install externally compiled kernel-specific packages into the kernel-specific root
[openwrt.git] / openwrt / docs / buildroot-documentation.html
1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <html xmlns="http://www.w3.org/1999/xhtml">
6 <head>
7 <title>OpenWrt Buildroot - Usage and documentation</title>
8 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
9 <link rel="stylesheet" type="text/css" href="stylesheet.css" />
10 </head>
11
12 <body>
13 <div class="main">
14 <div class="titre">
15 <h1>OpenWrt Buildroot</h1>
16 </div>
17
18 <p>Usage and documentation by Felix Fietkau and Waldemar Brodkorb, based on uClibc Buildroot
19 documentation by Thomas Petazzoni. Contributions from Karsten Kruse,
20 Ned Ludd, Martin Herren.</p>
21
22 <p><small>Last modification : $Id$</small></p>
23
24 <ul>
25 <li><a href="#about">About OpenWrt Buildroot</a></li>
26 <li><a href="#download">Obtaining OpenWrt Buildroot</a></li>
27 <li><a href="#using">Using OpenWrt Buildroot</a></li>
28 <li><a href="#custom_targetfs">Customizing the target filesystem</a></li>
29 <li><a href="#custom_busybox">Customizing the Busybox
30 configuration</a></li>
31 <li><a href="#custom_uclibc">Customizing the uClibc
32 configuration</a></li>
33 <li><a href="#buildroot_innards">How OpenWrt Buildroot works</a></li>
34 <li><a href="#using_toolchain">Using the uClibc toolchain</a></li>
35 <li><a href="#toolchain_standalone">Using the uClibc toolchain
36 outside of Buildroot</a></li>
37 <li><a href="#downloaded_packages">Location of downloaded packages</a></li>
38 <li><a href="#add_software">Extending OpenWrt with more Software</a></li>
39 <li><a href="#links">Ressources</a></li>
40 </ul>
41
42 <h2><a name="about" id="about"></a>About OpenWrt Buildroot</h2>
43
44 <p>OpenWrt Buildroot is a set of Makefiles and patches that allows to easily
45 generate both a cross-compilation toolchain and a root filesystem for your
46 Wireless Router. The cross-compilation toolchain uses uClibc (<a href=
47 "http://www.uclibc.org/">http://www.uclibc.org/</a>), a tiny C standard
48 library.</p>
49
50 <p>A compilation toolchain is the set of tools that allows to
51 compile code for your system. It consists of a compiler (in our
52 case, <code>gcc</code>), binary utils like assembler and linker
53 (in our case, <code>binutils</code>) and a C standard library (for
54 example <a href="http://www.gnu.org/software/libc/libc.html">GNU
55 Libc</a>, <a href="http://www.uclibc.org">uClibc</a> or <a
56 href="http://www.fefe.de/dietlibc/">dietlibc</a>). The system
57 installed on your development station certainly already has a
58 compilation toolchain that you can use to compile application that
59 runs on your system. If you're using a PC, your compilation
60 toolchain runs on an x86 processor and generates code for a x86
61 processor. Under most Linux systems, the compilation toolchain
62 uses the GNU libc as C standard library. This compilation
63 toolchain is called the "host compilation toolchain", and more
64 generally, the machine on which it is running, and on which you're
65 working is called the "host system". The compilation toolchain is
66 provided by your distribution, and OpenWrt Buildroot has nothing to do
67 with it.</p>
68
69 <p>As said above, the compilation toolchain that comes with your system
70 runs and generates code for the processor of your host system. As your
71 embedded system has a different processor, you need a cross-compilation
72 toolchain: it's a compilation toolchain that runs on your host system but
73 that generates code for your target system (and target processor). For
74 example, if your host system uses x86 and your target system uses MIPS, the
75 regular compilation toolchain of your host runs on x86 and generates code
76 for x86, while the cross-compilation toolchain runs on x86 and generates
77 code for MIPS.</p>
78
79 <p>You might wonder why such a tool is needed when you can compile
80 <code>gcc</code>, <code>binutils</code>, uClibc and all the tools by hand.
81 Of course, doing so is possible. But dealing with all configure options,
82 with all problems of every <code>gcc</code> or <code>binutils</code>
83 version is very time-consuming and uninteresting. OpenWrt Buildroot automates this
84 process through the use of Makefiles, and has a collection of patches for
85 each <code>gcc</code> and <code>binutils</code> version to make them work
86 on the MIPS architecture of most Wireless Routers.</p>
87
88 <h2><a name="download" id="download"></a>Obtaining OpenWrt Buildroot</h2>
89
90 <p>OpenWrt Buildroot is available via CVS - Concurrent Version System.
91 For any kind of development you should get the latest version from cvs via:</p>
92 <pre>
93 $ cvs -d:pserver:anonymous@openwrt.org:/openwrt co openwrt
94 </pre>
95
96 <h2><a name="using" id="using"></a>Using OpenWrt Buildroot</h2>
97
98 <p>OpenWrt Buildroot has a nice configuration tool similar to the one you can find
99 in the Linux Kernel (<a href="http://www.kernel.org/">http://www.kernel.org/</a>)
100 or in Busybox (<a href="http://www.busybox.org/">http://www.busybox.org/</a>).
101 Note that you can run everything as a normal user. There is no need to be root to
102 configure and use the Buildroot. The first step is to run the configuration
103 assistant:</p>
104
105 <pre>
106 $ make menuconfig
107 </pre>
108
109 <p>For each entry of the configuration tool, you can find associated help
110 that describes the purpose of the entry.</p>
111
112 <p>Once everything is configured, the configuration tool has generated a
113 <code>.config</code> file that contains the description of your
114 configuration. It will be used by the Makefiles to do what's needed.</p>
115
116 <p>Let's go:</p>
117
118 <pre>
119 $ make
120 </pre>
121
122 <p>This command will download, configure and compile all the selected
123 tools, and finally generate target firmware images and additional packages
124 (depending on your selections in <code>make menuconfig</code>.
125 All the target files can be found in the <code>bin/</code> subdirectory.
126 You can compile firmware images containing two different filesystem types:
127 <ul>
128 <li>jffs2</li>
129 <li>squashfs</li>
130 </ul>
131 <p><code>jffs2</code> contains a writable root filesystem, which will expand to
132 the size of your flash image. Note: if you use the generic firmware image, you
133 need to pick the right image for your flash size, because of different
134 eraseblock sizes.</p>
135
136 <p><code>squashfs</code> contains a read-only root filesystem using a modified
137 <code>squashfs</code> filesystem with LZMA compression. When booting it, you can
138 create a writable second filesystem, which will contain your modifications to
139 the root filesystem, including the packages you install.
140
141 <h2><a name="custom_targetfs" id="custom_targetfs"></a>Customizing the
142 target filesystem</h2>
143
144 <p>There are two ways to customize the resulting target filesystem:</p>
145
146 <ul>
147 <li>Customize the target filesystem directly, and rebuild the image. The
148 target filesystem is available under <code>build_ARCH/root/</code> where
149 <code>ARCH</code> is the chosen target architecture, usually mipsel.
150 You can simply make your changes here, and run make target_install afterwards,
151 which will rebuild the target filesystem image. This method allows to do
152 everything on the target filesystem, but if you decide to rebuild your toolchain,
153 tools or packages, these changes will be lost.</li>
154
155 <li>Customize the target filesystem skeleton, available under
156 <code>target/default/target_skeleton/</code>. You can customize
157 configuration files or other stuff here. However, the full file hierarchy
158 is not yet present, because it's created during the compilation process.
159 So you can't do everything on this target filesystem skeleton, but
160 changes to it remains even when you completely rebuild the cross-compilation
161 toolchain and the tools.<br />
162 </ul>
163
164 <h2><a name="custom_busybox" id="custom_busybox"></a>Customizing the
165 Busybox configuration</h2>
166
167 <p>Busybox is very configurable, and you may want to customize it.
168 Its configuration is completely integrated into the main menuconfig system.
169 You can find it under "OpenWrt Package Selection" =&gt; "Busybox Configuration"</p>
170
171 <h2><a name="custom_uclibc" id="custom_uclibc"></a>Customizing the uClibc
172 configuration</h2>
173
174 <p>Just like <a href="#custom_busybox">BusyBox</a>, <a
175 href="http://www.uclibc.org">uClibc</a> offers a lot of
176 configuration options. They allow to select various
177 functionalities, depending on your needs and limitations.</p>
178
179 <p>The easiest way to modify the configuration of uClibc is to
180 follow these steps :</p>
181
182 <ol>
183
184 <li>Make a first compilation of buildroot without trying to
185 customize uClibc.</li>
186
187 <li>Go into the directory
188 <code>toolchain_build_ARCH/uClibc/</code> and run <code>make
189 menuconfig</code>. The nice configuration assistant, similar to
190 the one used in the Linux Kernel appears. Make
191 your configuration as appropriate.</li>
192
193 <li>Copy the <code>.config</code> file to
194 <code>toolchain/uClibc/uClibc.config</code> or
195 <code>toolchain/uClibc/uClibc.config-locale</code>. The former
196 is used if you haven't selected locale support in the Buildroot
197 configuration, and the latter is used if you have selected
198 locale support.</li>
199
200 <li>Run the compilation again.</li>
201
202 </ol>
203
204 <p>Otherwise, you can simply change
205 <code>toolchain/uClibc/uClibc.config</code> or
206 <code>toolchain/uClibc/uClibc.config-locale</code> without running
207 the configuration assistant.</p>
208
209 <h2><a name="buildroot_innards" id="buildroot_innards"></a>How OpenWrt Buildroot
210 works</h2>
211
212 <p>As said above, OpenWrt is basically a set of Makefiles that download,
213 configure and compiles software with the correct options. It also includes
214 some patches for various software, mainly the ones involved in the
215 cross-compilation tool chain (<code>gcc</code>, <code>binutils</code> and
216 uClibc).</p>
217
218 <p>There is basically one Makefile per software, and they are named <code>Makefile</code>.
219 Makefiles are split into three sections:</p>
220
221 <ul>
222 <li><b>package</b> (in the <code>package/</code> directory) contains the
223 Makefiles and associated files for all user-space tools that Buildroot
224 can compile and add to the target root filesystem. There is one
225 sub-directory per tool.</li>
226
227 <li><b>toolchain</b> (in the <code>toolchain/</code> directory) contains
228 the Makefiles and associated files for all software related to the
229 cross-compilation toolchain : <code>binutils</code>, <code>ccache</code>,
230 <code>gcc</code>, <code>gdb</code>, <code>kernel-headers</code> and
231 <code>uClibc</code>.</li>
232
233 <li><b>target</b> (in the <code>target</code> directory) contains the
234 Makefiles and associated files for software related to the generation of
235 the target root filesystem image and the linux kernel for the different
236 system on a chip boards, used in the Wireless Routers.
237 Two types of filesystems are supported
238 : jffs2 and squashfs.
239 </ul>
240
241 <p>Each directory contains at least 2 files :</p>
242
243 <ul>
244 <li><code>Makefile</code> is the Makefile that downloads, configures,
245 compiles and installs the software <code>something</code>.</li>
246
247 <li><code>Config.in</code> is a part of the configuration tool
248 description file. It describes the option related to the current
249 software.</li>
250 </ul>
251
252 <p>The main Makefile do the job through the following steps (once the
253 configuration is done):</p>
254
255 <ol>
256 <li>Create the download directory (<code>dl/</code> by default). This is
257 where the tarballs will be downloaded. It is interesting to know that the
258 tarballs are in this directory because it may be useful to save them
259 somewhere to avoid further downloads.</li>
260
261 <li>Create the build directory (<code>build_ARCH/</code> by default,
262 where <code>ARCH</code> is your architecture). This is where all
263 user-space tools while be compiled.</li>
264
265 <li>Create the toolchain build directory
266 (<code>toolchain_build_ARCH/</code> by default, where <code>ARCH</code>
267 is your architecture). This is where the cross compilation toolchain will
268 be compiled.</li>
269
270 <li>Setup the staging directory (<code>staging_dir_ARCH/</code> by
271 default). This is where the cross-compilation toolchain will be
272 installed. If you want to use the same cross-compilation toolchain for
273 other purposes, such as compiling third-party applications, you can add
274 <code>staging_dir_ARCH/bin</code> to your PATH, and then use
275 <code>arch-linux-gcc</code> to compile your application. In order to
276 setup this staging directory, it first removes it, and then it creates
277 various subdirectories and symlinks inside it.</li>
278
279 <li>Create the target directory (<code>build_ARCH/root/</code> by
280 default) and the target filesystem skeleton. This directory will contain
281 the final root filesystem. To set it up, it first deletes it, then it
282 copies the skeleton available in <code>target/default/target_skeleton</code>
283 and then removes useless <code>CVS/</code> directories.</li>
284
285 <li>Call the <code>prepare</code>, <code>compile</code> and <code>install</code>
286 targets for the subdirectories <code>toolchain</code>, <code>package</code>
287 and <code>target</code></li>
288 </ol>
289
290 <h2><a name="using_toolchain" id="using_toolchain"></a>Using the
291 uClibc toolchain</h2>
292
293 <p>You may want to compile your own programs or other software
294 that are not packaged in OpenWrt. In order to do this, you can
295 use the toolchain that was generated by the Buildroot.</p>
296
297 <p>The toolchain generated by the Buildroot by default is located in
298 <code>staging_dir_ARCH</code>. The simplest way to use it
299 is to add <code>staging_dir_ARCH/bin/</code> to your PATH
300 environment variable, and then to use
301 <code>arch-linux-gcc</code>, <code>arch-linux-objdump</code>,
302 <code>arch-linux-ld</code>, etc.</p>
303
304 <p>For example, you may add the following to your
305 <code>.bashrc</code> (considering you're building for the MIPS
306 architecture and that Buildroot is located in
307 <code>~/openwrt/</code>) :</p>
308
309 <pre>
310 export PATH=$PATH:~/openwrt/staging_dir_mipsel/bin/
311 </pre>
312
313 <p>Then you can simply do :</p>
314
315 <pre>
316 mipsel-linux-uclibc-gcc -o foo foo.c
317 </pre>
318
319 <p><b>Important</b> : do not try to move the toolchain to an other
320 directory, it won't work. There are some hard-coded paths in the
321 <i>gcc</i> configuration. If the default toolchain directory
322 doesn't suit your needs, please refer to the <a
323 href="#toolchain_standalone">Using the uClibc toolchain outside of
324 buildroot</a> section.</p>
325
326 <h2><a name="toolchain_standalone" id="toolchain_standalone"></a>Using the
327 uClibc toolchain outside of buildroot</h2>
328
329 <p>By default, the cross-compilation toolchain is generated inside
330 <code>staging_dir_ARCH/</code>. But sometimes, it may be useful to
331 install it somewhere else, so that it can be used to compile other programs
332 or by other users. Moving the <code>staging_dir_ARCH/</code>
333 directory elsewhere is <b>not possible</b>, because they are some hardcoded
334 paths in the toolchain configuration.</p>
335
336 <p>If you want to use the generated toolchain for other purposes,
337 you can configure Buildroot to generate it elsewhere using the
338 option of the configuration tool : <code>Build options -&gt;
339 Toolchain and header file location</code>, which defaults to
340 <code>staging_dir_ARCH/</code>.</p>
341
342 <h2><a name="downloaded_packages"
343 id="downloaded_packages"></a>Location of downloaded packages</h2>
344
345 <p>It might be useful to know that the various tarballs that are
346 downloaded by the <i>Makefiles</i> are all stored in the
347 <code>DL_DIR</code> which by default is the <code>dl</code>
348 directory. It's useful for example if you want to keep a complete
349 version of Buildroot which is known to be working with the
350 associated tarballs. This will allow you to regenerate the
351 toolchain and the target filesystem with exactly the same
352 versions.</p>
353
354 <h2><a name="add_software" id="add_software"></a>Extending OpenWrt with
355 more software</h2>
356
357 <p>This section will only consider the case in which you want to
358 add user-space software.</p>
359
360 <h3>Package directory</h3>
361
362 <p>First of all, create a directory under the <code>package</code>
363 directory for your software, for example <code>foo</code>.</p>
364
365 <h3><code>Config.in</code> file</h3>
366
367 <p>Then, create a file named <code>Config.in</code>. This file
368 will contain the portion of options description related to our
369 <code>foo</code> software that will be used and displayed in the
370 configuration tool. It should basically contain :</p>
371
372 <pre>
373 config BR2_PACKAGE_FOO
374 tristate "foo - some nice tool"
375 default m if CONFIG_DEVEL
376 help
377 This is a comment that explains what foo is.
378 </pre>
379
380 <p>If you depend on other software or library inside the Buildroot, it
381 is important that you automatically select these packages in your
382 <code>Config.in</code>. Example if foo depends on bar library:
383 </p>
384 <pre>
385 config BR2_PACKAGE_FOO
386 tristate "foo - some nice tool"
387 default m if CONFIG_DEVEL
388 select BR2_PACKAGE_LIBBAR
389 help
390 This is a comment that explains what foo is.
391 </pre>
392
393 <p>Of course, you can add other options to configure particular
394 things in your software.</p>
395
396 <h3><code>Config.in</code> in the package directory</h3>
397
398 <p>To add your package to the configuration tool, you need
399 to add the following line to <code>package/Config.in</code>,
400 please add it to a section, which fits the purpose of foo:
401
402 <pre>
403 comment "Networking"
404 source "package/foo/Config.in"
405 </pre>
406
407 <h3><code>Makefile</code> in the package directory</h3>
408
409 <p>To add your package to the build process, you need to edit
410 the Makefile in the <code>package/</code> directory. Locate the
411 lines that look like the following:</p>
412
413 <pre>
414 package-$(BR2_PACKAGE_FOO) += foo
415 </pre>
416
417 <p>As you can see, this short line simply adds the target
418 <code>foo</code> to the list of targets handled by OpenWrt Buildroot.</p>
419
420 <p>In addition to the default dependencies, you make your package
421 depend on another package (e.g. a library) by adding a line:
422
423 <pre>
424 foo-compile: bar-compile
425 </pre>
426
427 <h3>The ipkg control file</h3>
428 <p>Additionally, you need to create a control file which contains
429 information about your package, readable by the <i>ipkg</i> package
430 utility. It should be created as file:
431 <code>package/foo/ipkg/foo.control</code></p>
432
433 <p>The file looks like this</p>
434
435 <pre>
436 1 Package: foo
437 2 Priority: optional
438 3 Section: net
439 4 Maintainer: Foo Software &lt;foo@foosoftware.com&gt;
440 5 Source: http://foosoftware.com
441 6 Depends: libbar
442 7 Description: Package Description
443 </pre>
444
445 <p>You can skip the usual <code>Version:</code> and <code>Architecture</code>
446 fields, as they will be generated by the <code>make-ipkg-dir.sh</code> script
447 called from your Makefile. The Depends field is important, so that ipkg will
448 automatically fetch all dependend software on your target system.</p>
449
450 <h3>The real <i>Makefile</i></h3>
451
452 <p>Finally, here's the hardest part. Create a file named
453 <code>Makefile</code>. It will contain the <i>Makefile</i> rules that
454 are in charge of downloading, configuring, compiling and installing
455 the software. Below is an example that we will comment afterwards.</p>
456
457 <pre>
458 1 # $Id$
459 2
460 3 include $(TOPDIR)/rules.mk
461 4
462 5 PKG_NAME:=foo
463 6 PKG_VERSION:=1.0
464 7 PKG_RELEASE:=1
465 8 PKG_MD5SUM:=4584f226523776a3cdd2fb6f8212ba8d
466 9
467 10 PKG_SOURCE_URL:=http://www.foosoftware.org/downloads
468 11 PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.gz
469 12 PKG_CAT:=zcat
470 13
471 14 PKG_BUILD_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION)
472 15 PKG_INSTALL_DIR:=$(PKG_BUILD_DIR)/ipkg-install
473 16
474 17 include $(TOPDIR)/package/rules.mk
475 18
476 19 $(eval $(call PKG_template,FOO,foo,$(PKG_VERSION)-$(PKG_RELEASE),$(ARCH)))
477 20
478 21 $(PKG_BUILD_DIR)/.configured: $(PKG_BUILD_DIR)/.prepared
479 22 (cd $(PKG_BUILD_DIR); \
480 23 $(TARGET_CONFIGURE_OPTS) \
481 24 CFLAGS="$(TARGET_CFLAGS)" \
482 25 ./configure \
483 26 --target=$(GNU_TARGET_NAME) \
484 27 --host=$(GNU_TARGET_NAME) \
485 28 --build=$(GNU_HOST_NAME) \
486 29 --prefix=/usr \
487 30 --sysconfdir=/etc \
488 31 --with-bar="$(STAGING_DIR)/usr" \
489 32 );
490 33 touch $@
491 34
492 35 $(PKG_BUILD_DIR)/.built:
493 36 rm -rf $(PKG_INSTALL_DIR)
494 37 mkdir -p $(PKG_INSTALL_DIR)
495 38 $(MAKE) -C $(PKG_BUILD_DIR) \
496 39 $(TARGET_CONFIGURE_OPTS) \
497 40 install_prefix="$(PKG_INSTALL_DIR)" \
498 41 all install
499 42 touch $@
500 43
501 44 $(IPKG_FOO):
502 46 install -d -m0755 $(IDIR_FOO)/usr/sbin
503 47 cp -fpR $(PKG_INSTALL_DIR)/usr/sbin/foo $(IDIR_FOO)/usr/sbin
504 49 $(RSTRIP) $(IDIR_FOO)
505 50 $(IPKG_BUILD) $(IDIR_FOO) $(PACKAGE_DIR)
506 51
507 52 mostlyclean:
508 53 make -C $(PKG_BUILD_DIR) clean
509 54 rm $(PKG_BUILD_DIR)/.built
510 </pre>
511
512 <p>First of all, this <i>Makefile</i> example works for a single
513 binary software. For other software such as libraries or more
514 complex stuff with multiple binaries, it should be adapted. Look at
515 the other <code>Makefile</code> files in the <code>package/</code>
516 directory.</p>
517
518 <p>At lines 5-15, a couple of useful variables are defined:</p>
519
520 <ul>
521 <li><code>PKG_NAME</code> : The package name, e.g. <i>foo</i>.</li>
522
523 <li><code>PKG_VERSION</code> : The version of the package that
524 should be downloaded.</li>
525
526 <li><code>PKG_RELEASE</code> : The release number that will be
527 appended to the version number of your <i>ipkg</i> package.</li>
528
529 <li><code>PKG_MD5SUM</code> : The md5sum of the software archive.</li>
530
531 <li><code>PKG_SOURCE_URL</code> : Space separated list of the HTTP
532 or FTP sites from which the archive is downloaded. It must include the complete
533 path to the directory where <code>FOO_SOURCE</code> can be
534 found.</li>
535
536 <li><code>PKG_SOURCE</code> : The name of the tarball of
537 your package on the download website of FTP site. As you can see
538 <code>PKG_NAME</code> and <code>PKG_VERSION</code> are used.</li>
539
540 <li><code>PKG_CAT</code> : The tool needed for extraction of the
541 software archive.</li>
542
543 <li><code>PKG_BUILD_DIR</code> : The directory into which the software
544 will be configured and compiled. Basically, it's a subdirectory
545 of <code>BUILD_DIR</code> which is created upon extraction of
546 the tarball.</li>
547
548 <li><code>PKG_INSTALL_DIR</code> : The directory into the software
549 will be installed. It is a subdirectory of <code>PKG_BUILD_DIR</code>.</li>
550
551 </ul>
552
553 <p>In Line 3 and 17 we include common variables and routines to simplify
554 the process of ipkg creation. It includes routines to download, verify
555 and extract the software package archives.</p>
556
557 <p>Line 19 contains the magic line which automatically creates the
558 ipkg for us.</p>
559
560 <p>Lines 21-33 defines a target and associated rules that
561 configures the software. It depends on the previous target (the
562 hidden <code>.prepared</code> file) so that we are sure the software has
563 been uncompressed. In order to configure it, it basically runs the
564 well-known <code>./configure</code>script. As we may be doing
565 cross-compilation, <code>target</code>, <code>host</code> and
566 <code>build</code> arguments are given. The prefix is also set to
567 <code>/usr</code>, not because the software will be installed in
568 <code>/usr</code> on your host system, but in the target
569 filesystem. Finally it creates a <code>.configured</code> file to
570 mark the software as configured.</p>
571
572 <p>Lines 35-42 defines a target and a rule that compiles the
573 software. This target will create the binary file in the
574 compilation directory, and depends on the software being already
575 configured (hence the reference to the <code>.configured</code>
576 file). Afterwards it installs the resulting binary into the
577 <code>PKG_INSTALL_DIR</code>. It basically runs
578 <code>make install</code> inside the source directory.</p>
579
580 <p>Lines 44-50 defines a target and associated rules that create
581 the <i>ipkg</i> package, which can optionally be embedded into
582 the resulting firmware image. It manually installs all files you
583 want to integrate in your resulting ipkg. <code>RSTRIP</code> will
584 recursevily strip all binaries and libraries.
585 Finally <code>IPKG_BUILD</code> is called to create the package.</p>
586
587 <h3>Conclusion</h3>
588
589 <p>As you can see, adding a software to buildroot is simply a
590 matter of writing a <i>Makefile</i> using an already existing
591 example and to modify it according to the compilation process of
592 the software.</p>
593
594 <p>If you package software that might be useful for other persons,
595 don't forget to send a patch to OpenWrt developers!
596 Use the mail address: patches@openwrt.org
597 </p>
598
599 <h2><a name="links" id="links"></a>Resources</h2>
600
601 <p>To learn more about OpenWrt you can visit this website:
602 <a href="http://openwrt.org/">http://openwrt.org/</a></p>
603
604 </div>
605 </body>
606 </html>
This page took 0.092727 seconds and 5 git commands to generate.