fix issues with multiple ppp links (noticed by Stefano Rivera)
[openwrt.git] / package / rt2x00 / src / rt2x00.h
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00
23 Abstract: rt2x00 global information.
24 Supported chipsets: RT2460, RT2560, RT2570,
25 rt2561, rt2561s, rt2661, rt2571W & rt2671.
26 */
27
28 #ifndef RT2X00_H
29 #define RT2X00_H
30
31 #include <linux/bitops.h>
32 #include <linux/prefetch.h>
33 #include <linux/skbuff.h>
34 #include <linux/workqueue.h>
35
36 #include <net/mac80211.h>
37
38 /*
39 * Module information.
40 * DRV_NAME should be set within the individual module source files.
41 */
42 #define DRV_VERSION "2.0.2"
43 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
44
45 /*
46 * Debug definitions.
47 * Debug output has to be enabled during compile time.
48 */
49 #define DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, __args...) \
50 printk(__kernlvl "%s -> %s: %s - " __msg, \
51 wiphy_name(rt2x00dev->hw->wiphy), \
52 __FUNCTION__, __lvl, ##__args)
53
54 #define DEBUG_PRINTK_PROBE(__kernlvl, __lvl, __msg, __args...) \
55 printk(__kernlvl "%s -> %s: %s - " __msg, \
56 DRV_NAME, __FUNCTION__, __lvl, ##__args)
57
58 #ifdef CONFIG_RT2X00_DEBUG
59 #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \
60 DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, ##__args);
61 #else /* CONFIG_RT2X00_DEBUG */
62 #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \
63 do { } while (0)
64 #endif /* CONFIG_RT2X00_DEBUG */
65
66 /*
67 * Various debug levels.
68 * The debug levels PANIC and ERROR both indicate serious problems,
69 * for this reason they should never be ignored.
70 * The special ERROR_PROBE message is for messages that are generated
71 * when the rt2x00_dev is not yet initialized.
72 */
73 #define PANIC(__dev, __msg, __args...) \
74 DEBUG_PRINTK_MSG(__dev, KERN_CRIT, "Panic", __msg, ##__args)
75 #define ERROR(__dev, __msg, __args...) \
76 DEBUG_PRINTK_MSG(__dev, KERN_ERR, "Error", __msg, ##__args)
77 #define ERROR_PROBE(__msg, __args...) \
78 DEBUG_PRINTK_PROBE(KERN_ERR, "Error", __msg, ##__args)
79 #define WARNING(__dev, __msg, __args...) \
80 DEBUG_PRINTK(__dev, KERN_WARNING, "Warning", __msg, ##__args)
81 #define NOTICE(__dev, __msg, __args...) \
82 DEBUG_PRINTK(__dev, KERN_NOTICE, "Notice", __msg, ##__args)
83 #define INFO(__dev, __msg, __args...) \
84 DEBUG_PRINTK(__dev, KERN_INFO, "Info", __msg, ##__args)
85 #define DEBUG(__dev, __msg, __args...) \
86 DEBUG_PRINTK(__dev, KERN_DEBUG, "Debug", __msg, ##__args)
87 #define EEPROM(__dev, __msg, __args...) \
88 DEBUG_PRINTK(__dev, KERN_DEBUG, "EEPROM recovery", __msg, ##__args)
89
90 /*
91 * Ring sizes.
92 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes.
93 * DATA_FRAME_SIZE is used for TX, RX, ATIM and PRIO rings.
94 * MGMT_FRAME_SIZE is used for the BEACON ring.
95 */
96 #define DATA_FRAME_SIZE 2432
97 #define MGMT_FRAME_SIZE 256
98
99 /*
100 * Number of entries in a packet ring.
101 */
102 #define RX_ENTRIES 12
103 #define TX_ENTRIES 12
104 #define ATIM_ENTRIES 1
105 #define BEACON_ENTRIES 1
106
107 /*
108 * Standard timing and size defines.
109 */
110 #define ACK_SIZE 14
111 #define IEEE80211_HEADER 24
112 #define PLCP 48
113 #define BEACON 100
114 #define PREAMBLE 144
115 #define SHORT_PREAMBLE 72
116 #define SLOT_TIME 20
117 #define SHORT_SLOT_TIME 9
118 #define SIFS 10
119 #define PIFS ( SIFS + SLOT_TIME )
120 #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME )
121 #define DIFS ( PIFS + SLOT_TIME )
122 #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME )
123 #define EIFS ( SIFS + (8 * (IEEE80211_HEADER + ACK_SIZE)) )
124
125 /*
126 * IEEE802.11 header defines
127 */
128 #define is_rts_frame(__fc) \
129 ( !!((((__fc) & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && \
130 (((__fc) & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_RTS)) )
131 #define is_cts_frame(__fc) \
132 ( !!((((__fc) & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && \
133 (((__fc) & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_CTS)) )
134 #define is_probe_resp(__fc) \
135 ( !!((((__fc) & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) && \
136 (((__fc) & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)) )
137
138 /*
139 * Interval defines
140 */
141 #define LINK_TUNE_INTERVAL ( round_jiffies(HZ) )
142 #define RFKILL_POLL_INTERVAL ( HZ / 4 )
143
144 /*
145 * TX result flags.
146 */
147 enum TX_STATUS {
148 TX_SUCCESS = 0,
149 TX_SUCCESS_RETRY = 1,
150 TX_FAIL_RETRY = 2,
151 TX_FAIL_INVALID = 3,
152 TX_FAIL_OTHER = 4,
153 };
154
155 /*
156 * Antenna values
157 */
158 enum antenna {
159 ANTENNA_DIVERSITY = 0,
160 ANTENNA_A = 1,
161 ANTENNA_B = 2,
162 };
163
164 /*
165 * Led mode values.
166 */
167 enum led_mode {
168 LED_MODE_DEFAULT = 0,
169 LED_MODE_TXRX_ACTIVITY = 1,
170 LED_MODE_SIGNAL_STRENGTH = 2,
171 LED_MODE_ASUS = 3,
172 LED_MODE_ALPHA = 4,
173 };
174
175 /*
176 * Device states
177 */
178 enum dev_state {
179 STATE_DEEP_SLEEP = 0,
180 STATE_SLEEP = 1,
181 STATE_STANDBY = 2,
182 STATE_AWAKE = 3,
183
184 /*
185 * Additional device states, these values are
186 * not strict since they are not directly passed
187 * into the device.
188 */
189 STATE_RADIO_ON,
190 STATE_RADIO_OFF,
191 STATE_RADIO_RX_ON,
192 STATE_RADIO_RX_OFF,
193 };
194
195 /*
196 * IFS backoff values
197 */
198 enum ifs {
199 IFS_BACKOFF = 0,
200 IFS_SIFS = 1,
201 IFS_NEW_BACKOFF = 2,
202 IFS_NONE = 3,
203 };
204
205 /*
206 * Cipher types for hardware encryption
207 */
208 enum cipher {
209 CIPHER_NONE = 0,
210 CIPHER_WEP64 = 1,
211 CIPHER_WEP128 = 2,
212 CIPHER_TKIP = 3,
213 CIPHER_AES = 4,
214 /*
215 * The following fields were added by rt61pci and rt73usb.
216 */
217 CIPHER_CKIP64 = 5,
218 CIPHER_CKIP128 = 6,
219 CIPHER_TKIP_NO_MIC = 7,
220 };
221
222 /*
223 * Register handlers.
224 * We store the position of a register field inside a field structure,
225 * This will simplify the process of setting and reading a certain field
226 * inside the register while making sure the process remains byte order safe.
227 */
228 struct rt2x00_field8 {
229 u8 bit_offset;
230 u8 bit_mask;
231 };
232
233 struct rt2x00_field16 {
234 u16 bit_offset;
235 u16 bit_mask;
236 };
237
238 struct rt2x00_field32 {
239 u32 bit_offset;
240 u32 bit_mask;
241 };
242
243 /*
244 * Power of two check from Linus Torvalds,
245 * this will check if the mask that has been
246 * given contains and contiguous set of bits.
247 */
248 #define is_power_of_two(x) ( !((x) & ((x)-1)) )
249 #define low_bit_mask(x) ( ((x)-1) & ~(x) )
250 #define is_valid_mask(x) is_power_of_two(1 + (x) + low_bit_mask(x))
251
252 #define FIELD8(__mask) \
253 ({ \
254 BUILD_BUG_ON(!(__mask) || \
255 !is_valid_mask(__mask) || \
256 (__mask) != (u8)(__mask)); \
257 (struct rt2x00_field8) { \
258 __ffs(__mask), (__mask) \
259 }; \
260 })
261
262 #define FIELD16(__mask) \
263 ({ \
264 BUILD_BUG_ON(!(__mask) || \
265 !is_valid_mask(__mask) || \
266 (__mask) != (u16)(__mask));\
267 (struct rt2x00_field16) { \
268 __ffs(__mask), (__mask) \
269 }; \
270 })
271
272 #define FIELD32(__mask) \
273 ({ \
274 BUILD_BUG_ON(!(__mask) || \
275 !is_valid_mask(__mask) || \
276 (__mask) != (u32)(__mask));\
277 (struct rt2x00_field32) { \
278 __ffs(__mask), (__mask) \
279 }; \
280 })
281
282 static inline void rt2x00_set_field32(u32 *reg,
283 const struct rt2x00_field32 field, const u32 value)
284 {
285 *reg &= ~(field.bit_mask);
286 *reg |= (value << field.bit_offset) & field.bit_mask;
287 }
288
289 static inline u32 rt2x00_get_field32(const u32 reg,
290 const struct rt2x00_field32 field)
291 {
292 return (reg & field.bit_mask) >> field.bit_offset;
293 }
294
295 static inline void rt2x00_set_field16(u16 *reg,
296 const struct rt2x00_field16 field, const u16 value)
297 {
298 *reg &= ~(field.bit_mask);
299 *reg |= (value << field.bit_offset) & field.bit_mask;
300 }
301
302 static inline u16 rt2x00_get_field16(const u16 reg,
303 const struct rt2x00_field16 field)
304 {
305 return (reg & field.bit_mask) >> field.bit_offset;
306 }
307
308 static inline void rt2x00_set_field8(u8 *reg,
309 const struct rt2x00_field8 field, const u8 value)
310 {
311 *reg &= ~(field.bit_mask);
312 *reg |= (value << field.bit_offset) & field.bit_mask;
313 }
314
315 static inline u8 rt2x00_get_field8(const u8 reg,
316 const struct rt2x00_field8 field)
317 {
318 return (reg & field.bit_mask) >> field.bit_offset;
319 }
320
321 /*
322 * Chipset identification
323 * The chipset on the device is composed of a RT and RF chip.
324 * The chipset combination is important for determining device capabilities.
325 */
326 struct rt2x00_chip {
327 u16 rt;
328 #define RT2460 0x0101
329 #define RT2560 0x0201
330 #define RT2570 0x1201
331 #define RT2561 0x0301
332 #define RT2561s 0x0302
333 #define RT2661 0x0401
334 #define RT2571 0x1300
335
336 u16 rf;
337 u32 rev;
338 };
339
340 /*
341 * data_desc
342 * Each data entry also contains a descriptor which is used by the
343 * device to determine what should be done with the packet and
344 * what the current status is.
345 * This structure is greatly simplified, but the descriptors
346 * are basically a list of little endian 32 bit values.
347 * Make the array by default 1 word big, this will allow us
348 * to use sizeof() correctly.
349 */
350 struct data_desc {
351 __le32 word[1];
352 };
353
354 /*
355 * data_entry_desc
356 * Summary of information that should be written into the
357 * descriptor for sending a TX frame.
358 */
359 struct data_entry_desc {
360 /*
361 * PLCP values.
362 */
363 u16 length_high;
364 u16 length_low;
365 u16 signal;
366 u16 service;
367
368 int queue;
369 int ifs;
370 };
371
372 /*
373 * data_entry
374 * The data ring is a list of data entries.
375 * Each entry holds a reference to the descriptor
376 * and the data buffer. For TX rings the reference to the
377 * sk_buff of the packet being transmitted is also stored here.
378 */
379 struct data_entry {
380 /*
381 * Status flags
382 */
383 unsigned long flags;
384 #define ENTRY_OWNER_NIC 1
385 #define ENTRY_TXDONE 2
386 #define ENTRY_TXD_RTS_FRAME 3
387 #define ENTRY_TXD_OFDM_RATE 4
388 #define ENTRY_TXD_MORE_FRAG 5
389 #define ENTRY_TXD_REQ_TIMESTAMP 6
390 #define ENTRY_TXD_REQ_ACK 7
391
392 /*
393 * Ring we belong to.
394 */
395 struct data_ring *ring;
396
397 /*
398 * sk_buff for the packet which is being transmitted
399 * in this entry (Only used with TX related rings).
400 */
401 struct sk_buff *skb;
402
403 /*
404 * Store a ieee80211_tx_status structure in each
405 * ring entry, this will optimize the txdone
406 * handler.
407 */
408 struct ieee80211_tx_status tx_status;
409
410 /*
411 * private pointer specific to driver.
412 */
413 void *priv;
414
415 /*
416 * Data address for this entry.
417 */
418 void *data_addr;
419 dma_addr_t data_dma;
420 };
421
422 /*
423 * data_ring
424 * Data rings are used by the device to send and receive packets.
425 * The data_addr is the base address of the data memory.
426 * To determine at which point in the ring we are,
427 * have to use the rt2x00_ring_index_*() functions.
428 */
429 struct data_ring {
430 /*
431 * Pointer to main rt2x00dev structure where this
432 * ring belongs to.
433 */
434 struct rt2x00_dev *rt2x00dev;
435
436 /*
437 * Base address for the device specific data entries.
438 */
439 struct data_entry *entry;
440
441 /*
442 * TX queue statistic info.
443 */
444 struct ieee80211_tx_queue_stats_data stats;
445
446 /*
447 * TX Queue parameters.
448 */
449 struct ieee80211_tx_queue_params tx_params;
450
451 /*
452 * Base address for data ring.
453 */
454 dma_addr_t data_dma;
455 void *data_addr;
456
457 /*
458 * Index variables.
459 */
460 u16 index;
461 u16 index_done;
462
463 /*
464 * Size of packet and descriptor in bytes.
465 */
466 u16 data_size;
467 u16 desc_size;
468 };
469
470 /*
471 * Handlers to determine the address of the current device specific
472 * data entry, where either index or index_done points to.
473 */
474 static inline struct data_entry* rt2x00_get_data_entry(
475 struct data_ring *ring)
476 {
477 return &ring->entry[ring->index];
478 }
479
480 static inline struct data_entry* rt2x00_get_data_entry_done(
481 struct data_ring *ring)
482 {
483 return &ring->entry[ring->index_done];
484 }
485
486 /*
487 * Total ring memory
488 */
489 static inline int rt2x00_get_ring_size(struct data_ring *ring)
490 {
491 return ring->stats.limit * (ring->desc_size + ring->data_size);
492 }
493
494 /*
495 * Ring index manipulation functions.
496 */
497 static inline void rt2x00_ring_index_inc(struct data_ring *ring)
498 {
499 ring->index++;
500 if (ring->index >= ring->stats.limit)
501 ring->index = 0;
502 ring->stats.len++;
503 }
504
505 static inline void rt2x00_ring_index_done_inc(struct data_ring *ring)
506 {
507 ring->index_done++;
508 if (ring->index_done >= ring->stats.limit)
509 ring->index_done = 0;
510 ring->stats.len--;
511 ring->stats.count++;
512 }
513
514 static inline void rt2x00_ring_index_clear(struct data_ring *ring)
515 {
516 ring->index = 0;
517 ring->index_done = 0;
518 ring->stats.len = 0;
519 ring->stats.count = 0;
520 }
521
522 static inline int rt2x00_ring_empty(struct data_ring *ring)
523 {
524 return ring->stats.len == 0;
525 }
526
527 static inline int rt2x00_ring_full(struct data_ring *ring)
528 {
529 return ring->stats.len == ring->stats.limit;
530 }
531
532 static inline int rt2x00_ring_free(struct data_ring *ring)
533 {
534 if (ring->index_done >= ring->index)
535 return ring->index_done - ring->index;
536 return ring->stats.len - (ring->index - ring->index_done);
537 }
538
539 /*
540 * TX/RX Descriptor access functions.
541 */
542 static inline void rt2x00_desc_read(struct data_desc *desc,
543 const u8 word, u32 *value)
544 {
545 *value = le32_to_cpu(desc->word[word]);
546 }
547
548 static inline void rt2x00_desc_write(struct data_desc *desc,
549 const u8 word, const u32 value)
550 {
551 desc->word[word] = cpu_to_le32(value);
552 }
553
554 /*
555 * To optimize the quality of the link we need to store
556 * the quality of received frames and periodically
557 * optimize the link.
558 */
559 struct link {
560 /*
561 * Link tuner counter
562 * The number of times the link has been tuned
563 * since the radio has been switched on.
564 */
565 u32 count;
566
567 /*
568 * Misc statistics.
569 * For the average RSSI value we use the "Walking average" approach.
570 * When adding RSSI to the average value the following calculation
571 * is needed:
572 *
573 * avg_rssi = ((avg_rssi * 7) + rssi) / 8;
574 *
575 * The advantage of this approach is that we only need 1 variable
576 * to store the average in (No need for a count and a total).
577 * But more importantly, normal average values will over time
578 * move less and less towards newly added values.
579 * This means that with link tuning, the device can have a very
580 * good RSSI for a few minutes but when the device is moved away
581 * from the AP the average will not decrease fast enough to
582 * compensate. The walking average compensates this and will
583 * move towards the new values correctly.
584 */
585 int avg_rssi;
586 int false_cca;
587
588 /*
589 * Work structure for scheduling periodic link tuning.
590 */
591 struct delayed_work work;
592 };
593
594 /*
595 * Interface structure
596 * Configuration details about the current interface.
597 */
598 struct interface {
599 /*
600 * Interface identification. The value is assigned
601 * to us by the 80211 stack, and is used to request
602 * new beacons.
603 */
604 int id;
605
606 /*
607 * Current working type (IEEE80211_IF_TYPE_*).
608 * This excludes the type IEEE80211_IF_TYPE_MNTR
609 * since that is counted seperately in the monitor_count
610 * field.
611 */
612 int type;
613
614 /*
615 * BBSID of the AP to associate with.
616 */
617 u8 bssid[ETH_ALEN];
618
619 /*
620 * Store the promisc mode for the current interface.
621 * monitor mode always forces promisc mode to be enabled,
622 * so we need to store the promisc mode seperately.
623 */
624 short promisc;
625
626 /*
627 * Monitor mode count, the number of interfaces
628 * in monitor mode that that have been added.
629 */
630 short monitor_count;
631 };
632
633 static inline int is_interface_present(struct interface *intf)
634 {
635 return !!intf->id;
636 }
637
638 static inline int is_monitor_present(struct interface *intf)
639 {
640 return !!intf->monitor_count;
641 }
642
643 /*
644 * Details about the supported modes, rates and channels
645 * of a particular chipset. This is used by rt2x00lib
646 * to build the ieee80211_hw_mode array for mac80211.
647 */
648 struct hw_mode_spec {
649 /*
650 * Number of modes, rates and channels.
651 */
652 int num_modes;
653 int num_rates;
654 int num_channels;
655
656 /*
657 * txpower values.
658 */
659 const u8 *tx_power_a;
660 const u8 *tx_power_bg;
661 u8 tx_power_default;
662
663 /*
664 * Device/chipset specific value.
665 */
666 const u32 *chan_val_a;
667 const u32 *chan_val_bg;
668 };
669
670 /*
671 * rt2x00lib callback functions.
672 */
673 struct rt2x00lib_ops {
674 /*
675 * Interrupt handlers.
676 */
677 irq_handler_t irq_handler;
678
679 /*
680 * Device init handlers.
681 */
682 int (*init_hw)(struct rt2x00_dev *rt2x00dev);
683 char* (*get_fw_name)(struct rt2x00_dev *rt2x00dev);
684 int (*load_firmware)(struct rt2x00_dev *rt2x00dev, void *data,
685 const size_t len);
686
687 /*
688 * Device initialization/deinitialization handlers.
689 */
690 int (*initialize)(struct rt2x00_dev *rt2x00dev);
691 void (*uninitialize)(struct rt2x00_dev *rt2x00dev);
692
693 /*
694 * Radio control handlers.
695 */
696 int (*set_device_state)(struct rt2x00_dev *rt2x00dev,
697 enum dev_state state);
698 int (*rfkill_poll)(struct rt2x00_dev *rt2x00dev);
699 void (*link_tuner)(struct rt2x00_dev *rt2x00dev);
700
701 /*
702 * TX control handlers
703 */
704 void (*write_tx_desc)(struct rt2x00_dev *rt2x00dev,
705 struct data_entry *entry, struct data_desc *txd,
706 struct data_entry_desc *desc,
707 struct ieee80211_hdr *ieee80211hdr, unsigned int length,
708 struct ieee80211_tx_control *control);
709 int (*write_tx_data)(struct rt2x00_dev *rt2x00dev,
710 struct data_ring *ring, struct sk_buff *skb,
711 struct ieee80211_tx_control *control);
712 void (*kick_tx_queue)(struct rt2x00_dev *rt2x00dev, int queue);
713
714 /*
715 * RX control handlers
716 */
717 int (*fill_rxdone)(struct data_entry *entry,
718 int *signal, int *rssi, int *ofdm);
719
720 /*
721 * Configuration handlers.
722 */
723 void (*config_type)(struct rt2x00_dev *rt2x00dev, const int type);
724 void (*config_phymode)(struct rt2x00_dev *rt2x00dev, const int phy);
725 void (*config_channel)(struct rt2x00_dev *rt2x00dev, const int value,
726 const int channel, const int txpower);
727 void (*config_mac_addr)(struct rt2x00_dev *rt2x00dev, u8 *mac);
728 void (*config_bssid)(struct rt2x00_dev *rt2x00dev, u8 *bssid);
729 void (*config_promisc)(struct rt2x00_dev *rt2x00dev, const int promisc);
730 void (*config_txpower)(struct rt2x00_dev *rt2x00dev, const int txpower);
731 void (*config_antenna)(struct rt2x00_dev *rt2x00dev,
732 const int antenna_tx, const int antenna_rx);
733 void (*config_duration)(struct rt2x00_dev *rt2x00dev,
734 const int short_slot_time, const int beacon_int);
735 };
736
737 /*
738 * rt2x00 driver callback operation structure.
739 */
740 struct rt2x00_ops {
741 const char *name;
742 const unsigned int rxd_size;
743 const unsigned int txd_size;
744 const struct rt2x00lib_ops *lib;
745 const struct ieee80211_ops *hw;
746 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
747 const struct rt2x00debug *debugfs;
748 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
749 };
750
751 /*
752 * rt2x00 device structure.
753 */
754 struct rt2x00_dev {
755 /*
756 * Device structure.
757 * The structure stored in here depends on the
758 * system bus (PCI or USB).
759 * When accessing this variable, the rt2x00dev_{pci,usb}
760 * macro's should be used for correct typecasting.
761 */
762 void *dev;
763 #define rt2x00dev_pci(__dev) ( (struct pci_dev*)(__dev)->dev )
764 #define rt2x00dev_usb(__dev) ( (struct usb_interface*)(__dev)->dev )
765
766 /*
767 * Callback functions.
768 */
769 const struct rt2x00_ops *ops;
770
771 /*
772 * IEEE80211 control structure.
773 */
774 struct ieee80211_hw *hw;
775 struct ieee80211_hw_mode *hwmodes;
776 unsigned int curr_hwmode;
777 #define HWMODE_B 0
778 #define HWMODE_G 1
779 #define HWMODE_A 2
780
781 /*
782 * rfkill structure for RF state switching support.
783 * This will only be compiled in when required.
784 */
785 #ifdef CONFIG_RT2X00_LIB_RFKILL
786 struct rfkill *rfkill;
787 struct delayed_work rfkill_work;
788 #endif /* CONFIG_RT2X00_LIB_RFKILL */
789
790 /*
791 * Device flags.
792 * In these flags the current status and some
793 * of the device capabilities are stored.
794 */
795 unsigned long flags;
796 #define DEVICE_ENABLED_RADIO 1
797 #define DEVICE_ENABLED_RADIO_HW 2
798 #define DEVICE_INITIALIZED 3
799 #define DEVICE_INITIALIZED_HW 4
800 #define FIRMWARE_REQUIRED 5
801 #define FIRMWARE_LOADED 6
802 #define FIRMWARE_FAILED 7
803 #define INTERFACE_ENABLED 8
804 #define INTERFACE_ENABLED_MONITOR 9
805 #define INTERFACE_ENABLED_PROMISC 10
806 #define DEVICE_SUPPORT_ATIM 11
807 #define DEVICE_SUPPORT_HW_BUTTON 12
808 #define CONFIG_FRAME_TYPE 13
809 #define CONFIG_RF_SEQUENCE 14
810 #define CONFIG_EXTERNAL_LNA 15
811 #define CONFIG_EXTERNAL_LNA_A 16
812 #define CONFIG_EXTERNAL_LNA_BG 17
813 #define CONFIG_DOUBLE_ANTENNA 18
814 #define CONFIG_DISABLE_LINK_TUNING 19
815
816 /*
817 * Chipset identification.
818 */
819 struct rt2x00_chip chip;
820
821 /*
822 * hw capability specifications.
823 */
824 struct hw_mode_spec spec;
825
826 /*
827 * Base address of device registers (PCI devices only).
828 */
829 void __iomem *csr_addr;
830
831 /*
832 * If enabled, the debugfs interface structures
833 * required for deregistration of debugfs.
834 */
835 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
836 const struct rt2x00debug_intf *debugfs_intf;
837 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
838
839 /*
840 * Interface configuration.
841 */
842 struct interface interface;
843
844 /*
845 * Link quality
846 */
847 struct link link;
848
849 /*
850 * EEPROM data.
851 */
852 __le16 *eeprom;
853
854 /*
855 * Active RF register values.
856 * These are stored here for easier working
857 * with the rf registers.
858 */
859 u32 rf1;
860 u32 rf2;
861 u32 rf3;
862 u32 rf4;
863
864 /*
865 * Current TX power value.
866 */
867 u16 tx_power;
868
869 /*
870 * LED register (for rt61pci & rt73usb).
871 */
872 u16 led_reg;
873
874 /*
875 * Led mode (LED_MODE_*)
876 */
877 u8 led_mode;
878
879 /*
880 * Rssi <-> Dbm offset
881 */
882 u8 rssi_offset;
883
884 /*
885 * Frequency offset (for rt61pci & rt73usb).
886 */
887 u8 freq_offset;
888
889 /*
890 * Low level statistics which will have
891 * to be kept up to date while device is running.
892 */
893 struct ieee80211_low_level_stats low_level_stats;
894
895 /*
896 * RX configuration information.
897 */
898 struct ieee80211_rx_status rx_status;
899
900 /*
901 * Data ring arrays for RX, TX and Beacon.
902 * The Beacon array also contains the Atim ring
903 * if that is supported by the device.
904 */
905 struct data_ring *rx;
906 struct data_ring *tx;
907 struct data_ring *bcn;
908 };
909
910 static inline struct data_ring* rt2x00_get_ring(
911 struct rt2x00_dev *rt2x00dev, const unsigned int queue)
912 {
913 int atim = test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
914
915 /*
916 * Check if the rings have been allocated.
917 */
918 if (!rt2x00dev->tx || !rt2x00dev->bcn)
919 return NULL;
920
921 /*
922 * Check if we are requesting a reqular TX ring,
923 * or if we are requesting a Beacon or Atim ring.
924 * For Atim rings, we should check if it is supported.
925 */
926 if (queue < rt2x00dev->hw->queues)
927 return &rt2x00dev->tx[queue];
928 else if (queue == IEEE80211_TX_QUEUE_BEACON)
929 return &rt2x00dev->bcn[0];
930 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON && atim)
931 return &rt2x00dev->bcn[1];
932
933 return NULL;
934 }
935
936 /*
937 * For-each loop for the ring array.
938 * Since the all rings are allocated as a single array,
939 * we can start at the rx pointer and move forward to the tx rings.
940 * The 1 + Atim check will assure that the address directly after
941 * the ring array is obtained and the for-each loop exits correctly.
942 */
943 #define ring_end(__dev) \
944 &(__dev)->bcn[1 + test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags)]
945
946 #define ring_loop(__entry, __start, __end) \
947 for ((__entry) = (__start); \
948 prefetch(&(__entry)[1]), (__entry) != (__end); \
949 (__entry) = &(__entry)[1])
950
951 #define ring_for_each(__dev, __entry) \
952 ring_loop(__entry, (__dev)->rx, ring_end(__dev))
953
954 #define txring_for_each(__dev, __entry) \
955 ring_loop(__entry, (__dev)->tx, (__dev)->bcn)
956
957 #define txringall_for_each(__dev, __entry) \
958 ring_loop(__entry, (__dev)->tx, ring_end(__dev))
959
960 /*
961 * EEPROM access.
962 * The EEPROM is being accessed by word index.
963 */
964 static inline void* rt2x00_eeprom_addr(const struct rt2x00_dev *rt2x00dev,
965 const u8 word)
966 {
967 return (void*)&rt2x00dev->eeprom[word];
968 }
969
970 static inline void rt2x00_eeprom_read(const struct rt2x00_dev *rt2x00dev,
971 const u8 word, u16 *data)
972 {
973 *data = le16_to_cpu(rt2x00dev->eeprom[word]);
974 }
975
976 static inline void rt2x00_eeprom_write(const struct rt2x00_dev *rt2x00dev,
977 const u8 word, u16 data)
978 {
979 rt2x00dev->eeprom[word] = cpu_to_le16(data);
980 }
981
982 /*
983 * Link tuning handlers
984 */
985 static inline void rt2x00_start_link_tune(struct rt2x00_dev *rt2x00dev)
986 {
987 rt2x00dev->link.count = 0;
988 rt2x00dev->link.avg_rssi = 0;
989 rt2x00dev->link.false_cca = 0;
990
991 queue_delayed_work(rt2x00dev->hw->workqueue,
992 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
993 }
994
995 static inline void rt2x00_stop_link_tune(struct rt2x00_dev *rt2x00dev)
996 {
997 if (work_pending(&rt2x00dev->link.work.work))
998 cancel_rearming_delayed_workqueue(
999 rt2x00dev->hw->workqueue, &rt2x00dev->link.work);
1000 }
1001
1002 static inline void rt2x00_update_link_rssi(struct link *link, int rssi)
1003 {
1004 if (!link->avg_rssi)
1005 link->avg_rssi = rssi;
1006 else
1007 link->avg_rssi = ((link->avg_rssi * 7) + rssi) / 8;
1008 }
1009
1010 static inline int rt2x00_get_link_rssi(struct link *link)
1011 {
1012 return link->avg_rssi;
1013 }
1014
1015 /*
1016 * Chipset handlers
1017 */
1018 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1019 const u16 rt, const u16 rf, const u32 rev)
1020 {
1021 INFO(rt2x00dev,
1022 "Chipset detected - rt: %04x, rf: %04x, rev: %08x.\n",
1023 rt, rf, rev);
1024
1025 rt2x00dev->chip.rt = rt;
1026 rt2x00dev->chip.rf = rf;
1027 rt2x00dev->chip.rev = rev;
1028 }
1029
1030 static inline char rt2x00_rt(const struct rt2x00_chip *chipset, const u16 chip)
1031 {
1032 return (chipset->rt == chip);
1033 }
1034
1035 static inline char rt2x00_rf(const struct rt2x00_chip *chipset, const u16 chip)
1036 {
1037 return (chipset->rf == chip);
1038 }
1039
1040 static inline u16 rt2x00_rev(const struct rt2x00_chip *chipset)
1041 {
1042 return chipset->rev;
1043 }
1044
1045 /*
1046 * Device specific rate value.
1047 * We will have to create the device specific rate value
1048 * passed to the ieee80211 kernel. We need to make it a consist of
1049 * multiple fields because we want to store more then 1 device specific
1050 * values inside the value.
1051 * 1 - rate, stored as 100 kbit/s.
1052 * 2 - preamble, short_preamble enabled flag.
1053 * 3 - MASK_RATE, which rates are enabled in this mode, this mask
1054 * corresponds with the TX register format for the current device.
1055 * 4 - plcp, 802.11b rates are device specific,
1056 * 802.11g rates are set according to the ieee802.11a-1999 p.14.
1057 * The bit to enable preamble is set in a seperate define.
1058 */
1059 #define DEV_RATE FIELD32(0x000007ff)
1060 #define DEV_PREAMBLE FIELD32(0x00000800)
1061 #define DEV_RATEMASK FIELD32(0x00fff000)
1062 #define DEV_PLCP FIELD32(0xff000000)
1063
1064 /*
1065 * Bitmask for MASK_RATE
1066 */
1067 #define DEV_RATE_1MB 0x00000001
1068 #define DEV_RATE_2MB 0x00000002
1069 #define DEV_RATE_5_5MB 0x00000004
1070 #define DEV_RATE_11MB 0x00000008
1071 #define DEV_RATE_6MB 0x00000010
1072 #define DEV_RATE_9MB 0x00000020
1073 #define DEV_RATE_12MB 0x00000040
1074 #define DEV_RATE_18MB 0x00000080
1075 #define DEV_RATE_24MB 0x00000100
1076 #define DEV_RATE_36MB 0x00000200
1077 #define DEV_RATE_48MB 0x00000400
1078 #define DEV_RATE_54MB 0x00000800
1079
1080 /*
1081 * Bitmask groups of bitrates
1082 */
1083 #define DEV_BASIC_RATE \
1084 ( DEV_RATE_1MB | DEV_RATE_2MB | DEV_RATE_5_5MB | DEV_RATE_11MB | \
1085 DEV_RATE_6MB | DEV_RATE_12MB | DEV_RATE_24MB )
1086
1087 #define DEV_CCK_RATE \
1088 ( DEV_RATE_1MB | DEV_RATE_2MB | DEV_RATE_5_5MB | DEV_RATE_11MB )
1089
1090 #define DEV_OFDM_RATE \
1091 ( DEV_RATE_6MB | DEV_RATE_9MB | DEV_RATE_12MB | DEV_RATE_18MB | \
1092 DEV_RATE_24MB | DEV_RATE_36MB | DEV_RATE_48MB | DEV_RATE_54MB )
1093
1094 /*
1095 * Macro's to set and get specific fields from the device specific val and val2
1096 * fields inside the ieee80211_rate entry.
1097 */
1098 #define DEVICE_SET_RATE_FIELD(__value, __mask) \
1099 (int)( ((__value) << DEV_##__mask.bit_offset) & DEV_##__mask.bit_mask )
1100
1101 #define DEVICE_GET_RATE_FIELD(__value, __mask) \
1102 (int)( ((__value) & DEV_##__mask.bit_mask) >> DEV_##__mask.bit_offset )
1103
1104 /*
1105 * Duration calculations
1106 * The rate variable passed is: 100kbs.
1107 * To convert from bytes to bits we multiply size with 8,
1108 * then the size is multiplied with 10 to make the
1109 * real rate -> rate argument correction.
1110 */
1111 static inline u16 get_duration(const unsigned int size, const u8 rate)
1112 {
1113 return ((size * 8 * 10) / rate);
1114 }
1115
1116 static inline u16 get_duration_res(const unsigned int size, const u8 rate)
1117 {
1118 return ((size * 8 * 10) % rate);
1119 }
1120
1121 #endif /* RT2X00_H */
This page took 0.093502 seconds and 5 git commands to generate.