operand" "=r")
6317 + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
6318 + ""
6319 + "move.2\\t%0, %1")
6320 +
6321 +(define_insn "zero_extendhisi2_ccwz_1"
6322 + [(set (reg CC_REGNO)
6323 + (compare
6324 + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))
6325 + (const_int 0)))
6326 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
6327 + (zero_extend:SI (match_dup 1)))]
6328 + "ubicom32_match_cc_mode(insn, CCWZmode)"
6329 + "shmrg.2\\t%0, %1, #0")
6330 +
6331 +(define_insn_and_split "zero_extendqidi2"
6332 + [(set (match_operand:DI 0 "register_operand" "=r")
6333 + (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
6334 + ""
6335 + "#"
6336 + "reload_completed"
6337 + [(set (match_dup 2)
6338 + (zero_extend:SI (match_dup 1)))
6339 + (set (match_dup 3)
6340 + (const_int 0))]
6341 + "{
6342 + operands[2] = gen_lowpart (SImode, operands[0]);
6343 + operands[3] = gen_highpart (SImode, operands[0]);
6344 + }"
6345 + [(set_attr "length" "8")])
6346 +
6347 +(define_insn_and_split "zero_extendhidi2"
6348 + [(set (match_operand:DI 0 "register_operand" "=r")
6349 + (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
6350 + ""
6351 + "#"
6352 + "reload_completed"
6353 + [(set (match_dup 2)
6354 + (zero_extend:SI (match_dup 1)))
6355 + (set (match_dup 3)
6356 + (const_int 0))]
6357 + "{
6358 + operands[2] = gen_lowpart (SImode, operands[0]);
6359 + operands[3] = gen_highpart (SImode, operands[0]);
6360 + }"
6361 + [(set_attr "length" "8")])
6362 +
6363 +(define_insn_and_split "zero_extendsidi2"
6364 + [(set (match_operand:DI 0 "nonimmediate_operand" "=rm")
6365 + (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
6366 + ""
6367 + "#"
6368 + "reload_completed"
6369 + [(set (match_dup 2)
6370 + (match_dup 1))
6371 + (set (match_dup 3)
6372 + (const_int 0))]
6373 + "{
6374 + operands[2] = gen_lowpart (SImode, operands[0]);
6375 + operands[3] = gen_highpart (SImode, operands[0]);
6376 + }"
6377 + [(set_attr "length" "8")])
6378 +
6379 +(define_insn "extendqihi2"
6380 + [(set (match_operand:HI 0 "register_operand" "=r")
6381 + (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))
6382 + (clobber (reg:CC CC_REGNO))]
6383 + ""
6384 + "ext.1\\t%0, %1")
6385 +
6386 +(define_insn "extendqisi2"
6387 + [(set (match_operand:SI 0 "register_operand" "=r")
6388 + (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))
6389 + (clobber (reg:CC CC_REGNO))]
6390 + ""
6391 + "ext.1\\t%0, %1")
6392 +
6393 +(define_insn "extendhisi2"
6394 + [(set (match_operand:SI 0 "register_operand" "=r")
6395 + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))
6396 + (clobber (reg:CC CC_REGNO))]
6397 + ""
6398 + "ext.2\\t%0, %1")
6399 +
6400 +(define_insn_and_split "extendsidi2"
6401 + [(set (match_operand:DI 0 "nonimmediate_operand" "=d")
6402 + (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))
6403 + (clobber (reg:CC CC_REGNO))]
6404 + ""
6405 + "#"
6406 + "reload_completed"
6407 + [(set (match_dup 2)
6408 + (match_dup 1))
6409 + (parallel
6410 + [(set (match_dup 3)
6411 + (ashiftrt:SI (match_dup 2)
6412 + (const_int 31)))
6413 + (clobber (reg:CC CC_REGNO))])]
6414 + "{
6415 + operands[2] = gen_lowpart (SImode, operands[0]);
6416 + operands[3] = gen_highpart (SImode, operands[0]);
6417 + }"
6418 + [(set_attr "length" "8")])
6419 +
6420 +(define_insn "bswaphi"
6421 + [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
6422 + (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
6423 + "(ubicom32_v4)"
6424 + "swapb.2\\t%0, %1");
6425 +
6426 +(define_insn "bswaphisi"
6427 + [(set (match_operand:SI 0 "register_operand" "=r")
6428 + (zero_extend:SI
6429 + (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))]
6430 + "(ubicom32_v4)"
6431 + "swapb.2\\t%0, %1");
6432 +
6433 +(define_insn "bswapsi"
6434 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
6435 + (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))]
6436 + "(ubicom32_v4)"
6437 + "swapb.4\\t%0, %1");
6438 +
6439 +(define_insn "tstqi_ext1"
6440 + [(set (reg CC_REGNO)
6441 + (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
6442 + (const_int 0)))]
6443 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
6444 + "ext.1\\t#0, %0")
6445 +
6446 +(define_expand "cmpqi"
6447 + [(set (reg CC_REGNO)
6448 + (compare (match_operand:QI 0 "ubicom32_arith_operand" "")
6449 + (match_operand:QI 1 "ubicom32_data_register_operand" "")))]
6450 + "(ubicom32_v4)"
6451 + "{
6452 + ubicom32_compare_op0 = operands[0];
6453 + ubicom32_compare_op1 = operands[1];
6454 + DONE;
6455 + }")
6456 +
6457 +(define_insn "sub1_ccs"
6458 + [(set (reg CC_REGNO)
6459 + (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI")
6460 + (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
6461 + "(ubicom32_v4)"
6462 + "sub.1\\t#0, %0, %1")
6463 +
6464 +; If we're testing for equality we don't have to worry about reversing conditions.
6465 +;
6466 +(define_insn "sub1_ccsz_1"
6467 + [(set (reg:CCSZ CC_REGNO)
6468 + (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm")
6469 + (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
6470 + "(ubicom32_v4)"
6471 + "sub.1\\t#0, %0, %1")
6472 +
6473 +(define_insn "sub1_ccsz_2"
6474 + [(set (reg:CCSZ CC_REGNO)
6475 + (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d")
6476 + (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))]
6477 + "(ubicom32_v4)"
6478 + "sub.1\\t#0, %1, %0")
6479 +
6480 +; When the combiner runs it doesn't have any insight into whether or not an argument
6481 +; to a compare is spilled to the stack and therefore can't swap the comparison in
6482 +; an attempt to use sub.1 more effectively. We peephole this case here.
6483 +;
6484 +(define_peephole2
6485 + [(set (match_operand:QI 0 "register_operand" "")
6486 + (match_operand:QI 1 "ubicom32_arith_operand" ""))
6487 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
6488 + (compare (match_operand:QI 3 "ubicom32_data_register_operand" "")
6489 + (match_dup 0)))
6490 + (set (pc)
6491 + (if_then_else (match_operator 4 "comparison_operator"
6492 + [(match_dup 2)
6493 + (const_int 0)])
6494 + (label_ref (match_operand 5 "" ""))
6495 + (pc)))]
6496 + "(peep2_reg_dead_p (2, operands[0])
6497 + && peep2_regno_dead_p (3, CC_REGNO))"
6498 + [(set (match_dup 2)
6499 + (compare (match_dup 1)
6500 + (match_dup 3)))
6501 + (set (pc)
6502 + (if_then_else (match_op_dup 6
6503 + [(match_dup 2)
6504 + (const_int 0)])
6505 + (label_ref (match_dup 5))
6506 + (pc)))]
6507 + "{
6508 + rtx cc_reg;
6509 +
6510 + cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
6511 + operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
6512 + GET_MODE (operands[4]),
6513 + cc_reg,
6514 + const0_rtx);
6515 + }")
6516 +
6517 +(define_insn "tsthi_ext2"
6518 + [(set (reg CC_REGNO)
6519 + (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
6520 + (const_int 0)))]
6521 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
6522 + "ext.2\\t#0, %0")
6523 +
6524 +(define_expand "cmphi"
6525 + [(set (reg CC_REGNO)
6526 + (compare (match_operand:HI 0 "ubicom32_arith_operand" "")
6527 + (match_operand:HI 1 "ubicom32_compare_operand" "")))]
6528 + ""
6529 + "{
6530 + do
6531 + {
6532 + /* Is this a cmpi? */
6533 + if (CONST_INT_P (operands[1]))
6534 + break;
6535 +
6536 + /* Must be a sub.2 - if necessary copy an operand into a reg. */
6537 + if (! ubicom32_data_register_operand (operands[1], HImode))
6538 + operands[1] = copy_to_mode_reg (HImode, operands[1]);
6539 + }
6540 + while (0);
6541 +
6542 + ubicom32_compare_op0 = operands[0];
6543 + ubicom32_compare_op1 = operands[1];
6544 + DONE;
6545 + }")
6546 +
6547 +(define_insn "cmpi"
6548 + [(set (reg CC_REGNO)
6549 + (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
6550 + (match_operand 1 "const_int_operand" "N")))]
6551 + ""
6552 + "cmpi\\t%0, %1")
6553 +
6554 +(define_insn "sub2_ccs"
6555 + [(set (reg CC_REGNO)
6556 + (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI")
6557 + (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
6558 + ""
6559 + "sub.2\\t#0, %0, %1")
6560 +
6561 +; If we're testing for equality we don't have to worry about reversing conditions.
6562 +;
6563 +(define_insn "sub2_ccsz_1"
6564 + [(set (reg:CCSZ CC_REGNO)
6565 + (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm")
6566 + (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
6567 + ""
6568 + "sub.2\\t#0, %0, %1")
6569 +
6570 +(define_insn "sub2_ccsz_2"
6571 + [(set (reg:CCSZ CC_REGNO)
6572 + (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d")
6573 + (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
6574 + ""
6575 + "sub.2\\t#0, %1, %0")
6576 +
6577 +; When the combiner runs it doesn't have any insight into whether or not an argument
6578 +; to a compare is spilled to the stack and therefore can't swap the comparison in
6579 +; an attempt to use sub.2 more effectively. We peephole this case here.
6580 +;
6581 +(define_peephole2
6582 + [(set (match_operand:HI 0 "register_operand" "")
6583 + (match_operand:HI 1 "ubicom32_arith_operand" ""))
6584 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
6585 + (compare (match_operand:HI 3 "ubicom32_data_register_operand" "")
6586 + (match_dup 0)))
6587 + (set (pc)
6588 + (if_then_else (match_operator 4 "comparison_operator"
6589 + [(match_dup 2)
6590 + (const_int 0)])
6591 + (label_ref (match_operand 5 "" ""))
6592 + (pc)))]
6593 + "(peep2_reg_dead_p (2, operands[0])
6594 + && peep2_regno_dead_p (3, CC_REGNO))"
6595 + [(set (match_dup 2)
6596 + (compare (match_dup 1)
6597 + (match_dup 3)))
6598 + (set (pc)
6599 + (if_then_else (match_op_dup 6
6600 + [(match_dup 2)
6601 + (const_int 0)])
6602 + (label_ref (match_dup 5))
6603 + (pc)))]
6604 + "{
6605 + rtx cc_reg;
6606 +
6607 + cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
6608 + operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
6609 + GET_MODE (operands[4]),
6610 + cc_reg,
6611 + const0_rtx);
6612 + }")
6613 +
6614 +(define_insn_and_split "tstsi_lsl4"
6615 + [(set (match_operand 0 "ubicom32_cc_register_operand" "=r")
6616 + (match_operator 1 "ubicom32_compare_operator"
6617 + [(match_operand:SI 2 "nonimmediate_operand" "rm")
6618 + (const_int 0)]))]
6619 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6620 + "#"
6621 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6622 + [(parallel
6623 + [(set (match_dup 0)
6624 + (match_op_dup 1
6625 + [(match_dup 2)
6626 + (const_int 0)]))
6627 + (clobber (match_dup 3))])]
6628 + "{
6629 + operands[3] = gen_reg_rtx (SImode);
6630 + }")
6631 +
6632 +(define_insn "tstsi_lsl4_d"
6633 + [(set (reg CC_REGNO)
6634 + (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
6635 + (const_int 0)))
6636 + (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
6637 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6638 + "lsl.4\\t%1, %0, #0")
6639 +
6640 +; Comparison for equality with -1.
6641 +;
6642 +(define_insn "cmpsi_not4_ccwz"
6643 + [(set (reg CC_REGNO)
6644 + (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
6645 + (const_int -1)))]
6646 + "ubicom32_match_cc_mode(insn, CCWZmode)"
6647 + "not.4\\t#0, %0")
6648 +
6649 +(define_expand "cmpsi"
6650 + [(set (reg CC_REGNO)
6651 + (compare (match_operand:SI 0 "ubicom32_arith_operand" "")
6652 + (match_operand:SI 1 "ubicom32_compare_operand" "")))]
6653 + ""
6654 + "{
6655 + do
6656 + {
6657 + /* Is this a cmpi? We can't take a memory address as cmpi takes
6658 + 16-bit operands. */
6659 + if (register_operand (operands[0], SImode)
6660 + && CONST_INT_P (operands[1])
6661 + && satisfies_constraint_N (operands[1]))
6662 + break;
6663 +
6664 + /* Must be a sub.4 - if necessary copy an operand into a reg. */
6665 + if (! ubicom32_data_register_operand (operands[1], SImode))
6666 + operands[1] = copy_to_mode_reg (SImode, operands[1]);
6667 + }
6668 + while (0);
6669 +
6670 + ubicom32_compare_op0 = operands[0];
6671 + ubicom32_compare_op1 = operands[1];
6672 + DONE;
6673 + }")
6674 +
6675 +(define_insn "cmpsi_cmpi"
6676 + [(set (reg CC_REGNO)
6677 + (compare (match_operand:SI 0 "register_operand" "r")
6678 + (match_operand 1 "const_int_operand" "N")))]
6679 + "(satisfies_constraint_N (operands[1]))"
6680 + "cmpi\\t%0, %1")
6681 +
6682 +(define_insn "cmpsi_sub4"
6683 + [(set (reg CC_REGNO)
6684 + (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
6685 + (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
6686 + ""
6687 + "sub.4\\t#0, %0, %1")
6688 +
6689 +; If we're testing for equality we don't have to worry about reversing conditions.
6690 +;
6691 +(define_insn "cmpsi_sub4_ccwz_1"
6692 + [(set (reg CC_REGNO)
6693 + (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
6694 + (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
6695 + "ubicom32_match_cc_mode(insn, CCWZmode)"
6696 + "sub.4\\t#0, %0, %1")
6697 +
6698 +(define_insn "cmpsi_sub4_ccwz_2"
6699 + [(set (reg CC_REGNO)
6700 + (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
6701 + (match_operand:SI 1 "nonimmediate_operand" "rm")))]
6702 + "ubicom32_match_cc_mode(insn, CCWZmode)"
6703 + "sub.4\\t#0, %1, %0")
6704 +
6705 +; When the combiner runs it doesn't have any insight into whether or not an argument
6706 +; to a compare is spilled to the stack and therefore can't swap the comparison in
6707 +; an attempt to use sub.4 more effectively. We peephole this case here.
6708 +;
6709 +(define_peephole2
6710 + [(set (match_operand:SI 0 "register_operand" "")
6711 + (match_operand:SI 1 "ubicom32_arith_operand" ""))
6712 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
6713 + (compare (match_operand:SI 3 "ubicom32_data_register_operand" "")
6714 + (match_dup 0)))
6715 + (set (pc)
6716 + (if_then_else (match_operator 4 "comparison_operator"
6717 + [(match_dup 2)
6718 + (const_int 0)])
6719 + (label_ref (match_operand 5 "" ""))
6720 + (pc)))]
6721 + "(peep2_reg_dead_p (2, operands[0])
6722 + && peep2_regno_dead_p (3, CC_REGNO))"
6723 + [(set (match_dup 2)
6724 + (compare (match_dup 1)
6725 + (match_dup 3)))
6726 + (set (pc)
6727 + (if_then_else (match_op_dup 6
6728 + [(match_dup 2)
6729 + (const_int 0)])
6730 + (label_ref (match_dup 5))
6731 + (pc)))]
6732 + "{
6733 + rtx cc_reg;
6734 +
6735 + cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
6736 + operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
6737 + GET_MODE (operands[4]),
6738 + cc_reg,
6739 + const0_rtx);
6740 + }")
6741 +
6742 +(define_insn_and_split "tstdi_or4"
6743 + [(set (reg:CCWZ CC_REGNO)
6744 + (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
6745 + (const_int 0)))]
6746 + ""
6747 + "#"
6748 + ""
6749 + [(parallel
6750 + [(set (reg:CCWZ CC_REGNO)
6751 + (compare:CCWZ (match_dup 0)
6752 + (const_int 0)))
6753 + (clobber (match_dup 1))])]
6754 + "{
6755 + operands[1] = gen_reg_rtx (SImode);
6756 + }")
6757 +
6758 +(define_insn "tstdi_or4_d"
6759 + [(set (reg:CCWZ CC_REGNO)
6760 + (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
6761 + (const_int 0)))
6762 + (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
6763 + ""
6764 + "*
6765 + {
6766 + operands[2] = gen_lowpart (SImode, operands[0]);
6767 + operands[3] = gen_highpart_mode (SImode, DImode, operands[0]);
6768 +
6769 + if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
6770 + return \"or.4\\t#0, %2, %3\";
6771 +
6772 + return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\";
6773 + }"
6774 + [(set_attr "length" "8")])
6775 +
6776 +(define_expand "cmpdi"
6777 + [(set (reg CC_REGNO)
6778 + (compare (match_operand:DI 0 "ubicom32_arith_operand" "")
6779 + (match_operand:DI 1 "ubicom32_data_register_operand" "")))]
6780 + ""
6781 + "{
6782 + ubicom32_compare_op0 = operands[0];
6783 + ubicom32_compare_op1 = operands[1];
6784 + DONE;
6785 + }")
6786 +
6787 +(define_insn "cmpdi_sub4subc"
6788 + [(set (reg CC_REGNO)
6789 + (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI")
6790 + (match_operand:DI 1 "ubicom32_data_register_operand" "d")))]
6791 + ""
6792 + "*
6793 + {
6794 + operands[2] = gen_lowpart (SImode, operands[0]);
6795 + operands[3] = gen_lowpart (SImode, operands[1]);
6796 + operands[4] = gen_highpart_mode (SImode, DImode, operands[0]);
6797 + operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
6798 +
6799 + return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\";
6800 + }"
6801 + [(set_attr "length" "8")])
6802 +
6803 +; When the combiner runs it doesn't have any insight into whether or not an argument
6804 +; to a compare is spilled to the stack and therefore can't swap the comparison in
6805 +; an attempt to use sub.4/subc more effectively. We peephole this case here.
6806 +;
6807 +(define_peephole2
6808 + [(set (match_operand:DI 0 "register_operand" "")
6809 + (match_operand:DI 1 "ubicom32_arith_operand" ""))
6810 + (set (match_operand 2 "ubicom32_cc_register_operand" "")
6811 + (compare (match_operand:DI 3 "ubicom32_data_register_operand" "")
6812 + (match_dup 0)))
6813 + (set (pc)
6814 + (if_then_else (match_operator 4 "comparison_operator"
6815 + [(match_dup 2)
6816 + (const_int 0)])
6817 + (label_ref (match_operand 5 "" ""))
6818 + (pc)))]
6819 + "(peep2_reg_dead_p (2, operands[0])
6820 + && peep2_regno_dead_p (3, CC_REGNO))"
6821 + [(set (match_dup 2)
6822 + (compare (match_dup 1)
6823 + (match_dup 3)))
6824 + (set (pc)
6825 + (if_then_else (match_op_dup 6
6826 + [(match_dup 2)
6827 + (const_int 0)])
6828 + (label_ref (match_dup 5))
6829 + (pc)))]
6830 + "{
6831 + rtx cc_reg;
6832 +
6833 + cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
6834 + operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
6835 + GET_MODE (operands[4]),
6836 + cc_reg,
6837 + const0_rtx);
6838 + }")
6839 +
6840 +(define_insn "btst"
6841 + [(set (reg:CCWZ CC_REGNO)
6842 + (compare:CCWZ
6843 + (zero_extract:SI
6844 + (match_operand:SI 0 "nonimmediate_operand" "rm")
6845 + (const_int 1)
6846 + (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
6847 + (const_int 0)))]
6848 + ""
6849 + "btst\\t%0, %1")
6850 +
6851 +(define_insn "bfextu_ccwz_null"
6852 + [(set (reg:CCWZ CC_REGNO)
6853 + (compare:CCWZ
6854 + (zero_extract:SI
6855 + (match_operand:SI 0 "nonimmediate_operand" "rm")
6856 + (match_operand 1 "const_int_operand" "M")
6857 + (const_int 0))
6858 + (const_int 0)))
6859 + (clobber (match_scratch:SI 2 "=d"))]
6860 + ""
6861 + "bfextu\\t%2, %0, %1")
6862 +
6863 +(define_expand "addqi3"
6864 + [(parallel
6865 + [(set (match_operand:QI 0 "memory_operand" "")
6866 + (plus:QI (match_operand:QI 1 "nonimmediate_operand" "")
6867 + (match_operand:QI 2 "ubicom32_arith_operand" "")))
6868 + (clobber (reg:CC CC_REGNO))])]
6869 + "(ubicom32_v4)"
6870 + "{
6871 + if (!memory_operand (operands[0], QImode))
6872 + FAIL;
6873 +
6874 + /* If we have a non-data reg for operand 1 then prefer that over
6875 + a CONST_INT in operand 2. */
6876 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
6877 + && CONST_INT_P (operands[2]))
6878 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
6879 +
6880 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
6881 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
6882 + }")
6883 +
6884 +(define_insn "addqi3_add1"
6885 + [(set (match_operand:QI 0 "memory_operand" "=m, m")
6886 + (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
6887 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
6888 + (clobber (reg:CC CC_REGNO))]
6889 + "(ubicom32_v4)"
6890 + "@
6891 + add.1\\t%0, %2, %1
6892 + add.1\\t%0, %1, %2")
6893 +
6894 +(define_insn "addqi3_add1_ccszn_null"
6895 + [(set (reg CC_REGNO)
6896 + (compare
6897 + (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm"))
6898 + (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))]
6899 + "(ubicom32_v4
6900 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
6901 + "@
6902 + add.1\\t#0, %1, %0
6903 + add.1\\t#0, %0, %1")
6904 +
6905 +(define_expand "addhi3"
6906 + [(parallel
6907 + [(set (match_operand:HI 0 "memory_operand" "")
6908 + (plus:HI (match_operand:HI 1 "nonimmediate_operand" "")
6909 + (match_operand:HI 2 "ubicom32_arith_operand" "")))
6910 + (clobber (reg:CC CC_REGNO))])]
6911 + ""
6912 + "{
6913 + if (!memory_operand (operands[0], HImode))
6914 + FAIL;
6915 +
6916 + /* If we have a non-data reg for operand 1 then prefer that over
6917 + a CONST_INT in operand 2. */
6918 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
6919 + && CONST_INT_P (operands[2]))
6920 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
6921 +
6922 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
6923 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
6924 + }")
6925 +
6926 +(define_insn "addhi3_add2"
6927 + [(set (match_operand:HI 0 "memory_operand" "=m, m")
6928 + (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
6929 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
6930 + (clobber (reg:CC CC_REGNO))]
6931 + ""
6932 + "@
6933 + add.2\\t%0, %2, %1
6934 + add.2\\t%0, %1, %2")
6935 +
6936 +(define_insn "addhi3_add2_ccszn_null"
6937 + [(set (reg CC_REGNO)
6938 + (compare
6939 + (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm"))
6940 + (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))]
6941 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
6942 + "@
6943 + add.2\\t#0, %1, %0
6944 + add.2\\t#0, %0, %1")
6945 +
6946 +(define_expand "addsi3"
6947 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
6948 + (plus:SI (match_operand:SI 1 "nonimmediate_operand" "")
6949 + (match_operand:SI 2 "ubicom32_move_operand" "")))]
6950 + ""
6951 + "{
6952 + ubicom32_expand_addsi3 (operands);
6953 + DONE;
6954 + }")
6955 +
6956 +; We start with an instruction pattern that can do all sorts of interesting
6957 +; things but we split out any uses of lea or pdec instructions because
6958 +; those instructions don't clobber the condition codes.
6959 +;
6960 +(define_insn_and_split "addsi3_1"
6961 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm")
6962 + (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm")
6963 + (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d")))
6964 + (clobber (reg:CC CC_REGNO))]
6965 + ""
6966 + "@
6967 + #
6968 + #
6969 + #
6970 + #
6971 + #
6972 + add.4\\t%0, %2, %1
6973 + add.4\\t%0, %1, %2"
6974 + "(reload_completed
6975 + && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))"
6976 + [(set (match_dup 0)
6977 + (plus:SI (match_dup 1)
6978 + (match_dup 2)))]
6979 + ""
6980 +)
6981 +
6982 +(define_insn "addsi3_1_ccwzn"
6983 + [(set (reg CC_REGNO)
6984 + (compare
6985 + (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
6986 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
6987 + (const_int 0)))
6988 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
6989 + (plus:SI (match_dup 1)
6990 + (match_dup 2)))]
6991 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
6992 + "@
6993 + add.4\\t%0, %2, %1
6994 + add.4\\t%0, %1, %2")
6995 +
6996 +(define_insn "addsi3_1_ccwzn_null"
6997 + [(set (reg CC_REGNO)
6998 + (compare
6999 + (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm"))
7000 + (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))]
7001 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7002 + "@
7003 + add.4\\t#0, %1, %0
7004 + add.4\\t#0, %0, %1")
7005 +
7006 +(define_insn_and_split "addsi3_2"
7007 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm")
7008 + (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a")
7009 + (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))]
7010 + ""
7011 + "@
7012 + lea.4\\t%0, %E2(%1)
7013 + lea.2\\t%0, %E2(%1)
7014 + lea.1\\t%0, %E2(%1)
7015 + pdec\\t%0, %n2(%1)
7016 + lea.1\\t%0, (%1,%2)
7017 + #"
7018 + "(reload_completed
7019 + && ! satisfies_constraint_L (operands[2])
7020 + && ! satisfies_constraint_K (operands[2])
7021 + && ! satisfies_constraint_J (operands[2])
7022 + && ! satisfies_constraint_P (operands[2])
7023 + && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))"
7024 + [(set (reg:SI AUX_DATA_REGNO)
7025 + (match_dup 2))
7026 + (set (match_dup 0)
7027 + (plus:SI (match_dup 1)
7028 + (reg:SI AUX_DATA_REGNO)))]
7029 + ""
7030 +)
7031 +
7032 +(define_insn "lea_2"
7033 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7034 + (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
7035 + (const_int 2))
7036 + (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
7037 + ""
7038 + "lea.2\\t%0, (%2,%1)")
7039 +
7040 +(define_insn "lea_4"
7041 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7042 + (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
7043 + (const_int 4))
7044 + (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
7045 + ""
7046 + "lea.4\\t%0, (%2,%1)")
7047 +
7048 +(define_expand "adddi3"
7049 + [(parallel
7050 + [(set (match_operand:DI 0 "nonimmediate_operand" "")
7051 + (plus:DI (match_operand:DI 1 "nonimmediate_operand" "")
7052 + (match_operand:DI 2 "ubicom32_arith_operand" "")))
7053 + (clobber (reg:CC CC_REGNO))])]
7054 + ""
7055 + "{
7056 + /* If we have a non-data reg for operand 1 then prefer that over
7057 + a CONST_INT in operand 2. */
7058 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7059 + && CONST_INT_P (operands[2]))
7060 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7061 +
7062 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7063 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7064 + }")
7065 +
7066 +; We construct a 64-bit add from 32-bit operations. Note that we use the
7067 +; & constraint to prevent overlapping registers being allocated. We do
7068 +; allow identical registers though as that won't break anything.
7069 +;
7070 +(define_insn "adddi3_add4addc"
7071 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
7072 + (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
7073 + (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")))
7074 + (clobber (reg:CC CC_REGNO))]
7075 + ""
7076 + "*
7077 + {
7078 + operands[3] = gen_lowpart (SImode, operands[0]);
7079 + operands[4] = gen_lowpart (SImode, operands[1]);
7080 + operands[5] = gen_lowpart (SImode, operands[2]);
7081 + operands[6] = gen_highpart (SImode, operands[0]);
7082 + operands[7] = gen_highpart (SImode, operands[1]);
7083 + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
7084 +
7085 + if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
7086 + return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\";
7087 +
7088 + return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
7089 + }"
7090 + [(set_attr "length" "8")])
7091 +
7092 +(define_insn "adddi3_ccwz"
7093 + [(set (reg CC_REGNO)
7094 + (compare
7095 + (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
7096 + (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))
7097 + (const_int 0)))
7098 + (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
7099 + (plus:DI (match_dup 1)
7100 + (match_dup 2)))]
7101 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7102 + "*
7103 + {
7104 + operands[3] = gen_lowpart (SImode, operands[0]);
7105 + operands[6] = gen_highpart (SImode, operands[0]);
7106 +
7107 + if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
7108 + {
7109 + operands[4] = gen_lowpart (SImode, operands[1]);
7110 + operands[5] = gen_lowpart (SImode, operands[2]);
7111 + operands[7] = gen_highpart (SImode, operands[1]);
7112 + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
7113 + }
7114 + else
7115 + {
7116 + operands[4] = gen_lowpart (SImode, operands[2]);
7117 + operands[5] = gen_lowpart (SImode, operands[1]);
7118 + operands[7] = gen_highpart (SImode, operands[2]);
7119 + operands[8] = gen_highpart (SImode, operands[1]);
7120 + }
7121 +
7122 + return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
7123 + }"
7124 + [(set_attr "length" "8")])
7125 +
7126 +(define_insn "adddi3_ccwz_null"
7127 + [(set (reg CC_REGNO)
7128 + (compare
7129 + (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm"))
7130 + (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))]
7131 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7132 + "*
7133 + {
7134 + if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
7135 + {
7136 + operands[2] = gen_lowpart (SImode, operands[0]);
7137 + operands[3] = gen_lowpart (SImode, operands[1]);
7138 + operands[4] = gen_highpart (SImode, operands[0]);
7139 + operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
7140 + }
7141 + else
7142 + {
7143 + operands[2] = gen_lowpart (SImode, operands[1]);
7144 + operands[3] = gen_lowpart (SImode, operands[0]);
7145 + operands[4] = gen_highpart (SImode, operands[1]);
7146 + operands[5] = gen_highpart (SImode, operands[0]);
7147 + }
7148 +
7149 + return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\";
7150 + }"
7151 + [(set_attr "length" "8")])
7152 +
7153 +(define_expand "subqi3"
7154 + [(parallel
7155 + [(set (match_operand:QI 0 "memory_operand" "")
7156 + (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "")
7157 + (match_operand:QI 2 "ubicom32_data_register_operand" "")))
7158 + (clobber (reg:CC CC_REGNO))])]
7159 + "(ubicom32_v4)"
7160 + "{
7161 + if (!memory_operand (operands[0], QImode))
7162 + FAIL;
7163 + }")
7164 +
7165 +(define_insn "subqi3_sub1"
7166 + [(set (match_operand:QI 0 "memory_operand" "=m")
7167 + (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI")
7168 + (match_operand:QI 2 "ubicom32_data_register_operand" "d")))
7169 + (clobber (reg:CC CC_REGNO))]
7170 + "(ubicom32_v4)"
7171 + "sub.1\\t%0, %1, %2")
7172 +
7173 +(define_expand "subhi3"
7174 + [(parallel
7175 + [(set (match_operand:HI 0 "memory_operand" "")
7176 + (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "")
7177 + (match_operand:HI 2 "ubicom32_data_register_operand" "")))
7178 + (clobber (reg:CC CC_REGNO))])]
7179 + "(ubicom32_v4)"
7180 + "{
7181 + if (!memory_operand (operands[0], HImode))
7182 + FAIL;
7183 + }")
7184 +
7185 +(define_insn "subhi3_sub2"
7186 + [(set (match_operand:HI 0 "memory_operand" "=m")
7187 + (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")
7188 + (match_operand:HI 2 "ubicom32_data_register_operand" "d")))
7189 + (clobber (reg:CC CC_REGNO))]
7190 + ""
7191 + "sub.2\\t%0, %1, %2")
7192 +
7193 +(define_insn "subsi3"
7194 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7195 + (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
7196 + (match_operand:SI 2 "ubicom32_data_register_operand" "d")))
7197 + (clobber (reg:CC CC_REGNO))]
7198 + ""
7199 + "sub.4\\t%0, %1, %2")
7200 +
7201 +(define_insn "subsi3_ccwz"
7202 + [(set (reg CC_REGNO)
7203 + (compare
7204 + (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
7205 + (match_operand:SI 2 "ubicom32_data_register_operand" "d"))
7206 + (const_int 0)))
7207 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7208 + (minus:SI (match_dup 1)
7209 + (match_dup 2)))]
7210 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7211 + "sub.4\\t%0, %1, %2")
7212 +
7213 +; We construct a 64-bit add from 32-bit operations. Note that we use the
7214 +; & constraint to prevent overlapping registers being allocated. We do
7215 +; allow identical registers though as that won't break anything.
7216 +;
7217 +(define_insn "subdi3"
7218 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m")
7219 + (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI")
7220 + (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d")))
7221 + (clobber (reg:CC CC_REGNO))]
7222 + ""
7223 + "*
7224 + {
7225 + operands[3] = gen_lowpart (SImode, operands[0]);
7226 + operands[4] = gen_lowpart (SImode, operands[1]);
7227 + operands[5] = gen_lowpart (SImode, operands[2]);
7228 + operands[6] = gen_highpart (SImode, operands[0]);
7229 + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
7230 + operands[8] = gen_highpart (SImode, operands[2]);
7231 +
7232 + return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
7233 + }"
7234 + [(set_attr "length" "8")])
7235 +
7236 +(define_insn "subdi3_ccwz"
7237 + [(set (reg CC_REGNO)
7238 + (compare
7239 + (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI")
7240 + (match_operand:DI 2 "ubicom32_data_register_operand" "d, d"))
7241 + (const_int 0)))
7242 + (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m")
7243 + (minus:DI (match_dup 1)
7244 + (match_dup 2)))]
7245 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7246 + "*
7247 + {
7248 + operands[3] = gen_lowpart (SImode, operands[0]);
7249 + operands[4] = gen_lowpart (SImode, operands[1]);
7250 + operands[5] = gen_lowpart (SImode, operands[2]);
7251 + operands[6] = gen_highpart (SImode, operands[0]);
7252 + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
7253 + operands[8] = gen_highpart (SImode, operands[2]);
7254 +
7255 + return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
7256 + }"
7257 + [(set_attr "length" "8")])
7258 +
7259 +;(define_insn "negqi2"
7260 +; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
7261 +; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d")))
7262 +; (clobber (reg:CC CC_REGNO))]
7263 +; "(ubicom32_v4)"
7264 +; "sub.1\\t%0, #0, %1")
7265 +
7266 +;(define_insn "neghi2"
7267 +; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
7268 +; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d")))
7269 +; (clobber (reg:CC CC_REGNO))]
7270 +; ""
7271 +; "sub.2\\t%0, #0, %1")
7272 +
7273 +(define_insn "negsi2"
7274 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7275 + (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")))
7276 + (clobber (reg:CC CC_REGNO))]
7277 + ""
7278 + "sub.4\\t%0, #0, %1")
7279 +
7280 +(define_insn_and_split "negdi2"
7281 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
7282 + (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d")))
7283 + (clobber (reg:CC CC_REGNO))]
7284 + ""
7285 + "#"
7286 + "reload_completed"
7287 + [(parallel [(set (match_dup 0)
7288 + (minus:DI (const_int 0)
7289 + (match_dup 1)))
7290 + (clobber (reg:CC CC_REGNO))])]
7291 + ""
7292 + [(set_attr "length" "8")])
7293 +
7294 +(define_insn "umulhisi3"
7295 + [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
7296 + (mult:SI
7297 + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
7298 + (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
7299 + (clobber (reg:HI ACC0_HI_REGNO))
7300 + (clobber (reg:HI ACC1_HI_REGNO))]
7301 + ""
7302 + "@
7303 + mulu\\t%A0, %2, %1
7304 + mulu\\t%A0, %1, %2"
7305 + [(set_attr "type" "mul,mul")])
7306 +
7307 +(define_insn "mulhisi3"
7308 + [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
7309 + (mult:SI
7310 + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
7311 + (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
7312 + (clobber (reg:HI ACC0_HI_REGNO))
7313 + (clobber (reg:HI ACC1_HI_REGNO))]
7314 + ""
7315 + "@
7316 + muls\\t%A0, %2, %1
7317 + muls\\t%A0, %1, %2"
7318 + [(set_attr "type" "mul,mul")])
7319 +
7320 +(define_expand "mulsi3"
7321 + [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "")
7322 + (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "")
7323 + (match_operand:SI 2 "ubicom32_arith_operand" "")))]
7324 + ""
7325 + "{
7326 + if (ubicom32_emit_mult_sequence (operands))
7327 + DONE;
7328 + }")
7329 +
7330 +(define_insn "umulsidi3"
7331 + [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
7332 + (mult:DI
7333 + (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
7334 + (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
7335 + "(ubicom32_v4)"
7336 + "@
7337 + mulu.4\\t%A0, %2, %1
7338 + mulu.4\\t%A0, %1, %2"
7339 + [(set_attr "type" "mul,mul")])
7340 +
7341 +(define_peephole2
7342 + [(set (match_operand:SI 0 "register_operand" "")
7343 + (match_operand:SI 1 "nonimmediate_operand" ""))
7344 + (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
7345 + (mult:DI
7346 + (zero_extend:DI (match_dup 0))
7347 + (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
7348 + "(peep2_reg_dead_p (2, operands[0])
7349 + || REGNO (operands[0]) == REGNO (operands[2])
7350 + || REGNO (operands[0]) == REGNO (operands[2]) + 1)
7351 + && ! rtx_equal_p (operands[0], operands[3])"
7352 + [(set (match_dup 2)
7353 + (mult:DI
7354 + (zero_extend:DI (match_dup 1))
7355 + (zero_extend:DI (match_dup 3))))]
7356 + "")
7357 +
7358 +(define_peephole2
7359 + [(set (match_operand:SI 0 "register_operand" "")
7360 + (match_operand:SI 1 "nonimmediate_operand" ""))
7361 + (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
7362 + (mult:DI
7363 + (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
7364 + (zero_extend:DI (match_dup 0))))]
7365 + "(peep2_reg_dead_p (2, operands[0])
7366 + || REGNO (operands[0]) == REGNO (operands[2])
7367 + || REGNO (operands[0]) == REGNO (operands[2]) + 1)
7368 + && ! rtx_equal_p (operands[0], operands[3])"
7369 + [(set (match_dup 2)
7370 + (mult:DI
7371 + (zero_extend:DI (match_dup 1))
7372 + (zero_extend:DI (match_dup 3))))]
7373 + "")
7374 +
7375 +(define_insn "umulsidi3_const"
7376 + [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
7377 + (mult:DI
7378 + (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
7379 + (match_operand 2 "const_int_operand" "I")))]
7380 + "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
7381 + "mulu.4\\t%A0, %2, %1"
7382 + [(set_attr "type" "mul")])
7383 +
7384 +(define_insn "mulsidi3"
7385 + [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
7386 + (mult:DI
7387 + (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
7388 + (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
7389 + "(ubicom32_v4)"
7390 + "@
7391 + muls.4\\t%A0, %2, %1
7392 + muls.4\\t%A0, %1, %2"
7393 + [(set_attr "type" "mul,mul")])
7394 +
7395 +(define_peephole2
7396 + [(set (match_operand:SI 0 "register_operand" "")
7397 + (match_operand:SI 1 "nonimmediate_operand" ""))
7398 + (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
7399 + (mult:DI
7400 + (sign_extend:DI (match_dup 0))
7401 + (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
7402 + "(peep2_reg_dead_p (2, operands[0])
7403 + || REGNO (operands[0]) == REGNO (operands[2])
7404 + || REGNO (operands[0]) == REGNO (operands[2]) + 1)
7405 + && ! rtx_equal_p (operands[0], operands[3])"
7406 + [(set (match_dup 2)
7407 + (mult:DI
7408 + (sign_extend:DI (match_dup 1))
7409 + (sign_extend:DI (match_dup 3))))]
7410 + "")
7411 +
7412 +(define_peephole2
7413 + [(set (match_operand:SI 0 "register_operand" "")
7414 + (match_operand:SI 1 "nonimmediate_operand" ""))
7415 + (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
7416 + (mult:DI
7417 + (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
7418 + (sign_extend:DI (match_dup 0))))]
7419 + "(peep2_reg_dead_p (2, operands[0])
7420 + || REGNO (operands[0]) == REGNO (operands[2])
7421 + || REGNO (operands[0]) == REGNO (operands[2]) + 1)
7422 + && ! rtx_equal_p (operands[0], operands[3])"
7423 + [(set (match_dup 2)
7424 + (mult:DI
7425 + (sign_extend:DI (match_dup 1))
7426 + (sign_extend:DI (match_dup 3))))]
7427 + "")
7428 +
7429 +(define_insn "mulsidi3_const"
7430 + [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
7431 + (mult:DI
7432 + (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
7433 + (match_operand 2 "const_int_operand" "I")))]
7434 + "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
7435 + "muls.4\\t%A0, %2, %1"
7436 + [(set_attr "type" "mul")])
7437 +
7438 +(define_expand "andqi3"
7439 + [(parallel
7440 + [(set (match_operand:QI 0 "memory_operand" "")
7441 + (and:QI (match_operand:QI 1 "nonimmediate_operand" "")
7442 + (match_operand:QI 2 "ubicom32_arith_operand" "")))
7443 + (clobber (reg:CC CC_REGNO))])]
7444 + "(ubicom32_v4)"
7445 + "{
7446 + if (!memory_operand (operands[0], QImode))
7447 + FAIL;
7448 +
7449 + /* If we have a non-data reg for operand 1 then prefer that over
7450 + a CONST_INT in operand 2. */
7451 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7452 + && CONST_INT_P (operands[2]))
7453 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
7454 +
7455 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7456 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
7457 + }")
7458 +
7459 +(define_insn "andqi3_and1"
7460 + [(set (match_operand:QI 0 "memory_operand" "=m, m")
7461 + (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
7462 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
7463 + (clobber (reg:CC CC_REGNO))]
7464 + "(ubicom32_v4)"
7465 + "@
7466 + and.1\\t%0, %2, %1
7467 + and.1\\t%0, %1, %2")
7468 +
7469 +(define_insn "andqi3_and1_ccszn"
7470 + [(set (reg CC_REGNO)
7471 + (compare
7472 + (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
7473 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
7474 + (const_int 0)))
7475 + (set (match_operand:QI 0 "memory_operand" "=m, m")
7476 + (and:QI (match_dup 1)
7477 + (match_dup 2)))]
7478 + "(ubicom32_v4
7479 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
7480 + "@
7481 + and.1\\t%0, %2, %1
7482 + and.1\\t%0, %1, %2")
7483 +
7484 +(define_insn "andqi3_and1_ccszn_null"
7485 + [(set (reg CC_REGNO)
7486 + (compare
7487 + (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
7488 + (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
7489 + (const_int 0)))]
7490 + "(ubicom32_v4
7491 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
7492 + "@
7493 + and.1\\t#0, %1, %0
7494 + and.1\\t#0, %0, %1")
7495 +
7496 +(define_insn "and1_ccszn_null_1"
7497 + [(set (reg CC_REGNO)
7498 + (compare
7499 + (subreg:QI
7500 + (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
7501 + (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
7502 + 3)
7503 + (const_int 0)))]
7504 + "(ubicom32_v4
7505 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
7506 + "and.1\\t#0, %1, %0")
7507 +
7508 +(define_insn "and1_ccszn_null_2"
7509 + [(set (reg CC_REGNO)
7510 + (compare
7511 + (subreg:QI
7512 + (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
7513 + (subreg:SI
7514 + (match_operand:QI 1 "memory_operand" "m")
7515 + 0))
7516 + 3)
7517 + (const_int 0)))]
7518 + "(ubicom32_v4
7519 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
7520 + "and.1\\t#0, %1, %0")
7521 +
7522 +(define_insn "and1_ccszn_null_3"
7523 + [(set (reg CC_REGNO)
7524 + (compare
7525 + (subreg:QI
7526 + (and:SI (subreg:SI
7527 + (match_operand:QI 0 "memory_operand" "m")
7528 + 0)
7529 + (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
7530 + 3)
7531 + (const_int 0)))]
7532 + "(ubicom32_v4
7533 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
7534 + "and.1\\t#0, %0, %1")
7535 +
7536 +(define_expand "andhi3"
7537 + [(parallel
7538 + [(set (match_operand:HI 0 "memory_operand" "")
7539 + (and:HI (match_operand:HI 1 "nonimmediate_operand" "")
7540 + (match_operand:HI 2 "ubicom32_arith_operand" "")))
7541 + (clobber (reg:CC CC_REGNO))])]
7542 + ""
7543 + "{
7544 + if (!memory_operand (operands[0], HImode))
7545 + FAIL;
7546 +
7547 + /* If we have a non-data reg for operand 1 then prefer that over
7548 + a CONST_INT in operand 2. */
7549 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7550 + && CONST_INT_P (operands[2]))
7551 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
7552 +
7553 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7554 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
7555 + }")
7556 +
7557 +(define_insn "andhi3_and2"
7558 + [(set (match_operand:HI 0 "memory_operand" "=m, m")
7559 + (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
7560 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
7561 + (clobber (reg:CC CC_REGNO))]
7562 + ""
7563 + "@
7564 + and.2\\t%0, %2, %1
7565 + and.2\\t%0, %1, %2")
7566 +
7567 +(define_insn "andhi3_and2_ccszn"
7568 + [(set (reg CC_REGNO)
7569 + (compare
7570 + (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
7571 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
7572 + (const_int 0)))
7573 + (set (match_operand:HI 0 "memory_operand" "=m, m")
7574 + (and:HI (match_dup 1)
7575 + (match_dup 2)))]
7576 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
7577 + "@
7578 + and.2\\t%0, %2, %1
7579 + and.2\\t%0, %1, %2")
7580 +
7581 +(define_insn "andhi3_and2_ccszn_null"
7582 + [(set (reg CC_REGNO)
7583 + (compare
7584 + (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
7585 + (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
7586 + (const_int 0)))]
7587 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
7588 + "@
7589 + and.2\\t#0, %1, %0
7590 + and.2\\t#0, %0, %1")
7591 +
7592 +(define_insn "and2_ccszn_null_1"
7593 + [(set (reg CC_REGNO)
7594 + (compare
7595 + (subreg:HI
7596 + (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
7597 + (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
7598 + 2)
7599 + (const_int 0)))]
7600 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
7601 + "and.2\\t#0, %1, %0")
7602 +
7603 +(define_insn "and2_ccszn_null_2"
7604 + [(set (reg CC_REGNO)
7605 + (compare
7606 + (subreg:HI
7607 + (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
7608 + (subreg:SI
7609 + (match_operand:HI 1 "memory_operand" "m")
7610 + 0))
7611 + 2)
7612 + (const_int 0)))]
7613 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
7614 + "and.2\\t#0, %1, %0")
7615 +
7616 +(define_insn "and2_ccszn_null_3"
7617 + [(set (reg CC_REGNO)
7618 + (compare
7619 + (subreg:HI
7620 + (and:SI (subreg:SI
7621 + (match_operand:HI 0 "memory_operand" "m")
7622 + 0)
7623 + (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
7624 + 2)
7625 + (const_int 0)))]
7626 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
7627 + "and.2\\t#0, %0, %1")
7628 +
7629 +(define_expand "andsi3"
7630 + [(parallel
7631 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
7632 + (and:SI (match_operand:SI 1 "nonimmediate_operand" "")
7633 + (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
7634 + (clobber (reg:CC CC_REGNO))])]
7635 + ""
7636 + "{
7637 + do
7638 + {
7639 + /* Is this a bfextu? */
7640 + if (ubicom32_data_register_operand (operands[0], SImode)
7641 + && CONST_INT_P (operands[2])
7642 + && exact_log2 (INTVAL (operands[2]) + 1) != -1)
7643 + break;
7644 +
7645 + /* Is this a bclr? */
7646 + if (CONST_INT_P (operands[2])
7647 + && exact_log2 (~INTVAL (operands[2])) != -1)
7648 + break;
7649 +
7650 + /* Must be an and.4 */
7651 + if (!ubicom32_data_register_operand (operands[1], SImode))
7652 + operands[1] = copy_to_mode_reg (SImode, operands[1]);
7653 +
7654 + if (!ubicom32_arith_operand (operands[2], SImode))
7655 + operands[2] = copy_to_mode_reg (SImode, operands[2]);
7656 + }
7657 + while (0);
7658 + }")
7659 +
7660 +(define_insn "andsi3_bfextu"
7661 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
7662 + (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
7663 + (match_operand:SI 2 "const_int_operand" "O")))
7664 + (clobber (reg:CC CC_REGNO))]
7665 + "(satisfies_constraint_O (operands[2]))"
7666 + "*
7667 + {
7668 + operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
7669 +
7670 + return \"bfextu\\t%0, %1, %3\";
7671 + }")
7672 +
7673 +(define_insn "andsi3_bfextu_ccwz"
7674 + [(set (reg CC_REGNO)
7675 + (compare
7676 + (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
7677 + (match_operand:SI 2 "const_int_operand" "O"))
7678 + (const_int 0)))
7679 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
7680 + (and:SI (match_dup 1)
7681 + (match_dup 2)))]
7682 + "(satisfies_constraint_O (operands[2])
7683 + && ubicom32_match_cc_mode(insn, CCWZmode))"
7684 + "*
7685 + {
7686 + operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
7687 +
7688 + return \"bfextu\\t%0, %1, %3\";
7689 + }")
7690 +
7691 +(define_insn "andsi3_bfextu_ccwz_null"
7692 + [(set (reg CC_REGNO)
7693 + (compare
7694 + (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
7695 + (match_operand:SI 1 "const_int_operand" "O"))
7696 + (const_int 0)))
7697 + (clobber (match_scratch:SI 2 "=d"))]
7698 + "(satisfies_constraint_O (operands[1])
7699 + && ubicom32_match_cc_mode(insn, CCWZmode))"
7700 + "*
7701 + {
7702 + operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1));
7703 +
7704 + return \"bfextu\\t%2, %0, %3\";
7705 + }")
7706 +
7707 +(define_insn "andsi3_bclr"
7708 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7709 + (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
7710 + (match_operand:SI 2 "const_int_operand" "n")))
7711 + (clobber (reg:CC CC_REGNO))]
7712 + "(exact_log2 (~INTVAL (operands[2])) != -1)"
7713 + "bclr\\t%0, %1, #%D2")
7714 +
7715 +(define_insn "andsi3_and4"
7716 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
7717 + (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
7718 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
7719 + (clobber (reg:CC CC_REGNO))]
7720 + ""
7721 + "@
7722 + and.4\\t%0, %2, %1
7723 + and.4\\t%0, %1, %2")
7724 +
7725 +(define_insn "andsi3_and4_ccwzn"
7726 + [(set (reg CC_REGNO)
7727 + (compare
7728 + (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
7729 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
7730 + (const_int 0)))
7731 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
7732 + (and:SI (match_dup 1)
7733 + (match_dup 2)))]
7734 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7735 + "@
7736 + and.4\\t%0, %2, %1
7737 + and.4\\t%0, %1, %2")
7738 +
7739 +(define_insn "andsi3_and4_ccwzn_null"
7740 + [(set (reg CC_REGNO)
7741 + (compare
7742 + (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
7743 + (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
7744 + (const_int 0)))]
7745 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7746 + "@
7747 + and.4\\t#0, %1, %0
7748 + and.4\\t#0, %0, %1")
7749 +
7750 +(define_insn "andsi3_lsr4_ccwz_null"
7751 + [(set (reg CC_REGNO)
7752 + (compare
7753 + (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
7754 + (match_operand:SI 1 "const_int_operand" "n"))
7755 + (const_int 0)))
7756 + (clobber (match_scratch:SI 2 "=d"))]
7757 + "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1
7758 + && ubicom32_match_cc_mode(insn, CCWZmode))"
7759 + "*
7760 + {
7761 + operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1));
7762 +
7763 + return \"lsr.4\\t%2, %0, %3\";
7764 + }")
7765 +
7766 +; We really would like the combiner to recognize this scenario and deal with
7767 +; it but unfortunately it tries to canonicalize zero_extract ops on MEMs
7768 +; into QImode operations and we can't match them in any useful way.
7769 +;
7770 +(define_peephole2
7771 + [(set (match_operand:SI 0 "register_operand" "")
7772 + (match_operand:SI 1 "const_int_operand" ""))
7773 + (set (reg:CCWZ CC_REGNO)
7774 + (compare:CCWZ
7775 + (and:SI (match_operand:SI 2 "nonimmediate_operand" "")
7776 + (match_dup 0))
7777 + (const_int 0)))]
7778 + "(exact_log2 (INTVAL (operands[1])) != -1
7779 + && peep2_reg_dead_p (2, operands[0]))"
7780 + [(set (reg:CCWZ CC_REGNO)
7781 + (compare:CCWZ
7782 + (zero_extract:SI
7783 + (match_dup 2)
7784 + (const_int 1)
7785 + (match_dup 3))
7786 + (const_int 0)))]
7787 + "{
7788 + operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1])));
7789 + }")
7790 +
7791 +(define_expand "anddi3"
7792 + [(parallel
7793 + [(set (match_operand:DI 0 "nonimmediate_operand" "")
7794 + (and:DI (match_operand:DI 1 "nonimmediate_operand" "")
7795 + (match_operand:DI 2 "ubicom32_arith_operand" "")))
7796 + (clobber (reg:CC CC_REGNO))])]
7797 + ""
7798 + "{
7799 + /* If we have a non-data reg for operand 1 then prefer that over
7800 + a CONST_INT in operand 2. */
7801 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7802 + && CONST_INT_P (operands[2]))
7803 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7804 +
7805 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7806 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7807 + }")
7808 +
7809 +(define_insn_and_split "anddi3_and4"
7810 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
7811 + (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
7812 + (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
7813 + (clobber (reg:CC CC_REGNO))]
7814 + ""
7815 + "#"
7816 + "reload_completed"
7817 + [(parallel [(set (match_dup 3)
7818 + (and:SI (match_dup 4)
7819 + (match_dup 5)))
7820 + (clobber (reg:CC CC_REGNO))])
7821 + (parallel [(set (match_dup 6)
7822 + (and:SI (match_dup 7)
7823 + (match_dup 8)))
7824 + (clobber (reg:CC CC_REGNO))])]
7825 + "{
7826 + operands[3] = gen_lowpart (SImode, operands[0]);
7827 + operands[4] = gen_lowpart (SImode, operands[1]);
7828 + operands[5] = gen_lowpart (SImode, operands[2]);
7829 + operands[6] = gen_highpart (SImode, operands[0]);
7830 + operands[7] = gen_highpart (SImode, operands[1]);
7831 + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
7832 + }"
7833 + [(set_attr "length" "8")])
7834 +
7835 +(define_expand "iorqi3"
7836 + [(parallel
7837 + [(set (match_operand:QI 0 "memory_operand" "")
7838 + (ior:QI (match_operand:QI 1 "nonimmediate_operand" "")
7839 + (match_operand:QI 2 "ubicom32_arith_operand" "")))
7840 + (clobber (reg:CC CC_REGNO))])]
7841 + "(ubicom32_v4)"
7842 + "{
7843 + if (!memory_operand (operands[0], QImode))
7844 + FAIL;
7845 +
7846 + /* If we have a non-data reg for operand 1 then prefer that over
7847 + a CONST_INT in operand 2. */
7848 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7849 + && CONST_INT_P (operands[2]))
7850 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
7851 +
7852 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7853 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
7854 + }")
7855 +
7856 +(define_insn "iorqi3_or1"
7857 + [(set (match_operand:QI 0 "memory_operand" "=m, m")
7858 + (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
7859 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
7860 + (clobber (reg:CC CC_REGNO))]
7861 + "(ubicom32_v4)"
7862 + "@
7863 + or.1\\t%0, %2, %1
7864 + or.1\\t%0, %1, %2")
7865 +
7866 +(define_expand "iorhi3"
7867 + [(parallel
7868 + [(set (match_operand:HI 0 "memory_operand" "")
7869 + (ior:HI (match_operand:HI 1 "nonimmediate_operand" "")
7870 + (match_operand:HI 2 "ubicom32_arith_operand" "")))
7871 + (clobber (reg:CC CC_REGNO))])]
7872 + ""
7873 + "{
7874 + if (!memory_operand (operands[0], HImode))
7875 + FAIL;
7876 +
7877 + /* If we have a non-data reg for operand 1 then prefer that over
7878 + a CONST_INT in operand 2. */
7879 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7880 + && CONST_INT_P (operands[2]))
7881 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
7882 +
7883 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7884 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
7885 + }")
7886 +
7887 +(define_insn "iorhi3_or2"
7888 + [(set (match_operand:HI 0 "memory_operand" "=m, m")
7889 + (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
7890 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
7891 + (clobber (reg:CC CC_REGNO))]
7892 + ""
7893 + "@
7894 + or.2\\t%0, %2, %1
7895 + or.2\\t%0, %1, %2")
7896 +
7897 +(define_expand "iorsi3"
7898 + [(parallel
7899 + [(set (match_operand:SI 0 "nonimmediate_operand" "")
7900 + (ior:SI (match_operand:SI 1 "nonimmediate_operand" "")
7901 + (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
7902 + (clobber (reg:CC CC_REGNO))])]
7903 + ""
7904 + "{
7905 + do
7906 + {
7907 + /* Is this a bset? */
7908 + if (CONST_INT_P (operands[2])
7909 + && exact_log2 (INTVAL (operands[2])) != -1)
7910 + break;
7911 +
7912 + /* Must be an or.4 */
7913 + if (!ubicom32_data_register_operand (operands[1], SImode))
7914 + operands[1] = copy_to_mode_reg (SImode, operands[1]);
7915 +
7916 + if (!ubicom32_arith_operand (operands[2], SImode))
7917 + operands[2] = copy_to_mode_reg (SImode, operands[2]);
7918 + }
7919 + while (0);
7920 + }")
7921 +
7922 +(define_insn "iorsi3_bset"
7923 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
7924 + (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
7925 + (match_operand 2 "const_int_operand" "n")))
7926 + (clobber (reg:CC CC_REGNO))]
7927 + "(exact_log2 (INTVAL (operands[2])) != -1)"
7928 + "bset\\t%0, %1, #%d2")
7929 +
7930 +(define_insn "iorsi3_or4"
7931 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
7932 + (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
7933 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
7934 + (clobber (reg:CC CC_REGNO))]
7935 + ""
7936 + "@
7937 + or.4\\t%0, %2, %1
7938 + or.4\\t%0, %1, %2")
7939 +
7940 +(define_insn "iorsi3_ccwzn"
7941 + [(set (reg CC_REGNO)
7942 + (compare
7943 + (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
7944 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
7945 + (const_int 0)))
7946 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
7947 + (ior:SI (match_dup 1)
7948 + (match_dup 2)))]
7949 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7950 + "@
7951 + or.4\\t%0, %2, %1
7952 + or.4\\t%0, %1, %2")
7953 +
7954 +(define_insn "iorsi3_ccwzn_null"
7955 + [(set (reg CC_REGNO)
7956 + (compare
7957 + (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
7958 + (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
7959 + (const_int 0)))]
7960 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
7961 + "@
7962 + or.4\\t#0, %1, %0
7963 + or.4\\t#0, %0, %1")
7964 +
7965 +(define_expand "iordi3"
7966 + [(parallel
7967 + [(set (match_operand:DI 0 "nonimmediate_operand" "")
7968 + (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
7969 + (match_operand:DI 2 "ubicom32_arith_operand" "")))
7970 + (clobber (reg:CC CC_REGNO))])]
7971 + ""
7972 + "{
7973 + /* If we have a non-data reg for operand 1 then prefer that over
7974 + a CONST_INT in operand 2. */
7975 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
7976 + && CONST_INT_P (operands[2]))
7977 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7978 +
7979 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
7980 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
7981 + }")
7982 +
7983 +(define_insn_and_split "iordi3_or4"
7984 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
7985 + (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
7986 + (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
7987 + (clobber (reg:CC CC_REGNO))]
7988 + ""
7989 + "#"
7990 + "reload_completed"
7991 + [(parallel [(set (match_dup 3)
7992 + (ior:SI (match_dup 4)
7993 + (match_dup 5)))
7994 + (clobber (reg:CC CC_REGNO))])
7995 + (parallel [(set (match_dup 6)
7996 + (ior:SI (match_dup 7)
7997 + (match_dup 8)))
7998 + (clobber (reg:CC CC_REGNO))])]
7999 + "{
8000 + operands[3] = gen_lowpart (SImode, operands[0]);
8001 + operands[4] = gen_lowpart (SImode, operands[1]);
8002 + operands[5] = gen_lowpart (SImode, operands[2]);
8003 + operands[6] = gen_highpart (SImode, operands[0]);
8004 + operands[7] = gen_highpart (SImode, operands[1]);
8005 + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
8006 + }"
8007 + [(set_attr "length" "8")])
8008 +
8009 +(define_expand "xorqi3"
8010 + [(parallel
8011 + [(set (match_operand:QI 0 "memory_operand" "")
8012 + (xor:QI (match_operand:QI 1 "nonimmediate_operand" "")
8013 + (match_operand:QI 2 "ubicom32_arith_operand" "")))
8014 + (clobber (reg:CC CC_REGNO))])]
8015 + "(ubicom32_v4)"
8016 + "{
8017 + if (!memory_operand (operands[0], QImode))
8018 + FAIL;
8019 +
8020 + /* If we have a non-data reg for operand 1 then prefer that over
8021 + a CONST_INT in operand 2. */
8022 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
8023 + && CONST_INT_P (operands[2]))
8024 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
8025 +
8026 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
8027 + operands[2] = copy_to_mode_reg (QImode, operands[2]);
8028 + }")
8029 +
8030 +(define_insn "xorqi3_xor1"
8031 + [(set (match_operand:QI 0 "memory_operand" "=m, m")
8032 + (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
8033 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
8034 + (clobber (reg:CC CC_REGNO))]
8035 + "(ubicom32_v4)"
8036 + "@
8037 + xor.1\\t%0, %2, %1
8038 + xor.1\\t%0, %1, %2")
8039 +
8040 +(define_insn "xorqi3_xor1_ccszn"
8041 + [(set (reg CC_REGNO)
8042 + (compare
8043 + (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
8044 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
8045 + (const_int 0)))
8046 + (set (match_operand:QI 0 "memory_operand" "=m, m")
8047 + (xor:QI (match_dup 1)
8048 + (match_dup 2)))]
8049 + "(ubicom32_v4
8050 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
8051 + "@
8052 + xor.1\\t%0, %2, %1
8053 + xor.1\\t%0, %1, %2")
8054 +
8055 +(define_insn "xorqi3_xor1_ccszn_null"
8056 + [(set (reg CC_REGNO)
8057 + (compare
8058 + (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
8059 + (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
8060 + (const_int 0)))]
8061 + "(ubicom32_v4
8062 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
8063 + "@
8064 + xor.1\\t#0, %1, %0
8065 + xor.1\\t#0, %0, %1")
8066 +
8067 +(define_insn "xor1_ccszn_null_1"
8068 + [(set (reg CC_REGNO)
8069 + (compare
8070 + (subreg:QI
8071 + (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
8072 + (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
8073 + 3)
8074 + (const_int 0)))]
8075 + "(ubicom32_v4
8076 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
8077 + "xor.1\\t#0, %1, %0")
8078 +
8079 +(define_insn "xor1_ccszn_null_2"
8080 + [(set (reg CC_REGNO)
8081 + (compare
8082 + (subreg:QI
8083 + (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
8084 + (subreg:SI
8085 + (match_operand:QI 1 "memory_operand" "m")
8086 + 0))
8087 + 3)
8088 + (const_int 0)))]
8089 + "(ubicom32_v4
8090 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
8091 + "xor.1\\t#0, %1, %0")
8092 +
8093 +(define_insn "xor1_ccwzn_null_3"
8094 + [(set (reg CC_REGNO)
8095 + (compare
8096 + (subreg:QI
8097 + (xor:SI (subreg:SI
8098 + (match_operand:QI 0 "memory_operand" "m")
8099 + 0)
8100 + (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
8101 + 3)
8102 + (const_int 0)))]
8103 + "(ubicom32_v4
8104 + && ubicom32_match_cc_mode(insn, CCSZNmode))"
8105 + "xor.1\\t#0, %0, %1")
8106 +
8107 +(define_expand "xorhi3"
8108 + [(parallel
8109 + [(set (match_operand:HI 0 "memory_operand" "")
8110 + (xor:HI (match_operand:HI 1 "nonimmediate_operand" "")
8111 + (match_operand:HI 2 "ubicom32_arith_operand" "")))
8112 + (clobber (reg:CC CC_REGNO))])]
8113 + ""
8114 + "{
8115 + if (!memory_operand (operands[0], HImode))
8116 + FAIL;
8117 +
8118 + /* If we have a non-data reg for operand 1 then prefer that over
8119 + a CONST_INT in operand 2. */
8120 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
8121 + && CONST_INT_P (operands[2]))
8122 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
8123 +
8124 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
8125 + operands[2] = copy_to_mode_reg (HImode, operands[2]);
8126 + }")
8127 +
8128 +(define_insn "xorhi3_xor2"
8129 + [(set (match_operand:HI 0 "memory_operand" "=m, m")
8130 + (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
8131 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
8132 + (clobber (reg:CC CC_REGNO))]
8133 + ""
8134 + "@
8135 + xor.2\\t%0, %2, %1
8136 + xor.2\\t%0, %1, %2")
8137 +
8138 +(define_insn "xorhi3_xor2_ccszn"
8139 + [(set (reg CC_REGNO)
8140 + (compare
8141 + (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
8142 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
8143 + (const_int 0)))
8144 + (set (match_operand:HI 0 "memory_operand" "=m, m")
8145 + (xor:HI (match_dup 1)
8146 + (match_dup 2)))]
8147 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
8148 + "@
8149 + xor.2\\t%0, %2, %1
8150 + xor.2\\t%0, %1, %2")
8151 +
8152 +(define_insn "xorhi3_xor2_ccszn_null"
8153 + [(set (reg CC_REGNO)
8154 + (compare
8155 + (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
8156 + (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
8157 + (const_int 0)))]
8158 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
8159 + "@
8160 + xor.2\\t#0, %1, %0
8161 + xor.2\\t#0, %0, %1")
8162 +
8163 +(define_insn "xor2_ccszn_null_1"
8164 + [(set (reg CC_REGNO)
8165 + (compare
8166 + (subreg:HI
8167 + (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
8168 + (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
8169 + 2)
8170 + (const_int 0)))]
8171 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
8172 + "xor.2\\t#0, %1, %0")
8173 +
8174 +(define_insn "xor2_ccszn_null_2"
8175 + [(set (reg CC_REGNO)
8176 + (compare
8177 + (subreg:HI
8178 + (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
8179 + (subreg:SI
8180 + (match_operand:HI 1 "memory_operand" "m")
8181 + 0))
8182 + 2)
8183 + (const_int 0)))]
8184 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
8185 + "xor.2\\t#0, %1, %0")
8186 +
8187 +(define_insn "xor2_ccszn_null_3"
8188 + [(set (reg CC_REGNO)
8189 + (compare
8190 + (subreg:HI
8191 + (xor:SI (subreg:SI
8192 + (match_operand:HI 0 "memory_operand" "m")
8193 + 0)
8194 + (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
8195 + 2)
8196 + (const_int 0)))]
8197 + "ubicom32_match_cc_mode(insn, CCSZNmode)"
8198 + "xor.2\\t#0, %0, %1")
8199 +
8200 +(define_insn "xorsi3"
8201 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
8202 + (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
8203 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
8204 + (clobber (reg:CC CC_REGNO))]
8205 + ""
8206 + "@
8207 + xor.4\\t%0, %2, %1
8208 + xor.4\\t%0, %1, %2")
8209 +
8210 +(define_insn "xorsi3_ccwzn"
8211 + [(set (reg CC_REGNO)
8212 + (compare
8213 + (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
8214 + (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
8215 + (const_int 0)))
8216 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
8217 + (xor:SI (match_dup 1)
8218 + (match_dup 2)))]
8219 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8220 + "@
8221 + xor.4\\t%0, %2, %1
8222 + xor.4\\t%0, %1, %2")
8223 +
8224 +(define_insn "xorsi3_ccwzn_null"
8225 + [(set (reg CC_REGNO)
8226 + (compare
8227 + (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
8228 + (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
8229 + (const_int 0)))]
8230 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8231 + "@
8232 + xor.4\\t#0, %1, %0
8233 + xor.4\\t#0, %0, %1")
8234 +
8235 +(define_expand "xordi3"
8236 + [(parallel
8237 + [(set (match_operand:DI 0 "nonimmediate_operand" "")
8238 + (xor:DI (match_operand:DI 1 "nonimmediate_operand" "")
8239 + (match_operand:DI 2 "ubicom32_arith_operand" "")))
8240 + (clobber (reg:CC CC_REGNO))])]
8241 + ""
8242 + "{
8243 + /* If we have a non-data reg for operand 1 then prefer that over
8244 + a CONST_INT in operand 2. */
8245 + if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
8246 + && CONST_INT_P (operands[2]))
8247 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
8248 +
8249 + if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
8250 + operands[2] = copy_to_mode_reg (DImode, operands[2]);
8251 + }")
8252 +
8253 +(define_insn_and_split "xordi3_xor4"
8254 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
8255 + (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
8256 + (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
8257 + (clobber (reg:CC CC_REGNO))]
8258 + ""
8259 + "#"
8260 + "reload_completed"
8261 + [(parallel [(set (match_dup 3)
8262 + (xor:SI (match_dup 4)
8263 + (match_dup 5)))
8264 + (clobber (reg:CC CC_REGNO))])
8265 + (parallel [(set (match_dup 6)
8266 + (xor:SI (match_dup 7)
8267 + (match_dup 8)))
8268 + (clobber (reg:CC CC_REGNO))])]
8269 + "{
8270 + operands[3] = gen_lowpart (SImode, operands[0]);
8271 + operands[4] = gen_lowpart (SImode, operands[1]);
8272 + operands[5] = gen_lowpart (SImode, operands[2]);
8273 + operands[6] = gen_highpart (SImode, operands[0]);
8274 + operands[7] = gen_highpart (SImode, operands[1]);
8275 + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
8276 + }"
8277 + [(set_attr "length" "8")])
8278 +
8279 +(define_insn "not2_2"
8280 + [(set (match_operand:HI 0 "memory_operand" "=m")
8281 + (subreg:HI
8282 + (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
8283 + 2))
8284 + (clobber (reg:CC CC_REGNO))]
8285 + ""
8286 + "not.2\\t%0, %1")
8287 +
8288 +(define_insn "one_cmplsi2"
8289 + [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
8290 + (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))
8291 + (clobber (reg:CC CC_REGNO))]
8292 + ""
8293 + "not.4\\t%0, %1")
8294 +
8295 +(define_insn "one_cmplsi2_ccwzn"
8296 + [(set (reg CC_REGNO)
8297 + (compare
8298 + (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
8299 + (const_int 0)))
8300 + (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
8301 + (not:SI (match_dup 1)))]
8302 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8303 + "not.4\\t%0, %1")
8304 +
8305 +(define_insn "one_cmplsi2_ccwzn_null"
8306 + [(set (reg CC_REGNO)
8307 + (compare
8308 + (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI"))
8309 + (const_int 0)))]
8310 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8311 + "not.4\\t#0, %0")
8312 +
8313 +(define_insn_and_split "one_cmpldi2"
8314 + [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
8315 + (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0")))
8316 + (clobber (reg:CC CC_REGNO))]
8317 + ""
8318 + "#"
8319 + ""
8320 + [(parallel [(set (match_dup 2)
8321 + (not:SI (match_dup 3)))
8322 + (clobber (reg:CC CC_REGNO))])
8323 + (parallel [(set (match_dup 4)
8324 + (not:SI (match_dup 5)))
8325 + (clobber (reg:CC CC_REGNO))])]
8326 + "{
8327 + operands[2] = gen_lowpart (SImode, operands[0]);
8328 + operands[3] = gen_lowpart (SImode, operands[1]);
8329 + operands[4] = gen_highpart (SImode, operands[0]);
8330 + operands[5] = gen_highpart (SImode, operands[1]);
8331 + }"
8332 + [(set_attr "length" "8")])
8333 +
8334 +; Conditional jump instructions
8335 +
8336 +(define_expand "beq"
8337 + [(set (pc)
8338 + (if_then_else (eq (match_dup 1)
8339 + (const_int 0))
8340 + (label_ref (match_operand 0 "" ""))
8341 + (pc)))]
8342 + ""
8343 + "{
8344 + operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0,
8345 + ubicom32_compare_op1);
8346 + }")
8347 +
8348 +(define_expand "bne"
8349 + [(set (pc)
8350 + (if_then_else (ne (match_dup 1)
8351 + (const_int 0))
8352 + (label_ref (match_operand 0 "" ""))
8353 + (pc)))]
8354 + ""
8355 + "{
8356 + operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0,
8357 + ubicom32_compare_op1);
8358 + }")
8359 +
8360 +(define_expand "bgt"
8361 + [(set (pc)
8362 + (if_then_else (gt (match_dup 1)
8363 + (const_int 0))
8364 + (label_ref (match_operand 0 "" ""))
8365 + (pc)))]
8366 + ""
8367 + "{
8368 + operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0,
8369 + ubicom32_compare_op1);
8370 + }")
8371 +
8372 +(define_expand "ble"
8373 + [(set (pc)
8374 + (if_then_else (le (match_dup 1)
8375 + (const_int 0))
8376 + (label_ref (match_operand 0 "" ""))
8377 + (pc)))]
8378 + ""
8379 + "{
8380 + operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0,
8381 + ubicom32_compare_op1);
8382 + }")
8383 +
8384 +(define_expand "bge"
8385 + [(set (pc)
8386 + (if_then_else (ge (match_dup 1)
8387 + (const_int 0))
8388 + (label_ref (match_operand 0 "" ""))
8389 + (pc)))]
8390 + ""
8391 + "{
8392 + operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0,
8393 + ubicom32_compare_op1);
8394 + }")
8395 +
8396 +(define_expand "blt"
8397 + [(set (pc)
8398 + (if_then_else (lt (match_dup 1)
8399 + (const_int 0))
8400 + (label_ref (match_operand 0 "" ""))
8401 + (pc)))]
8402 + ""
8403 + "{
8404 + operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0,
8405 + ubicom32_compare_op1);
8406 + }")
8407 +
8408 +(define_expand "bgtu"
8409 + [(set (pc)
8410 + (if_then_else (gtu (match_dup 1)
8411 + (const_int 0))
8412 + (label_ref (match_operand 0 "" ""))
8413 + (pc)))]
8414 + ""
8415 + "{
8416 + operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0,
8417 + ubicom32_compare_op1);
8418 + }")
8419 +
8420 +(define_expand "bleu"
8421 + [(set (pc)
8422 + (if_then_else (leu (match_dup 1)
8423 + (const_int 0))
8424 + (label_ref (match_operand 0 "" ""))
8425 + (pc)))]
8426 + ""
8427 + "{
8428 + operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0,
8429 + ubicom32_compare_op1);
8430 + }")
8431 +
8432 +(define_expand "bgeu"
8433 + [(set (pc)
8434 + (if_then_else (geu (match_dup 1)
8435 + (const_int 0))
8436 + (label_ref (match_operand 0 "" ""))
8437 + (pc)))]
8438 + ""
8439 + "{
8440 + operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0,
8441 + ubicom32_compare_op1);
8442 + }")
8443 +
8444 +(define_expand "bltu"
8445 + [(set (pc)
8446 + (if_then_else (ltu (match_dup 1)
8447 + (const_int 0))
8448 + (label_ref (match_operand 0 "" ""))
8449 + (pc)))]
8450 + ""
8451 + "{
8452 + operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0,
8453 + ubicom32_compare_op1);
8454 + }")
8455 +
8456 +(define_insn "jcc"
8457 + [(set (pc)
8458 + (if_then_else (match_operator 1 "comparison_operator"
8459 + [(match_operand 2 "ubicom32_cc_register_operand" "")
8460 + (const_int 0)])
8461 + (label_ref (match_operand 0 "" ""))
8462 + (pc)))]
8463 + ""
8464 + "*
8465 + {
8466 + ubicom32_output_cond_jump (insn, operands[1], operands[0]);
8467 + return \"\";
8468 + }")
8469 +
8470 +; Reverse branch - reverse our comparison condition so that we can
8471 +; branch in the opposite sense.
8472 +;
8473 +(define_insn_and_split "jcc_reverse"
8474 + [(set (pc)
8475 + (if_then_else (match_operator 1 "comparison_operator"
8476 + [(match_operand 2 "ubicom32_cc_register_operand" "")
8477 + (const_int 0)])
8478 + (pc)
8479 + (label_ref (match_operand 0 "" ""))))]
8480 + ""
8481 + "#"
8482 + "reload_completed"
8483 + [(set (pc)
8484 + (if_then_else (match_dup 3)
8485 + (label_ref (match_dup 0))
8486 + (pc)))]
8487 + "{
8488 + rtx cc_reg;
8489 +
8490 + cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
8491 + operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])),
8492 + GET_MODE (operands[1]),
8493 + cc_reg,
8494 + const0_rtx);
8495 + }")
8496 +
8497 +(define_insn "jump"
8498 + [(set (pc)
8499 + (label_ref (match_operand 0 "" "")))]
8500 + ""
8501 + "jmpt\\t%l0")
8502 +
8503 +(define_expand "indirect_jump"
8504 + [(parallel [(set (pc)
8505 + (match_operand:SI 0 "register_operand" ""))
8506 + (clobber (match_dup 0))])]
8507 + ""
8508 + "")
8509 +
8510 +(define_insn "indirect_jump_internal"
8511 + [(set (pc)
8512 + (match_operand:SI 0 "register_operand" "a"))
8513 + (clobber (match_dup 0))]
8514 + ""
8515 + "calli\\t%0,0(%0)")
8516 +
8517 +; Program Space: The table contains instructions, typically jumps.
8518 +; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address.
8519 +; <Jump Table is Here> ;An -> Here.
8520 +; LEA Ak, (An,Dn) ;Ak -> Table Entry
8521 +; JMP/CALL (Ak)
8522 +
8523 +(define_expand "tablejump"
8524 + [(parallel [(set (pc)
8525 + (match_operand:SI 0 "nonimmediate_operand" ""))
8526 + (use (label_ref (match_operand 1 "" "")))])]
8527 + ""
8528 + "")
8529 +
8530 +(define_insn "tablejump_internal"
8531 + [(set (pc)
8532 + (match_operand:SI 0 "nonimmediate_operand" "rm"))
8533 + (use (label_ref (match_operand 1 "" "")))]
8534 + ""
8535 + "ret\\t%0")
8536 +
8537 +; Call subroutine with no return value.
8538 +;
8539 +(define_expand "call"
8540 + [(call (match_operand:QI 0 "general_operand" "")
8541 + (match_operand:SI 1 "general_operand" ""))]
8542 + ""
8543 + "{
8544 + if (TARGET_FDPIC)
8545 + {
8546 + ubicom32_expand_call_fdpic (operands);
8547 + DONE;
8548 + }
8549 +
8550 + if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode))
8551 + XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
8552 + }")
8553 +
8554 +; We expand to a simple form that doesn't clobber the link register and
8555 +; then split to a form that does. This allows the RTL optimizers that
8556 +; run before the splitter to have the opportunity to eliminate the call
8557 +; without marking A5 as being clobbered and this in turn avoids saves
8558 +; and returns in a number of cases.
8559 +;
8560 +(define_insn_and_split "call_1"
8561 + [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
8562 + (match_operand:SI 1 "general_operand" "g,g"))]
8563 + "! TARGET_FDPIC"
8564 + "#"
8565 + ""
8566 + [(parallel
8567 + [(call (mem:QI (match_dup 0))
8568 + (match_dup 1))
8569 + (clobber (reg:SI LINK_REGNO))])]
8570 + "")
8571 +
8572 +(define_insn "call_slow"
8573 + [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
8574 + (match_operand:SI 1 "general_operand" "g,g"))
8575 + (clobber (reg:SI LINK_REGNO))]
8576 + "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
8577 + "@
8578 + calli\\ta5, 0(%0)
8579 + moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)")
8580 +
8581 +(define_insn "call_fast"
8582 + [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
8583 + (match_operand:SI 1 "general_operand" "g,g"))
8584 + (clobber (reg:SI LINK_REGNO))]
8585 + "(! TARGET_FDPIC && TARGET_FASTCALL)"
8586 + "@
8587 + calli\\ta5, 0(%0)
8588 + call\\ta5, %C0")
8589 +
8590 +; We expand to a simple form that doesn't clobber the link register and
8591 +; then split to a form that does. This allows the RTL optimizers that
8592 +; run before the splitter to have the opportunity to eliminate the call
8593 +; without marking A5 as being clobbered and this in turn avoids saves
8594 +; and returns in a number of cases.
8595 +;
8596 +(define_insn_and_split "call_fdpic"
8597 + [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
8598 + (match_operand:SI 1 "general_operand" "g,g"))
8599 + (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))]
8600 + "TARGET_FDPIC"
8601 + "#"
8602 + ""
8603 + [(parallel
8604 + [(call (mem:QI (match_dup 0))
8605 + (match_dup 1))
8606 + (use (match_dup 2))
8607 + (clobber (reg:SI LINK_REGNO))])]
8608 + "")
8609 +
8610 +(define_insn "call_fdpic_clobber"
8611 + [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
8612 + (match_operand:SI 1 "general_operand" "g,g"))
8613 + (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))
8614 + (clobber (reg:SI LINK_REGNO))]
8615 + "TARGET_FDPIC"
8616 + "@
8617 + move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5)
8618 + call\\ta5, %C0")
8619 +
8620 +; Call subroutine, returning value in operand 0
8621 +; (which must be a hard register).
8622 +;
8623 +(define_expand "call_value"
8624 + [(set (match_operand 0 "" "")
8625 + (call (match_operand:QI 1 "general_operand" "")
8626 + (match_operand:SI 2 "general_operand" "")))]
8627 + ""
8628 + "{
8629 + if (TARGET_FDPIC)
8630 + {
8631 + ubicom32_expand_call_value_fdpic (operands);
8632 + DONE;
8633 + }
8634 +
8635 + if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode))
8636 + XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
8637 + }")
8638 +
8639 +; We expand to a simple form that doesn't clobber the link register and
8640 +; then split to a form that does. This allows the RTL optimizers that
8641 +; run before the splitter to have the opportunity to eliminate the call
8642 +; without marking A5 as being clobbered and this in turn avoids saves
8643 +; and returns in a number of cases.
8644 +;
8645 +(define_insn_and_split "call_value_1"
8646 + [(set (match_operand 0 "register_operand" "=r,r")
8647 + (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
8648 + (match_operand:SI 2 "general_operand" "g,g")))]
8649 + "! TARGET_FDPIC"
8650 + "#"
8651 + ""
8652 + [(parallel
8653 + [(set (match_dup 0)
8654 + (call (mem:QI (match_dup 1))
8655 + (match_dup 2)))
8656 + (clobber (reg:SI LINK_REGNO))])]
8657 + "")
8658 +
8659 +(define_insn "call_value_slow"
8660 + [(set (match_operand 0 "register_operand" "=r,r")
8661 + (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
8662 + (match_operand:SI 2 "general_operand" "g,g")))
8663 + (clobber (reg:SI LINK_REGNO))]
8664 + "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
8665 + "@
8666 + calli\\ta5, 0(%1)
8667 + moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)")
8668 +
8669 +(define_insn "call_value_fast"
8670 + [(set (match_operand 0 "register_operand" "=r,r")
8671 + (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
8672 + (match_operand:SI 2 "general_operand" "g,g")))
8673 + (clobber (reg:SI LINK_REGNO))]
8674 + "(! TARGET_FDPIC && TARGET_FASTCALL)"
8675 + "@
8676 + calli\\ta5, 0(%1)
8677 + call\\ta5, %C1")
8678 +
8679 +; We expand to a simple form that doesn't clobber the link register and
8680 +; then split to a form that does. This allows the RTL optimizers that
8681 +; run before the splitter to have the opportunity to eliminate the call
8682 +; without marking A5 as being clobbered and this in turn avoids saves
8683 +; and returns in a number of cases.
8684 +;
8685 +(define_insn_and_split "call_value_fdpic"
8686 + [(set (match_operand 0 "register_operand" "=r,r")
8687 + (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
8688 + (match_operand:SI 2 "general_operand" "g,g")))
8689 + (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))]
8690 + "TARGET_FDPIC"
8691 + "#"
8692 + ""
8693 + [(parallel
8694 + [(set (match_dup 0)
8695 + (call (mem:QI (match_dup 1))
8696 + (match_dup 2)))
8697 + (use (match_dup 3))
8698 + (clobber (reg:SI LINK_REGNO))])]
8699 + "")
8700 +
8701 +(define_insn "call_value_fdpic_clobber"
8702 + [(set (match_operand 0 "register_operand" "=r,r")
8703 + (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
8704 + (match_operand:SI 2 "general_operand" "g,g")))
8705 + (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))
8706 + (clobber (reg:SI LINK_REGNO))]
8707 + "TARGET_FDPIC"
8708 + "@
8709 + move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5)
8710 + call\\ta5, %C1")
8711 +
8712 +(define_expand "untyped_call"
8713 + [(parallel [(call (match_operand 0 "" "")
8714 + (const_int 0))
8715 + (match_operand 1 "" "")
8716 + (match_operand 2 "" "")])]
8717 + ""
8718 + "{
8719 + int i;
8720 +
8721 + emit_call_insn (gen_call (operands[0], const0_rtx));
8722 +
8723 + for (i = 0; i < XVECLEN (operands[2], 0); i++)
8724 + {
8725 + rtx set = XVECEXP (operands[2], 0, i);
8726 + emit_move_insn (SET_DEST (set), SET_SRC (set));
8727 + }
8728 + DONE;
8729 + }")
8730 +
8731 +(define_insn "lsl1_1"
8732 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8733 + (ashift:SI (subreg:SI
8734 + (match_operand:QI 1 "memory_operand" "m")
8735 + 0)
8736 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8737 + (clobber (reg:CC CC_REGNO))]
8738 + "(ubicom32_v4)"
8739 + "lsl.1\\t%0, %1, %2")
8740 +
8741 +; The combiner gets rather creative about left shifts of sub-word memory
8742 +; operands because it's uncertain about whether the memory is sign or
8743 +; zero extended. It only wants zero-extended behaviour and so throws
8744 +; in an extra and operation.
8745 +;
8746 +(define_insn "lsl1_2"
8747 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8748 + (and:SI
8749 + (ashift:SI (subreg:SI
8750 + (match_operand:QI 1 "memory_operand" "m")
8751 + 0)
8752 + (match_operand:SI 2 "const_int_operand" "M"))
8753 + (match_operand:SI 3 "const_int_operand" "n")))
8754 + (clobber (reg:CC CC_REGNO))]
8755 + "(ubicom32_v4
8756 + && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))"
8757 + "lsl.1\\t%0, %1, %2")
8758 +
8759 +(define_insn "lsl2_1"
8760 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8761 + (ashift:SI (subreg:SI
8762 + (match_operand:HI 1 "memory_operand" "m")
8763 + 0)
8764 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8765 + (clobber (reg:CC CC_REGNO))]
8766 + "(ubicom32_v4)"
8767 + "lsl.2\\t%0, %1, %2")
8768 +
8769 +; The combiner gets rather creative about left shifts of sub-word memory
8770 +; operands because it's uncertain about whether the memory is sign or
8771 +; zero extended. It only wants zero-extended behaviour and so throws
8772 +; in an extra and operation.
8773 +;
8774 +(define_insn "lsl2_2"
8775 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8776 + (and:SI
8777 + (ashift:SI (subreg:SI
8778 + (match_operand:HI 1 "memory_operand" "m")
8779 + 0)
8780 + (match_operand:SI 2 "const_int_operand" "M"))
8781 + (match_operand:SI 3 "const_int_operand" "n")))
8782 + (clobber (reg:CC CC_REGNO))]
8783 + "(ubicom32_v4
8784 + && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))"
8785 + "lsl.2\\t%0, %1, %2")
8786 +
8787 +(define_insn "ashlsi3"
8788 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8789 + (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
8790 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8791 + (clobber (reg:CC CC_REGNO))]
8792 + ""
8793 + "lsl.4\\t%0, %1, %2")
8794 +
8795 +(define_insn "lshlsi3_ccwz"
8796 + [(set (reg CC_REGNO)
8797 + (compare
8798 + (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
8799 + (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
8800 + (const_int 0)))
8801 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8802 + (ashift:SI (match_dup 1)
8803 + (match_dup 2)))]
8804 + "ubicom32_match_cc_mode(insn, CCWZmode)"
8805 + "lsl.4\\t%0, %1, %2")
8806 +
8807 +(define_insn "lshlsi3_ccwz_null"
8808 + [(set (reg CC_REGNO)
8809 + (compare
8810 + (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
8811 + (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
8812 + (const_int 0)))
8813 + (clobber (match_scratch:SI 2 "=d"))]
8814 + "ubicom32_match_cc_mode(insn, CCWZmode)"
8815 + "lsl.4\\t%2, %0, %1")
8816 +
8817 +; The combiner finds this canonical form for what is in essence a right
8818 +; shift.
8819 +;
8820 +(define_insn "asr1_2"
8821 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8822 + (sign_extract:SI (match_operand:QI 1 "memory_operand" "m")
8823 + (match_operand:SI 2 "const_int_operand" "M")
8824 + (match_operand:SI 3 "const_int_operand" "M")))
8825 + (clobber (reg:CC CC_REGNO))]
8826 + "(ubicom32_v4
8827 + && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
8828 + "asr.1\\t%0, %1, %3")
8829 +
8830 +; The combiner finds this canonical form for what is in essence a right
8831 +; shift.
8832 +;
8833 +(define_insn "asr2_2"
8834 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8835 + (sign_extract:SI (match_operand:HI 1 "memory_operand" "m")
8836 + (match_operand:SI 2 "const_int_operand" "M")
8837 + (match_operand:SI 3 "const_int_operand" "M")))
8838 + (clobber (reg:CC CC_REGNO))]
8839 + "(ubicom32_v4
8840 + && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
8841 + "asr.2\\t%0, %1, %3")
8842 +
8843 +(define_insn "ashrsi3"
8844 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8845 + (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
8846 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8847 + (clobber (reg:CC CC_REGNO))]
8848 + ""
8849 + "asr.4\\t%0, %1, %2")
8850 +
8851 +(define_insn "ashrsi3_ccwzn"
8852 + [(set (reg CC_REGNO)
8853 + (compare
8854 + (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
8855 + (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
8856 + (const_int 0)))
8857 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8858 + (ashiftrt:SI (match_dup 1)
8859 + (match_dup 2)))]
8860 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8861 + "asr.4\\t%0, %1, %2")
8862 +
8863 +(define_insn "ashrsi3_ccwzn_null"
8864 + [(set (reg CC_REGNO)
8865 + (compare
8866 + (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ")
8867 + (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
8868 + (const_int 0)))
8869 + (clobber (match_scratch:SI 2 "=d"))]
8870 + "ubicom32_match_cc_mode(insn, CCWZNmode)"
8871 + "asr.4\\t%2, %0, %1")
8872 +
8873 +(define_insn "lsr1_1"
8874 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8875 + (lshiftrt:SI (subreg:SI
8876 + (match_operand:QI 1 "memory_operand" "m")
8877 + 0)
8878 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8879 + (clobber (reg:CC CC_REGNO))]
8880 + "(ubicom32_v4)"
8881 + "lsr.1\\t%0, %1, %2")
8882 +
8883 +; The combiner finds this canonical form for what is in essence a right
8884 +; shift.
8885 +;
8886 +(define_insn "lsr1_2"
8887 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8888 + (zero_extract:SI (match_operand:QI 1 "memory_operand" "m")
8889 + (match_operand:SI 2 "const_int_operand" "M")
8890 + (match_operand:SI 3 "const_int_operand" "M")))
8891 + (clobber (reg:CC CC_REGNO))]
8892 + "(ubicom32_v4
8893 + && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
8894 + "lsr.1\\t%0, %1, %3")
8895 +
8896 +(define_insn "lsr2_1"
8897 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8898 + (lshiftrt:SI (subreg:SI
8899 + (match_operand:HI 1 "memory_operand" "m")
8900 + 0)
8901 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8902 + (clobber (reg:CC CC_REGNO))]
8903 + "(ubicom32_v4)"
8904 + "lsr.2\\t%0, %1, %2")
8905 +
8906 +; The combiner finds this canonical form for what is in essence a right
8907 +; shift.
8908 +;
8909 +(define_insn "lsr2_2"
8910 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8911 + (zero_extract:SI (match_operand:HI 1 "memory_operand" "m")
8912 + (match_operand:SI 2 "const_int_operand" "M")
8913 + (match_operand:SI 3 "const_int_operand" "M")))
8914 + (clobber (reg:CC CC_REGNO))]
8915 + "(ubicom32_v4
8916 + && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
8917 + "lsr.2\\t%0, %1, %3")
8918 +
8919 +(define_insn "lshrsi3"
8920 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8921 + (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
8922 + (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
8923 + (clobber (reg:CC CC_REGNO))]
8924 + ""
8925 + "lsr.4\\t%0, %1, %2")
8926 +
8927 +(define_insn "lshrsi3_ccwz"
8928 + [(set (reg CC_REGNO)
8929 + (compare
8930 + (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
8931 + (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
8932 + (const_int 0)))
8933 + (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
8934 + (lshiftrt:SI (match_dup 1)
8935 + (match_dup 2)))]
8936 + "ubicom32_match_cc_mode(insn, CCWZmode)"
8937 + "lsr.4\\t%0, %1, %2")
8938 +
8939 +(define_insn "lshrsi3_ccwz_null"
8940 + [(set (reg CC_REGNO)
8941 + (compare
8942 + (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
8943 + (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
8944 + (const_int 0)))
8945 + (clobber (match_scratch:SI 2 "=d"))]
8946 + "ubicom32_match_cc_mode(insn, CCWZmode)"
8947 + "lsr.4\\t%2, %0, %1")
8948 +
8949 +(define_expand "prologue"
8950 + [(const_int 0)]
8951 + ""
8952 + "{
8953 + ubicom32_expand_prologue ();
8954 + DONE;
8955 + }")
8956 +
8957 +(define_expand "epilogue"
8958 + [(return)]
8959 + ""
8960 + "{
8961 + ubicom32_expand_epilogue ();
8962 + DONE;
8963 + }")
8964 +
8965 +(define_expand "return"
8966 + [(return)]
8967 + ""
8968 + "{
8969 + ubicom32_expand_epilogue ();
8970 + DONE;
8971 + }")
8972 +
8973 +(define_expand "_eh_return"
8974 + [(use (match_operand:SI 0 "register_operand" "r"))
8975 + (use (match_operand:SI 1 "register_operand" "r"))]
8976 + ""
8977 + "{
8978 + ubicom32_expand_eh_return (operands);
8979 + DONE;
8980 + }")
8981 +
8982 +; XXX - it looks almost certain that we could make return_internal use a Dn
8983 +; register too. In that instance we'd have to use a ret instruction
8984 +; rather than a calli but it might save cycles.
8985 +;
8986 +(define_insn "return_internal"
8987 + [(const_int 2)
8988 + (return)
8989 + (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))]
8990 + ""
8991 + "*
8992 + {
8993 + if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO
8994 + && ubicom32_can_use_calli_to_ret)
8995 + return \"calli\\t%0, 0(%0)\";
8996 +
8997 + return \"ret\\t%0\";
8998 + }")
8999 +
9000 +(define_insn "return_from_post_modify_sp"
9001 + [(parallel
9002 + [(const_int 2)
9003 + (return)
9004 + (use (mem:SI (post_modify:SI
9005 + (reg:SI SP_REGNO)
9006 + (plus:SI (reg:SI SP_REGNO)
9007 + (match_operand:SI 0 "const_int_operand" "n")))))])]
9008 + "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4"
9009 + "ret\\t(sp)%E0++")
9010 +
9011 +;(define_insn "eh_return_internal"
9012 +; [(const_int 4)
9013 +; (return)
9014 +; (use (reg:SI 34))]
9015 +; ""
9016 +; "ret\\ta2")
9017 +
9018 +; No operation, needed in case the user uses -g but not -O.
9019 +(define_expand "nop"
9020 + [(const_int 0)]
9021 + ""
9022 + "")
9023 +
9024 +(define_insn "nop_internal"
9025 + [(const_int 0)]
9026 + ""
9027 + "nop")
9028 +
9029 +; The combiner will generate this pattern given shift and add operations.
9030 +; The canonical form that the combiner wants to use appears to be multiplies
9031 +; instead of shifts even if the compiled sources use shifts.
9032 +;
9033 +(define_insn "shmrg1_add"
9034 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
9035 + (plus:SI
9036 + (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
9037 + (const_int 256))
9038 + (zero_extend:SI
9039 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
9040 + (clobber (reg:CC CC_REGNO))]
9041 + ""
9042 + "shmrg.1\\t%0, %2, %1")
9043 +
9044 +; The combiner will generate this pattern given shift and or operations.
9045 +;
9046 +(define_insn "shmrg1_ior"
9047 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
9048 + (ior:SI
9049 + (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
9050 + (const_int 8))
9051 + (zero_extend:SI
9052 + (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
9053 + (clobber (reg:CC CC_REGNO))]
9054 + ""
9055 + "shmrg.1\\t%0, %2, %1")
9056 +
9057 +; The combiner will generate this pattern given shift and add operations.
9058 +; The canonical form that the combiner wants to use appears to be multiplies
9059 +; instead of shifts even if the compiled sources use shifts.
9060 +;
9061 +(define_insn "shmrg2_add"
9062 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
9063 + (plus:SI
9064 + (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
9065 + (const_int 65536))
9066 + (zero_extend:SI
9067 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
9068 + (clobber (reg:CC CC_REGNO))]
9069 + ""
9070 + "shmrg.2\\t%0, %2, %1")
9071 +
9072 +; The combiner will generate this pattern given shift and or operations.
9073 +;
9074 +(define_insn "shmrg2_ior"
9075 + [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
9076 + (ior:SI
9077 + (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
9078 + (const_int 16))
9079 + (zero_extend:SI
9080 + (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
9081 + (clobber (reg:CC CC_REGNO))]
9082 + ""
9083 + "shmrg.2\\t%0, %2, %1")
9084 +
9085 +; Match the case where we load a word from the stack but then discard the
9086 +; upper 16 bits. We turn this into a zero-extended load of that useful
9087 +; 16 bits direct from the stack where possible.
9088 +;
9089 +
9090 +; XXX - do these peephole2 ops actually work after the CCmode conversion?
9091 +(define_peephole2
9092 + [(set (match_operand:SI 0 "register_operand" "")
9093 + (mem:SI (plus:SI (reg:SI SP_REGNO)
9094 + (match_operand:SI 1 "const_int_operand" ""))))
9095 + (set (match_operand:SI 2 "nonimmediate_operand" "")
9096 + (zero_extend:SI (match_operand:HI 3 "register_operand" "")))]
9097 + "(INTVAL (operands[1]) <= 252
9098 + && REGNO (operands[3]) == REGNO (operands[0])
9099 + && ((peep2_reg_dead_p (2, operands[0])
9100 + && ! reg_mentioned_p (operands[0], operands[2]))
9101 + || rtx_equal_p (operands[0], operands[2])))"
9102 + [(set (match_dup 2)
9103 + (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO)
9104 + (match_dup 4)))))]
9105 + "{
9106 + operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
9107 + }")
9108 +
9109 +; Match the case where we load a word from the stack but then discard the
9110 +; upper 16 bits. We turn this into a 16-bit load of that useful
9111 +; 16 bits direct from the stack where possible.
9112 +;
9113 +(define_peephole2
9114 + [(set (match_operand:SI 0 "register_operand" "")
9115 + (mem:SI (plus:SI (reg:SI SP_REGNO)
9116 + (match_operand:SI 1 "const_int_operand" ""))))
9117 + (set (match_operand:HI 2 "nonimmediate_operand" "")
9118 + (match_operand:HI 3 "register_operand" ""))]
9119 + "(INTVAL (operands[1]) <= 252
9120 + && REGNO (operands[3]) == REGNO (operands[0])
9121 + && ((peep2_reg_dead_p (2, operands[0])
9122 + && ! reg_mentioned_p (operands[0], operands[2]))
9123 + || rtx_equal_p (operands[0], operands[2])))"
9124 + [(set (match_dup 2)
9125 + (mem:HI (plus:SI (reg:SI SP_REGNO)
9126 + (match_dup 4))))]
9127 + "{
9128 + operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
9129 + }")
9130 +
9131 +; Match the case where we load a word from the stack but then discard the
9132 +; upper 24 bits. We turn this into a zero-extended load of that useful
9133 +; 8 bits direct from the stack where possible.
9134 +;
9135 +(define_peephole2
9136 + [(set (match_operand:SI 0 "register_operand" "")
9137 + (mem:SI (plus:SI (reg:SI SP_REGNO)
9138 + (match_operand:SI 1 "const_int_operand" ""))))
9139 + (set (match_operand:SI 2 "nonimmediate_operand" "")
9140 + (zero_extend:SI (match_operand:QI 3 "register_operand" "")))]
9141 + "(INTVAL (operands[1]) <= 124
9142 + && REGNO (operands[3]) == REGNO (operands[0])
9143 + && ((peep2_reg_dead_p (2, operands[0])
9144 + && ! reg_mentioned_p (operands[0], operands[2]))
9145 + || rtx_equal_p (operands[0], operands[2])))"
9146 + [(set (match_dup 2)
9147 + (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO)
9148 + (match_dup 4)))))]
9149 + "{
9150 + operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
9151 + }")
9152 +
9153 +; Match the case where we load a word from the stack but then discard the
9154 +; upper 24 bits. We turn this into an 8-bit load of that useful
9155 +; 8 bits direct from the stack where possible.
9156 +;
9157 +(define_peephole2
9158 + [(set (match_operand:SI 0 "register_operand" "")
9159 + (mem:SI (plus:SI (reg:SI SP_REGNO)
9160 + (match_operand:SI 1 "const_int_operand" ""))))
9161 + (set (match_operand:QI 2 "nonimmediate_operand" "")
9162 + (match_operand:QI 3 "register_operand" ""))]
9163 + "(INTVAL (operands[1]) <= 124
9164 + && REGNO (operands[3]) == REGNO (operands[0])
9165 + && ((peep2_reg_dead_p (2, operands[0])
9166 + && ! reg_mentioned_p (operands[0], operands[2]))
9167 + || rtx_equal_p (operands[0], operands[2])))"
9168 + [(set (match_dup 2)
9169 + (mem:QI (plus:SI (reg:SI SP_REGNO)
9170 + (match_dup 4))))]
9171 + "{
9172 + operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
9173 + }")
9174 +
9175 --- /dev/null
9176 +++ b/gcc/config/ubicom32/ubicom32.opt
9177 @@ -0,0 +1,27 @@
9178 +mdebug-address
9179 +Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS)
9180 +Debug addresses
9181 +
9182 +mdebug-context
9183 +Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT)
9184 +Debug contexts
9185 +
9186 +march=
9187 +Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined
9188 +Specify the name of the target architecture
9189 +
9190 +mfdpic
9191 +Target Report Mask(FDPIC)
9192 +Enable Function Descriptor PIC mode
9193 +
9194 +minline-plt
9195 +Target Report Mask(INLINE_PLT)
9196 +Enable inlining of PLT in function calls
9197 +
9198 +mfastcall
9199 +Target Report Mask(FASTCALL)
9200 +Enable default fast (call) calling sequence for smaller applications
9201 +
9202 +mipos-abi
9203 +Target Report Mask(IPOS_ABI)
9204 +Enable the ipOS ABI in which D10-D13 are caller-clobbered
9205 --- /dev/null
9206 +++ b/gcc/config/ubicom32/uclinux.h
9207 @@ -0,0 +1,67 @@
9208 +/* Definitions of target machine for Ubicom32-uclinux
9209 +
9210 + Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
9211 + 2009 Free Software Foundation, Inc.
9212 + Contributed by Ubicom, Inc.
9213 +
9214 + This file is part of GCC.
9215 +
9216 + GCC is free software; you can redistribute it and/or modify it
9217 + under the terms of the GNU General Public License as published
9218 + by the Free Software Foundation; either version 3, or (at your
9219 + option) any later version.
9220 +
9221 + GCC is distributed in the hope that it will be useful, but WITHOUT
9222 + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
9223 + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
9224 + License for more details.
9225 +
9226 + You should have received a copy of the GNU General Public License
9227 + along with GCC; see the file COPYING3. If not see
9228 + <http://www.gnu.org/licenses/>. */
9229 +
9230 +/* Don't assume anything about the header files. */
9231 +#define NO_IMPLICIT_EXTERN_C
9232 +
9233 +#undef LIB_SPEC
9234 +#define LIB_SPEC \
9235 + "%{pthread:-lpthread} " \
9236 + "%{!shared:%{!symbolic: -lc}} "
9237 +
9238 +
9239 +#undef LINK_GCC_C_SEQUENCE_SPEC
9240 +#define LINK_GCC_C_SEQUENCE_SPEC \
9241 + "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} "
9242 +
9243 +#undef STARTFILE_SPEC
9244 +#define STARTFILE_SPEC \
9245 + "%{!shared: crt1%O%s}" \
9246 + " crti%O%s crtbegin%O%s"
9247 +
9248 +#undef ENDFILE_SPEC
9249 +#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
9250 +
9251 +/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that
9252 + we want to support both flat and ELF output. */
9253 +#define OBJECT_FORMAT_FLAT
9254 +
9255 +#undef DRIVER_SELF_SPECS
9256 +#define DRIVER_SELF_SPECS \
9257 + "%{!mno-fastcall:-mfastcall}"
9258 +
9259 +/* taken from linux.h */
9260 +/* The GNU C++ standard library requires that these macros be defined. */
9261 +#undef CPLUSPLUS_CPP_SPEC
9262 +#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
9263 +
9264 +#define TARGET_OS_CPP_BUILTINS() \
9265 + do { \
9266 + builtin_define_std ("__UBICOM32__"); \
9267 + builtin_define_std ("__ubicom32__"); \
9268 + builtin_define ("__gnu_linux__"); \
9269 + builtin_define_std ("linux"); \
9270 + builtin_define_std ("unix"); \
9271 + builtin_assert ("system=linux"); \
9272 + builtin_assert ("system=unix"); \
9273 + builtin_assert ("system=posix"); \
9274 + } while (0)
9275 --- /dev/null
9276 +++ b/gcc/config/ubicom32/xm-ubicom32.h
9277 @@ -0,0 +1,36 @@
9278 +/* Configuration for Ubicom's Ubicom32 architecture.
9279 + Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
9280 + Foundation, Inc.
9281 + Contributed by Ubicom Inc.
9282 +
9283 +This file is part of GNU CC.
9284 +
9285 +GNU CC is free software; you can redistribute it and/or modify
9286 +it under the terms of the GNU General Public License as published by
9287 +the Free Software Foundation; either version 2, or (at your option)
9288 +any later version.
9289 +
9290 +GNU CC is distributed in the hope that it will be useful,
9291 +but WITHOUT ANY WARRANTY; without even the implied warranty of
9292 +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9293 +GNU General Public License for more details.
9294 +
9295 +You should have received a copy of the GNU General Public License
9296 +along with GNU CC; see the file COPYING. If not, write to
9297 +the Free Software Foundation, 59 Temple Place - Suite 330,
9298 +Boston, MA 02111-1307, USA. */
9299 +
9300 +/* #defines that need visibility everywhere. */
9301 +#define FALSE 0
9302 +#define TRUE 1
9303 +
9304 +/* This describes the machine the compiler is hosted on. */
9305 +#define HOST_BITS_PER_CHAR 8
9306 +#define HOST_BITS_PER_SHORT 16
9307 +#define HOST_BITS_PER_INT 32
9308 +#define HOST_BITS_PER_LONG 32
9309 +#define HOST_BITS_PER_LONGLONG 64
9310 +
9311 +/* Arguments to use with `exit'. */
9312 +#define SUCCESS_EXIT_CODE 0
9313 +#define FATAL_EXIT_CODE 33
9314 --- a/gcc/config.gcc
9315 +++ b/gcc/config.gcc
9316 @@ -2339,6 +2339,34 @@ spu-*-elf*)
9317 c_target_objs="${c_target_objs} spu-c.o"
9318 cxx_target_objs="${cxx_target_objs} spu-c.o"
9319 ;;
9320 +ubicom32-*-elf)
9321 + xm_file=ubicom32/xm-ubicom32.h
9322 + tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h
9323 + tmake_file=ubicom32/t-ubicom32
9324 + ;;
9325 +ubicom32-*-uclinux*)
9326 + xm_file=ubicom32/xm-ubicom32.h
9327 + tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h
9328 + tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
9329 + extra_options="${extra_options} linux.opt"
9330 + tmake_file=ubicom32/t-ubicom32-uclinux
9331 + use_collect2=no
9332 + ;;
9333 +ubicom32-*-linux-uclibc)
9334 + xm_file=ubicom32/xm-ubicom32.h
9335 + tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
9336 + tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
9337 + extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
9338 + use_collect2=no
9339 + ;;
9340 +ubicom32-*-linux*)
9341 + xm_file=ubicom32/xm-ubicom32.h
9342 + tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
9343 + tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
9344 + tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
9345 + extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
9346 + use_collect2=no
9347 + ;;
9348 v850e1-*-*)
9349 target_cpu_default="TARGET_CPU_v850e1"
9350 tm_file="dbxelf.h elfos.h svr4.h v850/v850.h"
9351 --- a/libgcc/config.host
9352 +++ b/libgcc/config.host
9353 @@ -551,6 +551,15 @@ sparc64-*-netbsd*)
9354 ;;
9355 spu-*-elf*)
9356 ;;
9357 +ubicom32*-*-elf*)
9358 + ;;
9359 +ubicom32*-*-uclinux*)
9360 + ;;
9361 +ubicom32*-*-linux*)
9362 + # No need to build crtbeginT.o on uClibc systems. Should probably
9363 + # be moved to the OS specific section above.
9364 + extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
9365 + ;;
9366 v850e1-*-*)
9367 ;;
9368 v850e-*-*)
This page took 0.401 seconds and 3 git commands to generate.