aa0733f08b9510141daf1b5cfc8b6724af42701d
[openwrt.git] / target / linux / generic / files / crypto / ocf / ubsec_ssb / ubsec_ssb.c
1
2 /*
3 * Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
4 * Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Effort sponsored in part by the Defense Advanced Research Projects
31 * Agency (DARPA) and Air Force Research Laboratory, Air Force
32 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
33 *
34 */
35 #undef UBSEC_DEBUG
36 #undef UBSEC_VERBOSE_DEBUG
37
38 #ifdef UBSEC_VERBOSE_DEBUG
39 #define UBSEC_DEBUG
40 #endif
41
42 /*
43 * uBsec BCM5365 hardware crypto accelerator
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/proc_fs.h>
50 #include <linux/types.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/interrupt.h>
54 #include <linux/fs.h>
55 #include <linux/random.h>
56 #include <linux/skbuff.h>
57 #include <linux/stat.h>
58 #include <asm/io.h>
59
60 #include <linux/ssb/ssb.h>
61
62 /*
63 * BSD queue
64 */
65 //#include "bsdqueue.h"
66
67 /*
68 * OCF
69 */
70 #include <cryptodev.h>
71 #include <uio.h>
72
73 #define HMAC_HACK 1
74
75 #define HMAC_HACK 1
76 #ifdef HMAC_HACK
77 #include <safe/hmachack.h>
78 #include <safe/md5.h>
79 #include <safe/md5.c>
80 #include <safe/sha1.h>
81 #include <safe/sha1.c>
82 #endif
83
84 #include "bsdqueue.h"
85 #include "ubsecreg.h"
86 #include "ubsecvar.h"
87
88 #define DRV_MODULE_NAME "ubsec_ssb"
89 #define PFX DRV_MODULE_NAME ": "
90 #define DRV_MODULE_VERSION "0.02"
91 #define DRV_MODULE_RELDATE "Feb 21, 2009"
92
93 #if 1
94 #define DPRINTF(a...) \
95 if (debug) \
96 { \
97 printk(DRV_MODULE_NAME ": " a); \
98 }
99 #else
100 #define DPRINTF(a...)
101 #endif
102
103 /*
104 * Prototypes
105 */
106 static irqreturn_t ubsec_ssb_isr(int, void *, struct pt_regs *);
107 static int __devinit ubsec_ssb_probe(struct ssb_device *sdev,
108 const struct ssb_device_id *ent);
109 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev);
110 int ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
111 struct device *self);
112 static void ubsec_setup_mackey(struct ubsec_session *ses, int algo,
113 caddr_t key, int klen);
114 static int dma_map_skb(struct ubsec_softc *sc,
115 struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen);
116 static int dma_map_uio(struct ubsec_softc *sc,
117 struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen);
118 static void dma_unmap(struct ubsec_softc *sc,
119 struct ubsec_dma_alloc *q_map, int mlen);
120 static int ubsec_dmamap_aligned(struct ubsec_softc *sc,
121 const struct ubsec_dma_alloc *q_map, int mlen);
122
123 #ifdef UBSEC_DEBUG
124 static int proc_read(char *buf, char **start, off_t offset,
125 int size, int *peof, void *data);
126 #endif
127
128 void ubsec_reset_board(struct ubsec_softc *);
129 void ubsec_init_board(struct ubsec_softc *);
130 void ubsec_cleanchip(struct ubsec_softc *);
131 void ubsec_totalreset(struct ubsec_softc *);
132 int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
133
134 static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
135 static int ubsec_freesession(device_t, u_int64_t);
136 static int ubsec_process(device_t, struct cryptop *, int);
137
138 void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
139 void ubsec_feed(struct ubsec_softc *);
140 void ubsec_mcopy(struct sk_buff *, struct sk_buff *, int, int);
141 void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
142 int ubsec_dma_malloc(struct ubsec_softc *, struct ubsec_dma_alloc *,
143 size_t, int);
144
145 /* DEBUG crap... */
146 void ubsec_dump_pb(struct ubsec_pktbuf *);
147 void ubsec_dump_mcr(struct ubsec_mcr *);
148
149 #define READ_REG(sc,r) \
150 ssb_read32((sc)->sdev, (r));
151 #define WRITE_REG(sc,r,val) \
152 ssb_write32((sc)->sdev, (r), (val));
153 #define READ_REG_SDEV(sdev,r) \
154 ssb_read32((sdev), (r));
155 #define WRITE_REG_SDEV(sdev,r,val) \
156 ssb_write32((sdev), (r), (val));
157
158 #define SWAP32(x) (x) = htole32(ntohl((x)))
159 #define HTOLE32(x) (x) = htole32(x)
160
161 #ifdef __LITTLE_ENDIAN
162 #define letoh16(x) (x)
163 #define letoh32(x) (x)
164 #endif
165
166 static int debug;
167 module_param(debug, int, 0644);
168 MODULE_PARM_DESC(debug, "Enable debug output");
169
170 #define UBSEC_SSB_MAX_CHIPS 1
171 static struct ubsec_softc *ubsec_chip_idx[UBSEC_SSB_MAX_CHIPS];
172 static struct ubsec_stats ubsecstats;
173
174 #ifdef UBSEC_DEBUG
175 static struct proc_dir_entry *procdebug;
176 #endif
177
178 static struct ssb_device_id ubsec_ssb_tbl[] = {
179 /* Broadcom BCM5365P IPSec Core */
180 SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_IPSEC, SSB_ANY_REV),
181 SSB_DEVTABLE_END
182 };
183
184 static struct ssb_driver ubsec_ssb_driver = {
185 .name = DRV_MODULE_NAME,
186 .id_table = ubsec_ssb_tbl,
187 .probe = ubsec_ssb_probe,
188 .remove = __devexit_p(ubsec_ssb_remove),
189 /*
190 .suspend = ubsec_ssb_suspend,
191 .resume = ubsec_ssb_resume
192 */
193 };
194
195 static device_method_t ubsec_ssb_methods = {
196 /* crypto device methods */
197 DEVMETHOD(cryptodev_newsession, ubsec_newsession),
198 DEVMETHOD(cryptodev_freesession,ubsec_freesession),
199 DEVMETHOD(cryptodev_process, ubsec_process),
200 };
201
202 #ifdef UBSEC_DEBUG
203 static int
204 proc_read(char *buf, char **start, off_t offset,
205 int size, int *peof, void *data)
206 {
207 int i = 0, byteswritten = 0, ret;
208 unsigned int stat, ctrl;
209 #ifdef UBSEC_VERBOSE_DEBUG
210 struct ubsec_q *q;
211 struct ubsec_dma *dmap;
212 #endif
213
214 while ((i < UBSEC_SSB_MAX_CHIPS) && (ubsec_chip_idx[i] != NULL))
215 {
216 struct ubsec_softc *sc = ubsec_chip_idx[i];
217
218 stat = READ_REG(sc, BS_STAT);
219 ctrl = READ_REG(sc, BS_CTRL);
220 ret = snprintf((buf + byteswritten),
221 (size - byteswritten) ,
222 "DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
223
224 byteswritten += ret;
225
226 #ifdef UBSEC_VERBOSE_DEBUG
227 printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
228
229 /* Dump all queues MCRs */
230 if (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
231 BSD_SIMPLEQ_FOREACH(q, &sc->sc_qchip, q_next)
232 {
233 dmap = q->q_dma;
234 ubsec_dump_mcr(&dmap->d_dma->d_mcr);
235 }
236 }
237 #endif
238
239 i++;
240 }
241
242 *peof = 1;
243
244 return byteswritten;
245 }
246 #endif
247
248 /*
249 * map in a given sk_buff
250 */
251 static int
252 dma_map_skb(struct ubsec_softc *sc, struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen)
253 {
254 int i = 0;
255 dma_addr_t tmp;
256
257 #ifdef UBSEC_DEBUG
258 DPRINTF("%s()\n", __FUNCTION__);
259 #endif
260
261 /*
262 * We support only a limited number of fragments.
263 */
264 if (unlikely((skb_shinfo(skb)->nr_frags + 1) >= UBS_MAX_SCATTER))
265 {
266 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
267 return (-ENOMEM);
268 }
269
270 #ifdef UBSEC_VERBOSE_DEBUG
271 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, 0, (unsigned int)skb->data, skb_headlen(skb));
272 #endif
273
274 /* first data package */
275 tmp = dma_map_single(sc->sc_dv,
276 skb->data,
277 skb_headlen(skb),
278 DMA_BIDIRECTIONAL);
279
280 q_map[i].dma_paddr = tmp;
281 q_map[i].dma_vaddr = skb->data;
282 q_map[i].dma_size = skb_headlen(skb);
283
284 if (unlikely(tmp == 0))
285 {
286 printk(KERN_ERR "Could not map memory region for dma.\n");
287 return (-EINVAL);
288 }
289
290 #ifdef UBSEC_VERBOSE_DEBUG
291 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, 0, (unsigned int)tmp);
292 #endif
293
294
295 /* all other data packages */
296 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
297
298 #ifdef UBSEC_VERBOSE_DEBUG
299 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, i + 1,
300 (unsigned int)page_address(skb_shinfo(skb)->frags[i].page) +
301 skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size);
302 #endif
303
304 tmp = dma_map_single(sc->sc_dv,
305 page_address(skb_shinfo(skb)->frags[i].page) +
306 skb_shinfo(skb)->frags[i].page_offset,
307 skb_shinfo(skb)->frags[i].size,
308 DMA_BIDIRECTIONAL);
309
310 q_map[i + 1].dma_paddr = tmp;
311 q_map[i + 1].dma_vaddr = (void*)(page_address(skb_shinfo(skb)->frags[i].page) +
312 skb_shinfo(skb)->frags[i].page_offset);
313 q_map[i + 1].dma_size = skb_shinfo(skb)->frags[i].size;
314
315 if (unlikely(tmp == 0))
316 {
317 printk(KERN_ERR "Could not map memory region for dma.\n");
318 return (-EINVAL);
319 }
320
321 #ifdef UBSEC_VERBOSE_DEBUG
322 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, i + 1, (unsigned int)tmp);
323 #endif
324
325 }
326 *mlen = i + 1;
327
328 return(0);
329 }
330
331 /*
332 * map in a given uio buffer
333 */
334
335 static int
336 dma_map_uio(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen)
337 {
338 struct iovec *iov = uio->uio_iov;
339 int n;
340 dma_addr_t tmp;
341
342 #ifdef UBSEC_DEBUG
343 DPRINTF("%s()\n", __FUNCTION__);
344 #endif
345
346 /*
347 * We support only a limited number of fragments.
348 */
349 if (unlikely(uio->uio_iovcnt >= UBS_MAX_SCATTER))
350 {
351 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
352 return (-ENOMEM);
353 }
354
355 for (n = 0; n < uio->uio_iovcnt; n++) {
356 #ifdef UBSEC_VERBOSE_DEBUG
357 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, n, (unsigned int)iov->iov_base, iov->iov_len);
358 #endif
359 tmp = dma_map_single(sc->sc_dv,
360 iov->iov_base,
361 iov->iov_len,
362 DMA_BIDIRECTIONAL);
363
364 q_map[n].dma_paddr = tmp;
365 q_map[n].dma_vaddr = iov->iov_base;
366 q_map[n].dma_size = iov->iov_len;
367
368 if (unlikely(tmp == 0))
369 {
370 printk(KERN_ERR "Could not map memory region for dma.\n");
371 return (-EINVAL);
372 }
373
374 #ifdef UBSEC_VERBOSE_DEBUG
375 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, n, (unsigned int)tmp);
376 #endif
377
378 iov++;
379 }
380 *mlen = n;
381
382 return(0);
383 }
384
385 static void
386 dma_unmap(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, int mlen)
387 {
388 int i;
389
390 #ifdef UBSEC_DEBUG
391 DPRINTF("%s()\n", __FUNCTION__);
392 #endif
393
394 for(i = 0; i < mlen; i++)
395 {
396 #ifdef UBSEC_VERBOSE_DEBUG
397 DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, (unsigned int)q_map[i].dma_paddr, q_map[i].dma_size);
398 #endif
399 dma_unmap_single(sc->sc_dv,
400 q_map[i].dma_paddr,
401 q_map[i].dma_size,
402 DMA_BIDIRECTIONAL);
403 }
404 return;
405 }
406
407 /*
408 * Is the operand suitable aligned for direct DMA. Each
409 * segment must be aligned on a 32-bit boundary and all
410 * but the last segment must be a multiple of 4 bytes.
411 */
412 static int
413 ubsec_dmamap_aligned(struct ubsec_softc *sc, const struct ubsec_dma_alloc *q_map, int mlen)
414 {
415 int i;
416
417 #ifdef UBSEC_DEBUG
418 DPRINTF("%s()\n", __FUNCTION__);
419 #endif
420
421 for (i = 0; i < mlen; i++) {
422 if (q_map[i].dma_paddr & 3)
423 return (0);
424 if (i != (mlen - 1) && (q_map[i].dma_size & 3))
425 return (0);
426 }
427 return (1);
428 }
429
430
431 #define N(a) (sizeof(a) / sizeof (a[0]))
432 static void
433 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
434 {
435 #ifdef HMAC_HACK
436 MD5_CTX md5ctx;
437 SHA1_CTX sha1ctx;
438 int i;
439
440 #ifdef UBSEC_DEBUG
441 DPRINTF("%s()\n", __FUNCTION__);
442 #endif
443
444 for (i = 0; i < klen; i++)
445 key[i] ^= HMAC_IPAD_VAL;
446
447 if (algo == CRYPTO_MD5_HMAC) {
448 MD5Init(&md5ctx);
449 MD5Update(&md5ctx, key, klen);
450 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
451 bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
452 } else {
453 SHA1Init(&sha1ctx);
454 SHA1Update(&sha1ctx, key, klen);
455 SHA1Update(&sha1ctx, hmac_ipad_buffer,
456 SHA1_HMAC_BLOCK_LEN - klen);
457 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
458 }
459
460 for (i = 0; i < klen; i++)
461 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
462
463 if (algo == CRYPTO_MD5_HMAC) {
464 MD5Init(&md5ctx);
465 MD5Update(&md5ctx, key, klen);
466 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
467 bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
468 } else {
469 SHA1Init(&sha1ctx);
470 SHA1Update(&sha1ctx, key, klen);
471 SHA1Update(&sha1ctx, hmac_opad_buffer,
472 SHA1_HMAC_BLOCK_LEN - klen);
473 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
474 }
475
476 for (i = 0; i < klen; i++)
477 key[i] ^= HMAC_OPAD_VAL;
478
479 #else /* HMAC_HACK */
480 DPRINTF("md5/sha not implemented\n");
481 #endif /* HMAC_HACK */
482 }
483 #undef N
484
485 static int
486 __devinit ubsec_ssb_probe(struct ssb_device *sdev,
487 const struct ssb_device_id *ent)
488 {
489 int err;
490
491 #ifdef UBSEC_DEBUG
492 DPRINTF("%s()\n", __FUNCTION__);
493 #endif
494
495 err = ssb_bus_powerup(sdev->bus, 0);
496 if (err) {
497 dev_err(sdev->dev, "Failed to powerup the bus\n");
498 goto err_out;
499 }
500
501 err = request_irq(sdev->irq, (irq_handler_t)ubsec_ssb_isr,
502 IRQF_DISABLED | IRQF_SHARED, DRV_MODULE_NAME, sdev);
503 if (err) {
504 dev_err(sdev->dev, "Could not request irq\n");
505 goto err_out_powerdown;
506 }
507
508 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
509 err = dma_set_mask(sdev->dma_dev, DMA_BIT_MASK(32)) ||
510 dma_set_coherent_mask(sdev->dma_dev, DMA_BIT_MASK(32));
511 #else
512 err = ssb_dma_set_mask(sdev, DMA_32BIT_MASK);
513 #endif
514 if (err) {
515 dev_err(sdev->dev,
516 "Required 32BIT DMA mask unsupported by the system.\n");
517 goto err_out_free_irq;
518 }
519
520 printk(KERN_INFO "Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
521 sdev->irq);
522
523 DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
524 sdev->id.vendor, sdev->id.coreid, sdev->id.revision);
525
526 ssb_device_enable(sdev, 0);
527
528 if (ubsec_attach(sdev, ent, sdev->dev) != 0)
529 goto err_out_disable;
530
531 #ifdef UBSEC_DEBUG
532 procdebug = create_proc_entry(DRV_MODULE_NAME, S_IRUSR, NULL);
533 if (procdebug)
534 {
535 procdebug->read_proc = proc_read;
536 procdebug->data = NULL;
537 } else
538 DPRINTF("Unable to create proc file.\n");
539 #endif
540
541 return 0;
542
543 err_out_disable:
544 ssb_device_disable(sdev, 0);
545
546 err_out_free_irq:
547 free_irq(sdev->irq, sdev);
548
549 err_out_powerdown:
550 ssb_bus_may_powerdown(sdev->bus);
551
552 err_out:
553 return err;
554 }
555
556 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev) {
557
558 struct ubsec_softc *sc;
559 unsigned int ctrlflgs;
560 struct ubsec_dma *dmap;
561 u_int32_t i;
562
563 #ifdef UBSEC_DEBUG
564 DPRINTF("%s()\n", __FUNCTION__);
565 #endif
566
567 ctrlflgs = READ_REG_SDEV(sdev, BS_CTRL);
568 /* disable all IPSec Core interrupts globally */
569 ctrlflgs ^= (BS_CTRL_MCR1INT | BS_CTRL_MCR2INT |
570 BS_CTRL_DMAERR);
571 WRITE_REG_SDEV(sdev, BS_CTRL, ctrlflgs);
572
573 free_irq(sdev->irq, sdev);
574
575 sc = (struct ubsec_softc *)ssb_get_drvdata(sdev);
576
577 /* unregister all crypto algorithms */
578 crypto_unregister_all(sc->sc_cid);
579
580 /* Free queue / dma memory */
581 for (i = 0; i < UBS_MAX_NQUEUE; i++) {
582 struct ubsec_q *q;
583
584 q = sc->sc_queuea[i];
585 if (q != NULL)
586 {
587 dmap = q->q_dma;
588 if (dmap != NULL)
589 {
590 ubsec_dma_free(sc, &dmap->d_alloc);
591 q->q_dma = NULL;
592 }
593 kfree(q);
594 }
595 sc->sc_queuea[i] = NULL;
596 }
597
598 ssb_device_disable(sdev, 0);
599 ssb_bus_may_powerdown(sdev->bus);
600 ssb_set_drvdata(sdev, NULL);
601
602 #ifdef UBSEC_DEBUG
603 if (procdebug)
604 remove_proc_entry(DRV_MODULE_NAME, NULL);
605 #endif
606
607 }
608
609
610 int
611 ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
612 struct device *self)
613 {
614 struct ubsec_softc *sc = NULL;
615 struct ubsec_dma *dmap;
616 u_int32_t i;
617 static int num_chips = 0;
618
619 #ifdef UBSEC_DEBUG
620 DPRINTF("%s()\n", __FUNCTION__);
621 #endif
622
623 sc = (struct ubsec_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
624 if (!sc)
625 return(-ENOMEM);
626 memset(sc, 0, sizeof(*sc));
627
628 sc->sc_dv = sdev->dev;
629 sc->sdev = sdev;
630
631 spin_lock_init(&sc->sc_ringmtx);
632
633 softc_device_init(sc, "ubsec_ssb", num_chips, ubsec_ssb_methods);
634
635 /* Maybe someday there are boards with more than one chip available */
636 if (num_chips < UBSEC_SSB_MAX_CHIPS) {
637 ubsec_chip_idx[device_get_unit(sc->sc_dev)] = sc;
638 num_chips++;
639 }
640
641 ssb_set_drvdata(sdev, sc);
642
643 BSD_SIMPLEQ_INIT(&sc->sc_queue);
644 BSD_SIMPLEQ_INIT(&sc->sc_qchip);
645 BSD_SIMPLEQ_INIT(&sc->sc_queue2);
646 BSD_SIMPLEQ_INIT(&sc->sc_qchip2);
647 BSD_SIMPLEQ_INIT(&sc->sc_q2free);
648
649 sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
650
651 sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
652 if (sc->sc_cid < 0) {
653 device_printf(sc->sc_dev, "could not get crypto driver id\n");
654 return -1;
655 }
656
657 BSD_SIMPLEQ_INIT(&sc->sc_freequeue);
658 dmap = sc->sc_dmaa;
659 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
660 struct ubsec_q *q;
661
662 q = (struct ubsec_q *)kmalloc(sizeof(struct ubsec_q), GFP_KERNEL);
663 if (q == NULL) {
664 printf(": can't allocate queue buffers\n");
665 break;
666 }
667
668 if (ubsec_dma_malloc(sc, &dmap->d_alloc, sizeof(struct ubsec_dmachunk),0)) {
669 printf(": can't allocate dma buffers\n");
670 kfree(q);
671 break;
672 }
673 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
674
675 q->q_dma = dmap;
676 sc->sc_queuea[i] = q;
677
678 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
679 }
680
681 /*
682 * Reset Broadcom chip
683 */
684 ubsec_reset_board(sc);
685
686 /*
687 * Init Broadcom chip
688 */
689 ubsec_init_board(sc);
690
691 /* supported crypto algorithms */
692 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
693 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
694
695 if (sc->sc_flags & UBS_FLAGS_AES) {
696 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
697 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
698 }
699 else
700 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES MD5_HMAC SHA1_HMAC\n");
701
702 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
703 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
704
705 return 0;
706 }
707
708 /*
709 * UBSEC Interrupt routine
710 */
711 static irqreturn_t
712 ubsec_ssb_isr(int irq, void *arg, struct pt_regs *regs)
713 {
714 struct ubsec_softc *sc = NULL;
715 volatile u_int32_t stat;
716 struct ubsec_q *q;
717 struct ubsec_dma *dmap;
718 int npkts = 0, i;
719
720 #ifdef UBSEC_VERBOSE_DEBUG
721 DPRINTF("%s()\n", __FUNCTION__);
722 #endif
723
724 sc = (struct ubsec_softc *)ssb_get_drvdata(arg);
725
726 stat = READ_REG(sc, BS_STAT);
727
728 stat &= sc->sc_statmask;
729 if (stat == 0)
730 return IRQ_NONE;
731
732 WRITE_REG(sc, BS_STAT, stat); /* IACK */
733
734 /*
735 * Check to see if we have any packets waiting for us
736 */
737 if ((stat & BS_STAT_MCR1_DONE)) {
738 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
739 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
740 dmap = q->q_dma;
741
742 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
743 {
744 DPRINTF("error while processing MCR. Flags = %x\n", dmap->d_dma->d_mcr.mcr_flags);
745 break;
746 }
747
748 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
749
750 npkts = q->q_nstacked_mcrs;
751 /*
752 * search for further sc_qchip ubsec_q's that share
753 * the same MCR, and complete them too, they must be
754 * at the top.
755 */
756 for (i = 0; i < npkts; i++) {
757 if(q->q_stacked_mcr[i])
758 ubsec_callback(sc, q->q_stacked_mcr[i]);
759 else
760 break;
761 }
762 ubsec_callback(sc, q);
763 }
764
765 /*
766 * Don't send any more packet to chip if there has been
767 * a DMAERR.
768 */
769 if (likely(!(stat & BS_STAT_DMAERR)))
770 ubsec_feed(sc);
771 else
772 DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
773 }
774
775 /*
776 * Check to see if we got any DMA Error
777 */
778 if (stat & BS_STAT_DMAERR) {
779 volatile u_int32_t a = READ_REG(sc, BS_ERR);
780
781 printf(KERN_ERR "%s: dmaerr %s@%08x\n", DRV_MODULE_NAME,
782 (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
783
784 ubsecstats.hst_dmaerr++;
785 ubsec_totalreset(sc);
786 ubsec_feed(sc);
787 }
788
789 return IRQ_HANDLED;
790 }
791
792 /*
793 * ubsec_feed() - aggregate and post requests to chip
794 * It is assumed that the caller set splnet()
795 */
796 void
797 ubsec_feed(struct ubsec_softc *sc)
798 {
799 #ifdef UBSEC_VERBOSE_DEBUG
800 static int max;
801 #endif
802 struct ubsec_q *q, *q2;
803 int npkts, i;
804 void *v;
805 u_int32_t stat;
806
807 npkts = sc->sc_nqueue;
808 if (npkts > UBS_MAX_AGGR)
809 npkts = UBS_MAX_AGGR;
810 if (npkts < 2)
811 goto feed1;
812
813 stat = READ_REG(sc, BS_STAT);
814
815 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
816 if(stat & BS_STAT_DMAERR) {
817 ubsec_totalreset(sc);
818 ubsecstats.hst_dmaerr++;
819 }
820 return;
821 }
822
823 #ifdef UBSEC_VERBOSE_DEBUG
824 DPRINTF("merging %d records\n", npkts);
825
826 /* XXX temporary aggregation statistics reporting code */
827 if (max < npkts) {
828 max = npkts;
829 DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME, max);
830 }
831 #endif /* UBSEC_VERBOSE_DEBUG */
832
833 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
834 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
835 --sc->sc_nqueue;
836
837 #if 0
838 /*
839 * XXX
840 * We use dma_map_single() - no sync required!
841 */
842
843 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
844 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
845 if (q->q_dst_map != NULL)
846 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
847 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
848 #endif
849
850 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
851
852 for (i = 0; i < q->q_nstacked_mcrs; i++) {
853 q2 = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
854
855 #if 0
856 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
857 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
858 if (q2->q_dst_map != NULL)
859 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
860 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
861 #endif
862 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
863 --sc->sc_nqueue;
864
865 v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
866 sizeof(struct ubsec_mcr_add);
867 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
868 q->q_stacked_mcr[i] = q2;
869 }
870 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
871 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
872 #if 0
873 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
874 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
875 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
876 #endif
877 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
878 offsetof(struct ubsec_dmachunk, d_mcr));
879 #ifdef UBSEC_VERBOSE_DEBUG
880 DPRINTF("feed (1): q->chip %p %08x %08x\n", q,
881 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
882 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
883 offsetof(struct ubsec_dmachunk, d_mcr)));
884 #endif /* UBSEC_DEBUG */
885 return;
886
887 feed1:
888 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_queue)) {
889 stat = READ_REG(sc, BS_STAT);
890
891 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
892 if(stat & BS_STAT_DMAERR) {
893 ubsec_totalreset(sc);
894 ubsecstats.hst_dmaerr++;
895 }
896 break;
897 }
898
899 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
900
901 #if 0
902 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
903 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
904 if (q->q_dst_map != NULL)
905 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
906 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
907 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
908 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
909 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
910 #endif
911
912 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
913 offsetof(struct ubsec_dmachunk, d_mcr));
914 #ifdef UBSEC_VERBOSE_DEBUG
915 DPRINTF("feed (2): q->chip %p %08x %08x\n", q,
916 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
917 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
918 offsetof(struct ubsec_dmachunk, d_mcr)));
919 #endif /* UBSEC_DEBUG */
920 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
921 --sc->sc_nqueue;
922 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
923 }
924 }
925
926 /*
927 * Allocate a new 'session' and return an encoded session id. 'sidp'
928 * contains our registration id, and should contain an encoded session
929 * id on successful allocation.
930 */
931 static int
932 ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
933 {
934 struct cryptoini *c, *encini = NULL, *macini = NULL;
935 struct ubsec_softc *sc = NULL;
936 struct ubsec_session *ses = NULL;
937 int sesn, i;
938
939 #ifdef UBSEC_DEBUG
940 DPRINTF("%s()\n", __FUNCTION__);
941 #endif
942
943 if (sidp == NULL || cri == NULL)
944 return (EINVAL);
945
946 sc = device_get_softc(dev);
947
948 if (sc == NULL)
949 return (EINVAL);
950
951 for (c = cri; c != NULL; c = c->cri_next) {
952 if (c->cri_alg == CRYPTO_MD5_HMAC ||
953 c->cri_alg == CRYPTO_SHA1_HMAC) {
954 if (macini)
955 return (EINVAL);
956 macini = c;
957 } else if (c->cri_alg == CRYPTO_DES_CBC ||
958 c->cri_alg == CRYPTO_3DES_CBC ||
959 c->cri_alg == CRYPTO_AES_CBC) {
960 if (encini)
961 return (EINVAL);
962 encini = c;
963 } else
964 return (EINVAL);
965 }
966 if (encini == NULL && macini == NULL)
967 return (EINVAL);
968
969 if (sc->sc_sessions == NULL) {
970 ses = sc->sc_sessions = (struct ubsec_session *)kmalloc(
971 sizeof(struct ubsec_session), SLAB_ATOMIC);
972 if (ses == NULL)
973 return (ENOMEM);
974 memset(ses, 0, sizeof(struct ubsec_session));
975 sesn = 0;
976 sc->sc_nsessions = 1;
977 } else {
978 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
979 if (sc->sc_sessions[sesn].ses_used == 0) {
980 ses = &sc->sc_sessions[sesn];
981 break;
982 }
983 }
984
985 if (ses == NULL) {
986 sesn = sc->sc_nsessions;
987 ses = (struct ubsec_session *)kmalloc((sesn + 1) *
988 sizeof(struct ubsec_session), SLAB_ATOMIC);
989 if (ses == NULL)
990 return (ENOMEM);
991 memset(ses, 0, (sesn + 1) * sizeof(struct ubsec_session));
992 bcopy(sc->sc_sessions, ses, sesn *
993 sizeof(struct ubsec_session));
994 bzero(sc->sc_sessions, sesn *
995 sizeof(struct ubsec_session));
996 kfree(sc->sc_sessions);
997 sc->sc_sessions = ses;
998 ses = &sc->sc_sessions[sesn];
999 sc->sc_nsessions++;
1000 }
1001 }
1002
1003 bzero(ses, sizeof(struct ubsec_session));
1004 ses->ses_used = 1;
1005 if (encini) {
1006 /* get an IV */
1007 /* XXX may read fewer than requested */
1008 read_random(ses->ses_iv, sizeof(ses->ses_iv));
1009
1010 /* Go ahead and compute key in ubsec's byte order */
1011 if (encini->cri_alg == CRYPTO_DES_CBC) {
1012 /* DES uses the same key three times:
1013 * 1st encrypt -> 2nd decrypt -> 3nd encrypt */
1014 bcopy(encini->cri_key, &ses->ses_key[0], 8);
1015 bcopy(encini->cri_key, &ses->ses_key[2], 8);
1016 bcopy(encini->cri_key, &ses->ses_key[4], 8);
1017 ses->ses_keysize = 192; /* Fake! Actually its only 64bits ..
1018 oh no it is even less: 54bits. */
1019 } else if(encini->cri_alg == CRYPTO_3DES_CBC) {
1020 bcopy(encini->cri_key, ses->ses_key, 24);
1021 ses->ses_keysize = 192;
1022 } else if(encini->cri_alg == CRYPTO_AES_CBC) {
1023 ses->ses_keysize = encini->cri_klen;
1024
1025 if (ses->ses_keysize != 128 &&
1026 ses->ses_keysize != 192 &&
1027 ses->ses_keysize != 256)
1028 {
1029 DPRINTF("unsupported AES key size: %d\n", ses->ses_keysize);
1030 return (EINVAL);
1031 }
1032 bcopy(encini->cri_key, ses->ses_key, (ses->ses_keysize / 8));
1033 }
1034
1035 /* Hardware requires the keys in little endian byte order */
1036 for (i=0; i < (ses->ses_keysize / 32); i++)
1037 SWAP32(ses->ses_key[i]);
1038 }
1039
1040 if (macini) {
1041 ses->ses_mlen = macini->cri_mlen;
1042
1043 if (ses->ses_mlen == 0 ||
1044 ses->ses_mlen > SHA1_HASH_LEN) {
1045
1046 if (macini->cri_alg == CRYPTO_MD5_HMAC ||
1047 macini->cri_alg == CRYPTO_SHA1_HMAC)
1048 {
1049 ses->ses_mlen = DEFAULT_HMAC_LEN;
1050 } else
1051 {
1052 /*
1053 * Reserved for future usage. MD5/SHA1 calculations have
1054 * different hash sizes.
1055 */
1056 printk(KERN_ERR DRV_MODULE_NAME ": unsupported hash operation with mac/hash len: %d\n", ses->ses_mlen);
1057 return (EINVAL);
1058 }
1059
1060 }
1061
1062 if (macini->cri_key != NULL) {
1063 ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key,
1064 macini->cri_klen / 8);
1065 }
1066 }
1067
1068 *sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1069 return (0);
1070 }
1071
1072 /*
1073 * Deallocate a session.
1074 */
1075 static int
1076 ubsec_freesession(device_t dev, u_int64_t tid)
1077 {
1078 struct ubsec_softc *sc = device_get_softc(dev);
1079 int session;
1080 u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
1081
1082 #ifdef UBSEC_DEBUG
1083 DPRINTF("%s()\n", __FUNCTION__);
1084 #endif
1085
1086 if (sc == NULL)
1087 return (EINVAL);
1088
1089 session = UBSEC_SESSION(sid);
1090 if (session < sc->sc_nsessions) {
1091 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1092 return (0);
1093 } else
1094 return (EINVAL);
1095 }
1096
1097 static int
1098 ubsec_process(device_t dev, struct cryptop *crp, int hint)
1099 {
1100 struct ubsec_q *q = NULL;
1101 int err = 0, i, j, nicealign;
1102 struct ubsec_softc *sc = device_get_softc(dev);
1103 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1104 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1105 int sskip, dskip, stheend, dtheend, ivsize = 8;
1106 int16_t coffset;
1107 struct ubsec_session *ses;
1108 struct ubsec_generic_ctx ctx;
1109 struct ubsec_dma *dmap = NULL;
1110 unsigned long flags;
1111
1112 #ifdef UBSEC_DEBUG
1113 DPRINTF("%s()\n", __FUNCTION__);
1114 #endif
1115
1116 if (unlikely(crp == NULL || crp->crp_callback == NULL)) {
1117 ubsecstats.hst_invalid++;
1118 return (EINVAL);
1119 }
1120
1121 if (unlikely(sc == NULL))
1122 return (EINVAL);
1123
1124 #ifdef UBSEC_VERBOSE_DEBUG
1125 DPRINTF("spin_lock_irqsave\n");
1126 #endif
1127 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1128 //spin_lock_irq(&sc->sc_ringmtx);
1129
1130 if (BSD_SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1131 ubsecstats.hst_queuefull++;
1132 #ifdef UBSEC_VERBOSE_DEBUG
1133 DPRINTF("spin_unlock_irqrestore\n");
1134 #endif
1135 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1136 //spin_unlock_irq(&sc->sc_ringmtx);
1137 err = ENOMEM;
1138 goto errout2;
1139 }
1140
1141 q = BSD_SIMPLEQ_FIRST(&sc->sc_freequeue);
1142 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1143 #ifdef UBSEC_VERBOSE_DEBUG
1144 DPRINTF("spin_unlock_irqrestore\n");
1145 #endif
1146 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1147 //spin_unlock_irq(&sc->sc_ringmtx);
1148
1149 dmap = q->q_dma; /* Save dma pointer */
1150 bzero(q, sizeof(struct ubsec_q));
1151 bzero(&ctx, sizeof(ctx));
1152
1153 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1154 q->q_dma = dmap;
1155 ses = &sc->sc_sessions[q->q_sesn];
1156
1157 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1158 q->q_src_m = (struct sk_buff *)crp->crp_buf;
1159 q->q_dst_m = (struct sk_buff *)crp->crp_buf;
1160 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1161 q->q_src_io = (struct uio *)crp->crp_buf;
1162 q->q_dst_io = (struct uio *)crp->crp_buf;
1163 } else {
1164 err = EINVAL;
1165 goto errout; /* XXX we don't handle contiguous blocks! */
1166 }
1167
1168 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1169
1170 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1171 dmap->d_dma->d_mcr.mcr_flags = 0;
1172 q->q_crp = crp;
1173
1174 crd1 = crp->crp_desc;
1175 if (crd1 == NULL) {
1176 err = EINVAL;
1177 goto errout;
1178 }
1179 crd2 = crd1->crd_next;
1180
1181 if (crd2 == NULL) {
1182 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1183 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1184 maccrd = crd1;
1185 enccrd = NULL;
1186 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1187 crd1->crd_alg == CRYPTO_3DES_CBC ||
1188 crd1->crd_alg == CRYPTO_AES_CBC) {
1189 maccrd = NULL;
1190 enccrd = crd1;
1191 } else {
1192 err = EINVAL;
1193 goto errout;
1194 }
1195 } else {
1196 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1197 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1198 (crd2->crd_alg == CRYPTO_DES_CBC ||
1199 crd2->crd_alg == CRYPTO_3DES_CBC ||
1200 crd2->crd_alg == CRYPTO_AES_CBC) &&
1201 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1202 maccrd = crd1;
1203 enccrd = crd2;
1204 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1205 crd1->crd_alg == CRYPTO_3DES_CBC ||
1206 crd1->crd_alg == CRYPTO_AES_CBC) &&
1207 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1208 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1209 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1210 enccrd = crd1;
1211 maccrd = crd2;
1212 } else {
1213 /*
1214 * We cannot order the ubsec as requested
1215 */
1216 printk(KERN_ERR DRV_MODULE_NAME ": got wrong algorithm/signature order.\n");
1217 err = EINVAL;
1218 goto errout;
1219 }
1220 }
1221
1222 /* Encryption/Decryption requested */
1223 if (enccrd) {
1224 encoffset = enccrd->crd_skip;
1225
1226 if (enccrd->crd_alg == CRYPTO_DES_CBC ||
1227 enccrd->crd_alg == CRYPTO_3DES_CBC)
1228 {
1229 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1230 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_DES);
1231 ivsize = 8; /* [3]DES uses 64bit IVs */
1232 } else {
1233 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_AES);
1234 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1235 ivsize = 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
1236
1237 switch(ses->ses_keysize)
1238 {
1239 case 128:
1240 ctx.pc_flags |= htole16(UBS_PKTCTX_AES128);
1241 break;
1242 case 192:
1243 ctx.pc_flags |= htole16(UBS_PKTCTX_AES192);
1244 break;
1245 case 256:
1246 ctx.pc_flags |= htole16(UBS_PKTCTX_AES256);
1247 break;
1248 default:
1249 DPRINTF("invalid AES key size: %d\n", ses->ses_keysize);
1250 err = EINVAL;
1251 goto errout;
1252 }
1253 }
1254
1255 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1256 /* Direction: Outbound */
1257
1258 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1259
1260 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1261 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1262 } else {
1263 for(i=0; i < (ivsize / 4); i++)
1264 ctx.pc_iv[i] = ses->ses_iv[i];
1265 }
1266
1267 /* If there is no IV in the buffer -> copy it here */
1268 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1269 if (crp->crp_flags & CRYPTO_F_SKBUF)
1270 /*
1271 m_copyback(q->q_src_m,
1272 enccrd->crd_inject,
1273 8, ctx.pc_iv);
1274 */
1275 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_m,
1276 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1277 else if (crp->crp_flags & CRYPTO_F_IOV)
1278 /*
1279 cuio_copyback(q->q_src_io,
1280 enccrd->crd_inject,
1281 8, ctx.pc_iv);
1282 */
1283 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_io,
1284 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1285 }
1286 } else {
1287 /* Direction: Inbound */
1288
1289 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1290
1291 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1292 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1293 else if (crp->crp_flags & CRYPTO_F_SKBUF)
1294 /*
1295 m_copydata(q->q_src_m, enccrd->crd_inject,
1296 8, (caddr_t)ctx.pc_iv);
1297 */
1298 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_m,
1299 enccrd->crd_inject, ivsize,
1300 (caddr_t)ctx.pc_iv);
1301 else if (crp->crp_flags & CRYPTO_F_IOV)
1302 /*
1303 cuio_copydata(q->q_src_io,
1304 enccrd->crd_inject, 8,
1305 (caddr_t)ctx.pc_iv);
1306 */
1307 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_io,
1308 enccrd->crd_inject, ivsize,
1309 (caddr_t)ctx.pc_iv);
1310
1311 }
1312
1313 /* Even though key & IV sizes differ from cipher to cipher
1314 * copy / swap the full array lengths. Let the compiler unroll
1315 * the loop to increase the cpu pipeline performance... */
1316 for(i=0; i < 8; i++)
1317 ctx.pc_key[i] = ses->ses_key[i];
1318 for(i=0; i < 4; i++)
1319 SWAP32(ctx.pc_iv[i]);
1320 }
1321
1322 /* Authentication requested */
1323 if (maccrd) {
1324 macoffset = maccrd->crd_skip;
1325
1326 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1327 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1328 else
1329 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1330
1331 for (i = 0; i < 5; i++) {
1332 ctx.pc_hminner[i] = ses->ses_hminner[i];
1333 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1334
1335 HTOLE32(ctx.pc_hminner[i]);
1336 HTOLE32(ctx.pc_hmouter[i]);
1337 }
1338 }
1339
1340 if (enccrd && maccrd) {
1341 /*
1342 * ubsec cannot handle packets where the end of encryption
1343 * and authentication are not the same, or where the
1344 * encrypted part begins before the authenticated part.
1345 */
1346 if (((encoffset + enccrd->crd_len) !=
1347 (macoffset + maccrd->crd_len)) ||
1348 (enccrd->crd_skip < maccrd->crd_skip)) {
1349 err = EINVAL;
1350 goto errout;
1351 }
1352 sskip = maccrd->crd_skip;
1353 cpskip = dskip = enccrd->crd_skip;
1354 stheend = maccrd->crd_len;
1355 dtheend = enccrd->crd_len;
1356 coffset = enccrd->crd_skip - maccrd->crd_skip;
1357 cpoffset = cpskip + dtheend;
1358 #ifdef UBSEC_DEBUG
1359 DPRINTF("mac: skip %d, len %d, inject %d\n",
1360 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1361 DPRINTF("enc: skip %d, len %d, inject %d\n",
1362 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1363 DPRINTF("src: skip %d, len %d\n", sskip, stheend);
1364 DPRINTF("dst: skip %d, len %d\n", dskip, dtheend);
1365 DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1366 coffset, stheend, cpskip, cpoffset);
1367 #endif
1368 } else {
1369 cpskip = dskip = sskip = macoffset + encoffset;
1370 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1371 cpoffset = cpskip + dtheend;
1372 coffset = 0;
1373 }
1374 ctx.pc_offset = htole16(coffset >> 2);
1375
1376 #if 0
1377 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1378 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1379 err = ENOMEM;
1380 goto errout;
1381 }
1382 #endif
1383
1384 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1385 #if 0
1386 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1387 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1388 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1389 q->q_src_map = NULL;
1390 err = ENOMEM;
1391 goto errout;
1392 }
1393 #endif
1394 err = dma_map_skb(sc, q->q_src_map, q->q_src_m, &q->q_src_len);
1395 if (unlikely(err != 0))
1396 goto errout;
1397
1398 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1399 #if 0
1400 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1401 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1402 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1403 q->q_src_map = NULL;
1404 err = ENOMEM;
1405 goto errout;
1406 }
1407 #endif
1408 err = dma_map_uio(sc, q->q_src_map, q->q_src_io, &q->q_src_len);
1409 if (unlikely(err != 0))
1410 goto errout;
1411 }
1412
1413 /*
1414 * Check alignment
1415 */
1416 nicealign = ubsec_dmamap_aligned(sc, q->q_src_map, q->q_src_len);
1417
1418 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1419
1420 #ifdef UBSEC_DEBUG
1421 DPRINTF("src skip: %d\n", sskip);
1422 #endif
1423 for (i = j = 0; i < q->q_src_len; i++) {
1424 struct ubsec_pktbuf *pb;
1425 size_t packl = q->q_src_map[i].dma_size;
1426 dma_addr_t packp = q->q_src_map[i].dma_paddr;
1427
1428 if (sskip >= packl) {
1429 sskip -= packl;
1430 continue;
1431 }
1432
1433 packl -= sskip;
1434 packp += sskip;
1435 sskip = 0;
1436
1437 /* maximum fragment size is 0xfffc */
1438 if (packl > 0xfffc) {
1439 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1440 err = EIO;
1441 goto errout;
1442 }
1443
1444 if (j == 0)
1445 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1446 else
1447 pb = &dmap->d_dma->d_sbuf[j - 1];
1448
1449 pb->pb_addr = htole32(packp);
1450
1451 if (stheend) {
1452 if (packl > stheend) {
1453 pb->pb_len = htole32(stheend);
1454 stheend = 0;
1455 } else {
1456 pb->pb_len = htole32(packl);
1457 stheend -= packl;
1458 }
1459 } else
1460 pb->pb_len = htole32(packl);
1461
1462 if ((i + 1) == q->q_src_len)
1463 pb->pb_next = 0;
1464 else
1465 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1466 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1467 j++;
1468 }
1469
1470 if (enccrd == NULL && maccrd != NULL) {
1471 /* Authentication only */
1472 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1473 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1474 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
1475 htole32(dmap->d_alloc.dma_paddr +
1476 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1477 #ifdef UBSEC_DEBUG
1478 DPRINTF("opkt: %x %x %x\n",
1479 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1480 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1481 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1482 #endif
1483 } else {
1484 if (crp->crp_flags & CRYPTO_F_IOV) {
1485 if (!nicealign) {
1486 err = EINVAL;
1487 goto errout;
1488 }
1489 #if 0
1490 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1491 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1492 &q->q_dst_map) != 0) {
1493 err = ENOMEM;
1494 goto errout;
1495 }
1496 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1497 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1498 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1499 q->q_dst_map = NULL;
1500 goto errout;
1501 }
1502 #endif
1503
1504 /* HW shall copy the result into the source memory */
1505 for(i = 0; i < q->q_src_len; i++)
1506 q->q_dst_map[i] = q->q_src_map[i];
1507
1508 q->q_dst_len = q->q_src_len;
1509 q->q_has_dst = 0;
1510
1511 } else if (crp->crp_flags & CRYPTO_F_SKBUF) {
1512 if (nicealign) {
1513
1514 /* HW shall copy the result into the source memory */
1515 q->q_dst_m = q->q_src_m;
1516 for(i = 0; i < q->q_src_len; i++)
1517 q->q_dst_map[i] = q->q_src_map[i];
1518
1519 q->q_dst_len = q->q_src_len;
1520 q->q_has_dst = 0;
1521
1522 } else {
1523 #ifdef NOTYET
1524 int totlen, len;
1525 struct sk_buff *m, *top, **mp;
1526
1527 totlen = q->q_src_map->dm_mapsize;
1528 if (q->q_src_m->m_flags & M_PKTHDR) {
1529 len = MHLEN;
1530 MGETHDR(m, M_DONTWAIT, MT_DATA);
1531 } else {
1532 len = MLEN;
1533 MGET(m, M_DONTWAIT, MT_DATA);
1534 }
1535 if (m == NULL) {
1536 err = ENOMEM;
1537 goto errout;
1538 }
1539 if (len == MHLEN)
1540 M_DUP_PKTHDR(m, q->q_src_m);
1541 if (totlen >= MINCLSIZE) {
1542 MCLGET(m, M_DONTWAIT);
1543 if (m->m_flags & M_EXT)
1544 len = MCLBYTES;
1545 }
1546 m->m_len = len;
1547 top = NULL;
1548 mp = &top;
1549
1550 while (totlen > 0) {
1551 if (top) {
1552 MGET(m, M_DONTWAIT, MT_DATA);
1553 if (m == NULL) {
1554 m_freem(top);
1555 err = ENOMEM;
1556 goto errout;
1557 }
1558 len = MLEN;
1559 }
1560 if (top && totlen >= MINCLSIZE) {
1561 MCLGET(m, M_DONTWAIT);
1562 if (m->m_flags & M_EXT)
1563 len = MCLBYTES;
1564 }
1565 m->m_len = len = min(totlen, len);
1566 totlen -= len;
1567 *mp = m;
1568 mp = &m->m_next;
1569 }
1570 q->q_dst_m = top;
1571 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1572 cpskip, cpoffset);
1573 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1574 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1575 &q->q_dst_map) != 0) {
1576 err = ENOMEM;
1577 goto errout;
1578 }
1579 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1580 q->q_dst_map, q->q_dst_m,
1581 BUS_DMA_NOWAIT) != 0) {
1582 bus_dmamap_destroy(sc->sc_dmat,
1583 q->q_dst_map);
1584 q->q_dst_map = NULL;
1585 err = ENOMEM;
1586 goto errout;
1587 }
1588 #else
1589 device_printf(sc->sc_dev,
1590 "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
1591 __FILE__, __LINE__);
1592 err = EINVAL;
1593 goto errout;
1594 #endif
1595 }
1596 } else {
1597 err = EINVAL;
1598 goto errout;
1599 }
1600
1601 #ifdef UBSEC_DEBUG
1602 DPRINTF("dst skip: %d\n", dskip);
1603 #endif
1604 for (i = j = 0; i < q->q_dst_len; i++) {
1605 struct ubsec_pktbuf *pb;
1606 size_t packl = q->q_dst_map[i].dma_size;
1607 dma_addr_t packp = q->q_dst_map[i].dma_paddr;
1608
1609 if (dskip >= packl) {
1610 dskip -= packl;
1611 continue;
1612 }
1613
1614 packl -= dskip;
1615 packp += dskip;
1616 dskip = 0;
1617
1618 if (packl > 0xfffc) {
1619 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1620 err = EIO;
1621 goto errout;
1622 }
1623
1624 if (j == 0)
1625 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1626 else
1627 pb = &dmap->d_dma->d_dbuf[j - 1];
1628
1629 pb->pb_addr = htole32(packp);
1630
1631 if (dtheend) {
1632 if (packl > dtheend) {
1633 pb->pb_len = htole32(dtheend);
1634 dtheend = 0;
1635 } else {
1636 pb->pb_len = htole32(packl);
1637 dtheend -= packl;
1638 }
1639 } else
1640 pb->pb_len = htole32(packl);
1641
1642 if ((i + 1) == q->q_dst_len) {
1643 if (maccrd)
1644 /* Authentication:
1645 * The last fragment of the output buffer
1646 * contains the HMAC. */
1647 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1648 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1649 else
1650 pb->pb_next = 0;
1651 } else
1652 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1653 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1654 j++;
1655 }
1656 }
1657
1658 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1659 offsetof(struct ubsec_dmachunk, d_ctx));
1660
1661 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1662 /* new Broadcom cards with dynamic long command context structure */
1663
1664 if (enccrd != NULL &&
1665 enccrd->crd_alg == CRYPTO_AES_CBC)
1666 {
1667 struct ubsec_pktctx_aes128 *ctxaes128;
1668 struct ubsec_pktctx_aes192 *ctxaes192;
1669 struct ubsec_pktctx_aes256 *ctxaes256;
1670
1671 switch(ses->ses_keysize)
1672 {
1673 /* AES 128bit */
1674 case 128:
1675 ctxaes128 = (struct ubsec_pktctx_aes128 *)
1676 (dmap->d_alloc.dma_vaddr +
1677 offsetof(struct ubsec_dmachunk, d_ctx));
1678
1679 ctxaes128->pc_len = htole16(sizeof(struct ubsec_pktctx_aes128));
1680 ctxaes128->pc_type = ctx.pc_type;
1681 ctxaes128->pc_flags = ctx.pc_flags;
1682 ctxaes128->pc_offset = ctx.pc_offset;
1683 for (i = 0; i < 4; i++)
1684 ctxaes128->pc_aeskey[i] = ctx.pc_key[i];
1685 for (i = 0; i < 5; i++)
1686 ctxaes128->pc_hminner[i] = ctx.pc_hminner[i];
1687 for (i = 0; i < 5; i++)
1688 ctxaes128->pc_hmouter[i] = ctx.pc_hmouter[i];
1689 for (i = 0; i < 4; i++)
1690 ctxaes128->pc_iv[i] = ctx.pc_iv[i];
1691 break;
1692
1693 /* AES 192bit */
1694 case 192:
1695 ctxaes192 = (struct ubsec_pktctx_aes192 *)
1696 (dmap->d_alloc.dma_vaddr +
1697 offsetof(struct ubsec_dmachunk, d_ctx));
1698
1699 ctxaes192->pc_len = htole16(sizeof(struct ubsec_pktctx_aes192));
1700 ctxaes192->pc_type = ctx.pc_type;
1701 ctxaes192->pc_flags = ctx.pc_flags;
1702 ctxaes192->pc_offset = ctx.pc_offset;
1703 for (i = 0; i < 6; i++)
1704 ctxaes192->pc_aeskey[i] = ctx.pc_key[i];
1705 for (i = 0; i < 5; i++)
1706 ctxaes192->pc_hminner[i] = ctx.pc_hminner[i];
1707 for (i = 0; i < 5; i++)
1708 ctxaes192->pc_hmouter[i] = ctx.pc_hmouter[i];
1709 for (i = 0; i < 4; i++)
1710 ctxaes192->pc_iv[i] = ctx.pc_iv[i];
1711 break;
1712
1713 /* AES 256bit */
1714 case 256:
1715 ctxaes256 = (struct ubsec_pktctx_aes256 *)
1716 (dmap->d_alloc.dma_vaddr +
1717 offsetof(struct ubsec_dmachunk, d_ctx));
1718
1719 ctxaes256->pc_len = htole16(sizeof(struct ubsec_pktctx_aes256));
1720 ctxaes256->pc_type = ctx.pc_type;
1721 ctxaes256->pc_flags = ctx.pc_flags;
1722 ctxaes256->pc_offset = ctx.pc_offset;
1723 for (i = 0; i < 8; i++)
1724 ctxaes256->pc_aeskey[i] = ctx.pc_key[i];
1725 for (i = 0; i < 5; i++)
1726 ctxaes256->pc_hminner[i] = ctx.pc_hminner[i];
1727 for (i = 0; i < 5; i++)
1728 ctxaes256->pc_hmouter[i] = ctx.pc_hmouter[i];
1729 for (i = 0; i < 4; i++)
1730 ctxaes256->pc_iv[i] = ctx.pc_iv[i];
1731 break;
1732
1733 }
1734 } else {
1735 /*
1736 * [3]DES / MD5_HMAC / SHA1_HMAC
1737 *
1738 * MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
1739 * encryption.
1740 */
1741 struct ubsec_pktctx_des *ctxdes;
1742
1743 ctxdes = (struct ubsec_pktctx_des *)(dmap->d_alloc.dma_vaddr +
1744 offsetof(struct ubsec_dmachunk, d_ctx));
1745
1746 ctxdes->pc_len = htole16(sizeof(struct ubsec_pktctx_des));
1747 ctxdes->pc_type = ctx.pc_type;
1748 ctxdes->pc_flags = ctx.pc_flags;
1749 ctxdes->pc_offset = ctx.pc_offset;
1750 for (i = 0; i < 6; i++)
1751 ctxdes->pc_deskey[i] = ctx.pc_key[i];
1752 for (i = 0; i < 5; i++)
1753 ctxdes->pc_hminner[i] = ctx.pc_hminner[i];
1754 for (i = 0; i < 5; i++)
1755 ctxdes->pc_hmouter[i] = ctx.pc_hmouter[i];
1756 ctxdes->pc_iv[0] = ctx.pc_iv[0];
1757 ctxdes->pc_iv[1] = ctx.pc_iv[1];
1758 }
1759 } else
1760 {
1761 /* old Broadcom card with fixed small command context structure */
1762
1763 /*
1764 * [3]DES / MD5_HMAC / SHA1_HMAC
1765 */
1766 struct ubsec_pktctx *ctxs;
1767
1768 ctxs = (struct ubsec_pktctx *)(dmap->d_alloc.dma_vaddr +
1769 offsetof(struct ubsec_dmachunk, d_ctx));
1770
1771 /* transform generic context into small context */
1772 for (i = 0; i < 6; i++)
1773 ctxs->pc_deskey[i] = ctx.pc_key[i];
1774 for (i = 0; i < 5; i++)
1775 ctxs->pc_hminner[i] = ctx.pc_hminner[i];
1776 for (i = 0; i < 5; i++)
1777 ctxs->pc_hmouter[i] = ctx.pc_hmouter[i];
1778 ctxs->pc_iv[0] = ctx.pc_iv[0];
1779 ctxs->pc_iv[1] = ctx.pc_iv[1];
1780 ctxs->pc_flags = ctx.pc_flags;
1781 ctxs->pc_offset = ctx.pc_offset;
1782 }
1783
1784 #ifdef UBSEC_VERBOSE_DEBUG
1785 DPRINTF("spin_lock_irqsave\n");
1786 #endif
1787 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1788 //spin_lock_irq(&sc->sc_ringmtx);
1789
1790 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1791 sc->sc_nqueue++;
1792 ubsecstats.hst_ipackets++;
1793 ubsecstats.hst_ibytes += stheend;
1794 ubsec_feed(sc);
1795
1796 #ifdef UBSEC_VERBOSE_DEBUG
1797 DPRINTF("spin_unlock_irqrestore\n");
1798 #endif
1799 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1800 //spin_unlock_irq(&sc->sc_ringmtx);
1801
1802 return (0);
1803
1804 errout:
1805 if (q != NULL) {
1806 #ifdef NOTYET
1807 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1808 m_freem(q->q_dst_m);
1809 #endif
1810
1811 if ((q->q_has_dst == 1) && q->q_dst_len > 0) {
1812 #if 0
1813 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1814 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1815 #endif
1816 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1817 }
1818 if (q->q_src_len > 0) {
1819 #if 0
1820 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1821 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1822 #endif
1823 dma_unmap(sc, q->q_src_map, q->q_src_len);
1824 }
1825
1826 #ifdef UBSEC_VERBOSE_DEBUG
1827 DPRINTF("spin_lock_irqsave\n");
1828 #endif
1829 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1830 //spin_lock_irq(&sc->sc_ringmtx);
1831
1832 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1833
1834 #ifdef UBSEC_VERBOSE_DEBUG
1835 DPRINTF("spin_unlock_irqrestore\n");
1836 #endif
1837 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1838 //spin_unlock_irq(&sc->sc_ringmtx);
1839
1840 }
1841 if (err == EINVAL)
1842 ubsecstats.hst_invalid++;
1843 else
1844 ubsecstats.hst_nomem++;
1845 errout2:
1846 crp->crp_etype = err;
1847 crypto_done(crp);
1848
1849 #ifdef UBSEC_DEBUG
1850 DPRINTF("%s() err = %x\n", __FUNCTION__, err);
1851 #endif
1852
1853 return (0);
1854 }
1855
1856 void
1857 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1858 {
1859 struct cryptop *crp = (struct cryptop *)q->q_crp;
1860 struct cryptodesc *crd;
1861 struct ubsec_dma *dmap = q->q_dma;
1862 int ivsize = 8;
1863
1864 #ifdef UBSEC_DEBUG
1865 DPRINTF("%s()\n", __FUNCTION__);
1866 #endif
1867
1868 ubsecstats.hst_opackets++;
1869 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1870
1871 #if 0
1872 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1873 dmap->d_alloc.dma_map->dm_mapsize,
1874 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1875 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1876 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1877 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1878 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1879 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1880 }
1881 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1882 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1883 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1884 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1885 #endif
1886
1887 if ((q->q_has_dst == 1) && q->q_dst_len > 0)
1888 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1889
1890 dma_unmap(sc, q->q_src_map, q->q_src_len);
1891
1892 #ifdef NOTYET
1893 if ((crp->crp_flags & CRYPTO_F_SKBUF) && (q->q_src_m != q->q_dst_m)) {
1894 m_freem(q->q_src_m);
1895 crp->crp_buf = (caddr_t)q->q_dst_m;
1896 }
1897 #endif
1898
1899 /* copy out IV for future use */
1900 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1901 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1902 if (crd->crd_alg != CRYPTO_DES_CBC &&
1903 crd->crd_alg != CRYPTO_3DES_CBC &&
1904 crd->crd_alg != CRYPTO_AES_CBC)
1905 continue;
1906
1907 if (crd->crd_alg == CRYPTO_AES_CBC)
1908 ivsize = 16;
1909 else
1910 ivsize = 8;
1911
1912 if (crp->crp_flags & CRYPTO_F_SKBUF)
1913 #if 0
1914 m_copydata((struct sk_buff *)crp->crp_buf,
1915 crd->crd_skip + crd->crd_len - 8, 8,
1916 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1917 #endif
1918 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1919 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1920 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1921
1922 else if (crp->crp_flags & CRYPTO_F_IOV) {
1923 #if 0
1924 cuio_copydata((struct uio *)crp->crp_buf,
1925 crd->crd_skip + crd->crd_len - 8, 8,
1926 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1927 #endif
1928 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1929 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1930 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1931
1932 }
1933 break;
1934 }
1935 }
1936
1937 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1938 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1939 crd->crd_alg != CRYPTO_SHA1_HMAC)
1940 continue;
1941 #if 0
1942 if (crp->crp_flags & CRYPTO_F_SKBUF)
1943 m_copyback((struct sk_buff *)crp->crp_buf,
1944 crd->crd_inject, 12,
1945 dmap->d_dma->d_macbuf);
1946 #endif
1947 #if 0
1948 /* BUG? it does not honor the mac len.. */
1949 crypto_copyback(crp->crp_flags, crp->crp_buf,
1950 crd->crd_inject, 12,
1951 (caddr_t)dmap->d_dma->d_macbuf);
1952 #endif
1953 crypto_copyback(crp->crp_flags, crp->crp_buf,
1954 crd->crd_inject,
1955 sc->sc_sessions[q->q_sesn].ses_mlen,
1956 (caddr_t)dmap->d_dma->d_macbuf);
1957 #if 0
1958 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1959 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1960 crp->crp_mac, 12);
1961 #endif
1962 break;
1963 }
1964 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1965 crypto_done(crp);
1966 }
1967
1968 void
1969 ubsec_mcopy(struct sk_buff *srcm, struct sk_buff *dstm, int hoffset, int toffset)
1970 {
1971 int i, j, dlen, slen;
1972 caddr_t dptr, sptr;
1973
1974 j = 0;
1975 sptr = srcm->data;
1976 slen = srcm->len;
1977 dptr = dstm->data;
1978 dlen = dstm->len;
1979
1980 while (1) {
1981 for (i = 0; i < min(slen, dlen); i++) {
1982 if (j < hoffset || j >= toffset)
1983 *dptr++ = *sptr++;
1984 slen--;
1985 dlen--;
1986 j++;
1987 }
1988 if (slen == 0) {
1989 srcm = srcm->next;
1990 if (srcm == NULL)
1991 return;
1992 sptr = srcm->data;
1993 slen = srcm->len;
1994 }
1995 if (dlen == 0) {
1996 dstm = dstm->next;
1997 if (dstm == NULL)
1998 return;
1999 dptr = dstm->data;
2000 dlen = dstm->len;
2001 }
2002 }
2003 }
2004
2005 int
2006 ubsec_dma_malloc(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma,
2007 size_t size, int mapflags)
2008 {
2009 dma->dma_vaddr = dma_alloc_coherent(sc->sc_dv,
2010 size, &dma->dma_paddr, GFP_KERNEL);
2011
2012 if (likely(dma->dma_vaddr))
2013 {
2014 dma->dma_size = size;
2015 return (0);
2016 }
2017
2018 DPRINTF("could not allocate %d bytes of coherent memory.\n", size);
2019
2020 return (1);
2021 }
2022
2023 void
2024 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2025 {
2026 dma_free_coherent(sc->sc_dv, dma->dma_size, dma->dma_vaddr,
2027 dma->dma_paddr);
2028 }
2029
2030 /*
2031 * Resets the board. Values in the regesters are left as is
2032 * from the reset (i.e. initial values are assigned elsewhere).
2033 */
2034 void
2035 ubsec_reset_board(struct ubsec_softc *sc)
2036 {
2037 volatile u_int32_t ctrl;
2038
2039 #ifdef UBSEC_DEBUG
2040 DPRINTF("%s()\n", __FUNCTION__);
2041 #endif
2042 DPRINTF("Send reset signal to chip.\n");
2043
2044 ctrl = READ_REG(sc, BS_CTRL);
2045 ctrl |= BS_CTRL_RESET;
2046 WRITE_REG(sc, BS_CTRL, ctrl);
2047
2048 /*
2049 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2050 */
2051 DELAY(10);
2052 }
2053
2054 /*
2055 * Init Broadcom registers
2056 */
2057 void
2058 ubsec_init_board(struct ubsec_softc *sc)
2059 {
2060 u_int32_t ctrl;
2061
2062 #ifdef UBSEC_DEBUG
2063 DPRINTF("%s()\n", __FUNCTION__);
2064 #endif
2065 DPRINTF("Initialize chip.\n");
2066
2067 ctrl = READ_REG(sc, BS_CTRL);
2068 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2069 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT | BS_CTRL_DMAERR;
2070
2071 WRITE_REG(sc, BS_CTRL, ctrl);
2072
2073 /* Set chip capabilities (BCM5365P) */
2074 sc->sc_flags |= UBS_FLAGS_LONGCTX | UBS_FLAGS_AES;
2075 }
2076
2077 /*
2078 * Clean up after a chip crash.
2079 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2080 */
2081 void
2082 ubsec_cleanchip(struct ubsec_softc *sc)
2083 {
2084 struct ubsec_q *q;
2085
2086 #ifdef UBSEC_DEBUG
2087 DPRINTF("%s()\n", __FUNCTION__);
2088 #endif
2089 DPRINTF("Clean up queues after chip crash.\n");
2090
2091 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2092 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
2093 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2094 ubsec_free_q(sc, q);
2095 }
2096 }
2097
2098 /*
2099 * free a ubsec_q
2100 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2101 */
2102 int
2103 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2104 {
2105 struct ubsec_q *q2;
2106 struct cryptop *crp;
2107 int npkts;
2108 int i;
2109
2110 #ifdef UBSEC_DEBUG
2111 DPRINTF("%s()\n", __FUNCTION__);
2112 #endif
2113
2114 npkts = q->q_nstacked_mcrs;
2115
2116 for (i = 0; i < npkts; i++) {
2117 if(q->q_stacked_mcr[i]) {
2118 q2 = q->q_stacked_mcr[i];
2119
2120 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2121 #ifdef NOTYET
2122 m_freem(q2->q_dst_m);
2123 #else
2124 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2125 #endif
2126
2127 crp = (struct cryptop *)q2->q_crp;
2128
2129 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2130
2131 crp->crp_etype = EFAULT;
2132 crypto_done(crp);
2133 } else {
2134 break;
2135 }
2136 }
2137
2138 /*
2139 * Free header MCR
2140 */
2141 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2142 #ifdef NOTYET
2143 m_freem(q->q_dst_m);
2144 #else
2145 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2146 #endif
2147
2148 crp = (struct cryptop *)q->q_crp;
2149
2150 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2151
2152 crp->crp_etype = EFAULT;
2153 crypto_done(crp);
2154 return(0);
2155 }
2156
2157 /*
2158 * Routine to reset the chip and clean up.
2159 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2160 */
2161 void
2162 ubsec_totalreset(struct ubsec_softc *sc)
2163 {
2164
2165 #ifdef UBSEC_DEBUG
2166 DPRINTF("%s()\n", __FUNCTION__);
2167 #endif
2168 DPRINTF("initiate total chip reset.. \n");
2169 ubsec_reset_board(sc);
2170 ubsec_init_board(sc);
2171 ubsec_cleanchip(sc);
2172 }
2173
2174 void
2175 ubsec_dump_pb(struct ubsec_pktbuf *pb)
2176 {
2177 printf("addr 0x%x (0x%x) next 0x%x\n",
2178 pb->pb_addr, pb->pb_len, pb->pb_next);
2179 }
2180
2181 void
2182 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2183 {
2184 struct ubsec_mcr_add *ma;
2185 int i;
2186
2187 printf("MCR:\n");
2188 printf(" pkts: %u, flags 0x%x\n",
2189 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2190 ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2191 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2192 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2193 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2194 letoh16(ma->mcr_reserved));
2195 printf(" %d: ipkt ", i);
2196 ubsec_dump_pb(&ma->mcr_ipktbuf);
2197 printf(" %d: opkt ", i);
2198 ubsec_dump_pb(&ma->mcr_opktbuf);
2199 ma++;
2200 }
2201 printf("END MCR\n");
2202 }
2203
2204 static int __init mod_init(void) {
2205 return ssb_driver_register(&ubsec_ssb_driver);
2206 }
2207
2208 static void __exit mod_exit(void) {
2209 ssb_driver_unregister(&ubsec_ssb_driver);
2210 }
2211
2212 module_init(mod_init);
2213 module_exit(mod_exit);
2214
2215 // Meta information
2216 MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
2217 MODULE_LICENSE("BSD");
2218 MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
2219 MODULE_VERSION(DRV_MODULE_VERSION);
2220
This page took 0.149899 seconds and 3 git commands to generate.