7 -CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS)
8 +CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS) -I./include/linux/lzma
10 ifeq ($(WITHOUT_XATTR), 1)
11 CPPFLAGS += -DWITHOUT_XATTR
12 @@ -52,7 +52,9 @@ $(SYMLINKS):
13 ln -sf ../fs/jffs2/$@ $@
15 $(BUILDDIR)/mkfs.jffs2: $(addprefix $(BUILDDIR)/,\
16 - compr_rtime.o mkfs.jffs2.o compr_zlib.o $(if $(NO_LZO),,compr_lzo.o) \
17 + compr_rtime.o mkfs.jffs2.o compr_zlib.o \
18 + $(if $(NO_LZO),,compr_lzo.o) \
19 + compr_lzma.o lzma/LzFind.o lzma/LzmaEnc.o lzma/LzmaDec.o \
21 LDFLAGS_mkfs.jffs2 := $(ZLIBLDFLAGS)
22 LDLIBS_mkfs.jffs2 := -lz
25 @@ -520,6 +520,9 @@ int jffs2_compressors_init(void)
26 #ifdef CONFIG_JFFS2_LZO
29 +#ifdef CONFIG_JFFS2_LZMA
35 @@ -534,5 +537,8 @@ int jffs2_compressors_exit(void)
36 #ifdef CONFIG_JFFS2_LZO
39 +#ifdef CONFIG_JFFS2_LZMA
48 #define CONFIG_JFFS2_ZLIB
49 #define CONFIG_JFFS2_RTIME
50 -#define CONFIG_JFFS2_LZO
51 +#define CONFIG_JFFS2_LZMA
53 #define JFFS2_RUBINMIPS_PRIORITY 10
54 #define JFFS2_DYNRUBIN_PRIORITY 20
55 #define JFFS2_RTIME_PRIORITY 50
56 -#define JFFS2_ZLIB_PRIORITY 60
57 -#define JFFS2_LZO_PRIORITY 80
58 +#define JFFS2_LZMA_PRIORITY 70
59 +#define JFFS2_ZLIB_PRIORITY 80
60 +#define JFFS2_LZO_PRIORITY 90
62 #define JFFS2_COMPR_MODE_NONE 0
63 #define JFFS2_COMPR_MODE_PRIORITY 1
64 @@ -115,5 +116,10 @@ void jffs2_rtime_exit(void);
65 int jffs2_lzo_init(void);
66 void jffs2_lzo_exit(void);
68 +#ifdef CONFIG_JFFS2_LZMA
69 +int jffs2_lzma_init(void);
70 +void jffs2_lzma_exit(void);
74 #endif /* __JFFS2_COMPR_H__ */
79 + * JFFS2 -- Journalling Flash File System, Version 2.
81 + * For licensing information, see the file 'LICENCE' in this directory.
83 + * JFFS2 wrapper to the LZMA C SDK
87 +#include <linux/lzma.h>
91 + static DEFINE_MUTEX(deflate_mutex);
95 +Byte propsEncoded[LZMA_PROPS_SIZE];
96 +SizeT propsSize = sizeof(propsEncoded);
98 +STATIC void lzma_free_workspace(void)
100 + LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
103 +STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
105 + if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
107 + PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
111 + if (LzmaEnc_SetProps(p, props) != SZ_OK)
113 + lzma_free_workspace();
117 + if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
119 + lzma_free_workspace();
126 +STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
127 + uint32_t *sourcelen, uint32_t *dstlen, void *model)
129 + SizeT compress_size = (SizeT)(*dstlen);
133 + mutex_lock(&deflate_mutex);
136 + ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
137 + 0, NULL, &lzma_alloc, &lzma_alloc);
140 + mutex_unlock(&deflate_mutex);
146 + *dstlen = (uint32_t)compress_size;
151 +STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
152 + uint32_t srclen, uint32_t destlen, void *model)
155 + SizeT dl = (SizeT)destlen;
156 + SizeT sl = (SizeT)srclen;
157 + ELzmaStatus status;
159 + ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
160 + propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
162 + if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
168 +static struct jffs2_compressor jffs2_lzma_comp = {
169 + .priority = JFFS2_LZMA_PRIORITY,
171 + .compr = JFFS2_COMPR_LZMA,
172 + .compress = &jffs2_lzma_compress,
173 + .decompress = &jffs2_lzma_decompress,
177 +int INIT jffs2_lzma_init(void)
180 + CLzmaEncProps props;
181 + LzmaEncProps_Init(&props);
183 + props.dictSize = LZMA_BEST_DICT(0x2000);
184 + props.level = LZMA_BEST_LEVEL;
185 + props.lc = LZMA_BEST_LC;
186 + props.lp = LZMA_BEST_LP;
187 + props.pb = LZMA_BEST_PB;
188 + props.fb = LZMA_BEST_FB;
190 + ret = lzma_alloc_workspace(&props);
194 + ret = jffs2_register_compressor(&jffs2_lzma_comp);
196 + lzma_free_workspace();
201 +void jffs2_lzma_exit(void)
203 + jffs2_unregister_compressor(&jffs2_lzma_comp);
204 + lzma_free_workspace();
206 --- a/include/linux/jffs2.h
207 +++ b/include/linux/jffs2.h
209 #define JFFS2_COMPR_DYNRUBIN 0x05
210 #define JFFS2_COMPR_ZLIB 0x06
211 #define JFFS2_COMPR_LZO 0x07
212 +#define JFFS2_COMPR_LZMA 0x08
213 /* Compatibility flags. */
214 #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
215 #define JFFS2_NODE_ACCURATE 0x2000
217 +++ b/include/linux/lzma.h
223 + #include <linux/kernel.h>
224 + #include <linux/sched.h>
225 + #include <linux/slab.h>
226 + #include <linux/vmalloc.h>
227 + #include <linux/init.h>
228 + #define LZMA_MALLOC vmalloc
229 + #define LZMA_FREE vfree
230 + #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
231 + #define INIT __init
232 + #define STATIC static
234 + #include <stdint.h>
235 + #include <stdlib.h>
237 + #include <unistd.h>
238 + #include <string.h>
240 + #include <linux/jffs2.h>
242 + extern int page_size;
243 + #define PAGE_SIZE page_size
245 + #define LZMA_MALLOC malloc
246 + #define LZMA_FREE free
247 + #define PRINT_ERROR(msg) fprintf(stderr, msg)
252 +#include "lzma/LzmaDec.h"
253 +#include "lzma/LzmaEnc.h"
255 +#define LZMA_BEST_LEVEL (9)
256 +#define LZMA_BEST_LC (0)
257 +#define LZMA_BEST_LP (0)
258 +#define LZMA_BEST_PB (0)
259 +#define LZMA_BEST_FB (273)
261 +#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
263 +static void *p_lzma_malloc(void *p, size_t size)
268 + return LZMA_MALLOC(size);
271 +static void p_lzma_free(void *p, void *address)
273 + if (address != NULL)
274 + LZMA_FREE(address);
277 +static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
281 +++ b/include/linux/lzma/LzFind.h
283 +/* LzFind.h -- Match finder for LZ algorithms
285 +Copyright (c) 1999-2008 Igor Pavlov
286 +You can use any of the following license options:
287 + 1) GNU Lesser General Public License (GNU LGPL)
288 + 2) Common Public License (CPL)
289 + 3) Common Development and Distribution License (CDDL) Version 1.0
290 + 4) Igor Pavlov, as the author of this code, expressly permits you to
291 + statically or dynamically link your code (or bind by name) to this file,
292 + while you keep this file unmodified.
300 +typedef UInt32 CLzRef;
302 +typedef struct _CMatchFinder
310 + UInt32 cyclicBufferPos;
311 + UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
313 + UInt32 matchMaxLen;
320 + ISeqInStream *stream;
321 + int streamEndWasReached;
324 + UInt32 keepSizeBefore;
325 + UInt32 keepSizeAfter;
327 + UInt32 numHashBytes;
330 + /* int skipModeBits; */
332 + UInt32 historySize;
333 + UInt32 fixedHashSize;
334 + UInt32 hashSizeSum;
340 +#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
341 +#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
343 +#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
345 +int MatchFinder_NeedMove(CMatchFinder *p);
346 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
347 +void MatchFinder_MoveBlock(CMatchFinder *p);
348 +void MatchFinder_ReadIfRequired(CMatchFinder *p);
350 +void MatchFinder_Construct(CMatchFinder *p);
353 + historySize <= 3 GB
354 + keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
356 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
357 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
359 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
360 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
361 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
363 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
364 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
365 + UInt32 *distances, UInt32 maxLen);
369 + Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
370 + Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
373 +typedef void (*Mf_Init_Func)(void *object);
374 +typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
375 +typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
376 +typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
377 +typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
378 +typedef void (*Mf_Skip_Func)(void *object, UInt32);
380 +typedef struct _IMatchFinder
383 + Mf_GetIndexByte_Func GetIndexByte;
384 + Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
385 + Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
386 + Mf_GetMatches_Func GetMatches;
390 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
392 +void MatchFinder_Init(CMatchFinder *p);
393 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
394 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
395 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
396 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
400 +++ b/include/linux/lzma/LzHash.h
402 +/* LzHash.h -- HASH functions for LZ algorithms
404 +Copyright (c) 1999-2008 Igor Pavlov
405 +Read LzFind.h for license options */
410 +#define kHash2Size (1 << 10)
411 +#define kHash3Size (1 << 16)
412 +#define kHash4Size (1 << 20)
414 +#define kFix3HashSize (kHash2Size)
415 +#define kFix4HashSize (kHash2Size + kHash3Size)
416 +#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
418 +#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
420 +#define HASH3_CALC { \
421 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
422 + hash2Value = temp & (kHash2Size - 1); \
423 + hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
425 +#define HASH4_CALC { \
426 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
427 + hash2Value = temp & (kHash2Size - 1); \
428 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
429 + hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
431 +#define HASH5_CALC { \
432 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
433 + hash2Value = temp & (kHash2Size - 1); \
434 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
435 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
436 + hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
437 + hash4Value &= (kHash4Size - 1); }
439 +/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
440 +#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
443 +#define MT_HASH2_CALC \
444 + hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
446 +#define MT_HASH3_CALC { \
447 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
448 + hash2Value = temp & (kHash2Size - 1); \
449 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
451 +#define MT_HASH4_CALC { \
452 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
453 + hash2Value = temp & (kHash2Size - 1); \
454 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
455 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
459 +++ b/include/linux/lzma/LzmaDec.h
461 +/* LzmaDec.h -- LZMA Decoder
463 +Copyright (c) 1999-2008 Igor Pavlov
464 +You can use any of the following license options:
465 + 1) GNU Lesser General Public License (GNU LGPL)
466 + 2) Common Public License (CPL)
467 + 3) Common Development and Distribution License (CDDL) Version 1.0
468 + 4) Igor Pavlov, as the author of this code, expressly permits you to
469 + statically or dynamically link your code (or bind by name) to this file,
470 + while you keep this file unmodified.
478 +/* #define _LZMA_PROB32 */
479 +/* _LZMA_PROB32 can increase the speed on some CPUs,
480 + but memory usage for CLzmaDec::probs will be doubled in that case */
483 +#define CLzmaProb UInt32
485 +#define CLzmaProb UInt16
489 +/* ---------- LZMA Properties ---------- */
491 +#define LZMA_PROPS_SIZE 5
493 +typedef struct _CLzmaProps
495 + unsigned lc, lp, pb;
499 +/* LzmaProps_Decode - decodes properties
502 + SZ_ERROR_UNSUPPORTED - Unsupported properties
505 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
508 +/* ---------- LZMA Decoder state ---------- */
510 +/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
511 + Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
513 +#define LZMA_REQUIRED_INPUT_MAX 20
521 + UInt32 range, code;
524 + UInt32 processedPos;
525 + UInt32 checkDicSize;
528 + unsigned remainLen;
532 + unsigned tempBufSize;
533 + Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
536 +#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
538 +void LzmaDec_Init(CLzmaDec *p);
540 +/* There are two types of LZMA streams:
541 + 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
542 + 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
546 + LZMA_FINISH_ANY, /* finish at any point */
547 + LZMA_FINISH_END /* block must be finished at the end */
550 +/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
552 + You must use LZMA_FINISH_END, when you know that current output buffer
553 + covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
555 + If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
556 + and output value of destLen will be less than output buffer size limit.
557 + You can check status result also.
559 + You can use multiple checks to test data integrity after full decompression:
560 + 1) Check Result and "status" variable.
561 + 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
562 + 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
563 + You must use correct finish mode in that case. */
567 + LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
568 + LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
569 + LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
570 + LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
571 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
574 +/* ELzmaStatus is used only as output value for function call */
577 +/* ---------- Interfaces ---------- */
579 +/* There are 3 levels of interfaces:
580 + 1) Dictionary Interface
581 + 2) Buffer Interface
582 + 3) One Call Interface
583 + You can select any of these interfaces, but don't mix functions from different
584 + groups for same object. */
587 +/* There are two variants to allocate state for Dictionary Interface:
588 + 1) LzmaDec_Allocate / LzmaDec_Free
589 + 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
590 + You can use variant 2, if you set dictionary buffer manually.
591 + For Buffer Interface you must always use variant 1.
593 +LzmaDec_Allocate* can return:
595 + SZ_ERROR_MEM - Memory allocation error
596 + SZ_ERROR_UNSUPPORTED - Unsupported properties
599 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
600 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
602 +SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
603 +void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
605 +/* ---------- Dictionary Interface ---------- */
607 +/* You can use it, if you want to eliminate the overhead for data copying from
608 + dictionary to some other external buffer.
609 + You must work with CLzmaDec variables directly in this interface.
614 + for (each new stream)
617 + while (it needs more decompression)
619 + LzmaDec_DecodeToDic()
620 + use data from CLzmaDec::dic and update CLzmaDec::dicPos
626 +/* LzmaDec_DecodeToDic
628 + The decoding to internal dictionary buffer (CLzmaDec::dic).
629 + You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
632 + It has meaning only if the decoding reaches output limit (dicLimit).
633 + LZMA_FINISH_ANY - Decode just dicLimit bytes.
634 + LZMA_FINISH_END - Stream must be finished after dicLimit.
639 + LZMA_STATUS_FINISHED_WITH_MARK
640 + LZMA_STATUS_NOT_FINISHED
641 + LZMA_STATUS_NEEDS_MORE_INPUT
642 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
643 + SZ_ERROR_DATA - Data error
646 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
647 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
650 +/* ---------- Buffer Interface ---------- */
652 +/* It's zlib-like interface.
653 + See LzmaDec_DecodeToDic description for information about STEPS and return results,
654 + but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
655 + to work with CLzmaDec variables manually.
658 + It has meaning only if the decoding reaches output limit (*destLen).
659 + LZMA_FINISH_ANY - Decode just destLen bytes.
660 + LZMA_FINISH_END - Stream must be finished after (*destLen).
663 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
664 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
667 +/* ---------- One Call Interface ---------- */
672 + It has meaning only if the decoding reaches output limit (*destLen).
673 + LZMA_FINISH_ANY - Decode just destLen bytes.
674 + LZMA_FINISH_END - Stream must be finished after (*destLen).
679 + LZMA_STATUS_FINISHED_WITH_MARK
680 + LZMA_STATUS_NOT_FINISHED
681 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
682 + SZ_ERROR_DATA - Data error
683 + SZ_ERROR_MEM - Memory allocation error
684 + SZ_ERROR_UNSUPPORTED - Unsupported properties
685 + SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
688 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
689 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
690 + ELzmaStatus *status, ISzAlloc *alloc);
694 +++ b/include/linux/lzma/LzmaEnc.h
696 +/* LzmaEnc.h -- LZMA Encoder
698 +Copyright (c) 1999-2008 Igor Pavlov
699 +Read LzFind.h for license options */
706 +#define LZMA_PROPS_SIZE 5
708 +typedef struct _CLzmaEncProps
710 + int level; /* 0 <= level <= 9 */
711 + UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
712 + (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
713 + default = (1 << 24) */
714 + int lc; /* 0 <= lc <= 8, default = 3 */
715 + int lp; /* 0 <= lp <= 4, default = 0 */
716 + int pb; /* 0 <= pb <= 4, default = 2 */
717 + int algo; /* 0 - fast, 1 - normal, default = 1 */
718 + int fb; /* 5 <= fb <= 273, default = 32 */
719 + int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
720 + int numHashBytes; /* 2, 3 or 4, default = 4 */
721 + UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
722 + unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
723 + int numThreads; /* 1 or 2, default = 2 */
726 +void LzmaEncProps_Init(CLzmaEncProps *p);
727 +void LzmaEncProps_Normalize(CLzmaEncProps *p);
728 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
731 +/* ---------- CLzmaEncHandle Interface ---------- */
733 +/* LzmaEnc_* functions can return the following exit codes:
736 + SZ_ERROR_MEM - Memory allocation error
737 + SZ_ERROR_PARAM - Incorrect paramater in props
738 + SZ_ERROR_WRITE - Write callback error.
739 + SZ_ERROR_PROGRESS - some break from progress callback
740 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
743 +typedef void * CLzmaEncHandle;
745 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
746 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
747 +SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
748 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
749 +SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
750 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
751 +SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
752 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
754 +/* ---------- One Call Interface ---------- */
759 + SZ_ERROR_MEM - Memory allocation error
760 + SZ_ERROR_PARAM - Incorrect paramater
761 + SZ_ERROR_OUTPUT_EOF - output buffer overflow
762 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
765 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
766 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
767 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
771 +++ b/include/linux/lzma/Types.h
773 +/* Types.h -- Basic types
778 +#ifndef __7Z_TYPES_H
779 +#define __7Z_TYPES_H
783 +#define SZ_ERROR_DATA 1
784 +#define SZ_ERROR_MEM 2
785 +#define SZ_ERROR_CRC 3
786 +#define SZ_ERROR_UNSUPPORTED 4
787 +#define SZ_ERROR_PARAM 5
788 +#define SZ_ERROR_INPUT_EOF 6
789 +#define SZ_ERROR_OUTPUT_EOF 7
790 +#define SZ_ERROR_READ 8
791 +#define SZ_ERROR_WRITE 9
792 +#define SZ_ERROR_PROGRESS 10
793 +#define SZ_ERROR_FAIL 11
794 +#define SZ_ERROR_THREAD 12
796 +#define SZ_ERROR_ARCHIVE 16
797 +#define SZ_ERROR_NO_ARCHIVE 17
802 +#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
805 +typedef unsigned char Byte;
806 +typedef short Int16;
807 +typedef unsigned short UInt16;
809 +#ifdef _LZMA_UINT32_IS_ULONG
811 +typedef unsigned long UInt32;
814 +typedef unsigned int UInt32;
817 +/* #define _SZ_NO_INT_64 */
818 +/* define it if your compiler doesn't support 64-bit integers */
820 +#ifdef _SZ_NO_INT_64
823 +typedef unsigned long UInt64;
827 +#if defined(_MSC_VER) || defined(__BORLANDC__)
828 +typedef __int64 Int64;
829 +typedef unsigned __int64 UInt64;
831 +typedef long long int Int64;
832 +typedef unsigned long long int UInt64;
837 +#ifdef _LZMA_NO_SYSTEM_SIZE_T
838 +typedef UInt32 SizeT;
841 +typedef size_t SizeT;
851 +#if _MSC_VER >= 1300
852 +#define MY_NO_INLINE __declspec(noinline)
854 +#define MY_NO_INLINE
857 +#define MY_CDECL __cdecl
858 +#define MY_STD_CALL __stdcall
859 +#define MY_FAST_CALL MY_NO_INLINE __fastcall
865 +#define MY_FAST_CALL
870 +/* The following interfaces use first parameter as pointer to structure */
874 + SRes (*Read)(void *p, void *buf, size_t *size);
875 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
876 + (output(*size) < input(*size)) is allowed */
881 + size_t (*Write)(void *p, const void *buf, size_t size);
882 + /* Returns: result - the number of actually written bytes.
883 + (result < size) means error */
888 + SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
889 + /* Returns: result. (result != SZ_OK) means break.
890 + Value (UInt64)(Int64)-1 for size means unknown value. */
891 +} ICompressProgress;
895 + void *(*Alloc)(void *p, size_t size);
896 + void (*Free)(void *p, void *address); /* address can be 0 */
899 +#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
900 +#define IAlloc_Free(p, a) (p)->Free((p), a)
906 +/* LzFind.c -- Match finder for LZ algorithms
908 +Copyright (c) 1999-2008 Igor Pavlov
909 +Read LzFind.h for license options */
916 +#define kEmptyHashValue 0
917 +#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
918 +#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
919 +#define kNormalizeMask (~(kNormalizeStepMin - 1))
920 +#define kMaxHistorySize ((UInt32)3 << 30)
922 +#define kStartMaxLen 3
924 +static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
926 + if (!p->directInput)
928 + alloc->Free(alloc, p->bufferBase);
933 +/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
935 +static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
937 + UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
938 + if (p->directInput)
940 + p->blockSize = blockSize;
943 + if (p->bufferBase == 0 || p->blockSize != blockSize)
945 + LzInWindow_Free(p, alloc);
946 + p->blockSize = blockSize;
947 + p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
949 + return (p->bufferBase != 0);
952 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
953 +Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
955 +UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
957 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
959 + p->posLimit -= subValue;
960 + p->pos -= subValue;
961 + p->streamPos -= subValue;
964 +static void MatchFinder_ReadBlock(CMatchFinder *p)
966 + if (p->streamEndWasReached || p->result != SZ_OK)
970 + Byte *dest = p->buffer + (p->streamPos - p->pos);
971 + size_t size = (p->bufferBase + p->blockSize - dest);
974 + p->result = p->stream->Read(p->stream, dest, &size);
975 + if (p->result != SZ_OK)
979 + p->streamEndWasReached = 1;
982 + p->streamPos += (UInt32)size;
983 + if (p->streamPos - p->pos > p->keepSizeAfter)
988 +void MatchFinder_MoveBlock(CMatchFinder *p)
990 + memmove(p->bufferBase,
991 + p->buffer - p->keepSizeBefore,
992 + (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
993 + p->buffer = p->bufferBase + p->keepSizeBefore;
996 +int MatchFinder_NeedMove(CMatchFinder *p)
998 + /* if (p->streamEndWasReached) return 0; */
999 + return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
1002 +void MatchFinder_ReadIfRequired(CMatchFinder *p)
1004 + if (p->streamEndWasReached)
1006 + if (p->keepSizeAfter >= p->streamPos - p->pos)
1007 + MatchFinder_ReadBlock(p);
1010 +static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
1012 + if (MatchFinder_NeedMove(p))
1013 + MatchFinder_MoveBlock(p);
1014 + MatchFinder_ReadBlock(p);
1017 +static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
1021 + p->numHashBytes = 4;
1022 + /* p->skipModeBits = 0; */
1023 + p->directInput = 0;
1027 +#define kCrcPoly 0xEDB88320
1029 +void MatchFinder_Construct(CMatchFinder *p)
1032 + p->bufferBase = 0;
1033 + p->directInput = 0;
1035 + MatchFinder_SetDefaultSettings(p);
1037 + for (i = 0; i < 256; i++)
1041 + for (j = 0; j < 8; j++)
1042 + r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
1047 +static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
1049 + alloc->Free(alloc, p->hash);
1053 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
1055 + MatchFinder_FreeThisClassMemory(p, alloc);
1056 + LzInWindow_Free(p, alloc);
1059 +static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
1061 + size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
1062 + if (sizeInBytes / sizeof(CLzRef) != num)
1064 + return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
1067 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
1068 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
1071 + UInt32 sizeReserv;
1072 + if (historySize > kMaxHistorySize)
1074 + MatchFinder_Free(p, alloc);
1077 + sizeReserv = historySize >> 1;
1078 + if (historySize > ((UInt32)2 << 30))
1079 + sizeReserv = historySize >> 2;
1080 + sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
1082 + p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
1083 + p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
1084 + /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
1085 + if (LzInWindow_Create(p, sizeReserv, alloc))
1087 + UInt32 newCyclicBufferSize = (historySize /* >> p->skipModeBits */) + 1;
1089 + p->matchMaxLen = matchMaxLen;
1091 + p->fixedHashSize = 0;
1092 + if (p->numHashBytes == 2)
1093 + hs = (1 << 16) - 1;
1096 + hs = historySize - 1;
1102 + /* hs >>= p->skipModeBits; */
1103 + hs |= 0xFFFF; /* don't change it! It's required for Deflate */
1104 + if (hs > (1 << 24))
1106 + if (p->numHashBytes == 3)
1107 + hs = (1 << 24) - 1;
1114 + if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
1115 + if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
1116 + if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
1117 + hs += p->fixedHashSize;
1121 + UInt32 prevSize = p->hashSizeSum + p->numSons;
1123 + p->historySize = historySize;
1124 + p->hashSizeSum = hs;
1125 + p->cyclicBufferSize = newCyclicBufferSize;
1126 + p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
1127 + newSize = p->hashSizeSum + p->numSons;
1128 + if (p->hash != 0 && prevSize == newSize)
1130 + MatchFinder_FreeThisClassMemory(p, alloc);
1131 + p->hash = AllocRefs(newSize, alloc);
1134 + p->son = p->hash + p->hashSizeSum;
1139 + MatchFinder_Free(p, alloc);
1143 +static void MatchFinder_SetLimits(CMatchFinder *p)
1145 + UInt32 limit = kMaxValForNormalize - p->pos;
1146 + UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
1147 + if (limit2 < limit)
1149 + limit2 = p->streamPos - p->pos;
1150 + if (limit2 <= p->keepSizeAfter)
1156 + limit2 -= p->keepSizeAfter;
1157 + if (limit2 < limit)
1160 + UInt32 lenLimit = p->streamPos - p->pos;
1161 + if (lenLimit > p->matchMaxLen)
1162 + lenLimit = p->matchMaxLen;
1163 + p->lenLimit = lenLimit;
1165 + p->posLimit = p->pos + limit;
1168 +void MatchFinder_Init(CMatchFinder *p)
1171 + for(i = 0; i < p->hashSizeSum; i++)
1172 + p->hash[i] = kEmptyHashValue;
1173 + p->cyclicBufferPos = 0;
1174 + p->buffer = p->bufferBase;
1175 + p->pos = p->streamPos = p->cyclicBufferSize;
1176 + p->result = SZ_OK;
1177 + p->streamEndWasReached = 0;
1178 + MatchFinder_ReadBlock(p);
1179 + MatchFinder_SetLimits(p);
1182 +static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
1184 + return (p->pos - p->historySize - 1) & kNormalizeMask;
1187 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
1190 + for (i = 0; i < numItems; i++)
1192 + UInt32 value = items[i];
1193 + if (value <= subValue)
1194 + value = kEmptyHashValue;
1196 + value -= subValue;
1201 +static void MatchFinder_Normalize(CMatchFinder *p)
1203 + UInt32 subValue = MatchFinder_GetSubValue(p);
1204 + MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
1205 + MatchFinder_ReduceOffsets(p, subValue);
1208 +static void MatchFinder_CheckLimits(CMatchFinder *p)
1210 + if (p->pos == kMaxValForNormalize)
1211 + MatchFinder_Normalize(p);
1212 + if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
1213 + MatchFinder_CheckAndMoveAndRead(p);
1214 + if (p->cyclicBufferPos == p->cyclicBufferSize)
1215 + p->cyclicBufferPos = 0;
1216 + MatchFinder_SetLimits(p);
1219 +static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1220 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1221 + UInt32 *distances, UInt32 maxLen)
1223 + son[_cyclicBufferPos] = curMatch;
1226 + UInt32 delta = pos - curMatch;
1227 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1230 + const Byte *pb = cur - delta;
1231 + curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
1232 + if (pb[maxLen] == cur[maxLen] && *pb == *cur)
1235 + while(++len != lenLimit)
1236 + if (pb[len] != cur[len])
1240 + *distances++ = maxLen = len;
1241 + *distances++ = delta - 1;
1242 + if (len == lenLimit)
1250 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1251 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1252 + UInt32 *distances, UInt32 maxLen)
1254 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1255 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1256 + UInt32 len0 = 0, len1 = 0;
1259 + UInt32 delta = pos - curMatch;
1260 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1262 + *ptr0 = *ptr1 = kEmptyHashValue;
1266 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1267 + const Byte *pb = cur - delta;
1268 + UInt32 len = (len0 < len1 ? len0 : len1);
1269 + if (pb[len] == cur[len])
1271 + if (++len != lenLimit && pb[len] == cur[len])
1272 + while(++len != lenLimit)
1273 + if (pb[len] != cur[len])
1277 + *distances++ = maxLen = len;
1278 + *distances++ = delta - 1;
1279 + if (len == lenLimit)
1287 + if (pb[len] < cur[len])
1305 +static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1306 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
1308 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1309 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1310 + UInt32 len0 = 0, len1 = 0;
1313 + UInt32 delta = pos - curMatch;
1314 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1316 + *ptr0 = *ptr1 = kEmptyHashValue;
1320 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1321 + const Byte *pb = cur - delta;
1322 + UInt32 len = (len0 < len1 ? len0 : len1);
1323 + if (pb[len] == cur[len])
1325 + while(++len != lenLimit)
1326 + if (pb[len] != cur[len])
1329 + if (len == lenLimit)
1337 + if (pb[len] < cur[len])
1356 + ++p->cyclicBufferPos; \
1358 + if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
1360 +#define MOVE_POS_RET MOVE_POS return offset;
1362 +static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
1364 +#define GET_MATCHES_HEADER2(minLen, ret_op) \
1365 + UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
1366 + lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
1369 +#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
1370 +#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
1372 +#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
1374 +#define GET_MATCHES_FOOTER(offset, maxLen) \
1375 + offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
1376 + distances + offset, maxLen) - distances); MOVE_POS_RET;
1378 +#define SKIP_FOOTER \
1379 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
1381 +static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1384 + GET_MATCHES_HEADER(2)
1386 + curMatch = p->hash[hashValue];
1387 + p->hash[hashValue] = p->pos;
1389 + GET_MATCHES_FOOTER(offset, 1)
1392 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1395 + GET_MATCHES_HEADER(3)
1397 + curMatch = p->hash[hashValue];
1398 + p->hash[hashValue] = p->pos;
1400 + GET_MATCHES_FOOTER(offset, 2)
1403 +static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1405 + UInt32 hash2Value, delta2, maxLen, offset;
1406 + GET_MATCHES_HEADER(3)
1410 + delta2 = p->pos - p->hash[hash2Value];
1411 + curMatch = p->hash[kFix3HashSize + hashValue];
1413 + p->hash[hash2Value] =
1414 + p->hash[kFix3HashSize + hashValue] = p->pos;
1419 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1421 + for (; maxLen != lenLimit; maxLen++)
1422 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1424 + distances[0] = maxLen;
1425 + distances[1] = delta2 - 1;
1427 + if (maxLen == lenLimit)
1429 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1433 + GET_MATCHES_FOOTER(offset, maxLen)
1436 +static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1438 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1439 + GET_MATCHES_HEADER(4)
1443 + delta2 = p->pos - p->hash[ hash2Value];
1444 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1445 + curMatch = p->hash[kFix4HashSize + hashValue];
1447 + p->hash[ hash2Value] =
1448 + p->hash[kFix3HashSize + hash3Value] =
1449 + p->hash[kFix4HashSize + hashValue] = p->pos;
1453 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1455 + distances[0] = maxLen = 2;
1456 + distances[1] = delta2 - 1;
1459 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1462 + distances[offset + 1] = delta3 - 1;
1468 + for (; maxLen != lenLimit; maxLen++)
1469 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1471 + distances[offset - 2] = maxLen;
1472 + if (maxLen == lenLimit)
1474 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1480 + GET_MATCHES_FOOTER(offset, maxLen)
1483 +static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1485 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1486 + GET_MATCHES_HEADER(4)
1490 + delta2 = p->pos - p->hash[ hash2Value];
1491 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1492 + curMatch = p->hash[kFix4HashSize + hashValue];
1494 + p->hash[ hash2Value] =
1495 + p->hash[kFix3HashSize + hash3Value] =
1496 + p->hash[kFix4HashSize + hashValue] = p->pos;
1500 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1502 + distances[0] = maxLen = 2;
1503 + distances[1] = delta2 - 1;
1506 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1509 + distances[offset + 1] = delta3 - 1;
1515 + for (; maxLen != lenLimit; maxLen++)
1516 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1518 + distances[offset - 2] = maxLen;
1519 + if (maxLen == lenLimit)
1521 + p->son[p->cyclicBufferPos] = curMatch;
1527 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1528 + distances + offset, maxLen) - (distances));
1532 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1535 + GET_MATCHES_HEADER(3)
1537 + curMatch = p->hash[hashValue];
1538 + p->hash[hashValue] = p->pos;
1539 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1540 + distances, 2) - (distances));
1544 +static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1550 + curMatch = p->hash[hashValue];
1551 + p->hash[hashValue] = p->pos;
1554 + while (--num != 0);
1557 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1563 + curMatch = p->hash[hashValue];
1564 + p->hash[hashValue] = p->pos;
1567 + while (--num != 0);
1570 +static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1574 + UInt32 hash2Value;
1577 + curMatch = p->hash[kFix3HashSize + hashValue];
1578 + p->hash[hash2Value] =
1579 + p->hash[kFix3HashSize + hashValue] = p->pos;
1582 + while (--num != 0);
1585 +static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1589 + UInt32 hash2Value, hash3Value;
1592 + curMatch = p->hash[kFix4HashSize + hashValue];
1593 + p->hash[ hash2Value] =
1594 + p->hash[kFix3HashSize + hash3Value] = p->pos;
1595 + p->hash[kFix4HashSize + hashValue] = p->pos;
1598 + while (--num != 0);
1601 +static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1605 + UInt32 hash2Value, hash3Value;
1608 + curMatch = p->hash[kFix4HashSize + hashValue];
1609 + p->hash[ hash2Value] =
1610 + p->hash[kFix3HashSize + hash3Value] =
1611 + p->hash[kFix4HashSize + hashValue] = p->pos;
1612 + p->son[p->cyclicBufferPos] = curMatch;
1615 + while (--num != 0);
1618 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1624 + curMatch = p->hash[hashValue];
1625 + p->hash[hashValue] = p->pos;
1626 + p->son[p->cyclicBufferPos] = curMatch;
1629 + while (--num != 0);
1632 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
1634 + vTable->Init = (Mf_Init_Func)MatchFinder_Init;
1635 + vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
1636 + vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
1637 + vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
1640 + vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
1641 + vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
1643 + else if (p->numHashBytes == 2)
1645 + vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
1646 + vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
1648 + else if (p->numHashBytes == 3)
1650 + vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
1651 + vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
1655 + vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
1656 + vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
1660 +++ b/lzma/LzmaDec.c
1662 +/* LzmaDec.c -- LZMA Decoder
1664 +Copyright (c) 1999-2008 Igor Pavlov
1665 +Read LzmaDec.h for license options */
1667 +#include "LzmaDec.h"
1669 +#include <string.h>
1671 +#define kNumTopBits 24
1672 +#define kTopValue ((UInt32)1 << kNumTopBits)
1674 +#define kNumBitModelTotalBits 11
1675 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
1676 +#define kNumMoveBits 5
1678 +#define RC_INIT_SIZE 5
1680 +#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
1682 +#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1683 +#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
1684 +#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
1685 +#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
1686 + { UPDATE_0(p); i = (i + i); A0; } else \
1687 + { UPDATE_1(p); i = (i + i) + 1; A1; }
1688 +#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
1690 +#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
1691 +#define TREE_DECODE(probs, limit, i) \
1692 + { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
1694 +/* #define _LZMA_SIZE_OPT */
1696 +#ifdef _LZMA_SIZE_OPT
1697 +#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
1699 +#define TREE_6_DECODE(probs, i) \
1701 + TREE_GET_BIT(probs, i); \
1702 + TREE_GET_BIT(probs, i); \
1703 + TREE_GET_BIT(probs, i); \
1704 + TREE_GET_BIT(probs, i); \
1705 + TREE_GET_BIT(probs, i); \
1706 + TREE_GET_BIT(probs, i); \
1710 +#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
1712 +#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1713 +#define UPDATE_0_CHECK range = bound;
1714 +#define UPDATE_1_CHECK range -= bound; code -= bound;
1715 +#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
1716 + { UPDATE_0_CHECK; i = (i + i); A0; } else \
1717 + { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
1718 +#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
1719 +#define TREE_DECODE_CHECK(probs, limit, i) \
1720 + { i = 1; do { GET_BIT_CHECK(probs + i, i) } while(i < limit); i -= limit; }
1723 +#define kNumPosBitsMax 4
1724 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
1726 +#define kLenNumLowBits 3
1727 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
1728 +#define kLenNumMidBits 3
1729 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
1730 +#define kLenNumHighBits 8
1731 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
1733 +#define LenChoice 0
1734 +#define LenChoice2 (LenChoice + 1)
1735 +#define LenLow (LenChoice2 + 1)
1736 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
1737 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
1738 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
1741 +#define kNumStates 12
1742 +#define kNumLitStates 7
1744 +#define kStartPosModelIndex 4
1745 +#define kEndPosModelIndex 14
1746 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
1748 +#define kNumPosSlotBits 6
1749 +#define kNumLenToPosStates 4
1751 +#define kNumAlignBits 4
1752 +#define kAlignTableSize (1 << kNumAlignBits)
1754 +#define kMatchMinLen 2
1755 +#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
1758 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
1759 +#define IsRepG0 (IsRep + kNumStates)
1760 +#define IsRepG1 (IsRepG0 + kNumStates)
1761 +#define IsRepG2 (IsRepG1 + kNumStates)
1762 +#define IsRep0Long (IsRepG2 + kNumStates)
1763 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
1764 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
1765 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
1766 +#define LenCoder (Align + kAlignTableSize)
1767 +#define RepLenCoder (LenCoder + kNumLenProbs)
1768 +#define Literal (RepLenCoder + kNumLenProbs)
1770 +#define LZMA_BASE_SIZE 1846
1771 +#define LZMA_LIT_SIZE 768
1773 +#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
1775 +#if Literal != LZMA_BASE_SIZE
1776 +StopCompilingDueBUG
1780 +#define LZMA_STREAM_WAS_FINISHED_ID (-1)
1781 +#define LZMA_SPEC_LEN_OFFSET (-3)
1784 +Byte kLiteralNextStates[kNumStates * 2] =
1786 + 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
1787 + 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
1790 +#define LZMA_DIC_MIN (1 << 12)
1792 +/* First LZMA-symbol is always decoded.
1793 +And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
1799 + < kMatchSpecLenStart : normal remain
1800 + = kMatchSpecLenStart : finished
1801 + = kMatchSpecLenStart + 1 : Flush marker
1802 + = kMatchSpecLenStart + 2 : State Init Marker
1805 +static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
1807 + CLzmaProb *probs = p->probs;
1809 + unsigned state = p->state;
1810 + UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
1811 + unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
1812 + unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
1813 + unsigned lc = p->prop.lc;
1815 + Byte *dic = p->dic;
1816 + SizeT dicBufSize = p->dicBufSize;
1817 + SizeT dicPos = p->dicPos;
1819 + UInt32 processedPos = p->processedPos;
1820 + UInt32 checkDicSize = p->checkDicSize;
1823 + const Byte *buf = p->buf;
1824 + UInt32 range = p->range;
1825 + UInt32 code = p->code;
1832 + unsigned posState = processedPos & pbMask;
1834 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
1839 + prob = probs + Literal;
1840 + if (checkDicSize != 0 || processedPos != 0)
1841 + prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
1842 + (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
1844 + if (state < kNumLitStates)
1847 + do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
1851 + unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1852 + unsigned offs = 0x100;
1857 + CLzmaProb *probLit;
1859 + bit = (matchByte & offs);
1860 + probLit = prob + offs + bit + symbol;
1861 + GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
1863 + while (symbol < 0x100);
1865 + dic[dicPos++] = (Byte)symbol;
1868 + state = kLiteralNextStates[state];
1869 + /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
1875 + prob = probs + IsRep + state;
1879 + state += kNumStates;
1880 + prob = probs + LenCoder;
1885 + if (checkDicSize == 0 && processedPos == 0)
1886 + return SZ_ERROR_DATA;
1887 + prob = probs + IsRepG0 + state;
1891 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
1895 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1898 + state = state < kNumLitStates ? 9 : 11;
1907 + prob = probs + IsRepG1 + state;
1916 + prob = probs + IsRepG2 + state;
1933 + state = state < kNumLitStates ? 8 : 11;
1934 + prob = probs + RepLenCoder;
1937 + unsigned limit, offset;
1938 + CLzmaProb *probLen = prob + LenChoice;
1941 + UPDATE_0(probLen);
1942 + probLen = prob + LenLow + (posState << kLenNumLowBits);
1944 + limit = (1 << kLenNumLowBits);
1948 + UPDATE_1(probLen);
1949 + probLen = prob + LenChoice2;
1952 + UPDATE_0(probLen);
1953 + probLen = prob + LenMid + (posState << kLenNumMidBits);
1954 + offset = kLenNumLowSymbols;
1955 + limit = (1 << kLenNumMidBits);
1959 + UPDATE_1(probLen);
1960 + probLen = prob + LenHigh;
1961 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
1962 + limit = (1 << kLenNumHighBits);
1965 + TREE_DECODE(probLen, limit, len);
1969 + if (state >= kNumStates)
1972 + prob = probs + PosSlot +
1973 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
1974 + TREE_6_DECODE(prob, distance);
1975 + if (distance >= kStartPosModelIndex)
1977 + unsigned posSlot = (unsigned)distance;
1978 + int numDirectBits = (int)(((distance >> 1) - 1));
1979 + distance = (2 | (distance & 1));
1980 + if (posSlot < kEndPosModelIndex)
1982 + distance <<= numDirectBits;
1983 + prob = probs + SpecPos + distance - posSlot - 1;
1989 + GET_BIT2(prob + i, i, ; , distance |= mask);
1992 + while(--numDirectBits != 0);
1997 + numDirectBits -= kNumAlignBits;
2006 + t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
2007 + distance = (distance << 1) + (t + 1);
2008 + code += range & t;
2012 + if (code >= range)
2019 + while (--numDirectBits != 0);
2020 + prob = probs + Align;
2021 + distance <<= kNumAlignBits;
2024 + GET_BIT2(prob + i, i, ; , distance |= 1);
2025 + GET_BIT2(prob + i, i, ; , distance |= 2);
2026 + GET_BIT2(prob + i, i, ; , distance |= 4);
2027 + GET_BIT2(prob + i, i, ; , distance |= 8);
2029 + if (distance == (UInt32)0xFFFFFFFF)
2031 + len += kMatchSpecLenStart;
2032 + state -= kNumStates;
2040 + rep0 = distance + 1;
2041 + if (checkDicSize == 0)
2043 + if (distance >= processedPos)
2044 + return SZ_ERROR_DATA;
2046 + else if (distance >= checkDicSize)
2047 + return SZ_ERROR_DATA;
2048 + state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
2049 + /* state = kLiteralNextStates[state]; */
2052 + len += kMatchMinLen;
2055 + SizeT rem = limit - dicPos;
2056 + unsigned curLen = ((rem < len) ? (unsigned)rem : len);
2057 + SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
2059 + processedPos += curLen;
2062 + if (pos + curLen <= dicBufSize)
2064 + Byte *dest = dic + dicPos;
2065 + ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
2066 + const Byte *lim = dest + curLen;
2069 + *(dest) = (Byte)*(dest + src);
2070 + while (++dest != lim);
2076 + dic[dicPos++] = dic[pos];
2077 + if (++pos == dicBufSize)
2080 + while (--curLen != 0);
2085 + while (dicPos < limit && buf < bufLimit);
2090 + p->remainLen = len;
2091 + p->dicPos = dicPos;
2092 + p->processedPos = processedPos;
2093 + p->reps[0] = rep0;
2094 + p->reps[1] = rep1;
2095 + p->reps[2] = rep2;
2096 + p->reps[3] = rep3;
2102 +static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
2104 + if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
2106 + Byte *dic = p->dic;
2107 + SizeT dicPos = p->dicPos;
2108 + SizeT dicBufSize = p->dicBufSize;
2109 + unsigned len = p->remainLen;
2110 + UInt32 rep0 = p->reps[0];
2111 + if (limit - dicPos < len)
2112 + len = (unsigned)(limit - dicPos);
2114 + if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
2115 + p->checkDicSize = p->prop.dicSize;
2117 + p->processedPos += len;
2118 + p->remainLen -= len;
2119 + while (len-- != 0)
2121 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2124 + p->dicPos = dicPos;
2128 +/* LzmaDec_DecodeReal2 decodes LZMA-symbols and sets p->needFlush and p->needInit, if required. */
2130 +static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2134 + SizeT limit2 = limit;
2135 + if (p->checkDicSize == 0)
2137 + UInt32 rem = p->prop.dicSize - p->processedPos;
2138 + if (limit - p->dicPos > rem)
2139 + limit2 = p->dicPos + rem;
2141 + RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
2142 + if (p->processedPos >= p->prop.dicSize)
2143 + p->checkDicSize = p->prop.dicSize;
2144 + LzmaDec_WriteRem(p, limit);
2146 + while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
2148 + if (p->remainLen > kMatchSpecLenStart)
2150 + p->remainLen = kMatchSpecLenStart;
2157 + DUMMY_ERROR, /* unexpected end of input stream */
2163 +static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
2165 + UInt32 range = p->range;
2166 + UInt32 code = p->code;
2167 + const Byte *bufLimit = buf + inSize;
2168 + CLzmaProb *probs = p->probs;
2169 + unsigned state = p->state;
2176 + unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
2178 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2179 + IF_BIT_0_CHECK(prob)
2183 + /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
2185 + prob = probs + Literal;
2186 + if (p->checkDicSize != 0 || p->processedPos != 0)
2187 + prob += (LZMA_LIT_SIZE *
2188 + ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
2189 + (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
2191 + if (state < kNumLitStates)
2193 + unsigned symbol = 1;
2194 + do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
2198 + unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
2199 + ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
2200 + unsigned offs = 0x100;
2201 + unsigned symbol = 1;
2205 + CLzmaProb *probLit;
2207 + bit = (matchByte & offs);
2208 + probLit = prob + offs + bit + symbol;
2209 + GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
2211 + while (symbol < 0x100);
2220 + prob = probs + IsRep + state;
2221 + IF_BIT_0_CHECK(prob)
2225 + prob = probs + LenCoder;
2226 + res = DUMMY_MATCH;
2232 + prob = probs + IsRepG0 + state;
2233 + IF_BIT_0_CHECK(prob)
2236 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2237 + IF_BIT_0_CHECK(prob)
2251 + prob = probs + IsRepG1 + state;
2252 + IF_BIT_0_CHECK(prob)
2259 + prob = probs + IsRepG2 + state;
2260 + IF_BIT_0_CHECK(prob)
2270 + state = kNumStates;
2271 + prob = probs + RepLenCoder;
2274 + unsigned limit, offset;
2275 + CLzmaProb *probLen = prob + LenChoice;
2276 + IF_BIT_0_CHECK(probLen)
2279 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2281 + limit = 1 << kLenNumLowBits;
2286 + probLen = prob + LenChoice2;
2287 + IF_BIT_0_CHECK(probLen)
2290 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2291 + offset = kLenNumLowSymbols;
2292 + limit = 1 << kLenNumMidBits;
2297 + probLen = prob + LenHigh;
2298 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2299 + limit = 1 << kLenNumHighBits;
2302 + TREE_DECODE_CHECK(probLen, limit, len);
2309 + prob = probs + PosSlot +
2310 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
2312 + TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
2313 + if (posSlot >= kStartPosModelIndex)
2315 + int numDirectBits = ((posSlot >> 1) - 1);
2317 + /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
2319 + if (posSlot < kEndPosModelIndex)
2321 + prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
2325 + numDirectBits -= kNumAlignBits;
2330 + code -= range & (((code - range) >> 31) - 1);
2331 + /* if (code >= range) code -= range; */
2333 + while (--numDirectBits != 0);
2334 + prob = probs + Align;
2335 + numDirectBits = kNumAlignBits;
2341 + GET_BIT_CHECK(prob + i, i);
2343 + while(--numDirectBits != 0);
2354 +static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
2356 + p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
2357 + p->range = 0xFFFFFFFF;
2361 +void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
2365 + p->tempBufSize = 0;
2369 + p->processedPos = 0;
2370 + p->checkDicSize = 0;
2371 + p->needInitState = 1;
2374 + p->needInitState = 1;
2377 +void LzmaDec_Init(CLzmaDec *p)
2380 + LzmaDec_InitDicAndState(p, True, True);
2383 +static void LzmaDec_InitStateReal(CLzmaDec *p)
2385 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
2387 + CLzmaProb *probs = p->probs;
2388 + for (i = 0; i < numProbs; i++)
2389 + probs[i] = kBitModelTotal >> 1;
2390 + p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
2392 + p->needInitState = 0;
2395 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
2396 + ELzmaFinishMode finishMode, ELzmaStatus *status)
2398 + SizeT inSize = *srcLen;
2400 + LzmaDec_WriteRem(p, dicLimit);
2402 + *status = LZMA_STATUS_NOT_SPECIFIED;
2404 + while (p->remainLen != kMatchSpecLenStart)
2406 + int checkEndMarkNow;
2408 + if (p->needFlush != 0)
2410 + for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
2411 + p->tempBuf[p->tempBufSize++] = *src++;
2412 + if (p->tempBufSize < RC_INIT_SIZE)
2414 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2417 + if (p->tempBuf[0] != 0)
2418 + return SZ_ERROR_DATA;
2420 + LzmaDec_InitRc(p, p->tempBuf);
2421 + p->tempBufSize = 0;
2424 + checkEndMarkNow = 0;
2425 + if (p->dicPos >= dicLimit)
2427 + if (p->remainLen == 0 && p->code == 0)
2429 + *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
2432 + if (finishMode == LZMA_FINISH_ANY)
2434 + *status = LZMA_STATUS_NOT_FINISHED;
2437 + if (p->remainLen != 0)
2439 + *status = LZMA_STATUS_NOT_FINISHED;
2440 + return SZ_ERROR_DATA;
2442 + checkEndMarkNow = 1;
2445 + if (p->needInitState)
2446 + LzmaDec_InitStateReal(p);
2448 + if (p->tempBufSize == 0)
2451 + const Byte *bufLimit;
2452 + if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2454 + int dummyRes = LzmaDec_TryDummy(p, src, inSize);
2455 + if (dummyRes == DUMMY_ERROR)
2457 + memcpy(p->tempBuf, src, inSize);
2458 + p->tempBufSize = (unsigned)inSize;
2459 + (*srcLen) += inSize;
2460 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2463 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2465 + *status = LZMA_STATUS_NOT_FINISHED;
2466 + return SZ_ERROR_DATA;
2471 + bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
2473 + if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
2474 + return SZ_ERROR_DATA;
2475 + processed = p->buf - src;
2476 + (*srcLen) += processed;
2478 + inSize -= processed;
2482 + unsigned rem = p->tempBufSize, lookAhead = 0;
2483 + while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
2484 + p->tempBuf[rem++] = src[lookAhead++];
2485 + p->tempBufSize = rem;
2486 + if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2488 + int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
2489 + if (dummyRes == DUMMY_ERROR)
2491 + (*srcLen) += lookAhead;
2492 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2495 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2497 + *status = LZMA_STATUS_NOT_FINISHED;
2498 + return SZ_ERROR_DATA;
2501 + p->buf = p->tempBuf;
2502 + if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
2503 + return SZ_ERROR_DATA;
2504 + lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
2505 + (*srcLen) += lookAhead;
2507 + inSize -= lookAhead;
2508 + p->tempBufSize = 0;
2512 + *status = LZMA_STATUS_FINISHED_WITH_MARK;
2513 + return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
2516 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
2518 + SizeT outSize = *destLen;
2519 + SizeT inSize = *srcLen;
2520 + *srcLen = *destLen = 0;
2523 + SizeT inSizeCur = inSize, outSizeCur, dicPos;
2524 + ELzmaFinishMode curFinishMode;
2526 + if (p->dicPos == p->dicBufSize)
2528 + dicPos = p->dicPos;
2529 + if (outSize > p->dicBufSize - dicPos)
2531 + outSizeCur = p->dicBufSize;
2532 + curFinishMode = LZMA_FINISH_ANY;
2536 + outSizeCur = dicPos + outSize;
2537 + curFinishMode = finishMode;
2540 + res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
2542 + inSize -= inSizeCur;
2543 + *srcLen += inSizeCur;
2544 + outSizeCur = p->dicPos - dicPos;
2545 + memcpy(dest, p->dic + dicPos, outSizeCur);
2546 + dest += outSizeCur;
2547 + outSize -= outSizeCur;
2548 + *destLen += outSizeCur;
2551 + if (outSizeCur == 0 || outSize == 0)
2556 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
2558 + alloc->Free(alloc, p->probs);
2562 +static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
2564 + alloc->Free(alloc, p->dic);
2568 +void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
2570 + LzmaDec_FreeProbs(p, alloc);
2571 + LzmaDec_FreeDict(p, alloc);
2574 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
2579 + if (size < LZMA_PROPS_SIZE)
2580 + return SZ_ERROR_UNSUPPORTED;
2582 + dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
2584 + if (dicSize < LZMA_DIC_MIN)
2585 + dicSize = LZMA_DIC_MIN;
2586 + p->dicSize = dicSize;
2589 + if (d >= (9 * 5 * 5))
2590 + return SZ_ERROR_UNSUPPORTED;
2600 +static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
2602 + UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
2603 + if (p->probs == 0 || numProbs != p->numProbs)
2605 + LzmaDec_FreeProbs(p, alloc);
2606 + p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
2607 + p->numProbs = numProbs;
2608 + if (p->probs == 0)
2609 + return SZ_ERROR_MEM;
2614 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2616 + CLzmaProps propNew;
2617 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2618 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2619 + p->prop = propNew;
2623 +SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2625 + CLzmaProps propNew;
2627 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2628 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2629 + dicBufSize = propNew.dicSize;
2630 + if (p->dic == 0 || dicBufSize != p->dicBufSize)
2632 + LzmaDec_FreeDict(p, alloc);
2633 + p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
2636 + LzmaDec_FreeProbs(p, alloc);
2637 + return SZ_ERROR_MEM;
2640 + p->dicBufSize = dicBufSize;
2641 + p->prop = propNew;
2645 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
2646 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
2647 + ELzmaStatus *status, ISzAlloc *alloc)
2651 + SizeT inSize = *srcLen;
2652 + SizeT outSize = *destLen;
2653 + *srcLen = *destLen = 0;
2654 + if (inSize < RC_INIT_SIZE)
2655 + return SZ_ERROR_INPUT_EOF;
2657 + LzmaDec_Construct(&p);
2658 + res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
2662 + p.dicBufSize = outSize;
2667 + res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
2669 + if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
2670 + res = SZ_ERROR_INPUT_EOF;
2672 + (*destLen) = p.dicPos;
2673 + LzmaDec_FreeProbs(&p, alloc);
2677 +++ b/lzma/LzmaEnc.c
2679 +/* LzmaEnc.c -- LZMA Encoder
2681 +Copyright (c) 1999-2008 Igor Pavlov
2682 +Read LzmaEnc.h for license options */
2684 +#if defined(SHOW_STAT) || defined(SHOW_STAT2)
2688 +#include <string.h>
2690 +#include "LzmaEnc.h"
2692 +#include "LzFind.h"
2693 +#ifdef COMPRESS_MF_MT
2694 +#include "LzFindMt.h"
2697 +/* #define SHOW_STAT */
2698 +/* #define SHOW_STAT2 */
2701 +static int ttt = 0;
2704 +#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
2706 +#define kBlockSize (9 << 10)
2707 +#define kUnpackBlockSize (1 << 18)
2708 +#define kMatchArraySize (1 << 21)
2709 +#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
2711 +#define kNumMaxDirectBits (31)
2713 +#define kNumTopBits 24
2714 +#define kTopValue ((UInt32)1 << kNumTopBits)
2716 +#define kNumBitModelTotalBits 11
2717 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
2718 +#define kNumMoveBits 5
2719 +#define kProbInitValue (kBitModelTotal >> 1)
2721 +#define kNumMoveReducingBits 4
2722 +#define kNumBitPriceShiftBits 4
2723 +#define kBitPrice (1 << kNumBitPriceShiftBits)
2725 +void LzmaEncProps_Init(CLzmaEncProps *p)
2728 + p->dictSize = p->mc = 0;
2729 + p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
2730 + p->writeEndMark = 0;
2733 +void LzmaEncProps_Normalize(CLzmaEncProps *p)
2735 + int level = p->level;
2736 + if (level < 0) level = 5;
2738 + if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
2739 + if (p->lc < 0) p->lc = 3;
2740 + if (p->lp < 0) p->lp = 0;
2741 + if (p->pb < 0) p->pb = 2;
2742 + if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
2743 + if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
2744 + if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
2745 + if (p->numHashBytes < 0) p->numHashBytes = 4;
2746 + if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
2747 + if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
2750 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
2752 + CLzmaEncProps props = *props2;
2753 + LzmaEncProps_Normalize(&props);
2754 + return props.dictSize;
2757 +/* #define LZMA_LOG_BSR */
2758 +/* Define it for Intel's CPU */
2761 +#ifdef LZMA_LOG_BSR
2763 +#define kDicLogSizeMaxCompress 30
2765 +#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
2767 +UInt32 GetPosSlot1(UInt32 pos)
2770 + BSR2_RET(pos, res);
2773 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2774 +#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
2778 +#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
2779 +#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
2781 +void LzmaEnc_FastPosInit(Byte *g_FastPos)
2783 + int c = 2, slotFast;
2787 + for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
2789 + UInt32 k = (1 << ((slotFast >> 1) - 1));
2791 + for (j = 0; j < k; j++, c++)
2792 + g_FastPos[c] = (Byte)slotFast;
2796 +#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
2797 + (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
2798 + res = p->g_FastPos[pos >> i] + (i * 2); }
2800 +#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
2801 + p->g_FastPos[pos >> 6] + 12 : \
2802 + p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
2805 +#define GetPosSlot1(pos) p->g_FastPos[pos]
2806 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2807 +#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
2812 +#define LZMA_NUM_REPS 4
2814 +typedef unsigned CState;
2816 +typedef struct _COptimal
2829 + UInt32 backs[LZMA_NUM_REPS];
2832 +#define kNumOpts (1 << 12)
2834 +#define kNumLenToPosStates 4
2835 +#define kNumPosSlotBits 6
2836 +#define kDicLogSizeMin 0
2837 +#define kDicLogSizeMax 32
2838 +#define kDistTableSizeMax (kDicLogSizeMax * 2)
2841 +#define kNumAlignBits 4
2842 +#define kAlignTableSize (1 << kNumAlignBits)
2843 +#define kAlignMask (kAlignTableSize - 1)
2845 +#define kStartPosModelIndex 4
2846 +#define kEndPosModelIndex 14
2847 +#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
2849 +#define kNumFullDistances (1 << (kEndPosModelIndex / 2))
2851 +#ifdef _LZMA_PROB32
2852 +#define CLzmaProb UInt32
2854 +#define CLzmaProb UInt16
2857 +#define LZMA_PB_MAX 4
2858 +#define LZMA_LC_MAX 8
2859 +#define LZMA_LP_MAX 4
2861 +#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
2864 +#define kLenNumLowBits 3
2865 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
2866 +#define kLenNumMidBits 3
2867 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
2868 +#define kLenNumHighBits 8
2869 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
2871 +#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
2873 +#define LZMA_MATCH_LEN_MIN 2
2874 +#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
2876 +#define kNumStates 12
2881 + CLzmaProb choice2;
2882 + CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
2883 + CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
2884 + CLzmaProb high[kLenNumHighSymbols];
2890 + UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
2892 + UInt32 counters[LZMA_NUM_PB_STATES_MAX];
2895 +typedef struct _CRangeEnc
2904 + ISeqOutStream *outStream;
2909 +typedef struct _CSeqInStreamBuf
2911 + ISeqInStream funcTable;
2916 +static SRes MyRead(void *pp, void *data, size_t *size)
2918 + size_t curSize = *size;
2919 + CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
2920 + if (p->rem < curSize)
2922 + memcpy(data, p->data, curSize);
2923 + p->rem -= curSize;
2924 + p->data += curSize;
2931 + CLzmaProb *litProbs;
2933 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
2934 + CLzmaProb isRep[kNumStates];
2935 + CLzmaProb isRepG0[kNumStates];
2936 + CLzmaProb isRepG1[kNumStates];
2937 + CLzmaProb isRepG2[kNumStates];
2938 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
2940 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
2941 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
2942 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
2944 + CLenPriceEnc lenEnc;
2945 + CLenPriceEnc repLenEnc;
2947 + UInt32 reps[LZMA_NUM_REPS];
2951 +typedef struct _CLzmaEnc
2953 + IMatchFinder matchFinder;
2954 + void *matchFinderObj;
2956 + #ifdef COMPRESS_MF_MT
2958 + CMatchFinderMt matchFinderMt;
2961 + CMatchFinder matchFinderBase;
2963 + #ifdef COMPRESS_MF_MT
2967 + UInt32 optimumEndIndex;
2968 + UInt32 optimumCurrentIndex;
2970 + Bool longestMatchWasFound;
2971 + UInt32 longestMatchLength;
2972 + UInt32 numDistancePairs;
2974 + COptimal opt[kNumOpts];
2976 + #ifndef LZMA_LOG_BSR
2977 + Byte g_FastPos[1 << kNumLogBits];
2980 + UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
2981 + UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
2982 + UInt32 numFastBytes;
2983 + UInt32 additionalOffset;
2984 + UInt32 reps[LZMA_NUM_REPS];
2987 + UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
2988 + UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
2989 + UInt32 alignPrices[kAlignTableSize];
2990 + UInt32 alignPriceCount;
2992 + UInt32 distTableSize;
2994 + unsigned lc, lp, pb;
2995 + unsigned lpMask, pbMask;
2997 + CLzmaProb *litProbs;
2999 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3000 + CLzmaProb isRep[kNumStates];
3001 + CLzmaProb isRepG0[kNumStates];
3002 + CLzmaProb isRepG1[kNumStates];
3003 + CLzmaProb isRepG2[kNumStates];
3004 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3006 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3007 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3008 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3010 + CLenPriceEnc lenEnc;
3011 + CLenPriceEnc repLenEnc;
3019 + Bool writeEndMark;
3021 + UInt32 matchPriceCount;
3027 + UInt32 matchFinderCycles;
3029 + ISeqInStream *inStream;
3030 + CSeqInStreamBuf seqBufInStream;
3032 + CSaveState saveState;
3035 +void LzmaEnc_SaveState(CLzmaEncHandle pp)
3037 + CLzmaEnc *p = (CLzmaEnc *)pp;
3038 + CSaveState *dest = &p->saveState;
3040 + dest->lenEnc = p->lenEnc;
3041 + dest->repLenEnc = p->repLenEnc;
3042 + dest->state = p->state;
3044 + for (i = 0; i < kNumStates; i++)
3046 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3047 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3049 + for (i = 0; i < kNumLenToPosStates; i++)
3050 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3051 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3052 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3053 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3054 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3055 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3056 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3057 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3058 + memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
3061 +void LzmaEnc_RestoreState(CLzmaEncHandle pp)
3063 + CLzmaEnc *dest = (CLzmaEnc *)pp;
3064 + const CSaveState *p = &dest->saveState;
3066 + dest->lenEnc = p->lenEnc;
3067 + dest->repLenEnc = p->repLenEnc;
3068 + dest->state = p->state;
3070 + for (i = 0; i < kNumStates; i++)
3072 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3073 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3075 + for (i = 0; i < kNumLenToPosStates; i++)
3076 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3077 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3078 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3079 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3080 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3081 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3082 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3083 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3084 + memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
3087 +SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
3089 + CLzmaEnc *p = (CLzmaEnc *)pp;
3090 + CLzmaEncProps props = *props2;
3091 + LzmaEncProps_Normalize(&props);
3093 + if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
3094 + props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
3095 + return SZ_ERROR_PARAM;
3096 + p->dictSize = props.dictSize;
3097 + p->matchFinderCycles = props.mc;
3099 + unsigned fb = props.fb;
3102 + if (fb > LZMA_MATCH_LEN_MAX)
3103 + fb = LZMA_MATCH_LEN_MAX;
3104 + p->numFastBytes = fb;
3109 + p->fastMode = (props.algo == 0);
3110 + p->matchFinderBase.btMode = props.btMode;
3112 + UInt32 numHashBytes = 4;
3115 + if (props.numHashBytes < 2)
3117 + else if (props.numHashBytes < 4)
3118 + numHashBytes = props.numHashBytes;
3120 + p->matchFinderBase.numHashBytes = numHashBytes;
3123 + p->matchFinderBase.cutValue = props.mc;
3125 + p->writeEndMark = props.writeEndMark;
3127 + #ifdef COMPRESS_MF_MT
3129 + if (newMultiThread != _multiThread)
3131 + ReleaseMatchFinder();
3132 + _multiThread = newMultiThread;
3135 + p->multiThread = (props.numThreads > 1);
3141 +static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
3142 +static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
3143 +static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
3144 +static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
3147 + void UpdateChar() { Index = kLiteralNextStates[Index]; }
3148 + void UpdateMatch() { Index = kMatchNextStates[Index]; }
3149 + void UpdateRep() { Index = kRepNextStates[Index]; }
3150 + void UpdateShortRep() { Index = kShortRepNextStates[Index]; }
3153 +#define IsCharState(s) ((s) < 7)
3156 +#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
3158 +#define kInfinityPrice (1 << 30)
3160 +static void RangeEnc_Construct(CRangeEnc *p)
3166 +#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
3168 +#define RC_BUF_SIZE (1 << 16)
3169 +static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
3171 + if (p->bufBase == 0)
3173 + p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
3174 + if (p->bufBase == 0)
3176 + p->bufLim = p->bufBase + RC_BUF_SIZE;
3181 +static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
3183 + alloc->Free(alloc, p->bufBase);
3187 +static void RangeEnc_Init(CRangeEnc *p)
3189 + /* Stream.Init(); */
3191 + p->range = 0xFFFFFFFF;
3195 + p->buf = p->bufBase;
3201 +static void RangeEnc_FlushStream(CRangeEnc *p)
3204 + if (p->res != SZ_OK)
3206 + num = p->buf - p->bufBase;
3207 + if (num != p->outStream->Write(p->outStream, p->bufBase, num))
3208 + p->res = SZ_ERROR_WRITE;
3209 + p->processed += num;
3210 + p->buf = p->bufBase;
3213 +static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
3215 + if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
3217 + Byte temp = p->cache;
3220 + Byte *buf = p->buf;
3221 + *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
3223 + if (buf == p->bufLim)
3224 + RangeEnc_FlushStream(p);
3227 + while (--p->cacheSize != 0);
3228 + p->cache = (Byte)((UInt32)p->low >> 24);
3231 + p->low = (UInt32)p->low << 8;
3234 +static void RangeEnc_FlushData(CRangeEnc *p)
3237 + for (i = 0; i < 5; i++)
3238 + RangeEnc_ShiftLow(p);
3241 +static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
3246 + p->low += p->range & (0 - ((value >> --numBits) & 1));
3247 + if (p->range < kTopValue)
3250 + RangeEnc_ShiftLow(p);
3253 + while (numBits != 0);
3256 +static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
3258 + UInt32 ttt = *prob;
3259 + UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
3262 + p->range = newBound;
3263 + ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
3267 + p->low += newBound;
3268 + p->range -= newBound;
3269 + ttt -= ttt >> kNumMoveBits;
3271 + *prob = (CLzmaProb)ttt;
3272 + if (p->range < kTopValue)
3275 + RangeEnc_ShiftLow(p);
3279 +static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
3284 + RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
3287 + while (symbol < 0x10000);
3290 +static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
3292 + UInt32 offs = 0x100;
3297 + RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
3299 + offs &= ~(matchByte ^ symbol);
3301 + while (symbol < 0x10000);
3304 +void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
3307 + for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
3309 + const int kCyclesBits = kNumBitPriceShiftBits;
3311 + UInt32 bitCount = 0;
3313 + for (j = 0; j < kCyclesBits; j++)
3317 + while (w >= ((UInt32)1 << 16))
3323 + ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
3328 +#define GET_PRICE(prob, symbol) \
3329 + p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3331 +#define GET_PRICEa(prob, symbol) \
3332 + ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3334 +#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
3335 +#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3337 +#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
3338 +#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3340 +static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
3346 + price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
3349 + while (symbol < 0x10000);
3353 +static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
3356 + UInt32 offs = 0x100;
3361 + price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
3363 + offs &= ~(matchByte ^ symbol);
3365 + while (symbol < 0x10000);
3370 +static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3374 + for (i = numBitLevels; i != 0 ;)
3378 + bit = (symbol >> i) & 1;
3379 + RangeEnc_EncodeBit(rc, probs + m, bit);
3380 + m = (m << 1) | bit;
3384 +static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3388 + for (i = 0; i < numBitLevels; i++)
3390 + UInt32 bit = symbol & 1;
3391 + RangeEnc_EncodeBit(rc, probs + m, bit);
3392 + m = (m << 1) | bit;
3397 +static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3400 + symbol |= (1 << numBitLevels);
3401 + while (symbol != 1)
3403 + price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
3409 +static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3414 + for (i = numBitLevels; i != 0; i--)
3416 + UInt32 bit = symbol & 1;
3418 + price += GET_PRICEa(probs[m], bit);
3419 + m = (m << 1) | bit;
3425 +static void LenEnc_Init(CLenEnc *p)
3428 + p->choice = p->choice2 = kProbInitValue;
3429 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
3430 + p->low[i] = kProbInitValue;
3431 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
3432 + p->mid[i] = kProbInitValue;
3433 + for (i = 0; i < kLenNumHighSymbols; i++)
3434 + p->high[i] = kProbInitValue;
3437 +static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
3439 + if (symbol < kLenNumLowSymbols)
3441 + RangeEnc_EncodeBit(rc, &p->choice, 0);
3442 + RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
3446 + RangeEnc_EncodeBit(rc, &p->choice, 1);
3447 + if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
3449 + RangeEnc_EncodeBit(rc, &p->choice2, 0);
3450 + RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
3454 + RangeEnc_EncodeBit(rc, &p->choice2, 1);
3455 + RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
3460 +static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
3462 + UInt32 a0 = GET_PRICE_0a(p->choice);
3463 + UInt32 a1 = GET_PRICE_1a(p->choice);
3464 + UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
3465 + UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
3467 + for (i = 0; i < kLenNumLowSymbols; i++)
3469 + if (i >= numSymbols)
3471 + prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
3473 + for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
3475 + if (i >= numSymbols)
3477 + prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
3479 + for (; i < numSymbols; i++)
3480 + prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
3483 +static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
3485 + LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
3486 + p->counters[posState] = p->tableSize;
3489 +static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
3492 + for (posState = 0; posState < numPosStates; posState++)
3493 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3496 +static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
3498 + LenEnc_Encode(&p->p, rc, symbol, posState);
3500 + if (--p->counters[posState] == 0)
3501 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3507 +static void MovePos(CLzmaEnc *p, UInt32 num)
3511 + printf("\n MovePos %d", num);
3515 + p->additionalOffset += num;
3516 + p->matchFinder.Skip(p->matchFinderObj, num);
3520 +static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
3522 + UInt32 lenRes = 0, numDistancePairs;
3523 + numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances);
3525 + printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2);
3532 + for (i = 0; i < numDistancePairs; i += 2)
3533 + printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]);
3536 + if (numDistancePairs > 0)
3538 + lenRes = p->matchDistances[numDistancePairs - 2];
3539 + if (lenRes == p->numFastBytes)
3541 + UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1;
3542 + const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3543 + UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1;
3544 + if (numAvail > LZMA_MATCH_LEN_MAX)
3545 + numAvail = LZMA_MATCH_LEN_MAX;
3548 + const Byte *pby2 = pby - distance;
3549 + for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
3553 + p->additionalOffset++;
3554 + *numDistancePairsRes = numDistancePairs;
3559 +#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
3560 +#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
3561 +#define IsShortRep(p) ((p)->backPrev == 0)
3563 +static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
3566 + GET_PRICE_0(p->isRepG0[state]) +
3567 + GET_PRICE_0(p->isRep0Long[state][posState]);
3570 +static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
3573 + if (repIndex == 0)
3575 + price = GET_PRICE_0(p->isRepG0[state]);
3576 + price += GET_PRICE_1(p->isRep0Long[state][posState]);
3580 + price = GET_PRICE_1(p->isRepG0[state]);
3581 + if (repIndex == 1)
3582 + price += GET_PRICE_0(p->isRepG1[state]);
3585 + price += GET_PRICE_1(p->isRepG1[state]);
3586 + price += GET_PRICE(p->isRepG2[state], repIndex - 2);
3592 +static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
3594 + return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
3595 + GetPureRepPrice(p, repIndex, state, posState);
3598 +static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
3600 + UInt32 posMem = p->opt[cur].posPrev;
3601 + UInt32 backMem = p->opt[cur].backPrev;
3602 + p->optimumEndIndex = cur;
3605 + if (p->opt[cur].prev1IsChar)
3607 + MakeAsChar(&p->opt[posMem])
3608 + p->opt[posMem].posPrev = posMem - 1;
3609 + if (p->opt[cur].prev2)
3611 + p->opt[posMem - 1].prev1IsChar = False;
3612 + p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
3613 + p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
3617 + UInt32 posPrev = posMem;
3618 + UInt32 backCur = backMem;
3620 + backMem = p->opt[posPrev].backPrev;
3621 + posMem = p->opt[posPrev].posPrev;
3623 + p->opt[posPrev].backPrev = backCur;
3624 + p->opt[posPrev].posPrev = cur;
3629 + *backRes = p->opt[0].backPrev;
3630 + p->optimumCurrentIndex = p->opt[0].posPrev;
3631 + return p->optimumCurrentIndex;
3634 +#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
3636 +static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
3638 + UInt32 numAvailableBytes, lenMain, numDistancePairs;
3640 + UInt32 reps[LZMA_NUM_REPS];
3641 + UInt32 repLens[LZMA_NUM_REPS];
3642 + UInt32 repMaxIndex, i;
3643 + UInt32 *matchDistances;
3644 + Byte currentByte, matchByte;
3646 + UInt32 matchPrice, repMatchPrice;
3649 + UInt32 normalMatchPrice;
3651 + if (p->optimumEndIndex != p->optimumCurrentIndex)
3653 + const COptimal *opt = &p->opt[p->optimumCurrentIndex];
3654 + UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
3655 + *backRes = opt->backPrev;
3656 + p->optimumCurrentIndex = opt->posPrev;
3659 + p->optimumCurrentIndex = p->optimumEndIndex = 0;
3661 + numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3663 + if (!p->longestMatchWasFound)
3665 + lenMain = ReadMatchDistances(p, &numDistancePairs);
3669 + lenMain = p->longestMatchLength;
3670 + numDistancePairs = p->numDistancePairs;
3671 + p->longestMatchWasFound = False;
3674 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3675 + if (numAvailableBytes < 2)
3677 + *backRes = (UInt32)(-1);
3680 + if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
3681 + numAvailableBytes = LZMA_MATCH_LEN_MAX;
3684 + for (i = 0; i < LZMA_NUM_REPS; i++)
3687 + const Byte *data2;
3688 + reps[i] = p->reps[i];
3689 + data2 = data - (reps[i] + 1);
3690 + if (data[0] != data2[0] || data[1] != data2[1])
3695 + for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
3696 + repLens[i] = lenTest;
3697 + if (lenTest > repLens[repMaxIndex])
3700 + if (repLens[repMaxIndex] >= p->numFastBytes)
3703 + *backRes = repMaxIndex;
3704 + lenRes = repLens[repMaxIndex];
3705 + MovePos(p, lenRes - 1);
3709 + matchDistances = p->matchDistances;
3710 + if (lenMain >= p->numFastBytes)
3712 + *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
3713 + MovePos(p, lenMain - 1);
3716 + currentByte = *data;
3717 + matchByte = *(data - (reps[0] + 1));
3719 + if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2)
3721 + *backRes = (UInt32)-1;
3725 + p->opt[0].state = (CState)p->state;
3727 + posState = (position & p->pbMask);
3730 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3731 + p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
3732 + (!IsCharState(p->state) ?
3733 + LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3734 + LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3737 + MakeAsChar(&p->opt[1]);
3739 + matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
3740 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
3742 + if (matchByte == currentByte)
3744 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
3745 + if (shortRepPrice < p->opt[1].price)
3747 + p->opt[1].price = shortRepPrice;
3748 + MakeAsShortRep(&p->opt[1]);
3751 + lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]);
3755 + *backRes = p->opt[1].backPrev;
3759 + p->opt[1].posPrev = 0;
3760 + for (i = 0; i < LZMA_NUM_REPS; i++)
3761 + p->opt[0].backs[i] = reps[i];
3765 + p->opt[len--].price = kInfinityPrice;
3768 + for (i = 0; i < LZMA_NUM_REPS; i++)
3770 + UInt32 repLen = repLens[i];
3774 + price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
3777 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
3778 + COptimal *opt = &p->opt[repLen];
3779 + if (curAndLenPrice < opt->price)
3781 + opt->price = curAndLenPrice;
3783 + opt->backPrev = i;
3784 + opt->prev1IsChar = False;
3787 + while (--repLen >= 2);
3790 + normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
3792 + len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
3793 + if (len <= lenMain)
3796 + while (len > matchDistances[offs])
3801 + UInt32 distance = matchDistances[offs + 1];
3803 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
3804 + UInt32 lenToPosState = GetLenToPosState(len);
3805 + if (distance < kNumFullDistances)
3806 + curAndLenPrice += p->distancesPrices[lenToPosState][distance];
3810 + GetPosSlot2(distance, slot);
3811 + curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
3813 + opt = &p->opt[len];
3814 + if (curAndLenPrice < opt->price)
3816 + opt->price = curAndLenPrice;
3818 + opt->backPrev = distance + LZMA_NUM_REPS;
3819 + opt->prev1IsChar = False;
3821 + if (len == matchDistances[offs])
3824 + if (offs == numDistancePairs)
3833 + if (position >= 0)
3836 + printf("\n pos = %4X", position);
3837 + for (i = cur; i <= lenEnd; i++)
3838 + printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
3844 + UInt32 numAvailableBytesFull, newLen, numDistancePairs;
3851 + Byte currentByte, matchByte;
3853 + UInt32 curAnd1Price;
3854 + COptimal *nextOpt;
3855 + UInt32 matchPrice, repMatchPrice;
3856 + UInt32 numAvailableBytes;
3860 + if (cur == lenEnd)
3861 + return Backward(p, backRes, cur);
3863 + numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3864 + newLen = ReadMatchDistances(p, &numDistancePairs);
3865 + if (newLen >= p->numFastBytes)
3867 + p->numDistancePairs = numDistancePairs;
3868 + p->longestMatchLength = newLen;
3869 + p->longestMatchWasFound = True;
3870 + return Backward(p, backRes, cur);
3873 + curOpt = &p->opt[cur];
3874 + posPrev = curOpt->posPrev;
3875 + if (curOpt->prev1IsChar)
3878 + if (curOpt->prev2)
3880 + state = p->opt[curOpt->posPrev2].state;
3881 + if (curOpt->backPrev2 < LZMA_NUM_REPS)
3882 + state = kRepNextStates[state];
3884 + state = kMatchNextStates[state];
3887 + state = p->opt[posPrev].state;
3888 + state = kLiteralNextStates[state];
3891 + state = p->opt[posPrev].state;
3892 + if (posPrev == cur - 1)
3894 + if (IsShortRep(curOpt))
3895 + state = kShortRepNextStates[state];
3897 + state = kLiteralNextStates[state];
3902 + const COptimal *prevOpt;
3903 + if (curOpt->prev1IsChar && curOpt->prev2)
3905 + posPrev = curOpt->posPrev2;
3906 + pos = curOpt->backPrev2;
3907 + state = kRepNextStates[state];
3911 + pos = curOpt->backPrev;
3912 + if (pos < LZMA_NUM_REPS)
3913 + state = kRepNextStates[state];
3915 + state = kMatchNextStates[state];
3917 + prevOpt = &p->opt[posPrev];
3918 + if (pos < LZMA_NUM_REPS)
3921 + reps[0] = prevOpt->backs[pos];
3922 + for (i = 1; i <= pos; i++)
3923 + reps[i] = prevOpt->backs[i - 1];
3924 + for (; i < LZMA_NUM_REPS; i++)
3925 + reps[i] = prevOpt->backs[i];
3930 + reps[0] = (pos - LZMA_NUM_REPS);
3931 + for (i = 1; i < LZMA_NUM_REPS; i++)
3932 + reps[i] = prevOpt->backs[i - 1];
3935 + curOpt->state = (CState)state;
3937 + curOpt->backs[0] = reps[0];
3938 + curOpt->backs[1] = reps[1];
3939 + curOpt->backs[2] = reps[2];
3940 + curOpt->backs[3] = reps[3];
3942 + curPrice = curOpt->price;
3943 + nextIsChar = False;
3944 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3945 + currentByte = *data;
3946 + matchByte = *(data - (reps[0] + 1));
3948 + posState = (position & p->pbMask);
3950 + curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
3952 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3954 + (!IsCharState(state) ?
3955 + LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3956 + LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3959 + nextOpt = &p->opt[cur + 1];
3961 + if (curAnd1Price < nextOpt->price)
3963 + nextOpt->price = curAnd1Price;
3964 + nextOpt->posPrev = cur;
3965 + MakeAsChar(nextOpt);
3966 + nextIsChar = True;
3969 + matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
3970 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
3972 + if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
3974 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
3975 + if (shortRepPrice <= nextOpt->price)
3977 + nextOpt->price = shortRepPrice;
3978 + nextOpt->posPrev = cur;
3979 + MakeAsShortRep(nextOpt);
3980 + nextIsChar = True;
3985 + UInt32 temp = kNumOpts - 1 - cur;
3986 + if (temp < numAvailableBytesFull)
3987 + numAvailableBytesFull = temp;
3989 + numAvailableBytes = numAvailableBytesFull;
3991 + if (numAvailableBytes < 2)
3993 + if (numAvailableBytes > p->numFastBytes)
3994 + numAvailableBytes = p->numFastBytes;
3995 + if (!nextIsChar && matchByte != currentByte) /* speed optimization */
3997 + /* try Literal + rep0 */
4000 + const Byte *data2 = data - (reps[0] + 1);
4001 + UInt32 limit = p->numFastBytes + 1;
4002 + if (limit > numAvailableBytesFull)
4003 + limit = numAvailableBytesFull;
4005 + for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
4006 + lenTest2 = temp - 1;
4007 + if (lenTest2 >= 2)
4009 + UInt32 state2 = kLiteralNextStates[state];
4010 + UInt32 posStateNext = (position + 1) & p->pbMask;
4011 + UInt32 nextRepMatchPrice = curAnd1Price +
4012 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4013 + GET_PRICE_1(p->isRep[state2]);
4014 + /* for (; lenTest2 >= 2; lenTest2--) */
4016 + UInt32 curAndLenPrice;
4018 + UInt32 offset = cur + 1 + lenTest2;
4019 + while (lenEnd < offset)
4020 + p->opt[++lenEnd].price = kInfinityPrice;
4021 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4022 + opt = &p->opt[offset];
4023 + if (curAndLenPrice < opt->price)
4025 + opt->price = curAndLenPrice;
4026 + opt->posPrev = cur + 1;
4027 + opt->backPrev = 0;
4028 + opt->prev1IsChar = True;
4029 + opt->prev2 = False;
4035 + startLen = 2; /* speed optimization */
4038 + for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
4041 + UInt32 lenTestTemp;
4043 + const Byte *data2 = data - (reps[repIndex] + 1);
4044 + if (data[0] != data2[0] || data[1] != data2[1])
4046 + for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
4047 + while (lenEnd < cur + lenTest)
4048 + p->opt[++lenEnd].price = kInfinityPrice;
4049 + lenTestTemp = lenTest;
4050 + price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
4053 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
4054 + COptimal *opt = &p->opt[cur + lenTest];
4055 + if (curAndLenPrice < opt->price)
4057 + opt->price = curAndLenPrice;
4058 + opt->posPrev = cur;
4059 + opt->backPrev = repIndex;
4060 + opt->prev1IsChar = False;
4063 + while (--lenTest >= 2);
4064 + lenTest = lenTestTemp;
4066 + if (repIndex == 0)
4067 + startLen = lenTest + 1;
4069 + /* if (_maxMode) */
4071 + UInt32 lenTest2 = lenTest + 1;
4072 + UInt32 limit = lenTest2 + p->numFastBytes;
4073 + UInt32 nextRepMatchPrice;
4074 + if (limit > numAvailableBytesFull)
4075 + limit = numAvailableBytesFull;
4076 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4077 + lenTest2 -= lenTest + 1;
4078 + if (lenTest2 >= 2)
4080 + UInt32 state2 = kRepNextStates[state];
4081 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4082 + UInt32 curAndLenCharPrice =
4083 + price + p->repLenEnc.prices[posState][lenTest - 2] +
4084 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4085 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4086 + data[lenTest], data2[lenTest], p->ProbPrices);
4087 + state2 = kLiteralNextStates[state2];
4088 + posStateNext = (position + lenTest + 1) & p->pbMask;
4089 + nextRepMatchPrice = curAndLenCharPrice +
4090 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4091 + GET_PRICE_1(p->isRep[state2]);
4093 + /* for (; lenTest2 >= 2; lenTest2--) */
4095 + UInt32 curAndLenPrice;
4097 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4098 + while (lenEnd < offset)
4099 + p->opt[++lenEnd].price = kInfinityPrice;
4100 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4101 + opt = &p->opt[offset];
4102 + if (curAndLenPrice < opt->price)
4104 + opt->price = curAndLenPrice;
4105 + opt->posPrev = cur + lenTest + 1;
4106 + opt->backPrev = 0;
4107 + opt->prev1IsChar = True;
4108 + opt->prev2 = True;
4109 + opt->posPrev2 = cur;
4110 + opt->backPrev2 = repIndex;
4117 + /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
4118 + if (newLen > numAvailableBytes)
4120 + newLen = numAvailableBytes;
4121 + for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2);
4122 + matchDistances[numDistancePairs] = newLen;
4123 + numDistancePairs += 2;
4125 + if (newLen >= startLen)
4127 + UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
4128 + UInt32 offs, curBack, posSlot;
4130 + while (lenEnd < cur + newLen)
4131 + p->opt[++lenEnd].price = kInfinityPrice;
4134 + while (startLen > matchDistances[offs])
4136 + curBack = matchDistances[offs + 1];
4137 + GetPosSlot2(curBack, posSlot);
4138 + for (lenTest = /*2*/ startLen; ; lenTest++)
4140 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
4141 + UInt32 lenToPosState = GetLenToPosState(lenTest);
4143 + if (curBack < kNumFullDistances)
4144 + curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
4146 + curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
4148 + opt = &p->opt[cur + lenTest];
4149 + if (curAndLenPrice < opt->price)
4151 + opt->price = curAndLenPrice;
4152 + opt->posPrev = cur;
4153 + opt->backPrev = curBack + LZMA_NUM_REPS;
4154 + opt->prev1IsChar = False;
4157 + if (/*_maxMode && */lenTest == matchDistances[offs])
4159 + /* Try Match + Literal + Rep0 */
4160 + const Byte *data2 = data - (curBack + 1);
4161 + UInt32 lenTest2 = lenTest + 1;
4162 + UInt32 limit = lenTest2 + p->numFastBytes;
4163 + UInt32 nextRepMatchPrice;
4164 + if (limit > numAvailableBytesFull)
4165 + limit = numAvailableBytesFull;
4166 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4167 + lenTest2 -= lenTest + 1;
4168 + if (lenTest2 >= 2)
4170 + UInt32 state2 = kMatchNextStates[state];
4171 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4172 + UInt32 curAndLenCharPrice = curAndLenPrice +
4173 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4174 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4175 + data[lenTest], data2[lenTest], p->ProbPrices);
4176 + state2 = kLiteralNextStates[state2];
4177 + posStateNext = (posStateNext + 1) & p->pbMask;
4178 + nextRepMatchPrice = curAndLenCharPrice +
4179 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4180 + GET_PRICE_1(p->isRep[state2]);
4182 + /* for (; lenTest2 >= 2; lenTest2--) */
4184 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4185 + UInt32 curAndLenPrice;
4187 + while (lenEnd < offset)
4188 + p->opt[++lenEnd].price = kInfinityPrice;
4189 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4190 + opt = &p->opt[offset];
4191 + if (curAndLenPrice < opt->price)
4193 + opt->price = curAndLenPrice;
4194 + opt->posPrev = cur + lenTest + 1;
4195 + opt->backPrev = 0;
4196 + opt->prev1IsChar = True;
4197 + opt->prev2 = True;
4198 + opt->posPrev2 = cur;
4199 + opt->backPrev2 = curBack + LZMA_NUM_REPS;
4204 + if (offs == numDistancePairs)
4206 + curBack = matchDistances[offs + 1];
4207 + if (curBack >= kNumFullDistances)
4208 + GetPosSlot2(curBack, posSlot);
4215 +#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
4217 +static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
4219 + UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4220 + UInt32 lenMain, numDistancePairs;
4222 + UInt32 repLens[LZMA_NUM_REPS];
4223 + UInt32 repMaxIndex, i;
4224 + UInt32 *matchDistances;
4227 + if (!p->longestMatchWasFound)
4229 + lenMain = ReadMatchDistances(p, &numDistancePairs);
4233 + lenMain = p->longestMatchLength;
4234 + numDistancePairs = p->numDistancePairs;
4235 + p->longestMatchWasFound = False;
4238 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4239 + if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
4240 + numAvailableBytes = LZMA_MATCH_LEN_MAX;
4241 + if (numAvailableBytes < 2)
4243 + *backRes = (UInt32)(-1);
4249 + for (i = 0; i < LZMA_NUM_REPS; i++)
4251 + const Byte *data2 = data - (p->reps[i] + 1);
4253 + if (data[0] != data2[0] || data[1] != data2[1])
4258 + for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4259 + if (len >= p->numFastBytes)
4262 + MovePos(p, len - 1);
4266 + if (len > repLens[repMaxIndex])
4269 + matchDistances = p->matchDistances;
4270 + if (lenMain >= p->numFastBytes)
4272 + *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
4273 + MovePos(p, lenMain - 1);
4277 + backMain = 0; /* for GCC */
4280 + backMain = matchDistances[numDistancePairs - 1];
4281 + while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1)
4283 + if (!ChangePair(matchDistances[numDistancePairs - 3], backMain))
4285 + numDistancePairs -= 2;
4286 + lenMain = matchDistances[numDistancePairs - 2];
4287 + backMain = matchDistances[numDistancePairs - 1];
4289 + if (lenMain == 2 && backMain >= 0x80)
4293 + if (repLens[repMaxIndex] >= 2)
4295 + if (repLens[repMaxIndex] + 1 >= lenMain ||
4296 + (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) ||
4297 + (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15))))
4300 + *backRes = repMaxIndex;
4301 + lenRes = repLens[repMaxIndex];
4302 + MovePos(p, lenRes - 1);
4307 + if (lenMain >= 2 && numAvailableBytes > 2)
4310 + numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4311 + p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs);
4312 + if (p->longestMatchLength >= 2)
4314 + UInt32 newDistance = matchDistances[p->numDistancePairs - 1];
4315 + if ((p->longestMatchLength >= lenMain && newDistance < backMain) ||
4316 + (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) ||
4317 + (p->longestMatchLength > lenMain + 1) ||
4318 + (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain)))
4320 + p->longestMatchWasFound = True;
4321 + *backRes = (UInt32)(-1);
4325 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4326 + for (i = 0; i < LZMA_NUM_REPS; i++)
4329 + const Byte *data2 = data - (p->reps[i] + 1);
4330 + if (data[1] != data2[1] || data[2] != data2[2])
4335 + for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4336 + if (len + 1 >= lenMain)
4338 + p->longestMatchWasFound = True;
4339 + *backRes = (UInt32)(-1);
4343 + *backRes = backMain + LZMA_NUM_REPS;
4344 + MovePos(p, lenMain - 2);
4347 + *backRes = (UInt32)(-1);
4351 +static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
4354 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4355 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4356 + p->state = kMatchNextStates[p->state];
4357 + len = LZMA_MATCH_LEN_MIN;
4358 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4359 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
4360 + RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
4361 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
4364 +static SRes CheckErrors(CLzmaEnc *p)
4366 + if (p->result != SZ_OK)
4368 + if (p->rc.res != SZ_OK)
4369 + p->result = SZ_ERROR_WRITE;
4370 + if (p->matchFinderBase.result != SZ_OK)
4371 + p->result = SZ_ERROR_READ;
4372 + if (p->result != SZ_OK)
4373 + p->finished = True;
4377 +static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
4379 + /* ReleaseMFStream(); */
4380 + p->finished = True;
4381 + if (p->writeEndMark)
4382 + WriteEndMarker(p, nowPos & p->pbMask);
4383 + RangeEnc_FlushData(&p->rc);
4384 + RangeEnc_FlushStream(&p->rc);
4385 + return CheckErrors(p);
4388 +static void FillAlignPrices(CLzmaEnc *p)
4391 + for (i = 0; i < kAlignTableSize; i++)
4392 + p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
4393 + p->alignPriceCount = 0;
4396 +static void FillDistancesPrices(CLzmaEnc *p)
4398 + UInt32 tempPrices[kNumFullDistances];
4399 + UInt32 i, lenToPosState;
4400 + for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
4402 + UInt32 posSlot = GetPosSlot1(i);
4403 + UInt32 footerBits = ((posSlot >> 1) - 1);
4404 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4405 + tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
4408 + for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
4411 + const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
4412 + UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
4413 + for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
4414 + posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
4415 + for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
4416 + posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
4419 + UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
4421 + for (i = 0; i < kStartPosModelIndex; i++)
4422 + distancesPrices[i] = posSlotPrices[i];
4423 + for (; i < kNumFullDistances; i++)
4424 + distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
4427 + p->matchPriceCount = 0;
4430 +void LzmaEnc_Construct(CLzmaEnc *p)
4432 + RangeEnc_Construct(&p->rc);
4433 + MatchFinder_Construct(&p->matchFinderBase);
4434 + #ifdef COMPRESS_MF_MT
4435 + MatchFinderMt_Construct(&p->matchFinderMt);
4436 + p->matchFinderMt.MatchFinder = &p->matchFinderBase;
4440 + CLzmaEncProps props;
4441 + LzmaEncProps_Init(&props);
4442 + LzmaEnc_SetProps(p, &props);
4445 + #ifndef LZMA_LOG_BSR
4446 + LzmaEnc_FastPosInit(p->g_FastPos);
4449 + LzmaEnc_InitPriceTables(p->ProbPrices);
4451 + p->saveState.litProbs = 0;
4454 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
4457 + p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
4459 + LzmaEnc_Construct((CLzmaEnc *)p);
4463 +void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
4465 + alloc->Free(alloc, p->litProbs);
4466 + alloc->Free(alloc, p->saveState.litProbs);
4468 + p->saveState.litProbs = 0;
4471 +void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
4473 + #ifdef COMPRESS_MF_MT
4474 + MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
4476 + MatchFinder_Free(&p->matchFinderBase, allocBig);
4477 + LzmaEnc_FreeLits(p, alloc);
4478 + RangeEnc_Free(&p->rc, alloc);
4481 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
4483 + LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
4484 + alloc->Free(alloc, p);
4487 +static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
4489 + UInt32 nowPos32, startPos32;
4490 + if (p->inStream != 0)
4492 + p->matchFinderBase.stream = p->inStream;
4493 + p->matchFinder.Init(p->matchFinderObj);
4499 + RINOK(CheckErrors(p));
4501 + nowPos32 = (UInt32)p->nowPos64;
4502 + startPos32 = nowPos32;
4504 + if (p->nowPos64 == 0)
4506 + UInt32 numDistancePairs;
4508 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4509 + return Flush(p, nowPos32);
4510 + ReadMatchDistances(p, &numDistancePairs);
4511 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
4512 + p->state = kLiteralNextStates[p->state];
4513 + curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
4514 + LitEnc_Encode(&p->rc, p->litProbs, curByte);
4515 + p->additionalOffset--;
4519 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
4522 + UInt32 pos, len, posState;
4525 + len = GetOptimumFast(p, &pos);
4527 + len = GetOptimum(p, nowPos32, &pos);
4530 + printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
4533 + posState = nowPos32 & p->pbMask;
4534 + if (len == 1 && pos == 0xFFFFFFFF)
4540 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
4541 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4543 + probs = LIT_PROBS(nowPos32, *(data - 1));
4544 + if (IsCharState(p->state))
4545 + LitEnc_Encode(&p->rc, probs, curByte);
4547 + LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
4548 + p->state = kLiteralNextStates[p->state];
4552 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4553 + if (pos < LZMA_NUM_REPS)
4555 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
4558 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
4559 + RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
4563 + UInt32 distance = p->reps[pos];
4564 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
4566 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
4569 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
4570 + RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
4572 + p->reps[3] = p->reps[2];
4573 + p->reps[2] = p->reps[1];
4575 + p->reps[1] = p->reps[0];
4576 + p->reps[0] = distance;
4579 + p->state = kShortRepNextStates[p->state];
4582 + LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4583 + p->state = kRepNextStates[p->state];
4589 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4590 + p->state = kMatchNextStates[p->state];
4591 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4592 + pos -= LZMA_NUM_REPS;
4593 + GetPosSlot(pos, posSlot);
4594 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
4596 + if (posSlot >= kStartPosModelIndex)
4598 + UInt32 footerBits = ((posSlot >> 1) - 1);
4599 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4600 + UInt32 posReduced = pos - base;
4602 + if (posSlot < kEndPosModelIndex)
4603 + RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
4606 + RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
4607 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
4608 + p->alignPriceCount++;
4611 + p->reps[3] = p->reps[2];
4612 + p->reps[2] = p->reps[1];
4613 + p->reps[1] = p->reps[0];
4615 + p->matchPriceCount++;
4618 + p->additionalOffset -= len;
4620 + if (p->additionalOffset == 0)
4625 + if (p->matchPriceCount >= (1 << 7))
4626 + FillDistancesPrices(p);
4627 + if (p->alignPriceCount >= kAlignTableSize)
4628 + FillAlignPrices(p);
4630 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4632 + processed = nowPos32 - startPos32;
4635 + if (processed + kNumOpts + 300 >= maxUnpackSize ||
4636 + RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
4639 + else if (processed >= (1 << 15))
4641 + p->nowPos64 += nowPos32 - startPos32;
4642 + return CheckErrors(p);
4646 + p->nowPos64 += nowPos32 - startPos32;
4647 + return Flush(p, nowPos32);
4650 +#define kBigHashDicLimit ((UInt32)1 << 24)
4652 +static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4654 + UInt32 beforeSize = kNumOpts;
4656 + if (!RangeEnc_Alloc(&p->rc, alloc))
4657 + return SZ_ERROR_MEM;
4658 + btMode = (p->matchFinderBase.btMode != 0);
4659 + #ifdef COMPRESS_MF_MT
4660 + p->mtMode = (p->multiThread && !p->fastMode && btMode);
4664 + unsigned lclp = p->lc + p->lp;
4665 + if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
4667 + LzmaEnc_FreeLits(p, alloc);
4668 + p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4669 + p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4670 + if (p->litProbs == 0 || p->saveState.litProbs == 0)
4672 + LzmaEnc_FreeLits(p, alloc);
4673 + return SZ_ERROR_MEM;
4679 + p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
4681 + if (beforeSize + p->dictSize < keepWindowSize)
4682 + beforeSize = keepWindowSize - p->dictSize;
4684 + #ifdef COMPRESS_MF_MT
4687 + RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
4688 + p->matchFinderObj = &p->matchFinderMt;
4689 + MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
4694 + if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
4695 + return SZ_ERROR_MEM;
4696 + p->matchFinderObj = &p->matchFinderBase;
4697 + MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
4702 +void LzmaEnc_Init(CLzmaEnc *p)
4706 + for(i = 0 ; i < LZMA_NUM_REPS; i++)
4709 + RangeEnc_Init(&p->rc);
4712 + for (i = 0; i < kNumStates; i++)
4715 + for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
4717 + p->isMatch[i][j] = kProbInitValue;
4718 + p->isRep0Long[i][j] = kProbInitValue;
4720 + p->isRep[i] = kProbInitValue;
4721 + p->isRepG0[i] = kProbInitValue;
4722 + p->isRepG1[i] = kProbInitValue;
4723 + p->isRepG2[i] = kProbInitValue;
4727 + UInt32 num = 0x300 << (p->lp + p->lc);
4728 + for (i = 0; i < num; i++)
4729 + p->litProbs[i] = kProbInitValue;
4733 + for (i = 0; i < kNumLenToPosStates; i++)
4735 + CLzmaProb *probs = p->posSlotEncoder[i];
4737 + for (j = 0; j < (1 << kNumPosSlotBits); j++)
4738 + probs[j] = kProbInitValue;
4742 + for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
4743 + p->posEncoders[i] = kProbInitValue;
4746 + LenEnc_Init(&p->lenEnc.p);
4747 + LenEnc_Init(&p->repLenEnc.p);
4749 + for (i = 0; i < (1 << kNumAlignBits); i++)
4750 + p->posAlignEncoder[i] = kProbInitValue;
4752 + p->longestMatchWasFound = False;
4753 + p->optimumEndIndex = 0;
4754 + p->optimumCurrentIndex = 0;
4755 + p->additionalOffset = 0;
4757 + p->pbMask = (1 << p->pb) - 1;
4758 + p->lpMask = (1 << p->lp) - 1;
4761 +void LzmaEnc_InitPrices(CLzmaEnc *p)
4765 + FillDistancesPrices(p);
4766 + FillAlignPrices(p);
4769 + p->lenEnc.tableSize =
4770 + p->repLenEnc.tableSize =
4771 + p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
4772 + LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
4773 + LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
4776 +static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4779 + for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
4780 + if (p->dictSize <= ((UInt32)1 << i))
4782 + p->distTableSize = i * 2;
4784 + p->finished = False;
4785 + p->result = SZ_OK;
4786 + RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
4788 + LzmaEnc_InitPrices(p);
4793 +static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
4794 + ISzAlloc *alloc, ISzAlloc *allocBig)
4796 + CLzmaEnc *p = (CLzmaEnc *)pp;
4797 + p->inStream = inStream;
4798 + p->rc.outStream = outStream;
4799 + return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
4802 +SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
4803 + ISeqInStream *inStream, UInt32 keepWindowSize,
4804 + ISzAlloc *alloc, ISzAlloc *allocBig)
4806 + CLzmaEnc *p = (CLzmaEnc *)pp;
4807 + p->inStream = inStream;
4808 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4811 +static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
4813 + p->seqBufInStream.funcTable.Read = MyRead;
4814 + p->seqBufInStream.data = src;
4815 + p->seqBufInStream.rem = srcLen;
4818 +SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
4819 + UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4821 + CLzmaEnc *p = (CLzmaEnc *)pp;
4822 + LzmaEnc_SetInputBuf(p, src, srcLen);
4823 + p->inStream = &p->seqBufInStream.funcTable;
4824 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4827 +void LzmaEnc_Finish(CLzmaEncHandle pp)
4829 + #ifdef COMPRESS_MF_MT
4830 + CLzmaEnc *p = (CLzmaEnc *)pp;
4832 + MatchFinderMt_ReleaseStream(&p->matchFinderMt);
4836 +typedef struct _CSeqOutStreamBuf
4838 + ISeqOutStream funcTable;
4842 +} CSeqOutStreamBuf;
4844 +static size_t MyWrite(void *pp, const void *data, size_t size)
4846 + CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
4847 + if (p->rem < size)
4850 + p->overflow = True;
4852 + memcpy(p->data, data, size);
4859 +UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
4861 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4862 + return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4865 +const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
4867 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4868 + return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4871 +SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
4872 + Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
4874 + CLzmaEnc *p = (CLzmaEnc *)pp;
4877 + CSeqOutStreamBuf outStream;
4879 + outStream.funcTable.Write = MyWrite;
4880 + outStream.data = dest;
4881 + outStream.rem = *destLen;
4882 + outStream.overflow = False;
4884 + p->writeEndMark = False;
4885 + p->finished = False;
4886 + p->result = SZ_OK;
4890 + LzmaEnc_InitPrices(p);
4891 + nowPos64 = p->nowPos64;
4892 + RangeEnc_Init(&p->rc);
4893 + p->rc.outStream = &outStream.funcTable;
4895 + res = LzmaEnc_CodeOneBlock(pp, True, desiredPackSize, *unpackSize);
4897 + *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
4898 + *destLen -= outStream.rem;
4899 + if (outStream.overflow)
4900 + return SZ_ERROR_OUTPUT_EOF;
4905 +SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
4906 + ISzAlloc *alloc, ISzAlloc *allocBig)
4908 + CLzmaEnc *p = (CLzmaEnc *)pp;
4911 + #ifdef COMPRESS_MF_MT
4912 + Byte allocaDummy[0x300];
4914 + for (i = 0; i < 16; i++)
4915 + allocaDummy[i] = (Byte)i;
4918 + RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
4922 + res = LzmaEnc_CodeOneBlock(pp, False, 0, 0);
4923 + if (res != SZ_OK || p->finished != 0)
4925 + if (progress != 0)
4927 + res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
4930 + res = SZ_ERROR_PROGRESS;
4935 + LzmaEnc_Finish(pp);
4939 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
4941 + CLzmaEnc *p = (CLzmaEnc *)pp;
4943 + UInt32 dictSize = p->dictSize;
4944 + if (*size < LZMA_PROPS_SIZE)
4945 + return SZ_ERROR_PARAM;
4946 + *size = LZMA_PROPS_SIZE;
4947 + props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
4949 + for (i = 11; i <= 30; i++)
4951 + if (dictSize <= ((UInt32)2 << i))
4953 + dictSize = (2 << i);
4956 + if (dictSize <= ((UInt32)3 << i))
4958 + dictSize = (3 << i);
4963 + for (i = 0; i < 4; i++)
4964 + props[1 + i] = (Byte)(dictSize >> (8 * i));
4968 +SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4969 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4972 + CLzmaEnc *p = (CLzmaEnc *)pp;
4974 + CSeqOutStreamBuf outStream;
4976 + LzmaEnc_SetInputBuf(p, src, srcLen);
4978 + outStream.funcTable.Write = MyWrite;
4979 + outStream.data = dest;
4980 + outStream.rem = *destLen;
4981 + outStream.overflow = False;
4983 + p->writeEndMark = writeEndMark;
4984 + res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
4985 + progress, alloc, allocBig);
4987 + *destLen -= outStream.rem;
4988 + if (outStream.overflow)
4989 + return SZ_ERROR_OUTPUT_EOF;
4993 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4994 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
4995 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4997 + CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
5000 + return SZ_ERROR_MEM;
5002 + res = LzmaEnc_SetProps(p, props);
5005 + res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
5007 + res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
5008 + writeEndMark, progress, alloc, allocBig);
5011 + LzmaEnc_Destroy(p, alloc, allocBig);
5016 @@ -1684,11 +1684,11 @@ int main(int argc, char **argv)
5018 erase_block_size *= units;
5020 - /* If it's less than 8KiB, they're not allowed */
5021 - if (erase_block_size < 0x2000) {
5022 - fprintf(stderr, "Erase size 0x%x too small. Increasing to 8KiB minimum\n",
5023 + /* If it's less than 4KiB, they're not allowed */
5024 + if (erase_block_size < 0x1000) {
5025 + fprintf(stderr, "Erase size 0x%x too small. Increasing to 4KiB minimum\n",
5027 - erase_block_size = 0x2000;
5028 + erase_block_size = 0x1000;