-diff -Naur linux-old/arch/x86/boot/compressed/LzmaDecode.c linux-lzma/arch/i386/boot/compressed/LzmaDecode.c
---- linux-old/arch/x86/boot/compressed/LzmaDecode.c 1969-12-31 19:00:00.000000000 -0500
-+++ linux-lzma/arch/x86/boot/compressed/LzmaDecode.c 2005-06-05 00:07:38.000000000 -0400
-@@ -0,0 +1,586 @@
-+/*
-+ LzmaDecode.c
-+ LZMA Decoder (optimized for Speed version)
-+
-+ LZMA SDK 4.17 Copyright (c) 1999-2005 Igor Pavlov (2005-04-05)
-+ http://www.7-zip.org/
-+
-+ LZMA SDK is licensed under two licenses:
-+ 1) GNU Lesser General Public License (GNU LGPL)
-+ 2) Common Public License (CPL)
-+ It means that you can select one of these two licenses and
-+ follow rules of that license.
-+
-+ SPECIAL EXCEPTION:
-+ Igor Pavlov, as the author of this Code, expressly permits you to
-+ statically or dynamically link your Code (or bind by name) to the
-+ interfaces of this file without subjecting your linked Code to the
-+ terms of the CPL or GNU LGPL. Any modifications or additions
-+ to this file, however, are subject to the LGPL or CPL terms.
-+*/
-+
-+#include "LzmaDecode.h"
-+
-+#ifndef Byte
-+#define Byte unsigned char
-+#endif
-+
-+#define kNumTopBits 24
-+#define kTopValue ((UInt32)1 << kNumTopBits)
-+
-+#define kNumBitModelTotalBits 11
-+#define kBitModelTotal (1 << kNumBitModelTotalBits)
-+#define kNumMoveBits 5
-+
-+#define RC_READ_BYTE (*Buffer++)
-+
-+#define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
-+ { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }}
-+
-+#ifdef _LZMA_IN_CB
-+
-+#define RC_TEST { if (Buffer == BufferLim) \
-+ { UInt32 size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) return result; \
-+ BufferLim = Buffer + size; if (size == 0) return LZMA_RESULT_DATA_ERROR; }}
-+
-+#define RC_INIT Buffer = BufferLim = 0; RC_INIT2
-+
-+#else
-+
-+#define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; }
-+
-+#define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2
-+
-+#endif
-+
-+#define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }
-+
-+#define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
-+#define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
-+#define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;
-+
-+#define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
-+ { UpdateBit0(p); mi <<= 1; A0; } else \
-+ { UpdateBit1(p); mi = (mi + mi) + 1; A1; }
-+
-+#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
-+
-+#define RangeDecoderBitTreeDecode(probs, numLevels, res) \
-+ { int i = numLevels; res = 1; \
-+ do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \
-+ res -= (1 << numLevels); }
-+
-+
-+#define kNumPosBitsMax 4
-+#define kNumPosStatesMax (1 << kNumPosBitsMax)
-+
-+#define kLenNumLowBits 3
-+#define kLenNumLowSymbols (1 << kLenNumLowBits)
-+#define kLenNumMidBits 3
-+#define kLenNumMidSymbols (1 << kLenNumMidBits)
-+#define kLenNumHighBits 8
-+#define kLenNumHighSymbols (1 << kLenNumHighBits)
-+
-+#define LenChoice 0
-+#define LenChoice2 (LenChoice + 1)
-+#define LenLow (LenChoice2 + 1)
-+#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
-+#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
-+#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
-+
-+
-+#define kNumStates 12
-+#define kNumLitStates 7
-+
-+#define kStartPosModelIndex 4
-+#define kEndPosModelIndex 14
-+#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
-+
-+#define kNumPosSlotBits 6
-+#define kNumLenToPosStates 4
-+
-+#define kNumAlignBits 4
-+#define kAlignTableSize (1 << kNumAlignBits)
-+
-+#define kMatchMinLen 2
-+
-+#define IsMatch 0
-+#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
-+#define IsRepG0 (IsRep + kNumStates)
-+#define IsRepG1 (IsRepG0 + kNumStates)
-+#define IsRepG2 (IsRepG1 + kNumStates)
-+#define IsRep0Long (IsRepG2 + kNumStates)
-+#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
-+#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
-+#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
-+#define LenCoder (Align + kAlignTableSize)
-+#define RepLenCoder (LenCoder + kNumLenProbs)
-+#define Literal (RepLenCoder + kNumLenProbs)
-+
-+#if Literal != LZMA_BASE_SIZE
-+StopCompilingDueBUG
-+#endif
-+
-+#ifdef _LZMA_OUT_READ
-+
-+typedef struct _LzmaVarState
-+{
-+ Byte *Buffer;
-+ Byte *BufferLim;
-+ UInt32 Range;
-+ UInt32 Code;
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *InCallback;
-+ #endif
-+ Byte *Dictionary;
-+ UInt32 DictionarySize;
-+ UInt32 DictionaryPos;
-+ UInt32 GlobalPos;
-+ UInt32 Reps[4];
-+ int lc;
-+ int lp;
-+ int pb;
-+ int State;
-+ int RemainLen;
-+ Byte TempDictionary[4];
-+} LzmaVarState;
-+
-+int LzmaDecoderInit(
-+ unsigned char *buffer, UInt32 bufferSize,
-+ int lc, int lp, int pb,
-+ unsigned char *dictionary, UInt32 dictionarySize,
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *InCallback
-+ #else
-+ unsigned char *inStream, UInt32 inSize
-+ #endif
-+ )
-+{
-+ Byte *Buffer;
-+ Byte *BufferLim;
-+ UInt32 Range;
-+ UInt32 Code;
-+ LzmaVarState *vs = (LzmaVarState *)buffer;
-+ CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
-+ UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
-+ UInt32 i;
-+ if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
-+ return LZMA_RESULT_NOT_ENOUGH_MEM;
-+ vs->Dictionary = dictionary;
-+ vs->DictionarySize = dictionarySize;
-+ vs->DictionaryPos = 0;
-+ vs->GlobalPos = 0;
-+ vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
-+ vs->lc = lc;
-+ vs->lp = lp;
-+ vs->pb = pb;
-+ vs->State = 0;
-+ vs->RemainLen = 0;
-+ dictionary[dictionarySize - 1] = 0;
-+ for (i = 0; i < numProbs; i++)
-+ p[i] = kBitModelTotal >> 1;
-+
-+ #ifdef _LZMA_IN_CB
-+ RC_INIT;
-+ #else
-+ RC_INIT(inStream, inSize);
-+ #endif
-+ vs->Buffer = Buffer;
-+ vs->BufferLim = BufferLim;
-+ vs->Range = Range;
-+ vs->Code = Code;
-+ #ifdef _LZMA_IN_CB
-+ vs->InCallback = InCallback;
-+ #endif
-+
-+ return LZMA_RESULT_OK;
-+}
-+
-+int LzmaDecode(unsigned char *buffer,
-+ unsigned char *outStream, UInt32 outSize,
-+ UInt32 *outSizeProcessed)
-+{
-+ LzmaVarState *vs = (LzmaVarState *)buffer;
-+ Byte *Buffer = vs->Buffer;
-+ Byte *BufferLim = vs->BufferLim;
-+ UInt32 Range = vs->Range;
-+ UInt32 Code = vs->Code;
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *InCallback = vs->InCallback;
-+ #endif
-+ CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
-+ int state = vs->State;
-+ Byte previousByte;
-+ UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
-+ UInt32 nowPos = 0;
-+ UInt32 posStateMask = (1 << (vs->pb)) - 1;
-+ UInt32 literalPosMask = (1 << (vs->lp)) - 1;
-+ int lc = vs->lc;
-+ int len = vs->RemainLen;
-+ UInt32 globalPos = vs->GlobalPos;
-+
-+ Byte *dictionary = vs->Dictionary;
-+ UInt32 dictionarySize = vs->DictionarySize;
-+ UInt32 dictionaryPos = vs->DictionaryPos;
-+
-+ Byte tempDictionary[4];
-+ if (dictionarySize == 0)
-+ {
-+ dictionary = tempDictionary;
-+ dictionarySize = 1;
-+ tempDictionary[0] = vs->TempDictionary[0];
-+ }
-+
-+ if (len == -1)
-+ {
-+ *outSizeProcessed = 0;
-+ return LZMA_RESULT_OK;
-+ }
-+
-+ while(len != 0 && nowPos < outSize)
-+ {
-+ UInt32 pos = dictionaryPos - rep0;
-+ if (pos >= dictionarySize)
-+ pos += dictionarySize;
-+ outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
-+ if (++dictionaryPos == dictionarySize)
-+ dictionaryPos = 0;
-+ len--;
-+ }
-+ if (dictionaryPos == 0)
-+ previousByte = dictionary[dictionarySize - 1];
-+ else
-+ previousByte = dictionary[dictionaryPos - 1];
-+#else
-+
-+int LzmaDecode(
-+ Byte *buffer, UInt32 bufferSize,
-+ int lc, int lp, int pb,
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *InCallback,
-+ #else
-+ unsigned char *inStream, UInt32 inSize,
-+ #endif
-+ unsigned char *outStream, UInt32 outSize,
-+ UInt32 *outSizeProcessed)
-+{
-+ UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
-+ CProb *p = (CProb *)buffer;
-+
-+ UInt32 i;
-+ int state = 0;
-+ Byte previousByte = 0;
-+ UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
-+ UInt32 nowPos = 0;
-+ UInt32 posStateMask = (1 << pb) - 1;
-+ UInt32 literalPosMask = (1 << lp) - 1;
-+ int len = 0;
-+
-+ Byte *Buffer;
-+ Byte *BufferLim;
-+ UInt32 Range;
-+ UInt32 Code;
-+
-+ if (bufferSize < numProbs * sizeof(CProb))
-+ return LZMA_RESULT_NOT_ENOUGH_MEM;
-+ for (i = 0; i < numProbs; i++)
-+ p[i] = kBitModelTotal >> 1;
-+
-+
-+ #ifdef _LZMA_IN_CB
-+ RC_INIT;
-+ #else
-+ RC_INIT(inStream, inSize);
-+ #endif
-+#endif
-+
-+ *outSizeProcessed = 0;
-+ while(nowPos < outSize)
-+ {
-+ CProb *prob;
-+ UInt32 bound;
-+ int posState = (int)(
-+ (nowPos
-+ #ifdef _LZMA_OUT_READ
-+ + globalPos
-+ #endif
-+ )
-+ & posStateMask);
-+
-+ prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
-+ IfBit0(prob)
-+ {
-+ int symbol = 1;
-+ UpdateBit0(prob)
-+ prob = p + Literal + (LZMA_LIT_SIZE *
-+ (((
-+ (nowPos
-+ #ifdef _LZMA_OUT_READ
-+ + globalPos
-+ #endif
-+ )
-+ & literalPosMask) << lc) + (previousByte >> (8 - lc))));
-+
-+ if (state >= kNumLitStates)
-+ {
-+ int matchByte;
-+ #ifdef _LZMA_OUT_READ
-+ UInt32 pos = dictionaryPos - rep0;
-+ if (pos >= dictionarySize)
-+ pos += dictionarySize;
-+ matchByte = dictionary[pos];
-+ #else
-+ matchByte = outStream[nowPos - rep0];
-+ #endif
-+ do
-+ {
-+ int bit;
-+ CProb *probLit;
-+ matchByte <<= 1;
-+ bit = (matchByte & 0x100);
-+ probLit = prob + 0x100 + bit + symbol;
-+ RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break)
-+ }
-+ while (symbol < 0x100);
-+ }
-+ while (symbol < 0x100)
-+ {
-+ CProb *probLit = prob + symbol;
-+ RC_GET_BIT(probLit, symbol)
-+ }
-+ previousByte = (Byte)symbol;
-+
-+ outStream[nowPos++] = previousByte;
-+ #ifdef _LZMA_OUT_READ
-+ dictionary[dictionaryPos] = previousByte;
-+ if (++dictionaryPos == dictionarySize)
-+ dictionaryPos = 0;
-+ #endif
-+ if (state < 4) state = 0;
-+ else if (state < 10) state -= 3;
-+ else state -= 6;
-+ }
-+ else
-+ {
-+ UpdateBit1(prob);
-+ prob = p + IsRep + state;
-+ IfBit0(prob)
-+ {
-+ UpdateBit0(prob);
-+ rep3 = rep2;
-+ rep2 = rep1;
-+ rep1 = rep0;
-+ state = state < kNumLitStates ? 0 : 3;
-+ prob = p + LenCoder;
-+ }
-+ else
-+ {
-+ UpdateBit1(prob);
-+ prob = p + IsRepG0 + state;
-+ IfBit0(prob)
-+ {
-+ UpdateBit0(prob);
-+ prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
-+ IfBit0(prob)
-+ {
-+ #ifdef _LZMA_OUT_READ
-+ UInt32 pos;
-+ #endif
-+ UpdateBit0(prob);
-+ if (nowPos
-+ #ifdef _LZMA_OUT_READ
-+ + globalPos
-+ #endif
-+ == 0)
-+ return LZMA_RESULT_DATA_ERROR;
-+ state = state < kNumLitStates ? 9 : 11;
-+ #ifdef _LZMA_OUT_READ
-+ pos = dictionaryPos - rep0;
-+ if (pos >= dictionarySize)
-+ pos += dictionarySize;
-+ previousByte = dictionary[pos];
-+ dictionary[dictionaryPos] = previousByte;
-+ if (++dictionaryPos == dictionarySize)
-+ dictionaryPos = 0;
-+ #else
-+ previousByte = outStream[nowPos - rep0];
-+ #endif
-+ outStream[nowPos++] = previousByte;
-+ continue;
-+ }
-+ else
-+ {
-+ UpdateBit1(prob);
-+ }
-+ }
-+ else
-+ {
-+ UInt32 distance;
-+ UpdateBit1(prob);
-+ prob = p + IsRepG1 + state;
-+ IfBit0(prob)
-+ {
-+ UpdateBit0(prob);
-+ distance = rep1;
-+ }
-+ else
-+ {
-+ UpdateBit1(prob);
-+ prob = p + IsRepG2 + state;
-+ IfBit0(prob)
-+ {
-+ UpdateBit0(prob);
-+ distance = rep2;
-+ }
-+ else
-+ {
-+ UpdateBit1(prob);
-+ distance = rep3;
-+ rep3 = rep2;
-+ }
-+ rep2 = rep1;
-+ }
-+ rep1 = rep0;
-+ rep0 = distance;
-+ }
-+ state = state < kNumLitStates ? 8 : 11;
-+ prob = p + RepLenCoder;
-+ }
-+ {
-+ int numBits, offset;
-+ CProb *probLen = prob + LenChoice;
-+ IfBit0(probLen)
-+ {
-+ UpdateBit0(probLen);
-+ probLen = prob + LenLow + (posState << kLenNumLowBits);
-+ offset = 0;
-+ numBits = kLenNumLowBits;
-+ }
-+ else
-+ {
-+ UpdateBit1(probLen);
-+ probLen = prob + LenChoice2;
-+ IfBit0(probLen)
-+ {
-+ UpdateBit0(probLen);
-+ probLen = prob + LenMid + (posState << kLenNumMidBits);
-+ offset = kLenNumLowSymbols;
-+ numBits = kLenNumMidBits;
-+ }
-+ else
-+ {
-+ UpdateBit1(probLen);
-+ probLen = prob + LenHigh;
-+ offset = kLenNumLowSymbols + kLenNumMidSymbols;
-+ numBits = kLenNumHighBits;
-+ }
-+ }
-+ RangeDecoderBitTreeDecode(probLen, numBits, len);
-+ len += offset;
-+ }
-+
-+ if (state < 4)
-+ {
-+ int posSlot;
-+ state += kNumLitStates;
-+ prob = p + PosSlot +
-+ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
-+ kNumPosSlotBits);
-+ RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
-+ if (posSlot >= kStartPosModelIndex)
-+ {
-+ int numDirectBits = ((posSlot >> 1) - 1);
-+ rep0 = (2 | ((UInt32)posSlot & 1));
-+ if (posSlot < kEndPosModelIndex)
-+ {
-+ rep0 <<= numDirectBits;
-+ prob = p + SpecPos + rep0 - posSlot - 1;
-+ }
-+ else
-+ {
-+ numDirectBits -= kNumAlignBits;
-+ do
-+ {
-+ RC_NORMALIZE
-+ Range >>= 1;
-+ rep0 <<= 1;
-+ if (Code >= Range)
-+ {
-+ Code -= Range;
-+ rep0 |= 1;
-+ }
-+ }
-+ while (--numDirectBits != 0);
-+ prob = p + Align;
-+ rep0 <<= kNumAlignBits;
-+ numDirectBits = kNumAlignBits;
-+ }
-+ {
-+ int i = 1;
-+ int mi = 1;
-+ do
-+ {
-+ CProb *prob3 = prob + mi;
-+ RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
-+ i <<= 1;
-+ }
-+ while(--numDirectBits != 0);
-+ }
-+ }
-+ else
-+ rep0 = posSlot;
-+ if (++rep0 == (UInt32)(0))
-+ {
-+ /* it's for stream version */
-+ len = -1;
-+ break;
-+ }
-+ }
-+
-+ len += kMatchMinLen;
-+ if (rep0 > nowPos
-+ #ifdef _LZMA_OUT_READ
-+ + globalPos || rep0 > dictionarySize
-+ #endif
-+ )
-+ return LZMA_RESULT_DATA_ERROR;
-+ do
-+ {
-+ #ifdef _LZMA_OUT_READ
-+ UInt32 pos = dictionaryPos - rep0;
-+ if (pos >= dictionarySize)
-+ pos += dictionarySize;
-+ previousByte = dictionary[pos];
-+ dictionary[dictionaryPos] = previousByte;
-+ if (++dictionaryPos == dictionarySize)
-+ dictionaryPos = 0;
-+ #else
-+ previousByte = outStream[nowPos - rep0];
-+ #endif
-+ len--;
-+ outStream[nowPos++] = previousByte;
-+ }
-+ while(len != 0 && nowPos < outSize);
-+ }
-+ }
-+ RC_NORMALIZE;
-+
-+ #ifdef _LZMA_OUT_READ
-+ vs->Buffer = Buffer;
-+ vs->BufferLim = BufferLim;
-+ vs->Range = Range;
-+ vs->Code = Code;
-+ vs->DictionaryPos = dictionaryPos;
-+ vs->GlobalPos = globalPos + nowPos;
-+ vs->Reps[0] = rep0;
-+ vs->Reps[1] = rep1;
-+ vs->Reps[2] = rep2;
-+ vs->Reps[3] = rep3;
-+ vs->State = state;
-+ vs->RemainLen = len;
-+ vs->TempDictionary[0] = tempDictionary[0];
-+ #endif
-+
-+ *outSizeProcessed = nowPos;
-+ return LZMA_RESULT_OK;
-+}
-diff -Naur linux-old/arch/x86/boot/compressed/LzmaDecode.h linux-lzma/arch/i386/boot/compressed/LzmaDecode.h
---- linux-old/arch/x86/boot/compressed/LzmaDecode.h 1969-12-31 19:00:00.000000000 -0500
-+++ linux-lzma/arch/x86/boot/compressed/LzmaDecode.h 2005-06-05 00:07:39.000000000 -0400
-@@ -0,0 +1,100 @@
-+/*
-+ LzmaDecode.h
-+ LZMA Decoder interface
-+
-+ LZMA SDK 4.16 Copyright (c) 1999-2005 Igor Pavlov (2005-03-18)
-+ http://www.7-zip.org/
-+
-+ LZMA SDK is licensed under two licenses:
-+ 1) GNU Lesser General Public License (GNU LGPL)
-+ 2) Common Public License (CPL)
-+ It means that you can select one of these two licenses and
-+ follow rules of that license.
-+
-+ SPECIAL EXCEPTION:
-+ Igor Pavlov, as the author of this code, expressly permits you to
-+ statically or dynamically link your code (or bind by name) to the
-+ interfaces of this file without subjecting your linked code to the
-+ terms of the CPL or GNU LGPL. Any modifications or additions
-+ to this file, however, are subject to the LGPL or CPL terms.
-+*/
-+
-+#ifndef __LZMADECODE_H
-+#define __LZMADECODE_H
-+
-+/* #define _LZMA_IN_CB */
-+/* Use callback for input data */
-+
-+/* #define _LZMA_OUT_READ */
-+/* Use read function for output data */
-+
-+/* #define _LZMA_PROB32 */
-+/* It can increase speed on some 32-bit CPUs,
-+ but memory usage will be doubled in that case */
-+
-+/* #define _LZMA_LOC_OPT */
-+/* Enable local speed optimizations inside code */
-+
-+#ifndef UInt32
-+#ifdef _LZMA_UINT32_IS_ULONG
-+#define UInt32 unsigned long
-+#else
-+#define UInt32 unsigned int
-+#endif
-+#endif
-+
-+#ifdef _LZMA_PROB32
-+#define CProb UInt32
-+#else
-+#define CProb unsigned short
-+#endif
-+
-+#define LZMA_RESULT_OK 0
-+#define LZMA_RESULT_DATA_ERROR 1
-+#define LZMA_RESULT_NOT_ENOUGH_MEM 2
-+
-+#ifdef _LZMA_IN_CB
-+typedef struct _ILzmaInCallback
-+{
-+ int (*Read)(void *object, unsigned char **buffer, UInt32 *bufferSize);
-+} ILzmaInCallback;
-+#endif
-+
-+#define LZMA_BASE_SIZE 1846
-+#define LZMA_LIT_SIZE 768
-+
-+/*
-+bufferSize = (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)))* sizeof(CProb)
-+bufferSize += 100 in case of _LZMA_OUT_READ
-+by default CProb is unsigned short,
-+but if specify _LZMA_PROB_32, CProb will be UInt32(unsigned int)
-+*/
-+
-+#ifdef _LZMA_OUT_READ
-+int LzmaDecoderInit(
-+ unsigned char *buffer, UInt32 bufferSize,
-+ int lc, int lp, int pb,
-+ unsigned char *dictionary, UInt32 dictionarySize,
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *inCallback
-+ #else
-+ unsigned char *inStream, UInt32 inSize
-+ #endif
-+);
-+#endif
-+
-+int LzmaDecode(
-+ unsigned char *buffer,
-+ #ifndef _LZMA_OUT_READ
-+ UInt32 bufferSize,
-+ int lc, int lp, int pb,
-+ #ifdef _LZMA_IN_CB
-+ ILzmaInCallback *inCallback,
-+ #else
-+ unsigned char *inStream, UInt32 inSize,
-+ #endif
-+ #endif
-+ unsigned char *outStream, UInt32 outSize,
-+ UInt32 *outSizeProcessed);
-+
-+#endif
-diff -Naur linux-old/arch/x86/boot/compressed/lzma_misc.c linux-lzma/arch/i386/boot/compressed/lzma_misc.c
---- linux-old/arch/x86/boot/compressed/lzma_misc.c 1969-12-31 19:00:00.000000000 -0500
-+++ linux-lzma/arch/x86/boot/compressed/lzma_misc.c 2005-06-04 21:33:48.000000000 -0400
-@@ -0,0 +1,281 @@
-+/*
-+ * lzma_misc.c
-+ *
-+ * malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
-+ * puts by Nick Holloway 1993, better puts by Martin Mares 1995
-+ * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
-+ *
-+ * Decompress LZMA compressed vmlinuz
-+ * Version 0.9 Copyright (c) Ming-Ching Tiew mctiew@yahoo.com
-+ * Program adapted from misc.c for 2.6 kernel
-+ * Forward ported to latest 2.6 version of misc.c by
-+ * Felix Fietkau <nbd@openwrt.org>
-+ */
-+
-+#undef CONFIG_PARAVIRT
-+#include <linux/linkage.h>
-+#include <linux/vmalloc.h>
-+#include <linux/screen_info.h>
-+#include <asm/io.h>
-+#include <asm/page.h>
-+#include <asm/boot.h>
-+
-+/* WARNING!!
-+ * This code is compiled with -fPIC and it is relocated dynamically
-+ * at run time, but no relocation processing is performed.
-+ * This means that it is not safe to place pointers in static structures.
-+ */
-+
-+/*
-+ * Getting to provable safe in place decompression is hard.
-+ * Worst case behaviours need to be analized.
-+ * Background information:
-+ *
-+ * The file layout is:
-+ * magic[2]
-+ * method[1]
-+ * flags[1]
-+ * timestamp[4]
-+ * extraflags[1]
-+ * os[1]
-+ * compressed data blocks[N]
-+ * crc[4] orig_len[4]
-+ *
-+ * resulting in 18 bytes of non compressed data overhead.
-+ *
-+ * Files divided into blocks
-+ * 1 bit (last block flag)
-+ * 2 bits (block type)
-+ *
-+ * 1 block occurs every 32K -1 bytes or when there 50% compression has been achieved.
-+ * The smallest block type encoding is always used.
-+ *
-+ * stored:
-+ * 32 bits length in bytes.
-+ *
-+ * fixed:
-+ * magic fixed tree.
-+ * symbols.
-+ *
-+ * dynamic:
-+ * dynamic tree encoding.
-+ * symbols.
-+ *
-+ *
-+ * The buffer for decompression in place is the length of the
-+ * uncompressed data, plus a small amount extra to keep the algorithm safe.
-+ * The compressed data is placed at the end of the buffer. The output
-+ * pointer is placed at the start of the buffer and the input pointer
-+ * is placed where the compressed data starts. Problems will occur
-+ * when the output pointer overruns the input pointer.
-+ *
-+ * The output pointer can only overrun the input pointer if the input
-+ * pointer is moving faster than the output pointer. A condition only
-+ * triggered by data whose compressed form is larger than the uncompressed
-+ * form.
-+ *
-+ * The worst case at the block level is a growth of the compressed data
-+ * of 5 bytes per 32767 bytes.
-+ *
-+ * The worst case internal to a compressed block is very hard to figure.
-+ * The worst case can at least be boundined by having one bit that represents
-+ * 32764 bytes and then all of the rest of the bytes representing the very
-+ * very last byte.
-+ *
-+ * All of which is enough to compute an amount of extra data that is required
-+ * to be safe. To avoid problems at the block level allocating 5 extra bytes
-+ * per 32767 bytes of data is sufficient. To avoind problems internal to a block
-+ * adding an extra 32767 bytes (the worst case uncompressed block size) is
-+ * sufficient, to ensure that in the worst case the decompressed data for
-+ * block will stop the byte before the compressed data for a block begins.
-+ * To avoid problems with the compressed data's meta information an extra 18
-+ * bytes are needed. Leading to the formula:
-+ *
-+ * extra_bytes = (uncompressed_size >> 12) + 32768 + 18 + decompressor_size.
-+ *
-+ * Adding 8 bytes per 32K is a bit excessive but much easier to calculate.
-+ * Adding 32768 instead of 32767 just makes for round numbers.
-+ * Adding the decompressor_size is necessary as it musht live after all
-+ * of the data as well. Last I measured the decompressor is about 14K.
-+ * 10K of actuall data and 4K of bss.
-+ *
-+ */
-+
-+/*
-+ * gzip declarations
-+ */
-+
-+#define OF(args) args
-+#define STATIC static
-+
-+#undef memcpy
-+
-+typedef unsigned char uch;
-+typedef unsigned short ush;
-+typedef unsigned long ulg;
-+
-+#define WSIZE 0x80000000 /* Window size must be at least 32k,
-+ * and a power of two
-+ * We don't actually have a window just
-+ * a huge output buffer so I report
-+ * a 2G windows size, as that should
-+ * always be larger than our output buffer.
-+ */
-+
-+static uch *inbuf; /* input buffer */
-+static uch *window; /* Sliding window buffer, (and final output buffer) */
-+
-+static unsigned insize; /* valid bytes in inbuf */
-+static unsigned inptr; /* index of next byte to be processed in inbuf */
-+static unsigned long workspace;
-+
-+#define get_byte() (inptr < insize ? inbuf[inptr++] : fill_inbuf())
-+
-+/* Diagnostic functions */
-+#ifdef DEBUG
-+# define Assert(cond,msg) {if(!(cond)) error(msg);}
-+# define Trace(x) fprintf x
-+# define Tracev(x) {if (verbose) fprintf x ;}
-+# define Tracevv(x) {if (verbose>1) fprintf x ;}
-+# define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
-+# define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
-+#else
-+# define Assert(cond,msg)
-+# define Trace(x)
-+# define Tracev(x)
-+# define Tracevv(x)
-+# define Tracec(c,x)
-+# define Tracecv(c,x)
-+#endif
-+
-+static int fill_inbuf(void);
-+
-+/*
-+ * This is set up by the setup-routine at boot-time
-+ */
-+static unsigned char *real_mode; /* Pointer to real-mode data */
-+extern unsigned char input_data[];
-+extern int input_len;
-+
-+static void error(char *x);
-+static void *memcpy(void *dest, const void *src, unsigned n);
-+
-+#ifdef CONFIG_X86_NUMAQ
-+void *xquad_portio;
-+#endif
-+
-+static void* memcpy(void* dest, const void* src, unsigned n)
-+{
-+ int i;
-+ char *d = (char *)dest, *s = (char *)src;
-+
-+ for (i=0;i<n;i++) d[i] = s[i];
-+ return dest;
-+}
-+
-+/* ===========================================================================
-+ * Fill the input buffer. This is called only when the buffer is empty
-+ * and at least one byte is really needed.
-+ */
-+static int fill_inbuf(void)
-+{
-+ error("ran out of input data");
-+ return 0;
-+}
-+
-+
-+// When using LZMA in callback, the compressed length is not needed.
-+// Otherwise you need a special version of lzma compression program
-+// which will pad the compressed length in the header.
-+#define _LZMA_IN_CB
-+#include "LzmaDecode.h"
-+#include "LzmaDecode.c"
-+
-+static int read_byte(void *object, unsigned char **buffer, UInt32 *bufferSize);
-+
-+
-+/*
-+ * Do the lzma decompression
-+ * When using LZMA in callback, the end of input stream is automatically determined
-+ */
-+static int lzma_unzip(void)
-+{
-+
-+ unsigned int i; /* temp value */
-+ unsigned int lc; /* literal context bits */
-+ unsigned int lp; /* literal pos state bits */
-+ unsigned int pb; /* pos state bits */
-+ unsigned int uncompressedSize = 0;
-+ unsigned char* p;
-+
-+ ILzmaInCallback callback;
-+ callback.Read = read_byte;
-+
-+ /* lzma args */
-+ i = get_byte();
-+ lc = i % 9, i = i / 9;
-+ lp = i % 5, pb = i / 5;
-+
-+ /* skip dictionary size */
-+ for (i = 0; i < 4; i++)
-+ get_byte();
-+ // get uncompressedSize
-+ p= (char*)&uncompressedSize;
-+ for (i = 0; i < 4; i++)
-+ *p++ = get_byte();
-+
-+ //get compressedSize
-+ for (i = 0; i < 4; i++)
-+ get_byte();
-+
-+ // point it beyond uncompresedSize
-+ //workspace = window + uncompressedSize;
-+
-+ /* decompress kernel */
-+ if (LzmaDecode((unsigned char*)workspace, ~0, lc, lp, pb, &callback,
-+ (unsigned char*)window, uncompressedSize, &i) == LZMA_RESULT_OK)
-+ return 0;
-+ else
-+ return 1;
-+}
-+
-+
-+#ifdef _LZMA_IN_CB
-+static int read_byte(void *object, unsigned char **buffer, UInt32 *bufferSize)
-+{
-+ static unsigned int i = 0;
-+ static unsigned char val;
-+ *bufferSize = 1;
-+ val = get_byte();
-+ *buffer = &val;
-+ return LZMA_RESULT_OK;
-+}
-+#endif
-+
-+static void error(char *x)
-+{
-+ while(1); /* Halt */
-+}
-+
-+asmlinkage void decompress_kernel(void *rmode, unsigned long end,
-+ uch *input_data, unsigned long input_len, uch *output)
-+{
-+ real_mode = rmode;
-+
-+ window = output;
-+ inbuf = input_data; /* Input buffer */
-+ insize = input_len;
-+ inptr = 0;
-+
-+ if ((u32)output & (CONFIG_PHYSICAL_ALIGN -1))
-+ error("Destination address not CONFIG_PHYSICAL_ALIGN aligned");
-+ if ((workspace = end) > ((-__PAGE_OFFSET-(512 <<20)-1) & 0x7fffffff))
-+ error("Destination address too large");
-+#ifndef CONFIG_RELOCATABLE
-+ if ((u32)output != LOAD_PHYSICAL_ADDR)
-+ error("Wrong destination address");
-+#endif
-+
-+ lzma_unzip();
-+ return;
-+}
-diff -urN linux-2.6.19.2/scripts/Makefile.lib linux-2.6.19.2.new/scripts/Makefile.lib
---- linux-2.6.19.2/scripts/Makefile.lib 2007-01-10 20:10:37.000000000 +0100
-+++ linux-2.6.19.2.new/scripts/Makefile.lib 2007-04-15 23:51:54.000000000 +0200
-@@ -162,4 +162,9 @@