43d07d9dad11d42f1d1ff4cfef91d2017a51c1cb
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
24 static const char rcsid
[] =
25 "@(#) $Header: /usr/local/cvs/linux/tools/build/e100boot/libpcap-0.4/optimize.c,v 1.1 1999/08/26 10:05:23 johana Exp $ (LBL)";
28 #include <sys/types.h>
40 #ifdef HAVE_OS_PROTO_H
48 #define A_ATOM BPF_MEMWORDS
49 #define X_ATOM (BPF_MEMWORDS+1)
54 * This define is used to represent *both* the accumulator and
55 * x register in use-def computations.
56 * Currently, the use-def code assumes only one definition per instruction.
58 #define AX_ATOM N_ATOMS
61 * A flag to indicate that further optimization is needed.
62 * Iterative passes are continued until a given pass yields no
68 * A block is marked if only if its mark equals the current mark.
69 * Rather than traverse the code array, marking each item, 'cur_mark' is
70 * incremented. This automatically makes each element unmarked.
73 #define isMarked(p) ((p)->mark == cur_mark)
74 #define unMarkAll() cur_mark += 1
75 #define Mark(p) ((p)->mark = cur_mark)
77 static void opt_init(struct block
*);
78 static void opt_cleanup(void);
80 static void make_marks(struct block
*);
81 static void mark_code(struct block
*);
83 static void intern_blocks(struct block
*);
85 static int eq_slist(struct slist
*, struct slist
*);
87 static void find_levels_r(struct block
*);
89 static void find_levels(struct block
*);
90 static void find_dom(struct block
*);
91 static void propedom(struct edge
*);
92 static void find_edom(struct block
*);
93 static void find_closure(struct block
*);
94 static int atomuse(struct stmt
*);
95 static int atomdef(struct stmt
*);
96 static void compute_local_ud(struct block
*);
97 static void find_ud(struct block
*);
98 static void init_val(void);
99 static int F(int, int, int);
100 static inline void vstore(struct stmt
*, int *, int, int);
101 static void opt_blk(struct block
*, int);
102 static int use_conflict(struct block
*, struct block
*);
103 static void opt_j(struct edge
*);
104 static void or_pullup(struct block
*);
105 static void and_pullup(struct block
*);
106 static void opt_blks(struct block
*, int);
107 static inline void link_inedge(struct edge
*, struct block
*);
108 static void find_inedges(struct block
*);
109 static void opt_root(struct block
**);
110 static void opt_loop(struct block
*, int);
111 static void fold_op(struct stmt
*, int, int);
112 static inline struct slist
*this_op(struct slist
*);
113 static void opt_not(struct block
*);
114 static void opt_peep(struct block
*);
115 static void opt_stmt(struct stmt
*, int[], int);
116 static void deadstmt(struct stmt
*, struct stmt
*[]);
117 static void opt_deadstores(struct block
*);
118 static void opt_blk(struct block
*, int);
119 static int use_conflict(struct block
*, struct block
*);
120 static void opt_j(struct edge
*);
121 static struct block
*fold_edge(struct block
*, struct edge
*);
122 static inline int eq_blk(struct block
*, struct block
*);
123 static int slength(struct slist
*);
124 static int count_blocks(struct block
*);
125 static void number_blks_r(struct block
*);
126 static int count_stmts(struct block
*);
127 static int convert_code_r(struct block
*);
129 static void opt_dump(struct block
*);
133 struct block
**blocks
;
138 * A bit vector set representation of the dominators.
139 * We round up the set size to the next power of two.
141 static int nodewords
;
142 static int edgewords
;
143 struct block
**levels
;
145 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
147 * True if a is in uset {p}
149 #define SET_MEMBER(p, a) \
150 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
155 #define SET_INSERT(p, a) \
156 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
159 * Delete 'a' from uset p.
161 #define SET_DELETE(p, a) \
162 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
167 #define SET_INTERSECT(a, b, n)\
169 register bpf_u_int32 *_x = a, *_y = b;\
170 register int _n = n;\
171 while (--_n >= 0) *_x++ &= *_y++;\
177 #define SET_SUBTRACT(a, b, n)\
179 register bpf_u_int32 *_x = a, *_y = b;\
180 register int _n = n;\
181 while (--_n >= 0) *_x++ &=~ *_y++;\
187 #define SET_UNION(a, b, n)\
189 register bpf_u_int32 *_x = a, *_y = b;\
190 register int _n = n;\
191 while (--_n >= 0) *_x++ |= *_y++;\
194 static uset all_dom_sets
;
195 static uset all_closure_sets
;
196 static uset all_edge_sets
;
199 #define MAX(a,b) ((a)>(b)?(a):(b))
215 find_levels_r(JT(b
));
216 find_levels_r(JF(b
));
217 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
221 b
->link
= levels
[level
];
226 * Level graph. The levels go from 0 at the leaves to
227 * N_LEVELS at the root. The levels[] array points to the
228 * first node of the level list, whose elements are linked
229 * with the 'link' field of the struct block.
235 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
241 * Find dominator relationships.
242 * Assumes graph has been leveled.
253 * Initialize sets to contain all nodes.
256 i
= n_blocks
* nodewords
;
259 /* Root starts off empty. */
260 for (i
= nodewords
; --i
>= 0;)
263 /* root->level is the highest level no found. */
264 for (i
= root
->level
; i
>= 0; --i
) {
265 for (b
= levels
[i
]; b
; b
= b
->link
) {
266 SET_INSERT(b
->dom
, b
->id
);
269 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
270 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
279 SET_INSERT(ep
->edom
, ep
->id
);
281 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
282 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
287 * Compute edge dominators.
288 * Assumes graph has been leveled and predecessors established.
299 for (i
= n_edges
* edgewords
; --i
>= 0; )
302 /* root->level is the highest level no found. */
303 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
304 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
305 for (i
= root
->level
; i
>= 0; --i
) {
306 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
314 * Find the backwards transitive closure of the flow graph. These sets
315 * are backwards in the sense that we find the set of nodes that reach
316 * a given node, not the set of nodes that can be reached by a node.
318 * Assumes graph has been leveled.
328 * Initialize sets to contain no nodes.
330 memset((char *)all_closure_sets
, 0,
331 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
333 /* root->level is the highest level no found. */
334 for (i
= root
->level
; i
>= 0; --i
) {
335 for (b
= levels
[i
]; b
; b
= b
->link
) {
336 SET_INSERT(b
->closure
, b
->id
);
339 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
340 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
346 * Return the register number that is used by s. If A and X are both
347 * used, return AX_ATOM. If no register is used, return -1.
349 * The implementation should probably change to an array access.
355 register int c
= s
->code
;
360 switch (BPF_CLASS(c
)) {
363 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
364 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
368 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
369 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
379 if (BPF_SRC(c
) == BPF_X
)
384 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
391 * Return the register number that is defined by 's'. We assume that
392 * a single stmt cannot define more than one register. If no register
393 * is defined, return -1.
395 * The implementation should probably change to an array access.
404 switch (BPF_CLASS(s
->code
)) {
418 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
428 atomset def
= 0, use
= 0, kill
= 0;
431 for (s
= b
->stmts
; s
; s
= s
->next
) {
432 if (s
->s
.code
== NOP
)
434 atom
= atomuse(&s
->s
);
436 if (atom
== AX_ATOM
) {
437 if (!ATOMELEM(def
, X_ATOM
))
438 use
|= ATOMMASK(X_ATOM
);
439 if (!ATOMELEM(def
, A_ATOM
))
440 use
|= ATOMMASK(A_ATOM
);
442 else if (atom
< N_ATOMS
) {
443 if (!ATOMELEM(def
, atom
))
444 use
|= ATOMMASK(atom
);
449 atom
= atomdef(&s
->s
);
451 if (!ATOMELEM(use
, atom
))
452 kill
|= ATOMMASK(atom
);
453 def
|= ATOMMASK(atom
);
456 if (!ATOMELEM(def
, A_ATOM
) && BPF_CLASS(b
->s
.code
) == BPF_JMP
)
457 use
|= ATOMMASK(A_ATOM
);
465 * Assume graph is already leveled.
475 * root->level is the highest level no found;
476 * count down from there.
478 maxlevel
= root
->level
;
479 for (i
= maxlevel
; i
>= 0; --i
)
480 for (p
= levels
[i
]; p
; p
= p
->link
) {
485 for (i
= 1; i
<= maxlevel
; ++i
) {
486 for (p
= levels
[i
]; p
; p
= p
->link
) {
487 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
488 p
->in_use
|= p
->out_use
&~ p
->kill
;
494 * These data structures are used in a Cocke and Shwarz style
495 * value numbering scheme. Since the flowgraph is acyclic,
496 * exit values can be propagated from a node's predecessors
497 * provided it is uniquely defined.
503 struct valnode
*next
;
507 static struct valnode
*hashtbl
[MODULUS
];
511 /* Integer constants mapped with the load immediate opcode. */
512 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
519 struct vmapinfo
*vmap
;
520 struct valnode
*vnode_base
;
521 struct valnode
*next_vnode
;
527 next_vnode
= vnode_base
;
528 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
529 memset((char *)hashtbl
, 0, sizeof hashtbl
);
532 /* Because we really don't have an IR, this stuff is a little messy. */
542 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
545 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
546 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
550 if (BPF_MODE(code
) == BPF_IMM
&&
551 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
552 vmap
[val
].const_val
= v0
;
553 vmap
[val
].is_const
= 1;
560 p
->next
= hashtbl
[hash
];
567 vstore(s
, valp
, newval
, alter
)
573 if (alter
&& *valp
== newval
)
586 a
= vmap
[v0
].const_val
;
587 b
= vmap
[v1
].const_val
;
589 switch (BPF_OP(s
->code
)) {
604 bpf_error("division by zero");
632 s
->code
= BPF_LD
|BPF_IMM
;
636 static inline struct slist
*
640 while (s
!= 0 && s
->s
.code
== NOP
)
649 struct block
*tmp
= JT(b
);
660 struct slist
*next
, *last
;
672 next
= this_op(s
->next
);
678 * st M[k] --> st M[k]
681 if (s
->s
.code
== BPF_ST
&&
682 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
683 s
->s
.k
== next
->s
.k
) {
685 next
->s
.code
= BPF_MISC
|BPF_TAX
;
691 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
692 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
693 s
->s
.code
= BPF_LDX
|BPF_IMM
;
694 next
->s
.code
= BPF_MISC
|BPF_TXA
;
698 * This is an ugly special case, but it happens
699 * when you say tcp[k] or udp[k] where k is a constant.
701 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
702 struct slist
*add
, *tax
, *ild
;
705 * Check that X isn't used on exit from this
706 * block (which the optimizer might cause).
707 * We know the code generator won't generate
708 * any local dependencies.
710 if (ATOMELEM(b
->out_use
, X_ATOM
))
713 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
716 add
= this_op(next
->next
);
717 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
720 tax
= this_op(add
->next
);
721 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
724 ild
= this_op(tax
->next
);
725 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
726 BPF_MODE(ild
->s
.code
) != BPF_IND
)
729 * XXX We need to check that X is not
730 * subsequently used. We know we can eliminate the
731 * accumulator modifications since it is defined
732 * by the last stmt of this sequence.
734 * We want to turn this sequence:
737 * (005) ldxms [14] {next} -- optional
740 * (008) ild [x+0] {ild}
742 * into this sequence:
760 * If we have a subtract to do a comparison, and the X register
761 * is a known constant, we can merge this value into the
764 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
) &&
765 !ATOMELEM(b
->out_use
, A_ATOM
)) {
766 val
= b
->val
[X_ATOM
];
767 if (vmap
[val
].is_const
) {
770 b
->s
.k
+= vmap
[val
].const_val
;
771 op
= BPF_OP(b
->s
.code
);
772 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
773 struct block
*t
= JT(b
);
776 b
->s
.k
+= 0x80000000;
780 } else if (b
->s
.k
== 0) {
786 b
->s
.code
= BPF_CLASS(b
->s
.code
) | BPF_OP(b
->s
.code
) |
792 * Likewise, a constant subtract can be simplified.
794 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
) &&
795 !ATOMELEM(b
->out_use
, A_ATOM
)) {
800 op
= BPF_OP(b
->s
.code
);
801 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
802 struct block
*t
= JT(b
);
805 b
->s
.k
+= 0x80000000;
813 if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
814 !ATOMELEM(b
->out_use
, A_ATOM
) && b
->s
.k
== 0) {
816 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
822 * If the accumulator is a known constant, we can compute the
825 val
= b
->val
[A_ATOM
];
826 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
827 bpf_int32 v
= vmap
[val
].const_val
;
828 switch (BPF_OP(b
->s
.code
)) {
835 v
= (unsigned)v
> b
->s
.k
;
839 v
= (unsigned)v
>= b
->s
.k
;
859 * Compute the symbolic value of expression of 's', and update
860 * anything it defines in the value table 'val'. If 'alter' is true,
861 * do various optimizations. This code would be cleaner if symbolic
862 * evaluation and code transformations weren't folded together.
865 opt_stmt(s
, val
, alter
)
875 case BPF_LD
|BPF_ABS
|BPF_W
:
876 case BPF_LD
|BPF_ABS
|BPF_H
:
877 case BPF_LD
|BPF_ABS
|BPF_B
:
878 v
= F(s
->code
, s
->k
, 0L);
879 vstore(s
, &val
[A_ATOM
], v
, alter
);
882 case BPF_LD
|BPF_IND
|BPF_W
:
883 case BPF_LD
|BPF_IND
|BPF_H
:
884 case BPF_LD
|BPF_IND
|BPF_B
:
886 if (alter
&& vmap
[v
].is_const
) {
887 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
888 s
->k
+= vmap
[v
].const_val
;
889 v
= F(s
->code
, s
->k
, 0L);
893 v
= F(s
->code
, s
->k
, v
);
894 vstore(s
, &val
[A_ATOM
], v
, alter
);
898 v
= F(s
->code
, 0L, 0L);
899 vstore(s
, &val
[A_ATOM
], v
, alter
);
904 vstore(s
, &val
[A_ATOM
], v
, alter
);
907 case BPF_LDX
|BPF_IMM
:
909 vstore(s
, &val
[X_ATOM
], v
, alter
);
912 case BPF_LDX
|BPF_MSH
|BPF_B
:
913 v
= F(s
->code
, s
->k
, 0L);
914 vstore(s
, &val
[X_ATOM
], v
, alter
);
917 case BPF_ALU
|BPF_NEG
:
918 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
919 s
->code
= BPF_LD
|BPF_IMM
;
920 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
921 val
[A_ATOM
] = K(s
->k
);
924 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
927 case BPF_ALU
|BPF_ADD
|BPF_K
:
928 case BPF_ALU
|BPF_SUB
|BPF_K
:
929 case BPF_ALU
|BPF_MUL
|BPF_K
:
930 case BPF_ALU
|BPF_DIV
|BPF_K
:
931 case BPF_ALU
|BPF_AND
|BPF_K
:
932 case BPF_ALU
|BPF_OR
|BPF_K
:
933 case BPF_ALU
|BPF_LSH
|BPF_K
:
934 case BPF_ALU
|BPF_RSH
|BPF_K
:
935 op
= BPF_OP(s
->code
);
938 if (op
== BPF_ADD
|| op
== BPF_SUB
||
939 op
== BPF_LSH
|| op
== BPF_RSH
||
944 if (op
== BPF_MUL
|| op
== BPF_AND
) {
945 s
->code
= BPF_LD
|BPF_IMM
;
946 val
[A_ATOM
] = K(s
->k
);
950 if (vmap
[val
[A_ATOM
]].is_const
) {
951 fold_op(s
, val
[A_ATOM
], K(s
->k
));
952 val
[A_ATOM
] = K(s
->k
);
956 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
959 case BPF_ALU
|BPF_ADD
|BPF_X
:
960 case BPF_ALU
|BPF_SUB
|BPF_X
:
961 case BPF_ALU
|BPF_MUL
|BPF_X
:
962 case BPF_ALU
|BPF_DIV
|BPF_X
:
963 case BPF_ALU
|BPF_AND
|BPF_X
:
964 case BPF_ALU
|BPF_OR
|BPF_X
:
965 case BPF_ALU
|BPF_LSH
|BPF_X
:
966 case BPF_ALU
|BPF_RSH
|BPF_X
:
967 op
= BPF_OP(s
->code
);
968 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
969 if (vmap
[val
[A_ATOM
]].is_const
) {
970 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
971 val
[A_ATOM
] = K(s
->k
);
974 s
->code
= BPF_ALU
|BPF_K
|op
;
975 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
978 F(s
->code
, val
[A_ATOM
], K(s
->k
));
983 * Check if we're doing something to an accumulator
984 * that is 0, and simplify. This may not seem like
985 * much of a simplification but it could open up further
987 * XXX We could also check for mul by 1, and -1, etc.
989 if (alter
&& vmap
[val
[A_ATOM
]].is_const
990 && vmap
[val
[A_ATOM
]].const_val
== 0) {
991 if (op
== BPF_ADD
|| op
== BPF_OR
||
992 op
== BPF_LSH
|| op
== BPF_RSH
|| op
== BPF_SUB
) {
993 s
->code
= BPF_MISC
|BPF_TXA
;
994 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
997 else if (op
== BPF_MUL
|| op
== BPF_DIV
||
999 s
->code
= BPF_LD
|BPF_IMM
;
1001 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1004 else if (op
== BPF_NEG
) {
1009 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1012 case BPF_MISC
|BPF_TXA
:
1013 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1016 case BPF_LD
|BPF_MEM
:
1018 if (alter
&& vmap
[v
].is_const
) {
1019 s
->code
= BPF_LD
|BPF_IMM
;
1020 s
->k
= vmap
[v
].const_val
;
1023 vstore(s
, &val
[A_ATOM
], v
, alter
);
1026 case BPF_MISC
|BPF_TAX
:
1027 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1030 case BPF_LDX
|BPF_MEM
:
1032 if (alter
&& vmap
[v
].is_const
) {
1033 s
->code
= BPF_LDX
|BPF_IMM
;
1034 s
->k
= vmap
[v
].const_val
;
1037 vstore(s
, &val
[X_ATOM
], v
, alter
);
1041 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1045 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1052 register struct stmt
*s
;
1053 register struct stmt
*last
[];
1059 if (atom
== AX_ATOM
) {
1070 last
[atom
]->code
= NOP
;
1078 register struct block
*b
;
1080 register struct slist
*s
;
1082 struct stmt
*last
[N_ATOMS
];
1084 memset((char *)last
, 0, sizeof last
);
1086 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1087 deadstmt(&s
->s
, last
);
1088 deadstmt(&b
->s
, last
);
1090 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1091 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1092 last
[atom
]->code
= NOP
;
1098 opt_blk(b
, do_stmts
)
1108 * Initialize the atom values.
1109 * If we have no predecessors, everything is undefined.
1110 * Otherwise, we inherent our values from our predecessors.
1111 * If any register has an ambiguous value (i.e. control paths are
1112 * merging) give it the undefined value of 0.
1116 memset((char *)b
->val
, 0, sizeof(b
->val
));
1118 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1119 while ((p
= p
->next
) != NULL
) {
1120 for (i
= 0; i
< N_ATOMS
; ++i
)
1121 if (b
->val
[i
] != p
->pred
->val
[i
])
1125 aval
= b
->val
[A_ATOM
];
1126 for (s
= b
->stmts
; s
; s
= s
->next
)
1127 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1130 * This is a special case: if we don't use anything from this
1131 * block, and we load the accumulator with value that is
1132 * already there, or if this block is a return,
1133 * eliminate all the statements.
1136 ((b
->out_use
== 0 && aval
!= 0 &&b
->val
[A_ATOM
] == aval
) ||
1137 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1138 if (b
->stmts
!= 0) {
1147 * Set up values for branch optimizer.
1149 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1150 b
->oval
= K(b
->s
.k
);
1152 b
->oval
= b
->val
[X_ATOM
];
1153 b
->et
.code
= b
->s
.code
;
1154 b
->ef
.code
= -b
->s
.code
;
1158 * Return true if any register that is used on exit from 'succ', has
1159 * an exit value that is different from the corresponding exit value
1163 use_conflict(b
, succ
)
1164 struct block
*b
, *succ
;
1167 atomset use
= succ
->out_use
;
1172 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1173 if (ATOMELEM(use
, atom
))
1174 if (b
->val
[atom
] != succ
->val
[atom
])
1179 static struct block
*
1180 fold_edge(child
, ep
)
1181 struct block
*child
;
1185 int aval0
, aval1
, oval0
, oval1
;
1186 int code
= ep
->code
;
1194 if (child
->s
.code
!= code
)
1197 aval0
= child
->val
[A_ATOM
];
1198 oval0
= child
->oval
;
1199 aval1
= ep
->pred
->val
[A_ATOM
];
1200 oval1
= ep
->pred
->oval
;
1207 * The operands are identical, so the
1208 * result is true if a true branch was
1209 * taken to get here, otherwise false.
1211 return sense
? JT(child
) : JF(child
);
1213 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1215 * At this point, we only know the comparison if we
1216 * came down the true branch, and it was an equality
1217 * comparison with a constant. We rely on the fact that
1218 * distinct constants have distinct value numbers.
1230 register struct block
*target
;
1232 if (JT(ep
->succ
) == 0)
1235 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1237 * Common branch targets can be eliminated, provided
1238 * there is no data dependency.
1240 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1242 ep
->succ
= JT(ep
->succ
);
1246 * For each edge dominator that matches the successor of this
1247 * edge, promote the edge successor to the its grandchild.
1249 * XXX We violate the set abstraction here in favor a reasonably
1253 for (i
= 0; i
< edgewords
; ++i
) {
1254 register bpf_u_int32 x
= ep
->edom
[i
];
1259 k
+= i
* BITS_PER_WORD
;
1261 target
= fold_edge(ep
->succ
, edges
[k
]);
1263 * Check that there is no data dependency between
1264 * nodes that will be violated if we move the edge.
1266 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1269 if (JT(target
) != 0)
1271 * Start over unless we hit a leaf.
1287 struct block
**diffp
, **samep
;
1295 * Make sure each predecessor loads the same value.
1298 val
= ep
->pred
->val
[A_ATOM
];
1299 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1300 if (val
!= ep
->pred
->val
[A_ATOM
])
1303 if (JT(b
->in_edges
->pred
) == b
)
1304 diffp
= &JT(b
->in_edges
->pred
);
1306 diffp
= &JF(b
->in_edges
->pred
);
1313 if (JT(*diffp
) != JT(b
))
1316 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1319 if ((*diffp
)->val
[A_ATOM
] != val
)
1322 diffp
= &JF(*diffp
);
1325 samep
= &JF(*diffp
);
1330 if (JT(*samep
) != JT(b
))
1333 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1336 if ((*samep
)->val
[A_ATOM
] == val
)
1339 /* XXX Need to check that there are no data dependencies
1340 between dp0 and dp1. Currently, the code generator
1341 will not produce such dependencies. */
1342 samep
= &JF(*samep
);
1345 /* XXX This doesn't cover everything. */
1346 for (i
= 0; i
< N_ATOMS
; ++i
)
1347 if ((*samep
)->val
[i
] != pred
->val
[i
])
1350 /* Pull up the node. */
1356 * At the top of the chain, each predecessor needs to point at the
1357 * pulled up node. Inside the chain, there is only one predecessor
1361 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1362 if (JT(ep
->pred
) == b
)
1363 JT(ep
->pred
) = pull
;
1365 JF(ep
->pred
) = pull
;
1380 struct block
**diffp
, **samep
;
1388 * Make sure each predecessor loads the same value.
1390 val
= ep
->pred
->val
[A_ATOM
];
1391 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1392 if (val
!= ep
->pred
->val
[A_ATOM
])
1395 if (JT(b
->in_edges
->pred
) == b
)
1396 diffp
= &JT(b
->in_edges
->pred
);
1398 diffp
= &JF(b
->in_edges
->pred
);
1405 if (JF(*diffp
) != JF(b
))
1408 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1411 if ((*diffp
)->val
[A_ATOM
] != val
)
1414 diffp
= &JT(*diffp
);
1417 samep
= &JT(*diffp
);
1422 if (JF(*samep
) != JF(b
))
1425 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1428 if ((*samep
)->val
[A_ATOM
] == val
)
1431 /* XXX Need to check that there are no data dependencies
1432 between diffp and samep. Currently, the code generator
1433 will not produce such dependencies. */
1434 samep
= &JT(*samep
);
1437 /* XXX This doesn't cover everything. */
1438 for (i
= 0; i
< N_ATOMS
; ++i
)
1439 if ((*samep
)->val
[i
] != pred
->val
[i
])
1442 /* Pull up the node. */
1448 * At the top of the chain, each predecessor needs to point at the
1449 * pulled up node. Inside the chain, there is only one predecessor
1453 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1454 if (JT(ep
->pred
) == b
)
1455 JT(ep
->pred
) = pull
;
1457 JF(ep
->pred
) = pull
;
1467 opt_blks(root
, do_stmts
)
1475 maxlevel
= root
->level
;
1476 for (i
= maxlevel
; i
>= 0; --i
)
1477 for (p
= levels
[i
]; p
; p
= p
->link
)
1478 opt_blk(p
, do_stmts
);
1482 * No point trying to move branches; it can't possibly
1483 * make a difference at this point.
1487 for (i
= 1; i
<= maxlevel
; ++i
) {
1488 for (p
= levels
[i
]; p
; p
= p
->link
) {
1493 for (i
= 1; i
<= maxlevel
; ++i
) {
1494 for (p
= levels
[i
]; p
; p
= p
->link
) {
1502 link_inedge(parent
, child
)
1503 struct edge
*parent
;
1504 struct block
*child
;
1506 parent
->next
= child
->in_edges
;
1507 child
->in_edges
= parent
;
1517 for (i
= 0; i
< n_blocks
; ++i
)
1518 blocks
[i
]->in_edges
= 0;
1521 * Traverse the graph, adding each edge to the predecessor
1522 * list of its successors. Skip the leaves (i.e. level 0).
1524 for (i
= root
->level
; i
> 0; --i
) {
1525 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1526 link_inedge(&b
->et
, JT(b
));
1527 link_inedge(&b
->ef
, JF(b
));
1536 struct slist
*tmp
, *s
;
1540 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1549 * If the root node is a return, then there is no
1550 * point executing any statements (since the bpf machine
1551 * has no side effects).
1553 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1558 opt_loop(root
, do_stmts
)
1575 opt_blks(root
, do_stmts
);
1584 * Optimize the filter code in its dag representation.
1588 struct block
**rootp
;
1597 intern_blocks(root
);
1608 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1616 * Mark code array such that isMarked(i) is true
1617 * only for nodes that are alive.
1628 * True iff the two stmt lists load the same value from the packet into
1633 struct slist
*x
, *y
;
1636 while (x
&& x
->s
.code
== NOP
)
1638 while (y
&& y
->s
.code
== NOP
)
1644 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1653 struct block
*b0
, *b1
;
1655 if (b0
->s
.code
== b1
->s
.code
&&
1656 b0
->s
.k
== b1
->s
.k
&&
1657 b0
->et
.succ
== b1
->et
.succ
&&
1658 b0
->ef
.succ
== b1
->ef
.succ
)
1659 return eq_slist(b0
->stmts
, b1
->stmts
);
1672 for (i
= 0; i
< n_blocks
; ++i
)
1673 blocks
[i
]->link
= 0;
1677 for (i
= n_blocks
- 1; --i
>= 0; ) {
1678 if (!isMarked(blocks
[i
]))
1680 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1681 if (!isMarked(blocks
[j
]))
1683 if (eq_blk(blocks
[i
], blocks
[j
])) {
1684 blocks
[i
]->link
= blocks
[j
]->link
?
1685 blocks
[j
]->link
: blocks
[j
];
1690 for (i
= 0; i
< n_blocks
; ++i
) {
1696 JT(p
) = JT(p
)->link
;
1700 JF(p
) = JF(p
)->link
;
1710 free((void *)vnode_base
);
1712 free((void *)edges
);
1713 free((void *)space
);
1714 free((void *)levels
);
1715 free((void *)blocks
);
1719 * Return the number of stmts in 's'.
1727 for (; s
; s
= s
->next
)
1728 if (s
->s
.code
!= NOP
)
1734 * Return the number of nodes reachable by 'p'.
1735 * All nodes should be initially unmarked.
1741 if (p
== 0 || isMarked(p
))
1744 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1748 * Do a depth first search on the flow graph, numbering the
1749 * the basic blocks, and entering them into the 'blocks' array.`
1757 if (p
== 0 || isMarked(p
))
1765 number_blks_r(JT(p
));
1766 number_blks_r(JF(p
));
1770 * Return the number of stmts in the flowgraph reachable by 'p'.
1771 * The nodes should be unmarked before calling.
1779 if (p
== 0 || isMarked(p
))
1782 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1783 return slength(p
->stmts
) + n
+ 1;
1787 * Allocate memory. All allocation is done before optimization
1788 * is begun. A linear bound on the size of all data structures is computed
1789 * from the total number of blocks and/or statements.
1796 int i
, n
, max_stmts
;
1799 * First, count the blocks, so we can malloc an array to map
1800 * block number to block. Then, put the blocks into the array.
1803 n
= count_blocks(root
);
1804 blocks
= (struct block
**)malloc(n
* sizeof(*blocks
));
1807 number_blks_r(root
);
1809 n_edges
= 2 * n_blocks
;
1810 edges
= (struct edge
**)malloc(n_edges
* sizeof(*edges
));
1813 * The number of levels is bounded by the number of nodes.
1815 levels
= (struct block
**)malloc(n_blocks
* sizeof(*levels
));
1817 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1818 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1821 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1822 + n_edges
* edgewords
* sizeof(*space
));
1825 for (i
= 0; i
< n
; ++i
) {
1829 all_closure_sets
= p
;
1830 for (i
= 0; i
< n
; ++i
) {
1831 blocks
[i
]->closure
= p
;
1835 for (i
= 0; i
< n
; ++i
) {
1836 register struct block
*b
= blocks
[i
];
1844 b
->ef
.id
= n_blocks
+ i
;
1845 edges
[n_blocks
+ i
] = &b
->ef
;
1850 for (i
= 0; i
< n
; ++i
)
1851 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1853 * We allocate at most 3 value numbers per statement,
1854 * so this is an upper bound on the number of valnodes
1857 maxval
= 3 * max_stmts
;
1858 vmap
= (struct vmapinfo
*)malloc(maxval
* sizeof(*vmap
));
1859 vnode_base
= (struct valnode
*)malloc(maxval
* sizeof(*vmap
));
1863 * Some pointers used to convert the basic block form of the code,
1864 * into the array form that BPF requires. 'fstart' will point to
1865 * the malloc'd array while 'ftail' is used during the recursive traversal.
1867 static struct bpf_insn
*fstart
;
1868 static struct bpf_insn
*ftail
;
1875 * Returns true if successful. Returns false if a branch has
1876 * an offset that is too large. If so, we have marked that
1877 * branch so that on a subsequent iteration, it will be treated
1884 struct bpf_insn
*dst
;
1888 int extrajmps
; /* number of extra jumps inserted */
1890 if (p
== 0 || isMarked(p
))
1894 if (convert_code_r(JF(p
)) == 0)
1896 if (convert_code_r(JT(p
)) == 0)
1899 slen
= slength(p
->stmts
);
1900 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
1901 /* inflate length by any extra jumps */
1903 p
->offset
= dst
- fstart
;
1905 for (src
= p
->stmts
; src
; src
= src
->next
) {
1906 if (src
->s
.code
== NOP
)
1908 dst
->code
= (u_short
)src
->s
.code
;
1913 bids
[dst
- fstart
] = p
->id
+ 1;
1915 dst
->code
= (u_short
)p
->s
.code
;
1919 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
1921 /* offset too large for branch, must add a jump */
1922 if (p
->longjt
== 0) {
1923 /* mark this instruction and retry */
1927 /* branch if T to following jump */
1928 dst
->jt
= extrajmps
;
1930 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
1931 dst
[extrajmps
].k
= off
- extrajmps
;
1935 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
1937 /* offset too large for branch, must add a jump */
1938 if (p
->longjf
== 0) {
1939 /* mark this instruction and retry */
1943 /* branch if F to following jump */
1944 /* if two jumps are inserted, F goes to second one */
1945 dst
->jf
= extrajmps
;
1947 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
1948 dst
[extrajmps
].k
= off
- extrajmps
;
1958 * Convert flowgraph intermediate representation to the
1959 * BPF array representation. Set *lenp to the number of instructions.
1962 icode_to_fcode(root
, lenp
)
1967 struct bpf_insn
*fp
;
1970 * Loop doing convert_codr_r() until no branches remain
1971 * with too-large offsets.
1975 n
= *lenp
= count_stmts(root
);
1977 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
1978 memset((char *)fp
, 0, sizeof(*fp
) * n
);
1983 if (convert_code_r(root
))
1996 struct bpf_program f
;
1998 memset(bids
, 0, sizeof bids
);
1999 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2002 free((char *)f
.bf_insns
);
This page took 0.161272 seconds and 3 git commands to generate.