ff95ac009f4d7eaa59e0752763b7971e978ff8bf
[openwrt.git] / target / linux / adm5120 / files-2.6.26 / drivers / net / adm5120sw.c
1 /*
2 * ADM5120 built-in ethernet switch driver
3 *
4 * Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org>
5 *
6 * This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken.
7 * Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005
8 * NAPI extension for the Jeroen's driver
9 * Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007
10 * Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007
11 * Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver.
12 * Copyright ADMtek Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License version 2 as published
16 * by the Free Software Foundation.
17 *
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/spinlock.h>
26 #include <linux/platform_device.h>
27
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31
32 #include <linux/io.h>
33 #include <linux/irq.h>
34
35 #include <asm/mipsregs.h>
36
37 #include <asm/mach-adm5120/adm5120_info.h>
38 #include <asm/mach-adm5120/adm5120_defs.h>
39 #include <asm/mach-adm5120/adm5120_irq.h>
40 #include <asm/mach-adm5120/adm5120_switch.h>
41
42 #include "adm5120sw.h"
43
44 #define DRV_NAME "adm5120-switch"
45 #define DRV_DESC "ADM5120 built-in ethernet switch driver"
46 #define DRV_VERSION "0.1.1"
47
48 #define CONFIG_ADM5120_SWITCH_NAPI 1
49 #undef CONFIG_ADM5120_SWITCH_DEBUG
50
51 /* ------------------------------------------------------------------------ */
52
53 #ifdef CONFIG_ADM5120_SWITCH_DEBUG
54 #define SW_DBG(f, a...) printk(KERN_DBG "%s: " f, DRV_NAME , ## a)
55 #else
56 #define SW_DBG(f, a...) do {} while (0)
57 #endif
58 #define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a)
59 #define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a)
60
61 #define SWITCH_NUM_PORTS 6
62 #define ETH_CSUM_LEN 4
63
64 #define RX_MAX_PKTLEN 1550
65 #define RX_RING_SIZE 64
66
67 #define TX_RING_SIZE 32
68 #define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */
69 #define TX_TIMEOUT HZ*400
70
71 #define RX_DESCS_SIZE (RX_RING_SIZE * sizeof(struct dma_desc *))
72 #define RX_SKBS_SIZE (RX_RING_SIZE * sizeof(struct sk_buff *))
73 #define TX_DESCS_SIZE (TX_RING_SIZE * sizeof(struct dma_desc *))
74 #define TX_SKBS_SIZE (TX_RING_SIZE * sizeof(struct sk_buff *))
75
76 #define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32)
77 #define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD)
78
79 #define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF)
80 #define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF)
81 #define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH)
82 #define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \
83 SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \
84 SWITCH_INT_CPQF | SWITCH_INT_GQF)
85
86 #define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \
87 SWITCH_INTS_ERR | SWITCH_INTS_Q | \
88 SWITCH_INT_MD | SWITCH_INT_PSC)
89
90 #define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC)
91 #define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD)
92
93 /* ------------------------------------------------------------------------ */
94
95 struct adm5120_if_priv {
96 struct net_device *dev;
97
98 unsigned int vlan_no;
99 unsigned int port_mask;
100
101 #ifdef CONFIG_ADM5120_SWITCH_NAPI
102 struct napi_struct napi;
103 #endif
104 };
105
106 struct dma_desc {
107 __u32 buf1;
108 #define DESC_OWN (1UL << 31) /* Owned by the switch */
109 #define DESC_EOR (1UL << 28) /* End of Ring */
110 #define DESC_ADDR_MASK 0x1FFFFFF
111 #define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK)
112 __u32 buf2;
113 #define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */
114 __u32 buflen;
115 __u32 misc;
116 /* definitions for tx/rx descriptors */
117 #define DESC_PKTLEN_SHIFT 16
118 #define DESC_PKTLEN_MASK 0x7FF
119 /* tx descriptor specific part */
120 #define DESC_CSUM (1UL << 31) /* Append checksum */
121 #define DESC_DSTPORT_SHIFT 8
122 #define DESC_DSTPORT_MASK 0x3F
123 #define DESC_VLAN_MASK 0x3F
124 /* rx descriptor specific part */
125 #define DESC_SRCPORT_SHIFT 12
126 #define DESC_SRCPORT_MASK 0x7
127 #define DESC_DA_MASK 0x3
128 #define DESC_DA_SHIFT 4
129 #define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */
130 #define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */
131 #define DESC_TYPE_MASK 0x3 /* mask for Packet type */
132 #define DESC_TYPE_IP 0x0 /* IP packet */
133 #define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */
134 } __attribute__ ((aligned(16)));
135
136 /* ------------------------------------------------------------------------ */
137
138 static int adm5120_nrdevs;
139
140 static struct net_device *adm5120_devs[SWITCH_NUM_PORTS];
141 /* Lookup table port -> device */
142 static struct net_device *adm5120_port[SWITCH_NUM_PORTS];
143
144 static struct dma_desc *txl_descs;
145 static struct dma_desc *rxl_descs;
146
147 static dma_addr_t txl_descs_dma;
148 static dma_addr_t rxl_descs_dma;
149
150 static struct sk_buff **txl_skbuff;
151 static struct sk_buff **rxl_skbuff;
152
153 static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */
154 static unsigned int cur_txl, dirty_txl;
155
156 static unsigned int sw_used;
157
158 static spinlock_t tx_lock = SPIN_LOCK_UNLOCKED;
159
160 /* ------------------------------------------------------------------------ */
161
162 static inline u32 sw_read_reg(u32 reg)
163 {
164 return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
165 }
166
167 static inline void sw_write_reg(u32 reg, u32 val)
168 {
169 __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
170 }
171
172 static inline void sw_int_mask(u32 mask)
173 {
174 u32 t;
175
176 t = sw_read_reg(SWITCH_REG_INT_MASK);
177 t |= mask;
178 sw_write_reg(SWITCH_REG_INT_MASK, t);
179 }
180
181 static inline void sw_int_unmask(u32 mask)
182 {
183 u32 t;
184
185 t = sw_read_reg(SWITCH_REG_INT_MASK);
186 t &= ~mask;
187 sw_write_reg(SWITCH_REG_INT_MASK, t);
188 }
189
190 static inline void sw_int_ack(u32 mask)
191 {
192 sw_write_reg(SWITCH_REG_INT_STATUS, mask);
193 }
194
195 static inline u32 sw_int_status(void)
196 {
197 u32 t;
198
199 t = sw_read_reg(SWITCH_REG_INT_STATUS);
200 t &= ~sw_read_reg(SWITCH_REG_INT_MASK);
201 return t;
202 }
203
204 static inline u32 desc_get_srcport(struct dma_desc *desc)
205 {
206 return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK;
207 }
208
209 static inline u32 desc_get_pktlen(struct dma_desc *desc)
210 {
211 return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK;
212 }
213
214 static inline int desc_ipcsum_fail(struct dma_desc *desc)
215 {
216 return ((desc->misc & DESC_IPCSUM_FAIL) != 0);
217 }
218
219 /* ------------------------------------------------------------------------ */
220
221 static void sw_dump_desc(char *label, struct dma_desc *desc, int tx)
222 {
223 u32 t;
224
225 SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc);
226
227 t = desc->buf1;
228 SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t,
229 t & DESC_ADDR_MASK,
230 desc->buflen,
231 (t & DESC_OWN) ? "SWITCH" : "CPU",
232 (t & DESC_EOR) ? " RE" : "");
233
234 t = desc->buf2;
235 SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2,
236 t & DESC_ADDR_MASK,
237 (t & DESC_BUF2_EN) ? " EN" : "" );
238
239 t = desc->misc;
240 if (tx)
241 SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t,
242 (t & DESC_CSUM) ? " CSUM" : "",
243 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
244 (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK,
245 t & DESC_VLAN_MASK);
246 else
247 SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n",
248 t,
249 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
250 (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK,
251 (t >> DESC_DA_SHIFT) & DESC_DA_MASK,
252 (t & DESC_IPCSUM_FAIL) ? " IPCF" : "",
253 (t & DESC_VLAN_TAG) ? " VLAN" : "",
254 (t & DESC_TYPE_MASK));
255 }
256
257 static void sw_dump_intr_mask(char *label, u32 mask)
258 {
259 SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
260 label, mask,
261 (mask & SWITCH_INT_SHD) ? " SHD" : "",
262 (mask & SWITCH_INT_SLD) ? " SLD" : "",
263 (mask & SWITCH_INT_RHD) ? " RHD" : "",
264 (mask & SWITCH_INT_RLD) ? " RLD" : "",
265 (mask & SWITCH_INT_HDF) ? " HDF" : "",
266 (mask & SWITCH_INT_LDF) ? " LDF" : "",
267 (mask & SWITCH_INT_P0QF) ? " P0QF" : "",
268 (mask & SWITCH_INT_P1QF) ? " P1QF" : "",
269 (mask & SWITCH_INT_P2QF) ? " P2QF" : "",
270 (mask & SWITCH_INT_P3QF) ? " P3QF" : "",
271 (mask & SWITCH_INT_P4QF) ? " P4QF" : "",
272 (mask & SWITCH_INT_CPQF) ? " CPQF" : "",
273 (mask & SWITCH_INT_GQF) ? " GQF" : "",
274 (mask & SWITCH_INT_MD) ? " MD" : "",
275 (mask & SWITCH_INT_BCS) ? " BCS" : "",
276 (mask & SWITCH_INT_PSC) ? " PSC" : "",
277 (mask & SWITCH_INT_ID) ? " ID" : "",
278 (mask & SWITCH_INT_W0TE) ? " W0TE" : "",
279 (mask & SWITCH_INT_W1TE) ? " W1TE" : "",
280 (mask & SWITCH_INT_RDE) ? " RDE" : "",
281 (mask & SWITCH_INT_SDE) ? " SDE" : "",
282 (mask & SWITCH_INT_CPUH) ? " CPUH" : "");
283 }
284
285 static void sw_dump_regs(void)
286 {
287 u32 t;
288
289 t = sw_read_reg(SWITCH_REG_PHY_STATUS);
290 SW_DBG("phy_status: %08X\n", t);
291
292 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
293 SW_DBG("cpup_conf: %08X%s%s%s\n", t,
294 (t & CPUP_CONF_DCPUP) ? " DCPUP" : "",
295 (t & CPUP_CONF_CRCP) ? " CRCP" : "",
296 (t & CPUP_CONF_BTM) ? " BTM" : "");
297
298 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
299 SW_DBG("port_conf0: %08X\n", t);
300 t = sw_read_reg(SWITCH_REG_PORT_CONF1);
301 SW_DBG("port_conf1: %08X\n", t);
302 t = sw_read_reg(SWITCH_REG_PORT_CONF2);
303 SW_DBG("port_conf2: %08X\n", t);
304
305 t = sw_read_reg(SWITCH_REG_VLAN_G1);
306 SW_DBG("vlan g1: %08X\n", t);
307 t = sw_read_reg(SWITCH_REG_VLAN_G2);
308 SW_DBG("vlan g2: %08X\n", t);
309
310 t = sw_read_reg(SWITCH_REG_BW_CNTL0);
311 SW_DBG("bw_cntl0: %08X\n", t);
312 t = sw_read_reg(SWITCH_REG_BW_CNTL1);
313 SW_DBG("bw_cntl1: %08X\n", t);
314
315 t = sw_read_reg(SWITCH_REG_PHY_CNTL0);
316 SW_DBG("phy_cntl0: %08X\n", t);
317 t = sw_read_reg(SWITCH_REG_PHY_CNTL1);
318 SW_DBG("phy_cntl1: %08X\n", t);
319 t = sw_read_reg(SWITCH_REG_PHY_CNTL2);
320 SW_DBG("phy_cntl2: %08X\n", t);
321 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
322 SW_DBG("phy_cntl3: %08X\n", t);
323 t = sw_read_reg(SWITCH_REG_PHY_CNTL4);
324 SW_DBG("phy_cntl4: %08X\n", t);
325
326 t = sw_read_reg(SWITCH_REG_INT_STATUS);
327 sw_dump_intr_mask("int_status: ", t);
328
329 t = sw_read_reg(SWITCH_REG_INT_MASK);
330 sw_dump_intr_mask("int_mask: ", t);
331
332 t = sw_read_reg(SWITCH_REG_SHDA);
333 SW_DBG("shda: %08X\n", t);
334 t = sw_read_reg(SWITCH_REG_SLDA);
335 SW_DBG("slda: %08X\n", t);
336 t = sw_read_reg(SWITCH_REG_RHDA);
337 SW_DBG("rhda: %08X\n", t);
338 t = sw_read_reg(SWITCH_REG_RLDA);
339 SW_DBG("rlda: %08X\n", t);
340 }
341
342 /* ------------------------------------------------------------------------ */
343
344 static inline void adm5120_rx_dma_update(struct dma_desc *desc,
345 struct sk_buff *skb, int end)
346 {
347 desc->misc = 0;
348 desc->buf2 = 0;
349 desc->buflen = RX_MAX_PKTLEN;
350 desc->buf1 = DESC_ADDR(skb->data) |
351 DESC_OWN | (end ? DESC_EOR : 0);
352 }
353
354 static void adm5120_switch_rx_refill(void)
355 {
356 unsigned int entry;
357
358 for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) {
359 struct dma_desc *desc;
360 struct sk_buff *skb;
361
362 entry = dirty_rxl % RX_RING_SIZE;
363 desc = &rxl_descs[entry];
364
365 skb = rxl_skbuff[entry];
366 if (skb == NULL) {
367 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
368 if (skb) {
369 skb_reserve(skb, SKB_RESERVE_LEN);
370 rxl_skbuff[entry] = skb;
371 } else {
372 SW_ERR("no memory for skb\n");
373 desc->buflen = 0;
374 desc->buf2 = 0;
375 desc->misc = 0;
376 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN;
377 break;
378 }
379 }
380
381 desc->buf2 = 0;
382 desc->buflen = RX_MAX_PKTLEN;
383 desc->misc = 0;
384 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN |
385 DESC_ADDR(skb->data);
386 }
387 }
388
389 static int adm5120_switch_rx(int limit)
390 {
391 unsigned int done = 0;
392
393 SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n",
394 limit, cur_rxl, dirty_rxl);
395
396 while (done < limit) {
397 int entry = cur_rxl % RX_RING_SIZE;
398 struct dma_desc *desc = &rxl_descs[entry];
399 struct net_device *rdev;
400 unsigned int port;
401
402 if (desc->buf1 & DESC_OWN)
403 break;
404
405 if (dirty_rxl + RX_RING_SIZE == cur_rxl)
406 break;
407
408 port = desc_get_srcport(desc);
409 rdev = adm5120_port[port];
410
411 SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc,
412 rxl_skbuff[entry]);
413
414 if ((rdev) && netif_running(rdev)) {
415 struct sk_buff *skb = rxl_skbuff[entry];
416 int pktlen;
417
418 pktlen = desc_get_pktlen(desc);
419 pktlen -= ETH_CSUM_LEN;
420
421 if ((pktlen == 0) || desc_ipcsum_fail(desc)) {
422 rdev->stats.rx_errors++;
423 if (pktlen == 0)
424 rdev->stats.rx_length_errors++;
425 if (desc_ipcsum_fail(desc))
426 rdev->stats.rx_crc_errors++;
427 SW_DBG("rx error, recycling skb %u\n", entry);
428 } else {
429 skb_put(skb, pktlen);
430
431 skb->dev = rdev;
432 skb->protocol = eth_type_trans(skb, rdev);
433 skb->ip_summed = CHECKSUM_UNNECESSARY;
434
435 dma_cache_wback_inv((unsigned long)skb->data,
436 skb->len);
437
438 #ifdef CONFIG_ADM5120_SWITCH_NAPI
439 netif_receive_skb(skb);
440 #else
441 netif_rx(skb);
442 #endif
443
444 rdev->last_rx = jiffies;
445 rdev->stats.rx_packets++;
446 rdev->stats.rx_bytes += pktlen;
447
448 rxl_skbuff[entry] = NULL;
449 done++;
450 }
451 } else {
452 SW_DBG("no rx device, recycling skb %u\n", entry);
453 }
454
455 cur_rxl++;
456 if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4)
457 adm5120_switch_rx_refill();
458 }
459
460 adm5120_switch_rx_refill();
461
462 SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n",
463 cur_rxl, dirty_rxl, done);
464
465 return done;
466 }
467
468 static void adm5120_switch_tx(void)
469 {
470 unsigned int entry;
471
472 spin_lock(&tx_lock);
473 entry = dirty_txl % TX_RING_SIZE;
474 while (dirty_txl != cur_txl) {
475 struct dma_desc *desc = &txl_descs[entry];
476 struct sk_buff *skb = txl_skbuff[entry];
477
478 if (desc->buf1 & DESC_OWN)
479 break;
480
481 if (netif_running(skb->dev)) {
482 skb->dev->stats.tx_bytes += skb->len;
483 skb->dev->stats.tx_packets++;
484 }
485
486 dev_kfree_skb_irq(skb);
487 txl_skbuff[entry] = NULL;
488 entry = (++dirty_txl) % TX_RING_SIZE;
489 }
490
491 if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) {
492 int i;
493 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
494 if (!adm5120_devs[i])
495 continue;
496 netif_wake_queue(adm5120_devs[i]);
497 }
498 }
499 spin_unlock(&tx_lock);
500 }
501
502 #ifdef CONFIG_ADM5120_SWITCH_NAPI
503 static int adm5120_if_poll(struct napi_struct *napi, int limit)
504 {
505 struct adm5120_if_priv *priv = container_of(napi,
506 struct adm5120_if_priv, napi);
507 struct net_device *dev = priv->dev;
508 int done;
509 u32 status;
510
511 sw_int_ack(SWITCH_INTS_POLL);
512
513 SW_DBG("%s: processing TX ring\n", dev->name);
514 adm5120_switch_tx();
515
516 SW_DBG("%s: processing RX ring\n", dev->name);
517 done = adm5120_switch_rx(limit);
518
519 status = sw_int_status() & SWITCH_INTS_POLL;
520 if ((done < limit) && (!status)) {
521 SW_DBG("disable polling mode for %s\n", dev->name);
522 netif_rx_complete(dev, napi);
523 sw_int_unmask(SWITCH_INTS_POLL);
524 return 0;
525 }
526
527 SW_DBG("%s still in polling mode, done=%d, status=%x\n",
528 dev->name, done, status);
529 return 1;
530 }
531 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
532
533
534 static irqreturn_t adm5120_switch_irq(int irq, void *dev_id)
535 {
536 u32 status;
537
538 status = sw_int_status();
539 status &= SWITCH_INTS_ALL;
540 if (!status)
541 return IRQ_NONE;
542
543 #ifdef CONFIG_ADM5120_SWITCH_NAPI
544 sw_int_ack(status & ~SWITCH_INTS_POLL);
545
546 if (status & SWITCH_INTS_POLL) {
547 struct net_device *dev = dev_id;
548 struct adm5120_if_priv *priv = netdev_priv(dev);
549
550 sw_dump_intr_mask("poll ints", status);
551 SW_DBG("enable polling mode for %s\n", dev->name);
552 sw_int_mask(SWITCH_INTS_POLL);
553 netif_rx_schedule(dev, &priv->napi);
554 }
555 #else
556 sw_int_ack(status);
557
558 if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF)) {
559 adm5120_switch_rx(RX_RING_SIZE);
560 }
561
562 if (status & SWITCH_INT_SLD) {
563 adm5120_switch_tx();
564 }
565 #endif
566
567 return IRQ_HANDLED;
568 }
569
570 static void adm5120_set_bw(char *matrix)
571 {
572 unsigned long val;
573
574 /* Port 0 to 3 are set using the bandwidth control 0 register */
575 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
576 sw_write_reg(SWITCH_REG_BW_CNTL0, val);
577
578 /* Port 4 and 5 are set using the bandwidth control 1 register */
579 val = matrix[4];
580 if (matrix[5] == 1)
581 sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000);
582 else
583 sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000);
584
585 SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0),
586 sw_read_reg(SWITCH_REG_BW_CNTL1));
587 }
588
589 static void adm5120_switch_tx_ring_reset(struct dma_desc *desc,
590 struct sk_buff **skbl, int num)
591 {
592 memset(desc, 0, num * sizeof(*desc));
593 desc[num-1].buf1 |= DESC_EOR;
594 memset(skbl, 0, sizeof(struct skb*)*num);
595
596 cur_txl = 0;
597 dirty_txl = 0;
598 }
599
600 static void adm5120_switch_rx_ring_reset(struct dma_desc *desc,
601 struct sk_buff **skbl, int num)
602 {
603 int i;
604
605 memset(desc, 0, num * sizeof(*desc));
606 for (i = 0; i < num; i++) {
607 skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN);
608 if (!skbl[i]) {
609 i = num;
610 break;
611 }
612 skb_reserve(skbl[i], SKB_RESERVE_LEN);
613 adm5120_rx_dma_update(&desc[i], skbl[i], (num-1==i));
614 }
615
616 cur_rxl = 0;
617 dirty_rxl = 0;
618 }
619
620 static int adm5120_switch_tx_ring_alloc(void)
621 {
622 int err;
623
624 txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma,
625 GFP_ATOMIC);
626 if (!txl_descs) {
627 err = -ENOMEM;
628 goto err;
629 }
630
631 txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL);
632 if (!txl_skbuff) {
633 err = -ENOMEM;
634 goto err;
635 }
636
637 return 0;
638
639 err:
640 return err;
641 }
642
643 static void adm5120_switch_tx_ring_free(void)
644 {
645 int i;
646
647 if (txl_skbuff) {
648 for (i = 0; i < TX_RING_SIZE; i++)
649 if (txl_skbuff[i])
650 kfree_skb(txl_skbuff[i]);
651 kfree(txl_skbuff);
652 }
653
654 if (txl_descs)
655 dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs,
656 txl_descs_dma);
657 }
658
659 static int adm5120_switch_rx_ring_alloc(void)
660 {
661 int err;
662 int i;
663
664 /* init RX ring */
665 rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma,
666 GFP_ATOMIC);
667 if (!rxl_descs) {
668 err = -ENOMEM;
669 goto err;
670 }
671
672 rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL);
673 if (!rxl_skbuff) {
674 err = -ENOMEM;
675 goto err;
676 }
677
678 for (i = 0; i < RX_RING_SIZE; i++) {
679 struct sk_buff *skb;
680 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
681 if (!skb) {
682 err = -ENOMEM;
683 goto err;
684 }
685 rxl_skbuff[i] = skb;
686 skb_reserve(skb, SKB_RESERVE_LEN);
687 }
688
689 return 0;
690
691 err:
692 return err;
693 }
694
695 static void adm5120_switch_rx_ring_free(void)
696 {
697 int i;
698
699 if (rxl_skbuff) {
700 for (i = 0; i < RX_RING_SIZE; i++)
701 if (rxl_skbuff[i])
702 kfree_skb(rxl_skbuff[i]);
703 kfree(rxl_skbuff);
704 }
705
706 if (rxl_descs)
707 dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs,
708 rxl_descs_dma);
709 }
710
711 static void adm5120_write_mac(struct net_device *dev)
712 {
713 struct adm5120_if_priv *priv = netdev_priv(dev);
714 unsigned char *mac = dev->dev_addr;
715 u32 t;
716
717 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) |
718 (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT);
719 sw_write_reg(SWITCH_REG_MAC_WT1, t);
720
721 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
722 MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3);
723
724 sw_write_reg(SWITCH_REG_MAC_WT0, t);
725
726 while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD));
727 }
728
729 static void adm5120_set_vlan(char *matrix)
730 {
731 unsigned long val;
732 int vlan_port, port;
733
734 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
735 sw_write_reg(SWITCH_REG_VLAN_G1, val);
736 val = matrix[4] + (matrix[5]<<8);
737 sw_write_reg(SWITCH_REG_VLAN_G2, val);
738
739 /* Now set/update the port vs. device lookup table */
740 for (port=0; port<SWITCH_NUM_PORTS; port++) {
741 for (vlan_port=0; vlan_port<SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++);
742 if (vlan_port <SWITCH_NUM_PORTS)
743 adm5120_port[port] = adm5120_devs[vlan_port];
744 else
745 adm5120_port[port] = NULL;
746 }
747 }
748
749 static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac)
750 {
751 u32 t;
752
753 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT)
754 | (mac[4] << MAC_WT1_MAC4_SHIFT)
755 | (mac[5] << MAC_WT1_MAC5_SHIFT);
756 sw_write_reg(SWITCH_REG_MAC_WT1, t);
757
758 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
759 MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) |
760 (MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT);
761 sw_write_reg(SWITCH_REG_MAC_WT0, t);
762
763 do {
764 t = sw_read_reg(SWITCH_REG_MAC_WT0);
765 } while ((t & MAC_WT0_MWD) == 0);
766 }
767
768 static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports)
769 {
770 unsigned int reg;
771 u32 t;
772
773 if (vlan < 4)
774 reg = SWITCH_REG_VLAN_G1;
775 else {
776 vlan -= 4;
777 reg = SWITCH_REG_VLAN_G2;
778 }
779
780 t = sw_read_reg(reg);
781 t &= ~(0xFF << (vlan*8));
782 t |= (ports << (vlan*8));
783 sw_write_reg(reg, t);
784 }
785
786 /* ------------------------------------------------------------------------ */
787
788 #ifdef CONFIG_ADM5120_SWITCH_NAPI
789 static inline void adm5120_if_napi_enable(struct net_device *dev)
790 {
791 struct adm5120_if_priv *priv = netdev_priv(dev);
792 napi_enable(&priv->napi);
793 }
794
795 static inline void adm5120_if_napi_disable(struct net_device *dev)
796 {
797 struct adm5120_if_priv *priv = netdev_priv(dev);
798 napi_disable(&priv->napi);
799 }
800 #else
801 static inline void adm5120_if_napi_enable(struct net_device *dev) {}
802 static inline void adm5120_if_napi_disable(struct net_device *dev) {}
803 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
804
805 static int adm5120_if_open(struct net_device *dev)
806 {
807 u32 t;
808 int err;
809 int i;
810
811 adm5120_if_napi_enable(dev);
812
813 err = request_irq(dev->irq, adm5120_switch_irq,
814 (IRQF_SHARED | IRQF_DISABLED), dev->name, dev);
815 if (err) {
816 SW_ERR("unable to get irq for %s\n", dev->name);
817 goto err;
818 }
819
820 if (!sw_used++)
821 /* enable interrupts on first open */
822 sw_int_unmask(SWITCH_INTS_USED);
823
824 /* enable (additional) port */
825 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
826 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
827 if (dev == adm5120_devs[i])
828 t &= ~adm5120_eth_vlans[i];
829 }
830 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
831
832 netif_start_queue(dev);
833
834 return 0;
835
836 err:
837 adm5120_if_napi_disable(dev);
838 return err;
839 }
840
841 static int adm5120_if_stop(struct net_device *dev)
842 {
843 u32 t;
844 int i;
845
846 netif_stop_queue(dev);
847 adm5120_if_napi_disable(dev);
848
849 /* disable port if not assigned to other devices */
850 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
851 t |= SWITCH_PORTS_NOCPU;
852 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
853 if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i]))
854 t &= ~adm5120_eth_vlans[i];
855 }
856 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
857
858 if (!--sw_used)
859 sw_int_mask(SWITCH_INTS_USED);
860
861 free_irq(dev->irq, dev);
862
863 return 0;
864 }
865
866 static int adm5120_if_hard_start_xmit(struct sk_buff *skb,
867 struct net_device *dev)
868 {
869 struct dma_desc *desc;
870 struct adm5120_if_priv *priv = netdev_priv(dev);
871 unsigned int entry;
872 unsigned long data;
873 int i;
874
875 /* lock switch irq */
876 spin_lock_irq(&tx_lock);
877
878 /* calculate the next TX descriptor entry. */
879 entry = cur_txl % TX_RING_SIZE;
880
881 desc = &txl_descs[entry];
882 if (desc->buf1 & DESC_OWN) {
883 /* We want to write a packet but the TX queue is still
884 * occupied by the DMA. We are faster than the DMA... */
885 SW_DBG("%s unable to transmit, packet dopped\n", dev->name);
886 dev_kfree_skb(skb);
887 dev->stats.tx_dropped++;
888 return 0;
889 }
890
891 txl_skbuff[entry] = skb;
892 data = (desc->buf1 & DESC_EOR);
893 data |= DESC_ADDR(skb->data);
894
895 desc->misc =
896 ((skb->len<ETH_ZLEN?ETH_ZLEN:skb->len) << DESC_PKTLEN_SHIFT) |
897 (0x1 << priv->vlan_no);
898
899 desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
900
901 desc->buf1 = data | DESC_OWN;
902 sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL);
903
904 cur_txl++;
905 if (cur_txl == dirty_txl + TX_QUEUE_LEN) {
906 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
907 if (!adm5120_devs[i])
908 continue;
909 netif_stop_queue(adm5120_devs[i]);
910 }
911 }
912
913 dev->trans_start = jiffies;
914
915 spin_unlock_irq(&tx_lock);
916
917 return 0;
918 }
919
920 static void adm5120_if_tx_timeout(struct net_device *dev)
921 {
922 SW_INFO("TX timeout on %s\n",dev->name);
923 }
924
925 static void adm5120_if_set_multicast_list(struct net_device *dev)
926 {
927 struct adm5120_if_priv *priv = netdev_priv(dev);
928 u32 ports;
929 u32 t;
930
931 ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU;
932
933 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
934 if (dev->flags & IFF_PROMISC)
935 /* enable unknown packets */
936 t &= ~(ports << CPUP_CONF_DUNP_SHIFT);
937 else
938 /* disable unknown packets */
939 t |= (ports << CPUP_CONF_DUNP_SHIFT);
940
941 if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI ||
942 dev->mc_count)
943 /* enable multicast packets */
944 t &= ~(ports << CPUP_CONF_DMCP_SHIFT);
945 else
946 /* disable multicast packets */
947 t |= (ports << CPUP_CONF_DMCP_SHIFT);
948
949 /* If there is any port configured to be in promiscuous mode, then the */
950 /* Bridge Test Mode has to be activated. This will result in */
951 /* transporting also packets learned in another VLAN to be forwarded */
952 /* to the CPU. */
953 /* The difficult scenario is when we want to build a bridge on the CPU.*/
954 /* Assume we have port0 and the CPU port in VLAN0 and port1 and the */
955 /* CPU port in VLAN1. Now we build a bridge on the CPU between */
956 /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */
957 /* Now assume a packet with ethernet source address 99 enters port 0 */
958 /* It will be forwarded to the CPU because it is unknown. Then the */
959 /* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */
960 /* When now a packet with ethernet destination address 99 comes in at */
961 /* port 1 in VLAN1, then the switch has learned that this address is */
962 /* located at port 0 in VLAN0. Therefore the switch will drop */
963 /* this packet. In order to avoid this and to send the packet still */
964 /* to the CPU, the Bridge Test Mode has to be activated. */
965
966 /* Check if there is any vlan in promisc mode. */
967 if (t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT))
968 t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */
969 else
970 t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */
971
972 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
973
974 }
975
976 static int adm5120_if_set_mac_address(struct net_device *dev, void *p)
977 {
978 struct sockaddr *addr = p;
979
980 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
981 adm5120_write_mac(dev);
982 return 0;
983 }
984
985 static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq,
986 int cmd)
987 {
988 int err;
989 struct adm5120_sw_info info;
990 struct adm5120_if_priv *priv = netdev_priv(dev);
991
992 switch(cmd) {
993 case SIOCGADMINFO:
994 info.magic = 0x5120;
995 info.ports = adm5120_nrdevs;
996 info.vlan = priv->vlan_no;
997 err = copy_to_user(rq->ifr_data, &info, sizeof(info));
998 if (err)
999 return -EFAULT;
1000 break;
1001 case SIOCSMATRIX:
1002 if (!capable(CAP_NET_ADMIN))
1003 return -EPERM;
1004 err = copy_from_user(adm5120_eth_vlans, rq->ifr_data,
1005 sizeof(adm5120_eth_vlans));
1006 if (err)
1007 return -EFAULT;
1008 adm5120_set_vlan(adm5120_eth_vlans);
1009 break;
1010 case SIOCGMATRIX:
1011 err = copy_to_user(rq->ifr_data, adm5120_eth_vlans,
1012 sizeof(adm5120_eth_vlans));
1013 if (err)
1014 return -EFAULT;
1015 break;
1016 default:
1017 return -EOPNOTSUPP;
1018 }
1019 return 0;
1020 }
1021
1022 static struct net_device *adm5120_if_alloc(void)
1023 {
1024 struct net_device *dev;
1025 struct adm5120_if_priv *priv;
1026
1027 dev = alloc_etherdev(sizeof(*priv));
1028 if (!dev)
1029 return NULL;
1030
1031 priv = netdev_priv(dev);
1032 priv->dev = dev;
1033
1034 dev->irq = ADM5120_IRQ_SWITCH;
1035 dev->open = adm5120_if_open;
1036 dev->hard_start_xmit = adm5120_if_hard_start_xmit;
1037 dev->stop = adm5120_if_stop;
1038 dev->set_multicast_list = adm5120_if_set_multicast_list;
1039 dev->do_ioctl = adm5120_if_do_ioctl;
1040 dev->tx_timeout = adm5120_if_tx_timeout;
1041 dev->watchdog_timeo = TX_TIMEOUT;
1042 dev->set_mac_address = adm5120_if_set_mac_address;
1043
1044 #ifdef CONFIG_ADM5120_SWITCH_NAPI
1045 netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64);
1046 #endif
1047
1048 return dev;
1049 }
1050
1051 /* ------------------------------------------------------------------------ */
1052
1053 static void adm5120_switch_cleanup(void)
1054 {
1055 int i;
1056
1057 /* disable interrupts */
1058 sw_int_mask(SWITCH_INTS_ALL);
1059
1060 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1061 struct net_device *dev = adm5120_devs[i];
1062 if (dev) {
1063 unregister_netdev(dev);
1064 free_netdev(dev);
1065 }
1066 }
1067
1068 adm5120_switch_tx_ring_free();
1069 adm5120_switch_rx_ring_free();
1070 }
1071
1072 static int __init adm5120_switch_probe(struct platform_device *pdev)
1073 {
1074 u32 t;
1075 int i, err;
1076
1077 adm5120_nrdevs = adm5120_eth_num_ports;
1078
1079 t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
1080 SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT |
1081 SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ;
1082 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1083
1084 t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) |
1085 (SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) |
1086 (SWITCH_PORTS_NOCPU);
1087 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
1088
1089 /* setup ports to Autoneg/100M/Full duplex/Auto MDIX */
1090 t = SWITCH_PORTS_PHY |
1091 (SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) |
1092 (SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) |
1093 (SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) |
1094 (SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) |
1095 PHY_CNTL2_RMAE;
1096 sw_write_reg(SWITCH_REG_PHY_CNTL2, t);
1097
1098 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
1099 t |= PHY_CNTL3_RNT;
1100 sw_write_reg(SWITCH_REG_PHY_CNTL3, t);
1101
1102 /* Force all the packets from all ports are low priority */
1103 sw_write_reg(SWITCH_REG_PRI_CNTL, 0);
1104
1105 sw_int_mask(SWITCH_INTS_ALL);
1106 sw_int_ack(SWITCH_INTS_ALL);
1107
1108 err = adm5120_switch_rx_ring_alloc();
1109 if (err)
1110 goto err;
1111
1112 err = adm5120_switch_tx_ring_alloc();
1113 if (err)
1114 goto err;
1115
1116 adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE);
1117 adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE);
1118
1119 sw_write_reg(SWITCH_REG_SHDA, 0);
1120 sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs));
1121 sw_write_reg(SWITCH_REG_RHDA, 0);
1122 sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs));
1123
1124 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1125 struct net_device *dev;
1126 struct adm5120_if_priv *priv;
1127
1128 dev = adm5120_if_alloc();
1129 if (!dev) {
1130 err = -ENOMEM;
1131 goto err;
1132 }
1133
1134 adm5120_devs[i] = dev;
1135 priv = netdev_priv(dev);
1136
1137 priv->vlan_no = i;
1138 priv->port_mask = adm5120_eth_vlans[i];
1139
1140 memcpy(dev->dev_addr, adm5120_eth_macs[i], 6);
1141 adm5120_write_mac(dev);
1142
1143 err = register_netdev(dev);
1144 if (err) {
1145 SW_INFO("%s register failed, error=%d\n",
1146 dev->name, err);
1147 goto err;
1148 }
1149 }
1150
1151 /* setup vlan/port mapping after devs are filled up */
1152 adm5120_set_vlan(adm5120_eth_vlans);
1153
1154 /* enable CPU port */
1155 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
1156 t &= ~CPUP_CONF_DCPUP;
1157 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1158
1159 return 0;
1160
1161 err:
1162 adm5120_switch_cleanup();
1163
1164 SW_ERR("init failed\n");
1165 return err;
1166 }
1167
1168 static int adm5120_switch_remove(struct platform_device *dev)
1169 {
1170 adm5120_switch_cleanup();
1171 return 0;
1172 }
1173
1174 static struct platform_driver adm5120_switch_driver = {
1175 .probe = adm5120_switch_probe,
1176 .remove = adm5120_switch_remove,
1177 .driver = {
1178 .name = DRV_NAME,
1179 },
1180 };
1181
1182 /* -------------------------------------------------------------------------- */
1183
1184 static int __init adm5120_switch_mod_init(void)
1185 {
1186 int err;
1187
1188 pr_info(DRV_DESC " version " DRV_VERSION "\n");
1189 err = platform_driver_register(&adm5120_switch_driver);
1190
1191 return err;
1192 }
1193
1194 static void __exit adm5120_switch_mod_exit(void)
1195 {
1196 platform_driver_unregister(&adm5120_switch_driver);
1197 }
1198
1199 module_init(adm5120_switch_mod_init);
1200 module_exit(adm5120_switch_mod_exit);
1201
1202 MODULE_LICENSE("GPL v2");
1203 MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
1204 MODULE_DESCRIPTION(DRV_DESC);
1205 MODULE_VERSION(DRV_VERSION);
This page took 0.123579 seconds and 3 git commands to generate.