port atheros to 2.6.24 (untested), but do not use the new kernel by default yet
[openwrt.git] / target / linux / atheros / files / drivers / net / ar2313 / ar2313.c
1 /*
2 * ar2313.c: Linux driver for the Atheros AR231x Ethernet device.
3 *
4 * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
5 * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
6 * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
7 *
8 * Thanks to Atheros for providing hardware and documentation
9 * enabling me to write this driver.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * Additional credits:
17 * This code is taken from John Taylor's Sibyte driver and then
18 * modified for the AR2313.
19 */
20
21 #include <linux/autoconf.h>
22 #include <linux/module.h>
23 #include <linux/version.h>
24 #include <linux/types.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/pci.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/sockios.h>
36 #include <linux/pkt_sched.h>
37 #include <linux/compile.h>
38 #include <linux/mii.h>
39 #include <linux/phy.h>
40 #include <linux/ethtool.h>
41 #include <linux/ctype.h>
42 #include <linux/platform_device.h>
43
44 #include <net/sock.h>
45 #include <net/ip.h>
46
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/byteorder.h>
51 #include <asm/uaccess.h>
52 #include <asm/bootinfo.h>
53
54 #define AR2313_MTU 1692
55 #define AR2313_PRIOS 1
56 #define AR2313_QUEUES (2*AR2313_PRIOS)
57 #define AR2313_DESCR_ENTRIES 64
58
59 #undef INDEX_DEBUG
60 #define DEBUG 0
61 #define DEBUG_TX 0
62 #define DEBUG_RX 0
63 #define DEBUG_INT 0
64 #define DEBUG_MC 0
65 #define DEBUG_ERR 1
66
67 #ifndef min
68 #define min(a,b) (((a)<(b))?(a):(b))
69 #endif
70
71 #ifndef SMP_CACHE_BYTES
72 #define SMP_CACHE_BYTES L1_CACHE_BYTES
73 #endif
74
75 #define AR2313_MBOX_SET_BIT 0x8
76
77 #define BOARD_IDX_STATIC 0
78 #define BOARD_IDX_OVERFLOW -1
79
80 #include "dma.h"
81 #include "ar2313.h"
82
83 /*
84 * New interrupt handler strategy:
85 *
86 * An old interrupt handler worked using the traditional method of
87 * replacing an skbuff with a new one when a packet arrives. However
88 * the rx rings do not need to contain a static number of buffer
89 * descriptors, thus it makes sense to move the memory allocation out
90 * of the main interrupt handler and do it in a bottom half handler
91 * and only allocate new buffers when the number of buffers in the
92 * ring is below a certain threshold. In order to avoid starving the
93 * NIC under heavy load it is however necessary to force allocation
94 * when hitting a minimum threshold. The strategy for alloction is as
95 * follows:
96 *
97 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
98 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
99 * the buffers in the interrupt handler
100 * RX_RING_THRES - maximum number of buffers in the rx ring
101 *
102 * One advantagous side effect of this allocation approach is that the
103 * entire rx processing can be done without holding any spin lock
104 * since the rx rings and registers are totally independent of the tx
105 * ring and its registers. This of course includes the kmalloc's of
106 * new skb's. Thus start_xmit can run in parallel with rx processing
107 * and the memory allocation on SMP systems.
108 *
109 * Note that running the skb reallocation in a bottom half opens up
110 * another can of races which needs to be handled properly. In
111 * particular it can happen that the interrupt handler tries to run
112 * the reallocation while the bottom half is either running on another
113 * CPU or was interrupted on the same CPU. To get around this the
114 * driver uses bitops to prevent the reallocation routines from being
115 * reentered.
116 *
117 * TX handling can also be done without holding any spin lock, wheee
118 * this is fun! since tx_csm is only written to by the interrupt
119 * handler.
120 */
121
122 /*
123 * Threshold values for RX buffer allocation - the low water marks for
124 * when to start refilling the rings are set to 75% of the ring
125 * sizes. It seems to make sense to refill the rings entirely from the
126 * intrrupt handler once it gets below the panic threshold, that way
127 * we don't risk that the refilling is moved to another CPU when the
128 * one running the interrupt handler just got the slab code hot in its
129 * cache.
130 */
131 #define RX_RING_SIZE AR2313_DESCR_ENTRIES
132 #define RX_PANIC_THRES (RX_RING_SIZE/4)
133 #define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
134 #define CRC_LEN 4
135 #define RX_OFFSET 2
136
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define VLAN_HDR 4
139 #else
140 #define VLAN_HDR 0
141 #endif
142
143 #define AR2313_BUFSIZE (AR2313_MTU + VLAN_HDR + ETH_HLEN + CRC_LEN + RX_OFFSET)
144
145 #ifdef MODULE
146 MODULE_LICENSE("GPL");
147 MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
148 MODULE_DESCRIPTION("AR2313 Ethernet driver");
149 #endif
150
151 #define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
152
153 // prototypes
154 #ifdef TX_TIMEOUT
155 static void ar2313_tx_timeout(struct net_device *dev);
156 #endif
157 static void ar2313_halt(struct net_device *dev);
158 static void rx_tasklet_func(unsigned long data);
159 static void rx_tasklet_cleanup(struct net_device *dev);
160 static void ar2313_multicast_list(struct net_device *dev);
161
162 static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum);
163 static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value);
164 static int mdiobus_reset(struct mii_bus *bus);
165 static int mdiobus_probe (struct net_device *dev);
166 static void ar2313_adjust_link(struct net_device *dev);
167
168 #ifndef ERR
169 #define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
170 #endif
171
172
173 int __init ar2313_probe(struct platform_device *pdev)
174 {
175 struct net_device *dev;
176 struct ar2313_private *sp;
177 struct resource *res;
178 unsigned long ar_eth_base;
179 char buf[64];
180
181 dev = alloc_etherdev(sizeof(struct ar2313_private));
182
183 if (dev == NULL) {
184 printk(KERN_ERR
185 "ar2313: Unable to allocate net_device structure!\n");
186 return -ENOMEM;
187 }
188
189 platform_set_drvdata(pdev, dev);
190
191 sp = dev->priv;
192 sp->dev = dev;
193 sp->cfg = pdev->dev.platform_data;
194
195 sprintf(buf, "eth%d_membase", pdev->id);
196 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
197 if (!res)
198 return -ENODEV;
199
200 sp->link = 0;
201 ar_eth_base = res->start;
202 sp->phy = sp->cfg->phy;
203
204 sprintf(buf, "eth%d_irq", pdev->id);
205 dev->irq = platform_get_irq_byname(pdev, buf);
206
207 spin_lock_init(&sp->lock);
208
209 /* initialize func pointers */
210 dev->open = &ar2313_open;
211 dev->stop = &ar2313_close;
212 dev->hard_start_xmit = &ar2313_start_xmit;
213
214 dev->get_stats = &ar2313_get_stats;
215 dev->set_multicast_list = &ar2313_multicast_list;
216 #ifdef TX_TIMEOUT
217 dev->tx_timeout = ar2313_tx_timeout;
218 dev->watchdog_timeo = AR2313_TX_TIMEOUT;
219 #endif
220 dev->do_ioctl = &ar2313_ioctl;
221
222 // SAMEER: do we need this?
223 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA;
224
225 tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
226 tasklet_disable(&sp->rx_tasklet);
227
228 sp->eth_regs =
229 ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
230 if (!sp->eth_regs) {
231 printk("Can't remap eth registers\n");
232 return (-ENXIO);
233 }
234
235 /*
236 * When there's only one MAC, PHY regs are typically on ENET0,
237 * even though the MAC might be on ENET1.
238 * Needto remap PHY regs separately in this case
239 */
240 if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
241 sp->phy_regs = sp->eth_regs;
242 else {
243 sp->phy_regs =
244 ioremap_nocache(virt_to_phys(sp->cfg->phy_base),
245 sizeof(*sp->phy_regs));
246 if (!sp->phy_regs) {
247 printk("Can't remap phy registers\n");
248 return (-ENXIO);
249 }
250 }
251
252 sp->dma_regs =
253 ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000),
254 sizeof(*sp->dma_regs));
255 dev->base_addr = (unsigned int) sp->dma_regs;
256 if (!sp->dma_regs) {
257 printk("Can't remap DMA registers\n");
258 return (-ENXIO);
259 }
260
261 sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
262 if (!sp->int_regs) {
263 printk("Can't remap INTERRUPT registers\n");
264 return (-ENXIO);
265 }
266
267 strncpy(sp->name, "Atheros AR231x", sizeof(sp->name) - 1);
268 sp->name[sizeof(sp->name) - 1] = '\0';
269 memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
270 sp->board_idx = BOARD_IDX_STATIC;
271
272 if (ar2313_init(dev)) {
273 /*
274 * ar2313_init() calls ar2313_init_cleanup() on error.
275 */
276 kfree(dev);
277 return -ENODEV;
278 }
279
280 if (register_netdev(dev)) {
281 printk("%s: register_netdev failed\n", __func__);
282 return -1;
283 }
284
285 printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
286 dev->name, sp->name,
287 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
288 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);
289
290 sp->mii_bus.priv = dev;
291 sp->mii_bus.read = mdiobus_read;
292 sp->mii_bus.write = mdiobus_write;
293 sp->mii_bus.reset = mdiobus_reset;
294 sp->mii_bus.name = "ar2313_eth_mii";
295 sp->mii_bus.id = 0;
296 sp->mii_bus.irq = kmalloc(sizeof(int), GFP_KERNEL);
297 *sp->mii_bus.irq = PHY_POLL;
298
299 mdiobus_register(&sp->mii_bus);
300
301 if (mdiobus_probe(dev) != 0) {
302 printk(KERN_ERR "ar2313: mdiobus_probe failed");
303 rx_tasklet_cleanup(dev);
304 ar2313_init_cleanup(dev);
305 unregister_netdev(dev);
306 kfree(dev);
307 } else {
308 /* start link poll timer */
309 ar2313_setup_timer(dev);
310 }
311
312 return 0;
313 }
314
315 #if 0
316 static void ar2313_dump_regs(struct net_device *dev)
317 {
318 unsigned int *ptr, i;
319 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
320
321 ptr = (unsigned int *) sp->eth_regs;
322 for (i = 0; i < (sizeof(ETHERNET_STRUCT) / sizeof(unsigned int));
323 i++, ptr++) {
324 printk("ENET: %08x = %08x\n", (int) ptr, *ptr);
325 }
326
327 ptr = (unsigned int *) sp->dma_regs;
328 for (i = 0; i < (sizeof(DMA) / sizeof(unsigned int)); i++, ptr++) {
329 printk("DMA: %08x = %08x\n", (int) ptr, *ptr);
330 }
331
332 ptr = (unsigned int *) sp->int_regs;
333 for (i = 0; i < (sizeof(INTERRUPT) / sizeof(unsigned int)); i++, ptr++) {
334 printk("INT: %08x = %08x\n", (int) ptr, *ptr);
335 }
336
337 for (i = 0; i < AR2313_DESCR_ENTRIES; i++) {
338 ar2313_descr_t *td = &sp->tx_ring[i];
339 printk("Tx desc %2d: %08x %08x %08x %08x\n", i,
340 td->status, td->devcs, td->addr, td->descr);
341 }
342 }
343 #endif
344
345 #ifdef TX_TIMEOUT
346 static void ar2313_tx_timeout(struct net_device *dev)
347 {
348 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
349 unsigned long flags;
350
351 #if DEBUG_TX
352 printk("Tx timeout\n");
353 #endif
354 spin_lock_irqsave(&sp->lock, flags);
355 ar2313_restart(dev);
356 spin_unlock_irqrestore(&sp->lock, flags);
357 }
358 #endif
359
360 #if DEBUG_MC
361 static void printMcList(struct net_device *dev)
362 {
363 struct dev_mc_list *list = dev->mc_list;
364 int num = 0, i;
365 while (list) {
366 printk("%d MC ADDR ", num);
367 for (i = 0; i < list->dmi_addrlen; i++) {
368 printk(":%02x", list->dmi_addr[i]);
369 }
370 list = list->next;
371 printk("\n");
372 }
373 }
374 #endif
375
376 /*
377 * Set or clear the multicast filter for this adaptor.
378 * THIS IS ABSOLUTE CRAP, disabled
379 */
380 static void ar2313_multicast_list(struct net_device *dev)
381 {
382 /*
383 * Always listen to broadcasts and
384 * treat IFF bits independently
385 */
386 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
387 unsigned int recognise;
388
389 recognise = sp->eth_regs->mac_control;
390
391 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
392 recognise |= MAC_CONTROL_PR;
393 } else {
394 recognise &= ~MAC_CONTROL_PR;
395 }
396
397 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
398 #if DEBUG_MC
399 printMcList(dev);
400 printk("%s: all MULTICAST mc_count %d\n", __FUNCTION__,
401 dev->mc_count);
402 #endif
403 recognise |= MAC_CONTROL_PM; /* all multicast */
404 } else if (dev->mc_count > 0) {
405 #if DEBUG_MC
406 printMcList(dev);
407 printk("%s: mc_count %d\n", __FUNCTION__, dev->mc_count);
408 #endif
409 recognise |= MAC_CONTROL_PM; /* for the time being */
410 }
411 #if DEBUG_MC
412 printk("%s: setting %08x to %08x\n", __FUNCTION__, (int) sp->eth_regs,
413 recognise);
414 #endif
415
416 sp->eth_regs->mac_control = recognise;
417 }
418
419 static void rx_tasklet_cleanup(struct net_device *dev)
420 {
421 struct ar2313_private *sp = dev->priv;
422
423 /*
424 * Tasklet may be scheduled. Need to get it removed from the list
425 * since we're about to free the struct.
426 */
427
428 sp->unloading = 1;
429 tasklet_enable(&sp->rx_tasklet);
430 tasklet_kill(&sp->rx_tasklet);
431 }
432
433 static int __exit ar2313_remove(struct platform_device *pdev)
434 {
435 struct net_device *dev = platform_get_drvdata(pdev);
436 rx_tasklet_cleanup(dev);
437 ar2313_init_cleanup(dev);
438 unregister_netdev(dev);
439 kfree(dev);
440 return 0;
441 }
442
443
444 /*
445 * Restart the AR2313 ethernet controller.
446 */
447 static int ar2313_restart(struct net_device *dev)
448 {
449 /* disable interrupts */
450 disable_irq(dev->irq);
451
452 /* stop mac */
453 ar2313_halt(dev);
454
455 /* initialize */
456 ar2313_init(dev);
457
458 /* enable interrupts */
459 enable_irq(dev->irq);
460
461 return 0;
462 }
463
464 static struct platform_driver ar2313_driver = {
465 .driver.name = "ar531x-eth",
466 .probe = ar2313_probe,
467 .remove = ar2313_remove,
468 };
469
470 int __init ar2313_module_init(void)
471 {
472 return platform_driver_register(&ar2313_driver);
473 }
474
475 void __exit ar2313_module_cleanup(void)
476 {
477 platform_driver_unregister(&ar2313_driver);
478 }
479
480 module_init(ar2313_module_init);
481 module_exit(ar2313_module_cleanup);
482
483
484 static void ar2313_free_descriptors(struct net_device *dev)
485 {
486 struct ar2313_private *sp = dev->priv;
487 if (sp->rx_ring != NULL) {
488 kfree((void *) KSEG0ADDR(sp->rx_ring));
489 sp->rx_ring = NULL;
490 sp->tx_ring = NULL;
491 }
492 }
493
494
495 static int ar2313_allocate_descriptors(struct net_device *dev)
496 {
497 struct ar2313_private *sp = dev->priv;
498 int size;
499 int j;
500 ar2313_descr_t *space;
501
502 if (sp->rx_ring != NULL) {
503 printk("%s: already done.\n", __FUNCTION__);
504 return 0;
505 }
506
507 size =
508 (sizeof(ar2313_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
509 space = kmalloc(size, GFP_KERNEL);
510 if (space == NULL)
511 return 1;
512
513 /* invalidate caches */
514 dma_cache_inv((unsigned int) space, size);
515
516 /* now convert pointer to KSEG1 */
517 space = (ar2313_descr_t *) KSEG1ADDR(space);
518
519 memset((void *) space, 0, size);
520
521 sp->rx_ring = space;
522 space += AR2313_DESCR_ENTRIES;
523
524 sp->tx_ring = space;
525 space += AR2313_DESCR_ENTRIES;
526
527 /* Initialize the transmit Descriptors */
528 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
529 ar2313_descr_t *td = &sp->tx_ring[j];
530 td->status = 0;
531 td->devcs = DMA_TX1_CHAINED;
532 td->addr = 0;
533 td->descr =
534 virt_to_phys(&sp->
535 tx_ring[(j + 1) & (AR2313_DESCR_ENTRIES - 1)]);
536 }
537
538 return 0;
539 }
540
541
542 /*
543 * Generic cleanup handling data allocated during init. Used when the
544 * module is unloaded or if an error occurs during initialization
545 */
546 static void ar2313_init_cleanup(struct net_device *dev)
547 {
548 struct ar2313_private *sp = dev->priv;
549 struct sk_buff *skb;
550 int j;
551
552 ar2313_free_descriptors(dev);
553
554 if (sp->eth_regs)
555 iounmap((void *) sp->eth_regs);
556 if (sp->dma_regs)
557 iounmap((void *) sp->dma_regs);
558
559 if (sp->rx_skb) {
560 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
561 skb = sp->rx_skb[j];
562 if (skb) {
563 sp->rx_skb[j] = NULL;
564 dev_kfree_skb(skb);
565 }
566 }
567 kfree(sp->rx_skb);
568 sp->rx_skb = NULL;
569 }
570
571 if (sp->tx_skb) {
572 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
573 skb = sp->tx_skb[j];
574 if (skb) {
575 sp->tx_skb[j] = NULL;
576 dev_kfree_skb(skb);
577 }
578 }
579 kfree(sp->tx_skb);
580 sp->tx_skb = NULL;
581 }
582 }
583
584 static int ar2313_setup_timer(struct net_device *dev)
585 {
586 struct ar2313_private *sp = dev->priv;
587
588 init_timer(&sp->link_timer);
589
590 sp->link_timer.function = ar2313_link_timer_fn;
591 sp->link_timer.data = (int) dev;
592 sp->link_timer.expires = jiffies + HZ;
593
594 add_timer(&sp->link_timer);
595 return 0;
596
597 }
598
599 static void ar2313_link_timer_fn(unsigned long data)
600 {
601 struct net_device *dev = (struct net_device *) data;
602 struct ar2313_private *sp = dev->priv;
603
604 // see if the link status changed
605 // This was needed to make sure we set the PHY to the
606 // autonegotiated value of half or full duplex.
607 ar2313_check_link(dev);
608
609 // Loop faster when we don't have link.
610 // This was needed to speed up the AP bootstrap time.
611 if (sp->link == 0) {
612 mod_timer(&sp->link_timer, jiffies + HZ / 2);
613 } else {
614 mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
615 }
616 }
617
618 static void ar2313_check_link(struct net_device *dev)
619 {
620 struct ar2313_private *sp = dev->priv;
621 u16 phyData;
622
623 phyData = mdiobus_read(&sp->mii_bus, sp->phy, MII_BMSR);
624 if (sp->phyData != phyData) {
625 if (phyData & BMSR_LSTATUS) {
626 /* link is present, ready link partner ability to deterine
627 duplexity */
628 int duplex = 0;
629 u16 reg;
630
631 sp->link = 1;
632 reg = mdiobus_read(&sp->mii_bus, sp->phy, MII_BMCR);
633 if (reg & BMCR_ANENABLE) {
634 /* auto neg enabled */
635 reg = mdiobus_read(&sp->mii_bus, sp->phy, MII_LPA);
636 duplex = (reg & (LPA_100FULL | LPA_10FULL)) ? 1 : 0;
637 } else {
638 /* no auto neg, just read duplex config */
639 duplex = (reg & BMCR_FULLDPLX) ? 1 : 0;
640 }
641
642 printk(KERN_INFO "%s: Configuring MAC for %s duplex\n",
643 dev->name, (duplex) ? "full" : "half");
644
645 if (duplex) {
646 /* full duplex */
647 sp->eth_regs->mac_control =
648 ((sp->eth_regs->
649 mac_control | MAC_CONTROL_F) & ~MAC_CONTROL_DRO);
650 } else {
651 /* half duplex */
652 sp->eth_regs->mac_control =
653 ((sp->eth_regs->
654 mac_control | MAC_CONTROL_DRO) & ~MAC_CONTROL_F);
655 }
656 } else {
657 /* no link */
658 sp->link = 0;
659 }
660 sp->phyData = phyData;
661 }
662 }
663
664 static int ar2313_reset_reg(struct net_device *dev)
665 {
666 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
667 unsigned int ethsal, ethsah;
668 unsigned int flags;
669
670 *sp->int_regs |= sp->cfg->reset_mac;
671 mdelay(10);
672 *sp->int_regs &= ~sp->cfg->reset_mac;
673 mdelay(10);
674 *sp->int_regs |= sp->cfg->reset_phy;
675 mdelay(10);
676 *sp->int_regs &= ~sp->cfg->reset_phy;
677 mdelay(10);
678
679 sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
680 mdelay(10);
681 sp->dma_regs->bus_mode =
682 ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
683
684 /* enable interrupts */
685 sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
686 DMA_STATUS_NIS |
687 DMA_STATUS_RI |
688 DMA_STATUS_TI | DMA_STATUS_FBE);
689 sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
690 sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
691 sp->dma_regs->control =
692 (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
693
694 sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
695 sp->eth_regs->vlan_tag = (0x8100);
696
697 /* Enable Ethernet Interface */
698 flags = (MAC_CONTROL_TE | /* transmit enable */
699 MAC_CONTROL_PM | /* pass mcast */
700 MAC_CONTROL_F | /* full duplex */
701 MAC_CONTROL_HBD); /* heart beat disabled */
702
703 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
704 flags |= MAC_CONTROL_PR;
705 }
706 sp->eth_regs->mac_control = flags;
707
708 /* Set all Ethernet station address registers to their initial values */
709 ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
710 (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
711
712 ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
713 (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
714 (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
715 (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
716
717 sp->eth_regs->mac_addr[0] = ethsah;
718 sp->eth_regs->mac_addr[1] = ethsal;
719
720 mdelay(10);
721
722 return (0);
723 }
724
725
726 static int ar2313_init(struct net_device *dev)
727 {
728 struct ar2313_private *sp = dev->priv;
729 int ecode = 0;
730
731 /*
732 * Allocate descriptors
733 */
734 if (ar2313_allocate_descriptors(dev)) {
735 printk("%s: %s: ar2313_allocate_descriptors failed\n",
736 dev->name, __FUNCTION__);
737 ecode = -EAGAIN;
738 goto init_error;
739 }
740
741 /*
742 * Get the memory for the skb rings.
743 */
744 if (sp->rx_skb == NULL) {
745 sp->rx_skb =
746 kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
747 GFP_KERNEL);
748 if (!(sp->rx_skb)) {
749 printk("%s: %s: rx_skb kmalloc failed\n",
750 dev->name, __FUNCTION__);
751 ecode = -EAGAIN;
752 goto init_error;
753 }
754 }
755 memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
756
757 if (sp->tx_skb == NULL) {
758 sp->tx_skb =
759 kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
760 GFP_KERNEL);
761 if (!(sp->tx_skb)) {
762 printk("%s: %s: tx_skb kmalloc failed\n",
763 dev->name, __FUNCTION__);
764 ecode = -EAGAIN;
765 goto init_error;
766 }
767 }
768 memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
769
770 /*
771 * Set tx_csm before we start receiving interrupts, otherwise
772 * the interrupt handler might think it is supposed to process
773 * tx ints before we are up and running, which may cause a null
774 * pointer access in the int handler.
775 */
776 sp->rx_skbprd = 0;
777 sp->cur_rx = 0;
778 sp->tx_prd = 0;
779 sp->tx_csm = 0;
780
781 /*
782 * Zero the stats before starting the interface
783 */
784 memset(&sp->stats, 0, sizeof(sp->stats));
785
786 /*
787 * We load the ring here as there seem to be no way to tell the
788 * firmware to wipe the ring without re-initializing it.
789 */
790 ar2313_load_rx_ring(dev, RX_RING_SIZE);
791
792 /*
793 * Init hardware
794 */
795 ar2313_reset_reg(dev);
796
797 /*
798 * Get the IRQ
799 */
800 ecode =
801 request_irq(dev->irq, &ar2313_interrupt,
802 IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
803 dev->name, dev);
804 if (ecode) {
805 printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
806 dev->name, __FUNCTION__, dev->irq);
807 goto init_error;
808 }
809
810
811 tasklet_enable(&sp->rx_tasklet);
812
813 return 0;
814
815 init_error:
816 ar2313_init_cleanup(dev);
817 return ecode;
818 }
819
820 /*
821 * Load the rx ring.
822 *
823 * Loading rings is safe without holding the spin lock since this is
824 * done only before the device is enabled, thus no interrupts are
825 * generated and by the interrupt handler/tasklet handler.
826 */
827 static void ar2313_load_rx_ring(struct net_device *dev, int nr_bufs)
828 {
829
830 struct ar2313_private *sp = ((struct net_device *) dev)->priv;
831 short i, idx;
832
833 idx = sp->rx_skbprd;
834
835 for (i = 0; i < nr_bufs; i++) {
836 struct sk_buff *skb;
837 ar2313_descr_t *rd;
838
839 if (sp->rx_skb[idx]) {
840 #if DEBUG_RX
841 printk(KERN_INFO "ar2313 rx refill full\n");
842 #endif /* DEBUG */
843 break;
844 }
845 // partha: create additional room for the second GRE fragment
846 skb = alloc_skb(AR2313_BUFSIZE + 128, GFP_ATOMIC);
847 if (!skb) {
848 printk("\n\n\n\n %s: No memory in system\n\n\n\n",
849 __FUNCTION__);
850 break;
851 }
852 // partha: create additional room in the front for tx pkt capture
853 skb_reserve(skb, 32);
854
855 /*
856 * Make sure IP header starts on a fresh cache line.
857 */
858 skb->dev = dev;
859 skb_reserve(skb, RX_OFFSET);
860 sp->rx_skb[idx] = skb;
861
862 rd = (ar2313_descr_t *) & sp->rx_ring[idx];
863
864 /* initialize dma descriptor */
865 rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
866 DMA_RX1_CHAINED);
867 rd->addr = virt_to_phys(skb->data);
868 rd->descr =
869 virt_to_phys(&sp->
870 rx_ring[(idx + 1) & (AR2313_DESCR_ENTRIES - 1)]);
871 rd->status = DMA_RX_OWN;
872
873 idx = DSC_NEXT(idx);
874 }
875
876 if (!i) {
877 #if DEBUG_ERR
878 printk(KERN_INFO
879 "Out of memory when allocating standard receive buffers\n");
880 #endif /* DEBUG */
881 } else {
882 sp->rx_skbprd = idx;
883 }
884
885 return;
886 }
887
888 #define AR2313_MAX_PKTS_PER_CALL 64
889
890 static int ar2313_rx_int(struct net_device *dev)
891 {
892 struct ar2313_private *sp = dev->priv;
893 struct sk_buff *skb, *skb_new;
894 ar2313_descr_t *rxdesc;
895 unsigned int status;
896 u32 idx;
897 int pkts = 0;
898 int rval;
899
900 idx = sp->cur_rx;
901
902 /* process at most the entire ring and then wait for another interrupt
903 */
904 while (1) {
905
906 rxdesc = &sp->rx_ring[idx];
907 status = rxdesc->status;
908 if (status & DMA_RX_OWN) {
909 /* SiByte owns descriptor or descr not yet filled in */
910 rval = 0;
911 break;
912 }
913
914 if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
915 rval = 1;
916 break;
917 }
918 #if DEBUG_RX
919 printk("index %d\n", idx);
920 printk("RX status %08x\n", rxdesc->status);
921 printk("RX devcs %08x\n", rxdesc->devcs);
922 printk("RX addr %08x\n", rxdesc->addr);
923 printk("RX descr %08x\n", rxdesc->descr);
924 #endif
925
926 if ((status & (DMA_RX_ERROR | DMA_RX_ERR_LENGTH)) &&
927 (!(status & DMA_RX_LONG))) {
928 #if DEBUG_RX
929 printk("%s: rx ERROR %08x\n", __FUNCTION__, status);
930 #endif
931 sp->stats.rx_errors++;
932 sp->stats.rx_dropped++;
933
934 /* add statistics counters */
935 if (status & DMA_RX_ERR_CRC)
936 sp->stats.rx_crc_errors++;
937 if (status & DMA_RX_ERR_COL)
938 sp->stats.rx_over_errors++;
939 if (status & DMA_RX_ERR_LENGTH)
940 sp->stats.rx_length_errors++;
941 if (status & DMA_RX_ERR_RUNT)
942 sp->stats.rx_over_errors++;
943 if (status & DMA_RX_ERR_DESC)
944 sp->stats.rx_over_errors++;
945
946 } else {
947 /* alloc new buffer. */
948 skb_new = dev_alloc_skb(AR2313_BUFSIZE + RX_OFFSET + 128);
949 if (skb_new != NULL) {
950
951 skb = sp->rx_skb[idx];
952 /* set skb */
953 skb_put(skb,
954 ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
955
956 sp->stats.rx_bytes += skb->len;
957 skb->protocol = eth_type_trans(skb, dev);
958 /* pass the packet to upper layers */
959 netif_rx(skb);
960
961 skb_new->dev = dev;
962 /* 16 bit align */
963 skb_reserve(skb_new, RX_OFFSET + 32);
964 /* reset descriptor's curr_addr */
965 rxdesc->addr = virt_to_phys(skb_new->data);
966
967 sp->stats.rx_packets++;
968 sp->rx_skb[idx] = skb_new;
969 } else {
970 sp->stats.rx_dropped++;
971 }
972 }
973
974 rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
975 DMA_RX1_CHAINED);
976 rxdesc->status = DMA_RX_OWN;
977
978 idx = DSC_NEXT(idx);
979 }
980
981 sp->cur_rx = idx;
982
983 return rval;
984 }
985
986
987 static void ar2313_tx_int(struct net_device *dev)
988 {
989 struct ar2313_private *sp = dev->priv;
990 u32 idx;
991 struct sk_buff *skb;
992 ar2313_descr_t *txdesc;
993 unsigned int status = 0;
994
995 idx = sp->tx_csm;
996
997 while (idx != sp->tx_prd) {
998
999 txdesc = &sp->tx_ring[idx];
1000
1001 #if DEBUG_TX
1002 printk
1003 ("%s: TXINT: csm=%d idx=%d prd=%d status=%x devcs=%x addr=%08x descr=%x\n",
1004 dev->name, sp->tx_csm, idx, sp->tx_prd, txdesc->status,
1005 txdesc->devcs, txdesc->addr, txdesc->descr);
1006 #endif /* DEBUG */
1007
1008 if ((status = txdesc->status) & DMA_TX_OWN) {
1009 /* ar2313 dma still owns descr */
1010 break;
1011 }
1012 /* done with this descriptor */
1013 dma_unmap_single(NULL, txdesc->addr,
1014 txdesc->devcs & DMA_TX1_BSIZE_MASK,
1015 DMA_TO_DEVICE);
1016 txdesc->status = 0;
1017
1018 if (status & DMA_TX_ERROR) {
1019 sp->stats.tx_errors++;
1020 sp->stats.tx_dropped++;
1021 if (status & DMA_TX_ERR_UNDER)
1022 sp->stats.tx_fifo_errors++;
1023 if (status & DMA_TX_ERR_HB)
1024 sp->stats.tx_heartbeat_errors++;
1025 if (status & (DMA_TX_ERR_LOSS | DMA_TX_ERR_LINK))
1026 sp->stats.tx_carrier_errors++;
1027 if (status & (DMA_TX_ERR_LATE |
1028 DMA_TX_ERR_COL |
1029 DMA_TX_ERR_JABBER | DMA_TX_ERR_DEFER))
1030 sp->stats.tx_aborted_errors++;
1031 } else {
1032 /* transmit OK */
1033 sp->stats.tx_packets++;
1034 }
1035
1036 skb = sp->tx_skb[idx];
1037 sp->tx_skb[idx] = NULL;
1038 idx = DSC_NEXT(idx);
1039 sp->stats.tx_bytes += skb->len;
1040 dev_kfree_skb_irq(skb);
1041 }
1042
1043 sp->tx_csm = idx;
1044
1045 return;
1046 }
1047
1048
1049 static void rx_tasklet_func(unsigned long data)
1050 {
1051 struct net_device *dev = (struct net_device *) data;
1052 struct ar2313_private *sp = dev->priv;
1053
1054 if (sp->unloading) {
1055 return;
1056 }
1057
1058 if (ar2313_rx_int(dev)) {
1059 tasklet_hi_schedule(&sp->rx_tasklet);
1060 } else {
1061 unsigned long flags;
1062 spin_lock_irqsave(&sp->lock, flags);
1063 sp->dma_regs->intr_ena |= DMA_STATUS_RI;
1064 spin_unlock_irqrestore(&sp->lock, flags);
1065 }
1066 }
1067
1068 static void rx_schedule(struct net_device *dev)
1069 {
1070 struct ar2313_private *sp = dev->priv;
1071
1072 sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
1073
1074 tasklet_hi_schedule(&sp->rx_tasklet);
1075 }
1076
1077 static irqreturn_t ar2313_interrupt(int irq, void *dev_id)
1078 {
1079 struct net_device *dev = (struct net_device *) dev_id;
1080 struct ar2313_private *sp = dev->priv;
1081 unsigned int status, enabled;
1082
1083 /* clear interrupt */
1084 /*
1085 * Don't clear RI bit if currently disabled.
1086 */
1087 status = sp->dma_regs->status;
1088 enabled = sp->dma_regs->intr_ena;
1089 sp->dma_regs->status = status & enabled;
1090
1091 if (status & DMA_STATUS_NIS) {
1092 /* normal status */
1093 /*
1094 * Don't schedule rx processing if interrupt
1095 * is already disabled.
1096 */
1097 if (status & enabled & DMA_STATUS_RI) {
1098 /* receive interrupt */
1099 rx_schedule(dev);
1100 }
1101 if (status & DMA_STATUS_TI) {
1102 /* transmit interrupt */
1103 ar2313_tx_int(dev);
1104 }
1105 }
1106
1107 if (status & DMA_STATUS_AIS) {
1108 #if DEBUG_INT
1109 printk("%s: AIS set %08x & %x\n", __FUNCTION__,
1110 status, (DMA_STATUS_FBE | DMA_STATUS_TPS));
1111 #endif
1112 /* abnormal status */
1113 if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
1114 ar2313_restart(dev);
1115 }
1116 }
1117 return IRQ_HANDLED;
1118 }
1119
1120
1121 static int ar2313_open(struct net_device *dev)
1122 {
1123 struct ar2313_private *sp;
1124
1125 sp = dev->priv;
1126
1127 dev->mtu = 1500;
1128 netif_start_queue(dev);
1129
1130 sp->eth_regs->mac_control |= MAC_CONTROL_RE;
1131
1132 return 0;
1133 }
1134
1135 static void ar2313_halt(struct net_device *dev)
1136 {
1137 struct ar2313_private *sp = dev->priv;
1138 int j;
1139
1140 tasklet_disable(&sp->rx_tasklet);
1141
1142 /* kill the MAC */
1143 sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
1144 MAC_CONTROL_TE); /* disable Transmits */
1145 /* stop dma */
1146 sp->dma_regs->control = 0;
1147 sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
1148
1149 /* place phy and MAC in reset */
1150 *sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
1151
1152 /* free buffers on tx ring */
1153 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
1154 struct sk_buff *skb;
1155 ar2313_descr_t *txdesc;
1156
1157 txdesc = &sp->tx_ring[j];
1158 txdesc->descr = 0;
1159
1160 skb = sp->tx_skb[j];
1161 if (skb) {
1162 dev_kfree_skb(skb);
1163 sp->tx_skb[j] = NULL;
1164 }
1165 }
1166 }
1167
1168 /*
1169 * close should do nothing. Here's why. It's called when
1170 * 'ifconfig bond0 down' is run. If it calls free_irq then
1171 * the irq is gone forever ! When bond0 is made 'up' again,
1172 * the ar2313_open () does not call request_irq (). Worse,
1173 * the call to ar2313_halt() generates a WDOG reset due to
1174 * the write to 'sp->int_regs' and the box reboots.
1175 * Commenting this out is good since it allows the
1176 * system to resume when bond0 is made up again.
1177 */
1178 static int ar2313_close(struct net_device *dev)
1179 {
1180 #if 0
1181 /*
1182 * Disable interrupts
1183 */
1184 disable_irq(dev->irq);
1185
1186 /*
1187 * Without (or before) releasing irq and stopping hardware, this
1188 * is an absolute non-sense, by the way. It will be reset instantly
1189 * by the first irq.
1190 */
1191 netif_stop_queue(dev);
1192
1193 /* stop the MAC and DMA engines */
1194 ar2313_halt(dev);
1195
1196 /* release the interrupt */
1197 free_irq(dev->irq, dev);
1198
1199 #endif
1200 return 0;
1201 }
1202
1203 static int ar2313_start_xmit(struct sk_buff *skb, struct net_device *dev)
1204 {
1205 struct ar2313_private *sp = dev->priv;
1206 ar2313_descr_t *td;
1207 u32 idx;
1208
1209 idx = sp->tx_prd;
1210 td = &sp->tx_ring[idx];
1211
1212 if (td->status & DMA_TX_OWN) {
1213 #if DEBUG_TX
1214 printk("%s: No space left to Tx\n", __FUNCTION__);
1215 #endif
1216 /* free skbuf and lie to the caller that we sent it out */
1217 sp->stats.tx_dropped++;
1218 dev_kfree_skb(skb);
1219
1220 /* restart transmitter in case locked */
1221 sp->dma_regs->xmt_poll = 0;
1222 return 0;
1223 }
1224
1225 /* Setup the transmit descriptor. */
1226 td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
1227 (DMA_TX1_LS | DMA_TX1_IC | DMA_TX1_CHAINED));
1228 td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
1229 td->status = DMA_TX_OWN;
1230
1231 /* kick transmitter last */
1232 sp->dma_regs->xmt_poll = 0;
1233
1234 #if DEBUG_TX
1235 printk("index %d\n", idx);
1236 printk("TX status %08x\n", td->status);
1237 printk("TX devcs %08x\n", td->devcs);
1238 printk("TX addr %08x\n", td->addr);
1239 printk("TX descr %08x\n", td->descr);
1240 #endif
1241
1242 sp->tx_skb[idx] = skb;
1243 idx = DSC_NEXT(idx);
1244 sp->tx_prd = idx;
1245
1246 return 0;
1247 }
1248
1249 static int ar2313_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1250 {
1251 struct mii_ioctl_data *data = (struct mii_ioctl_data *) &ifr->ifr_data;
1252 struct ar2313_private *sp = dev->priv;
1253 int ret;
1254
1255 switch (cmd) {
1256
1257 case SIOCETHTOOL:
1258 spin_lock_irq(&sp->lock);
1259 ret = phy_ethtool_ioctl(sp->phy_dev, (void *) ifr->ifr_data);
1260 spin_unlock_irq(&sp->lock);
1261 return ret;
1262
1263 case SIOCSIFHWADDR:
1264 if (copy_from_user
1265 (dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
1266 return -EFAULT;
1267 return 0;
1268
1269 case SIOCGIFHWADDR:
1270 if (copy_to_user
1271 (ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
1272 return -EFAULT;
1273 return 0;
1274
1275 case SIOCGMIIPHY:
1276 case SIOCGMIIREG:
1277 case SIOCSMIIREG:
1278 return phy_mii_ioctl(sp->phy_dev, data, cmd);
1279
1280 default:
1281 break;
1282 }
1283
1284 return -EOPNOTSUPP;
1285 }
1286
1287 static struct net_device_stats *ar2313_get_stats(struct net_device *dev)
1288 {
1289 struct ar2313_private *sp = dev->priv;
1290 return &sp->stats;
1291 }
1292
1293
1294 static void ar2313_adjust_link(struct net_device *dev)
1295 {
1296 printk(KERN_ERR " ar2313_adjust_link implementation missing\n");
1297 }
1298
1299 #define MII_ADDR(phy, reg) \
1300 ((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
1301
1302 static int
1303 mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1304 {
1305 struct net_device *const dev = bus->priv;
1306 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
1307 volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1308
1309 ethernet->mii_addr = MII_ADDR(phy_addr, regnum);
1310 while (ethernet->mii_addr & MII_ADDR_BUSY);
1311 return (ethernet->mii_data >> MII_DATA_SHIFT);
1312 }
1313
1314 static int
1315 mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
1316 u16 value)
1317 {
1318 struct net_device *const dev = bus->priv;
1319 struct ar2313_private *sp = (struct ar2313_private *) dev->priv;
1320 volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1321
1322 while (ethernet->mii_addr & MII_ADDR_BUSY);
1323 ethernet->mii_data = value << MII_DATA_SHIFT;
1324 ethernet->mii_addr = MII_ADDR(phy_addr, regnum) | MII_ADDR_WRITE;
1325
1326 return 0;
1327 }
1328
1329 static int mdiobus_reset(struct mii_bus *bus)
1330 {
1331 struct net_device *const dev = bus->priv;
1332
1333 ar2313_reset_reg(dev);
1334
1335 return 0;
1336 }
1337
1338 static int mdiobus_probe (struct net_device *dev)
1339 {
1340 struct ar2313_private *const sp = (struct ar2313_private *) dev->priv;
1341 struct phy_device *phydev = NULL;
1342 int phy_addr;
1343
1344 /* find the first (lowest address) PHY on the current MAC's MII bus */
1345 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
1346 if (sp->mii_bus.phy_map[phy_addr]) {
1347 phydev = sp->mii_bus.phy_map[phy_addr];
1348 break; /* break out with first one found */
1349 }
1350
1351 if (!phydev) {
1352 printk (KERN_ERR "ar2313:%s: no PHY found\n", dev->name);
1353 return -1;
1354 }
1355
1356 /* now we are supposed to have a proper phydev, to attach to... */
1357 BUG_ON(!phydev);
1358 BUG_ON(phydev->attached_dev);
1359
1360 phydev = phy_connect(dev, phydev->dev.bus_id, &ar2313_adjust_link, 0,
1361 PHY_INTERFACE_MODE_MII);
1362
1363 if (IS_ERR(phydev)) {
1364 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
1365 return PTR_ERR(phydev);
1366 }
1367
1368 /* mask with MAC supported features */
1369 phydev->supported &= (SUPPORTED_10baseT_Half
1370 | SUPPORTED_10baseT_Full
1371 | SUPPORTED_100baseT_Half
1372 | SUPPORTED_100baseT_Full
1373 | SUPPORTED_Autoneg
1374 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
1375 | SUPPORTED_MII
1376 | SUPPORTED_TP);
1377
1378 phydev->advertising = phydev->supported;
1379
1380 //sp->old_link = 0;
1381 //sp->old_speed = 0;
1382 //sp->old_duplex = -1;
1383 sp->phy_dev = phydev;
1384
1385 printk(KERN_INFO "%s: attached PHY driver [%s] "
1386 "(mii_bus:phy_addr=%s)\n",
1387 dev->name, phydev->drv->name, phydev->dev.bus_id);
1388
1389 return 0;
1390 }
1391
This page took 0.183161 seconds and 5 git commands to generate.