3 * Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
4 * Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
30 * Effort sponsored in part by the Defense Advanced Research Projects
31 * Agency (DARPA) and Air Force Research Laboratory, Air Force
32 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 #undef UBSEC_VERBOSE_DEBUG
38 #ifdef UBSEC_VERBOSE_DEBUG
43 * uBsec BCM5365 hardware crypto accelerator
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/proc_fs.h>
50 #include <linux/types.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/interrupt.h>
55 #include <linux/random.h>
56 #include <linux/skbuff.h>
57 #include <linux/stat.h>
60 #include <linux/ssb/ssb.h>
70 #include "cryptodev.h"
86 #define DRV_MODULE_NAME "ubsec_ssb"
87 #define PFX DRV_MODULE_NAME ": "
88 #define DRV_MODULE_VERSION "0.02"
89 #define DRV_MODULE_RELDATE "Feb 21, 2009"
92 #define DPRINTF(a...) \
95 printk(DRV_MODULE_NAME ": " a); \
104 static irqreturn_t
ubsec_ssb_isr(int, void *, struct pt_regs
*);
105 static int __devinit
ubsec_ssb_probe(struct ssb_device
*sdev
,
106 const struct ssb_device_id
*ent
);
107 static void __devexit
ubsec_ssb_remove(struct ssb_device
*sdev
);
108 int ubsec_attach(struct ssb_device
*sdev
, const struct ssb_device_id
*ent
,
109 struct device
*self
);
110 static void ubsec_setup_mackey(struct ubsec_session
*ses
, int algo
,
111 caddr_t key
, int klen
);
112 static int dma_map_skb(struct ubsec_softc
*sc
,
113 struct ubsec_dma_alloc
* q_map
, struct sk_buff
*skb
, int *mlen
);
114 static int dma_map_uio(struct ubsec_softc
*sc
,
115 struct ubsec_dma_alloc
*q_map
, struct uio
*uio
, int *mlen
);
116 static void dma_unmap(struct ubsec_softc
*sc
,
117 struct ubsec_dma_alloc
*q_map
, int mlen
);
118 static int ubsec_dmamap_aligned(struct ubsec_softc
*sc
,
119 const struct ubsec_dma_alloc
*q_map
, int mlen
);
122 static int proc_read(char *buf
, char **start
, off_t offset
,
123 int size
, int *peof
, void *data
);
126 void ubsec_reset_board(struct ubsec_softc
*);
127 void ubsec_init_board(struct ubsec_softc
*);
128 void ubsec_cleanchip(struct ubsec_softc
*);
129 void ubsec_totalreset(struct ubsec_softc
*);
130 int ubsec_free_q(struct ubsec_softc
*, struct ubsec_q
*);
132 static int ubsec_newsession(device_t
, u_int32_t
*, struct cryptoini
*);
133 static int ubsec_freesession(device_t
, u_int64_t
);
134 static int ubsec_process(device_t
, struct cryptop
*, int);
136 void ubsec_callback(struct ubsec_softc
*, struct ubsec_q
*);
137 void ubsec_feed(struct ubsec_softc
*);
138 void ubsec_mcopy(struct sk_buff
*, struct sk_buff
*, int, int);
139 void ubsec_dma_free(struct ubsec_softc
*, struct ubsec_dma_alloc
*);
140 int ubsec_dma_malloc(struct ubsec_softc
*, struct ubsec_dma_alloc
*,
144 void ubsec_dump_pb(struct ubsec_pktbuf
*);
145 void ubsec_dump_mcr(struct ubsec_mcr
*);
147 #define READ_REG(sc,r) \
148 ssb_read32((sc)->sdev, (r));
149 #define WRITE_REG(sc,r,val) \
150 ssb_write32((sc)->sdev, (r), (val));
151 #define READ_REG_SDEV(sdev,r) \
152 ssb_read32((sdev), (r));
153 #define WRITE_REG_SDEV(sdev,r,val) \
154 ssb_write32((sdev), (r), (val));
156 #define SWAP32(x) (x) = htole32(ntohl((x)))
157 #define HTOLE32(x) (x) = htole32(x)
159 #ifdef __LITTLE_ENDIAN
160 #define letoh16(x) (x)
161 #define letoh32(x) (x)
165 module_param(debug
, int, 0644);
166 MODULE_PARM_DESC(debug
, "Enable debug output");
168 #define UBSEC_SSB_MAX_CHIPS 1
169 static struct ubsec_softc
*ubsec_chip_idx
[UBSEC_SSB_MAX_CHIPS
];
170 static struct ubsec_stats ubsecstats
;
173 static struct proc_dir_entry
*procdebug
;
176 static struct ssb_device_id ubsec_ssb_tbl
[] = {
177 /* Broadcom BCM5365P IPSec Core */
178 SSB_DEVICE(SSB_VENDOR_BROADCOM
, SSB_DEV_IPSEC
, SSB_ANY_REV
),
182 static struct ssb_driver ubsec_ssb_driver
= {
183 .name
= DRV_MODULE_NAME
,
184 .id_table
= ubsec_ssb_tbl
,
185 .probe
= ubsec_ssb_probe
,
186 .remove
= __devexit_p(ubsec_ssb_remove
),
188 .suspend = ubsec_ssb_suspend,
189 .resume = ubsec_ssb_resume
193 static device_method_t ubsec_ssb_methods
= {
194 /* crypto device methods */
195 DEVMETHOD(cryptodev_newsession
, ubsec_newsession
),
196 DEVMETHOD(cryptodev_freesession
,ubsec_freesession
),
197 DEVMETHOD(cryptodev_process
, ubsec_process
),
202 proc_read(char *buf
, char **start
, off_t offset
,
203 int size
, int *peof
, void *data
)
205 int i
= 0, byteswritten
= 0, ret
;
206 unsigned int stat
, ctrl
;
207 #ifdef UBSEC_VERBOSE_DEBUG
209 struct ubsec_dma
*dmap
;
212 while ((i
< UBSEC_SSB_MAX_CHIPS
) && (ubsec_chip_idx
[i
] != NULL
))
214 struct ubsec_softc
*sc
= ubsec_chip_idx
[i
];
216 stat
= READ_REG(sc
, BS_STAT
);
217 ctrl
= READ_REG(sc
, BS_CTRL
);
218 ret
= snprintf((buf
+ byteswritten
),
219 (size
- byteswritten
) ,
220 "DEV %d, DMASTAT %08x, DMACTRL %08x\n", i
, stat
, ctrl
);
224 #ifdef UBSEC_VERBOSE_DEBUG
225 printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i
, stat
, ctrl
);
227 /* Dump all queues MCRs */
228 if (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
229 BSD_SIMPLEQ_FOREACH(q
, &sc
->sc_qchip
, q_next
)
232 ubsec_dump_mcr(&dmap
->d_dma
->d_mcr
);
247 * map in a given sk_buff
250 dma_map_skb(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
* q_map
, struct sk_buff
*skb
, int *mlen
)
256 DPRINTF("%s()\n", __FUNCTION__
);
260 * We support only a limited number of fragments.
262 if (unlikely((skb_shinfo(skb
)->nr_frags
+ 1) >= UBS_MAX_SCATTER
))
264 printk(KERN_ERR
"Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER
);
268 #ifdef UBSEC_VERBOSE_DEBUG
269 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, 0, (unsigned int)skb
->data
, skb_headlen(skb
));
272 /* first data package */
273 tmp
= dma_map_single(sc
->sc_dv
,
278 q_map
[i
].dma_paddr
= tmp
;
279 q_map
[i
].dma_vaddr
= skb
->data
;
280 q_map
[i
].dma_size
= skb_headlen(skb
);
282 if (unlikely(tmp
== 0))
284 printk(KERN_ERR
"Could not map memory region for dma.\n");
288 #ifdef UBSEC_VERBOSE_DEBUG
289 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, 0, (unsigned int)tmp
);
293 /* all other data packages */
294 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
296 #ifdef UBSEC_VERBOSE_DEBUG
297 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, i
+ 1,
298 (unsigned int)page_address(skb_shinfo(skb
)->frags
[i
].page
) +
299 skb_shinfo(skb
)->frags
[i
].page_offset
, skb_shinfo(skb
)->frags
[i
].size
);
302 tmp
= dma_map_single(sc
->sc_dv
,
303 page_address(skb_shinfo(skb
)->frags
[i
].page
) +
304 skb_shinfo(skb
)->frags
[i
].page_offset
,
305 skb_shinfo(skb
)->frags
[i
].size
,
308 q_map
[i
+ 1].dma_paddr
= tmp
;
309 q_map
[i
+ 1].dma_vaddr
= (void*)(page_address(skb_shinfo(skb
)->frags
[i
].page
) +
310 skb_shinfo(skb
)->frags
[i
].page_offset
);
311 q_map
[i
+ 1].dma_size
= skb_shinfo(skb
)->frags
[i
].size
;
313 if (unlikely(tmp
== 0))
315 printk(KERN_ERR
"Could not map memory region for dma.\n");
319 #ifdef UBSEC_VERBOSE_DEBUG
320 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, i
+ 1, (unsigned int)tmp
);
330 * map in a given uio buffer
334 dma_map_uio(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*q_map
, struct uio
*uio
, int *mlen
)
336 struct iovec
*iov
= uio
->uio_iov
;
341 DPRINTF("%s()\n", __FUNCTION__
);
345 * We support only a limited number of fragments.
347 if (unlikely(uio
->uio_iovcnt
>= UBS_MAX_SCATTER
))
349 printk(KERN_ERR
"Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER
);
353 for (n
= 0; n
< uio
->uio_iovcnt
; n
++) {
354 #ifdef UBSEC_VERBOSE_DEBUG
355 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, n
, (unsigned int)iov
->iov_base
, iov
->iov_len
);
357 tmp
= dma_map_single(sc
->sc_dv
,
362 q_map
[n
].dma_paddr
= tmp
;
363 q_map
[n
].dma_vaddr
= iov
->iov_base
;
364 q_map
[n
].dma_size
= iov
->iov_len
;
366 if (unlikely(tmp
== 0))
368 printk(KERN_ERR
"Could not map memory region for dma.\n");
372 #ifdef UBSEC_VERBOSE_DEBUG
373 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, n
, (unsigned int)tmp
);
384 dma_unmap(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*q_map
, int mlen
)
389 DPRINTF("%s()\n", __FUNCTION__
);
392 for(i
= 0; i
< mlen
; i
++)
394 #ifdef UBSEC_VERBOSE_DEBUG
395 DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__
, i
, (unsigned int)q_map
[i
].dma_paddr
, q_map
[i
].dma_size
);
397 dma_unmap_single(sc
->sc_dv
,
406 * Is the operand suitable aligned for direct DMA. Each
407 * segment must be aligned on a 32-bit boundary and all
408 * but the last segment must be a multiple of 4 bytes.
411 ubsec_dmamap_aligned(struct ubsec_softc
*sc
, const struct ubsec_dma_alloc
*q_map
, int mlen
)
416 DPRINTF("%s()\n", __FUNCTION__
);
419 for (i
= 0; i
< mlen
; i
++) {
420 if (q_map
[i
].dma_paddr
& 3)
422 if (i
!= (mlen
- 1) && (q_map
[i
].dma_size
& 3))
429 #define N(a) (sizeof(a) / sizeof (a[0]))
431 ubsec_setup_mackey(struct ubsec_session
*ses
, int algo
, caddr_t key
, int klen
)
439 DPRINTF("%s()\n", __FUNCTION__
);
442 for (i
= 0; i
< klen
; i
++)
443 key
[i
] ^= HMAC_IPAD_VAL
;
445 if (algo
== CRYPTO_MD5_HMAC
) {
447 MD5Update(&md5ctx
, key
, klen
);
448 MD5Update(&md5ctx
, hmac_ipad_buffer
, MD5_HMAC_BLOCK_LEN
- klen
);
449 bcopy(md5ctx
.md5_st8
, ses
->ses_hminner
, sizeof(md5ctx
.md5_st8
));
452 SHA1Update(&sha1ctx
, key
, klen
);
453 SHA1Update(&sha1ctx
, hmac_ipad_buffer
,
454 SHA1_HMAC_BLOCK_LEN
- klen
);
455 bcopy(sha1ctx
.h
.b32
, ses
->ses_hminner
, sizeof(sha1ctx
.h
.b32
));
458 for (i
= 0; i
< klen
; i
++)
459 key
[i
] ^= (HMAC_IPAD_VAL
^ HMAC_OPAD_VAL
);
461 if (algo
== CRYPTO_MD5_HMAC
) {
463 MD5Update(&md5ctx
, key
, klen
);
464 MD5Update(&md5ctx
, hmac_opad_buffer
, MD5_HMAC_BLOCK_LEN
- klen
);
465 bcopy(md5ctx
.md5_st8
, ses
->ses_hmouter
, sizeof(md5ctx
.md5_st8
));
468 SHA1Update(&sha1ctx
, key
, klen
);
469 SHA1Update(&sha1ctx
, hmac_opad_buffer
,
470 SHA1_HMAC_BLOCK_LEN
- klen
);
471 bcopy(sha1ctx
.h
.b32
, ses
->ses_hmouter
, sizeof(sha1ctx
.h
.b32
));
474 for (i
= 0; i
< klen
; i
++)
475 key
[i
] ^= HMAC_OPAD_VAL
;
477 #else /* HMAC_HACK */
478 DPRINTF("md5/sha not implemented\n");
479 #endif /* HMAC_HACK */
484 __devinit
ubsec_ssb_probe(struct ssb_device
*sdev
,
485 const struct ssb_device_id
*ent
)
490 DPRINTF("%s()\n", __FUNCTION__
);
493 err
= ssb_bus_powerup(sdev
->bus
, 0);
495 dev_err(sdev
->dev
, "Failed to powerup the bus\n");
499 err
= request_irq(sdev
->irq
, (irq_handler_t
)ubsec_ssb_isr
,
500 IRQF_DISABLED
| IRQF_SHARED
, DRV_MODULE_NAME
, sdev
);
502 dev_err(sdev
->dev
, "Could not request irq\n");
503 goto err_out_powerdown
;
506 err
= ssb_dma_set_mask(sdev
, DMA_32BIT_MASK
);
509 "Required 32BIT DMA mask unsupported by the system.\n");
510 goto err_out_free_irq
;
513 printk(KERN_INFO
"Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
516 DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
517 sdev
->id
.vendor
, sdev
->id
.coreid
, sdev
->id
.revision
);
519 ssb_device_enable(sdev
, 0);
521 if (ubsec_attach(sdev
, ent
, sdev
->dev
) != 0)
522 goto err_out_disable
;
525 procdebug
= create_proc_entry(DRV_MODULE_NAME
, S_IRUSR
, NULL
);
528 procdebug
->read_proc
= proc_read
;
529 procdebug
->data
= NULL
;
531 DPRINTF("Unable to create proc file.\n");
537 ssb_device_disable(sdev
, 0);
540 free_irq(sdev
->irq
, sdev
);
543 ssb_bus_may_powerdown(sdev
->bus
);
549 static void __devexit
ubsec_ssb_remove(struct ssb_device
*sdev
) {
551 struct ubsec_softc
*sc
;
552 unsigned int ctrlflgs
;
553 struct ubsec_dma
*dmap
;
557 DPRINTF("%s()\n", __FUNCTION__
);
560 ctrlflgs
= READ_REG_SDEV(sdev
, BS_CTRL
);
561 /* disable all IPSec Core interrupts globally */
562 ctrlflgs
^= (BS_CTRL_MCR1INT
| BS_CTRL_MCR2INT
|
564 WRITE_REG_SDEV(sdev
, BS_CTRL
, ctrlflgs
);
566 free_irq(sdev
->irq
, sdev
);
568 sc
= (struct ubsec_softc
*)ssb_get_drvdata(sdev
);
570 /* unregister all crypto algorithms */
571 crypto_unregister_all(sc
->sc_cid
);
573 /* Free queue / dma memory */
574 for (i
= 0; i
< UBS_MAX_NQUEUE
; i
++) {
577 q
= sc
->sc_queuea
[i
];
583 ubsec_dma_free(sc
, &dmap
->d_alloc
);
588 sc
->sc_queuea
[i
] = NULL
;
591 ssb_device_disable(sdev
, 0);
592 ssb_bus_may_powerdown(sdev
->bus
);
593 ssb_set_drvdata(sdev
, NULL
);
597 remove_proc_entry(DRV_MODULE_NAME
, NULL
);
604 ubsec_attach(struct ssb_device
*sdev
, const struct ssb_device_id
*ent
,
607 struct ubsec_softc
*sc
= NULL
;
608 struct ubsec_dma
*dmap
;
610 static int num_chips
= 0;
613 DPRINTF("%s()\n", __FUNCTION__
);
616 sc
= (struct ubsec_softc
*) kmalloc(sizeof(*sc
), GFP_KERNEL
);
619 memset(sc
, 0, sizeof(*sc
));
621 sc
->sc_dv
= sdev
->dev
;
624 spin_lock_init(&sc
->sc_ringmtx
);
626 softc_device_init(sc
, "ubsec_ssb", num_chips
, ubsec_ssb_methods
);
628 /* Maybe someday there are boards with more than one chip available */
629 if (num_chips
< UBSEC_SSB_MAX_CHIPS
) {
630 ubsec_chip_idx
[device_get_unit(sc
->sc_dev
)] = sc
;
634 ssb_set_drvdata(sdev
, sc
);
636 BSD_SIMPLEQ_INIT(&sc
->sc_queue
);
637 BSD_SIMPLEQ_INIT(&sc
->sc_qchip
);
638 BSD_SIMPLEQ_INIT(&sc
->sc_queue2
);
639 BSD_SIMPLEQ_INIT(&sc
->sc_qchip2
);
640 BSD_SIMPLEQ_INIT(&sc
->sc_q2free
);
642 sc
->sc_statmask
= BS_STAT_MCR1_DONE
| BS_STAT_DMAERR
;
644 sc
->sc_cid
= crypto_get_driverid(softc_get_device(sc
), CRYPTOCAP_F_HARDWARE
);
645 if (sc
->sc_cid
< 0) {
646 device_printf(sc
->sc_dev
, "could not get crypto driver id\n");
650 BSD_SIMPLEQ_INIT(&sc
->sc_freequeue
);
652 for (i
= 0; i
< UBS_MAX_NQUEUE
; i
++, dmap
++) {
655 q
= (struct ubsec_q
*)kmalloc(sizeof(struct ubsec_q
), GFP_KERNEL
);
657 printf(": can't allocate queue buffers\n");
661 if (ubsec_dma_malloc(sc
, &dmap
->d_alloc
, sizeof(struct ubsec_dmachunk
),0)) {
662 printf(": can't allocate dma buffers\n");
666 dmap
->d_dma
= (struct ubsec_dmachunk
*)dmap
->d_alloc
.dma_vaddr
;
669 sc
->sc_queuea
[i
] = q
;
671 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
675 * Reset Broadcom chip
677 ubsec_reset_board(sc
);
682 ubsec_init_board(sc
);
684 /* supported crypto algorithms */
685 crypto_register(sc
->sc_cid
, CRYPTO_3DES_CBC
, 0, 0);
686 crypto_register(sc
->sc_cid
, CRYPTO_DES_CBC
, 0, 0);
688 if (sc
->sc_flags
& UBS_FLAGS_AES
) {
689 crypto_register(sc
->sc_cid
, CRYPTO_AES_CBC
, 0, 0);
690 printf(KERN_INFO DRV_MODULE_NAME
": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
693 printf(KERN_INFO DRV_MODULE_NAME
": DES 3DES MD5_HMAC SHA1_HMAC\n");
695 crypto_register(sc
->sc_cid
, CRYPTO_MD5_HMAC
, 0, 0);
696 crypto_register(sc
->sc_cid
, CRYPTO_SHA1_HMAC
, 0, 0);
702 * UBSEC Interrupt routine
705 ubsec_ssb_isr(int irq
, void *arg
, struct pt_regs
*regs
)
707 struct ubsec_softc
*sc
= NULL
;
708 volatile u_int32_t stat
;
710 struct ubsec_dma
*dmap
;
713 #ifdef UBSEC_VERBOSE_DEBUG
714 DPRINTF("%s()\n", __FUNCTION__
);
717 sc
= (struct ubsec_softc
*)ssb_get_drvdata(arg
);
719 stat
= READ_REG(sc
, BS_STAT
);
721 stat
&= sc
->sc_statmask
;
725 WRITE_REG(sc
, BS_STAT
, stat
); /* IACK */
728 * Check to see if we have any packets waiting for us
730 if ((stat
& BS_STAT_MCR1_DONE
)) {
731 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
732 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_qchip
);
735 if ((dmap
->d_dma
->d_mcr
.mcr_flags
& htole16(UBS_MCR_DONE
)) == 0)
737 DPRINTF("error while processing MCR. Flags = %x\n", dmap
->d_dma
->d_mcr
.mcr_flags
);
741 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_qchip
, q_next
);
743 npkts
= q
->q_nstacked_mcrs
;
745 * search for further sc_qchip ubsec_q's that share
746 * the same MCR, and complete them too, they must be
749 for (i
= 0; i
< npkts
; i
++) {
750 if(q
->q_stacked_mcr
[i
])
751 ubsec_callback(sc
, q
->q_stacked_mcr
[i
]);
755 ubsec_callback(sc
, q
);
759 * Don't send any more packet to chip if there has been
762 if (likely(!(stat
& BS_STAT_DMAERR
)))
765 DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
769 * Check to see if we got any DMA Error
771 if (stat
& BS_STAT_DMAERR
) {
772 volatile u_int32_t a
= READ_REG(sc
, BS_ERR
);
774 printf(KERN_ERR
"%s: dmaerr %s@%08x\n", DRV_MODULE_NAME
,
775 (a
& BS_ERR_READ
) ? "read" : "write", a
& BS_ERR_ADDR
);
777 ubsecstats
.hst_dmaerr
++;
778 ubsec_totalreset(sc
);
786 * ubsec_feed() - aggregate and post requests to chip
787 * It is assumed that the caller set splnet()
790 ubsec_feed(struct ubsec_softc
*sc
)
792 #ifdef UBSEC_VERBOSE_DEBUG
795 struct ubsec_q
*q
, *q2
;
800 npkts
= sc
->sc_nqueue
;
801 if (npkts
> UBS_MAX_AGGR
)
802 npkts
= UBS_MAX_AGGR
;
806 stat
= READ_REG(sc
, BS_STAT
);
808 if (stat
& (BS_STAT_MCR1_FULL
| BS_STAT_DMAERR
)) {
809 if(stat
& BS_STAT_DMAERR
) {
810 ubsec_totalreset(sc
);
811 ubsecstats
.hst_dmaerr
++;
816 #ifdef UBSEC_VERBOSE_DEBUG
817 DPRINTF("merging %d records\n", npkts
);
819 /* XXX temporary aggregation statistics reporting code */
822 DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME
, max
);
824 #endif /* UBSEC_VERBOSE_DEBUG */
826 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
827 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
833 * We use dma_map_single() - no sync required!
836 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
837 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
838 if (q
->q_dst_map
!= NULL
)
839 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
840 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
843 q
->q_nstacked_mcrs
= npkts
- 1; /* Number of packets stacked */
845 for (i
= 0; i
< q
->q_nstacked_mcrs
; i
++) {
846 q2
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
849 bus_dmamap_sync(sc
->sc_dmat
, q2
->q_src_map
,
850 0, q2
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
851 if (q2
->q_dst_map
!= NULL
)
852 bus_dmamap_sync(sc
->sc_dmat
, q2
->q_dst_map
,
853 0, q2
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
855 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
858 v
= ((char *)&q2
->q_dma
->d_dma
->d_mcr
) + sizeof(struct ubsec_mcr
) -
859 sizeof(struct ubsec_mcr_add
);
860 bcopy(v
, &q
->q_dma
->d_dma
->d_mcradd
[i
], sizeof(struct ubsec_mcr_add
));
861 q
->q_stacked_mcr
[i
] = q2
;
863 q
->q_dma
->d_dma
->d_mcr
.mcr_pkts
= htole16(npkts
);
864 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_qchip
, q
, q_next
);
866 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dma
->d_alloc
.dma_map
,
867 0, q
->q_dma
->d_alloc
.dma_map
->dm_mapsize
,
868 BUS_DMASYNC_PREREAD
| BUS_DMASYNC_PREWRITE
);
870 WRITE_REG(sc
, BS_MCR1
, q
->q_dma
->d_alloc
.dma_paddr
+
871 offsetof(struct ubsec_dmachunk
, d_mcr
));
872 #ifdef UBSEC_VERBOSE_DEBUG
873 DPRINTF("feed (1): q->chip %p %08x %08x\n", q
,
874 (u_int32_t
)q
->q_dma
->d_alloc
.dma_paddr
,
875 (u_int32_t
)(q
->q_dma
->d_alloc
.dma_paddr
+
876 offsetof(struct ubsec_dmachunk
, d_mcr
)));
877 #endif /* UBSEC_DEBUG */
881 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_queue
)) {
882 stat
= READ_REG(sc
, BS_STAT
);
884 if (stat
& (BS_STAT_MCR1_FULL
| BS_STAT_DMAERR
)) {
885 if(stat
& BS_STAT_DMAERR
) {
886 ubsec_totalreset(sc
);
887 ubsecstats
.hst_dmaerr
++;
892 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
895 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
896 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
897 if (q
->q_dst_map
!= NULL
)
898 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
899 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
900 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dma
->d_alloc
.dma_map
,
901 0, q
->q_dma
->d_alloc
.dma_map
->dm_mapsize
,
902 BUS_DMASYNC_PREREAD
| BUS_DMASYNC_PREWRITE
);
905 WRITE_REG(sc
, BS_MCR1
, q
->q_dma
->d_alloc
.dma_paddr
+
906 offsetof(struct ubsec_dmachunk
, d_mcr
));
907 #ifdef UBSEC_VERBOSE_DEBUG
908 DPRINTF("feed (2): q->chip %p %08x %08x\n", q
,
909 (u_int32_t
)q
->q_dma
->d_alloc
.dma_paddr
,
910 (u_int32_t
)(q
->q_dma
->d_alloc
.dma_paddr
+
911 offsetof(struct ubsec_dmachunk
, d_mcr
)));
912 #endif /* UBSEC_DEBUG */
913 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
915 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_qchip
, q
, q_next
);
920 * Allocate a new 'session' and return an encoded session id. 'sidp'
921 * contains our registration id, and should contain an encoded session
922 * id on successful allocation.
925 ubsec_newsession(device_t dev
, u_int32_t
*sidp
, struct cryptoini
*cri
)
927 struct cryptoini
*c
, *encini
= NULL
, *macini
= NULL
;
928 struct ubsec_softc
*sc
= NULL
;
929 struct ubsec_session
*ses
= NULL
;
933 DPRINTF("%s()\n", __FUNCTION__
);
936 if (sidp
== NULL
|| cri
== NULL
)
939 sc
= device_get_softc(dev
);
944 for (c
= cri
; c
!= NULL
; c
= c
->cri_next
) {
945 if (c
->cri_alg
== CRYPTO_MD5_HMAC
||
946 c
->cri_alg
== CRYPTO_SHA1_HMAC
) {
950 } else if (c
->cri_alg
== CRYPTO_DES_CBC
||
951 c
->cri_alg
== CRYPTO_3DES_CBC
||
952 c
->cri_alg
== CRYPTO_AES_CBC
) {
959 if (encini
== NULL
&& macini
== NULL
)
962 if (sc
->sc_sessions
== NULL
) {
963 ses
= sc
->sc_sessions
= (struct ubsec_session
*)kmalloc(
964 sizeof(struct ubsec_session
), SLAB_ATOMIC
);
967 memset(ses
, 0, sizeof(struct ubsec_session
));
969 sc
->sc_nsessions
= 1;
971 for (sesn
= 0; sesn
< sc
->sc_nsessions
; sesn
++) {
972 if (sc
->sc_sessions
[sesn
].ses_used
== 0) {
973 ses
= &sc
->sc_sessions
[sesn
];
979 sesn
= sc
->sc_nsessions
;
980 ses
= (struct ubsec_session
*)kmalloc((sesn
+ 1) *
981 sizeof(struct ubsec_session
), SLAB_ATOMIC
);
984 memset(ses
, 0, (sesn
+ 1) * sizeof(struct ubsec_session
));
985 bcopy(sc
->sc_sessions
, ses
, sesn
*
986 sizeof(struct ubsec_session
));
987 bzero(sc
->sc_sessions
, sesn
*
988 sizeof(struct ubsec_session
));
989 kfree(sc
->sc_sessions
);
990 sc
->sc_sessions
= ses
;
991 ses
= &sc
->sc_sessions
[sesn
];
996 bzero(ses
, sizeof(struct ubsec_session
));
1000 /* XXX may read fewer than requested */
1001 read_random(ses
->ses_iv
, sizeof(ses
->ses_iv
));
1003 /* Go ahead and compute key in ubsec's byte order */
1004 if (encini
->cri_alg
== CRYPTO_DES_CBC
) {
1005 /* DES uses the same key three times:
1006 * 1st encrypt -> 2nd decrypt -> 3nd encrypt */
1007 bcopy(encini
->cri_key
, &ses
->ses_key
[0], 8);
1008 bcopy(encini
->cri_key
, &ses
->ses_key
[2], 8);
1009 bcopy(encini
->cri_key
, &ses
->ses_key
[4], 8);
1010 ses
->ses_keysize
= 192; /* Fake! Actually its only 64bits ..
1011 oh no it is even less: 54bits. */
1012 } else if(encini
->cri_alg
== CRYPTO_3DES_CBC
) {
1013 bcopy(encini
->cri_key
, ses
->ses_key
, 24);
1014 ses
->ses_keysize
= 192;
1015 } else if(encini
->cri_alg
== CRYPTO_AES_CBC
) {
1016 ses
->ses_keysize
= encini
->cri_klen
;
1018 if (ses
->ses_keysize
!= 128 &&
1019 ses
->ses_keysize
!= 192 &&
1020 ses
->ses_keysize
!= 256)
1022 DPRINTF("unsupported AES key size: %d\n", ses
->ses_keysize
);
1025 bcopy(encini
->cri_key
, ses
->ses_key
, (ses
->ses_keysize
/ 8));
1028 /* Hardware requires the keys in little endian byte order */
1029 for (i
=0; i
< (ses
->ses_keysize
/ 32); i
++)
1030 SWAP32(ses
->ses_key
[i
]);
1034 ses
->ses_mlen
= macini
->cri_mlen
;
1036 if (ses
->ses_mlen
== 0 ||
1037 ses
->ses_mlen
> SHA1_HASH_LEN
) {
1039 if (macini
->cri_alg
== CRYPTO_MD5_HMAC
||
1040 macini
->cri_alg
== CRYPTO_SHA1_HMAC
)
1042 ses
->ses_mlen
= DEFAULT_HMAC_LEN
;
1046 * Reserved for future usage. MD5/SHA1 calculations have
1047 * different hash sizes.
1049 printk(KERN_ERR DRV_MODULE_NAME
": unsupported hash operation with mac/hash len: %d\n", ses
->ses_mlen
);
1055 if (macini
->cri_key
!= NULL
) {
1056 ubsec_setup_mackey(ses
, macini
->cri_alg
, macini
->cri_key
,
1057 macini
->cri_klen
/ 8);
1061 *sidp
= UBSEC_SID(device_get_unit(sc
->sc_dev
), sesn
);
1066 * Deallocate a session.
1069 ubsec_freesession(device_t dev
, u_int64_t tid
)
1071 struct ubsec_softc
*sc
= device_get_softc(dev
);
1073 u_int32_t sid
= ((u_int32_t
)tid
) & 0xffffffff;
1076 DPRINTF("%s()\n", __FUNCTION__
);
1082 session
= UBSEC_SESSION(sid
);
1083 if (session
< sc
->sc_nsessions
) {
1084 bzero(&sc
->sc_sessions
[session
], sizeof(sc
->sc_sessions
[session
]));
1091 ubsec_process(device_t dev
, struct cryptop
*crp
, int hint
)
1093 struct ubsec_q
*q
= NULL
;
1094 int err
= 0, i
, j
, nicealign
;
1095 struct ubsec_softc
*sc
= device_get_softc(dev
);
1096 struct cryptodesc
*crd1
, *crd2
, *maccrd
, *enccrd
;
1097 int encoffset
= 0, macoffset
= 0, cpskip
, cpoffset
;
1098 int sskip
, dskip
, stheend
, dtheend
, ivsize
= 8;
1100 struct ubsec_session
*ses
;
1101 struct ubsec_generic_ctx ctx
;
1102 struct ubsec_dma
*dmap
= NULL
;
1103 unsigned long flags
;
1106 DPRINTF("%s()\n", __FUNCTION__
);
1109 if (unlikely(crp
== NULL
|| crp
->crp_callback
== NULL
)) {
1110 ubsecstats
.hst_invalid
++;
1114 if (unlikely(sc
== NULL
))
1117 #ifdef UBSEC_VERBOSE_DEBUG
1118 DPRINTF("spin_lock_irqsave\n");
1120 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1121 //spin_lock_irq(&sc->sc_ringmtx);
1123 if (BSD_SIMPLEQ_EMPTY(&sc
->sc_freequeue
)) {
1124 ubsecstats
.hst_queuefull
++;
1125 #ifdef UBSEC_VERBOSE_DEBUG
1126 DPRINTF("spin_unlock_irqrestore\n");
1128 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1129 //spin_unlock_irq(&sc->sc_ringmtx);
1134 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_freequeue
);
1135 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_freequeue
, q_next
);
1136 #ifdef UBSEC_VERBOSE_DEBUG
1137 DPRINTF("spin_unlock_irqrestore\n");
1139 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1140 //spin_unlock_irq(&sc->sc_ringmtx);
1142 dmap
= q
->q_dma
; /* Save dma pointer */
1143 bzero(q
, sizeof(struct ubsec_q
));
1144 bzero(&ctx
, sizeof(ctx
));
1146 q
->q_sesn
= UBSEC_SESSION(crp
->crp_sid
);
1148 ses
= &sc
->sc_sessions
[q
->q_sesn
];
1150 if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1151 q
->q_src_m
= (struct sk_buff
*)crp
->crp_buf
;
1152 q
->q_dst_m
= (struct sk_buff
*)crp
->crp_buf
;
1153 } else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1154 q
->q_src_io
= (struct uio
*)crp
->crp_buf
;
1155 q
->q_dst_io
= (struct uio
*)crp
->crp_buf
;
1158 goto errout
; /* XXX we don't handle contiguous blocks! */
1161 bzero(&dmap
->d_dma
->d_mcr
, sizeof(struct ubsec_mcr
));
1163 dmap
->d_dma
->d_mcr
.mcr_pkts
= htole16(1);
1164 dmap
->d_dma
->d_mcr
.mcr_flags
= 0;
1167 crd1
= crp
->crp_desc
;
1172 crd2
= crd1
->crd_next
;
1175 if (crd1
->crd_alg
== CRYPTO_MD5_HMAC
||
1176 crd1
->crd_alg
== CRYPTO_SHA1_HMAC
) {
1179 } else if (crd1
->crd_alg
== CRYPTO_DES_CBC
||
1180 crd1
->crd_alg
== CRYPTO_3DES_CBC
||
1181 crd1
->crd_alg
== CRYPTO_AES_CBC
) {
1189 if ((crd1
->crd_alg
== CRYPTO_MD5_HMAC
||
1190 crd1
->crd_alg
== CRYPTO_SHA1_HMAC
) &&
1191 (crd2
->crd_alg
== CRYPTO_DES_CBC
||
1192 crd2
->crd_alg
== CRYPTO_3DES_CBC
||
1193 crd2
->crd_alg
== CRYPTO_AES_CBC
) &&
1194 ((crd2
->crd_flags
& CRD_F_ENCRYPT
) == 0)) {
1197 } else if ((crd1
->crd_alg
== CRYPTO_DES_CBC
||
1198 crd1
->crd_alg
== CRYPTO_3DES_CBC
||
1199 crd1
->crd_alg
== CRYPTO_AES_CBC
) &&
1200 (crd2
->crd_alg
== CRYPTO_MD5_HMAC
||
1201 crd2
->crd_alg
== CRYPTO_SHA1_HMAC
) &&
1202 (crd1
->crd_flags
& CRD_F_ENCRYPT
)) {
1207 * We cannot order the ubsec as requested
1209 printk(KERN_ERR DRV_MODULE_NAME
": got wrong algorithm/signature order.\n");
1215 /* Encryption/Decryption requested */
1217 encoffset
= enccrd
->crd_skip
;
1219 if (enccrd
->crd_alg
== CRYPTO_DES_CBC
||
1220 enccrd
->crd_alg
== CRYPTO_3DES_CBC
)
1222 ctx
.pc_flags
|= htole16(UBS_PKTCTX_ENC_3DES
);
1223 ctx
.pc_type
= htole16(UBS_PKTCTX_TYPE_IPSEC_DES
);
1224 ivsize
= 8; /* [3]DES uses 64bit IVs */
1226 ctx
.pc_flags
|= htole16(UBS_PKTCTX_ENC_AES
);
1227 ctx
.pc_type
= htole16(UBS_PKTCTX_TYPE_IPSEC_AES
);
1228 ivsize
= 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
1230 switch(ses
->ses_keysize
)
1233 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES128
);
1236 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES192
);
1239 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES256
);
1242 DPRINTF("invalid AES key size: %d\n", ses
->ses_keysize
);
1248 if (enccrd
->crd_flags
& CRD_F_ENCRYPT
) {
1249 /* Direction: Outbound */
1251 q
->q_flags
|= UBSEC_QFLAGS_COPYOUTIV
;
1253 if (enccrd
->crd_flags
& CRD_F_IV_EXPLICIT
) {
1254 bcopy(enccrd
->crd_iv
, ctx
.pc_iv
, ivsize
);
1256 for(i
=0; i
< (ivsize
/ 4); i
++)
1257 ctx
.pc_iv
[i
] = ses
->ses_iv
[i
];
1260 /* If there is no IV in the buffer -> copy it here */
1261 if ((enccrd
->crd_flags
& CRD_F_IV_PRESENT
) == 0) {
1262 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1264 m_copyback(q->q_src_m,
1268 crypto_copyback(crp
->crp_flags
, (caddr_t
)q
->q_src_m
,
1269 enccrd
->crd_inject
, ivsize
, (caddr_t
)ctx
.pc_iv
);
1270 else if (crp
->crp_flags
& CRYPTO_F_IOV
)
1272 cuio_copyback(q->q_src_io,
1276 crypto_copyback(crp
->crp_flags
, (caddr_t
)q
->q_src_io
,
1277 enccrd
->crd_inject
, ivsize
, (caddr_t
)ctx
.pc_iv
);
1280 /* Direction: Inbound */
1282 ctx
.pc_flags
|= htole16(UBS_PKTCTX_INBOUND
);
1284 if (enccrd
->crd_flags
& CRD_F_IV_EXPLICIT
)
1285 bcopy(enccrd
->crd_iv
, ctx
.pc_iv
, ivsize
);
1286 else if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1288 m_copydata(q->q_src_m, enccrd->crd_inject,
1289 8, (caddr_t)ctx.pc_iv);
1291 crypto_copydata(crp
->crp_flags
, (caddr_t
)q
->q_src_m
,
1292 enccrd
->crd_inject
, ivsize
,
1293 (caddr_t
)ctx
.pc_iv
);
1294 else if (crp
->crp_flags
& CRYPTO_F_IOV
)
1296 cuio_copydata(q->q_src_io,
1297 enccrd->crd_inject, 8,
1298 (caddr_t)ctx.pc_iv);
1300 crypto_copydata(crp
->crp_flags
, (caddr_t
)q
->q_src_io
,
1301 enccrd
->crd_inject
, ivsize
,
1302 (caddr_t
)ctx
.pc_iv
);
1306 /* Even though key & IV sizes differ from cipher to cipher
1307 * copy / swap the full array lengths. Let the compiler unroll
1308 * the loop to increase the cpu pipeline performance... */
1309 for(i
=0; i
< 8; i
++)
1310 ctx
.pc_key
[i
] = ses
->ses_key
[i
];
1311 for(i
=0; i
< 4; i
++)
1312 SWAP32(ctx
.pc_iv
[i
]);
1315 /* Authentication requested */
1317 macoffset
= maccrd
->crd_skip
;
1319 if (maccrd
->crd_alg
== CRYPTO_MD5_HMAC
)
1320 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AUTH_MD5
);
1322 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AUTH_SHA1
);
1324 for (i
= 0; i
< 5; i
++) {
1325 ctx
.pc_hminner
[i
] = ses
->ses_hminner
[i
];
1326 ctx
.pc_hmouter
[i
] = ses
->ses_hmouter
[i
];
1328 HTOLE32(ctx
.pc_hminner
[i
]);
1329 HTOLE32(ctx
.pc_hmouter
[i
]);
1333 if (enccrd
&& maccrd
) {
1335 * ubsec cannot handle packets where the end of encryption
1336 * and authentication are not the same, or where the
1337 * encrypted part begins before the authenticated part.
1339 if (((encoffset
+ enccrd
->crd_len
) !=
1340 (macoffset
+ maccrd
->crd_len
)) ||
1341 (enccrd
->crd_skip
< maccrd
->crd_skip
)) {
1345 sskip
= maccrd
->crd_skip
;
1346 cpskip
= dskip
= enccrd
->crd_skip
;
1347 stheend
= maccrd
->crd_len
;
1348 dtheend
= enccrd
->crd_len
;
1349 coffset
= enccrd
->crd_skip
- maccrd
->crd_skip
;
1350 cpoffset
= cpskip
+ dtheend
;
1352 DPRINTF("mac: skip %d, len %d, inject %d\n",
1353 maccrd
->crd_skip
, maccrd
->crd_len
, maccrd
->crd_inject
);
1354 DPRINTF("enc: skip %d, len %d, inject %d\n",
1355 enccrd
->crd_skip
, enccrd
->crd_len
, enccrd
->crd_inject
);
1356 DPRINTF("src: skip %d, len %d\n", sskip
, stheend
);
1357 DPRINTF("dst: skip %d, len %d\n", dskip
, dtheend
);
1358 DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1359 coffset
, stheend
, cpskip
, cpoffset
);
1362 cpskip
= dskip
= sskip
= macoffset
+ encoffset
;
1363 dtheend
= stheend
= (enccrd
)?enccrd
->crd_len
:maccrd
->crd_len
;
1364 cpoffset
= cpskip
+ dtheend
;
1367 ctx
.pc_offset
= htole16(coffset
>> 2);
1370 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0, UBS_MAX_SCATTER
,
1371 0xfff0, 0, BUS_DMA_NOWAIT
, &q
->q_src_map
) != 0) {
1377 if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1379 if (bus_dmamap_load_mbuf(sc
->sc_dmat
, q
->q_src_map
,
1380 q
->q_src_m
, BUS_DMA_NOWAIT
) != 0) {
1381 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1382 q
->q_src_map
= NULL
;
1387 err
= dma_map_skb(sc
, q
->q_src_map
, q
->q_src_m
, &q
->q_src_len
);
1388 if (unlikely(err
!= 0))
1391 } else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1393 if (bus_dmamap_load_uio(sc
->sc_dmat
, q
->q_src_map
,
1394 q
->q_src_io
, BUS_DMA_NOWAIT
) != 0) {
1395 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1396 q
->q_src_map
= NULL
;
1401 err
= dma_map_uio(sc
, q
->q_src_map
, q
->q_src_io
, &q
->q_src_len
);
1402 if (unlikely(err
!= 0))
1409 nicealign
= ubsec_dmamap_aligned(sc
, q
->q_src_map
, q
->q_src_len
);
1411 dmap
->d_dma
->d_mcr
.mcr_pktlen
= htole16(stheend
);
1414 DPRINTF("src skip: %d\n", sskip
);
1416 for (i
= j
= 0; i
< q
->q_src_len
; i
++) {
1417 struct ubsec_pktbuf
*pb
;
1418 size_t packl
= q
->q_src_map
[i
].dma_size
;
1419 dma_addr_t packp
= q
->q_src_map
[i
].dma_paddr
;
1421 if (sskip
>= packl
) {
1430 /* maximum fragment size is 0xfffc */
1431 if (packl
> 0xfffc) {
1432 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1438 pb
= &dmap
->d_dma
->d_mcr
.mcr_ipktbuf
;
1440 pb
= &dmap
->d_dma
->d_sbuf
[j
- 1];
1442 pb
->pb_addr
= htole32(packp
);
1445 if (packl
> stheend
) {
1446 pb
->pb_len
= htole32(stheend
);
1449 pb
->pb_len
= htole32(packl
);
1453 pb
->pb_len
= htole32(packl
);
1455 if ((i
+ 1) == q
->q_src_len
)
1458 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1459 offsetof(struct ubsec_dmachunk
, d_sbuf
[j
]));
1463 if (enccrd
== NULL
&& maccrd
!= NULL
) {
1464 /* Authentication only */
1465 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_addr
= 0;
1466 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_len
= 0;
1467 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_next
=
1468 htole32(dmap
->d_alloc
.dma_paddr
+
1469 offsetof(struct ubsec_dmachunk
, d_macbuf
[0]));
1471 DPRINTF("opkt: %x %x %x\n",
1472 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_addr
,
1473 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_len
,
1474 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_next
);
1477 if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1483 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0,
1484 UBS_MAX_SCATTER
, 0xfff0, 0, BUS_DMA_NOWAIT
,
1485 &q
->q_dst_map
) != 0) {
1489 if (bus_dmamap_load_uio(sc
->sc_dmat
, q
->q_dst_map
,
1490 q
->q_dst_io
, BUS_DMA_NOWAIT
) != 0) {
1491 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1492 q
->q_dst_map
= NULL
;
1497 /* HW shall copy the result into the source memory */
1498 for(i
= 0; i
< q
->q_src_len
; i
++)
1499 q
->q_dst_map
[i
] = q
->q_src_map
[i
];
1501 q
->q_dst_len
= q
->q_src_len
;
1504 } else if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1507 /* HW shall copy the result into the source memory */
1508 q
->q_dst_m
= q
->q_src_m
;
1509 for(i
= 0; i
< q
->q_src_len
; i
++)
1510 q
->q_dst_map
[i
] = q
->q_src_map
[i
];
1512 q
->q_dst_len
= q
->q_src_len
;
1518 struct sk_buff
*m
, *top
, **mp
;
1520 totlen
= q
->q_src_map
->dm_mapsize
;
1521 if (q
->q_src_m
->m_flags
& M_PKTHDR
) {
1523 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1526 MGET(m
, M_DONTWAIT
, MT_DATA
);
1533 M_DUP_PKTHDR(m
, q
->q_src_m
);
1534 if (totlen
>= MINCLSIZE
) {
1535 MCLGET(m
, M_DONTWAIT
);
1536 if (m
->m_flags
& M_EXT
)
1543 while (totlen
> 0) {
1545 MGET(m
, M_DONTWAIT
, MT_DATA
);
1553 if (top
&& totlen
>= MINCLSIZE
) {
1554 MCLGET(m
, M_DONTWAIT
);
1555 if (m
->m_flags
& M_EXT
)
1558 m
->m_len
= len
= min(totlen
, len
);
1564 ubsec_mcopy(q
->q_src_m
, q
->q_dst_m
,
1566 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0,
1567 UBS_MAX_SCATTER
, 0xfff0, 0, BUS_DMA_NOWAIT
,
1568 &q
->q_dst_map
) != 0) {
1572 if (bus_dmamap_load_mbuf(sc
->sc_dmat
,
1573 q
->q_dst_map
, q
->q_dst_m
,
1574 BUS_DMA_NOWAIT
) != 0) {
1575 bus_dmamap_destroy(sc
->sc_dmat
,
1577 q
->q_dst_map
= NULL
;
1582 device_printf(sc
->sc_dev
,
1583 "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
1584 __FILE__
, __LINE__
);
1595 DPRINTF("dst skip: %d\n", dskip
);
1597 for (i
= j
= 0; i
< q
->q_dst_len
; i
++) {
1598 struct ubsec_pktbuf
*pb
;
1599 size_t packl
= q
->q_dst_map
[i
].dma_size
;
1600 dma_addr_t packp
= q
->q_dst_map
[i
].dma_paddr
;
1602 if (dskip
>= packl
) {
1611 if (packl
> 0xfffc) {
1612 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1618 pb
= &dmap
->d_dma
->d_mcr
.mcr_opktbuf
;
1620 pb
= &dmap
->d_dma
->d_dbuf
[j
- 1];
1622 pb
->pb_addr
= htole32(packp
);
1625 if (packl
> dtheend
) {
1626 pb
->pb_len
= htole32(dtheend
);
1629 pb
->pb_len
= htole32(packl
);
1633 pb
->pb_len
= htole32(packl
);
1635 if ((i
+ 1) == q
->q_dst_len
) {
1638 * The last fragment of the output buffer
1639 * contains the HMAC. */
1640 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1641 offsetof(struct ubsec_dmachunk
, d_macbuf
[0]));
1645 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1646 offsetof(struct ubsec_dmachunk
, d_dbuf
[j
]));
1651 dmap
->d_dma
->d_mcr
.mcr_cmdctxp
= htole32(dmap
->d_alloc
.dma_paddr
+
1652 offsetof(struct ubsec_dmachunk
, d_ctx
));
1654 if (sc
->sc_flags
& UBS_FLAGS_LONGCTX
) {
1655 /* new Broadcom cards with dynamic long command context structure */
1657 if (enccrd
!= NULL
&&
1658 enccrd
->crd_alg
== CRYPTO_AES_CBC
)
1660 struct ubsec_pktctx_aes128
*ctxaes128
;
1661 struct ubsec_pktctx_aes192
*ctxaes192
;
1662 struct ubsec_pktctx_aes256
*ctxaes256
;
1664 switch(ses
->ses_keysize
)
1668 ctxaes128
= (struct ubsec_pktctx_aes128
*)
1669 (dmap
->d_alloc
.dma_vaddr
+
1670 offsetof(struct ubsec_dmachunk
, d_ctx
));
1672 ctxaes128
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes128
));
1673 ctxaes128
->pc_type
= ctx
.pc_type
;
1674 ctxaes128
->pc_flags
= ctx
.pc_flags
;
1675 ctxaes128
->pc_offset
= ctx
.pc_offset
;
1676 for (i
= 0; i
< 4; i
++)
1677 ctxaes128
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1678 for (i
= 0; i
< 5; i
++)
1679 ctxaes128
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1680 for (i
= 0; i
< 5; i
++)
1681 ctxaes128
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1682 for (i
= 0; i
< 4; i
++)
1683 ctxaes128
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1688 ctxaes192
= (struct ubsec_pktctx_aes192
*)
1689 (dmap
->d_alloc
.dma_vaddr
+
1690 offsetof(struct ubsec_dmachunk
, d_ctx
));
1692 ctxaes192
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes192
));
1693 ctxaes192
->pc_type
= ctx
.pc_type
;
1694 ctxaes192
->pc_flags
= ctx
.pc_flags
;
1695 ctxaes192
->pc_offset
= ctx
.pc_offset
;
1696 for (i
= 0; i
< 6; i
++)
1697 ctxaes192
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1698 for (i
= 0; i
< 5; i
++)
1699 ctxaes192
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1700 for (i
= 0; i
< 5; i
++)
1701 ctxaes192
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1702 for (i
= 0; i
< 4; i
++)
1703 ctxaes192
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1708 ctxaes256
= (struct ubsec_pktctx_aes256
*)
1709 (dmap
->d_alloc
.dma_vaddr
+
1710 offsetof(struct ubsec_dmachunk
, d_ctx
));
1712 ctxaes256
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes256
));
1713 ctxaes256
->pc_type
= ctx
.pc_type
;
1714 ctxaes256
->pc_flags
= ctx
.pc_flags
;
1715 ctxaes256
->pc_offset
= ctx
.pc_offset
;
1716 for (i
= 0; i
< 8; i
++)
1717 ctxaes256
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1718 for (i
= 0; i
< 5; i
++)
1719 ctxaes256
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1720 for (i
= 0; i
< 5; i
++)
1721 ctxaes256
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1722 for (i
= 0; i
< 4; i
++)
1723 ctxaes256
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1729 * [3]DES / MD5_HMAC / SHA1_HMAC
1731 * MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
1734 struct ubsec_pktctx_des
*ctxdes
;
1736 ctxdes
= (struct ubsec_pktctx_des
*)(dmap
->d_alloc
.dma_vaddr
+
1737 offsetof(struct ubsec_dmachunk
, d_ctx
));
1739 ctxdes
->pc_len
= htole16(sizeof(struct ubsec_pktctx_des
));
1740 ctxdes
->pc_type
= ctx
.pc_type
;
1741 ctxdes
->pc_flags
= ctx
.pc_flags
;
1742 ctxdes
->pc_offset
= ctx
.pc_offset
;
1743 for (i
= 0; i
< 6; i
++)
1744 ctxdes
->pc_deskey
[i
] = ctx
.pc_key
[i
];
1745 for (i
= 0; i
< 5; i
++)
1746 ctxdes
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1747 for (i
= 0; i
< 5; i
++)
1748 ctxdes
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1749 ctxdes
->pc_iv
[0] = ctx
.pc_iv
[0];
1750 ctxdes
->pc_iv
[1] = ctx
.pc_iv
[1];
1754 /* old Broadcom card with fixed small command context structure */
1757 * [3]DES / MD5_HMAC / SHA1_HMAC
1759 struct ubsec_pktctx
*ctxs
;
1761 ctxs
= (struct ubsec_pktctx
*)(dmap
->d_alloc
.dma_vaddr
+
1762 offsetof(struct ubsec_dmachunk
, d_ctx
));
1764 /* transform generic context into small context */
1765 for (i
= 0; i
< 6; i
++)
1766 ctxs
->pc_deskey
[i
] = ctx
.pc_key
[i
];
1767 for (i
= 0; i
< 5; i
++)
1768 ctxs
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1769 for (i
= 0; i
< 5; i
++)
1770 ctxs
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1771 ctxs
->pc_iv
[0] = ctx
.pc_iv
[0];
1772 ctxs
->pc_iv
[1] = ctx
.pc_iv
[1];
1773 ctxs
->pc_flags
= ctx
.pc_flags
;
1774 ctxs
->pc_offset
= ctx
.pc_offset
;
1777 #ifdef UBSEC_VERBOSE_DEBUG
1778 DPRINTF("spin_lock_irqsave\n");
1780 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1781 //spin_lock_irq(&sc->sc_ringmtx);
1783 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_queue
, q
, q_next
);
1785 ubsecstats
.hst_ipackets
++;
1786 ubsecstats
.hst_ibytes
+= stheend
;
1789 #ifdef UBSEC_VERBOSE_DEBUG
1790 DPRINTF("spin_unlock_irqrestore\n");
1792 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1793 //spin_unlock_irq(&sc->sc_ringmtx);
1800 if ((q
->q_dst_m
!= NULL
) && (q
->q_src_m
!= q
->q_dst_m
))
1801 m_freem(q
->q_dst_m
);
1804 if ((q
->q_has_dst
== 1) && q
->q_dst_len
> 0) {
1806 bus_dmamap_unload(sc
->sc_dmat
, q
->q_dst_map
);
1807 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1809 dma_unmap(sc
, q
->q_dst_map
, q
->q_dst_len
);
1811 if (q
->q_src_len
> 0) {
1813 bus_dmamap_unload(sc
->sc_dmat
, q
->q_src_map
);
1814 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1816 dma_unmap(sc
, q
->q_src_map
, q
->q_src_len
);
1819 #ifdef UBSEC_VERBOSE_DEBUG
1820 DPRINTF("spin_lock_irqsave\n");
1822 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1823 //spin_lock_irq(&sc->sc_ringmtx);
1825 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
1827 #ifdef UBSEC_VERBOSE_DEBUG
1828 DPRINTF("spin_unlock_irqrestore\n");
1830 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1831 //spin_unlock_irq(&sc->sc_ringmtx);
1835 ubsecstats
.hst_invalid
++;
1837 ubsecstats
.hst_nomem
++;
1839 crp
->crp_etype
= err
;
1843 DPRINTF("%s() err = %x\n", __FUNCTION__
, err
);
1850 ubsec_callback(struct ubsec_softc
*sc
, struct ubsec_q
*q
)
1852 struct cryptop
*crp
= (struct cryptop
*)q
->q_crp
;
1853 struct cryptodesc
*crd
;
1854 struct ubsec_dma
*dmap
= q
->q_dma
;
1858 DPRINTF("%s()\n", __FUNCTION__
);
1861 ubsecstats
.hst_opackets
++;
1862 ubsecstats
.hst_obytes
+= dmap
->d_alloc
.dma_size
;
1865 bus_dmamap_sync(sc
->sc_dmat
, dmap
->d_alloc
.dma_map
, 0,
1866 dmap
->d_alloc
.dma_map
->dm_mapsize
,
1867 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1868 if (q
->q_dst_map
!= NULL
&& q
->q_dst_map
!= q
->q_src_map
) {
1869 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
1870 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1871 bus_dmamap_unload(sc
->sc_dmat
, q
->q_dst_map
);
1872 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1874 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
1875 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1876 bus_dmamap_unload(sc
->sc_dmat
, q
->q_src_map
);
1877 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1880 if ((q
->q_has_dst
== 1) && q
->q_dst_len
> 0)
1881 dma_unmap(sc
, q
->q_dst_map
, q
->q_dst_len
);
1883 dma_unmap(sc
, q
->q_src_map
, q
->q_src_len
);
1886 if ((crp
->crp_flags
& CRYPTO_F_SKBUF
) && (q
->q_src_m
!= q
->q_dst_m
)) {
1887 m_freem(q
->q_src_m
);
1888 crp
->crp_buf
= (caddr_t
)q
->q_dst_m
;
1892 /* copy out IV for future use */
1893 if (q
->q_flags
& UBSEC_QFLAGS_COPYOUTIV
) {
1894 for (crd
= crp
->crp_desc
; crd
; crd
= crd
->crd_next
) {
1895 if (crd
->crd_alg
!= CRYPTO_DES_CBC
&&
1896 crd
->crd_alg
!= CRYPTO_3DES_CBC
&&
1897 crd
->crd_alg
!= CRYPTO_AES_CBC
)
1900 if (crd
->crd_alg
== CRYPTO_AES_CBC
)
1905 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1907 m_copydata((struct sk_buff
*)crp
->crp_buf
,
1908 crd
->crd_skip
+ crd
->crd_len
- 8, 8,
1909 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1911 crypto_copydata(crp
->crp_flags
, (caddr_t
)crp
->crp_buf
,
1912 crd
->crd_skip
+ crd
->crd_len
- ivsize
, ivsize
,
1913 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1915 else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1917 cuio_copydata((struct uio
*)crp
->crp_buf
,
1918 crd
->crd_skip
+ crd
->crd_len
- 8, 8,
1919 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1921 crypto_copydata(crp
->crp_flags
, (caddr_t
)crp
->crp_buf
,
1922 crd
->crd_skip
+ crd
->crd_len
- ivsize
, ivsize
,
1923 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1930 for (crd
= crp
->crp_desc
; crd
; crd
= crd
->crd_next
) {
1931 if (crd
->crd_alg
!= CRYPTO_MD5_HMAC
&&
1932 crd
->crd_alg
!= CRYPTO_SHA1_HMAC
)
1935 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1936 m_copyback((struct sk_buff
*)crp
->crp_buf
,
1937 crd
->crd_inject
, 12,
1938 dmap
->d_dma
->d_macbuf
);
1941 /* BUG? it does not honor the mac len.. */
1942 crypto_copyback(crp
->crp_flags
, crp
->crp_buf
,
1943 crd
->crd_inject
, 12,
1944 (caddr_t
)dmap
->d_dma
->d_macbuf
);
1946 crypto_copyback(crp
->crp_flags
, crp
->crp_buf
,
1948 sc
->sc_sessions
[q
->q_sesn
].ses_mlen
,
1949 (caddr_t
)dmap
->d_dma
->d_macbuf
);
1951 else if (crp
->crp_flags
& CRYPTO_F_IOV
&& crp
->crp_mac
)
1952 bcopy((caddr_t
)dmap
->d_dma
->d_macbuf
,
1957 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
1962 ubsec_mcopy(struct sk_buff
*srcm
, struct sk_buff
*dstm
, int hoffset
, int toffset
)
1964 int i
, j
, dlen
, slen
;
1974 for (i
= 0; i
< min(slen
, dlen
); i
++) {
1975 if (j
< hoffset
|| j
>= toffset
)
1999 ubsec_dma_malloc(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*dma
,
2000 size_t size
, int mapflags
)
2002 dma
->dma_vaddr
= dma_alloc_coherent(sc
->sc_dv
,
2003 size
, &dma
->dma_paddr
, GFP_KERNEL
);
2005 if (likely(dma
->dma_vaddr
))
2007 dma
->dma_size
= size
;
2011 DPRINTF("could not allocate %d bytes of coherent memory.\n", size
);
2017 ubsec_dma_free(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*dma
)
2019 dma_free_coherent(sc
->sc_dv
, dma
->dma_size
, dma
->dma_vaddr
,
2024 * Resets the board. Values in the regesters are left as is
2025 * from the reset (i.e. initial values are assigned elsewhere).
2028 ubsec_reset_board(struct ubsec_softc
*sc
)
2030 volatile u_int32_t ctrl
;
2033 DPRINTF("%s()\n", __FUNCTION__
);
2035 DPRINTF("Send reset signal to chip.\n");
2037 ctrl
= READ_REG(sc
, BS_CTRL
);
2038 ctrl
|= BS_CTRL_RESET
;
2039 WRITE_REG(sc
, BS_CTRL
, ctrl
);
2042 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2048 * Init Broadcom registers
2051 ubsec_init_board(struct ubsec_softc
*sc
)
2056 DPRINTF("%s()\n", __FUNCTION__
);
2058 DPRINTF("Initialize chip.\n");
2060 ctrl
= READ_REG(sc
, BS_CTRL
);
2061 ctrl
&= ~(BS_CTRL_BE32
| BS_CTRL_BE64
);
2062 ctrl
|= BS_CTRL_LITTLE_ENDIAN
| BS_CTRL_MCR1INT
| BS_CTRL_DMAERR
;
2064 WRITE_REG(sc
, BS_CTRL
, ctrl
);
2066 /* Set chip capabilities (BCM5365P) */
2067 sc
->sc_flags
|= UBS_FLAGS_LONGCTX
| UBS_FLAGS_AES
;
2071 * Clean up after a chip crash.
2072 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2075 ubsec_cleanchip(struct ubsec_softc
*sc
)
2080 DPRINTF("%s()\n", __FUNCTION__
);
2082 DPRINTF("Clean up queues after chip crash.\n");
2084 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
2085 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_qchip
);
2086 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_qchip
, q_next
);
2087 ubsec_free_q(sc
, q
);
2093 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2096 ubsec_free_q(struct ubsec_softc
*sc
, struct ubsec_q
*q
)
2099 struct cryptop
*crp
;
2104 DPRINTF("%s()\n", __FUNCTION__
);
2107 npkts
= q
->q_nstacked_mcrs
;
2109 for (i
= 0; i
< npkts
; i
++) {
2110 if(q
->q_stacked_mcr
[i
]) {
2111 q2
= q
->q_stacked_mcr
[i
];
2113 if ((q2
->q_dst_m
!= NULL
) && (q2
->q_src_m
!= q2
->q_dst_m
))
2115 m_freem(q2
->q_dst_m
);
2117 printk(KERN_ERR
"%s,%d: SKB not supported\n", __FILE__
, __LINE__
);
2120 crp
= (struct cryptop
*)q2
->q_crp
;
2122 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q2
, q_next
);
2124 crp
->crp_etype
= EFAULT
;
2134 if ((q
->q_dst_m
!= NULL
) && (q
->q_src_m
!= q
->q_dst_m
))
2136 m_freem(q
->q_dst_m
);
2138 printk(KERN_ERR
"%s,%d: SKB not supported\n", __FILE__
, __LINE__
);
2141 crp
= (struct cryptop
*)q
->q_crp
;
2143 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
2145 crp
->crp_etype
= EFAULT
;
2151 * Routine to reset the chip and clean up.
2152 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2155 ubsec_totalreset(struct ubsec_softc
*sc
)
2159 DPRINTF("%s()\n", __FUNCTION__
);
2161 DPRINTF("initiate total chip reset.. \n");
2162 ubsec_reset_board(sc
);
2163 ubsec_init_board(sc
);
2164 ubsec_cleanchip(sc
);
2168 ubsec_dump_pb(struct ubsec_pktbuf
*pb
)
2170 printf("addr 0x%x (0x%x) next 0x%x\n",
2171 pb
->pb_addr
, pb
->pb_len
, pb
->pb_next
);
2175 ubsec_dump_mcr(struct ubsec_mcr
*mcr
)
2177 struct ubsec_mcr_add
*ma
;
2181 printf(" pkts: %u, flags 0x%x\n",
2182 letoh16(mcr
->mcr_pkts
), letoh16(mcr
->mcr_flags
));
2183 ma
= (struct ubsec_mcr_add
*)&mcr
->mcr_cmdctxp
;
2184 for (i
= 0; i
< letoh16(mcr
->mcr_pkts
); i
++) {
2185 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i
,
2186 letoh32(ma
->mcr_cmdctxp
), letoh16(ma
->mcr_pktlen
),
2187 letoh16(ma
->mcr_reserved
));
2188 printf(" %d: ipkt ", i
);
2189 ubsec_dump_pb(&ma
->mcr_ipktbuf
);
2190 printf(" %d: opkt ", i
);
2191 ubsec_dump_pb(&ma
->mcr_opktbuf
);
2194 printf("END MCR\n");
2197 static int __init
mod_init(void) {
2198 return ssb_driver_register(&ubsec_ssb_driver
);
2201 static void __exit
mod_exit(void) {
2202 ssb_driver_unregister(&ubsec_ssb_driver
);
2205 module_init(mod_init
);
2206 module_exit(mod_exit
);
2209 MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
2210 MODULE_LICENSE("BSD");
2211 MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
2212 MODULE_VERSION(DRV_MODULE_VERSION
);