-From 659988a6bb83536c5d0a01b0b58378cc1856c975 Mon Sep 17 00:00:00 2001
+From 67432230daedc23f808b79173703e27675fd0659 Mon Sep 17 00:00:00 2001
From: Ivo van Doorn <IvDoorn@gmail.com>
-Date: Fri, 23 Jan 2009 17:13:03 +0100
-Subject: [PATCH] rt2x00: Implement support for rt2800pci
+Date: Sun, 26 Apr 2009 15:54:03 +0200
+Subject: [PATCH 2/4] rt2x00: Implement support for rt2800pci
Add support for the rt2800pci chipset.
-Includes various patches from Mattias, Mark and Felix.
+Includes various patches from Mattias, Mark, Felix and Xose.
+Signed-off-by: Xose Vazquez Perez <xose.vazquez@gmail.com>
Signed-off-by: Mattias Nissler <mattias.nissler@gmx.de>
Signed-off-by: Mark Asselstine <asselsm@gmail.com>
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
---
- drivers/net/wireless/rt2x00/Kconfig | 15 +
+ drivers/net/wireless/rt2x00/Kconfig | 26 +
drivers/net/wireless/rt2x00/Makefile | 1 +
- drivers/net/wireless/rt2x00/rt2800pci.c | 2763 +++++++++++++++++++++++++++++++
- drivers/net/wireless/rt2x00/rt2800pci.h | 1881 +++++++++++++++++++++
- drivers/net/wireless/rt2x00/rt2x00.h | 4 +
- 5 files changed, 4664 insertions(+), 0 deletions(-)
+ drivers/net/wireless/rt2x00/rt2800pci.c | 3245 +++++++++++++++++++++++++++++++
+ drivers/net/wireless/rt2x00/rt2800pci.h | 1927 ++++++++++++++++++
+ drivers/net/wireless/rt2x00/rt2x00.h | 6 +
+ 5 files changed, 5205 insertions(+), 0 deletions(-)
create mode 100644 drivers/net/wireless/rt2x00/rt2800pci.c
create mode 100644 drivers/net/wireless/rt2x00/rt2800pci.h
--- a/drivers/net/wireless/rt2x00/Makefile
+++ b/drivers/net/wireless/rt2x00/Makefile
-@@ -16,5 +16,6 @@ obj-$(CONFIG_RT2X00_LIB_USB) += rt2x00u
+@@ -17,6 +17,7 @@ obj-$(CONFIG_RT2X00_LIB_USB) += rt2x00u
obj-$(CONFIG_RT2400PCI) += rt2400pci.o
obj-$(CONFIG_RT2500PCI) += rt2500pci.o
obj-$(CONFIG_RT61PCI) += rt61pci.o
+obj-$(CONFIG_RT2800PCI) += rt2800pci.o
obj-$(CONFIG_RT2500USB) += rt2500usb.o
obj-$(CONFIG_RT73USB) += rt73usb.o
+ obj-$(CONFIG_RT2800USB) += rt2800usb.o
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800pci.c
-@@ -0,0 +1,2763 @@
+@@ -0,0 +1,3245 @@
+/*
+ Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
+ <http://rt2x00.serialmonkey.com>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
++#include <linux/platform_device.h>
+#include <linux/eeprom_93cx6.h>
+
+#include "rt2x00.h"
+#include "rt2x00pci.h"
++#include "rt2x00soc.h"
+#include "rt2800pci.h"
+
++#ifdef CONFIG_RT2800PCI_PCI_MODULE
++#define CONFIG_RT2800PCI_PCI
++#endif
++
++#ifdef CONFIG_RT2800PCI_WISOC_MODULE
++#define CONFIG_RT2800PCI_WISOC
++#endif
++
+/*
+ * Allow hardware encryption to be disabled.
+ */
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2x00pci_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
++#define WAIT_FOR_RFCSR(__dev, __reg) \
++ rt2x00pci_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2x00pci_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
+#define WAIT_FOR_MCU(__dev, __reg) \
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
++static void rt2800pci_rfcsr_write(struct rt2x00_dev *rt2x00dev,
++ const unsigned int word, const u8 value)
++{
++ u32 reg;
++
++ mutex_lock(&rt2x00dev->csr_mutex);
++
++ /*
++ * Wait until the RFCSR becomes available, afterwards we
++ * can safely write the new data into the register.
++ */
++ if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
++ reg = 0;
++ rt2x00_set_field32(®, RF_CSR_CFG_DATA, value);
++ rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
++ rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1);
++ rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
++
++ rt2x00pci_register_write(rt2x00dev, RF_CSR_CFG, reg);
++ }
++
++ mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_rfcsr_read(struct rt2x00_dev *rt2x00dev,
++ const unsigned int word, u8 *value)
++{
++ u32 reg;
++
++ mutex_lock(&rt2x00dev->csr_mutex);
++
++ /*
++ * Wait until the RFCSR becomes available, afterwards we
++ * can safely write the read request into the register.
++ * After the data has been written, we wait until hardware
++ * returns the correct value, if at any time the register
++ * doesn't become available in time, reg will be 0xffffffff
++ * which means we return 0xff to the caller.
++ */
++ if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
++ reg = 0;
++ rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
++ rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0);
++ rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
++
++ rt2x00pci_register_write(rt2x00dev, RF_CSR_CFG, reg);
++
++ WAIT_FOR_RFCSR(rt2x00dev, ®);
++ }
++
++ *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
++
++ mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
+static void rt2800pci_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
-+ if (!word)
-+ return;
-+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+{
+ u32 reg;
+
++ /*
++ * RT2880 and RT3052 don't support MCU requests.
++ */
++ if (rt2x00_rt(&rt2x00dev->chip, RT2880) ||
++ rt2x00_rt(&rt2x00dev->chip, RT3052))
++ return;
++
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
++static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
++{
++ unsigned int i;
++ u32 reg;
++
++ for (i = 0; i < 200; i++) {
++ rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, ®);
++
++ if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
++ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
++ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
++ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
++ break;
++
++ udelay(REGISTER_BUSY_DELAY);
++ }
++
++ if (i == 200)
++ ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
++
++ rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
++ rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
++}
++
++#ifdef CONFIG_RT2800PCI_WISOC
++static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
++{
++ u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
++
++ memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
++}
++#else
++static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
++{
++}
++#endif /* CONFIG_RT2800PCI_WISOC */
++
++#ifdef CONFIG_RT2800PCI_PCI
+static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
+}
+
++static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
++{
++ struct eeprom_93cx6 eeprom;
++ u32 reg;
++
++ rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
++
++ eeprom.data = rt2x00dev;
++ eeprom.register_read = rt2800pci_eepromregister_read;
++ eeprom.register_write = rt2800pci_eepromregister_write;
++ eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
++ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
++ eeprom.reg_data_in = 0;
++ eeprom.reg_data_out = 0;
++ eeprom.reg_data_clock = 0;
++ eeprom.reg_chip_select = 0;
++
++ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
++ EEPROM_SIZE / sizeof(u16));
++}
++#else
++static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
++{
++}
++#endif /* CONFIG_RT2800PCI_PCI */
++
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2800pci_rt2x00debug = {
+ .owner = THIS_MODULE,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
++ struct mac_wcid_entry wcid_entry;
++ struct mac_iveiv_entry iveiv_entry;
+ u32 offset;
+ u32 reg;
+
-+ offset = MAC_WCID_ATTR_ENTRY(crypto->aid);
++ offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
+
-+ reg = 0;
++ rt2x00pci_register_read(rt2x00dev, offset, ®);
+ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB,
+ !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
-+ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_PAIRKEY_MODE,
-+ crypto->cipher);
++ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER,
++ (crypto->cmd == SET_KEY) * crypto->cipher);
+ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX,
-+ (crypto->cmd == SET_KEY) ? crypto->bssidx : 0);
-+ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
++ (crypto->cmd == SET_KEY) * crypto->bssidx);
++ rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
+ rt2x00pci_register_write(rt2x00dev, offset, reg);
++
++ offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
++
++ memset(&iveiv_entry, 0, sizeof(iveiv_entry));
++ if ((crypto->cipher == CIPHER_TKIP) ||
++ (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
++ (crypto->cipher == CIPHER_AES))
++ iveiv_entry.iv[3] |= 0x20;
++ iveiv_entry.iv[3] |= key->keyidx << 6;
++ rt2x00pci_register_multiwrite(rt2x00dev, offset,
++ &iveiv_entry, sizeof(iveiv_entry));
++
++ offset = MAC_WCID_ENTRY(key->hw_key_idx);
++
++ memset(&wcid_entry, 0, sizeof(wcid_entry));
++ if (crypto->cmd == SET_KEY)
++ memcpy(&wcid_entry, crypto->address, ETH_ALEN);
++ rt2x00pci_register_multiwrite(rt2x00dev, offset,
++ &wcid_entry, sizeof(wcid_entry));
+}
+
+static int rt2800pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
+ struct hw_key_entry key_entry;
+ struct rt2x00_field32 field;
+ u32 offset;
-+ u32 mask;
+ u32 reg;
+
+ if (crypto->cmd == SET_KEY) {
++ key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
++
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ offset = SHARED_KEY_ENTRY(key->hw_key_idx);
+ rt2x00pci_register_multiwrite(rt2x00dev, offset,
+ &key_entry, sizeof(key_entry));
-+
-+ /*
-+ * The driver does not support the IV/EIV generation
-+ * in hardware. However it doesn't support the IV/EIV
-+ * inside the ieee80211 frame either, but requires it
-+ * to be provided seperately for the descriptor.
-+ * rt2x00lib will cut the IV/EIV data out of all frames
-+ * given to us by mac80211, but we must tell mac80211
-+ * to generate the IV/EIV data.
-+ */
-+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ }
+
+ /*
+ * The cipher types are stored over multiple registers
+ * starting with SHARED_KEY_MODE_BASE each word will have
-+ * 32 bits and contains the cipher types for 2 modes each.
++ * 32 bits and contains the cipher types for 2 bssidx each.
+ * Using the correct defines correctly will cause overhead,
+ * so just calculate the correct offset.
+ */
-+ mask = key->hw_key_idx % 8;
-+ field.bit_offset = (3 * mask);
++ field.bit_offset = 4 * (key->hw_key_idx % 8);
+ field.bit_mask = 0x7 << field.bit_offset;
+
+ offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
++
+ rt2x00pci_register_read(rt2x00dev, offset, ®);
+ rt2x00_set_field32(®, field,
-+ (crypto->cmd == SET_KEY) ? crypto->cipher : 0);
++ (crypto->cmd == SET_KEY) * crypto->cipher);
+ rt2x00pci_register_write(rt2x00dev, offset, reg);
+
+ /*
+ struct hw_key_entry key_entry;
+ u32 offset;
+
-+ /*
-+ * 1 pairwise key is possible per AID, this means that the AID
-+ * equals our hw_key_idx.
-+ */
-+ key->hw_key_idx = crypto->aid;
-+
+ if (crypto->cmd == SET_KEY) {
++ /*
++ * 1 pairwise key is possible per AID, this means that the AID
++ * equals our hw_key_idx. Make sure the WCID starts _after_ the
++ * last possible shared key entry.
++ */
++ if (crypto->aid > (256 - 32))
++ return -ENOSPC;
++
++ key->hw_key_idx = 32 + crypto->aid;
++
++
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+ rt2x00pci_register_multiwrite(rt2x00dev, offset,
+ &key_entry, sizeof(key_entry));
-+
-+ /*
-+ * The driver does not support the IV/EIV generation
-+ * in hardware. However it doesn't support the IV/EIV
-+ * inside the ieee80211 frame either, but requires it
-+ * to be provided seperately for the descriptor.
-+ * rt2x00lib will cut the IV/EIV data out of all frames
-+ * given to us by mac80211, but we must tell mac80211
-+ * to generate the IV/EIV data.
-+ */
-+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ }
+
+ /*
+ rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1);
-+ rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 1);
++ rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0);
+ rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00pci_register_write(rt2x00dev, RX_FILTER_CFG, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®);
+ rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT,
-+ erp->ack_timeout);
++ DIV_ROUND_UP(erp->ack_timeout, erp->slot_time));
+ rt2x00pci_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
+
+ rt2x00pci_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
+
+ rt2x00pci_register_write(rt2x00dev, LEGACY_BASIC_RATE,
+ erp->basic_rates);
-+ rt2x00pci_register_write(rt2x00dev, HT_BASIC_RATE,
-+ erp->basic_rates >> 32);
++ rt2x00pci_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
+
+ rt2x00pci_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
+ rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
+static void rt2800pci_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
-+ u16 eeprom;
+ u8 r1;
+ u8 r3;
+
-+ /*
-+ * FIXME: Use requested antenna configuration.
-+ */
-+
-+ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
-+
+ rt2800pci_bbp_read(rt2x00dev, 1, &r1);
+ rt2800pci_bbp_read(rt2x00dev, 3, &r3);
+
+ /*
+ * Configure the TX antenna.
+ */
-+ switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH)) {
++ switch ((int)ant->tx) {
+ case 1:
+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
+ break;
+ case 2:
-+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 16);
++ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
+ break;
+ case 3:
+ /* Do nothing */
+ /*
+ * Configure the RX antenna.
+ */
-+ switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
++ switch ((int)ant->rx) {
+ case 1:
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
+ break;
+ rt2x00dev->lna_gain = lna_gain;
+}
+
-+static void rt2800pci_config_channel(struct rt2x00_dev *rt2x00dev,
-+ struct rf_channel *rf,
-+ struct channel_info *info)
++static void rt2800pci_config_channel_rt2x(struct rt2x00_dev *rt2x00dev,
++ struct ieee80211_conf *conf,
++ struct rf_channel *rf,
++ struct channel_info *info)
+{
-+ u32 reg;
-+ unsigned int tx_pin;
-+ u16 eeprom;
-+
-+ tx_pin = 0;
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
-+
+ rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
-+ /*
-+ * Determine antenna settings from EEPROM
-+ */
-+ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
-+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1) {
++ if (rt2x00dev->default_ant.tx == 1)
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
-+ /* Turn off unused PA or LNA when only 1T or 1R */
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 0);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 0);
-+ }
+
-+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1) {
++ if (rt2x00dev->default_ant.rx == 1) {
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
-+ /* Turn off unused PA or LNA when only 1T or 1R */
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 0);
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 0);
-+ } else if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 2)
++ } else if (rt2x00dev->default_ant.rx == 2)
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
+
+ if (rf->channel > 14) {
+
+ rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
+ TXPOWER_A_TO_DEV(info->tx_power2));
-+
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
+ } else {
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
+ TXPOWER_G_TO_DEV(info->tx_power1));
+ rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
+ TXPOWER_G_TO_DEV(info->tx_power2));
-+
-+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
+ }
+
-+ rt2x00_set_field32(&rf->rf4, RF4_BW40,
-+ test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags));
++ rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
+
+ rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
++}
++
++static void rt2800pci_config_channel_rt3x(struct rt2x00_dev *rt2x00dev,
++ struct ieee80211_conf *conf,
++ struct rf_channel *rf,
++ struct channel_info *info)
++{
++ u8 rfcsr;
++
++ rt2800pci_rfcsr_write(rt2x00dev, 2, rf->rf1);
++ rt2800pci_rfcsr_write(rt2x00dev, 2, rf->rf3);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 6, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2);
++ rt2800pci_rfcsr_write(rt2x00dev, 6, rfcsr);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 12, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
++ TXPOWER_G_TO_DEV(info->tx_power1));
++ rt2800pci_rfcsr_write(rt2x00dev, 12, rfcsr);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 23, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
++ rt2800pci_rfcsr_write(rt2x00dev, 23, rfcsr);
++
++ rt2800pci_rfcsr_write(rt2x00dev, 24,
++ rt2x00dev->calibration[conf_is_ht40(conf)]);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 23, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
++ rt2800pci_rfcsr_write(rt2x00dev, 23, rfcsr);
++}
++
++static void rt2800pci_config_channel(struct rt2x00_dev *rt2x00dev,
++ struct ieee80211_conf *conf,
++ struct rf_channel *rf,
++ struct channel_info *info)
++{
++ u32 reg;
++ unsigned int tx_pin;
++ u8 bbp;
++
++ if (rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION)
++ rt2800pci_config_channel_rt2x(rt2x00dev, conf, rf, info);
++ else
++ rt2800pci_config_channel_rt3x(rt2x00dev, conf, rf, info);
+
+ /*
+ * Change BBP settings
+ rt2800pci_bbp_write(rt2x00dev, 82, 0x84);
+ rt2800pci_bbp_write(rt2x00dev, 75, 0x50);
+ }
-+
-+ rt2x00pci_register_read(rt2x00dev, TX_BAND_CFG, ®);
-+ rt2x00_set_field32(&rf->rf3, TX_BAND_CFG_A, 0);
-+ rt2x00_set_field32(&rf->rf3, TX_BAND_CFG_BG, 1);
-+ rt2x00pci_register_write(rt2x00dev, TX_BAND_CFG, reg);
+ } else {
+ rt2800pci_bbp_write(rt2x00dev, 82, 0xf2);
+
+ rt2800pci_bbp_write(rt2x00dev, 75, 0x46);
+ else
+ rt2800pci_bbp_write(rt2x00dev, 75, 0x50);
++ }
++
++ rt2x00pci_register_read(rt2x00dev, TX_BAND_CFG, ®);
++ rt2x00_set_field32(®, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf));
++ rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14);
++ rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14);
++ rt2x00pci_register_write(rt2x00dev, TX_BAND_CFG, reg);
++
++ tx_pin = 0;
++
++ /* Turn on unused PA or LNA when not using 1T or 1R */
++ if (rt2x00dev->default_ant.tx != 1) {
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
++ }
+
-+ rt2x00pci_register_read(rt2x00dev, TX_BAND_CFG, ®);
-+ rt2x00_set_field32(&rf->rf3, TX_BAND_CFG_A, 1);
-+ rt2x00_set_field32(&rf->rf3, TX_BAND_CFG_BG, 0);
-+ rt2x00pci_register_write(rt2x00dev, TX_BAND_CFG, reg);
++ /* Turn on unused PA or LNA when not using 1T or 1R */
++ if (rt2x00dev->default_ant.rx != 1) {
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
+ }
+
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
++ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
++
+ rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
++ rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
++ rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++ rt2800pci_bbp_read(rt2x00dev, 3, &bbp);
++ rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf));
++ rt2800pci_bbp_write(rt2x00dev, 3, bbp);
++
++ if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
++ if (conf_is_ht40(conf)) {
++ rt2800pci_bbp_write(rt2x00dev, 69, 0x1a);
++ rt2800pci_bbp_write(rt2x00dev, 70, 0x0a);
++ rt2800pci_bbp_write(rt2x00dev, 73, 0x16);
++ } else {
++ rt2800pci_bbp_write(rt2x00dev, 69, 0x16);
++ rt2800pci_bbp_write(rt2x00dev, 70, 0x08);
++ rt2800pci_bbp_write(rt2x00dev, 73, 0x11);
++ }
++ }
++
+ msleep(1);
+}
+
+ rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1);
+ rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
+
-+ rt2800pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
++ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+ } else {
-+ rt2800pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
++ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+
+ rt2x00pci_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
+ rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
+ rt2800pci_config_lna_gain(rt2x00dev, libconf);
+
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
-+ rt2800pci_config_channel(rt2x00dev, &libconf->rf,
-+ &libconf->channel);
++ rt2800pci_config_channel(rt2x00dev, libconf->conf,
++ &libconf->rf, &libconf->channel);
+ if (flags & IEEE80211_CONF_CHANGE_POWER)
+ rt2800pci_config_txpower(rt2x00dev, libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ */
+ rt2x00pci_register_read(rt2x00dev, RX_STA_CNT0, ®);
+ qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
-+
-+ /*
-+ * Update False CCA count from register.
-+ */
-+ rt2x00pci_register_read(rt2x00dev, RX_STA_CNT1, ®);
-+ qual->false_cca = rt2x00_get_field32(reg, RX_STA_CNT1_FALSE_CCA);
+}
+
+static u8 rt2800pci_get_default_vgc(struct rt2x00_dev *rt2x00dev)
+ return FIRMWARE_RT2860;
+}
+
-+static u16 rt2800pci_get_firmware_crc(const void *data, const size_t len)
++static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
++ const u8 *data, const size_t len)
+{
++ u16 fw_crc;
+ u16 crc;
+
+ /*
++ * Only support 8kb firmware files.
++ */
++ if (len != 8192)
++ return FW_BAD_LENGTH;
++
++ /*
++ * The last 2 bytes in the firmware array are the crc checksum itself,
++ * this means that we should never pass those 2 bytes to the crc
++ * algorithm.
++ */
++ fw_crc = (data[len - 2] << 8 | data[len - 1]);
++
++ /*
+ * Use the crc ccitt algorithm.
+ * This will return the same value as the legacy driver which
+ * used bit ordering reversion on the both the firmware bytes
+ * before input input as well as on the final output.
+ * Obviously using crc ccitt directly is much more efficient.
-+ * The last 2 bytes in the firmware array are the crc checksum itself,
-+ * this means that we should never pass those 2 bytes to the crc
-+ * algorithm.
+ */
+ crc = crc_ccitt(~0, data, len - 2);
+
+ * will be swapped, use swab16 to convert the crc to the correct
+ * value.
+ */
-+ return swab16(crc);
++ crc = swab16(crc);
++
++ return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
+}
+
+static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
-+ const void *data, const size_t len)
++ const u8 *data, const size_t len)
+{
+ unsigned int i;
+ u32 reg;
+
-+ if (len != 8192) {
-+ ERROR(rt2x00dev, "Invalid firmware file length (len=%zu)\n", len);
-+ return -ENOENT;
-+ }
-+
+ /*
+ * Wait for stable hardware.
+ */
+ rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
+ rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
+ rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
++ rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
+
+ entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+ rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
+ rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
+ rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
++ rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
+
+ entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
+ rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
+ rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
+ rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
++ rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
+
+ entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
+ rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
+ rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
+ rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
++ rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
+
+ entry_priv = rt2x00dev->rx->entries[0].priv_data;
+ rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
+ rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
-+ rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, 0);
++ rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
++ rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
+
+ /*
+ * Enable global DMA configuration
+ rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
+ rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
-+ rt2x00pci_register_write(rt2x00dev, TX_SW_CFG0, 0x00040a06);
++ rt2x00pci_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
+ rt2x00pci_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+
+ rt2x00pci_register_read(rt2x00dev, TX_LINK_CFG, ®);
+ rt2x00pci_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
+
+ rt2x00pci_register_read(rt2x00dev, CCK_PROT_CFG, ®);
-+ rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3);
++ rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 8);
+ rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0);
+ rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1);
+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
-+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
++ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+ rt2x00pci_register_write(rt2x00dev, CCK_PROT_CFG, reg);
+
+ rt2x00pci_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
-+ rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3);
++ rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 8);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
-+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
++ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+ rt2x00pci_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+
+ rt2x00pci_register_read(rt2x00dev, TX_RTS_CFG, ®);
+ rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
++ rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES,
++ IEEE80211_MAX_RTS_THRESHOLD);
+ rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0);
+ rt2x00pci_register_write(rt2x00dev, TX_RTS_CFG, reg);
+
+ /*
+ * ASIC will keep garbage value after boot, clear encryption keys.
+ */
-+ for (i = 0; i < 254; i++) {
++ for (i = 0; i < 256; i++) {
+ u32 wcid[2] = { 0xffffffff, 0x00ffffff };
+ rt2x00pci_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
+ wcid, sizeof(wcid));
++
++ rt2x00pci_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
++ rt2x00pci_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
+ }
+
-+ for (i = 0; i < 4; i++)
++ for (i = 0; i < 16; i++)
+ rt2x00pci_register_write(rt2x00dev,
+ SHARED_KEY_MODE_ENTRY(i), 0);
+
-+ for (i = 0; i < 256; i++)
-+ rt2x00pci_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
-+
+ /*
+ * Clear all beacons
+ * For the Beacon base registers we only need to clear
+ rt2x00pci_register_read(rt2x00dev, LG_FBK_CFG0, ®);
+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8);
+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 10);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 11);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 12);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 13);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 14);
-+ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 15);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 3);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13);
++ rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14);
+ rt2x00pci_register_write(rt2x00dev, LG_FBK_CFG0, reg);
+
+ rt2x00pci_register_read(rt2x00dev, LG_FBK_CFG1, ®);
+ * BBP was enabled after firmware was loaded,
+ * but we need to reactivate it now.
+ */
-+ rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0x00000000);
-+ rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0x00000000);
++ rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
++ rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+ msleep(1);
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
+ rt2800pci_bbp_write(rt2x00dev, 84, 0x19);
+
++ if (rt2x00_rt(&rt2x00dev->chip, RT3052)) {
++ rt2800pci_bbp_write(rt2x00dev, 31, 0x08);
++ rt2800pci_bbp_write(rt2x00dev, 78, 0x0e);
++ rt2800pci_bbp_write(rt2x00dev, 80, 0x08);
++ }
++
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+ return 0;
+}
+
++static u8 rt2800pci_init_rx_filter(struct rt2x00_dev *rt2x00dev,
++ bool bw40, u8 rfcsr24, u8 filter_target)
++{
++ unsigned int i;
++ u8 bbp;
++ u8 rfcsr;
++ u8 passband;
++ u8 stopband;
++ u8 overtuned = 0;
++
++ rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++
++ rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
++ rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 22, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
++ rt2800pci_rfcsr_write(rt2x00dev, 22, rfcsr);
++
++ /*
++ * Set power & frequency of passband test tone
++ */
++ rt2800pci_bbp_write(rt2x00dev, 24, 0);
++
++ for (i = 0; i < 100; i++) {
++ rt2800pci_bbp_write(rt2x00dev, 25, 0x90);
++ msleep(1);
++
++ rt2800pci_bbp_read(rt2x00dev, 55, &passband);
++ if (passband)
++ break;
++ }
++
++ /*
++ * Set power & frequency of stopband test tone
++ */
++ rt2800pci_bbp_write(rt2x00dev, 24, 0x06);
++
++ for (i = 0; i < 100; i++) {
++ rt2800pci_bbp_write(rt2x00dev, 25, 0x90);
++ msleep(1);
++
++ rt2800pci_bbp_read(rt2x00dev, 55, &stopband);
++
++ if ((passband - stopband) <= filter_target) {
++ rfcsr24++;
++ overtuned += ((passband - stopband) == filter_target);
++ } else
++ break;
++
++ rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++ }
++
++ rfcsr24 -= !!overtuned;
++
++ rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++ return rfcsr24;
++}
++
++static int rt2800pci_init_rfcsr(struct rt2x00_dev *rt2x00dev)
++{
++ u8 rfcsr;
++ u8 bbp;
++
++ if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
++ !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
++ !rt2x00_rf(&rt2x00dev->chip, RF3022))
++ return 0;
++
++ /*
++ * Init RF calibration.
++ */
++ rt2800pci_rfcsr_read(rt2x00dev, 30, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
++ rt2800pci_rfcsr_write(rt2x00dev, 30, rfcsr);
++ msleep(1);
++ rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
++ rt2800pci_rfcsr_write(rt2x00dev, 30, rfcsr);
++
++ rt2800pci_rfcsr_write(rt2x00dev, 0, 0x50);
++ rt2800pci_rfcsr_write(rt2x00dev, 1, 0x01);
++ rt2800pci_rfcsr_write(rt2x00dev, 2, 0xf7);
++ rt2800pci_rfcsr_write(rt2x00dev, 3, 0x75);
++ rt2800pci_rfcsr_write(rt2x00dev, 4, 0x40);
++ rt2800pci_rfcsr_write(rt2x00dev, 5, 0x03);
++ rt2800pci_rfcsr_write(rt2x00dev, 6, 0x02);
++ rt2800pci_rfcsr_write(rt2x00dev, 7, 0x50);
++ rt2800pci_rfcsr_write(rt2x00dev, 8, 0x39);
++ rt2800pci_rfcsr_write(rt2x00dev, 9, 0x0f);
++ rt2800pci_rfcsr_write(rt2x00dev, 10, 0x60);
++ rt2800pci_rfcsr_write(rt2x00dev, 11, 0x21);
++ rt2800pci_rfcsr_write(rt2x00dev, 12, 0x75);
++ rt2800pci_rfcsr_write(rt2x00dev, 13, 0x75);
++ rt2800pci_rfcsr_write(rt2x00dev, 14, 0x90);
++ rt2800pci_rfcsr_write(rt2x00dev, 15, 0x58);
++ rt2800pci_rfcsr_write(rt2x00dev, 16, 0xb3);
++ rt2800pci_rfcsr_write(rt2x00dev, 17, 0x92);
++ rt2800pci_rfcsr_write(rt2x00dev, 18, 0x2c);
++ rt2800pci_rfcsr_write(rt2x00dev, 19, 0x02);
++ rt2800pci_rfcsr_write(rt2x00dev, 20, 0xba);
++ rt2800pci_rfcsr_write(rt2x00dev, 21, 0xdb);
++ rt2800pci_rfcsr_write(rt2x00dev, 22, 0x00);
++ rt2800pci_rfcsr_write(rt2x00dev, 23, 0x31);
++ rt2800pci_rfcsr_write(rt2x00dev, 24, 0x08);
++ rt2800pci_rfcsr_write(rt2x00dev, 25, 0x01);
++ rt2800pci_rfcsr_write(rt2x00dev, 26, 0x25);
++ rt2800pci_rfcsr_write(rt2x00dev, 27, 0x23);
++ rt2800pci_rfcsr_write(rt2x00dev, 28, 0x13);
++ rt2800pci_rfcsr_write(rt2x00dev, 29, 0x83);
++
++ /*
++ * Set RX Filter calibration for 20MHz and 40MHz
++ */
++ rt2x00dev->calibration[0] =
++ rt2800pci_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
++ rt2x00dev->calibration[1] =
++ rt2800pci_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
++
++ /*
++ * Set back to initial state
++ */
++ rt2800pci_bbp_write(rt2x00dev, 24, 0);
++
++ rt2800pci_rfcsr_read(rt2x00dev, 22, &rfcsr);
++ rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
++ rt2800pci_rfcsr_write(rt2x00dev, 22, rfcsr);
++
++ /*
++ * set BBP back to BW20
++ */
++ rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
++ rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++ return 0;
++}
++
+/*
+ * Device state switch handlers.
+ */
+ rt2800pci_init_queues(rt2x00dev) ||
+ rt2800pci_init_registers(rt2x00dev) ||
+ rt2800pci_wait_wpdma_ready(rt2x00dev) ||
-+ rt2800pci_init_bbp(rt2x00dev)))
++ rt2800pci_init_bbp(rt2x00dev) ||
++ rt2800pci_init_rfcsr(rt2x00dev)))
+ return -EIO;
+
+ /*
+{
+ rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
+
-+ if (state == STATE_AWAKE)
-+ rt2800pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
-+ else
++ if (state == STATE_AWAKE) {
++ rt2800pci_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
++ rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
++ } else
+ rt2800pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
+
+ return 0;
+ */
+ rt2x00_desc_read(txwi, 0, &word);
+ rt2x00_set_field32(&word, TXWI_W0_FRAG,
-+ test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags) ||
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
+ rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
+ test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
+ rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
-+ skbdesc->entry->entry_idx);
-+ rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, skb->len);
++ test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
++ txdesc->key_idx : 0xff);
++ rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
++ skb->len - txdesc->l2pad);
+ rt2x00_set_field32(&word, TXWI_W1_PACKETID,
+ skbdesc->entry->queue->qid);
+ rt2x00_desc_write(txwi, 1, word);
+
-+ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
-+ _rt2x00_desc_write(txwi, 2, skbdesc->iv[0]);
-+ _rt2x00_desc_write(txwi, 3, skbdesc->iv[1]);
-+ }
++ /*
++ * Always write 0 to IV/EIV fields, hardware will insert the IV
++ * from the IVEIV register when ENTRY_TXD_ENCRYPT_IV is set to 0.
++ * When ENTRY_TXD_ENCRYPT_IV is set to 1 it will use the IV data
++ * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
++ * crypto entry in the registers should be used to encrypt the frame.
++ */
++ _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
++ _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
+
+ /*
+ * Initialize TX descriptor
+ rt2x00_desc_write(txd, 2, word);
+
+ rt2x00_desc_read(txd, 3, &word);
-+ rt2x00_set_field32(&word, TXD_W3_WIV, 1);
++ rt2x00_set_field32(&word, TXD_W3_WIV,
++ !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
+ rt2x00_desc_write(txd, 3, word);
+}
+ rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
+}
+
++static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
++ const enum data_queue_qid qid)
++{
++ u32 reg;
++
++ if (qid == QID_BEACON) {
++ rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, 0);
++ return;
++ }
++
++ rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, ®);
++ rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
++ rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
++ rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
++ rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
++ rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
++}
++
+/*
+ * RX control handlers
+ */
+ * decryption. This prevents us from correct providing
+ * correct statistics through debugfs.
+ */
-+ rxdesc->cipher = CIPHER_NONE;
++ rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
+ rxdesc->cipher_status =
+ rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
+ }
+ if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+
++ if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
++ rxdesc->dev_flags |= RXDONE_L2PAD;
++
+ if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
+ rxdesc->flags |= RX_FLAG_SHORT_GI;
+
+ /*
+ * Mask of 0x8 bit to remove the short preamble flag.
+ */
-+ if (rxdesc->dev_flags == RATE_MODE_CCK)
++ if (rxdesc->rate_mode == RATE_MODE_CCK)
+ rxdesc->signal &= ~0x8;
+
+ rxdesc->rssi =
+ (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
-+ rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1) +
-+ rt2x00_get_field32(rxwi2, RXWI_W2_RSSI2)) / 3;
++ rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
+
+ rxdesc->noise =
+ (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
+ rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
+
+ /*
++ * Set RX IDX in register to inform hardware that we have handled
++ * this entry and it is available for reuse again.
++ */
++ rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
++
++ /*
+ * Remove TXWI descriptor from start of buffer.
+ */
-+ skb_pull(entry->skb, TXWI_DESC_SIZE);
++ skb_pull(entry->skb, RXWI_DESC_SIZE);
+ skb_trim(entry->skb, rxdesc->size);
+}
+
+ */
+static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
-+ struct eeprom_93cx6 eeprom;
-+ u32 reg;
+ u16 word;
+ u8 *mac;
+ u8 default_lna_gain;
+
-+ rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
-+
-+ eeprom.data = rt2x00dev;
-+ eeprom.register_read = rt2800pci_eepromregister_read;
-+ eeprom.register_write = rt2800pci_eepromregister_write;
-+ eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
-+ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
-+ eeprom.reg_data_in = 0;
-+ eeprom.reg_data_out = 0;
-+ eeprom.reg_data_clock = 0;
-+ eeprom.reg_chip_select = 0;
-+
-+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
-+ EEPROM_SIZE / sizeof(u16));
++ /*
++ * Read EEPROM into buffer
++ */
++ switch(rt2x00dev->chip.rt) {
++ case RT2880:
++ case RT3052:
++ rt2800pci_read_eeprom_soc(rt2x00dev);
++ break;
++ default:
++ rt2800pci_read_eeprom_pci(rt2x00dev);
++ break;
++ }
+
+ /*
+ * Start validation of the data that has been read.
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
++ } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
++ /*
++ * There is a max of 2 RX streams for RT2860 series
++ */
++ if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
++ rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
++ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ }
+
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+ u32 reg;
+ u16 value;
+ u16 eeprom;
-+ u16 device;
+
+ /*
+ * Read EEPROM word for configuration.
+
+ /*
+ * Identify RF chipset.
-+ * To determine the RT chip we have to read the
-+ * PCI header of the device.
+ */
-+ pci_read_config_word(to_pci_dev(rt2x00dev->dev),
-+ PCI_CONFIG_HEADER_DEVICE, &device);
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
-+ rt2x00_set_chip(rt2x00dev, device, value, reg);
++ rt2x00_set_chip_rf(rt2x00dev, value, reg);
+
+ if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
+ !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
-+ !rt2x00_rf(&rt2x00dev->chip, RF2020)) {
++ !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
++ !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
++ !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
+ ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
+ return -ENODEV;
+ }
+
+ /*
++ * Identify default antenna configuration.
++ */
++ rt2x00dev->default_ant.tx =
++ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
++ rt2x00dev->default_ant.rx =
++ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
++
++ /*
+ * Read frequency offset and RF programming sequence.
+ */
+ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
+ /* 802.11 HyperLan 2 */
+ { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
+ { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
-+ { 104, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed1a3 },
-+ { 108, 0x18402ecc, 0x184c0a32, 0x18578a55, 0x180ed193 },
++ { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
++ { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
+ { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
+ { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
+ { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
+ char *tx_power1;
+ char *tx_power2;
+ unsigned int i;
++ u16 eeprom;
+
+ /*
+ * Initialize all hw fields.
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
++ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
++
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
-+ rt2x00_rf(&rt2x00dev->chip, RF2720)) {
++ rt2x00_rf(&rt2x00dev->chip, RF2720) ||
++ rt2x00_rf(&rt2x00dev->chip, RF3021) ||
++ rt2x00_rf(&rt2x00dev->chip, RF3022)) {
+ spec->num_channels = 14;
+ spec->channels = rf_vals;
+ } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
+ IEEE80211_HT_CAP_PSMP_SUPPORT;
+ spec->ht.ampdu_factor = 3;
+ spec->ht.ampdu_density = 4;
-+ spec->ht.mcs.rx_mask[0] = 0xff;
-+ spec->ht.mcs.rx_mask[1] = 0xff;
+ spec->ht.mcs.tx_params =
-+ IEEE80211_HT_MCS_TX_DEFINED;
++ IEEE80211_HT_MCS_TX_DEFINED |
++ IEEE80211_HT_MCS_TX_RX_DIFF |
++ ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
++ IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
++
++ switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
++ case 3:
++ spec->ht.mcs.rx_mask[2] = 0xff;
++ case 2:
++ spec->ht.mcs.rx_mask[1] = 0xff;
++ case 1:
++ spec->ht.mcs.rx_mask[0] = 0xff;
++ spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
++ break;
++ }
+
+ /*
+ * Create channel information array
+ /*
+ * This device requires firmware.
+ */
-+ __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
++ if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
++ !rt2x00_rt(&rt2x00dev->chip, RT3052))
++ __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
++ __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
+ if (!modparam_nohwcrypt)
+ __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
+
+/*
+ * IEEE80211 stack callback functions.
+ */
++static void rt2800pci_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
++ u32 *iv32, u16 *iv16)
++{
++ struct rt2x00_dev *rt2x00dev = hw->priv;
++ struct mac_iveiv_entry iveiv_entry;
++ u32 offset;
++
++ offset = MAC_IVEIV_ENTRY(hw_key_idx);
++ rt2x00pci_register_multiread(rt2x00dev, offset,
++ &iveiv_entry, sizeof(iveiv_entry));
++
++ memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
++ memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
++}
++
+static int rt2800pci_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_key = rt2x00mac_set_key,
+ .get_stats = rt2x00mac_get_stats,
++ .get_tkip_seq = rt2800pci_get_tkip_seq,
+ .set_rts_threshold = rt2800pci_set_rts_threshold,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2800pci_conf_tx,
+ .irq_handler = rt2800pci_interrupt,
+ .probe_hw = rt2800pci_probe_hw,
+ .get_firmware_name = rt2800pci_get_firmware_name,
-+ .get_firmware_crc = rt2800pci_get_firmware_crc,
++ .check_firmware = rt2800pci_check_firmware,
+ .load_firmware = rt2800pci_load_firmware,
+ .initialize = rt2x00pci_initialize,
+ .uninitialize = rt2x00pci_uninitialize,
+ .write_tx_data = rt2x00pci_write_tx_data,
+ .write_beacon = rt2800pci_write_beacon,
+ .kick_tx_queue = rt2800pci_kick_tx_queue,
++ .kill_tx_queue = rt2800pci_kill_tx_queue,
+ .fill_rxdone = rt2800pci_fill_rxdone,
+ .config_shared_key = rt2800pci_config_shared_key,
+ .config_pairwise_key = rt2800pci_config_pairwise_key,
+
+static const struct data_queue_desc rt2800pci_queue_rx = {
+ .entry_num = RX_ENTRIES,
-+ .data_size = DATA_FRAME_SIZE,
++ .data_size = AGGREGATION_SIZE,
+ .desc_size = RXD_DESC_SIZE,
+ .priv_size = sizeof(struct queue_entry_priv_pci),
+};
+
+static const struct data_queue_desc rt2800pci_queue_tx = {
+ .entry_num = TX_ENTRIES,
-+ .data_size = DATA_FRAME_SIZE,
++ .data_size = AGGREGATION_SIZE,
+ .desc_size = TXD_DESC_SIZE,
+ .priv_size = sizeof(struct queue_entry_priv_pci),
+};
+ * RT2800pci module information.
+ */
+static struct pci_device_id rt2800pci_device_table[] = {
++ /* Edimax */
++ { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
+ { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
+ { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
+ { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
+ { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
++ /* Awt */
+ { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
+ { 0, }
+};
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
-+MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
++#ifdef CONFIG_RT2800PCI_PCI
+MODULE_FIRMWARE(FIRMWARE_RT2860);
++MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
++#endif /* CONFIG_RT2800PCI_PCI */
+MODULE_LICENSE("GPL");
+
++#ifdef CONFIG_RT2800PCI_WISOC
++#if defined(CONFIG_RALINK_RT288X)
++__rt2x00soc_probe(RT2880, &rt2800pci_ops);
++#elif defined(CONFIG_RALINK_RT305X)
++__rt2x00soc_probe(RT3052, &rt2800pci_ops);
++#endif
++
++static struct platform_driver rt2800soc_driver = {
++ .driver = {
++ .name = "rt2800_wmac",
++ .owner = THIS_MODULE,
++ .mod_name = KBUILD_MODNAME,
++ },
++ .probe = __rt2x00soc_probe,
++ .remove = __devexit_p(rt2x00soc_remove),
++ .suspend = rt2x00soc_suspend,
++ .resume = rt2x00soc_resume,
++};
++#endif /* CONFIG_RT2800PCI_WISOC */
++
++#ifdef CONFIG_RT2800PCI_PCI
+static struct pci_driver rt2800pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2800pci_device_table,
+ .suspend = rt2x00pci_suspend,
+ .resume = rt2x00pci_resume,
+};
++#endif /* CONFIG_RT2800PCI_PCI */
+
+static int __init rt2800pci_init(void)
+{
-+ return pci_register_driver(&rt2800pci_driver);
++ int ret = 0;
++
++#ifdef CONFIG_RT2800PCI_WISOC
++ ret = platform_driver_register(&rt2800soc_driver);
++ if (ret)
++ return ret;
++#endif
++#ifdef CONFIG_RT2800PCI_PCI
++ ret = pci_register_driver(&rt2800pci_driver);
++ if (ret) {
++#ifdef CONFIG_RT2800PCI_WISOC
++ platform_driver_unregister(&rt2800soc_driver);
++#endif
++ return ret;
++ }
++#endif
++
++ return ret;
+}
+
+static void __exit rt2800pci_exit(void)
+{
++#ifdef CONFIG_RT2800PCI_PCI
+ pci_unregister_driver(&rt2800pci_driver);
++#endif
++#ifdef CONFIG_RT2800PCI_WISOC
++ platform_driver_unregister(&rt2800soc_driver);
++#endif
+}
+
+module_init(rt2800pci_init);
+module_exit(rt2800pci_exit);
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800pci.h
-@@ -0,0 +1,1881 @@
+@@ -0,0 +1,1927 @@
+/*
+ Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
+ <http://rt2x00.serialmonkey.com>
+ * RF2750 2.4G/5G 1T2R
+ * RF3020 2.4G 1T1R
+ * RF2020 2.4G B/G
++ * RF3021 2.4G 1T2R
++ * RF3022 2.4G 2T2R
+ */
+#define RF2820 0x0001
+#define RF2850 0x0002
+#define RF2750 0x0004
+#define RF3020 0x0005
+#define RF2020 0x0006
++#define RF3021 0x0007
++#define RF3022 0x0008
+
+/*
+ * RT2860 version
+#define EEPROM_SIZE 0x0110
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0080
-+#define RF_BASE 0x0000
-+#define RF_SIZE 0x0014
++#define RF_BASE 0x0004
++#define RF_SIZE 0x0010
+
+/*
+ * Number of TX queues.
+ */
+
+/*
-+ * PCI Configuration Header
-+ */
-+#define PCI_CONFIG_HEADER_VENDOR 0x0000
-+#define PCI_CONFIG_HEADER_DEVICE 0x0002
-+
-+/*
+ * E2PROM_CSR: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
-+ * TYPE_93C46: 1: 93c46, 0:93c66.
++ * TYPE: 0: 93c46, 1:93c66.
+ * LOAD_STATUS: 1:loading, 0:done.
+ */
+#define E2PROM_CSR 0x0004
+#define E2PROM_CSR_CHIP_SELECT FIELD32(0x00000002)
+#define E2PROM_CSR_DATA_IN FIELD32(0x00000004)
+#define E2PROM_CSR_DATA_OUT FIELD32(0x00000008)
-+#define E2PROM_CSR_TYPE_93C46 FIELD32(0x00000020)
++#define E2PROM_CSR_TYPE FIELD32(0x00000030)
+#define E2PROM_CSR_LOAD_STATUS FIELD32(0x00000040)
+#define E2PROM_CSR_RELOAD FIELD32(0x00000080)
+
+#define WMM_TXOP1_CFG_AC3TXOP FIELD32(0xffff0000)
+
+/*
-+ * RINGREG_DIFF
-+ */
-+#define RINGREG_DIFF 0x0010
-+
-+/*
+ * GPIO_CTRL_CFG:
+ */
+#define GPIO_CTRL_CFG 0x0228
+#define PBF_SYS_CTRL_HOST_RAM_WRITE FIELD32(0x00010000)
+
+/*
-+ * PBF registers
++ * PBF registers
+ * Most are for debug. Driver doesn't touch PBF register.
+ */
+#define PBF_CFG 0x0408
+#define BCN_OFFSET1_BCN7 FIELD32(0xff000000)
+
+/*
-+ * PBF registers
++ * PBF registers
+ * Most are for debug. Driver doesn't touch PBF register.
+ */
+#define TXRXQ_PCNT 0x0438
+#define PBF_DBG 0x043c
+
+/*
++ * RF registers
++ */
++#define RF_CSR_CFG 0x0500
++#define RF_CSR_CFG_DATA FIELD32(0x000000ff)
++#define RF_CSR_CFG_REGNUM FIELD32(0x00001f00)
++#define RF_CSR_CFG_WRITE FIELD32(0x00010000)
++#define RF_CSR_CFG_BUSY FIELD32(0x00020000)
++
++/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+ * TX_BAND_CFG: 0x1 use upper 20MHz, 0x0 use lower 20MHz
+ */
+#define TX_BAND_CFG 0x132c
++#define TX_BAND_CFG_HT40_PLUS FIELD32(0x00000001)
+#define TX_BAND_CFG_A FIELD32(0x00000002)
+#define TX_BAND_CFG_BG FIELD32(0x00000004)
+
+#define MPDU_DENSITY_CNT_RX_ZERO_DEL FIELD32(0xffff0000)
+
+/*
-+ * Security key table memory, base address = 0x1800
-+ */
-+struct hw_pairwise_ta_entry {
-+ u8 address[6];
-+ u8 reserved[2];
-+} __attribute__ ((packed));
-+
-+struct wcid_entry {
-+ u8 rx_ba_bitmat7;
-+ u8 rx_ba_bitmat0;
-+ u8 mac[6];
-+} __attribute__ ((packed));
-+
-+struct hw_key_entry {
-+ u8 key[16];
-+ u8 tx_mic[8];
-+ u8 rx_mic[8];
-+} __attribute__ ((packed));
-+
-+/*
+ * Security key table memory.
+ * MAC_WCID_BASE: 8-bytes (use only 6 bytes) * 256 entry
+ * PAIRWISE_KEY_TABLE_BASE: 32-byte * 256 entry
-+ * PAIRWISE_IVEIV_TABLE_BASE: 8-byte * 256-entry
+ * MAC_IVEIV_TABLE_BASE: 8-byte * 256-entry
+ * MAC_WCID_ATTRIBUTE_BASE: 4-byte * 256-entry
+ * SHARED_KEY_TABLE_BASE: 32-byte * 16-entry
-+ * SHARED_KEY_MODE_BASE: 32-byte * 16-entry
++ * SHARED_KEY_MODE_BASE: 4-byte * 16-entry
+ */
+#define MAC_WCID_BASE 0x1800
+#define PAIRWISE_KEY_TABLE_BASE 0x4000
-+#define PAIRWISE_IVEIV_TABLE_BASE 0x6000
+#define MAC_IVEIV_TABLE_BASE 0x6000
+#define MAC_WCID_ATTRIBUTE_BASE 0x6800
+#define SHARED_KEY_TABLE_BASE 0x6c00
+#define SHARED_KEY_MODE_BASE 0x7000
+
++#define MAC_WCID_ENTRY(__idx) \
++ ( MAC_WCID_BASE + ((__idx) * sizeof(struct mac_wcid_entry)) )
++#define PAIRWISE_KEY_ENTRY(__idx) \
++ ( PAIRWISE_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)) )
++#define MAC_IVEIV_ENTRY(__idx) \
++ ( MAC_IVEIV_TABLE_BASE + ((__idx) & sizeof(struct mac_iveiv_entry)) )
++#define MAC_WCID_ATTR_ENTRY(__idx) \
++ ( MAC_WCID_ATTRIBUTE_BASE + ((__idx) * sizeof(u32)) )
+#define SHARED_KEY_ENTRY(__idx) \
-+ ( SHARED_KEY_TABLE_BASE + \
-+ ((__idx) * sizeof(struct hw_key_entry)) )
++ ( SHARED_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)) )
+#define SHARED_KEY_MODE_ENTRY(__idx) \
+ ( SHARED_KEY_MODE_BASE + ((__idx) * sizeof(u32)) )
-+#define PAIRWISE_KEY_ENTRY(__idx) \
-+ ( PAIRWISE_KEY_TABLE_BASE + \
-+ ((__idx) * sizeof(struct hw_key_entry)) )
+
-+#define MAC_WCID_ENTRY(__idx) \
-+ ( MAC_WCID_BASE + (2 * sizeof(u32) * (__idx)) )
-+#define MAC_WCID_ATTR_ENTRY(__idx) \
-+ ( MAC_WCID_ATTRIBUTE_BASE + ((__idx) * sizeof(u32)) )
++struct mac_wcid_entry {
++ u8 mac[6];
++ u8 reserved[2];
++} __attribute__ ((packed));
++
++struct hw_key_entry {
++ u8 key[16];
++ u8 tx_mic[8];
++ u8 rx_mic[8];
++} __attribute__ ((packed));
++
++struct mac_iveiv_entry {
++ u8 iv[8];
++} __attribute__ ((packed));
+
+/*
+ * MAC_WCID_ATTRIBUTE:
-+ * KEYTAB: 0: shared key table, 1: pairwise key table
-+ * BSS_IDX: multipleBSS index for the WCID
+ */
+#define MAC_WCID_ATTRIBUTE_KEYTAB FIELD32(0x00000001)
-+#define MAC_WCID_ATTRIBUTE_PAIRKEY_MODE FIELD32(0x0000000e)
++#define MAC_WCID_ATTRIBUTE_CIPHER FIELD32(0x0000000e)
+#define MAC_WCID_ATTRIBUTE_BSS_IDX FIELD32(0x00000070)
+#define MAC_WCID_ATTRIBUTE_RX_WIUDF FIELD32(0x00000380)
+
+ * H2M_MAILBOX_CID:
+ */
+#define H2M_MAILBOX_CID 0x7014
++#define H2M_MAILBOX_CID_CMD0 FIELD32(0x000000ff)
++#define H2M_MAILBOX_CID_CMD1 FIELD32(0x0000ff00)
++#define H2M_MAILBOX_CID_CMD2 FIELD32(0x00ff0000)
++#define H2M_MAILBOX_CID_CMD3 FIELD32(0xff000000)
+
+/*
+ * H2M_MAILBOX_STATUS:
+ * BBP 3: RX Antenna
+ */
+#define BBP3_RX_ANTENNA FIELD8(0x18)
++#define BBP3_HT40_PLUS FIELD8(0x20)
++
++/*
++ * BBP 4: Bandwidth
++ */
++#define BBP4_TX_BF FIELD8(0x01)
++#define BBP4_BANDWIDTH FIELD8(0x18)
++
++/*
++ * RFCSR registers
++ * The wordsize of the RFCSR is 8 bits.
++ */
++
++/*
++ * RFCSR 6:
++ */
++#define RFCSR6_R FIELD8(0x03)
++
++/*
++ * RFCSR 7:
++ */
++#define RFCSR7_RF_TUNING FIELD8(0x01)
++
++/*
++ * RFCSR 12:
++ */
++#define RFCSR12_TX_POWER FIELD8(0x1f)
++
++/*
++ * RFCSR 22:
++ */
++#define RFCSR22_BASEBAND_LOOPBACK FIELD8(0x01)
++
++/*
++ * RFCSR 23:
++ */
++#define RFCSR23_FREQ_OFFSET FIELD8(0x7f)
++
++/*
++ * RFCSR 30:
++ */
++#define RFCSR30_RF_CALIBRATION FIELD8(0x80)
+
+/*
+ * RF registers
+#define RF4_TXPOWER_A_7DBM_BOOST FIELD32(0x00000040)
+#define RF4_TXPOWER_A FIELD32(0x00000780)
+#define RF4_FREQ_OFFSET FIELD32(0x001f8000)
-+#define RF4_BW40 FIELD32(0x00200000)
++#define RF4_HT40 FIELD32(0x00200000)
+
+/*
+ * EEPROM content.
+#define EEPROM_TXPOWER_DELTA_TXPOWER FIELD16(0x0080)
+
+/*
-+ * EEPROM TXPOWER 802.11G
++ * EEPROM TXPOWER 802.11BG
+ */
+#define EEPROM_TXPOWER_BG1 0x0029
+#define EEPROM_TXPOWER_BG2 0x0030
+ */
+#define MCU_SLEEP 0x30
+#define MCU_WAKEUP 0x31
++#define MCU_RADIO_OFF 0x35
+#define MCU_LED 0x50
+#define MCU_LED_STRENGTH 0x51
+#define MCU_LED_1 0x52
+#define MCU_LED_3 0x54
+#define MCU_RADAR 0x60
+#define MCU_BOOT_SIGNAL 0x72
++#define MCU_BBP_SIGNAL 0x80
++
++/*
++ * MCU mailbox tokens
++ */
++#define TOKEN_WAKUP 3
+
+/*
+ * DMA descriptor defines.
+#endif /* RT2800PCI_H */
--- a/drivers/net/wireless/rt2x00/rt2x00.h
+++ b/drivers/net/wireless/rt2x00/rt2x00.h
-@@ -139,6 +139,10 @@ struct rt2x00_chip {
+@@ -147,6 +147,12 @@ struct rt2x00_chip {
#define RT2561 0x0302
#define RT2661 0x0401
#define RT2571 0x1300
+#define RT2860D 0x0681 /* 2.4GHz, 5GHz PCI/CB */
+#define RT2890 0x0701 /* 2.4GHz PCIe */
+#define RT2890D 0x0781 /* 2.4GHz, 5GHz PCIe */
++#define RT2880 0x2880 /* WSOC */
++#define RT3052 0x3052 /* WSOC */
+ #define RT2870 0x1600
u16 rf;
- u32 rev;