ramips: raeth: protect macro parameters
[openwrt.git] / target / linux / lantiq / patches-2.6.32 / 410-spi2.patch
1 From: Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
2 Date: Thu, 3 Mar 2011 17:15:30 +0000 (+0100)
3 Subject: SPI: lantiq: Add driver for Lantiq SoC SPI controller
4 X-Git-Url: http://nbd.name/gitweb.cgi?p=lantiq.git;a=commitdiff_plain;h=653c95b8b9066c9c6ac08bd64d0ceee439e9fd90;hp=3d21b04682ae8eb1c1965aba39d1796e8c5ad84b
5
6 SPI: lantiq: Add driver for Lantiq SoC SPI controller
7
8 Signed-off-by: Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
9 ---
10
11 --- a/drivers/spi/Kconfig
12 +++ b/drivers/spi/Kconfig
13 @@ -133,6 +133,14 @@
14 This enables using the Freescale i.MX SPI controllers in master
15 mode.
16
17 +config SPI_LANTIQ
18 + tristate "Lantiq SoC SPI controller"
19 + depends on SOC_LANTIQ_XWAY
20 + select SPI_BITBANG
21 + help
22 + This driver supports the Lantiq SoC SPI controller in master
23 + mode.
24 +
25 config SPI_LM70_LLP
26 tristate "Parallel port adapter for LM70 eval board (DEVELOPMENT)"
27 depends on PARPORT && EXPERIMENTAL
28 --- a/drivers/spi/Makefile
29 +++ b/drivers/spi/Makefile
30 @@ -20,6 +20,7 @@
31 obj-$(CONFIG_SPI_GPIO) += spi_gpio.o
32 obj-$(CONFIG_SPI_GPIO_OLD) += spi_gpio_old.o
33 obj-$(CONFIG_SPI_IMX) += spi_imx.o
34 +obj-$(CONFIG_SPI_LANTIQ) += spi_lantiq.o
35 obj-$(CONFIG_SPI_LM70_LLP) += spi_lm70llp.o
36 obj-$(CONFIG_SPI_PXA2XX) += pxa2xx_spi.o
37 obj-$(CONFIG_SPI_OMAP_UWIRE) += omap_uwire.o
38 --- /dev/null
39 +++ b/drivers/spi/spi_lantiq.c
40 @@ -0,0 +1,1063 @@
41 +/*
42 + * Lantiq SoC SPI controller
43 + *
44 + * Copyright (C) 2011 Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
45 + *
46 + * This program is free software; you can distribute it and/or modify it
47 + * under the terms of the GNU General Public License (Version 2) as
48 + * published by the Free Software Foundation.
49 + */
50 +
51 +#include <linux/init.h>
52 +#include <linux/module.h>
53 +#include <linux/workqueue.h>
54 +#include <linux/platform_device.h>
55 +#include <linux/io.h>
56 +#include <linux/sched.h>
57 +#include <linux/delay.h>
58 +#include <linux/interrupt.h>
59 +#include <linux/completion.h>
60 +#include <linux/spinlock.h>
61 +#include <linux/err.h>
62 +#include <linux/clk.h>
63 +#include <linux/gpio.h>
64 +#include <linux/spi/spi.h>
65 +#include <linux/spi/spi_bitbang.h>
66 +
67 +#include <xway.h>
68 +#include <xway_irq.h>
69 +#include <lantiq_platform.h>
70 +
71 +#define LTQ_SPI_CLC 0x00 /* Clock control */
72 +#define LTQ_SPI_PISEL 0x04 /* Port input select */
73 +#define LTQ_SPI_ID 0x08 /* Identification */
74 +#define LTQ_SPI_CON 0x10 /* Control */
75 +#define LTQ_SPI_STAT 0x14 /* Status */
76 +#define LTQ_SPI_WHBSTATE 0x18 /* Write HW modified state */
77 +#define LTQ_SPI_TB 0x20 /* Transmit buffer */
78 +#define LTQ_SPI_RB 0x24 /* Receive buffer */
79 +#define LTQ_SPI_RXFCON 0x30 /* Receive FIFO control */
80 +#define LTQ_SPI_TXFCON 0x34 /* Transmit FIFO control */
81 +#define LTQ_SPI_FSTAT 0x38 /* FIFO status */
82 +#define LTQ_SPI_BRT 0x40 /* Baudrate timer */
83 +#define LTQ_SPI_BRSTAT 0x44 /* Baudrate timer status */
84 +#define LTQ_SPI_SFCON 0x60 /* Serial frame control */
85 +#define LTQ_SPI_SFSTAT 0x64 /* Serial frame status */
86 +#define LTQ_SPI_GPOCON 0x70 /* General purpose output control */
87 +#define LTQ_SPI_GPOSTAT 0x74 /* General purpose output status */
88 +#define LTQ_SPI_FGPO 0x78 /* Forced general purpose output */
89 +#define LTQ_SPI_RXREQ 0x80 /* Receive request */
90 +#define LTQ_SPI_RXCNT 0x84 /* Receive count */
91 +#define LTQ_SPI_DMACON 0xEC /* DMA control */
92 +#define LTQ_SPI_IRNEN 0xF4 /* Interrupt node enable */
93 +#define LTQ_SPI_IRNICR 0xF8 /* Interrupt node interrupt capture */
94 +#define LTQ_SPI_IRNCR 0xFC /* Interrupt node control */
95 +
96 +#define LTQ_SPI_CLC_SMC_SHIFT 16 /* Clock divider for sleep mode */
97 +#define LTQ_SPI_CLC_SMC_MASK 0xFF
98 +#define LTQ_SPI_CLC_RMC_SHIFT 8 /* Clock divider for normal run mode */
99 +#define LTQ_SPI_CLC_RMC_MASK 0xFF
100 +#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
101 +#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
102 +
103 +#define LTQ_SPI_ID_TXFS_SHIFT 24 /* Implemented TX FIFO size */
104 +#define LTQ_SPI_ID_TXFS_MASK 0x3F
105 +#define LTQ_SPI_ID_RXFS_SHIFT 16 /* Implemented RX FIFO size */
106 +#define LTQ_SPI_ID_RXFS_MASK 0x3F
107 +#define LTQ_SPI_ID_REV_MASK 0x1F /* Hardware revision number */
108 +#define LTQ_SPI_ID_CFG BIT(5) /* DMA interface support */
109 +
110 +#define LTQ_SPI_CON_BM_SHIFT 16 /* Data width selection */
111 +#define LTQ_SPI_CON_BM_MASK 0x1F
112 +#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
113 +#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
114 +#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
115 +#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
116 +#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
117 +#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
118 +#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
119 +#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
120 +#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
121 +#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
122 +#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
123 +#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
124 +#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
125 +#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
126 +
127 +#define LTQ_SPI_STAT_RXBV_MASK 0x7
128 +#define LTQ_SPI_STAT_RXBV_SHIFT 28
129 +#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
130 +#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
131 +#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
132 +#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
133 +#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
134 +#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
135 +#define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
136 +#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
137 +
138 +#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
139 +#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
140 +#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
141 +#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
142 +#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
143 +#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
144 +#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
145 +#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
146 +#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
147 +#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
148 +#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
149 +#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
150 +#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
151 +#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
152 +#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
153 +#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
154 +#define LTQ_SPI_WHBSTATE_CLR_ERRORS 0x0F50
155 +
156 +#define LTQ_SPI_RXFCON_RXFITL_SHIFT 8 /* FIFO interrupt trigger level */
157 +#define LTQ_SPI_RXFCON_RXFITL_MASK 0x3F
158 +#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
159 +#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
160 +
161 +#define LTQ_SPI_TXFCON_TXFITL_SHIFT 8 /* FIFO interrupt trigger level */
162 +#define LTQ_SPI_TXFCON_TXFITL_MASK 0x3F
163 +#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
164 +#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
165 +
166 +#define LTQ_SPI_FSTAT_RXFFL_MASK 0x3f
167 +#define LTQ_SPI_FSTAT_RXFFL_SHIFT 0
168 +#define LTQ_SPI_FSTAT_TXFFL_MASK 0x3f
169 +#define LTQ_SPI_FSTAT_TXFFL_SHIFT 8
170 +
171 +#define LTQ_SPI_GPOCON_ISCSBN_SHIFT 8
172 +#define LTQ_SPI_GPOCON_INVOUTN_SHIFT 0
173 +
174 +#define LTQ_SPI_FGPO_SETOUTN_SHIFT 8
175 +#define LTQ_SPI_FGPO_CLROUTN_SHIFT 0
176 +
177 +#define LTQ_SPI_RXREQ_RXCNT_MASK 0xFFFF /* Receive count value */
178 +#define LTQ_SPI_RXCNT_TODO_MASK 0xFFFF /* Recevie to-do value */
179 +
180 +#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
181 +#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
182 +#define LTQ_SPI_IRNEN_T BIT(1) /* Transmit end interrupt request */
183 +#define LTQ_SPI_IRNEN_R BIT(0) /* Receive end interrupt request */
184 +#define LTQ_SPI_IRNEN_ALL 0xF
185 +
186 +/* Hard-wired GPIOs used by SPI controller */
187 +#define LTQ_SPI_GPIO_DI 16
188 +#define LTQ_SPI_GPIO_DO 17
189 +#define LTQ_SPI_GPIO_CLK 18
190 +
191 +struct ltq_spi {
192 + struct spi_bitbang bitbang;
193 + struct completion done;
194 + spinlock_t lock;
195 +
196 + struct device *dev;
197 + void __iomem *base;
198 + struct clk *clk;
199 +
200 + int status;
201 + int irq[3];
202 +
203 + const u8 *tx;
204 + u8 *rx;
205 + u32 tx_cnt;
206 + u32 rx_cnt;
207 + u32 len;
208 + struct spi_transfer *curr_transfer;
209 +
210 + u32 (*get_tx) (struct ltq_spi *);
211 +
212 + u16 txfs;
213 + u16 rxfs;
214 + unsigned dma_support:1;
215 + unsigned cfg_mode:1;
216 +
217 +};
218 +
219 +struct ltq_spi_controller_state {
220 + void (*cs_activate) (struct spi_device *);
221 + void (*cs_deactivate) (struct spi_device *);
222 +};
223 +
224 +struct ltq_spi_irq_map {
225 + char *name;
226 + irq_handler_t handler;
227 +};
228 +
229 +struct ltq_spi_cs_gpio_map {
230 + unsigned gpio;
231 + unsigned altsel0;
232 + unsigned altsel1;
233 +};
234 +
235 +static inline struct ltq_spi *ltq_spi_to_hw(struct spi_device *spi)
236 +{
237 + return spi_master_get_devdata(spi->master);
238 +}
239 +
240 +static inline u32 ltq_spi_reg_read(struct ltq_spi *hw, u32 reg)
241 +{
242 + return ioread32be(hw->base + reg);
243 +}
244 +
245 +static inline void ltq_spi_reg_write(struct ltq_spi *hw, u32 val, u32 reg)
246 +{
247 + iowrite32be(val, hw->base + reg);
248 +}
249 +
250 +static inline void ltq_spi_reg_setbit(struct ltq_spi *hw, u32 bits, u32 reg)
251 +{
252 + u32 val;
253 +
254 + val = ltq_spi_reg_read(hw, reg);
255 + val |= bits;
256 + ltq_spi_reg_write(hw, val, reg);
257 +}
258 +
259 +static inline void ltq_spi_reg_clearbit(struct ltq_spi *hw, u32 bits, u32 reg)
260 +{
261 + u32 val;
262 +
263 + val = ltq_spi_reg_read(hw, reg);
264 + val &= ~bits;
265 + ltq_spi_reg_write(hw, val, reg);
266 +}
267 +
268 +static void ltq_spi_hw_enable(struct ltq_spi *hw)
269 +{
270 + u32 clc;
271 +
272 + /* Power-up mdule */
273 + ltq_pmu_enable(PMU_SPI);
274 +
275 + /*
276 + * Set clock divider for run mode to 1 to
277 + * run at same frequency as FPI bus
278 + */
279 + clc = (1 << LTQ_SPI_CLC_RMC_SHIFT);
280 + ltq_spi_reg_write(hw, clc, LTQ_SPI_CLC);
281 +}
282 +
283 +static void ltq_spi_hw_disable(struct ltq_spi *hw)
284 +{
285 + /* Set clock divider to 0 and set module disable bit */
286 + ltq_spi_reg_write(hw, LTQ_SPI_CLC_DISS, LTQ_SPI_CLC);
287 +
288 + /* Power-down mdule */
289 + ltq_pmu_disable(PMU_SPI);
290 +}
291 +
292 +static void ltq_spi_reset_fifos(struct ltq_spi *hw)
293 +{
294 + u32 val;
295 +
296 + /*
297 + * Enable and flush FIFOs. Set interrupt trigger level to
298 + * half of FIFO count implemented in hardware.
299 + */
300 + if (hw->txfs > 1) {
301 + val = hw->txfs << (LTQ_SPI_TXFCON_TXFITL_SHIFT - 1);
302 + val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
303 + ltq_spi_reg_write(hw, val, LTQ_SPI_TXFCON);
304 + }
305 +
306 + if (hw->rxfs > 1) {
307 + val = hw->rxfs << (LTQ_SPI_RXFCON_RXFITL_SHIFT - 1);
308 + val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
309 + ltq_spi_reg_write(hw, val, LTQ_SPI_RXFCON);
310 + }
311 +}
312 +
313 +static inline int ltq_spi_wait_ready(struct ltq_spi *hw)
314 +{
315 + u32 stat;
316 + unsigned long timeout;
317 +
318 + timeout = jiffies + msecs_to_jiffies(200);
319 +
320 + do {
321 + stat = ltq_spi_reg_read(hw, LTQ_SPI_STAT);
322 + if (!(stat & LTQ_SPI_STAT_BSY))
323 + return 0;
324 +
325 + cond_resched();
326 + } while (!time_after_eq(jiffies, timeout));
327 +
328 + dev_err(hw->dev, "SPI wait ready timed out\n");
329 +
330 + return -ETIMEDOUT;
331 +}
332 +
333 +static void ltq_spi_config_mode_set(struct ltq_spi *hw)
334 +{
335 + if (hw->cfg_mode)
336 + return;
337 +
338 + /*
339 + * Putting the SPI module in config mode is only safe if no
340 + * transfer is in progress as indicated by busy flag STATE.BSY.
341 + */
342 + if (ltq_spi_wait_ready(hw)) {
343 + ltq_spi_reset_fifos(hw);
344 + hw->status = -ETIMEDOUT;
345 + }
346 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
347 +
348 + hw->cfg_mode = 1;
349 +}
350 +
351 +static void ltq_spi_run_mode_set(struct ltq_spi *hw)
352 +{
353 + if (!hw->cfg_mode)
354 + return;
355 +
356 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
357 +
358 + hw->cfg_mode = 0;
359 +}
360 +
361 +static u32 ltq_spi_tx_word_u8(struct ltq_spi *hw)
362 +{
363 + const u8 *tx = hw->tx;
364 + u32 data = *tx++;
365 +
366 + hw->tx_cnt++;
367 + hw->tx++;
368 +
369 + return data;
370 +}
371 +
372 +static u32 ltq_spi_tx_word_u16(struct ltq_spi *hw)
373 +{
374 + const u16 *tx = (u16 *) hw->tx;
375 + u32 data = *tx++;
376 +
377 + hw->tx_cnt += 2;
378 + hw->tx += 2;
379 +
380 + return data;
381 +}
382 +
383 +static u32 ltq_spi_tx_word_u32(struct ltq_spi *hw)
384 +{
385 + const u32 *tx = (u32 *) hw->tx;
386 + u32 data = *tx++;
387 +
388 + hw->tx_cnt += 4;
389 + hw->tx += 4;
390 +
391 + return data;
392 +}
393 +
394 +static void ltq_spi_bits_per_word_set(struct spi_device *spi)
395 +{
396 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
397 + u32 bm;
398 + u8 bits_per_word = spi->bits_per_word;
399 +
400 + /*
401 + * Use either default value of SPI device or value
402 + * from current transfer.
403 + */
404 + if (hw->curr_transfer && hw->curr_transfer->bits_per_word)
405 + bits_per_word = hw->curr_transfer->bits_per_word;
406 +
407 + if (bits_per_word <= 8)
408 + hw->get_tx = ltq_spi_tx_word_u8;
409 + else if (bits_per_word <= 16)
410 + hw->get_tx = ltq_spi_tx_word_u16;
411 + else if (bits_per_word <= 32)
412 + hw->get_tx = ltq_spi_tx_word_u32;
413 +
414 + /* CON.BM value = bits_per_word - 1 */
415 + bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_SHIFT;
416 +
417 + ltq_spi_reg_clearbit(hw, LTQ_SPI_CON_BM_MASK <<
418 + LTQ_SPI_CON_BM_SHIFT, LTQ_SPI_CON);
419 + ltq_spi_reg_setbit(hw, bm, LTQ_SPI_CON);
420 +}
421 +
422 +static void ltq_spi_speed_set(struct spi_device *spi)
423 +{
424 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
425 + u32 br, max_speed_hz, spi_clk;
426 + u32 speed_hz = spi->max_speed_hz;
427 +
428 + /*
429 + * Use either default value of SPI device or value
430 + * from current transfer.
431 + */
432 + if (hw->curr_transfer && hw->curr_transfer->speed_hz)
433 + speed_hz = hw->curr_transfer->speed_hz;
434 +
435 + /*
436 + * SPI module clock is derived from FPI bus clock dependent on
437 + * divider value in CLC.RMS which is always set to 1.
438 + */
439 + spi_clk = clk_get_rate(hw->clk);
440 +
441 + /*
442 + * Maximum SPI clock frequency in master mode is half of
443 + * SPI module clock frequency. Maximum reload value of
444 + * baudrate generator BR is 2^16.
445 + */
446 + max_speed_hz = spi_clk / 2;
447 + if (speed_hz >= max_speed_hz)
448 + br = 0;
449 + else
450 + br = (max_speed_hz / speed_hz) - 1;
451 +
452 + if (br > 0xFFFF)
453 + br = 0xFFFF;
454 +
455 + ltq_spi_reg_write(hw, br, LTQ_SPI_BRT);
456 +}
457 +
458 +static void ltq_spi_clockmode_set(struct spi_device *spi)
459 +{
460 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
461 + u32 con;
462 +
463 + con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
464 +
465 + /*
466 + * SPI mode mapping in CON register:
467 + * Mode CPOL CPHA CON.PO CON.PH
468 + * 0 0 0 0 1
469 + * 1 0 1 0 0
470 + * 2 1 0 1 1
471 + * 3 1 1 1 0
472 + */
473 + if (spi->mode & SPI_CPHA)
474 + con &= ~LTQ_SPI_CON_PH;
475 + else
476 + con |= LTQ_SPI_CON_PH;
477 +
478 + if (spi->mode & SPI_CPOL)
479 + con |= LTQ_SPI_CON_PO;
480 + else
481 + con &= ~LTQ_SPI_CON_PO;
482 +
483 + /* Set heading control */
484 + if (spi->mode & SPI_LSB_FIRST)
485 + con &= ~LTQ_SPI_CON_HB;
486 + else
487 + con |= LTQ_SPI_CON_HB;
488 +
489 + ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
490 +}
491 +
492 +static void ltq_spi_xmit_set(struct ltq_spi *hw, struct spi_transfer *t)
493 +{
494 + u32 con;
495 +
496 + con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
497 +
498 + if (t) {
499 + if (t->tx_buf && t->rx_buf) {
500 + con &= ~(LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
501 + } else if (t->rx_buf) {
502 + con &= ~LTQ_SPI_CON_RXOFF;
503 + con |= LTQ_SPI_CON_TXOFF;
504 + } else if (t->tx_buf) {
505 + con &= ~LTQ_SPI_CON_TXOFF;
506 + con |= LTQ_SPI_CON_RXOFF;
507 + }
508 + } else
509 + con |= (LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
510 +
511 + ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
512 +}
513 +
514 +static void ltq_spi_gpio_cs_activate(struct spi_device *spi)
515 +{
516 + struct ltq_spi_controller_data *cdata = spi->controller_data;
517 + int val = spi->mode & SPI_CS_HIGH ? 1 : 0;
518 +
519 + gpio_set_value(cdata->gpio, val);
520 +}
521 +
522 +static void ltq_spi_gpio_cs_deactivate(struct spi_device *spi)
523 +{
524 + struct ltq_spi_controller_data *cdata = spi->controller_data;
525 + int val = spi->mode & SPI_CS_HIGH ? 0 : 1;
526 +
527 + gpio_set_value(cdata->gpio, val);
528 +}
529 +
530 +static void ltq_spi_internal_cs_activate(struct spi_device *spi)
531 +{
532 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
533 + u32 fgpo;
534 +
535 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_CLROUTN_SHIFT));
536 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
537 +}
538 +
539 +static void ltq_spi_internal_cs_deactivate(struct spi_device *spi)
540 +{
541 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
542 + u32 fgpo;
543 +
544 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
545 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
546 +}
547 +
548 +static void ltq_spi_chipselect(struct spi_device *spi, int cs)
549 +{
550 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
551 + struct ltq_spi_controller_state *cstate = spi->controller_state;
552 +
553 + switch (cs) {
554 + case BITBANG_CS_ACTIVE:
555 + ltq_spi_bits_per_word_set(spi);
556 + ltq_spi_speed_set(spi);
557 + ltq_spi_clockmode_set(spi);
558 + ltq_spi_run_mode_set(hw);
559 +
560 + cstate->cs_activate(spi);
561 + break;
562 +
563 + case BITBANG_CS_INACTIVE:
564 + cstate->cs_deactivate(spi);
565 +
566 + ltq_spi_config_mode_set(hw);
567 +
568 + break;
569 + }
570 +}
571 +
572 +static int ltq_spi_setup_transfer(struct spi_device *spi,
573 + struct spi_transfer *t)
574 +{
575 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
576 + u8 bits_per_word = spi->bits_per_word;
577 +
578 + hw->curr_transfer = t;
579 +
580 + if (t && t->bits_per_word)
581 + bits_per_word = t->bits_per_word;
582 +
583 + if (bits_per_word > 32)
584 + return -EINVAL;
585 +
586 + ltq_spi_config_mode_set(hw);
587 +
588 + return 0;
589 +}
590 +
591 +static const struct ltq_spi_cs_gpio_map ltq_spi_cs[] = {
592 + { 15, 1, 0 },
593 + { 22, 1, 0 },
594 + { 13, 0, 1 },
595 + { 10, 0, 1 },
596 + { 9, 0, 1 },
597 + { 11, 1, 1 },
598 +};
599 +
600 +static int ltq_spi_setup(struct spi_device *spi)
601 +{
602 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
603 + struct ltq_spi_controller_data *cdata = spi->controller_data;
604 + struct ltq_spi_controller_state *cstate;
605 + u32 gpocon, fgpo;
606 + int ret;
607 +
608 + /* Set default word length to 8 if not set */
609 + if (!spi->bits_per_word)
610 + spi->bits_per_word = 8;
611 +
612 + if (spi->bits_per_word > 32)
613 + return -EINVAL;
614 +
615 + if (!spi->controller_state) {
616 + cstate = kzalloc(sizeof(struct ltq_spi_controller_state),
617 + GFP_KERNEL);
618 + if (!cstate)
619 + return -ENOMEM;
620 +
621 + spi->controller_state = cstate;
622 + } else
623 + return 0;
624 +
625 + /*
626 + * Up to six GPIOs can be connected to the SPI module
627 + * via GPIO alternate function to control the chip select lines.
628 + * For more flexibility in board layout this driver can also control
629 + * the CS lines via GPIO API. If GPIOs should be used, board setup code
630 + * have to register the SPI device with struct ltq_spi_controller_data
631 + * attached.
632 + */
633 + if (cdata && cdata->gpio) {
634 + ret = gpio_request(cdata->gpio, "spi-cs");
635 + if (ret)
636 + return -EBUSY;
637 +
638 + ret = spi->mode & SPI_CS_HIGH ? 0 : 1;
639 + gpio_direction_output(cdata->gpio, ret);
640 +
641 + cstate->cs_activate = ltq_spi_gpio_cs_activate;
642 + cstate->cs_deactivate = ltq_spi_gpio_cs_deactivate;
643 + } else {
644 + ret = ltq_gpio_request(ltq_spi_cs[spi->chip_select].gpio,
645 + ltq_spi_cs[spi->chip_select].altsel0,
646 + ltq_spi_cs[spi->chip_select].altsel1,
647 + 1, "spi-cs");
648 + if (ret)
649 + return -EBUSY;
650 +
651 + gpocon = (1 << (spi->chip_select +
652 + LTQ_SPI_GPOCON_ISCSBN_SHIFT));
653 +
654 + if (spi->mode & SPI_CS_HIGH)
655 + gpocon |= (1 << spi->chip_select);
656 +
657 + fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
658 +
659 + ltq_spi_reg_setbit(hw, gpocon, LTQ_SPI_GPOCON);
660 + ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
661 +
662 + cstate->cs_activate = ltq_spi_internal_cs_activate;
663 + cstate->cs_deactivate = ltq_spi_internal_cs_deactivate;
664 + }
665 +
666 + return 0;
667 +}
668 +
669 +static void ltq_spi_cleanup(struct spi_device *spi)
670 +{
671 + struct ltq_spi_controller_data *cdata = spi->controller_data;
672 + struct ltq_spi_controller_state *cstate = spi->controller_state;
673 + unsigned gpio;
674 +
675 + if (cdata && cdata->gpio)
676 + gpio = cdata->gpio;
677 + else
678 + gpio = ltq_spi_cs[spi->chip_select].gpio;
679 +
680 + gpio_free(gpio);
681 + kfree(cstate);
682 +}
683 +
684 +static void ltq_spi_txfifo_write(struct ltq_spi *hw)
685 +{
686 + u32 fstat, data;
687 + u16 fifo_space;
688 +
689 + /* Determine how much FIFOs are free for TX data */
690 + fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
691 + fifo_space = hw->txfs - ((fstat >> LTQ_SPI_FSTAT_TXFFL_SHIFT) &
692 + LTQ_SPI_FSTAT_TXFFL_MASK);
693 +
694 + if (!fifo_space)
695 + return;
696 +
697 + while (hw->tx_cnt < hw->len && fifo_space) {
698 + data = hw->get_tx(hw);
699 + ltq_spi_reg_write(hw, data, LTQ_SPI_TB);
700 + fifo_space--;
701 + }
702 +}
703 +
704 +static void ltq_spi_rxfifo_read(struct ltq_spi *hw)
705 +{
706 + u32 fstat, data, *rx32;
707 + u16 fifo_fill;
708 + u8 rxbv, shift, *rx8;
709 +
710 + /* Determine how much FIFOs are filled with RX data */
711 + fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
712 + fifo_fill = ((fstat >> LTQ_SPI_FSTAT_RXFFL_SHIFT)
713 + & LTQ_SPI_FSTAT_RXFFL_MASK);
714 +
715 + if (!fifo_fill)
716 + return;
717 +
718 + /*
719 + * The 32 bit FIFO is always used completely independent from the
720 + * bits_per_word value. Thus four bytes have to be read at once
721 + * per FIFO.
722 + */
723 + rx32 = (u32 *) hw->rx;
724 + while (hw->len - hw->rx_cnt >= 4 && fifo_fill) {
725 + *rx32++ = ltq_spi_reg_read(hw, LTQ_SPI_RB);
726 + hw->rx_cnt += 4;
727 + hw->rx += 4;
728 + fifo_fill--;
729 + }
730 +
731 + /*
732 + * If there are remaining bytes, read byte count from STAT.RXBV
733 + * register and read the data byte-wise.
734 + */
735 + while (fifo_fill && hw->rx_cnt < hw->len) {
736 + rxbv = (ltq_spi_reg_read(hw, LTQ_SPI_STAT) >>
737 + LTQ_SPI_STAT_RXBV_SHIFT) & LTQ_SPI_STAT_RXBV_MASK;
738 + data = ltq_spi_reg_read(hw, LTQ_SPI_RB);
739 +
740 + shift = (rxbv - 1) * 8;
741 + rx8 = hw->rx;
742 +
743 + while (rxbv) {
744 + *rx8++ = (data >> shift) & 0xFF;
745 + rxbv--;
746 + shift -= 8;
747 + hw->rx_cnt++;
748 + hw->rx++;
749 + }
750 +
751 + fifo_fill--;
752 + }
753 +}
754 +
755 +static void ltq_spi_rxreq_set(struct ltq_spi *hw)
756 +{
757 + u32 rxreq, rxreq_max, rxtodo;
758 +
759 + rxtodo = ltq_spi_reg_read(hw, LTQ_SPI_RXCNT) & LTQ_SPI_RXCNT_TODO_MASK;
760 +
761 + /*
762 + * In RX-only mode the serial clock is activated only after writing
763 + * the expected amount of RX bytes into RXREQ register.
764 + * To avoid receive overflows at high clocks it is better to request
765 + * only the amount of bytes that fits into all FIFOs. This value
766 + * depends on the FIFO size implemented in hardware.
767 + */
768 + rxreq = hw->len - hw->rx_cnt;
769 + rxreq_max = hw->rxfs << 2;
770 + rxreq = min(rxreq_max, rxreq);
771 +
772 + if (!rxtodo && rxreq)
773 + ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ);
774 +}
775 +
776 +static inline void ltq_spi_complete(struct ltq_spi *hw)
777 +{
778 + complete(&hw->done);
779 +}
780 +
781 +irqreturn_t ltq_spi_tx_irq(int irq, void *data)
782 +{
783 + struct ltq_spi *hw = data;
784 + unsigned long flags;
785 + int completed = 0;
786 +
787 + spin_lock_irqsave(&hw->lock, flags);
788 +
789 + if (hw->tx_cnt < hw->len)
790 + ltq_spi_txfifo_write(hw);
791 +
792 + if (hw->tx_cnt == hw->len)
793 + completed = 1;
794 +
795 + spin_unlock_irqrestore(&hw->lock, flags);
796 +
797 + if (completed)
798 + ltq_spi_complete(hw);
799 +
800 + return IRQ_HANDLED;
801 +}
802 +
803 +irqreturn_t ltq_spi_rx_irq(int irq, void *data)
804 +{
805 + struct ltq_spi *hw = data;
806 + unsigned long flags;
807 + int completed = 0;
808 +
809 + spin_lock_irqsave(&hw->lock, flags);
810 +
811 + if (hw->rx_cnt < hw->len) {
812 + ltq_spi_rxfifo_read(hw);
813 +
814 + if (hw->tx && hw->tx_cnt < hw->len)
815 + ltq_spi_txfifo_write(hw);
816 + }
817 +
818 + if (hw->rx_cnt == hw->len)
819 + completed = 1;
820 + else if (!hw->tx)
821 + ltq_spi_rxreq_set(hw);
822 +
823 + spin_unlock_irqrestore(&hw->lock, flags);
824 +
825 + if (completed)
826 + ltq_spi_complete(hw);
827 +
828 + return IRQ_HANDLED;
829 +}
830 +
831 +irqreturn_t ltq_spi_err_irq(int irq, void *data)
832 +{
833 + struct ltq_spi *hw = data;
834 + unsigned long flags;
835 +
836 + spin_lock_irqsave(&hw->lock, flags);
837 +
838 + /* Disable all interrupts */
839 + ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
840 +
841 + /* Clear all error flags */
842 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
843 +
844 + /* Flush FIFOs */
845 + ltq_spi_reg_setbit(hw, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
846 + ltq_spi_reg_setbit(hw, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
847 +
848 + hw->status = -EIO;
849 + spin_unlock_irqrestore(&hw->lock, flags);
850 +
851 + ltq_spi_complete(hw);
852 +
853 + return IRQ_HANDLED;
854 +}
855 +
856 +static int ltq_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
857 +{
858 + struct ltq_spi *hw = ltq_spi_to_hw(spi);
859 + u32 irq_flags = 0;
860 +
861 + hw->tx = t->tx_buf;
862 + hw->rx = t->rx_buf;
863 + hw->len = t->len;
864 + hw->tx_cnt = 0;
865 + hw->rx_cnt = 0;
866 + hw->status = 0;
867 + INIT_COMPLETION(hw->done);
868 +
869 + ltq_spi_xmit_set(hw, t);
870 +
871 + /* Enable error interrupts */
872 + ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
873 +
874 + if (hw->tx) {
875 + /* Initially fill TX FIFO with as much data as possible */
876 + ltq_spi_txfifo_write(hw);
877 + irq_flags |= LTQ_SPI_IRNEN_T;
878 +
879 + /* Always enable RX interrupt in Full Duplex mode */
880 + if (hw->rx)
881 + irq_flags |= LTQ_SPI_IRNEN_R;
882 + } else if (hw->rx) {
883 + /* Start RX clock */
884 + ltq_spi_rxreq_set(hw);
885 +
886 + /* Enable RX interrupt to receive data from RX FIFOs */
887 + irq_flags |= LTQ_SPI_IRNEN_R;
888 + }
889 +
890 + /* Enable TX or RX interrupts */
891 + ltq_spi_reg_setbit(hw, irq_flags, LTQ_SPI_IRNEN);
892 + wait_for_completion_interruptible(&hw->done);
893 +
894 + /* Disable all interrupts */
895 + ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
896 +
897 + /*
898 + * Return length of current transfer for bitbang utility code if
899 + * no errors occured during transmission.
900 + */
901 + if (!hw->status)
902 + hw->status = hw->len;
903 +
904 + return hw->status;
905 +}
906 +
907 +static const struct ltq_spi_irq_map ltq_spi_irqs[] = {
908 + { "spi_tx", ltq_spi_tx_irq },
909 + { "spi_rx", ltq_spi_rx_irq },
910 + { "spi_err", ltq_spi_err_irq },
911 +};
912 +
913 +static int __init ltq_spi_probe(struct platform_device *pdev)
914 +{
915 + struct spi_master *master;
916 + struct resource *r;
917 + struct ltq_spi *hw;
918 + struct ltq_spi_platform_data *pdata = pdev->dev.platform_data;
919 + int ret, i;
920 + u32 data, id;
921 +
922 + master = spi_alloc_master(&pdev->dev, sizeof(struct ltq_spi));
923 + if (!master) {
924 + dev_err(&pdev->dev, "spi_alloc_master\n");
925 + ret = -ENOMEM;
926 + goto err;
927 + }
928 +
929 + hw = spi_master_get_devdata(master);
930 +
931 + r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
932 + if (r == NULL) {
933 + dev_err(&pdev->dev, "platform_get_resource\n");
934 + ret = -ENOENT;
935 + goto err_master;
936 + }
937 +
938 + r = devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
939 + pdev->name);
940 + if (!r) {
941 + dev_err(&pdev->dev, "devm_request_mem_region\n");
942 + ret = -ENXIO;
943 + goto err_master;
944 + }
945 +
946 + hw->base = devm_ioremap_nocache(&pdev->dev, r->start, resource_size(r));
947 + if (!hw->base) {
948 + dev_err(&pdev->dev, "devm_ioremap_nocache\n");
949 + ret = -ENXIO;
950 + goto err_master;
951 + }
952 +
953 + hw->clk = clk_get(&pdev->dev, "fpi");
954 + if (IS_ERR(hw->clk)) {
955 + dev_err(&pdev->dev, "clk_get\n");
956 + ret = PTR_ERR(hw->clk);
957 + goto err_master;
958 + }
959 +
960 + memset(hw->irq, 0, sizeof(hw->irq));
961 + for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) {
962 + ret = platform_get_irq_byname(pdev, ltq_spi_irqs[i].name);
963 + if (0 > ret) {
964 + dev_err(&pdev->dev, "platform_get_irq_byname\n");
965 + goto err_irq;
966 + }
967 +
968 + hw->irq[i] = ret;
969 + ret = request_irq(hw->irq[i], ltq_spi_irqs[i].handler,
970 + 0, ltq_spi_irqs[i].name, hw);
971 + if (ret) {
972 + dev_err(&pdev->dev, "request_irq\n");
973 + goto err_irq;
974 + }
975 + }
976 +
977 + hw->bitbang.master = spi_master_get(master);
978 + hw->bitbang.chipselect = ltq_spi_chipselect;
979 + hw->bitbang.setup_transfer = ltq_spi_setup_transfer;
980 + hw->bitbang.txrx_bufs = ltq_spi_txrx_bufs;
981 +
982 + master->bus_num = pdev->id;
983 + master->num_chipselect = pdata->num_chipselect;
984 + master->setup = ltq_spi_setup;
985 + master->cleanup = ltq_spi_cleanup;
986 +
987 + hw->dev = &pdev->dev;
988 + init_completion(&hw->done);
989 + spin_lock_init(&hw->lock);
990 +
991 + /* Set GPIO alternate functions to SPI */
992 + ltq_gpio_request(LTQ_SPI_GPIO_DI, 1, 0, 0, "spi-di");
993 + ltq_gpio_request(LTQ_SPI_GPIO_DO, 1, 0, 1, "spi-do");
994 + ltq_gpio_request(LTQ_SPI_GPIO_CLK, 1, 0, 1, "spi-clk");
995 +
996 + ltq_spi_hw_enable(hw);
997 +
998 + /* Read module capabilities */
999 + id = ltq_spi_reg_read(hw, LTQ_SPI_ID);
1000 + hw->txfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
1001 + hw->rxfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
1002 + hw->dma_support = (id & LTQ_SPI_ID_CFG) ? 1 : 0;
1003 +
1004 + ltq_spi_config_mode_set(hw);
1005 +
1006 + /* Enable error checking, disable TX/RX, set idle value high */
1007 + data = LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
1008 + LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN |
1009 + LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF | LTQ_SPI_CON_IDLE;
1010 + ltq_spi_reg_write(hw, data, LTQ_SPI_CON);
1011 +
1012 + /* Enable master mode and clear error flags */
1013 + ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETMS |
1014 + LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
1015 +
1016 + /* Reset GPIO/CS registers */
1017 + ltq_spi_reg_write(hw, 0x0, LTQ_SPI_GPOCON);
1018 + ltq_spi_reg_write(hw, 0xFF00, LTQ_SPI_FGPO);
1019 +
1020 + /* Enable and flush FIFOs */
1021 + ltq_spi_reset_fifos(hw);
1022 +
1023 + ret = spi_bitbang_start(&hw->bitbang);
1024 + if (ret) {
1025 + dev_err(&pdev->dev, "spi_bitbang_start\n");
1026 + goto err_bitbang;
1027 + }
1028 +
1029 + platform_set_drvdata(pdev, hw);
1030 +
1031 + pr_info("Lantiq SoC SPI controller rev %u (TXFS %u, RXFS %u, DMA %u)\n",
1032 + id & LTQ_SPI_ID_REV_MASK, hw->txfs, hw->rxfs, hw->dma_support);
1033 +
1034 + return 0;
1035 +
1036 +err_bitbang:
1037 + ltq_spi_hw_disable(hw);
1038 +
1039 +err_irq:
1040 + clk_put(hw->clk);
1041 +
1042 + for (; i > 0; i--)
1043 + free_irq(hw->irq[i], hw);
1044 +
1045 +err_master:
1046 + spi_master_put(master);
1047 +
1048 +err:
1049 + return ret;
1050 +}
1051 +
1052 +static int __exit ltq_spi_remove(struct platform_device *pdev)
1053 +{
1054 + struct ltq_spi *hw = platform_get_drvdata(pdev);
1055 + int ret, i;
1056 +
1057 + ret = spi_bitbang_stop(&hw->bitbang);
1058 + if (ret)
1059 + return ret;
1060 +
1061 + platform_set_drvdata(pdev, NULL);
1062 +
1063 + ltq_spi_config_mode_set(hw);
1064 + ltq_spi_hw_disable(hw);
1065 +
1066 + for (i = 0; i < ARRAY_SIZE(hw->irq); i++)
1067 + if (0 < hw->irq[i])
1068 + free_irq(hw->irq[i], hw);
1069 +
1070 + gpio_free(LTQ_SPI_GPIO_DI);
1071 + gpio_free(LTQ_SPI_GPIO_DO);
1072 + gpio_free(LTQ_SPI_GPIO_CLK);
1073 +
1074 + clk_put(hw->clk);
1075 + spi_master_put(hw->bitbang.master);
1076 +
1077 + return 0;
1078 +}
1079 +
1080 +static struct platform_driver ltq_spi_driver = {
1081 + .driver = {
1082 + .name = "ltq-spi",
1083 + .owner = THIS_MODULE,
1084 + },
1085 + .remove = __exit_p(ltq_spi_remove),
1086 +};
1087 +
1088 +static int __init ltq_spi_init(void)
1089 +{
1090 + return platform_driver_probe(&ltq_spi_driver, ltq_spi_probe);
1091 +}
1092 +module_init(ltq_spi_init);
1093 +
1094 +static void __exit ltq_spi_exit(void)
1095 +{
1096 + platform_driver_unregister(&ltq_spi_driver);
1097 +}
1098 +module_exit(ltq_spi_exit);
1099 +
1100 +MODULE_DESCRIPTION("Lantiq SoC SPI controller driver");
1101 +MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>");
1102 +MODULE_LICENSE("GPL");
1103 +MODULE_ALIAS("platform:ltq-spi");
This page took 0.09559 seconds and 5 git commands to generate.