add all source code from linksys/broadcom which is free, to cvs for better maintainen...
[openwrt.git] / openwrt / package / linux / kernel-source / arch / mips / brcm-boards / bcm947xx / compressed / decompress_bunzip2.c
1 /* vi: set sw=4 ts=4: */
2 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 This code is licensed under the LGPLv2:
10 LGPL (http://www.gnu.org/copyleft/lgpl.html
11 */
12
13 /*
14 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
15
16 More efficient reading of huffman codes, a streamlined read_bunzip()
17 function, and various other tweaks. In (limited) tests, approximately
18 20% faster than bzcat on x86 and about 10% faster on arm.
19
20 Note that about 2/3 of the time is spent in read_unzip() reversing
21 the Burrows-Wheeler transformation. Much of that time is delay
22 resulting from cache misses.
23
24 I would ask that anyone benefiting from this work, especially those
25 using it in commercial products, consider making a donation to my local
26 non-profit hospice organization in the name of the woman I loved, who
27 passed away Feb. 12, 2003.
28
29 In memory of Toni W. Hagan
30
31 Hospice of Acadiana, Inc.
32 2600 Johnston St., Suite 200
33 Lafayette, LA 70503-3240
34
35 Phone (337) 232-1234 or 1-800-738-2226
36 Fax (337) 232-1297
37
38 http://www.hospiceacadiana.com/
39
40 Manuel
41 */
42
43 /* May 21, 2004 Manuel Novoa III
44 * Modified to load a bzip'd kernel on the linksys wrt54g.
45 *
46 * May 30, 2004
47 * Further size reduction via inlining and disabling len check code.
48 */
49
50 /**********************************************************************/
51
52 /* Note... the LED code is specific to the v2.0 (and GS?) unit. */
53 #undef ENABLE_LEDS
54 /* #define ENABLE_LEDS 1 */
55
56 /* Do we want to bother with checking the bzip'd data for errors? */
57 #undef ENABLE_BUNZIP_CHECKING
58 /* #define ENABLE_BUNZIP_CHECKING 1 */
59
60 /**********************************************************************/
61 /* #include <bcm4710.h> */
62 #define BCM4710_FLASH 0x1fc00000 /* Flash */
63
64 #define KSEG0 0x80000000
65 #define KSEG1 0xa0000000
66
67 #define KSEG1ADDR(a) ((((unsigned)(a)) & 0x1fffffffU) | KSEG1)
68
69 /* The following cache code was taken from the file bcm4710_cache.h
70 * which was necessarily GPL as it was used to build the linksys
71 * kernel for the wrt54g. */
72
73 #warning icache [l]size hardcoded
74
75 #define icache_size 8192
76 #define ic_lsize 16
77
78 #define Index_Invalidate_I 0x00
79
80 #define cache_unroll(base,op) \
81 __asm__ __volatile__( \
82 ".set noreorder;\n" \
83 ".set mips3;\n" \
84 "cache %1, (%0);\n" \
85 ".set mips0;\n" \
86 ".set reorder\n" \
87 : \
88 : "r" (base), \
89 "i" (op));
90
91 static __inline__ void blast_icache(void)
92 {
93 unsigned long start = KSEG0;
94 unsigned long end = (start + icache_size);
95
96 while(start < end) {
97 cache_unroll(start,Index_Invalidate_I);
98 start += ic_lsize;
99 }
100 }
101
102 /**********************************************************************/
103 #ifndef INT_MAX
104 #define INT_MAX (((1 << 30)-1)*2 + 1)
105 #endif
106 /**********************************************************************/
107 #ifdef ENABLE_BUNZIP_CHECKING
108
109 #define REBOOT do {} while (1)
110
111 #else
112
113 #define REBOOT ((void) 0)
114
115 #endif
116 /**********************************************************************/
117 #ifdef ENABLE_LEDS
118
119 #define LED_POWER_ON 0x02 /* OFF == flashing */
120 #define LED_DMZ_OFF 0x80
121 #define LED_WLAN_OFF 0x01
122
123 #define LED_CODE_0 (LED_POWER_ON | LED_DMZ_OFF | LED_WLAN_OFF)
124 #define LED_CODE_1 (LED_POWER_ON | LED_DMZ_OFF)
125 #define LED_CODE_2 (LED_POWER_ON | LED_WLAN_OFF)
126 #define LED_CODE_3 (LED_POWER_ON)
127
128 #define SET_LED_ERROR(X) \
129 do { \
130 *(volatile u8*)(KSEG1ADDR(0x18000064))=(X & ~LED_POWER_ON); \
131 *(volatile u8*)(KSEG1ADDR(0x18000068))=0; /* Disable changes */ \
132 REBOOT; \
133 } while (0)
134
135 #define SET_LED(X) *(volatile u8*)(KSEG1ADDR(0x18000064))=X;
136
137
138 typedef unsigned char u8;
139
140 #else
141
142 #define SET_LED_ERROR(X) REBOOT
143 #define SET_LED(X) ((void)0)
144
145 #endif
146
147 /**********************************************************************/
148
149 /* Constants for huffman coding */
150 #define MAX_GROUPS 6
151 #define GROUP_SIZE 50 /* 64 would have been more efficient */
152 #define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */
153 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
154 #define SYMBOL_RUNA 0
155 #define SYMBOL_RUNB 1
156
157 /* Status return values */
158 #define RETVAL_OK 0
159 #define RETVAL_LAST_BLOCK (-1)
160 #define RETVAL_NOT_BZIP_DATA (-2)
161 #define RETVAL_UNEXPECTED_INPUT_EOF (-3)
162 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
163 #define RETVAL_DATA_ERROR (-5)
164 #define RETVAL_OUT_OF_MEMORY (-6)
165 #define RETVAL_OBSOLETE_INPUT (-7)
166
167 /* Other housekeeping constants */
168 #define IOBUF_SIZE 4096
169
170 /* This is what we know about each huffman coding group */
171 struct group_data {
172 /* We have an extra slot at the end of limit[] for a sentinal value. */
173 int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS];
174 int minLen, maxLen;
175 };
176
177 /* Structure holding all the housekeeping data, including IO buffers and
178 memory that persists between calls to bunzip */
179 typedef struct {
180 /* State for interrupting output loop */
181 int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent;
182 /* I/O tracking data (file handles, buffers, positions, etc.) */
183 #if defined(ENABLE_BUNZIP_CHECKING)
184 int /*in_fd,out_fd,*/ inbufCount,inbufPos /*,outbufPos*/;
185 #else
186 int /*in_fd,out_fd,inbufCount,*/ inbufPos /*,outbufPos*/;
187 #endif
188 unsigned char *inbuf /*,*outbuf*/;
189 unsigned int inbufBitCount, inbufBits;
190 /* The CRC values stored in the block header and calculated from the data */
191 #ifdef ENABLE_BUNZIP_CHECKING
192 unsigned int crc32Table[256],headerCRC, totalCRC, writeCRC;
193 /* Intermediate buffer and its size (in bytes) */
194 unsigned int *dbuf, dbufSize;
195 #else
196 unsigned int *dbuf;
197 #endif
198 /* These things are a bit too big to go on the stack */
199 unsigned char selectors[32768]; /* nSelectors=15 bits */
200 struct group_data groups[MAX_GROUPS]; /* huffman coding tables */
201 } bunzip_data;
202
203 static int get_next_block(bunzip_data *bd);
204
205 /**********************************************************************/
206 /* Undo burrows-wheeler transform on intermediate buffer to produce output.
207 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
208 data are written to outbuf. Return value is number of bytes written or
209 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
210 are ignored, data is written to out_fd and return is RETVAL_OK or error.
211 */
212
213 static __inline__ int read_bunzip(bunzip_data *bd, char *outbuf, int len)
214 {
215 const unsigned int *dbuf;
216 int pos,current,previous,gotcount;
217 #ifdef ENABLE_LEDS
218 int led_state = LED_CODE_2;
219 #endif
220
221 /* If last read was short due to end of file, return last block now */
222 if(bd->writeCount<0) return bd->writeCount;
223
224 gotcount = 0;
225 dbuf=bd->dbuf;
226 pos=bd->writePos;
227 current=bd->writeCurrent;
228
229 /* We will always have pending decoded data to write into the output
230 buffer unless this is the very first call (in which case we haven't
231 huffman-decoded a block into the intermediate buffer yet). */
232
233 if (bd->writeCopies) {
234 /* Inside the loop, writeCopies means extra copies (beyond 1) */
235 --bd->writeCopies;
236 /* Loop outputting bytes */
237 for(;;) {
238 #if 0 /* Might want to enable this if passing a limiting size. */
239 /* #ifdef ENABLE_BUNZIP_CHECKING */
240 /* If the output buffer is full, snapshot state and return */
241 if(gotcount >= len) {
242 bd->writePos=pos;
243 bd->writeCurrent=current;
244 bd->writeCopies++;
245 return len;
246 }
247 #endif
248 /* Write next byte into output buffer, updating CRC */
249 outbuf[gotcount++] = current;
250 #ifdef ENABLE_BUNZIP_CHECKING
251 bd->writeCRC=(((bd->writeCRC)<<8)
252 ^bd->crc32Table[((bd->writeCRC)>>24)^current]);
253 #endif
254 /* Loop now if we're outputting multiple copies of this byte */
255 if (bd->writeCopies) {
256 --bd->writeCopies;
257 continue;
258 }
259 decode_next_byte:
260 if (!bd->writeCount--) break;
261 /* Follow sequence vector to undo Burrows-Wheeler transform */
262 previous=current;
263 pos=dbuf[pos];
264 current=pos&0xff;
265 pos>>=8;
266 /* After 3 consecutive copies of the same byte, the 4th is a repeat
267 count. We count down from 4 instead
268 * of counting up because testing for non-zero is faster */
269 if(--bd->writeRunCountdown) {
270 if(current!=previous) bd->writeRunCountdown=4;
271 } else {
272 /* We have a repeated run, this byte indicates the count */
273 bd->writeCopies=current;
274 current=previous;
275 bd->writeRunCountdown=5;
276 /* Sometimes there are just 3 bytes (run length 0) */
277 if(!bd->writeCopies) goto decode_next_byte;
278 /* Subtract the 1 copy we'd output anyway to get extras */
279 --bd->writeCopies;
280 }
281 }
282 #ifdef ENABLE_BUNZIP_CHECKING
283 /* Decompression of this block completed successfully */
284 bd->writeCRC=~bd->writeCRC;
285 bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC;
286 /* If this block had a CRC error, force file level CRC error. */
287 if(bd->writeCRC!=bd->headerCRC) {
288 bd->totalCRC=bd->headerCRC+1;
289 return RETVAL_LAST_BLOCK;
290 }
291 #endif
292 }
293
294 #ifdef ENABLE_LEDS
295 if (led_state == LED_CODE_2) {
296 led_state = LED_CODE_1;
297 } else {
298 led_state = LED_CODE_2;
299 }
300 SET_LED(led_state);
301 #endif
302
303 /* Refill the intermediate buffer by huffman-decoding next block of input */
304 /* (previous is just a convenient unused temp variable here) */
305 previous=get_next_block(bd);
306 #ifdef ENABLE_BUNZIP_CHECKING
307 if(previous) {
308 bd->writeCount=previous;
309 return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount;
310 }
311 bd->writeCRC=0xffffffffUL;
312 #else
313 if (previous) return gotcount;
314 #endif
315 pos=bd->writePos;
316 current=bd->writeCurrent;
317 goto decode_next_byte;
318 }
319
320 /**********************************************************************/
321 /* WARNING!!! Must be the first function!!! */
322
323 void load_and_run(unsigned long ra)
324 {
325 int dbuf[900000]; /* Maximum requred */
326 bunzip_data bd;
327
328 unsigned int i;
329 #ifdef ENABLE_BUNZIP_CHECKING
330 unsigned int j, c;
331 int r;
332 #endif
333 char *p;
334
335 #ifdef ENABLE_LEDS
336 *(volatile u8*)(KSEG1ADDR(0x18000068))=0x83; /* Allow all bits to change */
337 SET_LED(LED_CODE_0);
338 #endif
339
340 /* memset(&bd,0,sizeof(bunzip_data)); */
341 p = (char *) &bd;
342 for (i = 0 ; i < sizeof(bunzip_data) ; i++) {
343 p[i] = 0;
344 }
345
346 /* Find start of flash and adjust for pmon partition. */
347 p = ((char *) KSEG1ADDR(BCM4710_FLASH)) + 0x10000;
348
349 SET_LED(LED_CODE_1);
350 /* Find the start of the bzip'd data. */
351 while ((p[0]!='B') || (p[1]!='Z') || (p[2]!='h') /*|| (p[3]!='9')*/) ++p;
352 SET_LED(LED_CODE_2);
353
354 /* Setup input buffer */
355 bd.inbuf=p+4; /* Skip the "BZh9" header. */
356 #ifdef ENABLE_BUNZIP_CHECKING
357 bd.inbufCount=INT_MAX;
358 /* Init the CRC32 table (big endian) */
359 for(i=0;i<256;i++) {
360 c=i<<24;
361 for(j=8;j;j--)
362 c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1);
363 bd.crc32Table[i]=c;
364 }
365
366 bd.dbufSize=900000;
367 #endif
368 bd.dbuf=dbuf;
369
370 /* Actually do the bunzip */
371 #ifdef ENABLE_BUNZIP_CHECKING
372 r = read_bunzip(&bd, ((char *) LOADADDR), INT_MAX);
373 if (r > 0) {
374 if (bd.headerCRC==bd.totalCRC) {
375 SET_LED(LED_CODE_3);
376 {
377 int code = LED_WLAN_OFF;
378 int i, j;
379 for (j=0 ; j < 4 ; j++) {
380 for (i=0; i<(1<<27) ; i++) {}
381 SET_LED(code);
382 code ^= LED_WLAN_OFF;
383 }
384 }
385 blast_icache();
386 /* Jump to load address */
387 ((void (*)(void)) LOADADDR)();
388 } else {
389 SET_LED_ERROR(LED_CODE_3);
390 }
391 } else {
392 SET_LED_ERROR(LED_CODE_2);
393 }
394 #else
395 read_bunzip(&bd, ((char *) LOADADDR), INT_MAX);
396 blast_icache();
397 /* Jump to load address */
398 ((void (*)(void)) LOADADDR)();
399 #endif
400 }
401
402 /**********************************************************************/
403 /* Return the next nnn bits of input. All reads from the compressed input
404 are done through this function. All reads are big endian */
405 static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
406 {
407 unsigned int bits=0;
408
409 /* If we need to get more data from the byte buffer, do so. (Loop getting
410 one byte at a time to enforce endianness and avoid unaligned access.) */
411 while (bd->inbufBitCount<bits_wanted) {
412 /* If we need to read more data from file into byte buffer, do so */
413 #ifdef ENABLE_BUNZIP_CHECKING
414 if(bd->inbufPos==bd->inbufCount) {
415 SET_LED_ERROR(LED_CODE_0);
416 }
417 #endif
418 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
419 if(bd->inbufBitCount>=24) {
420 bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
421 bits_wanted-=bd->inbufBitCount;
422 bits<<=bits_wanted;
423 bd->inbufBitCount=0;
424 }
425 /* Grab next 8 bits of input from buffer. */
426 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
427 bd->inbufBitCount+=8;
428 }
429 /* Calculate result */
430 bd->inbufBitCount-=bits_wanted;
431 bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
432
433 return bits;
434 }
435
436 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
437
438 static int get_next_block(bunzip_data *bd)
439 {
440 struct group_data *hufGroup;
441 #ifdef ENABLE_BUNZIP_CHECKING
442 int dbufCount,nextSym,dbufSize,groupCount,*base,*limit,selector,
443 i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
444 #else
445 int dbufCount,nextSym,/*dbufSize,*/groupCount,*base,*limit,selector,
446 i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
447 #endif
448 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
449 unsigned int *dbuf,origPtr;
450
451 dbuf=bd->dbuf;
452 #ifdef ENABLE_BUNZIP_CHECKING
453 dbufSize=bd->dbufSize;
454 #endif
455 selectors=bd->selectors;
456 /* Read in header signature and CRC, then validate signature.
457 (last block signature means CRC is for whole file, return now) */
458 i = get_bits(bd,24);
459 j = get_bits(bd,24);
460 #ifdef ENABLE_BUNZIP_CHECKING
461 bd->headerCRC=get_bits(bd,32);
462 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
463 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
464 /* We can add support for blockRandomised if anybody complains. There was
465 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
466 it didn't actually work. */
467 if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
468 if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
469 #else
470 get_bits(bd,32);
471 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
472 get_bits(bd,1);
473 origPtr=get_bits(bd,24);
474 #endif
475 /* mapping table: if some byte values are never used (encoding things
476 like ascii text), the compression code removes the gaps to have fewer
477 symbols to deal with, and writes a sparse bitfield indicating which
478 values were present. We make a translation table to convert the symbols
479 back to the corresponding bytes. */
480 t=get_bits(bd, 16);
481 symTotal=0;
482 for (i=0;i<16;i++) {
483 if(t&(1<<(15-i))) {
484 k=get_bits(bd,16);
485 for(j=0;j<16;j++)
486 if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
487 }
488 }
489 /* How many different huffman coding groups does this block use? */
490 groupCount=get_bits(bd,3);
491 #ifdef ENABLE_BUNZIP_CHECKING
492 if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
493 #endif
494 /* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
495 group. Read in the group selector list, which is stored as MTF encoded
496 bit runs. (MTF=Move To Front, as each value is used it's moved to the
497 start of the list.) */
498 #ifdef ENABLE_BUNZIP_CHECKING
499 if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
500 #else
501 nSelectors=get_bits(bd, 15);
502 #endif
503 for(i=0; i<groupCount; i++) mtfSymbol[i] = i;
504 for(i=0; i<nSelectors; i++) {
505 /* Get next value */
506 #ifdef ENABLE_BUNZIP_CHECKING
507 for(j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
508 #else
509 for(j=0;get_bits(bd,1);j++) ;
510 #endif
511 /* Decode MTF to get the next selector */
512 uc = mtfSymbol[j];
513 for(;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
514 mtfSymbol[0]=selectors[i]=uc;
515 }
516 /* Read the huffman coding tables for each group, which code for symTotal
517 literal symbols, plus two run symbols (RUNA, RUNB) */
518 symCount=symTotal+2;
519 for (j=0; j<groupCount; j++) {
520 unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
521 int minLen, maxLen, pp;
522 /* Read huffman code lengths for each symbol. They're stored in
523 a way similar to mtf; record a starting value for the first symbol,
524 and an offset from the previous value for everys symbol after that.
525 (Subtracting 1 before the loop and then adding it back at the end is
526 an optimization that makes the test inside the loop simpler: symbol
527 length 0 becomes negative, so an unsigned inequality catches it.) */
528 t=get_bits(bd, 5)-1;
529 for (i = 0; i < symCount; i++) {
530 for(;;) {
531 #ifdef ENABLE_BUNZIP_CHECKING
532 if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
533 return RETVAL_DATA_ERROR;
534 #endif
535 /* If first bit is 0, stop. Else second bit indicates whether
536 to increment or decrement the value. Optimization: grab 2
537 bits and unget the second if the first was 0. */
538 k = get_bits(bd,2);
539 if (k < 2) {
540 bd->inbufBitCount++;
541 break;
542 }
543 /* Add one if second bit 1, else subtract 1. Avoids if/else */
544 t+=(((k+1)&2)-1);
545 }
546 /* Correct for the initial -1, to get the final symbol length */
547 length[i]=t+1;
548 }
549 /* Find largest and smallest lengths in this group */
550 minLen=maxLen=length[0];
551 for(i = 1; i < symCount; i++) {
552 if(length[i] > maxLen) maxLen = length[i];
553 else if(length[i] < minLen) minLen = length[i];
554 }
555 /* Calculate permute[], base[], and limit[] tables from length[].
556 *
557 * permute[] is the lookup table for converting huffman coded symbols
558 * into decoded symbols. base[] is the amount to subtract from the
559 * value of a huffman symbol of a given length when using permute[].
560 *
561 * limit[] indicates the largest numerical value a symbol with a given
562 * number of bits can have. This is how the huffman codes can vary in
563 * length: each code with a value>limit[length] needs another bit.
564 */
565 hufGroup=bd->groups+j;
566 hufGroup->minLen = minLen;
567 hufGroup->maxLen = maxLen;
568 /* Note that minLen can't be smaller than 1, so we adjust the base
569 and limit array pointers so we're not always wasting the first
570 entry. We do this again when using them (during symbol decoding).*/
571 base=hufGroup->base-1;
572 limit=hufGroup->limit-1;
573 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
574 pp=0;
575 for(i=minLen;i<=maxLen;i++) {
576 temp[i]=limit[i]=0;
577 for(t=0;t<symCount;t++)
578 if(length[t]==i) hufGroup->permute[pp++] = t;
579 }
580 /* Count symbols coded for at each bit length */
581 for (i=0;i<symCount;i++) temp[length[i]]++;
582 /* Calculate limit[] (the largest symbol-coding value at each bit
583 * length, which is (previous limit<<1)+symbols at this level), and
584 * base[] (number of symbols to ignore at each bit length, which is
585 * limit minus the cumulative count of symbols coded for already). */
586 pp=t=0;
587 for (i=minLen; i<maxLen; i++) {
588 pp+=temp[i];
589 /* We read the largest possible symbol size and then unget bits
590 after determining how many we need, and those extra bits could
591 be set to anything. (They're noise from future symbols.) At
592 each level we're really only interested in the first few bits,
593 so here we set all the trailing to-be-ignored bits to 1 so they
594 don't affect the value>limit[length] comparison. */
595 limit[i]= (pp << (maxLen - i)) - 1;
596 pp<<=1;
597 base[i+1]=pp-(t+=temp[i]);
598 }
599 limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
600 limit[maxLen]=pp+temp[maxLen]-1;
601 base[minLen]=0;
602 }
603 /* We've finished reading and digesting the block header. Now read this
604 block's huffman coded symbols from the file and undo the huffman coding
605 and run length encoding, saving the result into dbuf[dbufCount++]=uc */
606
607 /* Initialize symbol occurrence counters and symbol Move To Front table */
608 for(i=0;i<256;i++) {
609 byteCount[i] = 0;
610 mtfSymbol[i]=(unsigned char)i;
611 }
612 /* Loop through compressed symbols. */
613 runPos=dbufCount=symCount=selector=0;
614 for(;;) {
615 /* Determine which huffman coding group to use. */
616 if(!(symCount--)) {
617 symCount=GROUP_SIZE-1;
618 #ifdef ENABLE_BUNZIP_CHECKING
619 if(selector>=nSelectors) return RETVAL_DATA_ERROR;
620 #endif
621 hufGroup=bd->groups+selectors[selector++];
622 base=hufGroup->base-1;
623 limit=hufGroup->limit-1;
624 }
625 /* Read next huffman-coded symbol. */
626 /* Note: It is far cheaper to read maxLen bits and back up than it is
627 to read minLen bits and then an additional bit at a time, testing
628 as we go. Because there is a trailing last block (with file CRC),
629 there is no danger of the overread causing an unexpected EOF for a
630 valid compressed file. As a further optimization, we do the read
631 inline (falling back to a call to get_bits if the buffer runs
632 dry). The following (up to got_huff_bits:) is equivalent to
633 j=get_bits(bd,hufGroup->maxLen);
634 */
635 while (bd->inbufBitCount<hufGroup->maxLen) {
636 #ifdef ENABLE_BUNZIP_CHECKING
637 if(bd->inbufPos==bd->inbufCount) {
638 j = get_bits(bd,hufGroup->maxLen);
639 goto got_huff_bits;
640 }
641 #endif
642 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
643 bd->inbufBitCount+=8;
644 };
645 bd->inbufBitCount-=hufGroup->maxLen;
646 j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1);
647 got_huff_bits:
648 /* Figure how how many bits are in next symbol and unget extras */
649 i=hufGroup->minLen;
650 while(j>limit[i]) ++i;
651 bd->inbufBitCount += (hufGroup->maxLen - i);
652 /* Huffman decode value to get nextSym (with bounds checking) */
653 #ifdef ENABLE_BUNZIP_CHECKING
654 if ((i > hufGroup->maxLen)
655 || (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i]))
656 >= MAX_SYMBOLS))
657 return RETVAL_DATA_ERROR;
658 #else
659 j=(j>>(hufGroup->maxLen-i))-base[i];
660 #endif
661 nextSym = hufGroup->permute[j];
662 /* We have now decoded the symbol, which indicates either a new literal
663 byte, or a repeated run of the most recent literal byte. First,
664 check if nextSym indicates a repeated run, and if so loop collecting
665 how many times to repeat the last literal. */
666 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
667 /* If this is the start of a new run, zero out counter */
668 if(!runPos) {
669 runPos = 1;
670 t = 0;
671 }
672 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
673 each bit position, add 1 or 2 instead. For example,
674 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
675 You can make any bit pattern that way using 1 less symbol than
676 the basic or 0/1 method (except all bits 0, which would use no
677 symbols, but a run of length 0 doesn't mean anything in this
678 context). Thus space is saved. */
679 t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
680 runPos <<= 1;
681 continue;
682 }
683 /* When we hit the first non-run symbol after a run, we now know
684 how many times to repeat the last literal, so append that many
685 copies to our buffer of decoded symbols (dbuf) now. (The last
686 literal used is the one at the head of the mtfSymbol array.) */
687 if(runPos) {
688 runPos=0;
689 #ifdef ENABLE_BUNZIP_CHECKING
690 if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
691 #endif
692
693 uc = symToByte[mtfSymbol[0]];
694 byteCount[uc] += t;
695 while(t--) dbuf[dbufCount++]=uc;
696 }
697 /* Is this the terminating symbol? */
698 if(nextSym>symTotal) break;
699 /* At this point, nextSym indicates a new literal character. Subtract
700 one to get the position in the MTF array at which this literal is
701 currently to be found. (Note that the result can't be -1 or 0,
702 because 0 and 1 are RUNA and RUNB. But another instance of the
703 first symbol in the mtf array, position 0, would have been handled
704 as part of a run above. Therefore 1 unused mtf position minus
705 2 non-literal nextSym values equals -1.) */
706 #ifdef ENABLE_BUNZIP_CHECKING
707 if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
708 #endif
709 i = nextSym - 1;
710 uc = mtfSymbol[i];
711 /* Adjust the MTF array. Since we typically expect to move only a
712 * small number of symbols, and are bound by 256 in any case, using
713 * memmove here would typically be bigger and slower due to function
714 * call overhead and other assorted setup costs. */
715 do {
716 mtfSymbol[i] = mtfSymbol[i-1];
717 } while (--i);
718 mtfSymbol[0] = uc;
719 uc=symToByte[uc];
720 /* We have our literal byte. Save it into dbuf. */
721 byteCount[uc]++;
722 dbuf[dbufCount++] = (unsigned int)uc;
723 }
724 /* At this point, we've read all the huffman-coded symbols (and repeated
725 runs) for this block from the input stream, and decoded them into the
726 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
727 Now undo the Burrows-Wheeler transform on dbuf.
728 See http://dogma.net/markn/articles/bwt/bwt.htm
729 */
730 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
731 j=0;
732 for(i=0;i<256;i++) {
733 k=j+byteCount[i];
734 byteCount[i] = j;
735 j=k;
736 }
737 /* Figure out what order dbuf would be in if we sorted it. */
738 for (i=0;i<dbufCount;i++) {
739 uc=(unsigned char)(dbuf[i] & 0xff);
740 dbuf[byteCount[uc]] |= (i << 8);
741 byteCount[uc]++;
742 }
743 /* Decode first byte by hand to initialize "previous" byte. Note that it
744 doesn't get output, and if the first three characters are identical
745 it doesn't qualify as a run (hence writeRunCountdown=5). */
746 if(dbufCount) {
747 #ifdef ENABLE_BUNZIP_CHECKING
748 if(origPtr>=dbufCount) return RETVAL_DATA_ERROR;
749 #endif
750 bd->writePos=dbuf[origPtr];
751 bd->writeCurrent=(unsigned char)(bd->writePos&0xff);
752 bd->writePos>>=8;
753 bd->writeRunCountdown=5;
754 }
755 bd->writeCount=dbufCount;
756
757 return RETVAL_OK;
758 }
This page took 0.083339 seconds and 5 git commands to generate.