1 <?xml version=
"1.0" encoding=
"iso-8859-1"?>
2 <!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
5 <html xmlns=
"http://www.w3.org/1999/xhtml">
7 <title>OpenWrt Buildroot - Usage and documentation
</title>
8 <meta http-equiv=
"Content-Type" content=
"text/html; charset=iso-8859-1" />
9 <link rel=
"stylesheet" type=
"text/css" href=
"stylesheet.css" />
15 <h1>OpenWrt Buildroot
</h1>
18 <p>Usage and documentation by Felix Fietkau, based on uClibc Buildroot
19 documentation by Thomas Petazzoni. Contributions from Karsten Kruse,
20 Ned Ludd, Martin Herren.
</p>
22 <p><small>Last modification : $Id$
</small></p>
25 <li><a href=
"#about">About OpenWrt Buildroot
</a></li>
26 <li><a href=
"#download">Obtaining OpenWrt Buildroot
</a></li>
27 <li><a href=
"#using">Using OpenWrt Buildroot
</a></li>
28 <li><a href=
"#custom_targetfs">Customizing the target filesystem
</a></li>
29 <li><a href=
"#custom_busybox">Customizing the Busybox
30 configuration
</a></li>
31 <li><a href=
"#custom_uclibc">Customizing the uClibc
32 configuration
</a></li>
33 <li><a href=
"#buildroot_innards">How OpenWrt Buildroot works
</a></li>
34 <li><a href=
"#using_toolchain">Using the uClibc toolchain
</a></li>
35 <li><a href=
"#toolchain_standalone">Using the uClibc toolchain
36 outside of Buildroot
</a></li>
37 <li><a href=
"#downloaded_packages">Location of downloaded packages
</a></li>
38 <li><a href=
"#add_software">Extending OpenWrt with more Software
</a></li>
39 <li><a href=
"#links">Ressources
</a></li>
42 <h2><a name=
"about" id=
"about"></a>About OpenWrt Buildroot
</h2>
44 <p>OpenWrt Buildroot is a set of Makefiles and patches that allows to easily
45 generate both a cross-compilation toolchain and a root filesystem for your
46 Wireless Router. The cross-compilation toolchain uses uClibc (
<a href=
47 "http://www.uclibc.org/">http://www.uclibc.org/
</a>), a tiny C standard
50 <p>A compilation toolchain is the set of tools that allows to
51 compile code for your system. It consists of a compiler (in our
52 case,
<code>gcc
</code>), binary utils like assembler and linker
53 (in our case,
<code>binutils
</code>) and a C standard library (for
54 example
<a href=
"http://www.gnu.org/software/libc/libc.html">GNU
55 Libc
</a>,
<a href=
"http://www.uclibc.org">uClibc
</a> or
<a
56 href=
"http://www.fefe.de/dietlibc/">dietlibc
</a>). The system
57 installed on your development station certainly already has a
58 compilation toolchain that you can use to compile application that
59 runs on your system. If you're using a PC, your compilation
60 toolchain runs on an x86 processor and generates code for a x86
61 processor. Under most Linux systems, the compilation toolchain
62 uses the GNU libc as C standard library. This compilation
63 toolchain is called the
"host compilation toolchain", and more
64 generally, the machine on which it is running, and on which you're
65 working is called the
"host system". The compilation toolchain is
66 provided by your distribution, and OpenWrt Buildroot has nothing to do
69 <p>As said above, the compilation toolchain that comes with your system
70 runs and generates code for the processor of your host system. As your
71 embedded system has a different processor, you need a cross-compilation
72 toolchain: it's a compilation toolchain that runs on your host system but
73 that generates code for your target system (and target processor). For
74 example, if your host system uses x86 and your target system uses MIPS, the
75 regular compilation toolchain of your host runs on x86 and generates code
76 for x86, while the cross-compilation toolchain runs on x86 and generates
79 <p>You might wonder why such a tool is needed when you can compile
80 <code>gcc
</code>,
<code>binutils
</code>, uClibc and all the tools by hand.
81 Of course, doing so is possible. But dealing with all configure options,
82 with all problems of every
<code>gcc
</code> or
<code>binutils
</code>
83 version it very time-consuming and uninteresting. OpenWrt Buildroot automates this
84 process through the use of Makefiles, and has a collection of patches for
85 each
<code>gcc
</code> and
<code>binutils
</code> version to make them work
86 on the MIPS architecture of most Broadcom based Wireless Routers.
</p>
88 <h2><a name=
"download" id=
"download"></a>Obtaining OpenWrt Buildroot
</h2>
90 <p>OpenWrt Buildroot is currently available as experimental snapshots
</p>
92 <p>The latest snapshot is always available at
<a
93 href=
"http://openwrt.org/downloads/experimental/">http://openwrt.org/downloads/experimental/
</a>,
95 <h2><a name=
"using" id=
"using"></a>Using OpenWrt Buildroot
</h2>
97 <p>OpenWrt Buildroot has a nice configuration tool similar to the one you can find
98 in the Linux Kernel (
<a href=
"http://www.kernel.org/">http://www.kernel.org/
</a>)
99 or in Busybox (
<a href=
"http://www.busybox.org/">http://www.busybox.org/
</a>).
100 Note that you can run everything as a normal user. There is no need to be root to
101 configure and use the Buildroot. The first step is to run the configuration
108 <p>For each entry of the configuration tool, you can find associated help
109 that describes the purpose of the entry.
</p>
111 <p>Once everything is configured, the configuration tool has generated a
112 <code>.config
</code> file that contains the description of your
113 configuration. It will be used by the Makefiles to do what's needed.
</p>
121 <p>This command will download, configure and compile all the selected
122 tools, and finally generate target firmware images and additional packages
123 (depending on your selections in
<code>make menuconfig
</code>.
124 All the target files can be found in the
<code>bin/
</code> subdirectory.
125 You can compile firmware images containing two different filesystem types:
130 <p><code>jffs2
</code> contains a writable root filesystem, which will expand to
131 the size of your flash image. Note that you if you use the generic firmware
132 Image, you need to pick the right image for your Flash size, because of different
133 eraseblock sizes.
</p>
135 <p><code>squashfs
</code> contains a read-only root filesystem using a modified
136 <code>squashfs
</code> filesystem with LZMA compression. When booting it, you can
137 create a writable second filesystem, which will contain your modifications to
138 the root filesystem, including the packages you install.
140 <h2><a name=
"custom_targetfs" id=
"custom_targetfs"></a>Customizing the
141 target filesystem
</h2>
143 <p>There are two ways to customize the resulting target filesystem:
</p>
146 <li>Customize the target filesystem directly, and rebuild the image. The
147 target filesystem is available under
<code>build_ARCH/root/
</code> where
148 <code>ARCH
</code> is the chosen target architecture, usually mipsel.
149 You can simply make your changes here, and run make target_install afterwards,
150 which will rebuild the target filesystem image. This method allows to do
151 everything on the target filesystem, but if you decide to rebuild your toolchain,
152 tools or packages, these changes will be lost.
</li>
154 <li>Customize the target filesystem skeleton, available under
155 <code>target/default/target_skeleton/
</code>. You can customize
156 configuration files or other stuff here. However, the full file hierarchy
157 is not yet present, because it's created during the compilation process.
158 So you can't do everything on this target filesystem skeleton, but
159 changes to it remains even when you completely rebuild the cross-compilation
160 toolchain and the tools.
<br />
163 <h2><a name=
"custom_busybox" id=
"custom_busybox"></a>Customizing the
164 Busybox configuration
</h2>
166 <p>Busybox is very configurable, and you may want to customize it.
167 Its configuration is completely integrated into the main menuconfig system.
168 You can find it under
"OpenWrt Package Selection" =
> "Busybox Configuration"</p>
170 <h2><a name=
"custom_uclibc" id=
"custom_uclibc"></a>Customizing the uClibc
173 <p>Just like
<a href=
"#custom_busybox">BusyBox
</a>,
<a
174 href=
"http://www.uclibc.org">uClibc
</a> offers a lot of
175 configuration options. They allow to select various
176 functionalities, depending on your needs and limitations.
</p>
178 <p>The easiest way to modify the configuration of uClibc is to
179 follow these steps :
</p>
183 <li>Make a first compilation of buildroot without trying to
184 customize uClibc.
</li>
186 <li>Go into the directory
187 <code>toolchain_build_ARCH/uClibc/
</code> and run
<code>make
188 menuconfig
</code>. The nice configuration assistant, similar to
189 the one used in the Linux Kernel appears. Make
190 your configuration as appropriate.
</li>
192 <li>Copy the
<code>.config
</code> file to
193 <code>toolchain/uClibc/uClibc.config
</code> or
194 <code>toolchain/uClibc/uClibc.config-locale
</code>. The former
195 is used if you haven't selected locale support in the Buildroot
196 configuration, and the latter is used if you have selected
199 <li>Run the compilation again
</li>
203 <p>Otherwise, you can simply change
204 <code>toolchain/uClibc/uClibc.config
</code> or
205 <code>toolchain/uClibc/uClibc.config-locale
</code> without running
206 the configuration assistant.
</p>
208 <h2><a name=
"buildroot_innards" id=
"buildroot_innards"></a>How OpenWrt Buildroot
211 <p>As said above, OpenWrt is basically a set of Makefiles that download,
212 configure and compiles software with the correct options. It also includes
213 some patches for various software, mainly the ones involved in the
214 cross-compilation tool chain (
<code>gcc
</code>,
<code>binutils
</code> and
217 <p>There is basically one Makefile per software, and they are named
<code>Makefile
</code>.
218 Makefiles are split into three sections:
</p>
221 <li><b>package
</b> (in the
<code>package/
</code> directory) contains the
222 Makefiles and associated files for all user-space tools that Buildroot
223 can compile and add to the target root filesystem. There is one
224 sub-directory per tool.
</li>
226 <li><b>toolchain
</b> (in the
<code>toolchain/
</code> directory) contains
227 the Makefiles and associated files for all software related to the
228 cross-compilation toolchain :
<code>binutils
</code>,
<code>ccache
</code>,
229 <code>gcc
</code>,
<code>gdb
</code>,
<code>kernel-headers
</code> and
230 <code>uClibc
</code>.
</li>
232 <li><b>target
</b> (in the
<code>target
</code> directory) contains the
233 Makefiles and associated files for software related to the generation of
234 the target root filesystem image. Two types of filesystems are supported
235 : jffs2 and squashfs.
238 <p>Each directory contains at least
2 files :
</p>
241 <li><code>Makefile
</code> is the Makefile that downloads, configures,
242 compiles and installs the software
<code>something
</code>.
</li>
244 <li><code>Config.in
</code> is a part of the configuration tool
245 description file. It describes the option related to the current
249 <p>The main Makefile do the job through the following steps (once the
250 configuration is done):
</p>
253 <li>Create the download directory (
<code>dl/
</code> by default). This is
254 where the tarballs will be downloaded. It is interesting to know that the
255 tarballs are in this directory because it may be useful to save them
256 somewhere to avoid further downloads.
</li>
258 <li>Create the build directory (
<code>build_ARCH/
</code> by default,
259 where
<code>ARCH
</code> is your architecture). This is where all
260 user-space tools while be compiled.
</li>
262 <li>Create the toolchain build directory
263 (
<code>toolchain_build_ARCH/
</code> by default, where
<code>ARCH
</code>
264 is your architecture). This is where the cross compilation toolchain will
267 <li>Setup the staging directory (
<code>staging_dir_ARCH/
</code> by
268 default). This is where the cross-compilation toolchain will be
269 installed. If you want to use the same cross-compilation toolchain for
270 other purposes, such as compiling third-party applications, you can add
271 <code>staging_dir_ARCH/bin
</code> to your PATH, and then use
272 <code>arch-linux-gcc
</code> to compile your application. In order to
273 setup this staging directory, it first removes it, and then it creates
274 various subdirectories and symlinks inside it.
</li>
276 <li>Create the target directory (
<code>build_ARCH/root/
</code> by
277 default) and the target filesystem skeleton. This directory will contain
278 the final root filesystem. To setup it up, it first deletes it, then it
279 copies the skeleton available in
<code>target/default/target_skeleton
</code>
280 and then removes useless
<code>CVS/
</code> directories.
</li>
282 <li>Call the
<code>prepare
</code>,
<code>compile
</code> and
<code>install
</code>
283 targets for the subdirectories
<code>toolchain
</code>,
<code>package
</code>
284 and
<code>target
</code></li>
287 <h2><a name=
"using_toolchain" id=
"using_toolchain"></a>Using the
288 uClibc toolchain
</h2>
290 <p>You may want to compile your own programs or other software
291 that are not packaged in OpenWrt. In order to do this, you can
292 use the toolchain that was generated by the Buildroot.
</p>
294 <p>The toolchain generated by the Buildroot by default is located in
295 <code>staging_dir_ARCH
</code>. The simplest way to use it
296 is to add
<code>staging_dir_ARCH/bin/
</code> to your PATH
297 environment variable, and then to use
298 <code>arch-linux-gcc
</code>,
<code>arch-linux-objdump
</code>,
299 <code>arch-linux-ld
</code>, etc.
</p>
301 <p>For example, you may add the following to your
302 <code>.bashrc
</code> (considering you're building for the MIPS
303 architecture and that Buildroot is located in
304 <code>~/buildroot/
</code>) :
</p>
307 export PATH=$PATH:~/buildroot/staging_dir_mipsel/bin/
310 <p>Then you can simply do :
</p>
313 mipsel-linux-uclibc-gcc -o foo foo.c
316 <p><b>Important
</b> : do not try to move the toolchain to an other
317 directory, it won't work. There are some hard-coded paths in the
318 <i>gcc
</i> configuration. If the default toolchain directory
319 doesn't suit your needs, please refer to the
<a
320 href=
"#toolchain_standalone">Using the uClibc toolchain outside of
321 buildroot
</a> section.
</p>
323 <h2><a name=
"toolchain_standalone" id=
"toolchain_standalone"></a>Using the
324 uClibc toolchain outside of buildroot
</h2>
326 <p>By default, the cross-compilation toolchain is generated inside
327 <code>staging_dir_ARCH/
</code>. But sometimes, it may be useful to
328 install it somewhere else, so that it can be used to compile other programs
329 or by other users. Moving the
<code>staging_dir_ARCH/
</code>
330 directory elsewhere is
<b>not possible
</b>, because they are some hardcoded
331 paths in the toolchain configuration.
</p>
333 <p>If you want to use the generated toolchain for other purposes,
334 you can configure Buildroot to generate it elsewhere using the
335 option of the configuration tool :
<code>Build options -
>
336 Toolchain and header file location
</code>, which defaults to
337 <code>staging_dir_ARCH/
</code>.
</p>
339 <h2><a name=
"downloaded_packages"
340 id=
"downloaded_packages"></a>Location of downloaded packages
</h2>
342 <p>It might be useful to know that the various tarballs that are
343 downloaded by the
<i>Makefiles
</i> are all stored in the
344 <code>DL_DIR
</code> which by default is the
<code>dl
</code>
345 directory. It's useful for example if you want to keep a complete
346 version of Buildroot which is know to be working with the
347 associated tarballs. This will allow you to regenerate the
348 toolchain and the target filesystem with exactly the same
351 <h2><a name=
"add_software" id=
"add_software"></a>Extending OpenWrt with
354 <p>This section will only consider the case in which you want to
355 add user-space software.
</p>
357 <h3>Package directory
</h3>
359 <p>First of all, create a directory under the
<code>package
</code>
360 directory for your software, for example
<code>foo
</code>.
</p>
362 <h3><code>Config.in
</code> file
</h3>
364 <p>Then, create a file named
<code>Config.in
</code>. This file
365 will contain the portion of options description related to our
366 <code>foo
</code> software that will be used and displayed in the
367 configuration tool. It should basically contain :
</p>
370 config BR2_PACKAGE_FOO
374 This is a comment that explains what foo is.
377 <p>Of course, you can add other options to configure particular
378 things in your software.
</p>
380 <h3><code>Makefile
</code> in the package directory
</h3>
382 <p>To add your package to the build process, you need to edit
383 the Makefile in the
<code>package/
</code> directory. Locate the
384 lines that look like the following:
</p>
387 package-$(BR2_PACKAGE_FOO) += foo
390 <p>As you can see, this short line simply adds the target
391 <code>foo
</code> to the list of targets handled by OpenWrt Buildroot.
</p>
394 <p>In addition to the default dependencies, you make your package
395 depend on another package (e.g. a library) by adding a line:
398 foo-compile: bar-compile
401 <h3>The
<i>.control
</i> file
</h3>
402 <p>Additionally, you need to create a control file which contains
403 information about your package, readable by the
<i>ipkg
</i> package
406 <p>The file looks like this
</p>
412 4 Maintainer: Foo Software
<foo@foosoftware.com
>
413 5 Source: http://foosoftware.com
414 6 Description: Your Package Description
417 <p>You can skip the usual
<code>Version:
</code> and
<code>Architecture
</code>
418 fields, as they will be generated by the
<code>make-ipkg-dir.sh
</code> script
419 called from your Makefile
</p>
421 <h3>The real
<i>Makefile
</i></h3>
423 <p>Finally, here's the hardest part. Create a file named
424 <code>Makefile
</code>. It will contain the
<i>Makefile
</i> rules that
425 are in charge of downloading, configuring, compiling and installing
426 the software. Below is an example that we will comment
431 2 include $(TOPDIR)/rules.mk
435 6 PKG_MD5SUM:=
4584f226523776a3cdd2fb6f8212ba8d
437 8 PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.gz
438 9 PKG_SOURCE_URL:=http://www.foosoftware.org/downloads
439 10 PKG_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION)
440 11 PKG_IPK:=$(PACKAGE_DIR)/$(PKG_NAME)_$(PKG_VERSION)-$(PKG_RELEASE)_$(ARCH).ipk
441 12 PKG_IPK_DIR:=$(PKG_DIR)/ipkg
443 14 $(DL_DIR)/$(PKG_SOURCE):
444 15 $(SCRIPT_DIR)/download.pl $(DL_DIR) $(PKG_SOURCE) $(PKG_MD5SUM) $(PKG_SOURCE_URL)
446 17 $(PKG_DIR)/.source: $(DL_DIR)/$(PKG_SOURCE)
447 18 zcat $(DL_DIR)/$(PKG_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -
448 19 touch $(PKG_DIR)/.source
450 21 $(PKG_DIR)/.configured: $(PKG_DIR)/.source
452 23 $(TARGET_CONFIGURE_OPTS) \
453 24 CFLAGS=
"$(TARGET_CFLAGS)" \
455 26 --target=$(GNU_TARGET_NAME) \
456 27 --host=$(GNU_TARGET_NAME) \
457 28 --build=$(GNU_HOST_NAME) \
459 30 --sysconfdir=/etc \
461 32 touch $(PKG_DIR)/.configured;
463 34 $(PKG_DIR)/$(PKG_NAME): $(PKG_DIR)/.configured
464 35 $(MAKE) CC=$(TARGET_CC) -C $(PKG_DIR)
466 37 $(PKG_IPK): $(PKG_DIR)/$(PKG_NAME)
467 38 $(SCRIPT_DIR)/make-ipkg-dir.sh $(PKG_IPK_DIR) $(PKG_NAME).control $(PKG_VERSION)-$(PKG_RELEASE) $(ARCH)
468 39 $(MAKE) prefix=$(PKG_IPK_DIR)/usr -C $(PKG_DIR) install
469 40 rm -Rf $(PKG_IPK_DIR)/usr/man
470 41 $(IPKG_BUILD) $(PKG_IPK_DIR) $(PACKAGE_DIR)
472 43 $(IPKG_STATE_DIR)/info/$(PKG_NAME).list: $(PKG_IPK)
473 44 $(IPKG) install $(PKG_IPK)
475 46 prepare: $(PKG_DIR)/.source
476 47 compile: $(PKG_IPK)
477 48 install: $(IPKG_STATE_DIR)/info/$(PKG_NAME).list
483 <p>First of all, this
<i>Makefile
</i> example works for a single
484 binary software. For other software such as libraries or more
485 complex stuff with multiple binaries, it should be adapted. Look at
486 the other
<code>Makefile
</code> files in the
<code>package
</code>
489 <p>At lines
3-
12, a couple of useful variables are defined :
</p>
492 <li><code>PKG_NAME
</code> : The package name, e.g.
<i>foo
</i>.
</li>
494 <li><code>PKG_VERSION
</code> : The version of the package that
495 should be downloaded.
</li>
497 <li><code>PKG_RELEASE
</code> : The release number that will be
498 appended to the version number of your
<i>ipkg
</i> package.
500 <li><code>PKG_MD5SUM
</code> : The md5sum of the software archive.
502 <li><code>PKG_SOURCE
</code> : The name of the tarball of
503 your package on the download website of FTP site. As you can see
504 <code>PKG_NAME
</code> and
<code>PKG_VERSION
</code> are used.
</li>
506 <li><code>PKG_SOURCE_URL
</code> : Space separated list of the HTTP
507 or FTP sites from which the archive is downloaded. It must include the complete
508 path to the directory where
<code>FOO_SOURCE
</code> can be
511 <li><code>PKG_DIR
</code> : The directory into which the software
512 will be configured and compiled. Basically, it's a subdirectory
513 of
<code>BUILD_DIR
</code> which is created upon decompression of
516 <li><code>PKG_IPK
</code> : The resulting
<i>ipkg
</i> package
520 <p>Lines
14-
15 defines a target that downloads the tarball from
521 the remote site to the download directory
522 (
<code>DL_DIR
</code>).
</p>
524 <p>Lines
17-
19 defines a target and associated rules that
525 uncompress the downloaded tarball. As you can see, this target
526 depends on the tarball file, so that the previous target (line
527 14-
15) is called before executing the rules of the current
528 target. Uncompressing is followed by
<i>touching
</i> a hidden file
529 to mark the software has having been uncompressed. This trick is
530 used everywhere in Buildroot
<i>Makefile
</i> to split steps
531 (download, uncompress, configure, compile, install) while still
532 having correct dependencies.
</p>
534 <p>Lines
21-
32 defines a target and associated rules that
535 configures the software. It depends on the previous target (the
536 hidden
<code>.source
</code> file) so that we are sure the software has
537 been uncompressed. In order to configure it, it basically runs the
538 well-known
<code>./configure
</code>script. As we may be doing
539 cross-compilation,
<code>target
</code>,
<code>host
</code> and
540 <code>build
</code> arguments are given. The prefix is also set to
541 <code>/usr
</code>, not because the software will be installed in
542 <code>/usr
</code> on your host system, but in the target
543 filesystem. Finally it creates a
<code>.configured
</code> file to
544 mark the software as configured.
</p>
546 <p>Lines
34-
35 defines a target and a rule that compiles the
547 software. This target will create the binary file in the
548 compilation directory, and depends on the software being already
549 configured (hence the reference to the
<code>.configured
</code>
550 file). It basically runs
<code>make
</code> inside the source
553 <p>Lines
37-
41 defines a target and associated rules that create
554 the
<i>ipkg
</i> package which can optionally be embedded into
555 the resulting firmware image. It depends on the binary file in
556 the source directory, to make sure the software has been compiled.
557 It uses the make-ipkg-dir.sh script, which will create the ipkg
558 build directory for your package, copy your control file into
559 that directory and add version and architecture information.
560 Then it calls the
<code>install
</code> target of the
561 software
<code>Makefile
</code> by passing a
<code>prefix
</code>
562 argument, so that the
<code>Makefile
</code> doesn't try to install
563 the software inside host
<code>/usr
</code> but inside target
564 <code>/usr
</code>. After the installation, the
565 <code>/usr/man
</code> directory inside the target filesystem is
566 removed to save space.
567 Finally
<code>IPKG_BUILD
</code> is called to create the package.
</p>
569 <p>Line
43 and
44 define the installation target of your package,
570 which will embed the software into the target filesystem.
</p>
572 <p>Lines
46-
51 define the main targets that the Makefile in the
573 <code>package
</code> dir calls.
575 <li><code>prepare
</code> : Download and unpack the source
</li>
576 <li><code>compile
</code> : Compile the source and create the package
</li>
577 <li><code>install
</code> : Embed the package into the target filesystem
</li>
578 <li><code>clean
</code> : Remove all the files created by the build process
</li>
583 <p>As you can see, adding a software to buildroot is simply a
584 matter of writing a
<i>Makefile
</i> using an already existing
585 example and to modify it according to the compilation process of
588 <p>If you package software that might be useful for other persons,
589 don't forget to send a patch to OpenWrt developers !
</p>
591 <h2><a name=
"links" id=
"links"></a>Resources
</h2>
593 <p>To learn more about OpenWrt Buildroot you can visit this
594 website:
<a href=
"http://openwrt.org/">http://openwrt.org/
</a></p>