ar7: clean up system code, add code to generate firmware images
[openwrt.git] / target / linux / image / ar7 / src / loader.c
1 /* inflate.c -- Not copyrighted 1992 by Mark Adler
2 version c10p1, 10 January 1993 */
3
4 /*
5 * Adapted for booting Linux by Hannu Savolainen 1993
6 * based on gzip-1.0.3
7 *
8 * Nicolas Pitre <nico@visuaide.com>, 1999/04/14 :
9 * Little mods for all variable to reside either into rodata or bss segments
10 * by marking constant variables with 'const' and initializing all the others
11 * at run-time only. This allows for the kernel uncompressor to run
12 * directly from Flash or ROM memory on embeded systems.
13 */
14
15 /*
16 Inflate deflated (PKZIP's method 8 compressed) data. (compress
17 with the gzip -3 option which will compress it in a compatible
18 format).
19
20 The compression method searches for as much of the current string of bytes
21 (up to a length of 258) in the previous 32 K bytes. If it doesn't find any
22 matches (of at least length 3), it codes the next byte. Otherwise, it
23 codes the length of the matched string and its distance backwards from
24 the current position. There is a single Huffman code that codes both
25 single bytes (called "literals") and match lengths. A second Huffman
26 code codes the distance information, which follows a length code. Each
27 length or distance code actually represents a base value and a number
28 of "extra" (sometimes zero) bits to get to add to the base value. At
29 the end of each deflated block is a special end-of-block (EOB) literal/
30 length code. The decoding process is basically: get a literal/length
31 code; if EOB then done; if a literal, emit the decoded byte; if a
32 length then get the distance and emit the referred-to bytes from the
33 sliding window of previously emitted data.
34
35 There are (currently) three kinds of inflate blocks: stored, fixed, and
36 dynamic. The compressor deals with some chunk of data at a time, and
37 decides which method to use on a chunk-by-chunk basis. A chunk might
38 typically be 32 K or 64 K. If the chunk is incompressible, then the
39 "stored" method is used. In this case, the bytes are simply stored as
40 is, eight bits per byte, with none of the above coding. The bytes are
41 preceded by a count, since there is no longer an EOB code.
42
43 If the data is compressible, then either the fixed or dynamic methods
44 are used. In the dynamic method, the compressed data is preceded by
45 an encoding of the literal/length and distance Huffman codes that are
46 to be used to decode this block. The representation is itself Huffman
47 coded, and so is preceded by a description of that code. These code
48 descriptions take up a little space, and so for small blocks, there is
49 a predefined set of codes, called the fixed codes. The fixed method is
50 used if the block codes up smaller that way (usually for quite small
51 chunks), otherwise the dynamic method is used. In the latter case, the
52 codes are customized to the probabilities in the current block, and so
53 can code it much better than the pre-determined fixed codes.
54
55 The Huffman codes themselves are decoded using a multi-level table
56 lookup, in order to maximize the speed of decoding plus the speed of
57 building the decoding tables. See the comments below that precede the
58 lbits and dbits tuning parameters.
59 */
60
61
62 /*
63 Notes beyond the 1.93a appnote.txt:
64
65 1. Distance pointers never point before the beginning of the output
66 stream.
67 2. Distance pointers can point back across blocks, up to 32k away.
68 3. There is an implied maximum of 7 bits for the bit length table and
69 15 bits for the actual data.
70 4. If only one code exists, then it is encoded using one bit. (Zero
71 would be more efficient, but perhaps a little confusing.) If two
72 codes exist, they are coded using one bit each (0 and 1).
73 5. There is no way of sending zero distance codes--a dummy must be
74 sent if there are none. (History: a pre 2.0 version of PKZIP would
75 store blocks with no distance codes, but this was discovered to be
76 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
77 zero distance codes, which is sent as one code of zero bits in
78 length.
79 6. There are up to 286 literal/length codes. Code 256 represents the
80 end-of-block. Note however that the static length tree defines
81 288 codes just to fill out the Huffman codes. Codes 286 and 287
82 cannot be used though, since there is no length base or extra bits
83 defined for them. Similarly, there are up to 30 distance codes.
84 However, static trees define 32 codes (all 5 bits) to fill out the
85 Huffman codes, but the last two had better not show up in the data.
86 7. Unzip can check dynamic Huffman blocks for complete code sets.
87 The exception is that a single code would not be complete (see #4).
88 8. The five bits following the block type is really the number of
89 literal codes sent minus 257.
90 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
91 (1+6+6). Therefore, to output three times the length, you output
92 three codes (1+1+1), whereas to output four times the same length,
93 you only need two codes (1+3). Hmm.
94 10. In the tree reconstruction algorithm, Code = Code + Increment
95 only if BitLength(i) is not zero. (Pretty obvious.)
96 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
97 12. Note: length code 284 can represent 227-258, but length code 285
98 really is 258. The last length deserves its own, short code
99 since it gets used a lot in very redundant files. The length
100 258 is special since 258 - 3 (the min match length) is 255.
101 13. The literal/length and distance code bit lengths are read as a
102 single stream of lengths. It is possible (and advantageous) for
103 a repeat code (16, 17, or 18) to go across the boundary between
104 the two sets of lengths.
105 */
106
107 #include "gzip.h"
108 #include <linux/config.h>
109
110
111
112 #ifndef STATIC
113 #define STATIC
114 #endif /* !STATIC */
115
116 #define slide window
117
118 /* Huffman code lookup table entry--this entry is four bytes for machines
119 that have 16-bit pointers (e.g. PC's in the small or medium model).
120 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
121 means that v is a literal, 16 < e < 32 means that v is a pointer to
122 the next table, which codes e - 16 bits, and lastly e == 99 indicates
123 an unused code. If a code with e == 99 is looked up, this implies an
124 error in the data. */
125 struct huft {
126 uch e; /* number of extra bits or operation */
127 uch b; /* number of bits in this code or subcode */
128 union {
129 ush n; /* literal, length base, or distance base */
130 struct huft *t; /* pointer to next level of table */
131 } v;
132 };
133
134
135 /* Function prototypes */
136 STATIC int huft_build OF((unsigned *, unsigned, unsigned,
137 const ush *, const ush *, struct huft **, int *));
138 STATIC int huft_free OF((struct huft *));
139 STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
140 STATIC int inflate_stored OF((void));
141 STATIC int inflate_fixed OF((void));
142 STATIC int inflate_dynamic OF((void));
143 STATIC int inflate_block OF((int *));
144 STATIC int inflate OF((void));
145 static void flush_window(void);
146 static void gzip_mark(void **);
147 static void gzip_release(void **);
148 STATIC uch get_byte(void);
149 STATIC void memzero(int *, int );
150 static void makecrc(void);
151 static void *malloc(int);
152 static void free(void *);
153 int tikernelunzip(int,char *[], char *[]);
154 static int tidecompress(uch *, uch *);
155 #if !defined(NOMEMCPY)
156 static uch *memcpy(uch *, const uch *, int);
157 #endif
158
159 void kernel_entry(int, char *[], char *[]);
160 void (*ke)(int, char *[], char *[]); /* Gen reference to kernel function */
161
162 void (*prnt)(unsigned int, char *); /* Gen reference to Yamon print function */
163
164 void printf(char *ptr); /* Generate our own printf */
165
166
167
168 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
169 stream to find repeated byte strings. This is implemented here as a
170 circular buffer. The index is updated simply by incrementing and then
171 ANDing with 0x7fff (32K-1). */
172 /* It is left to other modules to supply the 32 K area. It is assumed
173 to be usable as if it were declared "uch slide[32768];" or as just
174 "uch *slide;" and then malloc'ed in the latter case. The definition
175 must be in unzip.h, included above. */
176 /* unsigned wp; current position in slide */
177 #define wp outcnt
178 #define flush_output(w) (wp=(w),flush_window())
179
180 /* Tables for deflate from PKZIP's appnote.txt. */
181 static const unsigned border[] = { /* Order of the bit length code lengths */
182 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
183 static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
184 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
185 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
186 /* note: see note #13 above about the 258 in this list. */
187 static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
188 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
189 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
190 static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
191 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
192 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
193 8193, 12289, 16385, 24577};
194 static const ush cpdext[] = { /* Extra bits for distance codes */
195 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
196 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
197 12, 12, 13, 13};
198
199 //bvb extern uch kernelimage[];
200
201
202
203
204 /* Macros for inflate() bit peeking and grabbing.
205 The usage is:
206
207 NEEDBITS(j)
208 x = b & mask_bits[j];
209 DUMPBITS(j)
210
211 where NEEDBITS makes sure that b has at least j bits in it, and
212 DUMPBITS removes the bits from b. The macros use the variable k
213 for the number of bits in b. Normally, b and k are register
214 variables for speed, and are initialized at the beginning of a
215 routine that uses these macros from a global bit buffer and count.
216
217 If we assume that EOB will be the longest code, then we will never
218 ask for bits with NEEDBITS that are beyond the end of the stream.
219 So, NEEDBITS should not read any more bytes than are needed to
220 meet the request. Then no bytes need to be "returned" to the buffer
221 at the end of the last block.
222
223 However, this assumption is not true for fixed blocks--the EOB code
224 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
225 (The EOB code is shorter than other codes because fixed blocks are
226 generally short. So, while a block always has an EOB, many other
227 literal/length codes have a significantly lower probability of
228 showing up at all.) However, by making the first table have a
229 lookup of seven bits, the EOB code will be found in that first
230 lookup, and so will not require that too many bits be pulled from
231 the stream.
232 */
233
234 STATIC ulg bb; /* bit buffer */
235 STATIC unsigned bk; /* bits in bit buffer */
236 ulg bytes_out;
237 static ulg free_mem_ptr;
238 //bvb static ulg free_mem_ptr_end;
239
240 STATIC const ush mask_bits[] = {
241 0x0000,
242 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
243 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
244 };
245
246 #define NEXTBYTE() ((uch)get_byte())
247 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
248 #define DUMPBITS(n) {b>>=(n); k-=(n);}
249
250
251 /*
252 Huffman code decoding is performed using a multi-level table lookup.
253 The fastest way to decode is to simply build a lookup table whose
254 size is determined by the longest code. However, the time it takes
255 to build this table can also be a factor if the data being decoded
256 is not very long. The most common codes are necessarily the
257 shortest codes, so those codes dominate the decoding time, and hence
258 the speed. The idea is you can have a shorter table that decodes the
259 shorter, more probable codes, and then point to subsidiary tables for
260 the longer codes. The time it costs to decode the longer codes is
261 then traded against the time it takes to make longer tables.
262
263 This results of this trade are in the variables lbits and dbits
264 below. lbits is the number of bits the first level table for literal/
265 length codes can decode in one step, and dbits is the same thing for
266 the distance codes. Subsequent tables are also less than or equal to
267 those sizes. These values may be adjusted either when all of the
268 codes are shorter than that, in which case the longest code length in
269 bits is used, or when the shortest code is *longer* than the requested
270 table size, in which case the length of the shortest code in bits is
271 used.
272
273 There are two different values for the two tables, since they code a
274 different number of possibilities each. The literal/length table
275 codes 286 possible values, or in a flat code, a little over eight
276 bits. The distance table codes 30 possible values, or a little less
277 than five bits, flat. The optimum values for speed end up being
278 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
279 The optimum values may differ though from machine to machine, and
280 possibly even between compilers. Your mileage may vary.
281 */
282
283
284 STATIC const int lbits = 9; /* bits in base literal/length lookup table */
285 STATIC const int dbits = 6; /* bits in base distance lookup table */
286
287
288 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
289 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
290 #define N_MAX 288 /* maximum number of codes in any set */
291
292
293 STATIC unsigned hufts; /* track memory usage */
294
295
296 STATIC int huft_build(b, n, s, d, e, t, m)
297 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
298 unsigned n; /* number of codes (assumed <= N_MAX) */
299 unsigned s; /* number of simple-valued codes (0..s-1) */
300 const ush *d; /* list of base values for non-simple codes */
301 const ush *e; /* list of extra bits for non-simple codes */
302 struct huft **t; /* result: starting table */
303 int *m; /* maximum lookup bits, returns actual */
304 /* Given a list of code lengths and a maximum table size, make a set of
305 tables to decode that set of codes. Return zero on success, one if
306 the given code set is incomplete (the tables are still built in this
307 case), two if the input is invalid (all zero length codes or an
308 oversubscribed set of lengths), and three if not enough memory. */
309 {
310 unsigned a; /* counter for codes of length k */
311 unsigned c[BMAX+1]; /* bit length count table */
312 unsigned f; /* i repeats in table every f entries */
313 int g; /* maximum code length */
314 int h; /* table level */
315 register unsigned i; /* counter, current code */
316 register unsigned j; /* counter */
317 register int k; /* number of bits in current code */
318 int l; /* bits per table (returned in m) */
319 register unsigned *p; /* pointer into c[], b[], or v[] */
320 register struct huft *q; /* points to current table */
321 struct huft r; /* table entry for structure assignment */
322 struct huft *u[BMAX]; /* table stack */
323 unsigned v[N_MAX]; /* values in order of bit length */
324 register int w; /* bits before this table == (l * h) */
325 unsigned x[BMAX+1]; /* bit offsets, then code stack */
326 unsigned *xp; /* pointer into x */
327 int y; /* number of dummy codes added */
328 unsigned z; /* number of entries in current table */
329
330
331 /* Generate counts for each bit length */
332 memzero(c, sizeof(c));
333 p = b; i = n;
334 do {
335 /* Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), n-i, *p)); */
336
337 c[*p]++; /* assume all entries <= BMAX */
338 p++; /* Can't combine with above line (Solaris bug) */
339 } while (--i);
340 if (c[0] == n) /* null input--all zero length codes */
341 {
342 *t = (struct huft *)NULL;
343 *m = 0;
344 return 0;
345 }
346
347
348 /* Find minimum and maximum length, bound *m by those */
349 l = *m;
350 for (j = 1; j <= BMAX; j++)
351 if (c[j])
352 break;
353 k = j; /* minimum code length */
354 if ((unsigned)l < j)
355 l = j;
356 for (i = BMAX; i; i--)
357 if (c[i])
358 break;
359 g = i; /* maximum code length */
360 if ((unsigned)l > i)
361 l = i;
362 *m = l;
363
364
365 /* Adjust last length count to fill out codes, if needed */
366 for (y = 1 << j; j < i; j++, y <<= 1)
367 if ((y -= c[j]) < 0)
368 return 2; /* bad input: more codes than bits */
369 if ((y -= c[i]) < 0)
370 return 2;
371 c[i] += y;
372
373
374 /* Generate starting offsets into the value table for each length */
375 x[1] = j = 0;
376 p = c + 1; xp = x + 2;
377 while (--i) { /* note that i == g from above */
378 *xp++ = (j += *p++);
379 }
380
381
382 /* Make a table of values in order of bit lengths */
383 p = b; i = 0;
384 do {
385 if ((j = *p++) != 0)
386 v[x[j]++] = i;
387 } while (++i < n);
388
389
390 /* Generate the Huffman codes and for each, make the table entries */
391 x[0] = i = 0; /* first Huffman code is zero */
392 p = v; /* grab values in bit order */
393 h = -1; /* no tables yet--level -1 */
394 w = -l; /* bits decoded == (l * h) */
395 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
396 q = (struct huft *)NULL; /* ditto */
397 z = 0; /* ditto */
398
399 /* go through the bit lengths (k already is bits in shortest code) */
400 for (; k <= g; k++)
401 {
402 a = c[k];
403 while (a--)
404 {
405 /* here i is the Huffman code of length k bits for value *p */
406 /* make tables up to required level */
407 while (k > w + l)
408 {
409 h++;
410 w += l; /* previous table always l bits */
411
412 /* compute minimum size table less than or equal to l bits */
413 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
414 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
415 { /* too few codes for k-w bit table */
416 f -= a + 1; /* deduct codes from patterns left */
417 xp = c + k;
418 while (++j < z) /* try smaller tables up to z bits */
419 {
420 if ((f <<= 1) <= *++xp)
421 break; /* enough codes to use up j bits */
422 f -= *xp; /* else deduct codes from patterns */
423 }
424 }
425 z = 1 << j; /* table entries for j-bit table */
426
427 /* allocate and link in new table */
428 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
429 (struct huft *)NULL)
430 {
431 if (h)
432 huft_free(u[0]);
433 return 3; /* not enough memory */
434 }
435 hufts += z + 1; /* track memory usage */
436 *t = q + 1; /* link to list for huft_free() */
437 *(t = &(q->v.t)) = (struct huft *)NULL;
438 u[h] = ++q; /* table starts after link */
439
440 /* connect to last table, if there is one */
441 if (h)
442 {
443 x[h] = i; /* save pattern for backing up */
444 r.b = (uch)l; /* bits to dump before this table */
445 r.e = (uch)(16 + j); /* bits in this table */
446 r.v.t = q; /* pointer to this table */
447 j = i >> (w - l); /* (get around Turbo C bug) */
448 u[h-1][j] = r; /* connect to last table */
449 }
450 }
451
452 /* set up table entry in r */
453 r.b = (uch)(k - w);
454 if (p >= v + n)
455 r.e = 99; /* out of values--invalid code */
456 else if (*p < s)
457 {
458 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
459 r.v.n = (ush)(*p); /* simple code is just the value */
460 p++; /* one compiler does not like *p++ */
461 }
462 else
463 {
464 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
465 r.v.n = d[*p++ - s];
466 }
467
468 /* fill code-like entries with r */
469 f = 1 << (k - w);
470 for (j = i >> w; j < z; j += f)
471 q[j] = r;
472
473 /* backwards increment the k-bit code i */
474 for (j = 1 << (k - 1); i & j; j >>= 1)
475 i ^= j;
476 i ^= j;
477
478 /* backup over finished tables */
479 while ((i & ((1 << w) - 1)) != x[h])
480 {
481 h--; /* don't need to update q */
482 w -= l;
483 }
484 }
485 }
486
487
488 /* Return true (1) if we were given an incomplete table */
489 return y != 0 && g != 1;
490 }
491
492
493
494 STATIC int huft_free(t)
495 struct huft *t; /* table to free */
496 /* Free the malloc'ed tables built by huft_build(), which makes a linked
497 list of the tables it made, with the links in a dummy first entry of
498 each table. */
499 {
500 register struct huft *p, *q;
501
502
503 /* Go through linked list, freeing from the malloced (t[-1]) address. */
504 p = t;
505 while (p != (struct huft *)NULL)
506 {
507 q = (--p)->v.t;
508 free((char*)p);
509 p = q;
510 }
511 return 0;
512 }
513
514
515 STATIC int inflate_codes(tl, td, bl, bd)
516 struct huft *tl, *td; /* literal/length and distance decoder tables */
517 int bl, bd; /* number of bits decoded by tl[] and td[] */
518 /* inflate (decompress) the codes in a deflated (compressed) block.
519 Return an error code or zero if it all goes ok. */
520 {
521 register unsigned e; /* table entry flag/number of extra bits */
522 unsigned n, d; /* length and index for copy */
523 unsigned w; /* current window position */
524 struct huft *t; /* pointer to table entry */
525 unsigned ml, md; /* masks for bl and bd bits */
526 register ulg b; /* bit buffer */
527 register unsigned k; /* number of bits in bit buffer */
528
529
530 /* make local copies of globals */
531 b = bb; /* initialize bit buffer */
532 k = bk;
533 w = wp; /* initialize window position */
534
535 /* inflate the coded data */
536 ml = mask_bits[bl]; /* precompute masks for speed */
537 md = mask_bits[bd];
538 for (;;) /* do until end of block */
539 {
540 NEEDBITS((unsigned)bl)
541 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
542 {
543 do {
544 if (e == 99)
545 {
546 return 1;
547 }
548 DUMPBITS(t->b)
549 e -= 16;
550 NEEDBITS(e)
551 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
552 }
553 DUMPBITS(t->b)
554 if (e == 16) /* then it's a literal */
555 {
556 slide[w++] = (uch)t->v.n;
557 /* Tracevv((stderr, "%c", slide[w-1])); */
558 if (w == WSIZE)
559 {
560 flush_output(w);
561 w = 0;
562 }
563 }
564 else /* it's an EOB or a length */
565 {
566 /* exit if end of block */
567 if (e == 15)
568 {
569 break;
570 }
571
572 /* get length of block to copy */
573 NEEDBITS(e)
574 n = t->v.n + ((unsigned)b & mask_bits[e]);
575 DUMPBITS(e);
576
577 /* decode distance of block to copy */
578 NEEDBITS((unsigned)bd)
579 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
580 {
581 do {
582 if (e == 99)
583 {
584 return 1;
585 }
586 DUMPBITS(t->b)
587 e -= 16;
588 NEEDBITS(e)
589 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
590 }
591 DUMPBITS(t->b)
592 NEEDBITS(e)
593 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
594 DUMPBITS(e)
595 /* Tracevv((stderr,"\\[%d,%d]", w-d, n)); */
596
597 /* do the copy */
598 do {
599 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
600 #if !defined(NOMEMCPY) && !defined(DEBUG)
601 if (w - d >= e) /* (this test assumes unsigned comparison) */
602 {
603 memcpy(slide + w, slide + d, e);
604 w += e;
605 d += e;
606 }
607 else /* do it slow to avoid memcpy() overlap */
608 #endif /* !NOMEMCPY */
609 do {
610 slide[w++] = slide[d++];
611 /* Tracevv((stderr, "%c", slide[w-1])); */
612 } while (--e);
613
614 if (w == WSIZE)
615 {
616 flush_output(w);
617 w = 0;
618 }
619 } while (n);
620 }
621 }
622
623
624 /* restore the globals from the locals */
625 wp = w; /* restore global window pointer */
626 bb = b; /* restore global bit buffer */
627 bk = k;
628
629 /* done */
630 return 0;
631 }
632
633
634
635 STATIC int inflate_stored()
636 /* "decompress" an inflated type 0 (stored) block. */
637 {
638 unsigned n; /* number of bytes in block */
639 unsigned w; /* current window position */
640 register ulg b; /* bit buffer */
641 register unsigned k; /* number of bits in bit buffer */
642
643
644 /* make local copies of globals */
645 b = bb; /* initialize bit buffer */
646 k = bk;
647 w = wp; /* initialize window position */
648
649
650 /* go to byte boundary */
651 n = k & 7;
652 DUMPBITS(n);
653
654
655 /* get the length and its complement */
656 NEEDBITS(16)
657 n = ((unsigned)b & 0xffff);
658 DUMPBITS(16)
659 NEEDBITS(16)
660 if (n != (unsigned)((~b) & 0xffff))
661 return 1; /* error in compressed data */
662 DUMPBITS(16)
663
664
665 /* read and output the compressed data */
666 while (n--)
667 {
668 NEEDBITS(8)
669 slide[w++] = (uch)b;
670 if (w == WSIZE)
671 {
672 flush_output(w);
673 w = 0;
674 }
675 DUMPBITS(8)
676 }
677
678
679 /* restore the globals from the locals */
680 wp = w; /* restore global window pointer */
681 bb = b; /* restore global bit buffer */
682 bk = k;
683
684 return 0;
685 }
686
687
688
689 STATIC int inflate_fixed()
690 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
691 either replace this with a custom decoder, or at least precompute the
692 Huffman tables. */
693 {
694 int i; /* temporary variable */
695 struct huft *tl; /* literal/length code table */
696 struct huft *td; /* distance code table */
697 int bl; /* lookup bits for tl */
698 int bd; /* lookup bits for td */
699 unsigned l[288]; /* length list for huft_build */
700
701
702 /* set up literal table */
703 for (i = 0; i < 144; i++)
704 l[i] = 8;
705 for (; i < 256; i++)
706 l[i] = 9;
707 for (; i < 280; i++)
708 l[i] = 7;
709 for (; i < 288; i++) /* make a complete, but wrong code set */
710 l[i] = 8;
711 bl = 7;
712 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
713 return i;
714
715
716 /* set up distance table */
717 for (i = 0; i < 30; i++) /* make an incomplete code set */
718 l[i] = 5;
719 bd = 5;
720 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
721 {
722 huft_free(tl);
723
724 return i;
725 }
726
727
728 /* decompress until an end-of-block code */
729 {
730 int iii;
731
732 iii = inflate_codes(tl, td, bl, bd);
733 if (iii)
734 return 1;
735 }
736
737 /* free the decoding tables, return */
738 huft_free(tl);
739 huft_free(td);
740 return 0;
741 }
742
743
744
745 STATIC int inflate_dynamic()
746 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
747 {
748 int i; /* temporary variables */
749 unsigned j;
750 unsigned l; /* last length */
751 unsigned m; /* mask for bit lengths table */
752 unsigned n; /* number of lengths to get */
753 struct huft *tl; /* literal/length code table */
754 struct huft *td; /* distance code table */
755 int bl; /* lookup bits for tl */
756 int bd; /* lookup bits for td */
757 unsigned nb; /* number of bit length codes */
758 unsigned nl; /* number of literal/length codes */
759 unsigned nd; /* number of distance codes */
760 #ifdef PKZIP_BUG_WORKAROUND
761 unsigned ll[288+32]; /* literal/length and distance code lengths */
762 #else
763 unsigned ll[286+30]; /* literal/length and distance code lengths */
764 #endif
765 register ulg b; /* bit buffer */
766 register unsigned k; /* number of bits in bit buffer */
767
768
769 /* make local bit buffer */
770 b = bb;
771 k = bk;
772
773 /* read in table lengths */
774 NEEDBITS(5)
775 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
776 DUMPBITS(5)
777 NEEDBITS(5)
778 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
779 DUMPBITS(5)
780 NEEDBITS(4)
781 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
782 DUMPBITS(4)
783 #ifdef PKZIP_BUG_WORKAROUND
784 if (nl > 288 || nd > 32)
785 #else
786 if (nl > 286 || nd > 30)
787 #endif
788 return 1; /* bad lengths */
789
790
791 /* read in bit-length-code lengths */
792 for (j = 0; j < nb; j++)
793 {
794 NEEDBITS(3)
795 ll[border[j]] = (unsigned)b & 7;
796 DUMPBITS(3)
797 }
798 for (; j < 19; j++)
799 ll[border[j]] = 0;
800
801
802 /* build decoding table for trees--single level, 7 bit lookup */
803 bl = 7;
804 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
805 {
806 if (i == 1)
807 huft_free(tl);
808 return i; /* incomplete code set */
809 }
810
811
812 /* read in literal and distance code lengths */
813 n = nl + nd;
814 m = mask_bits[bl];
815 i = l = 0;
816 while ((unsigned)i < n)
817 {
818 NEEDBITS((unsigned)bl)
819 j = (td = tl + ((unsigned)b & m))->b;
820 DUMPBITS(j)
821 j = td->v.n;
822 if (j < 16) /* length of code in bits (0..15) */
823 ll[i++] = l = j; /* save last length in l */
824 else if (j == 16) /* repeat last length 3 to 6 times */
825 {
826 NEEDBITS(2)
827 j = 3 + ((unsigned)b & 3);
828 DUMPBITS(2)
829 if ((unsigned)i + j > n)
830 return 1;
831 while (j--)
832 ll[i++] = l;
833 }
834 else if (j == 17) /* 3 to 10 zero length codes */
835 {
836 NEEDBITS(3)
837 j = 3 + ((unsigned)b & 7);
838 DUMPBITS(3)
839 if ((unsigned)i + j > n)
840 return 1;
841 while (j--)
842 ll[i++] = 0;
843 l = 0;
844 }
845 else /* j == 18: 11 to 138 zero length codes */
846 {
847 NEEDBITS(7)
848 j = 11 + ((unsigned)b & 0x7f);
849 DUMPBITS(7)
850 if ((unsigned)i + j > n)
851 return 1;
852 while (j--)
853 ll[i++] = 0;
854 l = 0;
855 }
856 }
857
858
859 /* free decoding table for trees */
860 huft_free(tl);
861
862
863 /* restore the global bit buffer */
864 bb = b;
865 bk = k;
866
867
868 /* build the decoding tables for literal/length and distance codes */
869 bl = lbits;
870 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
871 {
872 if (i == 1) {
873 /* error(" incomplete literal tree\n"); */
874 huft_free(tl);
875 }
876 return i; /* incomplete code set */
877 }
878 bd = dbits;
879 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
880 {
881 if (i == 1) {
882 /* error(" incomplete distance tree\n"); */
883 #ifdef PKZIP_BUG_WORKAROUND
884 i = 0;
885 }
886 #else
887 huft_free(td);
888 }
889 huft_free(tl);
890 return i; /* incomplete code set */
891 #endif
892 }
893
894 /* decompress until an end-of-block code */
895 {
896 int iii;
897 iii = inflate_codes(tl, td, bl, bd);
898 if (iii )
899 return 1;
900 }
901
902 /* free the decoding tables, return */
903 huft_free(tl);
904 huft_free(td);
905
906 return 0;
907 }
908
909
910
911 STATIC int inflate_block(e)
912 int *e; /* last block flag */
913 /* decompress an inflated block */
914 {
915 unsigned t; /* block type */
916 register ulg b; /* bit buffer */
917 register unsigned k; /* number of bits in bit buffer */
918
919
920 /* make local bit buffer */
921 b = bb;
922 k = bk;
923
924 /* read in last block bit */
925 NEEDBITS(1);
926 *e = (int)b & 1;
927 DUMPBITS(1);
928
929
930 /* read in block type */
931 NEEDBITS(2);
932 t = (unsigned)b & 3;
933 DUMPBITS(2);
934
935
936 /* restore the global bit buffer */
937 bb = b;
938 bk = k;
939
940 /* inflate that block type */
941 if (t == 2)
942 return inflate_dynamic();
943 if (t == 0)
944 return inflate_stored();
945 if (t == 1)
946 return inflate_fixed();
947
948
949 /* bad block type */
950 return 2;
951 }
952
953
954
955 STATIC int inflate()
956 /* decompress an inflated entry */
957 {
958 int e; /* last block flag */
959 int r; /* result code */
960 unsigned h; /* maximum struct huft's malloc'ed */
961 void *ptr;
962
963 /* initialize window, bit buffer */
964 wp = 0;
965 bk = 0;
966 bb = 0;
967
968 /* Initialize crc table */
969 makecrc();
970
971
972 /* decompress until the last block */
973 h = 0;
974 do {
975 hufts = 0;
976 gzip_mark(&ptr);
977 r = inflate_block(&e);
978 if (r != 0) {
979 gzip_release(&ptr);
980 return r;
981 }
982 gzip_release(&ptr);
983 if (hufts > h)
984 h = hufts;
985 } while (!e);
986
987 /* Undo too much lookahead. The next read will be byte aligned so we
988 * can discard unused bits in the last meaningful byte.
989 */
990 while (bk >= 8) {
991 bk -= 8;
992 inptr--;
993 }
994
995 /* flush out slide */
996 flush_output(wp);
997
998
999 /* return success */
1000 #ifdef DEBUG
1001 fprintf(stderr, "<%u> ", h);
1002 #endif /* DEBUG */
1003 return 0;
1004 }
1005
1006 /**********************************************************************
1007 *
1008 * The following are support routines for inflate.c
1009 *
1010 **********************************************************************/
1011
1012 static ulg crc_32_tab[256];
1013 static ulg crc; /* initialized in makecrc() so it'll reside in bss */
1014 #define CRC_VALUE (crc ^ 0xffffffffL)
1015
1016 /*
1017 * Code to compute the CRC-32 table. Borrowed from
1018 * gzip-1.0.3/makecrc.c.
1019 */
1020
1021 static void
1022 makecrc(void)
1023 {
1024 /* Not copyrighted 1990 Mark Adler */
1025
1026 unsigned long c; /* crc shift register */
1027 unsigned long e; /* polynomial exclusive-or pattern */
1028 int i; /* counter for all possible eight bit values */
1029 int k; /* byte being shifted into crc apparatus */
1030
1031 /* terms of polynomial defining this crc (except x^32): */
1032 static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1033
1034 /* Make exclusive-or pattern from polynomial */
1035 e = 0;
1036 for (i = 0; i < sizeof(p)/sizeof(int); i++)
1037 e |= 1L << (31 - p[i]);
1038
1039 crc_32_tab[0] = 0;
1040
1041 for (i = 1; i < 256; i++)
1042 {
1043 c = 0;
1044 for (k = i | 256; k != 1; k >>= 1)
1045 {
1046 c = c & 1 ? (c >> 1) ^ e : c >> 1;
1047 if (k & 1)
1048 c ^= e;
1049 }
1050 crc_32_tab[i] = c;
1051 }
1052
1053 /* this is initialized here so this code could reside in ROM */
1054 crc = (ulg)0xffffffffL; /* shift register contents */
1055 }
1056
1057 /* gzip flag byte */
1058 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
1059 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1060 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
1061 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
1062 #define COMMENT 0x10 /* bit 4 set: file comment present */
1063 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
1064 #define RESERVED 0xC0 /* bit 6,7: reserved */
1065
1066 /*
1067 * Do the uncompression!
1068 */
1069 static int gunzip(void)
1070 {
1071 uch flags;
1072 unsigned char magic[2]; /* magic header */
1073 char method;
1074 ulg orig_crc = 0; /* original crc */
1075 ulg orig_len = 0; /* original uncompressed length */
1076 int res;
1077
1078 magic[0] = (unsigned char)get_byte();
1079 magic[1] = (unsigned char)get_byte();
1080 method = (unsigned char)get_byte();
1081
1082
1083 if (magic[0] != 037 ||
1084 ((magic[1] != 0213) && (magic[1] != 0236))) {
1085 /* error("bad gzip magic numbers"); */
1086 //bvb printf("Compressed Kernel image Magic number error: 0x%x 0x%x\n",
1087 //bvb (unsigned int)magic[0], (unsigned int)magic[1]);
1088 return -1;
1089 }
1090
1091 /* We only support method #8, DEFLATED */
1092 if (method != 8) {
1093 /* error("internal error, invalid method"); */
1094 //bvb printf("Kernel Compression Method number is %d(must be 8)\n",
1095 //bvb (unsigned int) method);
1096
1097 return -1;
1098 }
1099
1100 flags = (uch)get_byte();
1101 if ((flags & ENCRYPTED) != 0) {
1102 /* error("Input is encrypted\n"); */
1103 return -1;
1104 }
1105 if ((flags & CONTINUATION) != 0) {
1106 /* error("Multi part input\n"); */
1107 return -1;
1108 }
1109 if ((flags & RESERVED) != 0) {
1110 /* error("Input has invalid flags\n"); */
1111 return -1;
1112 }
1113 (ulg)get_byte(); /* Get timestamp */
1114 /* bvb
1115 ((ulg)get_byte()) << 8;
1116 ((ulg)get_byte()) << 16;
1117 ((ulg)get_byte()) << 24;
1118 */
1119 (ulg)get_byte();
1120 (ulg)get_byte();
1121 (ulg)get_byte();
1122
1123 (void)get_byte(); /* Ignore extra flags for the moment */
1124 (void)get_byte(); /* Ignore OS type for the moment */
1125
1126 if ((flags & EXTRA_FIELD) != 0) {
1127 unsigned len = (unsigned)get_byte();
1128 len |= ((unsigned)get_byte())<<8;
1129 while (len--) (void)get_byte();
1130 }
1131
1132 /* Get original file name if it was truncated */
1133 if ((flags & ORIG_NAME) != 0) {
1134 /* Discard the old name */
1135 while (get_byte() != 0) /* null */ ;
1136 }
1137
1138 /* Discard file comment if any */
1139 if ((flags & COMMENT) != 0) {
1140 while (get_byte() != 0) /* null */ ;
1141 }
1142
1143 /* Decompress */
1144 res = inflate();
1145 if (res) {
1146 switch (res) {
1147 case 0:
1148 break;
1149 case 1:
1150 //bvb printf("Error: invalid compressed format (err=1)\n");
1151 break;
1152 case 2:
1153 //bvb printf("Error: invalid compressed format (err=2)\n");
1154 break;
1155 case 3:
1156 //bvb printf("Error: out of memory\n");
1157 break;
1158 default:
1159 //bvb printf("Error: invalid compressed format (other)\n");
1160 break;
1161 }
1162 return -1;
1163 }
1164
1165 /* Get the crc and original length */
1166 /* crc32 (see algorithm.doc)
1167 * uncompressed input size modulo 2^32
1168 */
1169 orig_crc = (ulg) get_byte();
1170 orig_crc |= (ulg) get_byte() << 8;
1171 orig_crc |= (ulg) get_byte() << 16;
1172 orig_crc |= (ulg) get_byte() << 24;
1173
1174 orig_len = (ulg) get_byte();
1175 orig_len |= (ulg) get_byte() << 8;
1176 orig_len |= (ulg) get_byte() << 16;
1177 orig_len |= (ulg) get_byte() << 24;
1178
1179 /* Validate decompression */
1180 if (orig_crc != CRC_VALUE) {
1181 //bvb printf("ERROR: crc error\n");
1182 return -1;
1183 }
1184 if (orig_len != bytes_out) {
1185 //bvb printf("Error: CRC length error\n");
1186 return -1;
1187 }
1188 //bvb printf("Kernel Compression OK\n");
1189 return 0;
1190 }
1191
1192 int tikernelunzip(int argc, char *argv[], char *arge[])
1193 {
1194 extern unsigned int _ftext;
1195 extern uch kernelimage[];
1196 uch *in, *out;
1197 int status;
1198 //bvb int *p;
1199
1200 printf("Launching kernel decompressor.\n");
1201
1202 // out = (uch *)OUTBUF_ADDR;
1203 out = (uch *)&_ftext;
1204 in = &(kernelimage[0]); /* temp test file */
1205
1206 status = tidecompress(in, out);
1207
1208 if (status == 0)
1209 {
1210 //bvb printf("Kernel Decompressor was successful, addr:0x%x\n",
1211 //bvb (unsigned int)out);
1212 //bvb return(0);
1213
1214 printf("Kernel decompressor was successful ... launching kernel.\n");
1215
1216 ke = ( void(*)(int, char *[],char*[]))kernel_entry;
1217 (*ke)(argc,argv,arge);
1218
1219 return (0);
1220
1221 }
1222 else
1223 {
1224 //bvb printf("Error in compression: status=0x%x\n", status);
1225 printf("Error in decompression!\n");
1226 return(1);
1227 }
1228
1229 //bvb p = (int *)0xb6000000;
1230 //bvb *p = 0x46464646;
1231
1232 }
1233
1234
1235 int tidecompress(uch *indata, uch *outdata)
1236 {
1237 extern unsigned int inflate_free_memory_start;
1238 extern unsigned int inflate_slide_window;
1239
1240 int i;
1241 //bvb int *p;
1242 //bvb int status;
1243 int j;
1244
1245
1246 j = 0;
1247 //bvb p = (int *)0xb6000000;
1248 //bvb *p = 0x556e7a70;
1249
1250 /* Setup memory limits */
1251 //bvb freememstart = (void *)FREEMEM_START;
1252 freememstart = (void *)&inflate_free_memory_start;
1253 window = (uch *)&inflate_slide_window; /* only if using raw memory */
1254
1255 bytes_out = 0;
1256 output_ptr = 0;
1257 output_data = outdata;
1258 input_data = indata;
1259
1260 i = gunzip();
1261 return(i);
1262 }
1263
1264
1265 void printf(char *ptr)
1266 {
1267 unsigned int *tempptr = (unsigned int *)0x90000534;
1268 prnt = ( void (*)(unsigned int, char *)) *tempptr;
1269 (*prnt)(0,ptr);
1270 }
1271
1272
1273 uch get_byte()
1274 {
1275 uch c;
1276
1277 c = *input_data;
1278 input_data++;
1279
1280 return(c);
1281 }
1282
1283 void memzero(int table[], int size)
1284 {
1285 int i;
1286 int j = size/4;
1287
1288 for(i=0; i<j; i++)
1289 {
1290 table[i] = 0;
1291 }
1292 }
1293
1294 /* ===========================================================================
1295 * Write the output window window[0..outcnt-1] and update crc and bytes_out.
1296 * (Used for the decompressed data only.)
1297 */
1298 void flush_window()
1299 {
1300 ulg c = crc;
1301 unsigned n;
1302 uch *in, *out, ch;
1303
1304
1305 in = window;
1306 out = &output_data[output_ptr];
1307 for (n = 0; n < outcnt; n++) {
1308 ch = *out++ = *in++;
1309 c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
1310 }
1311 crc = c;
1312 bytes_out += (ulg)outcnt;
1313 output_ptr += (ulg)outcnt;
1314 outcnt = 0;
1315
1316 //bvb printf("Bytes uncompressed: %d\r", bytes_out);
1317 }
1318
1319 static void gzip_mark(void **ptr)
1320 {
1321 /* arch_decomp_wdog(); */
1322 *ptr = (void *) free_mem_ptr;
1323 }
1324
1325 static void gzip_release(void **ptr)
1326 {
1327 /* arch_decomp_wdog(); */
1328 free_mem_ptr = (long) *ptr;
1329 }
1330
1331 void *malloc(int size)
1332 {
1333 uch *p;
1334 void *r;
1335
1336 r = freememstart;
1337 p = (uch *)r;
1338
1339 p = p + size;
1340 freememstart = (void *)p;
1341
1342 return(r);
1343 }
1344
1345 void free(void *p)
1346 {
1347 }
1348
1349
This page took 0.111879 seconds and 5 git commands to generate.