
Chatty Things – Making the Internet of Things
Readily Usable for the Masses with XMPP

Roland Hieber

Seminar Communications and Multimedia, TU Braunschweig

January 27, 2014

CC BY-ND 3.0
CC© BY:© =©

1 Introduction
Following the vision of the “Internet of Things”, the amount of wireless de-
vices is steadily increasing, which not only improves our standard of living
in an age where information is expected to be available at one’s fingertips,
but also poses challenges. New devices need to be integrated into existing
network setups, but when considering sensor nodes with very limited input
capabilities, manual configuration can be a cumbersome process – such de-
vices must be readily usable out of the box, and should interoperate with
existing infrastructure. Moreover, users need to communicate with their de-
vices, they need to know which devices exist and use the information they
collect, while too much or unstructured information leads to information
overflow, effectively discouraging the user from using the network.

This paper gives an overview of the “Chatty Things” approach as pre-
sented by Klauck and Kirsche [9], which proposes solutions for information
filtering, auto-configuration of devices and service discovery, while using
standard chat clients for human-to-machine communication. Section 2 in-
troduces the used techniques, Section 3 describes the proposed system ar-
chitecture for Chatty Things, while Section 4 gives an outlook how this ap-
proach can be further enhanced. Finally, Section 5 compares Chatty Things
to related techniques and wraps this paper up.

2 Prerequisites
In order to build a distributed, failure-tolerant network for our Chatty
Things, we will first look at some techniques which can be used to elim-
inate centralized infrastructure. Most of these techniques are standardized

1



by the IETF and widely used in existing networks. Finally, we will look at
XMPP as the basic communication protocol used in Chatty Things.

2.1 Address allocation

Considering the TCP/IP protocol suite, in order to be able to communicate
on the IP layer, a device needs to configure one of its network interfaces
with an IP address that can be reached from the network that the device
wants to connect to. Letting the user choose and configure IP addresses
manually is a cumbersome when it comes to several devices. Deploying a
central server for assigning IP addresses automatically from a pre-configured
address pool is possible (e. g. by using DHCP [5]), however, there is also
the alternative to use a distributed protocol which enables the devices on a
network to choose addresses in accordance with each other, so no IP address
is used twice.

In respect to the Internet of Things, this decentralized approach has the
advantage that devices can easily be used in different deployments, even
where central infrastructures do not exist, and it also allows them to change
their addresses dynamically in order to react to changes in the network.

There are two major protocols which are used for dynamic configura-
tion of IP addresses. In the IPv4 world, Link-Local Addressing [2] is often
used, and in IPv6 networks, Stateless Address Autoconfiguration [20] is a
fundamental feature specified in the IPv6 protocol.

IPv4 Link-Local Addressing Link-Local Addressing, also known as Au-
tomatic Private IP Addressing (APIPA) or Zeroconf, uses the IPv4 subnet
169.254.0.0/16 for addressing. Every device first chooses a random address
from that address space. Then it checks if the chosen address is used by any
other device on the network by probing the chosen address, which is usually
done using the ARP protocol. If the probing process results that the address
is not used on the network (e. g. no device returned an ARP response during
a random time interval), the device claims its chosen address and uses it for
communication on the IPv4 layer. If the chosen address is already used, the
device continues the process, subsequently choosing a new random address
and trying to claim it, until a free address has been found.

IPv6 Stateless Address Autoconfiguration Similar to IPv4 Link-Local
Addressing, devices configured with IPv6 Stateless Address Autoconfiguration
use an IPv6 address from the subnet fe80::/64. First, a 64-bit interface iden-
tifier is generated, which can be random, or based on the interface’s MAC
address. Most likely, this interface identifier is unique in the network, so
a unique IPv6 address is obtained by combining the subnet prefix and the
interface identifier. Nonetheless, to ensure that no other device uses the
generated IPv6 address, the device performs Duplicate Address Detection

2



on the network by broadcasting its generated address with Neighbor Ad-
vertisement messages and listening for Neighbor Solicitation messages. If
such a message is received from another hosts, the generated address cannot
be used by the device and must be discarded, and the address generation
process is repeated until a unique address has been found.

In contrast to IPv4 Link-Local Addressing, IPv6 Stateless Address Au-
toconfiguration can also be used with a central server. In this case, the
server broadcasts Router Solicitation messages on the network which con-
tain a global network prefix. The hosts on the network can then use that
prefix instead to configure a global IPv6 address.

2.2 Extensions to the Domain Name System

In a distributed context, it is often not feasible to rely on a central, authori-
tative DNS server, and there is usually no easy way to discover services. The
first problem is addressed with Multicast DNS, and since DNS is basically a
key-value store, it can also be used for service discovery, which is achieved
using DNS-Based Service Discovery. Both techniques were first developed
by Apple as part of the Bonjour project1, and are now maintained by the
IETF Zeroconf working group2.

2.2.1 Multicast DNS

Multicast DNS (mDNS) [4] describes an extension to the Domain Name
System that allows DNS resource records to be distributed on multiple hosts
in a network, therefore avoiding central authorities and enabling every host
to publish its own entries. For that purpose, a special top-level domain, is
used, usually named .local, which contains those entries.

Software that supports mDNS listens on the reserved link-local multicast
address 224.0.0.251 (for IPv4 queries) or ff02::fb (for IPv6 queries) on UDP
port 5353 for incoming queries. Queries sent to those multicast address and
port are standard DNS queries. If a host receives a query and knows about
the queried resource, it responds to the querying host with a standard DNS
response. The querying host can then simply finish and use the result, or
wait until other hosts respond to its query. The latter is typically the case
when a record can have multiple values, as it is the case with SRV and PTR
records (which will be discussed in the next section).

Another feature of Multicast DNS is the reduction of traffic through
Known-Answer Suppression. It allows a querying host to specify already
known resources in its query when querying resources that could exist on
more than one host (e. g., SRV records). The hosts matching those resources
then do not generate a response, thus reducing the messages in the network

1https://developer.apple.com/bonjour/
2http://zeroconf.org

3

https://developer.apple.com/bonjour/
http://zeroconf.org


and saving bandwidth, which is usually a scarce resource in wireless net-
works.

Finally, hosts may also send unsolicited responses. This can be used to
notify the network of new services available on a host.

2.2.2 DNS-Based Service Discovery

As another recent extension for the Domain Name System, DNS-Based Ser-
vice Discovery (DNS-SD) [3] uses DNS records of types SRV [7] and PTR [12]
in a way that allows hosts to browse for services in a domain. While SRV
records specify the location of services on a host, PTR records hold a reverse
mapping from IP address to host name. DNS-SD now relies on a two-step
process, consisting of Service Instance Enumeration and Service Instance
Resolution.

1. Service Instance Enumeration At first, to enumerate the available
services in a domain for a given protocol, a DNS-SD-enabled client queries
PTR resources of the form _service._proto.domain. The result of this query
is then a list of instance names of the form name._service._proto.domain
which point to the hosts providing the service. For example, by querying
for _ipp._tcp._example.org, the instance names for all printers supporting
the IPP protocol in the domain example.org are returned.

2. Service Instance Resolution As a second step, the returned instance
names are resolved as SRV records to retrieve the actual host names and
port numbers of a service. For example, resolution of one instance name
shows that an IPP server is running at host gutenberg.example.org on port
5222. Additionally, an optional TXT record with the same instance name
can contain further information about the service (e. g. information about
the supported paper sizes).

Through the usage of SRV records, it is easily possible for a service to
inform clients about non-standard port numbers, and especially in connec-
tion with Multicast DNS, this makes it easy to deploy decentralized systems
for the Internet of Things. [10]

2.3 XMPP

The Extensible Messaging and Presence Protocol (XMPP) is a distributed,
XML-based protocol for real-time communication. Its core functionalities
are specified in RFC 6120 [14] and RFC 6122 [15], while protocol extensions
are usually defined by the XMPP community in XMPP Extension Proposals
(XEPs).

2.3.1 Addressing

Every user account in XMPP is addressed by a globally unique identifier,
called the Jabber ID (JID) [13]. It has the form localpart@domain/resource,
where domain is the DNS name of an XMPP server, and localpart is the

4



name of a user account on that server. Since a user can be logged in from
multiple clients at the same time, the resource part is a string chosen by the
user to distinguish those clients. Only the part localpart@domain (the bare
JID) is needed to identify a user, the resource is only needed for routing
between client and server.

2.3.2 Architecture

XMPP client
juliet@example.net

XMPP server
example.net

XMPP server
im.example.org

XMPP client
romeo@im.example.org

s2c

s2s

s2c

Figure 1: XMPP architecture, show-
ing server-to-server (s2s) and server-
to-client (s2c) connections

The original architecture underlying
XMPP strongly leans on the estab-
lished design of Internet Mail, and
an example is depicted in Fig. 1.
The distributed network is formed
by XMPP servers on one hand,
which make up the always-on back-
bone of the network used for mes-
sage routing, and which manage
user accounts and statuses. On the
other hand, XMPP clients represent
a single logged-in user and make
up the interface for communication
with other users.

Every client communicates only
with the server that manages the re-
spective user account which is con-
figured in the client, as given in the
user’s JID. The server then routes
the messages to their recipients, using the JID to determine the correct
server for a message to be sent to. Finally, the receiving server sends the
message to a client where the receiving JID is logged in. If the user is not
logged in at the time the message is sent, the server can store it for the user
and deliver it on the next login.

XMPP strongly relies on DNS Service Discovery (see Section 2.2.2) to
determine the server being in charge of a domain. For example, the server
who manages the users for the domain example.org is given by the SRV
record _xmpp-server._tcp.example.org.

2.3.3 Communication primitives

All communication over XMPP is based on XML. To minimize communi-
cation overhead, only fragments of XML, called stanzas, are sent between
hosts. A stanza is always well-formed as a whole; it consists of a root el-
ement, which in most cases also includes routing attributes (to and from),
and its optional child elements.

5



On top of that, living connections between hosts are represented by XML
streams. The client initiates a connection by sending an XML declaration
followed by an opening <stream> tag. The server then responds also with
an opening <stream> tag. The client then performs SASL authentication
and binds its stream to a resource for proper addressing. If this process
succeeded, both client and server can send an unlimited number of stanzas,
until the connection is closed by one side by sending a closing </stream>
tag. The other side then has the chance to send all outstanding stanzas and
then likewise closes its stream. If both streams are closed, the underlying
TCP connection is terminated.

2.3.4 Publish/Subscribe and Presence

Typically, a user wants to chat with a more or less fixed set of other users,
whose JIDs she needs to know, so she needs some kind of “address book” that
remembers the JIDs for her. In XMPP, this address book is called roster,
and it also shows the users’ willingness to chat (“presence”). In order to
see their chat status (which can be one of “online”, “offline”, and several
“away” or “do not disturb” states), a user needs to subscribe to the other
user’s status. The mechanism behind this is called Publish-Subscribe and is
specified in XEP-0060 [11]. It can be used to notify interested users about
changes in personal information, and implements the well-known Observer
pattern [6].

A user publishes information by creating a node on the XMPP server,
which acts as a handle for the data. Interested users can then query the
server for nodes, and request subscription to them. When the owner of the
node confirms the subscription request, subscribers get notified whenever
the owner updates the respective node.

All communication takes place between the client and the server over
<iq> (“information query”) stanzas.

2.3.5 Multi-User Chats

Besides one-to-one messaging, XMPP also allows users to create multi-user
chat rooms, which is specified in XEP-0045 [18]. Each chat room is given a
unique JID on the server managing the room to which the users send their
messages to. Each incoming message is then dispatched to all users which
have joined the room.

To join a room, the user sends a <presence> stanza to the room JID,
where the resource part of the room JID specifies the desired nick name.

2.3.6 XMPP Serverless Messaging

To overcome the need for a central server and authentication, XMPP Server-
less Messaging [16] allows XMPP clients on a network to build a peer-to-peer

6



mesh network and chat directly with each other. This feature was first in-
troduced by Apple as part of their Bonjour project, and nowadays it is also
available in many other XMPP clients.

With XMPP Serverless Messaging, XMPP clients simply open a port
on their host, and then rely on mDNS and DNS-SD (see Section 2.2) to
publish instance names in the domain _presence._tcp.local. For example,
if Juliet uses her machine (named capulet) with serverless messaging, her
client would publish the following four mDNS records:

• an A record capulet.local, specifying her IP address,
• an SRV record juliet@capulet._presence._tcp.local, specifying the port
on which her XMPP client listens, and referring to capulet.local as the
host name

• a PTR record _presence._tcp.local for service discovery, pointing to
juliet@capulet._presence._tcp.local

• and a TXT record juliet@capulet._presence._tcp.local specifying more
information about her (e. g. her online status, contact data, etc.) in
standardized key-value pairs.

When other clients in the same network enumerate the available services
by querying _presence._tcp.local, they notice Juliet’s presence and add her to
the roster automatically. In that way, XMPP users can see who is currently
available for communication. To start a chat session, clients initiate a TCP
connection over the advertised ports, open their XML streams, and send
message or IQ stanzas like they would to an XMPP server. Presence is
managed over the corresponding TXT record in the mDNS. To go offline, a
client announces the deletion of its mDNS records.

3 System Architecture of “Chatty Things”
After the underlying techniques have been explained, we can now have a
look at the system architecture which Klauck and Kirsche [10] use to build
Chatty Things.

3.1 Service Provisioning Sublayer

Considering the application in deeply embedded systems and the special
needs of the Internet of Things on the one hand, the protocol stack needs
to fulfill certain technical requirements.

First, memory, computing resources and bandwidth on embedded sys-
tems are limited, which demands for a lightweight protocol stack without
too much overhead and predictable memory consumption, while also retain-
ing enough flexibility for future development. The authors therefore provide
only the most essential functions of XMPP (presence and message exchange,

7



multi-user chats) to achieve basic communication, grouping of devices, and
information filtering to prevent information overflow.

Their solution builds on the Contiki operating system on an MSP430
board, and uses the uXMPP project, which already implements core XMPP
features and serves as a starting point for implementing further XEPs. How-
ever, as the uXMPP project was still in early development, they first needed
to enhance its functionality to comply with the limited resources. In par-
ticular, they optimized the message flow and enabled uXMPP to fully use
the available payload instead of sending one TCP packet per message and
reduced the code footprint through compiler flags and refactoring.

Furthermore, Klauck and Kirsche implemented new features for uXMPP,
which were realized as separate modules to allow enabling and disabling
them at runtime, thus further reducing the memory footprint of a running
system:

• support for IPv6
• support for Multi-User Chats (XEP-0045), which are used for infor-
mation filtering

• support for SASL ANONYMOUS login for XMPP servers [17]
• a new publish-subscribe mechanism called Temporary Subscription for
Presence (see Section 3.3)

• XMPP Serverless Messaging (XEP-0174), using uBonjour as underly-
ing mDNS/DNS-SD implementation for Contiki.

The resulting implementation (uXMPP and uBonjour) gets by with 12.2
kBytes of ROM and 0.63 kBytes of RAM, which was about the size of the
original, unoptimized uXMPP implementation while also implementing new
features.

In order to react to different network infrastructures, their implemen-
tation allows both communication with a central XMPP server as well as
peer-to-peer communication over XMPP Serverless Messaging. When a cen-
tral XMPP server is detected over uBonjour, it is used instead with the
ANONYMOUS login method, and the XEP-0174 module is disabled. The
ANONYMOUS login method is chosen since TLS encryption is not yet im-
plemented, and with this method, the server assigns a random JID to the
client, which does not need to exist on the server. However, a server must
exist and must be configured to supply this login method in order for this
approach to work.

With a server, information filtering is achieved by creating topic-based
Multi-User Chats where multiple devices can be grouped. A user can then
simply join the chat with a standard XMPP client on her machine and
interact with all devices of a topic, or she can also interact with single
devices directly.

In scenarios without an XMPP server, the XEP-0174 module is activated
and devices talk directly with the user or with other devices. This method

8



has the drawback that Multi-User Chats cannot be used for topic filtering,
since no method is specified to do XEP-0045 and XEP-0174 at the same
time. In this case, a user must have an XEP-0174-compliant chat client, but
it also gives her the opportunity to interact with things spontaneously on an
ad hoc basis (e. g. when entering a room) without need for any additional
gateway on the application level.

3.2 Bootstrapping

With the given approach, bootstrapping new Chatty Things is easy and no
configuration is necessary: on the network layer, IP addresses can simply be
obtained using IPv4 Link-Local Addressing or IPv6 Stateless Address Au-
toconfiguration. On the transport layer, all needed ports can be obtained
over DNS-Based Service Discovery. Finally, on the application layer, host
names can be resolved over Multicast DNS; and for the actual communi-
cation between devices it is possible to use auto-generated JIDs with the
ANONYMOUS login method on an existing XMPP server, or if no server is
found, use peer-to-peer communication over XMPP Serverless Messaging.

Bootstrapping a Chatty Thing therefore incorporates three steps:

1. Activate uBonjour and try to discover an XMPP server.
2. If a server is found, connect to it using ANONYMOUS login, join topic-

based Multi-User Chats, deactivate the uBonjour client (Infrastructure
mode).

3. If no server is found, activate the XEP-0174 client (Ad hoc mode).

During runtime, a device can then react to changes in network infras-
tructure by changing from one mode to the other:

• In Infrastructure mode: when connection to the server is lost, enable
the uBonjour client, try to find a server, and when none is found,
enable Serverless Messaging.

• In Ad hoc mode: if uBonjour detects a new XMPP server joining
the network, try to connect to it. If this succeeds, disable Serverless
Messaging and uBonjour and join topic-based Multi-User Chats.

3.3 Temporary Subscription for Presence

To further reduce the message overhead and allow more fine-grained con-
trol over information filtering, Temporary Subscription for Presence is in-
troduced. This technique builds on top of presence stanzas as defined in
core XMPP, which are sent by default without a to or from attribute, and
therefore fit into a single TCP/IP packet over IEEE 802.15.4. However, a
drawback of the presence mechanism defined by core XMPP is the fact that
a client must manually subscribe to presence information of another client

9



in order to receive it, which requires further communication between the
clients. Since the network can change rapidly, and clients can frequently
join and leave the network, subscriptions would often be outdated and must
be renewed, leading to overhead of subscriptions and unsubscription mes-
sages, which would inhibit the flow of the actual information.

To solve this problem, a dynamic, topic-based roster is implemented on
top of Multi-User Chats (XEP-0045). Every topic corresponds with a chat
room, and nodes join the chat rooms which they are interested in. This
allows nodes to inform only interested nodes about updates. This has the
advantage that existing clients supporting Multi-User Chats can be used
by a user, but Chatty Things and XMPP servers need to be adapted to the
new subscription model. Also, this mechanism does not work with Serverless
Messaging.

4 Outlook
In addition to the XEPs covered above, there are a few additional XEPs
which can be implemented to further increase the effectivity of Chatty
Things. Especially the documents XEP-0323 through XEP-0326 (which are
currently in Experimental status) are targeted to the Internet of Things.

Concentrators (XEP-0326) [24] In contrast to sensor nodes which are
focused on collecting data, concentrators can be used to serve as a proxy
and control a subset of the network. The XEP defines messages to query
a sensor node for data sources, and subscribing to them, while subscription
is loosely modeled after the Publish-Subscribe mechanism (XEP-0060). It
also specifies how clients can request data or control certain nodes over a
concentrator.

This approach can be practical in large-scale sensor networks, where
usually not every sensor node can be reached directly, and where sensor
nodes only have a very limited amount of storage. Individual concentrators
can then be equipped with larger storage and serve as a facility to aggregate
data from sensor nodes. This structure can be implemented on several levels,
forming a hierarchy. A user interested in specific values then only needs to
communicate with a single node in the network.

Sensor Data (XEP-0323) [21] This XEP specifies a way of reading out
values from a sensor node. It allows to specify multiple data sources (e. g.
temperature, humidity) as well as multiple types of data (e. g., momentary
values, historical values, peak values). As a simple use case, the client sends
an IQ stanza containing the request and a sequence number used to identify
the request. The sensor node then rejects or accepts the request by returning

10



a corresponding IQ stanza. If it has accepted the request, it reads out the
requested data and returns it in a subsequent message stanza to the client.

An example of this protocol can be seen in Figure 2: after both clients
have opened their streams, the client requests the momentary values for
power and energy from the node named Device04. The device first acknowl-
edges this request, and, after retrieving the values, sends them back to the
client. Afterwards, both sides close their streams.

Control (XEP-0325) [23] In this document, a way of controlling sensor
nodes is specified, which allows a client to get and set control values on the
node over message or IQ stanzas. As an example, in this way a sensor node
could be instructed to return data in a different unit or range, or be put
into power-safe mode.

Provisioning (XEP-0324) [22] To protect the integrity of a sensor net-
work and securing the data being collected, this XEP specifies a way of
implementing access rights and user privileges. Since a single sensor node is
usually very restricted in user input and output, the approach is very simple
and can be implemented e. g. using a button and an LED for interaction,
while presentation of data takes places on a provisioning server with a rich
user interface (which can be, for example, a concentrator).

When integrating a new sensor node into the network, the user instructs
the provisioning server to generate a friendship request for the new node.
The node can e. g. symbolize this request by blinking its LED and requesting
a button press in the next 30 seconds. If the user presses the button, the
node confirms the friendship to the server. The server then remembers
this sensor node and generates a token which must be used in all further
communication between the server and the sensor node, else communication
is rejected.

Efficient XML Interchange Format (EXI, XEP-0322) [25] Finally,
EXI describes how XMPP stanzas sent between nodes can be compressed,
thereby effectively reducing the overhead in message size introduced by
XML. XMPP nodes can negotiate a compressed stream inside their existing
XMPP streams and exchange <compress> stanzas which then contain the
payload. However, it is to be noted that this requires further implemen-
tation of compression algorithms as well as additional CPU and memory
resources and thus might decrease message throughput and increase power
consumption on embedded systems.

11



ClientDevice

<stream>

<stream>

<iq type=’get’ id=’1’
to=’dev@device.local/res’
from=’client@client.local’>

<req xmlns=’urn:xmpp:sn’ seqnr=’1’
momentary=’true’>

<node nodeId=’Device04’/>
<field name=’Energy’/>
<field name=’Power’/>

</req>
</iq>

<iq type=’result’ id=’1’
from=’dev@device.local’
to=’client@client.local/res’>

<accepted xmlns=’urn:xmpp:sn’ seqnr=’1’/>
</iq>

<message from=’dev@device.local’
to=’client@client.local/res’>

<fields xmlns=’urn:xmpp:sn’ seqnr=’1’ done=’true’>
<node nodeId=’Device04’>
<timestamp value=’2013-03-07T22:03:15’>
<numeric name=’Energy’ momentary=’true’
value=’12345.67’ unit=’MWh’/>

<numeric name=’Power’ momentary=’true’
value=’239.4’ unit=’W’/>

</timestamp>
</node>

</fields>
</message>

</stream>

</stream>

Figure 2: Example XMPP stream with sensor data (XEP-0323)

5 Discussion

5.1 Related Approaches

“Chatty Things” is not the only approach to implement communication in
embedded networks. This section gives a short overview of related protocols
for the Internet of Things and shows their advantages and disadvantages,

12



Table 1: Comparison of related approaches
Feature Chatty Things CoAP MQTT WS4D
application gateways necessary - yes yes -
usable with standard clients yes - - (yes)
discovery support yes yes - yes
IPv6/6LoWPAN ready yes yes ? partial
asynchronous messages yes yes
protocol overhead moderate small small high

which are summarized in Table 1.

Constrained Application Protocol (CoAP) The Constrained Appli-
cation Protocol [19] focuses on machine-to-machine communication and orig-
inates from the IETF Constrained Resources Working Group3, but still has
been only in draft status since 2010. It allows a mapping to HTTP, and is
therefore stateless, but it specifies a binary protocol, which makes it nec-
essary to deploy application-level gateways and special client software to
communicate with its environment. It relies on UDP, but emulates conges-
tion control, message confirmation and message IDs, since – in contrast to
HTTP – messages can be sent asynchronously. Discovery is also specified
and done over multicast, service discovery is then done over a well-known
URI on the host. Since it is a binary protocol and mostly self-contained, it
has low protocol overhead and parsing complexity.

MQ Telemetry Transport (MQTT) Specified by IBM as a binary pro-
tocol, the MQ Telemetry Transport [8] has been proposed as an OASIS stan-
dard for machine-to-machine communication. It also relies on TCP/IP, and
its fixed message header is only 2 bytes in size, but can contain further vari-
able headers. Since it is also only used in embedded networks, application
gateways and appropriate client software are necessary. Its main feature is
a publish-subscribe mechanism with topic names, discovery is not specified.

Web Service for Devices (WS4D) As a different approach to avoid
application-level gateways, WS4D has been specified as a Devices Profile
for Web Services [26]. Since Web Services are wide-spread in the business
world, this approach can probably be used in existing infrastructures, and
is also focused on multiple platforms like embedded systems and servers.
Web Services can be very flexible and composable, and discovery is already
specified, however, this also comes at a cost: messages are enclosed in SOAP,
which is enclosed in HTTP, which is transported over TCP, which introduces
a substantial overhead, especially with SOAP being based on verbose XML.

3http://datatracker.ietf.org/wg/core/

13

http://datatracker.ietf.org/wg/core/


IPv6 support is only partially implemented. For communication, standard
APIs can be used.

5.2 Conclusion

With the XMPP protocol, there is the need to implement at least an XML
parser on each node, which comes with protocol overhead and increased code
size. However Klauck and Kirsche show that with good optimization (in the
code as well as in the protocol), a complete stack can be implemented in
12 kBytes of ROM, which leaves enough space for other applications to be
built onto it. As compared to Web Services, Chatty Things are probably
not as flexible, but they have less overhead, even when using XML, while
MQTT and CoAP provide less flexibility for future enhancement, but less
protocol overhead and easier parsing.

With TCP, mDNS, DNS-SD and XMPP as foundation, the proposed
architecture builds on reliable and established standards, which allows it
to reuse Chatty Things in various contexts without the need for central
infrastructure.

Nonetheless, a drawback is the virtual dependency from a centralized
XMPP server in order to use Temporary Subscription for Presence for topic
filtering, which is caused by the lack of support for Multi-User Chats in XEP-
0174 (Serverless Messaging). If this gap can be closed, or a different way for
topic filtering in distributed networks is found, the server can be eliminated
and what remains is a highly distributed network without the need for much
central infrastructure, therefore eliminating most single points of failure in
the system.

It is always hard to trade flexibility and accessibility for efficiency. The
Chatty Things approach is probably not one of the most efficient, and not
the most flexible, but it has the big advantage that users can interact with
their things using standard chat clients, without the need for application
gateways or specialized software. In terms of efficiency, it chooses a compro-
mise between binary protocols andWeb Services, latter which were originally
developed for servers with much less resource constraints as embedded sys-
tems. However, with additional XEPs focusing on the Internet of Things,
enough flexibility can be achieved for this use case.

References
[1] This work is licensed under the terms of the Creative Commons Attribution-NoDerivs

3.0 Unported license, see https://creativecommons.org/licenses/by-nd/3.0/ for the li-
cense text. Figures were drawn using public domain icons from the Tango Desktop
Project, see http://tango.freedesktop.org.

[2] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local
Addresses. RFC 3927 (Proposed Standard), May 2005.

14

https://creativecommons.org/licenses/by-nd/3.0/
http://tango.freedesktop.org


[3] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763 (Proposed
Standard), February 2013.

[4] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762 (Proposed Standard),
February 2013.

[5] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard),
March 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

[7] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of
services (DNS SRV). RFC 2782 (Proposed Standard), February 2000.

[8] IBM. MQ Telemetry Transport. http://www.ibm.com/developerworks/webservices/
library/ws-mqtt/.

[9] R. Klauck and M. Kirsche. Chatty things – Making the Internet of Things readily
usable for the masses with XMPP. In Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom), 2012 8th International Conference on,
pages 60–69, 2012.

[10] Ronny Klauck and Michael Kirsche. Bonjour contiki: a case study of a DNS-based
discovery service for the internet of things. In Proceedings of the 11th international
conference on Ad-hoc, Mobile, and Wireless Networks, ADHOC-NOW’12, pages 316–
329, Berlin, Heidelberg, 2012. Springer-Verlag.

[11] Peter Millard, Peter Saint-Andre, and Ralph Meijer. XEP-0060: Publish-Subscribe.
http://xmpp.org/extensions/xep-0060.html, July 2010.

[12] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035
(INTERNET STANDARD), November 1987.

[13] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Address For-
mat. RFC 6122 (Proposed Standard), March 2011.

[14] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120 (Proposed Standard), March 2011.

[15] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Mes-
saging and Presence. RFC 6121 (Proposed Standard), March 2011.

[16] Peter Saint-Andre. XEP-0174: Serverless Messaging. http://xmpp.org/extensions/
xep-0174.html, November 2008.

[17] Peter Saint-Andre. XEP-0175: Best Practices for Use of SASL ANONYMOUS.
http://xmpp.org/extensions/xep-0175.html, September 2009.

[18] Peter Saint-Andre. XEP-0045: Multi-User Chat. http://xmpp.org/extensions/
xep-0045.html, February 2012.

[19] Z. Shelby, K. Hartke, and C. Bormann. Constrained Application Protocol (CoAP).
https://tools.ietf.org/html/draft-ietf-core-coap-18, June 2013.

[20] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration.
RFC 4862 (Draft Standard), September 2007.

[21] Peter Waher. XEP-0323: Internet of Things - Sensor Data. http://xmpp.org/
extensions/xep-0323.html, April 2013.

[22] Peter Waher. XEP-0324: Internet of Things - Provisioning. http://xmpp.org/
extensions/xep-0324.html, April 2013.

[23] Peter Waher. XEP-0325: Internet of Things - Control. http://xmpp.org/extensions/
xep-0325.html, May 2013.

15

http://www.ibm.com/developerworks/webservices/library/ws-mqtt/
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0174.html
http://xmpp.org/extensions/xep-0174.html
http://xmpp.org/extensions/xep-0175.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
https://tools.ietf.org/html/draft-ietf-core-coap-18
http://xmpp.org/extensions/xep-0323.html
http://xmpp.org/extensions/xep-0323.html
http://xmpp.org/extensions/xep-0324.html
http://xmpp.org/extensions/xep-0324.html
http://xmpp.org/extensions/xep-0325.html
http://xmpp.org/extensions/xep-0325.html


[24] Peter Waher. XEP-0326: Internet of Things - Concentrators. http://xmpp.org/
extensions/xep-0326.html, May 2013.

[25] Peter Waher and Yusuke DOI. XEP-0322: Efficient XML Interchange (EXI) Format.
http://xmpp.org/extensions/xep-0322.html, July 2013.

[26] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski. WS4D: Toolkits for Net-
worked Embedded Systems Based on the Devices Profile for Web Services. In 39th
International Conference on Parallel Processing Workshops (ICPPW), pages 1–8,
2010.

16

http://xmpp.org/extensions/xep-0326.html
http://xmpp.org/extensions/xep-0326.html
http://xmpp.org/extensions/xep-0322.html

	Introduction
	Prerequisites
	Address allocation
	Extensions to the Domain Name System
	Multicast DNS
	DNS-Based Service Discovery

	XMPP
	Addressing
	Architecture
	Communication primitives
	Publish/Subscribe and Presence
	Multi-User Chats
	XMPP Serverless Messaging


	System Architecture of ``Chatty Things''
	Service Provisioning Sublayer
	Bootstrapping
	Temporary Subscription for Presence

	Outlook
	Discussion
	Related Approaches
	Conclusion


