2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
28 * Set enviroment defines for rt2x00.h
30 #define DRV_NAME "rt2500pci"
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 static u32
rt2500pci_bbp_check(const struct rt2x00_dev
*rt2x00dev
)
62 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
63 rt2x00pci_register_read(rt2x00dev
, BBPCSR
, ®
);
64 if (!rt2x00_get_field32(reg
, BBPCSR_BUSY
))
66 udelay(REGISTER_BUSY_DELAY
);
72 static void rt2500pci_bbp_write(const struct rt2x00_dev
*rt2x00dev
,
73 const unsigned int word
, const u8 value
)
78 * Wait until the BBP becomes ready.
80 reg
= rt2500pci_bbp_check(rt2x00dev
);
81 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
82 ERROR(rt2x00dev
, "BBPCSR register busy. Write failed.\n");
87 * Write the data into the BBP.
90 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
91 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
92 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
93 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
95 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
98 static void rt2500pci_bbp_read(const struct rt2x00_dev
*rt2x00dev
,
99 const unsigned int word
, u8
*value
)
104 * Wait until the BBP becomes ready.
106 reg
= rt2500pci_bbp_check(rt2x00dev
);
107 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
108 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
113 * Write the request into the BBP.
116 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
117 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
118 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
120 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
123 * Wait until the BBP becomes ready.
125 reg
= rt2500pci_bbp_check(rt2x00dev
);
126 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
127 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
132 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
135 static void rt2500pci_rf_write(const struct rt2x00_dev
*rt2x00dev
,
136 const unsigned int word
, const u32 value
)
144 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
145 rt2x00pci_register_read(rt2x00dev
, RFCSR
, ®
);
146 if (!rt2x00_get_field32(reg
, RFCSR_BUSY
))
148 udelay(REGISTER_BUSY_DELAY
);
151 ERROR(rt2x00dev
, "RFCSR register busy. Write failed.\n");
156 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
157 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
158 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
159 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
161 rt2x00pci_register_write(rt2x00dev
, RFCSR
, reg
);
162 rt2x00_rf_write(rt2x00dev
, word
, value
);
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
167 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
170 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
172 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
173 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
174 eeprom
->reg_data_clock
=
175 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
176 eeprom
->reg_chip_select
=
177 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
182 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
185 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
186 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
187 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
188 !!eeprom
->reg_data_clock
);
189 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
190 !!eeprom
->reg_chip_select
);
192 rt2x00pci_register_write(rt2x00dev
, CSR21
, reg
);
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
198 static void rt2500pci_read_csr(const struct rt2x00_dev
*rt2x00dev
,
199 const unsigned int word
, u32
*data
)
201 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
204 static void rt2500pci_write_csr(const struct rt2x00_dev
*rt2x00dev
,
205 const unsigned int word
, u32 data
)
207 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
210 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
211 .owner
= THIS_MODULE
,
213 .read
= rt2500pci_read_csr
,
214 .write
= rt2500pci_write_csr
,
215 .word_size
= sizeof(u32
),
216 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
219 .read
= rt2x00_eeprom_read
,
220 .write
= rt2x00_eeprom_write
,
221 .word_size
= sizeof(u16
),
222 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
225 .read
= rt2500pci_bbp_read
,
226 .write
= rt2500pci_bbp_write
,
227 .word_size
= sizeof(u8
),
228 .word_count
= BBP_SIZE
/ sizeof(u8
),
231 .read
= rt2x00_rf_read
,
232 .write
= rt2500pci_rf_write
,
233 .word_size
= sizeof(u32
),
234 .word_count
= RF_SIZE
/ sizeof(u32
),
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
244 rt2x00pci_register_read(rt2x00dev
, GPIOCSR
, ®
);
245 return rt2x00_get_field32(reg
, GPIOCSR_BIT0
);
248 #define rt2500pci_rfkill_poll NULL
249 #endif /* CONFIG_RT2500PCI_RFKILL */
252 * Configuration handlers.
254 static void rt2500pci_config_mac_addr(struct rt2x00_dev
*rt2x00dev
,
257 rt2x00pci_register_multiwrite(rt2x00dev
, CSR3
, mac
,
258 (2 * sizeof(__le32
)));
261 static void rt2500pci_config_bssid(struct rt2x00_dev
*rt2x00dev
,
264 rt2x00pci_register_multiwrite(rt2x00dev
, CSR5
, bssid
,
265 (2 * sizeof(__le32
)));
268 static void rt2500pci_config_type(struct rt2x00_dev
*rt2x00dev
, const int type
,
273 rt2x00pci_register_write(rt2x00dev
, CSR14
, 0);
276 * Enable beacon config
278 rt2x00pci_register_read(rt2x00dev
, BCNCSR1
, ®
);
279 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
,
280 PREAMBLE
+ get_duration(IEEE80211_HEADER
, 20));
281 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
,
282 rt2x00lib_get_ring(rt2x00dev
,
283 IEEE80211_TX_QUEUE_BEACON
)
285 rt2x00pci_register_write(rt2x00dev
, BCNCSR1
, reg
);
288 * Enable synchronisation.
290 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
291 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
292 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
293 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
294 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, tsf_sync
);
295 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
298 static void rt2500pci_config_preamble(struct rt2x00_dev
*rt2x00dev
,
299 const int short_preamble
,
300 const int ack_timeout
,
301 const int ack_consume_time
)
307 * When short preamble is enabled, we should set bit 0x08
309 preamble_mask
= short_preamble
<< 3;
311 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
312 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, ack_timeout
);
313 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, ack_consume_time
);
314 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
316 rt2x00pci_register_read(rt2x00dev
, ARCSR2
, ®
);
317 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00 | preamble_mask
);
318 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
319 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 10));
320 rt2x00pci_register_write(rt2x00dev
, ARCSR2
, reg
);
322 rt2x00pci_register_read(rt2x00dev
, ARCSR3
, ®
);
323 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
324 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
325 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 20));
326 rt2x00pci_register_write(rt2x00dev
, ARCSR3
, reg
);
328 rt2x00pci_register_read(rt2x00dev
, ARCSR4
, ®
);
329 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
330 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
331 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 55));
332 rt2x00pci_register_write(rt2x00dev
, ARCSR4
, reg
);
334 rt2x00pci_register_read(rt2x00dev
, ARCSR5
, ®
);
335 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
336 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
337 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 110));
338 rt2x00pci_register_write(rt2x00dev
, ARCSR5
, reg
);
341 static void rt2500pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
342 const int basic_rate_mask
)
344 rt2x00pci_register_write(rt2x00dev
, ARCSR1
, basic_rate_mask
);
347 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
348 struct rf_channel
*rf
, const int txpower
)
355 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
358 * Switch on tuning bits.
359 * For RT2523 devices we do not need to update the R1 register.
361 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2523
))
362 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
363 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
366 * For RT2525 we should first set the channel to half band higher.
368 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
369 static const u32 vals
[] = {
370 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
371 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
372 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
373 0x00080d2e, 0x00080d3a
376 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
377 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
378 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
380 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
383 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
384 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
385 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
387 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
390 * Channel 14 requires the Japan filter bit to be set.
393 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
394 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
399 * Switch off tuning bits.
400 * For RT2523 devices we do not need to update the R1 register.
402 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
403 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
404 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
407 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
408 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
411 * Clear false CRC during channel switch.
413 rt2x00pci_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
416 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
421 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
422 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
423 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
426 static void rt2500pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
427 const int antenna_tx
, const int antenna_rx
)
433 rt2x00pci_register_read(rt2x00dev
, BBPCSR1
, ®
);
434 rt2500pci_bbp_read(rt2x00dev
, 14, &r14
);
435 rt2500pci_bbp_read(rt2x00dev
, 2, &r2
);
438 * Configure the TX antenna.
440 switch (antenna_tx
) {
441 case ANTENNA_SW_DIVERSITY
:
442 case ANTENNA_HW_DIVERSITY
:
443 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
444 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
445 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
448 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
449 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
450 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
453 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
454 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
455 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
460 * Configure the RX antenna.
462 switch (antenna_rx
) {
463 case ANTENNA_SW_DIVERSITY
:
464 case ANTENNA_HW_DIVERSITY
:
465 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
468 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
471 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
476 * RT2525E and RT5222 need to flip TX I/Q
478 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) ||
479 rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
480 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
481 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
482 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
485 * RT2525E does not need RX I/Q Flip.
487 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
))
488 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
490 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
491 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
494 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, reg
);
495 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
496 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
499 static void rt2500pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
500 struct rt2x00lib_conf
*libconf
)
504 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
505 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, libconf
->slot_time
);
506 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
508 rt2x00pci_register_read(rt2x00dev
, CSR18
, ®
);
509 rt2x00_set_field32(®
, CSR18_SIFS
, libconf
->sifs
);
510 rt2x00_set_field32(®
, CSR18_PIFS
, libconf
->pifs
);
511 rt2x00pci_register_write(rt2x00dev
, CSR18
, reg
);
513 rt2x00pci_register_read(rt2x00dev
, CSR19
, ®
);
514 rt2x00_set_field32(®
, CSR19_DIFS
, libconf
->difs
);
515 rt2x00_set_field32(®
, CSR19_EIFS
, libconf
->eifs
);
516 rt2x00pci_register_write(rt2x00dev
, CSR19
, reg
);
518 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
519 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
520 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
521 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
523 rt2x00pci_register_read(rt2x00dev
, CSR12
, ®
);
524 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
525 libconf
->conf
->beacon_int
* 16);
526 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
527 libconf
->conf
->beacon_int
* 16);
528 rt2x00pci_register_write(rt2x00dev
, CSR12
, reg
);
531 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
532 const unsigned int flags
,
533 struct rt2x00lib_conf
*libconf
)
535 if (flags
& CONFIG_UPDATE_PHYMODE
)
536 rt2500pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
537 if (flags
& CONFIG_UPDATE_CHANNEL
)
538 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
539 libconf
->conf
->power_level
);
540 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
541 rt2500pci_config_txpower(rt2x00dev
,
542 libconf
->conf
->power_level
);
543 if (flags
& CONFIG_UPDATE_ANTENNA
)
544 rt2500pci_config_antenna(rt2x00dev
,
545 libconf
->conf
->antenna_sel_tx
,
546 libconf
->conf
->antenna_sel_rx
);
547 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
548 rt2500pci_config_duration(rt2x00dev
, libconf
);
554 static void rt2500pci_enable_led(struct rt2x00_dev
*rt2x00dev
)
558 rt2x00pci_register_read(rt2x00dev
, LEDCSR
, ®
);
560 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, 70);
561 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, 30);
563 if (rt2x00dev
->led_mode
== LED_MODE_TXRX_ACTIVITY
) {
564 rt2x00_set_field32(®
, LEDCSR_LINK
, 1);
565 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, 0);
566 } else if (rt2x00dev
->led_mode
== LED_MODE_ASUS
) {
567 rt2x00_set_field32(®
, LEDCSR_LINK
, 0);
568 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, 1);
570 rt2x00_set_field32(®
, LEDCSR_LINK
, 1);
571 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, 1);
574 rt2x00pci_register_write(rt2x00dev
, LEDCSR
, reg
);
577 static void rt2500pci_disable_led(struct rt2x00_dev
*rt2x00dev
)
581 rt2x00pci_register_read(rt2x00dev
, LEDCSR
, ®
);
582 rt2x00_set_field32(®
, LEDCSR_LINK
, 0);
583 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, 0);
584 rt2x00pci_register_write(rt2x00dev
, LEDCSR
, reg
);
590 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
)
595 * Update FCS error count from register.
597 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
598 rt2x00dev
->link
.rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
601 * Update False CCA count from register.
603 rt2x00pci_register_read(rt2x00dev
, CNT3
, ®
);
604 rt2x00dev
->link
.false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
607 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
609 rt2500pci_bbp_write(rt2x00dev
, 17, 0x48);
610 rt2x00dev
->link
.vgc_level
= 0x48;
613 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
615 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
619 * To prevent collisions with MAC ASIC on chipsets
620 * up to version C the link tuning should halt after 20
623 if (rt2x00_rev(&rt2x00dev
->chip
) < RT2560_VERSION_D
&&
624 rt2x00dev
->link
.count
> 20)
627 rt2500pci_bbp_read(rt2x00dev
, 17, &r17
);
630 * Chipset versions C and lower should directly continue
631 * to the dynamic CCA tuning.
633 if (rt2x00_rev(&rt2x00dev
->chip
) < RT2560_VERSION_D
)
634 goto dynamic_cca_tune
;
637 * A too low RSSI will cause too much false CCA which will
638 * then corrupt the R17 tuning. To remidy this the tuning should
639 * be stopped (While making sure the R17 value will not exceed limits)
641 if (rssi
< -80 && rt2x00dev
->link
.count
> 20) {
643 r17
= rt2x00dev
->link
.vgc_level
;
644 rt2500pci_bbp_write(rt2x00dev
, 17, r17
);
650 * Special big-R17 for short distance
654 rt2500pci_bbp_write(rt2x00dev
, 17, 0x50);
659 * Special mid-R17 for middle distance
663 rt2500pci_bbp_write(rt2x00dev
, 17, 0x41);
668 * Leave short or middle distance condition, restore r17
669 * to the dynamic tuning range.
672 rt2500pci_bbp_write(rt2x00dev
, 17, rt2x00dev
->link
.vgc_level
);
679 * R17 is inside the dynamic tuning range,
680 * start tuning the link based on the false cca counter.
682 if (rt2x00dev
->link
.false_cca
> 512 && r17
< 0x40) {
683 rt2500pci_bbp_write(rt2x00dev
, 17, ++r17
);
684 rt2x00dev
->link
.vgc_level
= r17
;
685 } else if (rt2x00dev
->link
.false_cca
< 100 && r17
> 0x32) {
686 rt2500pci_bbp_write(rt2x00dev
, 17, --r17
);
687 rt2x00dev
->link
.vgc_level
= r17
;
692 * Initialization functions.
694 static void rt2500pci_init_rxring(struct rt2x00_dev
*rt2x00dev
)
696 struct data_ring
*ring
= rt2x00dev
->rx
;
697 struct data_desc
*rxd
;
701 memset(ring
->data_addr
, 0x00, rt2x00_get_ring_size(ring
));
703 for (i
= 0; i
< ring
->stats
.limit
; i
++) {
704 rxd
= ring
->entry
[i
].priv
;
706 rt2x00_desc_read(rxd
, 1, &word
);
707 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
,
708 ring
->entry
[i
].data_dma
);
709 rt2x00_desc_write(rxd
, 1, word
);
711 rt2x00_desc_read(rxd
, 0, &word
);
712 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
713 rt2x00_desc_write(rxd
, 0, word
);
716 rt2x00_ring_index_clear(rt2x00dev
->rx
);
719 static void rt2500pci_init_txring(struct rt2x00_dev
*rt2x00dev
, const int queue
)
721 struct data_ring
*ring
= rt2x00lib_get_ring(rt2x00dev
, queue
);
722 struct data_desc
*txd
;
726 memset(ring
->data_addr
, 0x00, rt2x00_get_ring_size(ring
));
728 for (i
= 0; i
< ring
->stats
.limit
; i
++) {
729 txd
= ring
->entry
[i
].priv
;
731 rt2x00_desc_read(txd
, 1, &word
);
732 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
,
733 ring
->entry
[i
].data_dma
);
734 rt2x00_desc_write(txd
, 1, word
);
736 rt2x00_desc_read(txd
, 0, &word
);
737 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
738 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
739 rt2x00_desc_write(txd
, 0, word
);
742 rt2x00_ring_index_clear(ring
);
745 static int rt2500pci_init_rings(struct rt2x00_dev
*rt2x00dev
)
752 rt2500pci_init_rxring(rt2x00dev
);
753 rt2500pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA0
);
754 rt2500pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA1
);
755 rt2500pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_AFTER_BEACON
);
756 rt2500pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_BEACON
);
759 * Initialize registers.
761 rt2x00pci_register_read(rt2x00dev
, TXCSR2
, ®
);
762 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
,
763 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].desc_size
);
764 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
,
765 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].stats
.limit
);
766 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
,
767 rt2x00dev
->bcn
[1].stats
.limit
);
768 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
,
769 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].stats
.limit
);
770 rt2x00pci_register_write(rt2x00dev
, TXCSR2
, reg
);
772 rt2x00pci_register_read(rt2x00dev
, TXCSR3
, ®
);
773 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
774 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].data_dma
);
775 rt2x00pci_register_write(rt2x00dev
, TXCSR3
, reg
);
777 rt2x00pci_register_read(rt2x00dev
, TXCSR5
, ®
);
778 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
779 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].data_dma
);
780 rt2x00pci_register_write(rt2x00dev
, TXCSR5
, reg
);
782 rt2x00pci_register_read(rt2x00dev
, TXCSR4
, ®
);
783 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
784 rt2x00dev
->bcn
[1].data_dma
);
785 rt2x00pci_register_write(rt2x00dev
, TXCSR4
, reg
);
787 rt2x00pci_register_read(rt2x00dev
, TXCSR6
, ®
);
788 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
789 rt2x00dev
->bcn
[0].data_dma
);
790 rt2x00pci_register_write(rt2x00dev
, TXCSR6
, reg
);
792 rt2x00pci_register_read(rt2x00dev
, RXCSR1
, ®
);
793 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
794 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->stats
.limit
);
795 rt2x00pci_register_write(rt2x00dev
, RXCSR1
, reg
);
797 rt2x00pci_register_read(rt2x00dev
, RXCSR2
, ®
);
798 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
799 rt2x00dev
->rx
->data_dma
);
800 rt2x00pci_register_write(rt2x00dev
, RXCSR2
, reg
);
805 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
809 rt2x00pci_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
810 rt2x00pci_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
811 rt2x00pci_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
812 rt2x00pci_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
814 rt2x00pci_register_read(rt2x00dev
, TIMECSR
, ®
);
815 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
816 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
817 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
818 rt2x00pci_register_write(rt2x00dev
, TIMECSR
, reg
);
820 rt2x00pci_register_read(rt2x00dev
, CSR9
, ®
);
821 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
822 rt2x00dev
->rx
->data_size
/ 128);
823 rt2x00pci_register_write(rt2x00dev
, CSR9
, reg
);
826 * Always use CWmin and CWmax set in descriptor.
828 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
829 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
830 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
832 rt2x00pci_register_write(rt2x00dev
, CNT3
, 0);
834 rt2x00pci_register_read(rt2x00dev
, TXCSR8
, ®
);
835 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
836 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
837 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
838 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
839 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
840 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
841 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
842 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
843 rt2x00pci_register_write(rt2x00dev
, TXCSR8
, reg
);
845 rt2x00pci_register_read(rt2x00dev
, ARTCSR0
, ®
);
846 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
847 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
848 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
849 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
850 rt2x00pci_register_write(rt2x00dev
, ARTCSR0
, reg
);
852 rt2x00pci_register_read(rt2x00dev
, ARTCSR1
, ®
);
853 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
854 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
855 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
856 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
857 rt2x00pci_register_write(rt2x00dev
, ARTCSR1
, reg
);
859 rt2x00pci_register_read(rt2x00dev
, ARTCSR2
, ®
);
860 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
861 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
862 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
863 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
864 rt2x00pci_register_write(rt2x00dev
, ARTCSR2
, reg
);
866 rt2x00pci_register_read(rt2x00dev
, RXCSR3
, ®
);
867 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
868 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
869 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
870 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
871 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
872 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
873 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
874 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
875 rt2x00pci_register_write(rt2x00dev
, RXCSR3
, reg
);
877 rt2x00pci_register_read(rt2x00dev
, PCICSR
, ®
);
878 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
879 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
880 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
881 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
882 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
883 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
884 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
885 rt2x00pci_register_write(rt2x00dev
, PCICSR
, reg
);
887 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
889 rt2x00pci_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
890 rt2x00pci_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
892 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
895 rt2x00pci_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
896 rt2x00pci_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
898 rt2x00pci_register_read(rt2x00dev
, MACCSR2
, ®
);
899 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
900 rt2x00pci_register_write(rt2x00dev
, MACCSR2
, reg
);
902 rt2x00pci_register_read(rt2x00dev
, RALINKCSR
, ®
);
903 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
904 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
905 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
906 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
907 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
908 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
909 rt2x00pci_register_write(rt2x00dev
, RALINKCSR
, reg
);
911 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
913 rt2x00pci_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
915 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
916 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
917 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
918 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
919 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
921 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
922 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
923 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
924 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
927 * We must clear the FCS and FIFO error count.
928 * These registers are cleared on read,
929 * so we may pass a useless variable to store the value.
931 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
932 rt2x00pci_register_read(rt2x00dev
, CNT4
, ®
);
937 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
944 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
945 rt2500pci_bbp_read(rt2x00dev
, 0, &value
);
946 if ((value
!= 0xff) && (value
!= 0x00))
947 goto continue_csr_init
;
948 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
949 udelay(REGISTER_BUSY_DELAY
);
952 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
956 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
957 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
958 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
959 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
960 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
961 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
962 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
963 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
964 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
965 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
966 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
967 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
968 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
969 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
970 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
971 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
972 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
973 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
974 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
975 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
976 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
977 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
978 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
979 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
980 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
981 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
982 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
983 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
984 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
985 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
987 DEBUG(rt2x00dev
, "Start initialization from EEPROM...\n");
988 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
989 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
991 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
992 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
993 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
994 DEBUG(rt2x00dev
, "BBP: 0x%02x, value: 0x%02x.\n",
996 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
999 DEBUG(rt2x00dev
, "...End initialization from EEPROM.\n");
1005 * Device state switch handlers.
1007 static void rt2500pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1008 enum dev_state state
)
1012 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
1013 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
,
1014 state
== STATE_RADIO_RX_OFF
);
1015 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
1018 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1019 enum dev_state state
)
1021 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1025 * When interrupts are being enabled, the interrupt registers
1026 * should clear the register to assure a clean state.
1028 if (state
== STATE_RADIO_IRQ_ON
) {
1029 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1030 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1034 * Only toggle the interrupts bits we are going to use.
1035 * Non-checked interrupt bits are disabled by default.
1037 rt2x00pci_register_read(rt2x00dev
, CSR8
, ®
);
1038 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1039 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1040 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1041 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1042 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1043 rt2x00pci_register_write(rt2x00dev
, CSR8
, reg
);
1046 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1049 * Initialize all registers.
1051 if (rt2500pci_init_rings(rt2x00dev
) ||
1052 rt2500pci_init_registers(rt2x00dev
) ||
1053 rt2500pci_init_bbp(rt2x00dev
)) {
1054 ERROR(rt2x00dev
, "Register initialization failed.\n");
1059 * Enable interrupts.
1061 rt2500pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_ON
);
1066 rt2500pci_enable_led(rt2x00dev
);
1071 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1078 rt2500pci_disable_led(rt2x00dev
);
1080 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0);
1083 * Disable synchronisation.
1085 rt2x00pci_register_write(rt2x00dev
, CSR14
, 0);
1090 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1091 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
1092 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1095 * Disable interrupts.
1097 rt2500pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
1100 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1101 enum dev_state state
)
1109 put_to_sleep
= (state
!= STATE_AWAKE
);
1111 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1112 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1113 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1114 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1115 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1116 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
1119 * Device is not guaranteed to be in the requested state yet.
1120 * We must wait until the register indicates that the
1121 * device has entered the correct state.
1123 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1124 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1125 bbp_state
= rt2x00_get_field32(reg
, PWRCSR1_BBP_CURR_STATE
);
1126 rf_state
= rt2x00_get_field32(reg
, PWRCSR1_RF_CURR_STATE
);
1127 if (bbp_state
== state
&& rf_state
== state
)
1132 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
1133 "current device state: bbp %d and rf %d.\n",
1134 state
, bbp_state
, rf_state
);
1139 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1140 enum dev_state state
)
1145 case STATE_RADIO_ON
:
1146 retval
= rt2500pci_enable_radio(rt2x00dev
);
1148 case STATE_RADIO_OFF
:
1149 rt2500pci_disable_radio(rt2x00dev
);
1151 case STATE_RADIO_RX_ON
:
1152 case STATE_RADIO_RX_OFF
:
1153 rt2500pci_toggle_rx(rt2x00dev
, state
);
1155 case STATE_DEEP_SLEEP
:
1159 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1170 * TX descriptor initialization
1172 static void rt2500pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1173 struct data_desc
*txd
,
1174 struct txdata_entry_desc
*desc
,
1175 struct ieee80211_hdr
*ieee80211hdr
,
1176 unsigned int length
,
1177 struct ieee80211_tx_control
*control
)
1182 * Start writing the descriptor words.
1184 rt2x00_desc_read(txd
, 2, &word
);
1185 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1186 rt2x00_set_field32(&word
, TXD_W2_AIFS
, desc
->aifs
);
1187 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, desc
->cw_min
);
1188 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, desc
->cw_max
);
1189 rt2x00_desc_write(txd
, 2, word
);
1191 rt2x00_desc_read(txd
, 3, &word
);
1192 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, desc
->signal
);
1193 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, desc
->service
);
1194 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
, desc
->length_low
);
1195 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
, desc
->length_high
);
1196 rt2x00_desc_write(txd
, 3, word
);
1198 rt2x00_desc_read(txd
, 10, &word
);
1199 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1200 test_bit(ENTRY_TXD_RTS_FRAME
, &desc
->flags
));
1201 rt2x00_desc_write(txd
, 10, word
);
1203 rt2x00_desc_read(txd
, 0, &word
);
1204 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1205 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1206 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1207 test_bit(ENTRY_TXD_MORE_FRAG
, &desc
->flags
));
1208 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1209 !(control
->flags
& IEEE80211_TXCTL_NO_ACK
));
1210 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1211 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &desc
->flags
));
1212 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1213 test_bit(ENTRY_TXD_OFDM_RATE
, &desc
->flags
));
1214 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1215 rt2x00_set_field32(&word
, TXD_W0_IFS
, desc
->ifs
);
1216 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1218 IEEE80211_TXCTL_LONG_RETRY_LIMIT
));
1219 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, length
);
1220 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1221 rt2x00_desc_write(txd
, 0, word
);
1225 * TX data initialization
1227 static void rt2500pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1232 if (queue
== IEEE80211_TX_QUEUE_BEACON
) {
1233 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1234 if (!rt2x00_get_field32(reg
, CSR14_BEACON_GEN
)) {
1235 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1236 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1241 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1242 if (queue
== IEEE80211_TX_QUEUE_DATA0
)
1243 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
1244 else if (queue
== IEEE80211_TX_QUEUE_DATA1
)
1245 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
1246 else if (queue
== IEEE80211_TX_QUEUE_AFTER_BEACON
)
1247 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
1248 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1252 * RX control handlers
1254 static void rt2500pci_fill_rxdone(struct data_entry
*entry
,
1255 struct rxdata_entry_desc
*desc
)
1257 struct data_desc
*rxd
= entry
->priv
;
1261 rt2x00_desc_read(rxd
, 0, &word0
);
1262 rt2x00_desc_read(rxd
, 2, &word2
);
1265 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1266 desc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1267 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1268 desc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1270 desc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1271 desc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1272 entry
->ring
->rt2x00dev
->rssi_offset
;
1273 desc
->ofdm
= rt2x00_get_field32(word0
, RXD_W0_OFDM
);
1274 desc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1278 * Interrupt functions.
1280 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
, const int queue
)
1282 struct data_ring
*ring
= rt2x00lib_get_ring(rt2x00dev
, queue
);
1283 struct data_entry
*entry
;
1284 struct data_desc
*txd
;
1289 while (!rt2x00_ring_empty(ring
)) {
1290 entry
= rt2x00_get_data_entry_done(ring
);
1292 rt2x00_desc_read(txd
, 0, &word
);
1294 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1295 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1299 * Obtain the status about this packet.
1301 tx_status
= rt2x00_get_field32(word
, TXD_W0_RESULT
);
1302 retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1304 rt2x00lib_txdone(entry
, tx_status
, retry
);
1307 * Make this entry available for reuse.
1310 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1311 rt2x00_desc_write(txd
, 0, word
);
1312 rt2x00_ring_index_done_inc(ring
);
1316 * If the data ring was full before the txdone handler
1317 * we must make sure the packet queue in the mac80211 stack
1318 * is reenabled when the txdone handler has finished.
1320 entry
= ring
->entry
;
1321 if (!rt2x00_ring_full(ring
))
1322 ieee80211_wake_queue(rt2x00dev
->hw
,
1323 entry
->tx_status
.control
.queue
);
1326 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1328 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1332 * Get the interrupt sources & saved to local variable.
1333 * Write register value back to clear pending interrupts.
1335 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1336 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1341 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1345 * Handle interrupts, walk through all bits
1346 * and run the tasks, the bits are checked in order of
1351 * 1 - Beacon timer expired interrupt.
1353 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1354 rt2x00lib_beacondone(rt2x00dev
);
1357 * 2 - Rx ring done interrupt.
1359 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1360 rt2x00pci_rxdone(rt2x00dev
);
1363 * 3 - Atim ring transmit done interrupt.
1365 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
))
1366 rt2500pci_txdone(rt2x00dev
, IEEE80211_TX_QUEUE_AFTER_BEACON
);
1369 * 4 - Priority ring transmit done interrupt.
1371 if (rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
))
1372 rt2500pci_txdone(rt2x00dev
, IEEE80211_TX_QUEUE_DATA0
);
1375 * 5 - Tx ring transmit done interrupt.
1377 if (rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
))
1378 rt2500pci_txdone(rt2x00dev
, IEEE80211_TX_QUEUE_DATA1
);
1384 * Device probe functions.
1386 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1388 struct eeprom_93cx6 eeprom
;
1393 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
1395 eeprom
.data
= rt2x00dev
;
1396 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1397 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1398 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1399 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1400 eeprom
.reg_data_in
= 0;
1401 eeprom
.reg_data_out
= 0;
1402 eeprom
.reg_data_clock
= 0;
1403 eeprom
.reg_chip_select
= 0;
1405 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1406 EEPROM_SIZE
/ sizeof(u16
));
1409 * Start validation of the data that has been read.
1411 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1412 if (!is_valid_ether_addr(mac
)) {
1413 DECLARE_MAC_BUF(macbuf
);
1415 random_ether_addr(mac
);
1416 EEPROM(rt2x00dev
, "MAC: %s\n",
1417 print_mac(macbuf
, mac
));
1420 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1421 if (word
== 0xffff) {
1422 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1423 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
, 0);
1424 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
, 0);
1425 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
, 0);
1426 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1427 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1428 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1429 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1430 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1433 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1434 if (word
== 0xffff) {
1435 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1436 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1437 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1438 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1439 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1442 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1443 if (word
== 0xffff) {
1444 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1445 DEFAULT_RSSI_OFFSET
);
1446 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1447 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1453 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1460 * Read EEPROM word for configuration.
1462 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1465 * Identify RF chipset.
1467 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1468 rt2x00pci_register_read(rt2x00dev
, CSR0
, ®
);
1469 rt2x00_set_chip(rt2x00dev
, RT2560
, value
, reg
);
1471 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2522
) &&
1472 !rt2x00_rf(&rt2x00dev
->chip
, RF2523
) &&
1473 !rt2x00_rf(&rt2x00dev
->chip
, RF2524
) &&
1474 !rt2x00_rf(&rt2x00dev
->chip
, RF2525
) &&
1475 !rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) &&
1476 !rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1477 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1482 * Identify default antenna configuration.
1484 rt2x00dev
->hw
->conf
.antenna_sel_tx
=
1485 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1486 rt2x00dev
->hw
->conf
.antenna_sel_rx
=
1487 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1490 * Store led mode, for correct led behaviour.
1492 rt2x00dev
->led_mode
=
1493 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1496 * Detect if this device has an hardware controlled radio.
1498 #ifdef CONFIG_RT2500PCI_RFKILL
1499 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1500 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1501 #endif /* CONFIG_RT2500PCI_RFKILL */
1504 * Check if the BBP tuning should be enabled.
1506 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1508 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1509 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1512 * Read the RSSI <-> dBm offset information.
1514 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1515 rt2x00dev
->rssi_offset
=
1516 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1522 * RF value list for RF2522
1525 static const struct rf_channel rf_vals_bg_2522
[] = {
1526 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1527 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1528 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1529 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1530 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1531 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1532 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1533 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1534 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1535 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1536 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1537 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1538 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1539 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1543 * RF value list for RF2523
1546 static const struct rf_channel rf_vals_bg_2523
[] = {
1547 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1548 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1549 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1550 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1551 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1552 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1553 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1554 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1555 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1556 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1557 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1558 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1559 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1560 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1564 * RF value list for RF2524
1567 static const struct rf_channel rf_vals_bg_2524
[] = {
1568 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1569 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1570 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1571 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1572 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1573 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1574 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1575 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1576 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1577 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1578 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1579 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1580 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1581 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1585 * RF value list for RF2525
1588 static const struct rf_channel rf_vals_bg_2525
[] = {
1589 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1590 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1591 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1592 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1593 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1594 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1595 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1596 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1597 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1598 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1599 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1600 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1601 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1602 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1606 * RF value list for RF2525e
1609 static const struct rf_channel rf_vals_bg_2525e
[] = {
1610 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1611 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1612 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1613 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1614 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1615 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1616 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1617 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1618 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1619 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1620 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1621 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1622 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1623 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1627 * RF value list for RF5222
1628 * Supports: 2.4 GHz & 5.2 GHz
1630 static const struct rf_channel rf_vals_5222
[] = {
1631 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1632 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1633 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1634 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1635 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1636 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1637 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1638 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1639 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1640 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1641 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1642 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1643 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1644 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1646 /* 802.11 UNI / HyperLan 2 */
1647 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1648 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1649 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1650 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1651 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1652 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1653 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1654 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1656 /* 802.11 HyperLan 2 */
1657 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1658 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1659 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1660 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1661 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1662 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1663 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1664 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1665 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1666 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1669 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1670 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1671 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1672 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1673 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1676 static void rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1678 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1683 * Initialize all hw fields.
1685 rt2x00dev
->hw
->flags
= IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
1686 rt2x00dev
->hw
->extra_tx_headroom
= 0;
1687 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
1688 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
1689 rt2x00dev
->hw
->queues
= 2;
1691 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_pci(rt2x00dev
)->dev
);
1692 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1693 rt2x00_eeprom_addr(rt2x00dev
,
1694 EEPROM_MAC_ADDR_0
));
1697 * Convert tx_power array in eeprom.
1699 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1700 for (i
= 0; i
< 14; i
++)
1701 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
1704 * Initialize hw_mode information.
1706 spec
->num_modes
= 2;
1707 spec
->num_rates
= 12;
1708 spec
->tx_power_a
= NULL
;
1709 spec
->tx_power_bg
= txpower
;
1710 spec
->tx_power_default
= DEFAULT_TXPOWER
;
1712 if (rt2x00_rf(&rt2x00dev
->chip
, RF2522
)) {
1713 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1714 spec
->channels
= rf_vals_bg_2522
;
1715 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
1716 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1717 spec
->channels
= rf_vals_bg_2523
;
1718 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2524
)) {
1719 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1720 spec
->channels
= rf_vals_bg_2524
;
1721 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
1722 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1723 spec
->channels
= rf_vals_bg_2525
;
1724 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
1725 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1726 spec
->channels
= rf_vals_bg_2525e
;
1727 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1728 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1729 spec
->channels
= rf_vals_5222
;
1730 spec
->num_modes
= 3;
1734 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1739 * Allocate eeprom data.
1741 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1745 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1750 * Initialize hw specifications.
1752 rt2500pci_probe_hw_mode(rt2x00dev
);
1755 * This device requires the beacon ring
1757 __set_bit(DRIVER_REQUIRE_BEACON_RING
, &rt2x00dev
->flags
);
1760 * Set the rssi offset.
1762 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1768 * IEEE80211 stack callback functions.
1770 static void rt2500pci_configure_filter(struct ieee80211_hw
*hw
,
1771 unsigned int changed_flags
,
1772 unsigned int *total_flags
,
1774 struct dev_addr_list
*mc_list
)
1776 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1777 struct interface
*intf
= &rt2x00dev
->interface
;
1781 * Mask off any flags we are going to ignore from
1782 * the total_flags field.
1793 * Apply some rules to the filters:
1794 * - Some filters imply different filters to be set.
1795 * - Some things we can't filter out at all.
1796 * - Some filters are set based on interface type.
1799 *total_flags
|= FIF_ALLMULTI
;
1800 if (*total_flags
& FIF_OTHER_BSS
||
1801 *total_flags
& FIF_PROMISC_IN_BSS
)
1802 *total_flags
|= FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
;
1803 if (is_interface_type(intf
, IEEE80211_IF_TYPE_AP
))
1804 *total_flags
|= FIF_PROMISC_IN_BSS
;
1807 * Check if there is any work left for us.
1809 if (intf
->filter
== *total_flags
)
1811 intf
->filter
= *total_flags
;
1814 * Start configuration steps.
1815 * Note that the version error will always be dropped
1816 * and broadcast frames will always be accepted since
1817 * there is no filter for it at this time.
1819 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
1820 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
1821 !(*total_flags
& FIF_FCSFAIL
));
1822 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
1823 !(*total_flags
& FIF_PLCPFAIL
));
1824 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
1825 !(*total_flags
& FIF_CONTROL
));
1826 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
1827 !(*total_flags
& FIF_PROMISC_IN_BSS
));
1828 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
1829 !(*total_flags
& FIF_PROMISC_IN_BSS
));
1830 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
1831 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
1832 !(*total_flags
& FIF_ALLMULTI
));
1833 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
1834 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
1837 static int rt2500pci_set_retry_limit(struct ieee80211_hw
*hw
,
1838 u32 short_retry
, u32 long_retry
)
1840 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1843 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
1844 rt2x00_set_field32(®
, CSR11_LONG_RETRY
, long_retry
);
1845 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
, short_retry
);
1846 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
1851 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
)
1853 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1857 rt2x00pci_register_read(rt2x00dev
, CSR17
, ®
);
1858 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1859 rt2x00pci_register_read(rt2x00dev
, CSR16
, ®
);
1860 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1865 static void rt2500pci_reset_tsf(struct ieee80211_hw
*hw
)
1867 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1869 rt2x00pci_register_write(rt2x00dev
, CSR16
, 0);
1870 rt2x00pci_register_write(rt2x00dev
, CSR17
, 0);
1873 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1875 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1878 rt2x00pci_register_read(rt2x00dev
, CSR15
, ®
);
1879 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1882 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
1884 .start
= rt2x00mac_start
,
1885 .stop
= rt2x00mac_stop
,
1886 .add_interface
= rt2x00mac_add_interface
,
1887 .remove_interface
= rt2x00mac_remove_interface
,
1888 .config
= rt2x00mac_config
,
1889 .config_interface
= rt2x00mac_config_interface
,
1890 .configure_filter
= rt2500pci_configure_filter
,
1891 .get_stats
= rt2x00mac_get_stats
,
1892 .set_retry_limit
= rt2500pci_set_retry_limit
,
1893 .erp_ie_changed
= rt2x00mac_erp_ie_changed
,
1894 .conf_tx
= rt2x00mac_conf_tx
,
1895 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1896 .get_tsf
= rt2500pci_get_tsf
,
1897 .reset_tsf
= rt2500pci_reset_tsf
,
1898 .beacon_update
= rt2x00pci_beacon_update
,
1899 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
1902 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
1903 .irq_handler
= rt2500pci_interrupt
,
1904 .probe_hw
= rt2500pci_probe_hw
,
1905 .initialize
= rt2x00pci_initialize
,
1906 .uninitialize
= rt2x00pci_uninitialize
,
1907 .set_device_state
= rt2500pci_set_device_state
,
1908 .rfkill_poll
= rt2500pci_rfkill_poll
,
1909 .link_stats
= rt2500pci_link_stats
,
1910 .reset_tuner
= rt2500pci_reset_tuner
,
1911 .link_tuner
= rt2500pci_link_tuner
,
1912 .write_tx_desc
= rt2500pci_write_tx_desc
,
1913 .write_tx_data
= rt2x00pci_write_tx_data
,
1914 .kick_tx_queue
= rt2500pci_kick_tx_queue
,
1915 .fill_rxdone
= rt2500pci_fill_rxdone
,
1916 .config_mac_addr
= rt2500pci_config_mac_addr
,
1917 .config_bssid
= rt2500pci_config_bssid
,
1918 .config_type
= rt2500pci_config_type
,
1919 .config_preamble
= rt2500pci_config_preamble
,
1920 .config
= rt2500pci_config
,
1923 static const struct rt2x00_ops rt2500pci_ops
= {
1925 .rxd_size
= RXD_DESC_SIZE
,
1926 .txd_size
= TXD_DESC_SIZE
,
1927 .eeprom_size
= EEPROM_SIZE
,
1929 .lib
= &rt2500pci_rt2x00_ops
,
1930 .hw
= &rt2500pci_mac80211_ops
,
1931 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1932 .debugfs
= &rt2500pci_rt2x00debug
,
1933 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1937 * RT2500pci module information.
1939 static struct pci_device_id rt2500pci_device_table
[] = {
1940 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops
) },
1944 MODULE_AUTHOR(DRV_PROJECT
);
1945 MODULE_VERSION(DRV_VERSION
);
1946 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1947 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1948 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
1949 MODULE_LICENSE("GPL");
1951 static struct pci_driver rt2500pci_driver
= {
1953 .id_table
= rt2500pci_device_table
,
1954 .probe
= rt2x00pci_probe
,
1955 .remove
= __devexit_p(rt2x00pci_remove
),
1956 .suspend
= rt2x00pci_suspend
,
1957 .resume
= rt2x00pci_resume
,
1960 static int __init
rt2500pci_init(void)
1962 return pci_register_driver(&rt2500pci_driver
);
1965 static void __exit
rt2500pci_exit(void)
1967 pci_unregister_driver(&rt2500pci_driver
);
1970 module_init(rt2500pci_init
);
1971 module_exit(rt2500pci_exit
);