

projects / www-rohieb-name.git / blob

commit
grep
author
committer
pickaxe

 ? search:

re

529e8737d9663fea9b177a2569fbe09d8c591bc9

[www-rohieb-name.git] / blag / post / optimizing-xsane-s-scanned-pdfs.mdwn

 1 [[!meta title="Optimizing XSane's scanned PDFs (also: PDF internals)"]]

 2 [[!meta author="rohieb"]]

 3 [[!meta license="CC-BY-SA 3.0"]]

 4 [[!img defaults size=x200]]

 5

 6 [[!toc levels=2]]

 7

 8 Problem

 9 -------

 10

 11 I use [XSane][xsane] to scan documents for my digital archive. I want them to be

 12 in PDF format and have a reasonable resolution (better than 200 dpi, so I

 13 can try OCRing them afterwards). However, the PDFs created by XSane’s multipage

 14 mode are too large, about 250 MB for a 20-page document scanned at

 15 200 dpi.

 16

 17 [xsane]: http://www.xsane.org/ "XSane homepage"

 18

 19 [[!img xsane-multipage-mode.png caption="XSane’s Multipage mode"]]

 20

 21

 22 First (non-optimal) solution

 23 --------------

 24

 25 At first, I tried to optimize the PDF using [GhostScript][gs]. I

 26 [[use-ghostscript-to-convert-pdf-files|already wrote]] about how GhostScript’s

 27 `-dPDFSETTINGS` option can be used to minimize PDFs by redering the pictures to

 28 a smaller resolution. In fact, there are [multiple rendering modes][gs-ps-pdf]

 29 (`screen` for 96 dpi, `ebook` for 150 dpi, `printer` for 300 dpi,

 30 and `prepress` for color-preserving 300 dpi), but they are pre-defined, and

 31 for my 200 dpi images, `ebook` was not enough (I would lose resolution),

 32 while `printer` was too high and would only enlarge the PDF.

 33

 34 [gs-ps-pdf]: http://milan.kupcevic.net/ghostscript-ps-pdf/#refs "Ghostscript PDF Reference & Tips"

 35

 36

 37 Interlude: PDF Internals

 38 ------------------

 39

 40 The best thing to do was to find out how the images were embedded in the PDF.

 41 Since most PDF files are also partly human-readable, I opened my file with vim.

 42 (Also, I was surprised that [vim has syntax highlighting for

 43 PDF](vim-syntax-highlighting.png).) Before we continue, I'll give a short

 44 introduction to the PDF file format (for the long version, see [Adobe’s PDF

 45 reference][pdf-ref]).

 46

 47 [pdf-ref]: http://partners.adobe.com/public/developer/en/pdf/PDFReference.pdf "Adobe Portable Document Format, Version 1.4"

 48

 49 ### Building Blocks ###

 50 Every PDF file starts with the [magic string][magic] that identifies the version

 51 of the standard which the document conforms to, like `%PDF-1.4`. After that, a

 52 PDF document is made up of the following objects:

 53

 54 [magic]: https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files "Wikipedia: Magic numbers in files"

 55

 56 Boolean values

 57 : `true` and `false`

 58

 59 Integers and floating-point numbers

 60 : for example, `1337`, `-23.42` and `.1415`

 61

 62 Strings

 63 : * interpreted as literal characters when enclosed in parentheses: `(This

 64 is a string.)` These can contain escaped characters, particularly

 65 escaped closing braces and control characters: `(This string contains a

 66 literal \) and some\n newlines.\n)`.

 67 * interpreted as hexadecimal data when enclosed in angled brackets:

 68 `<53 61 6D 70 6C 65>` equals `(Sample)`.

 69 Names

 70 : starting with a forward slash, like `/Type`. You can think of them like

 71 identifiers in programming languages.

 72

 73 Arrays

 74 : enclosed in square brackets:

 75 `[-1 4 6 (A String) /AName [(strings in arrays in arrays!)]]`

 76

 77 Dictionaries

 78 : key-value stores, which are enclosed in double angled brackets. The key must

 79 be a name, the value can be any object. Keys and values are given in turns,

 80 beginning with the first key:

 81 `<< /FirstKey (First Value) /SecondKey 3.14 /ThirdKey /ANameAsValue >>`

 82 Usually, the first key is `/Type` and defines what the dictionary actually

 83 describes.

 84

 85 Stream Objects

 86

 87 : a collection of bytes. In contrast to strings, stream objects are usually

 88 used for large amount of data which may not be read entirely, while strings

 89 are always read as a whole. For example, streams can be used to embed images

 90 or metadata.

 91

 92 : Streams consist of a dictionary, followed by the keyword `stream`, the raw

 93 content of the stream, and the keyword `endstream`. The dictionary describes

 94 the stream’s length and the filters that have been applied to it, which

 95 basically define the encoding the data is stored in. For example, data

 96 streams can be compressed with various algorithms.

 97

 98 The Null Object

 99 : Represented by the literal string `null`.

 100

 101 Indirect Objects

 102

 103 : Every object in a PDF document can also be stored as a indirect object,

 104 which means that it is given a label and can be used multiple times in the

 105 document. The label consists of two numbers, a positive *object number*

 106 (which makes the object unique) and a non-negative *generation number*

 107 (which allows to incrementally update objects by appending to the file).

 108

 109 : Indirect objects are defined by their object number, followed by their

 110 generation number, the keyword `obj`, the contents of the object, and the

 111 keyword `endobj`. Example: `1 0 obj (I'm an object!) endobj` defines the

 112 indirect object with object number 1 and generation number 0, which consists

 113 only of the string “I'm an object!”. Likewise, more complex data structures

 114 can be labeled with indirect objects.

 115

 116 : Referencing an indirect object works by giving the object and generation

 117 number, followed by an uppercase R: `1 0 R` references the object created

 118 above. References can be used everywhere where a (direct) object could be

 119 used instead.

 120

 121 Using these object, a PDF document builds up a tree structure, starting from the

 122 root object, which has the object number 1 and is a dictionary with the value

 123 `/Catalog` assigned to the key `/Type`. The other values of this dictionary

 124 point to the objects describing the outlines and pages of the document, which in

 125 turn reference other objects describing single pages, which point to objects

 126 describing drawing operations or text blocks, etc.

 127

 128

 129 ### Dissecting the PDFs created by XSane ###

 130

 131 Now that we know how a PDF document looks like, we can go back to out initial

 132 problem and try to find out why my PDF file was so huge. I will walk you through

 133 the PDF object by object.

 134

 135 [[!format pdf <<EOF

 136 %PDF-1.4

 137

 138 1 0 obj

 139 << /Type /Catalog

 140 /Outlines 2 0 R

 141 /Pages 3 0 R

 142 >>

 143 endobj

 144 EOF]]

 145

 146 This is just the magic string declaring the document as PDF-1.4, and the root

 147 object with object number 1, which references objects number 2 for Outlines and

 148 number 3 for pages. We're not interested in outlines, let's look at the pages.

 149

 150 [[!format pdf <<EOF

 151 3 0 obj

 152 << /Type /Pages

 153 /Kids [

 154 6 0 R

 155 8 0 R

 156 10 0 R

 157 12 0 R

 158]

 159 /Count 4

 160 >>

 161 endobj

 162 EOF]]

 163

 164 OK, apparently this document has four pages, which are referenced by objects

 165 number 6, 8, 10 and 12. This makes sense, since I scanned four pages ;-)

 166

 167 Let's start with object number 6:

 168

 169 [[!format pdf <<EOF

 170 6 0 obj

 171 << /Type /Page

 172 /Parent 3 0 R

 173 /MediaBox [0 0 596 842]

 174 /Contents 7 0 R

 175 /Resources << /ProcSet 8 0 R >>

 176 >>

 177 endobj

 178 EOF]]

 179

 180 We see that object number 6 is a page object, and the actual content is in

 181 object number 7. More redirection, yay!

 182

 183 [[!format pdf <<EOF

 184 7 0 obj

 185 << /Length 2678332 >>

 186 stream

 187 q

 188 1 0 0 1 0 0 cm

 189 1.000000 0.000000 -0.000000 1.000000 0 0 cm

 190 595.080017 0 0 841.679993 0 0 cm

 191 BI

 192 /W 1653

 193 /H 2338

 194 /CS /G

 195 /BPC 8

 196 /F /FlateDecode

 197 ID

 198 x\9c$¼[\8b$;¾åù!\ 6f\9eú¥\87¡a\1e\ 6æátq.4§

 199 % [...byte stream shortened...]

 200 EI

 201 Q

 202 endstream

 203 endobj

 204 EOF]]

 205

 206 Aha, here is where the magic happens. Object number 7 is a stream object of

 207 2,678,332 bytes (about 2 MB) and contains drawing operations! After skipping

 208 around a bit in Adobe’s PDF reference (chapters 3 and 4), here is the annotated

 209 version of the stream content:

 210

 211 [[!format pdf <<EOF

 212 q % Save drawing context

 213 1 0 0 1 0 0 cm % Set up coordinate space for image

 214 1.000000 0.000000 -0.000000 1.000000 0 0 cm

 215 595.080017 0 0 841.679993 0 0 cm

 216 BI % Begin Image

 217 /W 1653 % Image width is 1653 pixel

 218 /H 2338 % Image height is 2338 pixel

 219 /CS /G % Color space is Gray

 220 /BPC 8 % 8 bits per pixel

 221 /F /FlateDecode % Filters: data is Deflate-compressed

 222 ID % Image Data follows:

 223 x$¼[$;¾åù!fú¥¡aæátq.4§ [...byte stream shortened...]

 224 EI % End Image

 225 Q % Restore drawing context

 226 EOF]]

 227

 228 So now we know why the PDF was so huge: the line `/F /FlateDecode` tells us that

 229 the image ata is stored losslessly with [Deflate][] compression (this is

 230 basically what PNG uses). However, scanned images, as well as photographed

 231 pictures, have the tendency to become very big when stored losslessly, due to te

 232 fact that image sensors always add noise from the universe and lossless

 233 compression also has to take account of this noise. In contrast, lossy

 234 compression like JPEG, which uses [discrete cosine transform][dct], only has to

 235 approximate the image (and therefore the noise from the sensor) to a certain

 236 degree, therefore reducing the space needed to save the image. And the PDF

 237 standard also allows image data to be DCT-compressed, by adding `/DCTDecode` to

 238 the filters.

 239

 240 [Deflate]: https://en.wikipedia.org/wiki/DEFLATE "Wikipedia: DEFLATE algorithm"

 241 [dct]: http://en.wikipedia.org/wiki/Discrete_cosine_transform "Wikipedia: Discrete cosine transform"

 242

 243

 244 Second solution: use a (better) compression algorithm

 245 ------------------

 246

 247 Now that I knew where the problem was, I could try to create PDFs with DCT

 248 compression. I still had the original, uncompressed [PNM][] files that fell out

 249 of XSane’ multipage mode (just look in the multipage project folder), so I

 250 started to play around a bit with [ImageMagick’s][im] `convert` tool, which can

 251 also convert images to PDF.

 252

 253 [im]: http://www.imagemagick.org "ImageMagic homepage"

 254 [PNM]: https://en.wikipedia.org/wiki/Netpbm_format "Wikipedia: Netpbm format"

 255

 256 ### Converting PNM to PDF ###

 257 First, I tried converting the umcompressed PNM to PDF:

 258

 259 $ convert image*.pnm document.pdf

 260

 261 `convert` generally takes parameters of the form `inputfile outputfile`, but it

 262 also allows us to specify more than one input file (which is somehow

 263 undocumented in the [man page][man-convert]). In that case it tries to create

 264 multi-page documents, if possible. With PDF as output format, this results in

 265 one input file per page.

 266

 267 [man-converted]: http://manpages.debian.net/cgi-bin/man.cgi?query=convert "man convert(1)"

 268

 269 The embedded image objects looked somewhat like the following:

 270

 271 [[!format pdf <<EOF

 272 8 0 obj

 273 <<

 274 /Type /XObject

 275 /Subtype /Image

 276 /Name /Im0

 277 /Filter [/RunLengthDecode]

 278 /Width 1653

 279 /Height 2338

 280 /ColorSpace 10 0 R

 281 /BitsPerComponent 8

 282 /Length 9 0 R

 283 >>

 284 stream

 285 % [raw byte data]

 286 endstream

 287 EOF]]

 288

 289 The filter `/RunLengthDecode` indicates that the stream data is compressed with

 290 [Run-length encoding][RLE], another simple lossless compression. Not what I

 291 wanted. (Apart from that, `convert` embeds images as XObjects, but there is not

 292 much difference to the inline images described above.)

 293

 294 [RLE]: https://en.wikipedia.org/wiki/Run-length_encoding "Wikipedia: Run-length encoding"

 295

 296 ### Converting PNM to JPG, then to PDF ###

 297

 298 Next, I converted the PNMs to JPG, then to PDF.

 299

 300 $ convert image*.pnm image.jpg

 301 $ convert image*jpg document.pdf

 302

 303 (The first command creates the output files `image-1.jpg`, `image-2.jpg`, etc.,

 304 since JPG does nut support multiple pages in one file.)

 305

 306 When looking at the PDF, we see that we now have DCT-compressed images inside

 307 the PDF:

 308

 309 [[!format pdf <<EOF

 310 8 0 obj

 311 <<

 312 /Type /XObject

 313 /Subtype /Image

 314 /Name /Im0

 315 /Filter [/DCTDecode]

 316 /Width 1653

 317 /Height 2338

 318 /ColorSpace 10 0 R

 319 /BitsPerComponent 8

 320 /Length 9 0 R

 321 >>

 322 stream

 323 % [raw byte data]

 324 endstream

 325 EOF]]

 326

 327 ### Converting PNM to JPG, then to PDF, and fix page size ###

 328

 329 However, the pages in `document.pdf` are 82.47×58.31 cm, which results in

 330 about 72 dpi in respect to the size of the original images. But `convert`

 331 also allows us to specify the pixel density, so we'll set that to 200 dpi

 332 in X and Y direction, which was the resolution at which the images were scanned:

 333

 334 $ convert image*jpg -density 200x200 document.pdf

 335

 336 With that approach, I could reduce the size of my PDF from 250 MB with

 337 losslessly compressed images to 38 MB with DCT compression.

 338

 339 Too long, didn’t read

 340 -----------------

 341

 342 Here’s the gist for you:

 343

 344 * Read the article above, it’s very comprehensive :P

 345 * Use `convert` on XSane’s multipage images and specify your

 346 scanning resolution:

 347

 348 $ convert image*.pnm image.jpg

 349 $ convert image*jpg -density 200x200 document.pdf

 350

 351

 352 Further reading

 353 -------------

 354

 355 There is probably software out there which does those thing for you, with a

 356 shiny user interface, but I could not find one quickly. What I did find though,

 357 was [this detailed article][scan-to-pdfa], which describes how to get

 358 high-resolution scans wihh OCR information in PDF/A and DjVu format, using

 359 `scantailor` and `unpaper`.

 360

 361 Also, Didier Stevens helped me understand stream objects in in his

 362 [illustrated blogpost][pdf-stream-objects]. He seems to write about PDF more

 363 often, and it was fun to poke around in his blog. There is also a nice script,

 364 [`pdf-parser`][pdf-tools], which helps you visualize the structure of a PDF

 365 document.

 366

 367 [scan-to-pdfa]: http://blog.konradvoelkel.de/2013/03/scan-to-pdfa/ "Konrad Voelkel: Linux, OCR and PDF: Scan to PDF/A"

 368 [pdf-stream-objects]: http://blog.didierstevens.com/2008/05/19/pdf-stream-objects/ "Didier Stevens: PDF Stream Objects"

 369 [pdf-tools]: http://blog.didierstevens.com/programs/pdf-tools/ "Didier Stevens: PDF Tools"

 370

 371 [[!tag PDF note_to_self howto ImageMagic convert file_formats reference longpost]]

Source of the ikiwiki instance running at rohieb.name

RSS
Atom

This page took 0.071951 seconds and 3 git commands to generate.

