
PPPEXT Working Group                                        H. Andersson
INTERNET-DRAFT                                              S. Josefsson
Category: Standards Track                                   RSA Security
<draft-josefsson-pppext-eap-tls-eap-05.txt>                    Glen Zorn
September 2002                                                     Cisco
                                                               Dan Simon
                                                          Ashwin Palekar
                                                               Microsoft

                     Protected EAP Protocol (PEAP)

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC 2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups.  Note that other groups
may also distribute working documents as Internet- Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time.  It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

The Extensible Authentication Protocol (EAP), defined in RFC 2284,
provides for support of multiple authentication methods. While EAP was
originally created for use with PPP, it has since been adopted for use
with IEEE 802.1X "Network Port Authentication".

Since its deployment, a number of weaknesses in EAP have become
apparent. These include lack of protection of the user identity or the
EAP negotiation; no standardized mechanism for key exchange; no built-in
support for fragmentation and reassembly; and lack of support for fast
reconnect.

Andersson et al.             Standards Track                    [Page 1]



INTERNET-DRAFT                    PEAP                    September 2002

By wrapping the EAP protocol within TLS, Protected EAP (PEAP) addresses
these deficiencies. Any EAP method running within PEAP is provided with
built-in support for key exchange, session resumption and fragmentation
and reassembly.

Table of Contents

1.     Introduction ..........................................    3
   1.1       EAP Issues ......................................    3
   1.2       Requirements language ...........................    5
   1.3       Terminology .....................................    5
2.     Protocol overview .....................................    6
   2.1        PEAP Part 1 ....................................    6
   2.2        PEAP Part 2 ....................................   10
   2.3        Version negotiation ............................   11
   2.4        Error handling .................................   12
   2.5        Retry behavior .................................   12
   2.6        Session resumption .............................   12
   2.7        Fragmentation ..................................   13
   2.8        Key derivation .................................   14
   2.9        Ciphersuite negotiation ........................   16
3.      Detailed description of the PEAP protocol ............   18
   3.1        PEAP Packet Format .............................   18
   3.2        PEAP Request Packet ............................   20
   3.3        PEAP Response Packet ...........................   22
4.      Security considerations ..............................   23
   4.1        Method negotiation .............................   23
   4.2        TLS session cache handling .....................   24
   4.3        Certificate revocation .........................   24
   4.4        Separation of EAP server and PPP authenticator..   25
   4.5        Separation of PEAP Part 1 and Part 2 Servers ...   26
   4.6        Identity verification ..........................   27
5.       Normative references ................................   28
6.       Informative references ..............................   29
Appendix A - Examples ........................................   31
Acknowledgments ..............................................   40
Author’s Addresses ...........................................   40
Intellectual Property Statement ..............................   41
Full Copyright Statement .....................................   41

Andersson et al.             Standards Track                    [Page 2]



INTERNET-DRAFT                    PEAP                    September 2002

1.  Introduction

The Extensible Authentication Protocol (EAP), described in [RFC2284],
provides a standard mechanism for support of multiple authentication
methods.  Through the use of EAP, support for a number of authentication
schemes may be added, including smart cards, Kerberos, Public Key, One
Time Passwords, and others.

One of the goals of EAP is to enable development of new authentication
methods without requiring deployment of new code on the Network Access
Server (NAS). As a result, the NAS acts as a "passthrough", and need not
understand specific EAP methods.

Figure 1 describes the relationship between the EAP peer, NAS and
backend authentication server.  As described in the figure, the EAP
conversation "passes through" the NAS on its way between the client and
the backend authentication server.  While the authentication
conversation is between the EAP peer and backend authentication server,
the NAS and backend authentication server need to have established trust
for the conversation to proceed.

In PEAP, the conversation between the EAP peer and the backend server is
encrypted and integrity protected within a TLS channel, and mutual
authentication is required between the EAP peer and the backend server.

As a result, the NAS does not have knowledge of the TLS master secret
derived between the EAP Peer and the backend authentication server, and
cannot decrypt the PEAP conversation. In order to providing keying
material for link-layer ciphersuites however, the NAS does obtain the
master session keys, which are derived from the TLS master secret via a
one-way function.

1.1.  EAP Issues

With the increasing adoption of EAP, a number of deficiencies have
become apparent. Since the EAP method negotiation is unprotected, where
an attacker can easily access the medium (such as on a wireless network
or where EAP is run over IP), it is possible for an attacker to inject
packets in order to cause the negotiation of a method with lesser
security. Denial of service attacks are also possible. By protecting the
EAP negotiation within a TLS channel, PEAP addresses this issue.

Since the initial EAP Identity Request/Response exchange is sent in the
clear, an attacker snooping on the conversation can collect user
identities for use in subsequent attacks. By initially negotiating a TLS
channel, PEAP provies support for identity protection.

Andersson et al.             Standards Track                    [Page 3]



INTERNET-DRAFT                    PEAP                    September 2002

+-+-+-+-+-+               +-+-+-+-+-+
|         |               |         |
|         |               |         |
| Cipher- |               | Cipher- |
| Suite   |               | Suite   |
|         |               |         |
+-+-+-+-+-+               +-+-+-+-+-+
    ^                         ^
    |                         |
    |                         |
    |                         |
    V                         V
+-+-+-+-+-+               +-+-+-+-+-+  Trust +-+-+-+-+-+
|         |  EAP          |         |<======>|         |
|         |  Conversation |         |        |         |
|         |<================================>| Backend |
| Client  |  (over PPP,   |   NAS   |        |  Server |
|         |  802.11,etc.) |         |<=======|         |
|         |               |         |  Keys  |         |
|         |               |         |        |         |
+-+-+-+-+-+               +-+-+-+-+-+        +-+-+-+-+-+
    ^                                            ^
    |                                            |
    | EAP API                                    | EAP API
    |                                            |
    V                                            V
+-+-+-+-+-+                                  +-+-+-+-+-+
|         |                                  |         |
|         |                                  |         |
|  EAP    |                                  |  EAP    |
|  Method |                                  |  Method |
|         |                                  |         |
+-+-+-+-+-+                                  +-+-+-+-+-+

Figure 1 - Relationship between EAP client, backend authentication
           server and NAS.

Andersson et al.             Standards Track                    [Page 4]



INTERNET-DRAFT                    PEAP                    September 2002

Since EAP does not include support for fragmentation and reassembly,
individual methods need to include this capability. By including support
for fragmentation and reassembly within PEAP, methods leveraging PEAP do
not need to support this on their own.

Where EAP is used for authentication in wireless networks, the
authentication latency is a concern. As a result, it is valuable to be
able to do a quick re-authentication on roaming between access points.
PEAP supports this capability by leveraging the TLS session resumption
facility, and any EAP method running under PEAP can take advantage of
it.

In order to provide keying material for a wide range of link layer
ciphersuites, EAP methods need to provide a key hierarchy generating
authentication and encryption keys, as well as initialization vectors.
Development of a secure key hierarchy is complex, and not easy to
generalize for all EAP methods.  By relying on the well-reviewed TLS
[RFC2246] key derivation method, PEAP provides the required keying
material for any EAP method running within it. This frees EAP method
developers from taking on the difficult (and error prone) task of
designing a key hierarchy for each method.

1.2.  Requirements language

In this document, the key words "MAY", "MUST,  "MUST  NOT",  "OPTIONAL",
"RECOMMENDED",  "SHOULD",  and  "SHOULD  NOT",  are to be interpreted as
described in [RFC2119].

1.3.  Terminology

This document frequently uses the following terms:

Access Point
     A Network Access Server implementing 802.11.

Authenticator
     The end of the link requiring the authentication.

Authentication Server
          An Authentication Server is an entity that provides an
          Authentication Service to an NAS. This service verifies from
          the credentials provided by the peer, the claim of identity
          made by the peer.

Link layer ciphersuite
          The ciphersuite negotiated for use at the link layer.

Andersson et al.             Standards Track                    [Page 5]



INTERNET-DRAFT                    PEAP                    September 2002

Master key
          The key derived between the EAP client and EAP server during
          the EAP authentication process.

Master session key
          The keys derived from the master key that are subsequently
          used in generation of the transient session keys for
          authentication, encryption, and IV-generation. So that the
          master session keys are usable with any link layer
          ciphersuite, they are longer than is necessary, and are
          truncated to fit.

NAS       Short for "Network Access Server".

Peer      The other end of the point-to-point link (PPP), point-to-point
          LAN segment (IEEE 802.1X) or 802.11 wireless link, which is
          being authenticated by the NAS. In IEEE 802.1X, this end is
          known as the Supplicant.

TLS Ciphersuite
          The ciphersuite negotiated for protection of the PEAP Part 2
          conversation.

Transient session keys
          The transient session keys are derived from the master session
          keys, and are of the appropriate size and type for use with
          the chosen link layer ciphersuite.

2.  Protocol overview

Protected EAP (PEAP) is comprised of a two-part conversation:

[1]  In Part 1, a TLS session is negotiated, with server authenticating
     to the client and optionally the client to the server. The
     negotiated key is then used to encrypt the rest of the
     conversation.

[2]  In Part 2, within the TLS session, a complete EAP conversation is
     carried out, unless part 1 provided client authentication.

In the next two sections, we provide an overview of each of the parts of
the PEAP conversation.

2.1.  PEAP Part 1

The PEAP conversation typically begins with the authenticator and the
peer negotiating EAP.  The authenticator will typically send an EAP-
Request/Identity packet to the peer, and the peer will respond with an

Andersson et al.             Standards Track                    [Page 6]



INTERNET-DRAFT                    PEAP                    September 2002

EAP-Response/Identity packet to the authenticator, containing the peer’s
userId.

Once the optional initial Identity Request/Response exchange is
completed, while nominally the EAP conversation occurs between the
authenticator and the peer, the authenticator MAY act as a passthrough
device, with the EAP packets received from the peer being encapsulated
for transmission to a backend authentication server. In the discussion
that follows, we will use the term "EAP server" to denote the ultimate
endpoint conversing with the peer.

Once having received the peer’s Identity, and determined that PEAP
authentication is to occur, the EAP server MUST respond with a
PEAP/Start packet, which is an EAP-Request packet with EAP-Type=PEAP,
the Start (S) bit set, and no data.  Assuming that the peer supports
PEAP, the PEAP conversation will then begin, with the peer sending an
EAP-Response packet with EAP-Type=PEAP.

The data field of the EAP-Response packet will encapsulate one or more
TLS records in TLS record layer format, containing a TLS client_hello
handshake message.  The current cipher spec for the TLS records will be
TLS_NULL_WITH_NULL_NULL and null compression.  This current cipher spec
remains the same until the change_cipher_spec message signals that
subsequent records will have the negotiated attributes for the remainder
of the handshake.

The client_hello message contains the client’s TLS version number, a
sessionId, a random number, and a set of TLS ciphersuites supported by
the client. The version offered by the client MUST correspond to TLS
v1.0 or later.

The EAP server will then respond with an EAP-Request packet with EAP-
Type=PEAP. The data field of this packet will encapsulate one or more
TLS records.  These will contain a TLS server_hello handshake message,
possibly followed by TLS certificate, server_key_exchange,
certificate_request, server_hello_done and/or finished handshake
messages, and/or a TLS change_cipher_spec message.

Since after the TLS session is established, another complete EAP
negotiation will occur and the peer will authenticate using a secondary
mechanism, with PEAP the client need not authenticate as part of TLS
session establishment. As a result, although the EAP-Request packet sent
by the EAP Server MAY contain a certificate_request message, this is not
required.

The certificate_request message indicates that the server desires the
client to authenticate itself via public key. Typically when the EAP
server sends a certificate_request message, the intent is to complete

Andersson et al.             Standards Track                    [Page 7]



INTERNET-DRAFT                    PEAP                    September 2002

the PEAP authentication without requiring negotiation of an additional
EAP method, so that only an EAP-Success or EAP-Failure message is sent
inside the TLS channel.  However, it is valid for the server to request
a certificate in the server_hello and for the client refuse to provide
one. In this case, the EAP server MUST require that PEAP Part 2 be
completed.

Note that since TLS client certificates are sent in the clear, if
identity protection is required, then it is possible for the TLS
authentication to be re-negotiated after the first server
authentication.  To accomplish this, after the server_finished message
is sent, and before PEAP part 2,  the server sends a TLS hello_request.
This allows the  client to perform client authentication by sending a
client_hello if it wants to, or, send a no_renegotiation alert to the
server indicating that it wants to continue with PEAP part 2 instead.
Since this re-negotiation occurs within the encrypted TLS channel, it
does not reveal client certificate details.

The server_hello handshake message contains a TLS version number,
another random number, a sessionId, and a TLS ciphersuite.  The version
offered by the server MUST correspond to TLS v1.0 or later.  In order to
provide confidentiality, integrity and replay protection, and
authentication, the negotiated TLS ciphersuite MUST provide all of these
security services.

If the client’s sessionId is null or unrecognized by the server, the
server MUST choose the sessionId to establish a new session; otherwise,
the sessionId  will  match  that  offered by the client, indicating a
resumption of the previously established session with that sessionID.
The server will also choose a TLS ciphersuite from those offered by  the
client; if the session matches the client’s, then the TLS ciphersuite
MUST match the one negotiated during the handshake protocol execution
that established the session.

PEAP implementations need not necessarily support all TLS ciphersuites
listed in [RFC2246]. Not all TLS ciphersuites are supported by available
TLS tool kits and licenses may be required to support some TLS
ciphersuites (e.g. TLS ciphersuites utilizing the IDEA encryption
algorithm). To ensure interoperability, PEAP peers and Authenticators
MUST be able to negotiate the following TLS ciphersuites:

    TLS_RSA_WITH_RC4_128_MD5
    TLS_RSA_WITH_RC4_128_SHA

TLS as described in [RFC2246] supports compression as well as
ciphersuite negotiation. Therefore during the PEAP Part 1 conversation
the EAP endpoints MAY request or negotiate TLS compression.

Andersson et al.             Standards Track                    [Page 8]



INTERNET-DRAFT                    PEAP                    September 2002

If the EAP server is not resuming a previously established session, then
it MUST include a TLS server_certificate handshake message, and a
server_hello_done handshake message MUST be the last handshake message
encapsulated in this EAP-Request packet.

The certificate message contains a public key certificate chain for
either a key exchange public key (such as an RSA or Diffie-Hellman key
exchange public key) or a signature public key (such as an RSA or DSS
signature public key).  In the latter case, a TLS server_key_exchange
handshake message MUST also be included to allow the key exchange to
take place.

The peer MUST respond to the EAP-Request with an EAP-Response packet of
EAP-Type=PEAP.  The data field of this packet will encapsulate one or
more TLS records containing a TLS change_cipher_spec message and
finished handshake message, and possibly certificate, certificate_verify
and/or client_key_exchange handshake messages.  If the preceding
server_hello message sent by the EAP server in the preceding EAP-Request
packet indicated the resumption of a previous session, then the peer
MUST send only the change_cipher_spec and finished handshake messages.
The finished message contains the peer’s authentication response to the
EAP server.

If the preceding server_hello message sent by the EAP server in the
preceeding EAP-Request packet did not indicate the resumption of a
previous session, then the peer MUST send, in addition to the
change_cipher_spec and finished messages, a client_key_exchange message,
which completes the exchange of a shared master secret between the peer
and the EAP server.

The EAP server MUST then respond with an EAP-Request packet with EAP-
Type=PEAP, which includes, in the case of a new TLS session, one or more
TLS records containing TLS change_cipher_spec and finished handshake
messages.  The latter contains the EAP server’s authentication response
to the peer.  The peer will then verify the hash in order to
authenticate the EAP server.

If the EAP server authenticates unsuccessfully, the peer MAY send an
EAP-Response packet of EAP-Type=PEAP containing a TLS Alert message
identifying the reason for the failed authentication. The peer MAY send
a TLS alert message rather than immediately terminating the conversation
so as to allow the EAP server to log the cause of the error for
examination by the system administrator.

To ensure that the EAP Server receives the TLS alert message, the peer
MUST wait for the EAP-Server to reply before terminating the
conversation.  The EAP Server MUST reply with an EAP-Failure packet
since server authentication failure is a terminal condition.

Andersson et al.             Standards Track                    [Page 9]



INTERNET-DRAFT                    PEAP                    September 2002

If the EAP server authenticates successfully, the peer MUST send an EAP-
Response packet of EAP-Type=PEAP, and no data.  The EAP-Server then
continues with Part 2 of the PEAP conversation.

2.1.1.  Forging of Success and Failure packets

Within EAP, Success and Failure packets are not authenticated, so that
they may be forged by an attacker without fear of detection. Forged EAP
Failure packets can be used to convince an EAP peer to disconnect.
Forged EAP Success packets may be used by a rogue NAS to convince a peer
to let itself access the network, even though the NAS has not
authenticated itself.

By requiring mutual authentication and by encrypting and integrity
protecting the EAP conversation within a TLS channel, PEAP provides
protection against these attacks. Since the EAP Server MUST authenticate
itself to the EAP Peer in PEAP Part 1, once the TLS channel has been
brought up, EAP Success or Failure packets should be sent down the
encrypted channel, rather than being sent in cleartext. As a result,
once PEAP has been selected as the authentication method, and the PEAP
conversation has begun, a peer receiving cleartext Success or Failure
packets MUST silently discard them.

2.2.  PEAP Part 2

The second portion of the PEAP conversation consists of another complete
EAP conversation occurring within the TLS session negotiated in PEAP
Part 1. It will therefore occur only if establishment of the TLS session
in Part 1 is successful. It MUST NOT occur if the EAP Server
authenticates unsuccessfully or if an EAP-Failure has been sent by the
EAP Server to the peer, terminating the conversation.  Since all packets
sent within the PEAP Part 2 conversation occur after TLS session
establishment, they are protected using the negotiated TLS ciphersuite.

Part 2 of the PEAP conversation typically begins with the Authenticator
sending an EAP-Request/Identity packet to the peer, protected by the TLS
ciphersuite negotiated in PEAP Part 1. The peer responds with an EAP-
Response/Identity packet to the authenticator, containing the peer’s
userId. Since this Identity Request/Response exchange is protected by
the ciphersuite negotiated in TLS, it is protected against snooping or
packet modification attacks.

After the TLS session-protected Identity exchange, the EAP server will
then select authentication method(s) for the peer, and will send an EAP-
Request with the EAP-Type set to the initial method. As described in
[RFC2284], the peer can NAK the suggested EAP method, suggesting an
alternative. Since the NAK will be sent within the TLS channel, it is
protected from snooping or packet modification. As a result, an attacker

Andersson et al.             Standards Track                   [Page 10]



INTERNET-DRAFT                    PEAP                    September 2002

snooping on the exchange will be unable to inject NAKs in order to
"negotiate down" the authentication method.  An attacker will also not
be able to determine which EAP method was negotiated.

As with a normal EAP conversation described in [RFC2284], an EAP
conversation encapsulated within the TLS channel as within PEAP Part 2
continues until the EAP server sends an EAP-Failure or EAP-Success. The
receipt of an EAP-Failure or EAP-Success within the TLS protected
channel results in a shutdown of the TLS channel by the peer and EAP
server. The EAP-Failure or EAP-Success packet sent within the TLS
channel is protected from snooping or packet modification, and as a
result, while an EAP server MAY send an additional EAP-Failure or EAP-
Success message in cleartext, this is not required, since it adds
another round-trip. As described in [RFC2869], a RADIUS Access-Accept or
Access-Reject packet need not contain an EAP-Message attribute, since
the NAS determines the success of the conversation from the RADIUS
message (Accept/Reject), not the encapsulated EAP-Message attribute.

2.3.  Version negotiation

PEAP packets contain a two bit version field, which enables PEAP
implementations to be backward compatible with previous versions of the
protocol. Implementations of this specification MUST use a version field
set to 1.  Version negotiation proceeds as follows:

[1]  In the first EAP-Request sent with EAP type=PEAP, the EAP server
     MUST set the version field to the highest supported version number.

[2]  If the EAP client supports this version of the protocol, it MUST
     respond with an EAP-Response of EAP type=PEAP, and the version
     number proposed by the EAP server.

[3]  If the EAP client does not support this version, it responds with
     an EAP-Response of EAP type=PEAP and a lower version number,
     indicating the highest supported version number.

[4]  If the EAP server supports the version proposed by the client, then
     all future EAP-Request and EAP-Response packets of EAP type=PEAP
     MUST include the version field set to the agreed upon version
     number.

[5]  If the EAP server does not support the version number proposed by
     the EAP client, it responds with an EAP-Failure sent in the clear.

This version negotiation procedure guarantees that the EAP client and
server will agree to the latest version supported by both parties. If
version negotiation fails, then use of PEAP will not be possible, and
another mutually acceptable EAP method will need to be negotiated if

Andersson et al.             Standards Track                   [Page 11]



INTERNET-DRAFT                    PEAP                    September 2002

authentication is to proceed.

2.4.  Error handling

Other than supporting TLS alert messages, PEAP does not have its own
error message capabilities. This is unnecessary since errors in the PEAP
Part 1 conversation are communicated via TLS alert messages, and errors
in the PEAP Part 2 conversation are expected to be handled by individual
EAP methods.

If an error occurs at any point in the PEAP conversation, the EAP server
SHOULD send an EAP-Request packet with EAP-Type=PEAP, encapsulating a
TLS record containing the appropriate TLS alert message.  The EAP server
SHOULD send a TLS alert message rather than immediately terminating the
conversation so as to allow the peer to inform the user of the cause of
the failure and possibly allow for a restart of the conversation.  To
ensure that the peer receives the TLS alert message, the EAP server MUST
wait for the peer to reply with an EAP-Response packet.

2.5.  Retry behavior

As with other EAP protocols, the EAP server is responsible for retry
behavior. This means that if the EAP server does not receive a reply
from the peer, it MUST resend the EAP-Request for which it has not yet
received an EAP-Response. However, the peer MUST NOT resend EAP-Response
packets without first being prompted by the EAP server.

For example, if the initial PEAP start packet sent by the EAP server
were to be lost, then the peer would not receive this packet, and would
not respond to it. As a result, the PEAP start packet would be resent by
the EAP server. Once the peer received the PEAP start packet, it would
send an EAP-Response encapsulating the client_hello message.  If the
EAP-Response were to be lost, then the EAP server would resend the
initial PEAP start, and the peer would resend the EAP-Response.

As a result, it is possible that a peer will receive duplicate EAP-
Request messages, and may send duplicate EAP-Responses.  Both the peer
and the EAP Server should be engineered to handle this possibility.

2.6.  Session resumption

The purpose of the sessionId within the TLS protocol is to allow for
improved efficiency in the case where a client repeatedly attempts to
authenticate to an EAP server within a short period of time. This
capability is particularly useful for support of wireless roaming.

It is left up to the peer whether to attempt to continue a previous
session, thus shortening the PEAP Part 1 conversation. Typically the

Andersson et al.             Standards Track                   [Page 12]



INTERNET-DRAFT                    PEAP                    September 2002

peer’s decision will be made based on the time elapsed since the
previous authentication attempt to that EAP server. Based on the
sessionId chosen by the peer, and the time elapsed since the previous
authentication, the EAP server will decide whether to allow the
continuation, or whether to choose a new session.

In the case where the EAP server and the authenticator reside on the
same device, then the client will only be able to continue sessions when
connecting to the same NAS or tunnel server. Should these devices be set
up in a rotary or round-robin then it may not be possible for the peer
to know in advance the authenticator it will be connecting to, and
therefore which sessionId to attempt to reuse. As a result, it is likely
that the continuation attempt will fail.

In the case where the EAP authentication is remoted then continuation is
much more likely to be successful, since multiple NAS devices and tunnel
servers will remote their EAP authentications to the same backend
authentication server.

If the EAP server is resuming a previously established session, then it
MUST include only a TLS change_cipher_spec message and a TLS finished
handshake message after the server_hello message.  The finished message
contains the EAP server’s authentication response to the peer.

2.7.  Fragmentation

A single TLS record may be up to 16384 octets in length, but a TLS
message may span multiple TLS records, and a TLS certificate message may
in principle be as long as 16MB. The group of PEAP messages sent in a
single round may thus be larger than the PPP MTU size, the maximum
RADIUS packet size of 4096 octets, or even the Multilink Maximum
Received Reconstructed Unit (MRRU).  As described in [2], the multilink
MRRU is negotiated via the Multilink MRRU LCP option, which includes an
MRRU length field of two octets, and thus can support MRRUs as large as
64 KB.

However, note that in order to protect against reassembly lockup and
denial of service attacks, it may be desirable for an implementation to
set a maximum size for one such group of TLS messages. Since a typical
certificate chain is rarely longer than a few thousand octets, and no
other field is likely to be anywhere near as long, a reasonable choice
of maximum acceptable message length might be 64 KB.

If this value is chosen, then fragmentation can be handled via the
multilink PPP fragmentation mechanisms described in [RFC1990]. While
this is desirable, EAP methods are used in other applications such as
[IEEE80211] and there may be cases in which multilink or the MRRU LCP
option cannot be negotiated. As a result, a PEAP implementation MUST

Andersson et al.             Standards Track                   [Page 13]



INTERNET-DRAFT                    PEAP                    September 2002

provide its own support for fragmentation and reassembly.

Since EAP is an ACK-NAK protocol, fragmentation support can be added in
a simple manner. In EAP, fragments that are lost or damaged in transit
will be retransmitted, and since sequencing information is provided by
the Identifier field in EAP, there is no need for a fragment offset
field as is provided in IPv4.

PEAP fragmentation support is provided through addition of flag bits
within the EAP-Response and EAP-Request packets, as well as a TLS
Message Length field of four octets. Flags include the Length included
(L), More fragments (M), and PEAP Start (S) bits. The L flag is set to
indicate the presence of the four octet TLS Message Length field, and
MUST be set for the first fragment of a fragmented TLS message or set of
messages. The M flag is set on all but the last fragment. The S flag is
set only within the PEAP start message sent from the EAP server to the
peer. The TLS Message Length field is four octets, and provides the
total length of the TLS message or set of messages that is being
fragmented; this simplifies buffer allocation.

When a PEAP peer receives an EAP-Request packet with the M bit set, it
MUST respond with an EAP-Response with EAP-Type=PEAP and no data.  This
serves as a fragment ACK. The EAP server MUST wait until it receives the
EAP-Response before sending another fragment. In order to prevent errors
in processing of fragments, the EAP server MUST increment the Identifier
field for each fragment contained within an EAP-Request, and the peer
MUST include this Identifier value in the fragment ACK contained within
the EAP-Response. Retransmitted fragments will contain the same
Identifier value.

Similarly, when the EAP server receives an EAP-Response with the M bit
set, it MUST respond with an EAP-Request with EAP-Type=PEAP and no data.
This serves as a fragment ACK. The EAP peer MUST wait until it receives
the EAP-Request before sending another fragment.  In order to prevent
errors in the processing of fragments, the EAP server MUST increment the
Identifier value for each fragment ACK contained within an EAP-Request,
and the peer MUST include this Identifier value in the subsequent
fragment contained within an EAP-Response.

2.8.  Key derivation

Since the normal TLS keys are used in the handshake, and therefore
should not be used in a different context, new keys must be derived from
the TLS master secret for use with the selected link layer ciphersuites.
In the most general case, keying material must be provided for
authentication, encryption and initialization vectors (IVs) in each
direction.

Andersson et al.             Standards Track                   [Page 14]



INTERNET-DRAFT                    PEAP                    September 2002

Since EAP methods may not know the link layer ciphersuite that has been
negotiated, it may not be possible for them to provide link layer
ciphersuite-specific keys. In addition, attempting to provide such keys
is undesirable, since it would require the EAP method to be revised each
time a new link layer ciphersuite is developed. As a result, PEAP
derives master session keys which can subsequently be truncated for use
with a particular link layer ciphersuite.  Since the truncation
algorithms are ciphersuite-specific, they are not discussed here;
examples of such algorithms are provided in [RFC3079]. This draft also
does not discuss the format of the attributes used to communicate the
master session keys from the backend authentication server to the NAS;
examples of such attributes are provided in [RFC2548].

For both peer and EAP server, the derivation of master session keys
proceeds as follows:

[1]  Given the master key negotiated by the TLS handshake, the
     pseudorandom function (PRF) defined in the specification for the
     version of TLS in use, and the value random defined as the
     concatenation of the handshake message fields client_hello.random
     and server_hello.random (in that order), the value PRF(master key,
     "client PEAP encryption", random) is computed up to 128 bytes, and
     the value PRF("", "client PEAP encryption", random) is computed up
     to 64 bytes (where "" is an empty string).

[2]  The peer master session encryption key (the one used for encrypting
     data from peer to EAP server) is obtained by truncating to the
     correct length the first 32 bytes of these two PRF output strings.

[3]  The EAP server master session encryption key (the one used to
     encrypting data from EAP server to peer), if different from the
     client master session encryption key, is obtained by truncating to
     the correct length the second 32 bytes of this same PRF output
     string.

[4]  The peer master session authentication key (the one used for
     computing MACs for messages from peer to EAP server), if used, is
     obtained by truncating to the correct length the third 32 bytes of
     this same PRF output string.

[5]  The EAP server master session authentication key (the one used for
     computing MACs for messages from EAP server to peer), if used, and
     if different from the peer master session authentication key, is
     obtained by truncating to the correct length the fourth 32 bytes of
     this same PRF output string.

[6]  The peer master session initialization vector (IV), used for
     messages from peer to EAP server, is obtained by truncating to the

Andersson et al.             Standards Track                   [Page 15]



INTERNET-DRAFT                    PEAP                    September 2002

     cipher’s block size the first 32 bytes of the second PRF output
     string mentioned above.

[7]  Finally, the EAP server master session initialization vector (IV),
     used for messages from peer to EAP server, is obtained by
     truncating to the cipher’s block size the second 32 bytes of this
     second PRF output.

Algorithms for the truncation of these encryption and authentication
master session keys are specific to each link layer ciphersuite. Link
layer ciphersuites in use with PPP include DESEbis [RFC2419], 3DES
[RFC2420] and MPPE [RFC3078]. IEEE 802.11 ciphersuites are described in
[IEEE80211]. An example of how encryption keys for use with MPPE
[RFC3078] are derived from the TLS master session keys is given in
[RFC3079]. Additional keys or other non-secret values (such as IVs) can
be obtained as needed by extending the outputs of the PRF beyond 128
bytes and 64 bytes, respectively.

2.9.  Ciphersuite negotiation

Since TLS supports TLS ciphersuite negotiation, peers completing the TLS
negotiation will also have selected a TLS ciphersuite, which includes
key strength, encryption and hashing methods. However, unlike in
[RFC2716], within PEAP, the negotiated TLS ciphersuite relates only to
the mechanism by which the PEAP Part 2 conversation will be protected,
and has no relationship to link layer security mechanisms negotiated
within the PPP Encryption Control Protocol (ECP) [RFC1968] or within
IEEE 802.11 [IEEE80211].

As a result, PEAP does not support secure negotiation of link layer
ciphersuites. While such a negotiation is preferable from a security
perspective, it is in practice difficult to integrate with existing PPP
and IEEE 802.11 link layer security negotiation, as well as with backend
authentication servers.

Depending on the link layer technology in use, the link layer security
negotiation will occur at different stages in the connection process. In
IEEE 802.11, selection of the link layer security mechanism occurs via
the association/re-association messages, prior to authentication. In
contrast, within PPP, link layer security negotiation occurs in ECP
[RFC1968], which occurs after authentication.

As a result, within IEEE 802.11, by the time that PEAP is invoked, the
link layer security technology has already been selected. Thus if PEAP
were to support a protected link layer ciphersuite negotiation whose
conclusion disagreed with the IEEE 802.11 negotiation, a reassociation
(and additional authentication!) would be required to synchronize the
results of the two negotiations.  Within PPP, it is conceivable that the

Andersson et al.             Standards Track                   [Page 16]



INTERNET-DRAFT                    PEAP                    September 2002

results of a PEAP secure link layer security negotiation could be
subsequently reflected in the ECP negotiation.

There are other issues as well.  While link layer ciphersuite
negotiation occurs between the peer and the NAS, the EAP conversation
occurs between the peer and the EAP server.  Since the EAP server may
not be aware of the link layer ciphersuites supported by the NAS, it is
conceivable that the NAS and peer can negotiate a link layer ciphersuite
that is not supported by the NAS. To address this issue, it would be
necessary for the NAS to send the list of supported link layer
ciphersuites to the backend authentication server, and have the backend
security server respond with a list of acceptable choices. However, when
used with technologies such as IEEE 802.11 where link layer security
technology selection occurs prior to authentication, multiple
association/reassociation exchanges might be required to synchronize the
negotiations, resulting in extended connectivity loss.

The situation typically cannot be addressed merely by omitting IEEE
802.11 link layer security negotiation. Unless all users on the AP are
to be authenticated with PEAP or an alternative EAP method providing
secure link layer security negotiation, then omitting IEEE 802.11
security negotiation would leave some users without the ability to
negotiate security mechanisms.

For these reasons, protected negotiation of link layer ciphersuites
within PEAP is considered impractical and is omitted from this
specification.

Andersson et al.             Standards Track                   [Page 17]



INTERNET-DRAFT                    PEAP                    September 2002

3.  Detailed description of the PEAP protocol

3.1.  PEAP Packet Format

A summary of the PEAP Request/Response packet format is shown below.
The fields are transmitted from left to right.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Code      |   Identifier  |            Length             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |   Flags   |Ver|  Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Code

   1 - Request
   2 - Response

Identifier

   The Identifier field is one octet and aids in matching responses with
   requests.

Length

   The Length field is two octets and indicates the length of the EAP
   packet including the Code, Identifier, Length, Type, and Data fields.
   Octets outside the range of the Length field should be treated as
   Data Link Layer padding and should be ignored on reception.

Type

   25 - PEAP

Flags

    0 1 2 3 4 5
   +-+-+-+-+-+-+
   |L M S R R R|
   +-+-+-+-+-+-+

   L = Length included
   M = More fragments
   S = PEAP start
   R = Reserved (must be zero)

Andersson et al.             Standards Track                   [Page 18]



INTERNET-DRAFT                    PEAP                    September 2002

   The L bit (length included) is set to indicate the presence of the
   four octet TLS Message Length field, and MUST be set for the first
   fragment of a fragmented TLS message or set of messages. The M bit
   (more fragments) is set on all but the last fragment. The S bit (PEAP
   start) is set in a PEAP Start message. This differentiates the PEAP
   Start message from a fragment acknowledgment.

Version

    0 1
   +-+-+
   |R 1|
   +-+-+

   R = Reserved (must be zero)

Data

   The format of the Data field is determined by the Code field.

Andersson et al.             Standards Track                   [Page 19]



INTERNET-DRAFT                    PEAP                    September 2002

3.2.  PEAP Request Packet

A summary of the PEAP Request packet format is shown below.  The fields
are transmitted from left to right.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Code      |   Identifier  |            Length             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |   Flags   |Ver|      TLS Message Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     TLS Message Length        |       TLS Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Code

   1

Identifier

   The Identifier field is one octet and aids in matching responses with
   requests.  The Identifier field MUST be changed on each Request
   packet.

Length

   The Length field is two octets and indicates the length of the EAP
   packet including the Code, Identifier, Length, Type, and TLS Response
   fields.

Type

   25 - PEAP

Flags

    0 1 2 3 4 5
   +-+-+-+-+-+-+
   |L M S R R R|
   +-+-+-+-+-+-+

   L = Length included
   M = More fragments
   S = PEAP start
   R = Reserved (must be zero)

   The L bit (length included) is set to indicate the presence of the

Andersson et al.             Standards Track                   [Page 20]



INTERNET-DRAFT                    PEAP                    September 2002

   four octet TLS Message Length field, and MUST be set for the first
   fragment of a fragmented TLS message or set of messages. The M bit
   (more fragments) is set on all but the last fragment. The S bit (PEAP
   start) is set in a PEAP Start message. This differentiates the PEAP
   Start message from a fragment acknowledgment.

Version

    0 1
   +-+-+
   |R 1|
   +-+-+

   R = Reserved (must be zero)

TLS Message Length

   The TLS Message Length field is four octets, and is present only if
   the L bit is set.  This field provides the total length of the TLS
   message or set of messages that is being fragmented.

TLS data

   The TLS data consists of the encapsulated packet in TLS record
   format.

Andersson et al.             Standards Track                   [Page 21]



INTERNET-DRAFT                    PEAP                    September 2002

3.3.  PEAP Response Packet

A summary of the PEAP Response packet format is shown below.  The fields
are transmitted from left to right.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Code      |   Identifier  |            Length             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |   Flags   |Ver|      TLS Message Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     TLS Message Length        |       TLS Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Code

   2

Identifier

   The Identifier field is one octet and MUST match the Identifier field
   from the corresponding request.

Length

   The Length field is two octets and indicates the length of the EAP
   packet including the Code, Identifier, Length, Type, and TLS data
   fields.

Type

   25 - PEAP

Flags

    0 1 2 3 4 5
   +-+-+-+-+-+-+
   |L M S R R R|
   +-+-+-+-+-+-+

   L = Length included
   M = More fragments
   S = PEAP start
   R = Reserved (must be zero)

   The L bit (length included) is set to indicate the presence of the
   four octet TLS Message Length field, and MUST be set for the first

Andersson et al.             Standards Track                   [Page 22]



INTERNET-DRAFT                    PEAP                    September 2002

   fragment of a fragmented TLS message or set of messages. The M bit
   (more fragments) is set on all but the last fragment. The S bit (PEAP
   start) is set in a PEAP Start message. This differentiates the PEAP
   Start message from a fragment acknowledgment.

Version

    0 1
   +-+-+
   |R 1|
   +-+-+

   R = Reserved (must be zero)

TLS Message Length

   The TLS Message Length field is four octets, and is present only if
   the L bit is set. This field provides the total length of the TLS
   message or set of messages that is being fragmented.

TLS data

   The TLS data consists of the encapsulated TLS packet in TLS record
   format.

4.  Security Considerations

4.1.  Method negotiation

If the peer does not support PEAP, or does not wish to utilize PEAP
authentication, it MUST respond to the initial EAP-Request/PEAP-Start
with a NAK, suggesting an alternate authentication method. Since the NAK
is sent in cleartext with no integrity protection or authentication, it
is subject to spoofing.  Unauthentic NAK packets can be used to trick
the peer and Authenticator into "negotiating down" to a weaker form of
authentication, such as EAP-MD5 (which only provides one way
authentication and does not derive a key).

Since a subsequent protected EAP conversation can take place within the
TLS session, selection of PEAP as an authentication method does not
limit the potential secondary authentication methods. As a result, the
only legitimate reason for a peer to NAK PEAP as an authentication
method is that it does not support it. Where the additional security of
PEAP is required, server implementations SHOULD respond to a NAK with an
EAP-Failure, terminating the authentication conversation.

Andersson et al.             Standards Track                   [Page 23]



INTERNET-DRAFT                    PEAP                    September 2002

4.2.  TLS session cache handling

In cases where a TLS session has been successfully resumed, in some
circumstances, it is possible for the EAP server  to skip the PEAP Part
2 conversation entirely, and immediately send an EAP-Success message
within the TLS channel established via session resumption.

PEAP "fast reconnect" is desirable in applications such as wireless
roaming, since it minimizes interruptions in connectivity.  It is also
desirable when the "inner" EAP mechanism used is such that it requires
user interaction.  The user should not be required to re-authenticate
herself, using biometrics, token cards or similar, every time the radio
connectivity is handed over between access points in wireless
environments.

However, there are issues that need to be understood in order to avoid
introducing security vulnerabilities.

Since PEAP Part 1 may not provide client authentication, establishment
of a TLS session (and an entry in the TLS session cache) does not by
itself provide an indication of the peer’s authenticity.  The peer’s
authenticity is only proven by successful completion of the PEAP Part 2
authentication.

Some PEAP implementations may not be capable of removing TLS session
cache entries established in PEAP Part 1 after an unsuccessful PEAP Part
2 authentication. In such implementations, the existence of a TLS
session cache entry provides no indication that the peer has previously
been authenticated. As a result, implementations that do not remove TLS
session cache entries after a failed PEAP Part 2 authentication MUST use
other means than successful TLS resumption as the indicator of whether
the client is authenticated or not.  Failing to do this would enable a
peer to gain access by completing PEAP Part 1, tearing down the
connection and re-connect and resume PEAP Part 1 thereby proving herself
authenticated.  Thus, TLS resumption MUST only be used as an indicator
of whether the client is authenticated or not if the implementation
supports TLS session cache removal.

If an EAP server implementing PEAP removes TLS session cache entries of
peers failing PEAP Part 2 authentication, then it SHOULD skip the PEAP
Part 2 conversation entirely after a successful session resumption,
immediately sending an EAP-Success message within the TLS channel.

4.3.  Certificate revocation

Since the EAP server is on the Internet during the EAP conversation, the
server is capable of following a certificate chain or verifying whether
the peer’s certificate has been revoked. In contrast, the peer may or

Andersson et al.             Standards Track                   [Page 24]



INTERNET-DRAFT                    PEAP                    September 2002

may not have Internet connectivity, and thus while it can validate the
EAP server’s certificate based on a pre-configured set of CAs, it may
not be able to follow a certificate chain or verify whether the EAP
server’s certificate has been revoked.

In the case where the peer is initiating a voluntary Layer 2 tunnel
using PPTP or L2TP, the peer will typically already have Internet
connectivity established at the time of tunnel initiation.  As a result,
during the EAP conversation it is capable of checking for certificate
revocation.

As part of the TLS negotiation, the server presents a certificate to the
peer.  The peer SHOULD verify the validity of the EAP server
certificate, and SHOULD also examine the EAP server name presented in
the certificate, in order to determine whether the EAP server can be
trusted. Please note that in the case where the EAP authentication is
remoted, the EAP server will not reside on the same machine as the
authenticator, and therefore the name in the EAP server’s certificate
cannot be expected to match that of the intended destination. In this
case, a more appropriate test might be whether the EAP server’s
certificate is signed by a CA controlling the intended destination and
whether the EAP server exists within a target sub-domain.

In the case where the peer is attempting to obtain network access, it
will not have Internet connectivity. The TLS Extensions [TLSEXT] support
piggybacking of an Online Certificate Status Protocol (OCSP) response
within TLS, therefore can be utilized by the peer in order to verify the
validity of server certificate. However, since all TLS implementations
do not implement the TLS extensions, it may be necessary for the peer to
wait to check for certificate revocation until after Internet access has
been obtained.  In this case, the peer SHOULD conduct the certificate
status check immediately upon going online and SHOULD NOT send data
until it has received a positive response to the status request.  If the
server certificate is found to be invalid, then the peer SHOULD
disconnect.

4.4.  Separation of the EAP server and the authenticator

As a result of a complete PEAP Part 1 and Part 2 conversation, the EAP
endpoints will mutually authenticate, and derive a session key for
subsequent use in link layer security. Since the peer and EAP client
reside on the same machine, it is necessary for the EAP client module to
pass the session key to the link layer encryption module.

The situation may be more complex on the Authenticator, which may or may
not reside on the same machine as the EAP server. In the case where the
EAP server and the Authenticator reside on different machines, there are
several implications for security. Firstly, the mutual authentication

Andersson et al.             Standards Track                   [Page 25]



INTERNET-DRAFT                    PEAP                    September 2002

defined in PEAP will occur between the peer and the EAP server, not
between the peer and the authenticator. This means that as a result of
the PEAP conversation, it is not possible for the peer to validate the
identity of the NAS or tunnel server that it is speaking to.

The second issue is that the session key negotiated between the peer and
EAP server will need to be transmitted to the authenticator.  Therefore
a mechanism needs to be provided to transmit the session key from the
EAP server to the authenticator or tunnel server that needs to use the
key. The specification of this transit mechanism is outside the scope of
this document.

4.5.  Separation of PEAP Part 1 and Part 2 Servers

The EAP server involved in PEAP Part 2 need not necessarily be the same
as the EAP server involved in PEAP Part 1. For example, a local
authentication server or proxy might serve as the endpoint for the Part
1 conversation, establishing the TLS channel. Subsequently, once the
EAP-Response/Identity has been received within the TLS channel, it can
be decrypted and forwarded in cleartext to the destination realm EAP
server. The rest of the conversation will therefore occur between the
destination realm EAP server and the peer, with the local authentication
server or proxy acting as an encrypting/decrypting gateway. This permits
a non-TLS capable EAP server to participate in the PEAP conversation.

Note however that such an approach introduces security vulnerabilities.
Since the EAP Response/Identity is sent in the clear between the proxy
and the EAP server, this enables an attacker to snoop the user’s
identity.  It also enables a remote environments, which may be public
hot spots or Internet coffee shops, to gain knowledge of the identity of
their users.  Since one of the potential benefits of PEAP is identity
protection, this is undesirable.

If the EAP method negotiated during PEAP Part 2 does not support mutual
authentication, then if the Part 2 conversation is proxied to another
destination, the PEAP peer will not have the opportunity to verify the
secondary EAP server’s identity. Only the initial EAP server’s identity
will have been verified as Part of TLS session establishment.

Similarly, if the EAP method negotiated during PEAP Part 2 is vulnerable
to dictionary attack, then an attacker capturing the cleartext exchange
will be able to mount an offline dictionary attack on the password.

Finally, when a Part 2 conversation is terminated at a different
location than the Part 1 conversation, the Part 2 destination is unaware
that the EAP client has negotiated PEAP. As a result, it is unable to
enforce policies requiring PEAP. Since some EAP methods require PEAP in
order to generate keys or lessen security vulnerabilities, where such

Andersson et al.             Standards Track                   [Page 26]



INTERNET-DRAFT                    PEAP                    September 2002

methods are in use, such a configuration may be unacceptable.

In summary, PEAP encrypting/decrypting gateway configurations are
vulnerable to attack and SHOULD NOT be used.  Instead, the entire PEAP
connection SHOULD be proxied to the final destination, and the
subsequently derived master session keys need to be transmitted back.
This provides end to end protection of PEAP.  The specification of this
transit mechanism is outside the scope of this document, but mechanisms
similar to [RFC2548] can be used.  These steps protects the client from
revealing her identity to the remote environment.

In order to find the proper PEAP destination, the EAP client SHOULD
place a Network Access Identifier (NAI) conforming to [RFC2486] in the
Identity Response.

There may be cases where a natural trust relationship exists between the
(foreign) authentication server and final EAP server, such as on a
campus or between two offices within the same company, where there is no
danger in revealing the identity of the station to the authentication
server.  In these cases, using a proxy solution without end to end
protection of PEAP MAY be used. The PEAP encrypting/decrypting gateway
SHOULD provide support for IPsec protection of RADIUS in order to
provide confidentiality for the portion of the conversation between the
gateway and the EAP server, as described in [RFC3162].

4.6.  Identity verification

Since the TLS session has not yet been negotiated, the initial Identity
request/response occurs in the clear without integrity protection or
authentication. It is therefore subject to snooping and packet
modification.

In configurations where all users are required to authenticate with PEAP
and the first portion of the PEAP conversation is terminated at a local
backend authentication server, without routing by proxies, the initial
cleartext Identity Request/Response exchange is not needed in order to
determine the required authentication method(s) or route the
authentication conversation to its destination. As a result, the initial
Identity and  Request/Response exchange MAY NOT be present, and a
subsequent Identity Request/Response exchange MAY occur after the TLS
session is established.

If the initial cleartext Identity Request/Response has been tampered
with, after the TLS session is established, it is conceivable that the
EAP Server will discover that it cannot verify the peer’s claim of
identity. For example, the peer’s userID may not be valid or may not be
within a realm handled by the EAP server. Rather than attempting to
proxy the authentication to the server within the correct realm, the EAP

Andersson et al.             Standards Track                   [Page 27]



INTERNET-DRAFT                    PEAP                    September 2002

server SHOULD terminate the conversation.

The PEAP peer can present the server with multiple identities. This
includes the claim of identity within the initial EAP-Response/Identity
(MyID) packet, which is typically used to route the EAP conversation to
the appropriate home backend authentication server. There may also be
subsequent EAP-Response/Identity packets sent by the peer once the TLS
tunnel has been established.

Note that since the PEAP peer may not present a certificate, it is not
always possible to check the initial EAP-Response/Identity against the
identity presented in the certificate, as is done in [RFC2716].
Moreover, it cannot be assumed that the peer identities presented within
multiple EAP-Response/Identity packets will be the same. For example,
the initial EAP-Response/Identity might correspond to a machine
identity, while subsequent identities might be those of the user. Thus,
PEAP implementations SHOULD NOT abort the authentication just because
the identities do not match.  However, since the initial EAP-
Response/Identity will determine the EAP server handling the
authentication, if this or any other identity is inappropriate for use
with the destination EAP server, there is no alternative but to
terminate the PEAP conversation.

The protected identity or identities presented by the peer within PEAP
Part 2 may not be identical to the cleartext identity presented in PEAP
Part 1, for legitimate reasons. In order to shield the userID from
snooping, the cleartext Identity may only provide enough information to
enable routing of the authentication request to the correct realm. For
example, the peer may initially claim the identity of "nouser@bigco.com"
in order to route the authentication request to the bigco.com EAP
server. Subsequently, once the TLS session has been negotiated, in PEAP
Part 2, the peer may claim the identity of "fred@bigco.com".  Thus, PEAP
can provide protection for the user’s identity, though not necessarily
the destination realm, unless the PEAP Part 1 conversation terminates at
the local authentication server.

As a result, PEAP implementations SHOULD NOT attempt to compare the
Identities claimed with Parts 1 and 2 of the PEAP conversation.
Similarly, if multiple Identities are claimed within PEAP  Part 2, these
SHOULD NOT be compared. An EAP conversation may involve more than one
EAP authentication method, and the identities claimed for each of these
authentications could be different (e.g. a machine authentication,
followed by a user authentication).

5.  Normative references

[RFC1321] Rivest, R., Dusse, S., "The MD5 Message-Digest Algorithm", RFC
          1321, April 1992.

Andersson et al.             Standards Track                   [Page 28]



INTERNET-DRAFT                    PEAP                    September 2002

[RFC1570] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570, January
          1994.

[RFC1661] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
          51, RFC 1661, July 1994.

[RFC1962] D. Rand.  "The PPP Compression Control Protocol", RFC 1962,
          Novell, June 1996.

[RFC1968] Meyer, G., "The PPP Encryption Protocol (ECP)", RFC 1968, June
          1996.

[RFC1990] Sklower, K., Lloyd, B., McGregor, G., Carr, D., and T.
          Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August
          1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
          Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T., Allen, C., "The TLS Protocol Version 1.0", RFC
          2246, November 1998.

[RFC2284] Blunk, L., Vollbrecht, J., "PPP Extensible Authentication
          Protocol (EAP)", RFC 2284, March 1998.

[RFC2486] Aboba, B., Beadles, M., "The Network Access Identifier", RFC
          2486, January 1999.

[TLSEXT]  Blake-Wilson, S., et al. "TLS Extensions", Internet draft
          (work in progress), draft-ietf-tls-extensions-02.txt, December
          2001.

[IEEE8021X]
          IEEE Standards for Local and Metropolitan Area Networks: Port
          based Network Access Control, IEEE Std 802.1X-2001, June 2001.

6.  Informative references

[RFC2419] Sklower, K., Meyer, G., "The PPP DES Encryption Protocol,
          Version 2 (DESE-bis)", RFC 2419,   September 1998.

[RFC2420] Hummert, K., "The PPP Triple-DES Encryption Protocol (3DESE)",
          RFC 2420,   September 1998.

[RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes",
          RFC2548, March 1999.

Andersson et al.             Standards Track                   [Page 29]



INTERNET-DRAFT                    PEAP                    September 2002

[RFC2716] Aboba, B., Simon, D., "PPP EAP TLS Authentication Protocol",
          RFC 2716, October 1999.

[RFC3078] Pall, G., Zorn, G., "Microsoft Point-to-Point Encryption
          (MPPE) Protocol", RFC 3078, March 2001.

[RFC3079] Zorn, G., "Deriving Keys for use with Microsoft Point-to-Point
          Encryption (MPPE)", RFC 3079, March 2001.

[FIPSDES] National Bureau of Standards, "Data Encryption Standard", FIPS
          PUB 46 (January 1977).

[IEEE80211]
          Information technology - Telecommunications and information
          exchange between systems - Local and metropolitan area
          networks - Specific Requirements Part 11:  Wireless LAN Medium
          Access Control (MAC) and Physical Layer (PHY) Specifications,
          IEEE Std. 802.11-1999, 1999.

[MODES]   National Bureau of Standards, "DES Modes of Operation", FIPS
          PUB 81 (December 1980).

Andersson et al.             Standards Track                   [Page 30]



INTERNET-DRAFT                    PEAP                    September 2002

Appendix A - Examples

In the case where the identity exchange occurs within PEAP Part 1, the
conversation will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start, S bit set)

EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS certificate,
                 [TLS server_key_exchange,]
                 [TLS certificate_request,]
                     TLS server_hello_done)
EAP-Response/
EAP-Type=PEAP
([TLS certificate,]
 TLS client_key_exchange,
[TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS change_cipher_spec,
                         TLS finished)

TLS channel established
(messages sent within the TLS channel)

EAP-Response/
EAP-Type=PEAP ->

                       <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                       <- EAP-Request/

Andersson et al.             Standards Track                   [Page 31]



INTERNET-DRAFT                    PEAP                    September 2002

                        EAP-Type=X
EAP-Response/
EAP-Type=X or NAK ->

                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X  ->

                        <- EAP-Success

TLS channel torn down
(messages sent in cleartext)

Where all peers are known to support PEAP, and the PEAP Part 1
conversation is carried out between the peer and a local EAP server, the
cleartext identity exchange may be omitted and the conversation appears
as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start, S bit set)

EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS certificate,
                 [TLS server_key_exchange,]
                 [TLS certificate_request,]
                     TLS server_hello_done)
EAP-Response/
EAP-Type=PEAP
([TLS certificate,]
 TLS client_key_exchange,
[TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS change_cipher_spec,
                         TLS finished)

TLS channel established

Andersson et al.             Standards Track                   [Page 32]



INTERNET-DRAFT                    PEAP                    September 2002

(messages sent within the TLS channel)

EAP-Response/
EAP-Type=PEAP ->

                       <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X or NAK ->

                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X  ->

                        <- EAP-Success

TLS channel torn down
(messages sent in cleartext)

In the case where the PEAP fragmentation is required, the conversation
will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start, S bit set)

EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS certificate,
                 [TLS server_key_exchange,]
                 [TLS certificate_request,]
                     TLS server_hello_done)
                 (Fragment 1: L, M bits set)

Andersson et al.             Standards Track                   [Page 33]



INTERNET-DRAFT                    PEAP                    September 2002

EAP-Response/
EAP-Type=PEAP ->
                        <- EAP-Request/
                           EAP-Type=PEAP
                        (Fragment 2: M bit set)
EAP-Response/
EAP-Type=PEAP ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (Fragment 3)
EAP-Response/
EAP-Type=PEAP
([TLS certificate,]
 TLS client_key_exchange,
[TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

                         <- EAP-Request/
                        EAP-Type=PEAP
EAP-Response/
EAP-Type=PEAP
(Fragment 2)->
                       <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS change_cipher_spec,
                         TLS finished)

TLS channel established
(messages sent within the TLS channel)

EAP-Response/
EAP-Type=PEAP ->

                       <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X or NAK ->

                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X  ->

Andersson et al.             Standards Track                   [Page 34]



INTERNET-DRAFT                    PEAP                    September 2002

                        <- EAP-Success

TLS channel torn down
(messages sent in cleartext)

In the case where the server authenticates to the client successfully in
PEAP Part 1, but the client fails to authenticate to the server in PEAP
Part 2, the conversation will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start, S bit set)
EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS certificate,
                 [TLS server_key_exchange,]
                 [TLS certificate_request,]
                     TLS server_hello_done)
EAP-Response/
EAP-Type=PEAP
([TLS certificate,]
 TLS client_key_exchange,
[TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS change_cipher_spec,
                         TLS finished)

TLS channel established
(messages sent within the TLS channel)

EAP-Response/
EAP-Type=PEAP ->

                       <- EAP-Request/
                        Identity

Andersson et al.             Standards Track                   [Page 35]



INTERNET-DRAFT                    PEAP                    September 2002

EAP-Response/
Identity (MyID) ->
                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X or NAK ->

                       <- EAP-Request/
                        EAP-Type=X
EAP-Response/
EAP-Type=X  ->

                        <- EAP-Failure
                        (TLS session cache entry flushed)

TLS channel torn down
(messages sent in cleartext)

In the case where server authentication is unsuccessful in PEAP Part 1,
the conversation will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start)
EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS certificate,
                 [TLS server_key_exchange,]
                     TLS server_hello_done)
EAP-Response/
EAP-Type=PEAP
(TLS client_key_exchange,
[TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS change_cipher_spec,

Andersson et al.             Standards Track                   [Page 36]



INTERNET-DRAFT                    PEAP                    September 2002

                         TLS finished)
EAP-Response/
EAP-Type=PEAP
(TLS change_cipher_spec,
TLS finished)

                        <- EAP-Request/
                        EAP-Type=PEAP
PPP EAP-Response/
EAP-Type=PEAP
(TLS Alert message) ->
                        <- EAP-Failure
                        (TLS session cache entry flushed)

In the case where a previously established session is being resumed, the
EAP server supports TLS session cache flushing for unsuccessful PEAP
Part 2 authentications and both sides authenticate successfully, the
conversation will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- PPP EAP-Request/
                        EAP-Request/
                        EAP-Type=PEAP
                        (PEAP Start)
EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                        TLS change_cipher_spec
                        TLS finished)
EAP-Response/
EAP-Type=PEAP
(TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Success

Andersson et al.             Standards Track                   [Page 37]



INTERNET-DRAFT                    PEAP                    September 2002

In the case where a previously established session is being resumed, and
the server authenticates to the client successfully but the client fails
to authenticate to the server, the conversation will appear as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                        <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Request/
                        EAP-Type=PEAP
                        (TLS Start)
EAP-Response/
EAP-Type=PEAP
(TLS client_hello) ->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS change_cipher_spec,
                         TLS finished)
EAP-Response/
EAP-Type=PEAP
(TLS change_cipher_spec,
 TLS finished) ->
                        <- EAP-Request
                        EAP-Type=PEAP
                        (TLS Alert message)
EAP-Response
EAP-Type=PEAP ->
                         <- EAP-Failure
                         (TLS session cache entry flushed)

In the case where a previously established session is being resumed, and
the server authentication is unsuccessful, the conversation will appear
as follows:

Authenticating Peer     Authenticator
-------------------     -------------
                       <- EAP-Request/
                        Identity
EAP-Response/
Identity (MyID) ->
                        <- EAP-Request/
                        EAP-Request/
                        EAP-Type=PEAP
                        (TLS Start)

Andersson et al.             Standards Track                   [Page 38]



INTERNET-DRAFT                    PEAP                    September 2002

EAP-Response/
EAP-Type=PEAP
(TLS client_hello)->
                        <- EAP-Request/
                        EAP-Type=PEAP
                        (TLS server_hello,
                         TLS change_cipher_spec,
                         TLS finished)
EAP-Response/
EAP-Type=PEAP
(TLS change_cipher_spec,
TLS finished)
                        <- EAP-Request/
                        EAP-Type=PEAP
EAP-Response/
EAP-Type=PEAP
(TLS Alert message) ->
                        <- EAP-Failure
                         (TLS session cache entry flushed)

Andersson et al.             Standards Track                   [Page 39]



INTERNET-DRAFT                    PEAP                    September 2002

Acknowledgments

Thanks to Jan-Ove Larsson and Magnus Nystrom of RSA Security, and
Narendra Gidwani and Bernard Aboba of Microsoft for useful discussions
of this problem space.

Author Addresses

Hakan Andersson
RSA Security
Box 107 04
SE-121 29 Stockholm
Sweden

Phone: +46 8 725 9758
Fax:   +46 8 649 4970
EMail: handersson@rsasecurity.com

Simon Josefsson
RSA Security
Box 107 04
SE-121 29 Stockholm
Sweden

Phone: +46 8 725 0914
Fax:   +46 8 649 4970
EMail: sjosefsson@rsasecurity.com

Glen Zorn
Cisco Systems
500 108th Avenue N.E.
Suite 500
Bellevue, Washington 98004
USA

Phone: + 1 425 438 8210
Fax:   + 1 425 438 1848
EMail: gwz@cisco.com

Dan Simon
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Phone: +1 425 706 6711
EMail: dansimon@microsoft.com

Ashwin Palekar

Andersson et al.             Standards Track                   [Page 40]



INTERNET-DRAFT                    PEAP                    September 2002

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Phone: +1 425 882 8080
EMail: ashwinp@microsoft.com

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to  pertain
to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any
effort to identify any such rights.  Information on the IETF’s
procedures with respect to rights in standards-track and standards-
related documentation can be found in BCP-11.  Copies of claims of
rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by
implementors or users of this specification can be obtained from the
IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
which may cover technology that may be required to practice this
standard.  Please address the information to the IETF Executive
Director.

Full Copyright Statement

Copyright (C) The Internet Society (2002).  All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works.  However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into
languages other than English.  The limited permissions granted above are
perpetual and will not be revoked by the Internet Society or its
successors or assigns.  This document and the information contained
herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE
INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR

Andersson et al.             Standards Track                   [Page 41]



INTERNET-DRAFT                    PEAP                    September 2002

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Expiration Date

This memo is filed as <draft-josefsson-pppext-eap-tls-eap-05.txt>,  and
expires March 19, 2003.

Andersson et al.             Standards Track                   [Page 42]


