package/mac80211: fix atomic64 issues on x86 / uml
[openwrt.git] / target / linux / cns3xxx / patches / 200-dwc_otg.patch
1 --- a/drivers/Makefile
2 +++ b/drivers/Makefile
3 @@ -65,6 +65,7 @@ obj-$(CONFIG_PARIDE) += block/paride/
4 obj-$(CONFIG_TC) += tc/
5 obj-$(CONFIG_UWB) += uwb/
6 obj-$(CONFIG_USB_OTG_UTILS) += usb/otg/
7 +obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/
8 obj-$(CONFIG_USB) += usb/
9 obj-$(CONFIG_USB_MUSB_HDRC) += usb/musb/
10 obj-$(CONFIG_PCI) += usb/
11 --- a/drivers/usb/Kconfig
12 +++ b/drivers/usb/Kconfig
13 @@ -116,6 +116,8 @@ source "drivers/usb/host/Kconfig"
14
15 source "drivers/usb/musb/Kconfig"
16
17 +source "drivers/usb/dwc/Kconfig"
18 +
19 source "drivers/usb/class/Kconfig"
20
21 source "drivers/usb/storage/Kconfig"
22 --- /dev/null
23 +++ b/drivers/usb/dwc/Kconfig
24 @@ -0,0 +1,44 @@
25 +#
26 +# USB Dual Role (OTG-ready) Controller Drivers
27 +# for silicon based on Synopsys DesignWare IP
28 +#
29 +
30 +comment "Enable Host or Gadget support for DesignWare OTG controller"
31 +depends on !USB && USB_GADGET=n
32 +
33 +config USB_DWC_OTG
34 + tristate "Synopsys DWC OTG Controller"
35 + depends on USB
36 + help
37 + This driver provides USB Device Controller support for the
38 + Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
39 +
40 +config DWC_DEBUG
41 + bool "Enable DWC Debugging"
42 + depends on USB_DWC_OTG
43 + default n
44 + help
45 + Enable DWC driver debugging
46 +
47 +choice
48 + prompt "DWC Mode Selection"
49 + depends on USB_DWC_OTG
50 + default DWC_HOST_ONLY
51 + help
52 + Select the DWC Core in OTG, Host only, or Device only mode.
53 +
54 +config DWC_HOST_ONLY
55 + bool "DWC Host Only Mode"
56 +
57 +config DWC_OTG_MODE
58 + bool "DWC OTG Mode"
59 + select USB_GADGET
60 + select USB_GADGET_SELECTED
61 +
62 +config DWC_DEVICE_ONLY
63 + bool "DWC Device Only Mode"
64 + select USB_GADGET
65 + select USB_GADGET_SELECTED
66 +
67 +endchoice
68 +
69 --- /dev/null
70 +++ b/drivers/usb/dwc/Makefile
71 @@ -0,0 +1,26 @@
72 +#
73 +# Makefile for DWC_otg Highspeed USB controller driver
74 +#
75 +
76 +EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
77 +#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
78 +#EXTRA_CFLAGS += -DDWC_EN_ISOC
79 +
80 +ifneq ($(CONFIG_DWC_HOST_ONLY),)
81 +EXTRA_CFLAGS += -DDWC_HOST_ONLY
82 +endif
83 +
84 +ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
85 +EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
86 +endif
87 +
88 +ifneq ($(CONFIG_DWC_DEBUG),)
89 +EXTRA_CFLAGS += -DDEBUG
90 +endif
91 +
92 +obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o
93 +
94 +dwc_otg-objs := otg_driver.o otg_attr.o
95 +dwc_otg-objs += otg_cil.o otg_cil_intr.o
96 +dwc_otg-objs += otg_pcd.o otg_pcd_intr.o
97 +dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
98 --- /dev/null
99 +++ b/drivers/usb/dwc/otg_attr.c
100 @@ -0,0 +1,886 @@
101 +/* ==========================================================================
102 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
103 + * $Revision: #31 $
104 + * $Date: 2008/07/15 $
105 + * $Change: 1064918 $
106 + *
107 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
108 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
109 + * otherwise expressly agreed to in writing between Synopsys and you.
110 + *
111 + * The Software IS NOT an item of Licensed Software or Licensed Product under
112 + * any End User Software License Agreement or Agreement for Licensed Product
113 + * with Synopsys or any supplement thereto. You are permitted to use and
114 + * redistribute this Software in source and binary forms, with or without
115 + * modification, provided that redistributions of source code must retain this
116 + * notice. You may not view, use, disclose, copy or distribute this file or
117 + * any information contained herein except pursuant to this license grant from
118 + * Synopsys. If you do not agree with this notice, including the disclaimer
119 + * below, then you are not authorized to use the Software.
120 + *
121 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
122 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
123 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
124 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
125 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
126 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
127 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
128 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
129 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
130 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
131 + * DAMAGE.
132 + * ========================================================================== */
133 +
134 +/** @file
135 + *
136 + * The diagnostic interface will provide access to the controller for
137 + * bringing up the hardware and testing. The Linux driver attributes
138 + * feature will be used to provide the Linux Diagnostic
139 + * Interface. These attributes are accessed through sysfs.
140 + */
141 +
142 +/** @page "Linux Module Attributes"
143 + *
144 + * The Linux module attributes feature is used to provide the Linux
145 + * Diagnostic Interface. These attributes are accessed through sysfs.
146 + * The diagnostic interface will provide access to the controller for
147 + * bringing up the hardware and testing.
148 +
149 +
150 + The following table shows the attributes.
151 + <table>
152 + <tr>
153 + <td><b> Name</b></td>
154 + <td><b> Description</b></td>
155 + <td><b> Access</b></td>
156 + </tr>
157 +
158 + <tr>
159 + <td> mode </td>
160 + <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
161 + <td> Read</td>
162 + </tr>
163 +
164 + <tr>
165 + <td> hnpcapable </td>
166 + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
167 + Read returns the current value.</td>
168 + <td> Read/Write</td>
169 + </tr>
170 +
171 + <tr>
172 + <td> srpcapable </td>
173 + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
174 + Read returns the current value.</td>
175 + <td> Read/Write</td>
176 + </tr>
177 +
178 + <tr>
179 + <td> hnp </td>
180 + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
181 + <td> Read/Write</td>
182 + </tr>
183 +
184 + <tr>
185 + <td> srp </td>
186 + <td> Initiates the Session Request Protocol. Read returns the status.</td>
187 + <td> Read/Write</td>
188 + </tr>
189 +
190 + <tr>
191 + <td> buspower </td>
192 + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
193 + <td> Read/Write</td>
194 + </tr>
195 +
196 + <tr>
197 + <td> bussuspend </td>
198 + <td> Suspends the USB bus.</td>
199 + <td> Read/Write</td>
200 + </tr>
201 +
202 + <tr>
203 + <td> busconnected </td>
204 + <td> Gets the connection status of the bus</td>
205 + <td> Read</td>
206 + </tr>
207 +
208 + <tr>
209 + <td> gotgctl </td>
210 + <td> Gets or sets the Core Control Status Register.</td>
211 + <td> Read/Write</td>
212 + </tr>
213 +
214 + <tr>
215 + <td> gusbcfg </td>
216 + <td> Gets or sets the Core USB Configuration Register</td>
217 + <td> Read/Write</td>
218 + </tr>
219 +
220 + <tr>
221 + <td> grxfsiz </td>
222 + <td> Gets or sets the Receive FIFO Size Register</td>
223 + <td> Read/Write</td>
224 + </tr>
225 +
226 + <tr>
227 + <td> gnptxfsiz </td>
228 + <td> Gets or sets the non-periodic Transmit Size Register</td>
229 + <td> Read/Write</td>
230 + </tr>
231 +
232 + <tr>
233 + <td> gpvndctl </td>
234 + <td> Gets or sets the PHY Vendor Control Register</td>
235 + <td> Read/Write</td>
236 + </tr>
237 +
238 + <tr>
239 + <td> ggpio </td>
240 + <td> Gets the value in the lower 16-bits of the General Purpose IO Register
241 + or sets the upper 16 bits.</td>
242 + <td> Read/Write</td>
243 + </tr>
244 +
245 + <tr>
246 + <td> guid </td>
247 + <td> Gets or sets the value of the User ID Register</td>
248 + <td> Read/Write</td>
249 + </tr>
250 +
251 + <tr>
252 + <td> gsnpsid </td>
253 + <td> Gets the value of the Synopsys ID Regester</td>
254 + <td> Read</td>
255 + </tr>
256 +
257 + <tr>
258 + <td> devspeed </td>
259 + <td> Gets or sets the device speed setting in the DCFG register</td>
260 + <td> Read/Write</td>
261 + </tr>
262 +
263 + <tr>
264 + <td> enumspeed </td>
265 + <td> Gets the device enumeration Speed.</td>
266 + <td> Read</td>
267 + </tr>
268 +
269 + <tr>
270 + <td> hptxfsiz </td>
271 + <td> Gets the value of the Host Periodic Transmit FIFO</td>
272 + <td> Read</td>
273 + </tr>
274 +
275 + <tr>
276 + <td> hprt0 </td>
277 + <td> Gets or sets the value in the Host Port Control and Status Register</td>
278 + <td> Read/Write</td>
279 + </tr>
280 +
281 + <tr>
282 + <td> regoffset </td>
283 + <td> Sets the register offset for the next Register Access</td>
284 + <td> Read/Write</td>
285 + </tr>
286 +
287 + <tr>
288 + <td> regvalue </td>
289 + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
290 + <td> Read/Write</td>
291 + </tr>
292 +
293 + <tr>
294 + <td> remote_wakeup </td>
295 + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
296 + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
297 + Wakeup signalling bit in the Device Control Register is set for 1
298 + milli-second.</td>
299 + <td> Read/Write</td>
300 + </tr>
301 +
302 + <tr>
303 + <td> regdump </td>
304 + <td> Dumps the contents of core registers.</td>
305 + <td> Read</td>
306 + </tr>
307 +
308 + <tr>
309 + <td> spramdump </td>
310 + <td> Dumps the contents of core registers.</td>
311 + <td> Read</td>
312 + </tr>
313 +
314 + <tr>
315 + <td> hcddump </td>
316 + <td> Dumps the current HCD state.</td>
317 + <td> Read</td>
318 + </tr>
319 +
320 + <tr>
321 + <td> hcd_frrem </td>
322 + <td> Shows the average value of the Frame Remaining
323 + field in the Host Frame Number/Frame Remaining register when an SOF interrupt
324 + occurs. This can be used to determine the average interrupt latency. Also
325 + shows the average Frame Remaining value for start_transfer and the "a" and
326 + "b" sample points. The "a" and "b" sample points may be used during debugging
327 + bto determine how long it takes to execute a section of the HCD code.</td>
328 + <td> Read</td>
329 + </tr>
330 +
331 + <tr>
332 + <td> rd_reg_test </td>
333 + <td> Displays the time required to read the GNPTXFSIZ register many times
334 + (the output shows the number of times the register is read).
335 + <td> Read</td>
336 + </tr>
337 +
338 + <tr>
339 + <td> wr_reg_test </td>
340 + <td> Displays the time required to write the GNPTXFSIZ register many times
341 + (the output shows the number of times the register is written).
342 + <td> Read</td>
343 + </tr>
344 +
345 + </table>
346 +
347 + Example usage:
348 + To get the current mode:
349 + cat /sys/devices/lm0/mode
350 +
351 + To power down the USB:
352 + echo 0 > /sys/devices/lm0/buspower
353 + */
354 +
355 +#include <linux/kernel.h>
356 +#include <linux/module.h>
357 +#include <linux/moduleparam.h>
358 +#include <linux/init.h>
359 +#include <linux/device.h>
360 +#include <linux/platform_device.h>
361 +#include <linux/errno.h>
362 +#include <linux/types.h>
363 +#include <linux/stat.h> /* permission constants */
364 +#include <linux/version.h>
365 +
366 +#include <asm/sizes.h>
367 +#include <asm/io.h>
368 +#include <asm/sizes.h>
369 +
370 +#include "otg_plat.h"
371 +#include "otg_attr.h"
372 +#include "otg_driver.h"
373 +#include "otg_pcd.h"
374 +#include "otg_hcd.h"
375 +
376 +/*
377 + * MACROs for defining sysfs attribute
378 + */
379 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
380 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
381 +{ \
382 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
383 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
384 + uint32_t val; \
385 + val = dwc_read_reg32 (_addr_); \
386 + val = (val & (_mask_)) >> _shift_; \
387 + return sprintf (buf, "%s = 0x%x\n", _string_, val); \
388 +}
389 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
390 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
391 + const char *buf, size_t count) \
392 +{ \
393 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
394 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
395 + uint32_t set = simple_strtoul(buf, NULL, 16); \
396 + uint32_t clear = set; \
397 + clear = ((~clear) << _shift_) & _mask_; \
398 + set = (set << _shift_) & _mask_; \
399 + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
400 + dwc_modify_reg32(_addr_, clear, set); \
401 + return count; \
402 +}
403 +
404 +/*
405 + * MACROs for defining sysfs attribute for 32-bit registers
406 + */
407 +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
408 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
409 +{ \
410 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
411 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
412 + uint32_t val; \
413 + val = dwc_read_reg32 (_addr_); \
414 + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
415 +}
416 +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
417 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
418 + const char *buf, size_t count) \
419 +{ \
420 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
421 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
422 + uint32_t val = simple_strtoul(buf, NULL, 16); \
423 + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
424 + dwc_write_reg32(_addr_, val); \
425 + return count; \
426 +}
427 +
428 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
429 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
430 +DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
431 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
432 +
433 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
434 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
435 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
436 +
437 +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
438 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
439 +DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
440 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
441 +
442 +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
443 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
444 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
445 +
446 +
447 +/** @name Functions for Show/Store of Attributes */
448 +/**@{*/
449 +
450 +/**
451 + * Show the register offset of the Register Access.
452 + */
453 +static ssize_t regoffset_show( struct device *_dev,
454 + struct device_attribute *attr,
455 + char *buf)
456 +{
457 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
458 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
459 + return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
460 +}
461 +
462 +/**
463 + * Set the register offset for the next Register Access Read/Write
464 + */
465 +static ssize_t regoffset_store( struct device *_dev,
466 + struct device_attribute *attr,
467 + const char *buf,
468 + size_t count )
469 +{
470 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
471 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
472 + uint32_t offset = simple_strtoul(buf, NULL, 16);
473 + //dev_dbg(_dev, "Offset=0x%08x\n", offset);
474 + if (offset < SZ_256K ) {
475 + otg_dev->reg_offset = offset;
476 + }
477 + else {
478 + dev_err( _dev, "invalid offset\n" );
479 + }
480 +
481 + return count;
482 +}
483 +DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
484 +
485 +
486 +/**
487 + * Show the value of the register at the offset in the reg_offset
488 + * attribute.
489 + */
490 +static ssize_t regvalue_show( struct device *_dev,
491 + struct device_attribute *attr,
492 + char *buf)
493 +{
494 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
495 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
496 + uint32_t val;
497 + volatile uint32_t *addr;
498 +
499 + if (otg_dev->reg_offset != 0xFFFFFFFF &&
500 + 0 != otg_dev->base) {
501 + /* Calculate the address */
502 + addr = (uint32_t*)(otg_dev->reg_offset +
503 + (uint8_t*)otg_dev->base);
504 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
505 + val = dwc_read_reg32( addr );
506 + return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
507 + "Reg@0x%06x = 0x%08x\n",
508 + otg_dev->reg_offset, val);
509 + }
510 + else {
511 + dev_err(_dev, "Invalid offset (0x%0x)\n",
512 + otg_dev->reg_offset);
513 + return sprintf(buf, "invalid offset\n" );
514 + }
515 +}
516 +
517 +/**
518 + * Store the value in the register at the offset in the reg_offset
519 + * attribute.
520 + *
521 + */
522 +static ssize_t regvalue_store( struct device *_dev,
523 + struct device_attribute *attr,
524 + const char *buf,
525 + size_t count )
526 +{
527 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
528 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
529 + volatile uint32_t * addr;
530 + uint32_t val = simple_strtoul(buf, NULL, 16);
531 + //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
532 + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
533 + /* Calculate the address */
534 + addr = (uint32_t*)(otg_dev->reg_offset +
535 + (uint8_t*)otg_dev->base);
536 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
537 + dwc_write_reg32( addr, val );
538 + }
539 + else {
540 + dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
541 + otg_dev->reg_offset);
542 + }
543 + return count;
544 +}
545 +DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
546 +
547 +/*
548 + * Attributes
549 + */
550 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
551 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
552 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
553 +
554 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
555 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
556 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
557 +
558 +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
559 +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
560 +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
561 +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
562 +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
563 +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
564 +DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
565 +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
566 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
567 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
568 +
569 +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
570 +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
571 +
572 +
573 +/**
574 + * @todo Add code to initiate the HNP.
575 + */
576 +/**
577 + * Show the HNP status bit
578 + */
579 +static ssize_t hnp_show( struct device *_dev,
580 + struct device_attribute *attr,
581 + char *buf)
582 +{
583 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
584 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
585 + gotgctl_data_t val;
586 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
587 + return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
588 +}
589 +
590 +/**
591 + * Set the HNP Request bit
592 + */
593 +static ssize_t hnp_store( struct device *_dev,
594 + struct device_attribute *attr,
595 + const char *buf,
596 + size_t count )
597 +{
598 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
599 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
600 + uint32_t in = simple_strtoul(buf, NULL, 16);
601 + uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
602 + gotgctl_data_t mem;
603 + mem.d32 = dwc_read_reg32(addr);
604 + mem.b.hnpreq = in;
605 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
606 + dwc_write_reg32(addr, mem.d32);
607 + return count;
608 +}
609 +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
610 +
611 +/**
612 + * @todo Add code to initiate the SRP.
613 + */
614 +/**
615 + * Show the SRP status bit
616 + */
617 +static ssize_t srp_show( struct device *_dev,
618 + struct device_attribute *attr,
619 + char *buf)
620 +{
621 +#ifndef DWC_HOST_ONLY
622 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
623 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
624 + gotgctl_data_t val;
625 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
626 + return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
627 +#else
628 + return sprintf(buf, "Host Only Mode!\n");
629 +#endif
630 +}
631 +
632 +
633 +
634 +/**
635 + * Set the SRP Request bit
636 + */
637 +static ssize_t srp_store( struct device *_dev,
638 + struct device_attribute *attr,
639 + const char *buf,
640 + size_t count )
641 +{
642 +#ifndef DWC_HOST_ONLY
643 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
644 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
645 + dwc_otg_pcd_initiate_srp(otg_dev->pcd);
646 +#endif
647 + return count;
648 +}
649 +DEVICE_ATTR(srp, 0644, srp_show, srp_store);
650 +
651 +/**
652 + * @todo Need to do more for power on/off?
653 + */
654 +/**
655 + * Show the Bus Power status
656 + */
657 +static ssize_t buspower_show( struct device *_dev,
658 + struct device_attribute *attr,
659 + char *buf)
660 +{
661 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
662 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
663 + hprt0_data_t val;
664 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
665 + return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
666 +}
667 +
668 +
669 +/**
670 + * Set the Bus Power status
671 + */
672 +static ssize_t buspower_store( struct device *_dev,
673 + struct device_attribute *attr,
674 + const char *buf,
675 + size_t count )
676 +{
677 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
678 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
679 + uint32_t on = simple_strtoul(buf, NULL, 16);
680 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
681 + hprt0_data_t mem;
682 +
683 + mem.d32 = dwc_read_reg32(addr);
684 + mem.b.prtpwr = on;
685 +
686 + //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
687 + dwc_write_reg32(addr, mem.d32);
688 +
689 + return count;
690 +}
691 +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
692 +
693 +/**
694 + * @todo Need to do more for suspend?
695 + */
696 +/**
697 + * Show the Bus Suspend status
698 + */
699 +static ssize_t bussuspend_show( struct device *_dev,
700 + struct device_attribute *attr,
701 + char *buf)
702 +{
703 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
704 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
705 + hprt0_data_t val;
706 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
707 + return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
708 +}
709 +
710 +/**
711 + * Set the Bus Suspend status
712 + */
713 +static ssize_t bussuspend_store( struct device *_dev,
714 + struct device_attribute *attr,
715 + const char *buf,
716 + size_t count )
717 +{
718 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
719 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
720 + uint32_t in = simple_strtoul(buf, NULL, 16);
721 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
722 + hprt0_data_t mem;
723 + mem.d32 = dwc_read_reg32(addr);
724 + mem.b.prtsusp = in;
725 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
726 + dwc_write_reg32(addr, mem.d32);
727 + return count;
728 +}
729 +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
730 +
731 +/**
732 + * Show the status of Remote Wakeup.
733 + */
734 +static ssize_t remote_wakeup_show( struct device *_dev,
735 + struct device_attribute *attr,
736 + char *buf)
737 +{
738 +#ifndef DWC_HOST_ONLY
739 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
740 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
741 + dctl_data_t val;
742 + val.d32 =
743 + dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
744 + return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
745 + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
746 +#else
747 + return sprintf(buf, "Host Only Mode!\n");
748 +#endif
749 +}
750 +/**
751 + * Initiate a remote wakeup of the host. The Device control register
752 + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
753 + * flag is set.
754 + *
755 + */
756 +static ssize_t remote_wakeup_store( struct device *_dev,
757 + struct device_attribute *attr,
758 + const char *buf,
759 + size_t count )
760 +{
761 +#ifndef DWC_HOST_ONLY
762 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
763 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
764 + uint32_t val = simple_strtoul(buf, NULL, 16);
765 + if (val&1) {
766 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
767 + }
768 + else {
769 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
770 + }
771 +#endif
772 + return count;
773 +}
774 +DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
775 + remote_wakeup_store);
776 +
777 +/**
778 + * Dump global registers and either host or device registers (depending on the
779 + * current mode of the core).
780 + */
781 +static ssize_t regdump_show( struct device *_dev,
782 + struct device_attribute *attr,
783 + char *buf)
784 +{
785 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
786 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
787 + dwc_otg_dump_global_registers( otg_dev->core_if);
788 + if (dwc_otg_is_host_mode(otg_dev->core_if)) {
789 + dwc_otg_dump_host_registers( otg_dev->core_if);
790 + } else {
791 + dwc_otg_dump_dev_registers( otg_dev->core_if);
792 +
793 + }
794 + return sprintf( buf, "Register Dump\n" );
795 +}
796 +
797 +DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
798 +
799 +/**
800 + * Dump global registers and either host or device registers (depending on the
801 + * current mode of the core).
802 + */
803 +static ssize_t spramdump_show( struct device *_dev,
804 + struct device_attribute *attr,
805 + char *buf)
806 +{
807 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
808 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
809 + dwc_otg_dump_spram( otg_dev->core_if);
810 +
811 + return sprintf( buf, "SPRAM Dump\n" );
812 +}
813 +
814 +DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
815 +
816 +/**
817 + * Dump the current hcd state.
818 + */
819 +static ssize_t hcddump_show( struct device *_dev,
820 + struct device_attribute *attr,
821 + char *buf)
822 +{
823 +#ifndef DWC_DEVICE_ONLY
824 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
825 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
826 + dwc_otg_hcd_dump_state(otg_dev->hcd);
827 +#endif
828 + return sprintf( buf, "HCD Dump\n" );
829 +}
830 +
831 +DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
832 +
833 +/**
834 + * Dump the average frame remaining at SOF. This can be used to
835 + * determine average interrupt latency. Frame remaining is also shown for
836 + * start transfer and two additional sample points.
837 + */
838 +static ssize_t hcd_frrem_show( struct device *_dev,
839 + struct device_attribute *attr,
840 + char *buf)
841 +{
842 +#ifndef DWC_DEVICE_ONLY
843 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
844 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
845 + dwc_otg_hcd_dump_frrem(otg_dev->hcd);
846 +#endif
847 + return sprintf( buf, "HCD Dump Frame Remaining\n" );
848 +}
849 +
850 +DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
851 +
852 +/**
853 + * Displays the time required to read the GNPTXFSIZ register many times (the
854 + * output shows the number of times the register is read).
855 + */
856 +#define RW_REG_COUNT 10000000
857 +#define MSEC_PER_JIFFIE 1000/HZ
858 +static ssize_t rd_reg_test_show( struct device *_dev,
859 + struct device_attribute *attr,
860 + char *buf)
861 +{
862 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
863 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
864 + int i;
865 + int time;
866 + int start_jiffies;
867 +
868 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
869 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
870 + start_jiffies = jiffies;
871 + for (i = 0; i < RW_REG_COUNT; i++) {
872 + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
873 + }
874 + time = jiffies - start_jiffies;
875 + return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
876 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
877 +}
878 +
879 +DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
880 +
881 +/**
882 + * Displays the time required to write the GNPTXFSIZ register many times (the
883 + * output shows the number of times the register is written).
884 + */
885 +static ssize_t wr_reg_test_show( struct device *_dev,
886 + struct device_attribute *attr,
887 + char *buf)
888 +{
889 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
890 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
891 + uint32_t reg_val;
892 + int i;
893 + int time;
894 + int start_jiffies;
895 +
896 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
897 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
898 + reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
899 + start_jiffies = jiffies;
900 + for (i = 0; i < RW_REG_COUNT; i++) {
901 + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
902 + }
903 + time = jiffies - start_jiffies;
904 + return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
905 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
906 +}
907 +
908 +DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
909 +/**@}*/
910 +
911 +/**
912 + * Create the device files
913 + */
914 +void dwc_otg_attr_create (struct platform_device *pdev)
915 +{
916 + struct device *dev = &pdev->dev;
917 + int error;
918 +
919 + error = device_create_file(dev, &dev_attr_regoffset);
920 + error = device_create_file(dev, &dev_attr_regvalue);
921 + error = device_create_file(dev, &dev_attr_mode);
922 + error = device_create_file(dev, &dev_attr_hnpcapable);
923 + error = device_create_file(dev, &dev_attr_srpcapable);
924 + error = device_create_file(dev, &dev_attr_hnp);
925 + error = device_create_file(dev, &dev_attr_srp);
926 + error = device_create_file(dev, &dev_attr_buspower);
927 + error = device_create_file(dev, &dev_attr_bussuspend);
928 + error = device_create_file(dev, &dev_attr_busconnected);
929 + error = device_create_file(dev, &dev_attr_gotgctl);
930 + error = device_create_file(dev, &dev_attr_gusbcfg);
931 + error = device_create_file(dev, &dev_attr_grxfsiz);
932 + error = device_create_file(dev, &dev_attr_gnptxfsiz);
933 + error = device_create_file(dev, &dev_attr_gpvndctl);
934 + error = device_create_file(dev, &dev_attr_ggpio);
935 + error = device_create_file(dev, &dev_attr_guid);
936 + error = device_create_file(dev, &dev_attr_gsnpsid);
937 + error = device_create_file(dev, &dev_attr_devspeed);
938 + error = device_create_file(dev, &dev_attr_enumspeed);
939 + error = device_create_file(dev, &dev_attr_hptxfsiz);
940 + error = device_create_file(dev, &dev_attr_hprt0);
941 + error = device_create_file(dev, &dev_attr_remote_wakeup);
942 + error = device_create_file(dev, &dev_attr_regdump);
943 + error = device_create_file(dev, &dev_attr_spramdump);
944 + error = device_create_file(dev, &dev_attr_hcddump);
945 + error = device_create_file(dev, &dev_attr_hcd_frrem);
946 + error = device_create_file(dev, &dev_attr_rd_reg_test);
947 + error = device_create_file(dev, &dev_attr_wr_reg_test);
948 +}
949 +
950 +/**
951 + * Remove the device files
952 + */
953 +void dwc_otg_attr_remove (struct platform_device *pdev)
954 +{
955 + struct device *dev = &pdev->dev;
956 +
957 + device_remove_file(dev, &dev_attr_regoffset);
958 + device_remove_file(dev, &dev_attr_regvalue);
959 + device_remove_file(dev, &dev_attr_mode);
960 + device_remove_file(dev, &dev_attr_hnpcapable);
961 + device_remove_file(dev, &dev_attr_srpcapable);
962 + device_remove_file(dev, &dev_attr_hnp);
963 + device_remove_file(dev, &dev_attr_srp);
964 + device_remove_file(dev, &dev_attr_buspower);
965 + device_remove_file(dev, &dev_attr_bussuspend);
966 + device_remove_file(dev, &dev_attr_busconnected);
967 + device_remove_file(dev, &dev_attr_gotgctl);
968 + device_remove_file(dev, &dev_attr_gusbcfg);
969 + device_remove_file(dev, &dev_attr_grxfsiz);
970 + device_remove_file(dev, &dev_attr_gnptxfsiz);
971 + device_remove_file(dev, &dev_attr_gpvndctl);
972 + device_remove_file(dev, &dev_attr_ggpio);
973 + device_remove_file(dev, &dev_attr_guid);
974 + device_remove_file(dev, &dev_attr_gsnpsid);
975 + device_remove_file(dev, &dev_attr_devspeed);
976 + device_remove_file(dev, &dev_attr_enumspeed);
977 + device_remove_file(dev, &dev_attr_hptxfsiz);
978 + device_remove_file(dev, &dev_attr_hprt0);
979 + device_remove_file(dev, &dev_attr_remote_wakeup);
980 + device_remove_file(dev, &dev_attr_regdump);
981 + device_remove_file(dev, &dev_attr_spramdump);
982 + device_remove_file(dev, &dev_attr_hcddump);
983 + device_remove_file(dev, &dev_attr_hcd_frrem);
984 + device_remove_file(dev, &dev_attr_rd_reg_test);
985 + device_remove_file(dev, &dev_attr_wr_reg_test);
986 +}
987 --- /dev/null
988 +++ b/drivers/usb/dwc/otg_attr.h
989 @@ -0,0 +1,67 @@
990 +/* ==========================================================================
991 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
992 + * $Revision: #7 $
993 + * $Date: 2005/03/28 $
994 + * $Change: 477051 $
995 + *
996 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
997 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
998 + * otherwise expressly agreed to in writing between Synopsys and you.
999 + *
1000 + * The Software IS NOT an item of Licensed Software or Licensed Product under
1001 + * any End User Software License Agreement or Agreement for Licensed Product
1002 + * with Synopsys or any supplement thereto. You are permitted to use and
1003 + * redistribute this Software in source and binary forms, with or without
1004 + * modification, provided that redistributions of source code must retain this
1005 + * notice. You may not view, use, disclose, copy or distribute this file or
1006 + * any information contained herein except pursuant to this license grant from
1007 + * Synopsys. If you do not agree with this notice, including the disclaimer
1008 + * below, then you are not authorized to use the Software.
1009 + *
1010 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1011 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1012 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1013 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1014 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1015 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1016 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1017 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1018 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1019 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1020 + * DAMAGE.
1021 + * ========================================================================== */
1022 +
1023 +#if !defined(__DWC_OTG_ATTR_H__)
1024 +#define __DWC_OTG_ATTR_H__
1025 +
1026 +/** @file
1027 + * This file contains the interface to the Linux device attributes.
1028 + */
1029 +extern struct device_attribute dev_attr_regoffset;
1030 +extern struct device_attribute dev_attr_regvalue;
1031 +
1032 +extern struct device_attribute dev_attr_mode;
1033 +extern struct device_attribute dev_attr_hnpcapable;
1034 +extern struct device_attribute dev_attr_srpcapable;
1035 +extern struct device_attribute dev_attr_hnp;
1036 +extern struct device_attribute dev_attr_srp;
1037 +extern struct device_attribute dev_attr_buspower;
1038 +extern struct device_attribute dev_attr_bussuspend;
1039 +extern struct device_attribute dev_attr_busconnected;
1040 +extern struct device_attribute dev_attr_gotgctl;
1041 +extern struct device_attribute dev_attr_gusbcfg;
1042 +extern struct device_attribute dev_attr_grxfsiz;
1043 +extern struct device_attribute dev_attr_gnptxfsiz;
1044 +extern struct device_attribute dev_attr_gpvndctl;
1045 +extern struct device_attribute dev_attr_ggpio;
1046 +extern struct device_attribute dev_attr_guid;
1047 +extern struct device_attribute dev_attr_gsnpsid;
1048 +extern struct device_attribute dev_attr_devspeed;
1049 +extern struct device_attribute dev_attr_enumspeed;
1050 +extern struct device_attribute dev_attr_hptxfsiz;
1051 +extern struct device_attribute dev_attr_hprt0;
1052 +
1053 +void dwc_otg_attr_create (struct platform_device *pdev);
1054 +void dwc_otg_attr_remove (struct platform_device *pdev);
1055 +
1056 +#endif
1057 --- /dev/null
1058 +++ b/drivers/usb/dwc/otg_cil.c
1059 @@ -0,0 +1,3831 @@
1060 +/* ==========================================================================
1061 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
1062 + * $Revision: #147 $
1063 + * $Date: 2008/10/16 $
1064 + * $Change: 1117667 $
1065 + *
1066 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
1067 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
1068 + * otherwise expressly agreed to in writing between Synopsys and you.
1069 + *
1070 + * The Software IS NOT an item of Licensed Software or Licensed Product under
1071 + * any End User Software License Agreement or Agreement for Licensed Product
1072 + * with Synopsys or any supplement thereto. You are permitted to use and
1073 + * redistribute this Software in source and binary forms, with or without
1074 + * modification, provided that redistributions of source code must retain this
1075 + * notice. You may not view, use, disclose, copy or distribute this file or
1076 + * any information contained herein except pursuant to this license grant from
1077 + * Synopsys. If you do not agree with this notice, including the disclaimer
1078 + * below, then you are not authorized to use the Software.
1079 + *
1080 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1081 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1082 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1083 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1084 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1085 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1086 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1087 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1088 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1089 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1090 + * DAMAGE.
1091 + * ========================================================================== */
1092 +
1093 +/** @file
1094 + *
1095 + * The Core Interface Layer provides basic services for accessing and
1096 + * managing the DWC_otg hardware. These services are used by both the
1097 + * Host Controller Driver and the Peripheral Controller Driver.
1098 + *
1099 + * The CIL manages the memory map for the core so that the HCD and PCD
1100 + * don't have to do this separately. It also handles basic tasks like
1101 + * reading/writing the registers and data FIFOs in the controller.
1102 + * Some of the data access functions provide encapsulation of several
1103 + * operations required to perform a task, such as writing multiple
1104 + * registers to start a transfer. Finally, the CIL performs basic
1105 + * services that are not specific to either the host or device modes
1106 + * of operation. These services include management of the OTG Host
1107 + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
1108 + * Diagnostic API is also provided to allow testing of the controller
1109 + * hardware.
1110 + *
1111 + * The Core Interface Layer has the following requirements:
1112 + * - Provides basic controller operations.
1113 + * - Minimal use of OS services.
1114 + * - The OS services used will be abstracted by using inline functions
1115 + * or macros.
1116 + *
1117 + */
1118 +#include <asm/unaligned.h>
1119 +#include <linux/dma-mapping.h>
1120 +#ifdef DEBUG
1121 +#include <linux/jiffies.h>
1122 +#endif
1123 +
1124 +#include "otg_plat.h"
1125 +#include "otg_regs.h"
1126 +#include "otg_cil.h"
1127 +#include "otg_pcd.h"
1128 +
1129 +
1130 +/**
1131 + * This function is called to initialize the DWC_otg CSR data
1132 + * structures. The register addresses in the device and host
1133 + * structures are initialized from the base address supplied by the
1134 + * caller. The calling function must make the OS calls to get the
1135 + * base address of the DWC_otg controller registers. The core_params
1136 + * argument holds the parameters that specify how the core should be
1137 + * configured.
1138 + *
1139 + * @param[in] reg_base_addr Base address of DWC_otg core registers
1140 + * @param[in] core_params Pointer to the core configuration parameters
1141 + *
1142 + */
1143 +dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
1144 + dwc_otg_core_params_t *core_params)
1145 +{
1146 + dwc_otg_core_if_t *core_if = 0;
1147 + dwc_otg_dev_if_t *dev_if = 0;
1148 + dwc_otg_host_if_t *host_if = 0;
1149 + uint8_t *reg_base = (uint8_t *)reg_base_addr;
1150 + int i = 0;
1151 +
1152 + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
1153 +
1154 + core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
1155 +
1156 + if (core_if == 0) {
1157 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
1158 + return 0;
1159 + }
1160 +
1161 + memset(core_if, 0, sizeof(dwc_otg_core_if_t));
1162 +
1163 + core_if->core_params = core_params;
1164 + core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
1165 +
1166 + /*
1167 + * Allocate the Device Mode structures.
1168 + */
1169 + dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
1170 +
1171 + if (dev_if == 0) {
1172 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
1173 + kfree(core_if);
1174 + return 0;
1175 + }
1176 +
1177 + dev_if->dev_global_regs =
1178 + (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
1179 +
1180 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1181 + {
1182 + dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
1183 + (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
1184 + (i * DWC_EP_REG_OFFSET));
1185 +
1186 + dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
1187 + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
1188 + (i * DWC_EP_REG_OFFSET));
1189 + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
1190 + i, &dev_if->in_ep_regs[i]->diepctl);
1191 + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
1192 + i, &dev_if->out_ep_regs[i]->doepctl);
1193 + }
1194 +
1195 + dev_if->speed = 0; // unknown
1196 +
1197 + core_if->dev_if = dev_if;
1198 +
1199 + /*
1200 + * Allocate the Host Mode structures.
1201 + */
1202 + host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
1203 +
1204 + if (host_if == 0) {
1205 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
1206 + kfree(dev_if);
1207 + kfree(core_if);
1208 + return 0;
1209 + }
1210 +
1211 + host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
1212 + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
1213 +
1214 + host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
1215 +
1216 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1217 + {
1218 + host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
1219 + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
1220 + (i * DWC_OTG_CHAN_REGS_OFFSET));
1221 + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
1222 + i, &host_if->hc_regs[i]->hcchar);
1223 + }
1224 +
1225 + host_if->num_host_channels = MAX_EPS_CHANNELS;
1226 + core_if->host_if = host_if;
1227 +
1228 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1229 + {
1230 + core_if->data_fifo[i] =
1231 + (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
1232 + (i * DWC_OTG_DATA_FIFO_SIZE));
1233 + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
1234 + i, (unsigned)core_if->data_fifo[i]);
1235 + }
1236 +
1237 + core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
1238 +
1239 + /*
1240 + * Store the contents of the hardware configuration registers here for
1241 + * easy access later.
1242 + */
1243 + core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
1244 + core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
1245 + core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
1246 + core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
1247 +
1248 + DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
1249 + DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
1250 + DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
1251 + DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
1252 +
1253 + core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
1254 + core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
1255 +
1256 + DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
1257 + DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
1258 +
1259 + DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
1260 + DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
1261 + DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
1262 + DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
1263 + DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
1264 + DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
1265 + DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
1266 +
1267 + DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
1268 + DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
1269 +
1270 + /*
1271 + * Set the SRP sucess bit for FS-I2c
1272 + */
1273 + core_if->srp_success = 0;
1274 + core_if->srp_timer_started = 0;
1275 +
1276 +
1277 + /*
1278 + * Create new workqueue and init works
1279 + */
1280 + core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
1281 + if(core_if->wq_otg == 0) {
1282 + DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
1283 + kfree(host_if);
1284 + kfree(dev_if);
1285 + kfree(core_if);
1286 + return 0 * HZ;
1287 + }
1288 + INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
1289 + INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
1290 +
1291 + return core_if;
1292 +}
1293 +
1294 +/**
1295 + * This function frees the structures allocated by dwc_otg_cil_init().
1296 + *
1297 + * @param[in] core_if The core interface pointer returned from
1298 + * dwc_otg_cil_init().
1299 + *
1300 + */
1301 +void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
1302 +{
1303 + /* Disable all interrupts */
1304 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
1305 + dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
1306 +
1307 + if (core_if->wq_otg) {
1308 + destroy_workqueue(core_if->wq_otg);
1309 + }
1310 + if (core_if->dev_if) {
1311 + kfree(core_if->dev_if);
1312 + }
1313 + if (core_if->host_if) {
1314 + kfree(core_if->host_if);
1315 + }
1316 + kfree(core_if);
1317 +}
1318 +
1319 +/**
1320 + * This function enables the controller's Global Interrupt in the AHB Config
1321 + * register.
1322 + *
1323 + * @param[in] core_if Programming view of DWC_otg controller.
1324 + */
1325 +void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
1326 +{
1327 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1328 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1329 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
1330 +}
1331 +
1332 +/**
1333 + * This function disables the controller's Global Interrupt in the AHB Config
1334 + * register.
1335 + *
1336 + * @param[in] core_if Programming view of DWC_otg controller.
1337 + */
1338 +void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
1339 +{
1340 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1341 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1342 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
1343 +}
1344 +
1345 +/**
1346 + * This function initializes the commmon interrupts, used in both
1347 + * device and host modes.
1348 + *
1349 + * @param[in] core_if Programming view of the DWC_otg controller
1350 + *
1351 + */
1352 +static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
1353 +{
1354 + dwc_otg_core_global_regs_t *global_regs =
1355 + core_if->core_global_regs;
1356 + gintmsk_data_t intr_mask = { .d32 = 0};
1357 +
1358 + /* Clear any pending OTG Interrupts */
1359 + dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
1360 +
1361 + /* Clear any pending interrupts */
1362 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1363 +
1364 + /*
1365 + * Enable the interrupts in the GINTMSK.
1366 + */
1367 + intr_mask.b.modemismatch = 1;
1368 + intr_mask.b.otgintr = 1;
1369 +
1370 + if (!core_if->dma_enable) {
1371 + intr_mask.b.rxstsqlvl = 1;
1372 + }
1373 +
1374 + intr_mask.b.conidstschng = 1;
1375 + intr_mask.b.wkupintr = 1;
1376 + intr_mask.b.disconnect = 1;
1377 + intr_mask.b.usbsuspend = 1;
1378 + intr_mask.b.sessreqintr = 1;
1379 + dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
1380 +}
1381 +
1382 +/**
1383 + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
1384 + * type.
1385 + */
1386 +static void init_fslspclksel(dwc_otg_core_if_t *core_if)
1387 +{
1388 + uint32_t val;
1389 + hcfg_data_t hcfg;
1390 +
1391 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
1392 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1393 + (core_if->core_params->ulpi_fs_ls)) ||
1394 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1395 + /* Full speed PHY */
1396 + val = DWC_HCFG_48_MHZ;
1397 + }
1398 + else {
1399 + /* High speed PHY running at full speed or high speed */
1400 + val = DWC_HCFG_30_60_MHZ;
1401 + }
1402 +
1403 + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
1404 + hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
1405 + hcfg.b.fslspclksel = val;
1406 + dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
1407 +}
1408 +
1409 +/**
1410 + * Initializes the DevSpd field of the DCFG register depending on the PHY type
1411 + * and the enumeration speed of the device.
1412 + */
1413 +static void init_devspd(dwc_otg_core_if_t *core_if)
1414 +{
1415 + uint32_t val;
1416 + dcfg_data_t dcfg;
1417 +
1418 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
1419 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1420 + (core_if->core_params->ulpi_fs_ls)) ||
1421 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1422 + /* Full speed PHY */
1423 + val = 0x3;
1424 + }
1425 + else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
1426 + /* High speed PHY running at full speed */
1427 + val = 0x1;
1428 + }
1429 + else {
1430 + /* High speed PHY running at high speed */
1431 + val = 0x0;
1432 + }
1433 +
1434 + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
1435 +
1436 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
1437 + dcfg.b.devspd = val;
1438 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
1439 +}
1440 +
1441 +/**
1442 + * This function calculates the number of IN EPS
1443 + * using GHWCFG1 and GHWCFG2 registers values
1444 + *
1445 + * @param core_if Programming view of the DWC_otg controller
1446 + */
1447 +static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
1448 +{
1449 + uint32_t num_in_eps = 0;
1450 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
1451 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
1452 + uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
1453 + int i;
1454 +
1455 +
1456 + for(i = 0; i < num_eps; ++i)
1457 + {
1458 + if(!(hwcfg1 & 0x1))
1459 + num_in_eps++;
1460 +
1461 + hwcfg1 >>= 2;
1462 + }
1463 +
1464 + if(core_if->hwcfg4.b.ded_fifo_en) {
1465 + num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
1466 + }
1467 +
1468 + return num_in_eps;
1469 +}
1470 +
1471 +
1472 +/**
1473 + * This function calculates the number of OUT EPS
1474 + * using GHWCFG1 and GHWCFG2 registers values
1475 + *
1476 + * @param core_if Programming view of the DWC_otg controller
1477 + */
1478 +static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
1479 +{
1480 + uint32_t num_out_eps = 0;
1481 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
1482 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
1483 + int i;
1484 +
1485 + for(i = 0; i < num_eps; ++i)
1486 + {
1487 + if(!(hwcfg1 & 0x2))
1488 + num_out_eps++;
1489 +
1490 + hwcfg1 >>= 2;
1491 + }
1492 + return num_out_eps;
1493 +}
1494 +/**
1495 + * This function initializes the DWC_otg controller registers and
1496 + * prepares the core for device mode or host mode operation.
1497 + *
1498 + * @param core_if Programming view of the DWC_otg controller
1499 + *
1500 + */
1501 +void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
1502 +{
1503 + int i = 0;
1504 + dwc_otg_core_global_regs_t *global_regs =
1505 + core_if->core_global_regs;
1506 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
1507 + gahbcfg_data_t ahbcfg = { .d32 = 0 };
1508 + gusbcfg_data_t usbcfg = { .d32 = 0 };
1509 + gi2cctl_data_t i2cctl = { .d32 = 0 };
1510 +
1511 + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
1512 +
1513 + /* Common Initialization */
1514 +
1515 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1516 +
1517 +// usbcfg.b.tx_end_delay = 1;
1518 + /* Program the ULPI External VBUS bit if needed */
1519 + usbcfg.b.ulpi_ext_vbus_drv =
1520 + (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
1521 +
1522 + /* Set external TS Dline pulsing */
1523 + usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
1524 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1525 +
1526 +
1527 + /* Reset the Controller */
1528 + dwc_otg_core_reset(core_if);
1529 +
1530 + /* Initialize parameters from Hardware configuration registers. */
1531 + dev_if->num_in_eps = calc_num_in_eps(core_if);
1532 + dev_if->num_out_eps = calc_num_out_eps(core_if);
1533 +
1534 +
1535 + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
1536 +
1537 + for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
1538 + {
1539 + dev_if->perio_tx_fifo_size[i] =
1540 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1541 + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
1542 + i, dev_if->perio_tx_fifo_size[i]);
1543 + }
1544 +
1545 + for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
1546 + {
1547 + dev_if->tx_fifo_size[i] =
1548 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1549 + DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
1550 + i, dev_if->perio_tx_fifo_size[i]);
1551 + }
1552 +
1553 + core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
1554 + core_if->rx_fifo_size =
1555 + dwc_read_reg32(&global_regs->grxfsiz);
1556 + core_if->nperio_tx_fifo_size =
1557 + dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
1558 +
1559 + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
1560 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
1561 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
1562 +
1563 + /* This programming sequence needs to happen in FS mode before any other
1564 + * programming occurs */
1565 + if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
1566 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1567 + /* If FS mode with FS PHY */
1568 +
1569 + /* core_init() is now called on every switch so only call the
1570 + * following for the first time through. */
1571 + if (!core_if->phy_init_done) {
1572 + core_if->phy_init_done = 1;
1573 + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
1574 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1575 + usbcfg.b.physel = 1;
1576 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1577 +
1578 + /* Reset after a PHY select */
1579 + dwc_otg_core_reset(core_if);
1580 + }
1581 +
1582 + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
1583 + * do this on HNP Dev/Host mode switches (done in dev_init and
1584 + * host_init). */
1585 + if (dwc_otg_is_host_mode(core_if)) {
1586 + init_fslspclksel(core_if);
1587 + }
1588 + else {
1589 + init_devspd(core_if);
1590 + }
1591 +
1592 + if (core_if->core_params->i2c_enable) {
1593 + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
1594 + /* Program GUSBCFG.OtgUtmifsSel to I2C */
1595 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1596 + usbcfg.b.otgutmifssel = 1;
1597 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1598 +
1599 + /* Program GI2CCTL.I2CEn */
1600 + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
1601 + i2cctl.b.i2cdevaddr = 1;
1602 + i2cctl.b.i2cen = 0;
1603 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1604 + i2cctl.b.i2cen = 1;
1605 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1606 + }
1607 +
1608 + } /* endif speed == DWC_SPEED_PARAM_FULL */
1609 +
1610 + else {
1611 + /* High speed PHY. */
1612 + if (!core_if->phy_init_done) {
1613 + core_if->phy_init_done = 1;
1614 + /* HS PHY parameters. These parameters are preserved
1615 + * during soft reset so only program the first time. Do
1616 + * a soft reset immediately after setting phyif. */
1617 + usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
1618 + if (usbcfg.b.ulpi_utmi_sel == 1) {
1619 + /* ULPI interface */
1620 + usbcfg.b.phyif = 0;
1621 + usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
1622 + }
1623 + else {
1624 + /* UTMI+ interface */
1625 + if (core_if->core_params->phy_utmi_width == 16) {
1626 + usbcfg.b.phyif = 1;
1627 + }
1628 + else {
1629 + usbcfg.b.phyif = 0;
1630 + }
1631 + }
1632 +
1633 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1634 +
1635 + /* Reset after setting the PHY parameters */
1636 + dwc_otg_core_reset(core_if);
1637 + }
1638 + }
1639 +
1640 + if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
1641 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1642 + (core_if->core_params->ulpi_fs_ls)) {
1643 + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
1644 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1645 + usbcfg.b.ulpi_fsls = 1;
1646 + usbcfg.b.ulpi_clk_sus_m = 1;
1647 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1648 + }
1649 + else {
1650 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1651 + usbcfg.b.ulpi_fsls = 0;
1652 + usbcfg.b.ulpi_clk_sus_m = 0;
1653 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1654 + }
1655 +
1656 + /* Program the GAHBCFG Register.*/
1657 + switch (core_if->hwcfg2.b.architecture) {
1658 +
1659 + case DWC_SLAVE_ONLY_ARCH:
1660 + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
1661 + ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1662 + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1663 + core_if->dma_enable = 0;
1664 + core_if->dma_desc_enable = 0;
1665 + break;
1666 +
1667 + case DWC_EXT_DMA_ARCH:
1668 + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
1669 + ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
1670 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
1671 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
1672 + break;
1673 +
1674 + case DWC_INT_DMA_ARCH:
1675 + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
1676 + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
1677 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
1678 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
1679 + break;
1680 +
1681 + }
1682 + ahbcfg.b.dmaenable = core_if->dma_enable;
1683 + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
1684 +
1685 + core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
1686 +
1687 + core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
1688 + core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
1689 + DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
1690 + DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
1691 +
1692 + /*
1693 + * Program the GUSBCFG register.
1694 + */
1695 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1696 +
1697 + switch (core_if->hwcfg2.b.op_mode) {
1698 + case DWC_MODE_HNP_SRP_CAPABLE:
1699 + usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
1700 + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
1701 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1702 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1703 + break;
1704 +
1705 + case DWC_MODE_SRP_ONLY_CAPABLE:
1706 + usbcfg.b.hnpcap = 0;
1707 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1708 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1709 + break;
1710 +
1711 + case DWC_MODE_NO_HNP_SRP_CAPABLE:
1712 + usbcfg.b.hnpcap = 0;
1713 + usbcfg.b.srpcap = 0;
1714 + break;
1715 +
1716 + case DWC_MODE_SRP_CAPABLE_DEVICE:
1717 + usbcfg.b.hnpcap = 0;
1718 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1719 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1720 + break;
1721 +
1722 + case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
1723 + usbcfg.b.hnpcap = 0;
1724 + usbcfg.b.srpcap = 0;
1725 + break;
1726 +
1727 + case DWC_MODE_SRP_CAPABLE_HOST:
1728 + usbcfg.b.hnpcap = 0;
1729 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1730 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1731 + break;
1732 +
1733 + case DWC_MODE_NO_SRP_CAPABLE_HOST:
1734 + usbcfg.b.hnpcap = 0;
1735 + usbcfg.b.srpcap = 0;
1736 + break;
1737 + }
1738 +
1739 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1740 +
1741 + /* Enable common interrupts */
1742 + dwc_otg_enable_common_interrupts(core_if);
1743 +
1744 + /* Do device or host intialization based on mode during PCD
1745 + * and HCD initialization */
1746 + if (dwc_otg_is_host_mode(core_if)) {
1747 + DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
1748 + core_if->op_state = A_HOST;
1749 + }
1750 + else {
1751 + DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
1752 + core_if->op_state = B_PERIPHERAL;
1753 +#ifdef DWC_DEVICE_ONLY
1754 + dwc_otg_core_dev_init(core_if);
1755 +#endif
1756 + }
1757 +}
1758 +
1759 +
1760 +/**
1761 + * This function enables the Device mode interrupts.
1762 + *
1763 + * @param core_if Programming view of DWC_otg controller
1764 + */
1765 +void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
1766 +{
1767 + gintmsk_data_t intr_mask = { .d32 = 0};
1768 + dwc_otg_core_global_regs_t *global_regs =
1769 + core_if->core_global_regs;
1770 +
1771 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1772 +
1773 + /* Disable all interrupts. */
1774 + dwc_write_reg32(&global_regs->gintmsk, 0);
1775 +
1776 + /* Clear any pending interrupts */
1777 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1778 +
1779 + /* Enable the common interrupts */
1780 + dwc_otg_enable_common_interrupts(core_if);
1781 +
1782 + /* Enable interrupts */
1783 + intr_mask.b.usbreset = 1;
1784 + intr_mask.b.enumdone = 1;
1785 +
1786 + if(!core_if->multiproc_int_enable) {
1787 + intr_mask.b.inepintr = 1;
1788 + intr_mask.b.outepintr = 1;
1789 + }
1790 +
1791 + intr_mask.b.erlysuspend = 1;
1792 +
1793 + if(core_if->en_multiple_tx_fifo == 0) {
1794 + intr_mask.b.epmismatch = 1;
1795 + }
1796 +
1797 +
1798 +#ifdef DWC_EN_ISOC
1799 + if(core_if->dma_enable) {
1800 + if(core_if->dma_desc_enable == 0) {
1801 + if(core_if->pti_enh_enable) {
1802 + dctl_data_t dctl = { .d32 = 0 };
1803 + dctl.b.ifrmnum = 1;
1804 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
1805 + } else {
1806 + intr_mask.b.incomplisoin = 1;
1807 + intr_mask.b.incomplisoout = 1;
1808 + }
1809 + }
1810 + } else {
1811 + intr_mask.b.incomplisoin = 1;
1812 + intr_mask.b.incomplisoout = 1;
1813 + }
1814 +#endif // DWC_EN_ISOC
1815 +
1816 +/** @todo NGS: Should this be a module parameter? */
1817 +#ifdef USE_PERIODIC_EP
1818 + intr_mask.b.isooutdrop = 1;
1819 + intr_mask.b.eopframe = 1;
1820 + intr_mask.b.incomplisoin = 1;
1821 + intr_mask.b.incomplisoout = 1;
1822 +#endif
1823 +
1824 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1825 +
1826 + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
1827 + dwc_read_reg32(&global_regs->gintmsk));
1828 +}
1829 +
1830 +/**
1831 + * This function initializes the DWC_otg controller registers for
1832 + * device mode.
1833 + *
1834 + * @param core_if Programming view of DWC_otg controller
1835 + *
1836 + */
1837 +void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
1838 +{
1839 + int i,size;
1840 + u_int32_t *default_value_array;
1841 +
1842 + dwc_otg_core_global_regs_t *global_regs =
1843 + core_if->core_global_regs;
1844 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
1845 + dwc_otg_core_params_t *params = core_if->core_params;
1846 + dcfg_data_t dcfg = { .d32 = 0};
1847 + grstctl_t resetctl = { .d32 = 0 };
1848 + uint32_t rx_fifo_size;
1849 + fifosize_data_t nptxfifosize;
1850 + fifosize_data_t txfifosize;
1851 + dthrctl_data_t dthrctl;
1852 +
1853 + /* Restart the Phy Clock */
1854 + dwc_write_reg32(core_if->pcgcctl, 0);
1855 +
1856 + /* Device configuration register */
1857 + init_devspd(core_if);
1858 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
1859 + dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
1860 + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
1861 +
1862 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
1863 +
1864 + /* Configure data FIFO sizes */
1865 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
1866 + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
1867 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
1868 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
1869 +
1870 + /* Rx FIFO */
1871 + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
1872 + dwc_read_reg32(&global_regs->grxfsiz));
1873 +
1874 + rx_fifo_size = params->dev_rx_fifo_size;
1875 + dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
1876 +
1877 + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
1878 + dwc_read_reg32(&global_regs->grxfsiz));
1879 +
1880 + /** Set Periodic Tx FIFO Mask all bits 0 */
1881 + core_if->p_tx_msk = 0;
1882 +
1883 + /** Set Tx FIFO Mask all bits 0 */
1884 + core_if->tx_msk = 0;
1885 +
1886 + /* Non-periodic Tx FIFO */
1887 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1888 + dwc_read_reg32(&global_regs->gnptxfsiz));
1889 +
1890 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1891 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1892 +
1893 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
1894 +
1895 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1896 + dwc_read_reg32(&global_regs->gnptxfsiz));
1897 +
1898 + txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1899 + if(core_if->en_multiple_tx_fifo == 0) {
1900 + //core_if->hwcfg4.b.ded_fifo_en==0
1901 +
1902 + /**@todo NGS: Fix Periodic FIFO Sizing! */
1903 + /*
1904 + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
1905 + * Indexes of the FIFO size module parameters in the
1906 + * dev_perio_tx_fifo_size array and the FIFO size registers in
1907 + * the dptxfsiz array run from 0 to 14.
1908 + */
1909 + /** @todo Finish debug of this */
1910 + size=core_if->hwcfg4.b.num_dev_perio_in_ep;
1911 + default_value_array=params->dev_perio_tx_fifo_size;
1912 +
1913 + }
1914 + else {
1915 + //core_if->hwcfg4.b.ded_fifo_en==1
1916 + /*
1917 + * Tx FIFOs These FIFOs are numbered from 1 to 15.
1918 + * Indexes of the FIFO size module parameters in the
1919 + * dev_tx_fifo_size array and the FIFO size registers in
1920 + * the dptxfsiz_dieptxf array run from 0 to 14.
1921 + */
1922 +
1923 + size=core_if->hwcfg4.b.num_in_eps;
1924 + default_value_array=params->dev_tx_fifo_size;
1925 +
1926 + }
1927 + for (i=0; i < size; i++)
1928 + {
1929 +
1930 + txfifosize.b.depth = default_value_array[i];
1931 + DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
1932 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1933 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
1934 + txfifosize.d32);
1935 + DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
1936 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1937 + txfifosize.b.startaddr += txfifosize.b.depth;
1938 + }
1939 + }
1940 + /* Flush the FIFOs */
1941 + dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
1942 + dwc_otg_flush_rx_fifo(core_if);
1943 +
1944 + /* Flush the Learning Queue. */
1945 + resetctl.b.intknqflsh = 1;
1946 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
1947 +
1948 + /* Clear all pending Device Interrupts */
1949 +
1950 + if(core_if->multiproc_int_enable) {
1951 + }
1952 +
1953 + /** @todo - if the condition needed to be checked
1954 + * or in any case all pending interrutps should be cleared?
1955 + */
1956 + if(core_if->multiproc_int_enable) {
1957 + for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
1958 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
1959 + }
1960 +
1961 + for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
1962 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
1963 + }
1964 +
1965 + dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
1966 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
1967 + } else {
1968 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
1969 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
1970 + dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
1971 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
1972 + }
1973 +
1974 + for (i=0; i <= dev_if->num_in_eps; i++)
1975 + {
1976 + depctl_data_t depctl;
1977 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
1978 + if (depctl.b.epena) {
1979 + depctl.d32 = 0;
1980 + depctl.b.epdis = 1;
1981 + depctl.b.snak = 1;
1982 + }
1983 + else {
1984 + depctl.d32 = 0;
1985 + }
1986 +
1987 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
1988 +
1989 +
1990 + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
1991 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
1992 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
1993 + }
1994 +
1995 + for (i=0; i <= dev_if->num_out_eps; i++)
1996 + {
1997 + depctl_data_t depctl;
1998 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
1999 + if (depctl.b.epena) {
2000 + depctl.d32 = 0;
2001 + depctl.b.epdis = 1;
2002 + depctl.b.snak = 1;
2003 + }
2004 + else {
2005 + depctl.d32 = 0;
2006 + }
2007 +
2008 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
2009 +
2010 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
2011 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
2012 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
2013 + }
2014 +
2015 + if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
2016 + dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
2017 + dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
2018 + dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
2019 +
2020 + dev_if->rx_thr_length = params->rx_thr_length;
2021 + dev_if->tx_thr_length = params->tx_thr_length;
2022 +
2023 + dev_if->setup_desc_index = 0;
2024 +
2025 + dthrctl.d32 = 0;
2026 + dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
2027 + dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
2028 + dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
2029 + dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
2030 + dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
2031 +
2032 + dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
2033 +
2034 + DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
2035 + dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
2036 +
2037 + }
2038 +
2039 + dwc_otg_enable_device_interrupts(core_if);
2040 +
2041 + {
2042 + diepmsk_data_t msk = { .d32 = 0 };
2043 + msk.b.txfifoundrn = 1;
2044 + if(core_if->multiproc_int_enable) {
2045 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
2046 + } else {
2047 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
2048 + }
2049 + }
2050 +
2051 +
2052 + if(core_if->multiproc_int_enable) {
2053 + /* Set NAK on Babble */
2054 + dctl_data_t dctl = { .d32 = 0};
2055 + dctl.b.nakonbble = 1;
2056 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
2057 + }
2058 +}
2059 +
2060 +/**
2061 + * This function enables the Host mode interrupts.
2062 + *
2063 + * @param core_if Programming view of DWC_otg controller
2064 + */
2065 +void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
2066 +{
2067 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
2068 + gintmsk_data_t intr_mask = { .d32 = 0 };
2069 +
2070 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
2071 +
2072 + /* Disable all interrupts. */
2073 + dwc_write_reg32(&global_regs->gintmsk, 0);
2074 +
2075 + /* Clear any pending interrupts. */
2076 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
2077 +
2078 + /* Enable the common interrupts */
2079 + dwc_otg_enable_common_interrupts(core_if);
2080 +
2081 + /*
2082 + * Enable host mode interrupts without disturbing common
2083 + * interrupts.
2084 + */
2085 + intr_mask.b.sofintr = 1;
2086 + intr_mask.b.portintr = 1;
2087 + intr_mask.b.hcintr = 1;
2088 +
2089 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
2090 +}
2091 +
2092 +/**
2093 + * This function disables the Host Mode interrupts.
2094 + *
2095 + * @param core_if Programming view of DWC_otg controller
2096 + */
2097 +void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
2098 +{
2099 + dwc_otg_core_global_regs_t *global_regs =
2100 + core_if->core_global_regs;
2101 + gintmsk_data_t intr_mask = { .d32 = 0 };
2102 +
2103 + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
2104 +
2105 + /*
2106 + * Disable host mode interrupts without disturbing common
2107 + * interrupts.
2108 + */
2109 + intr_mask.b.sofintr = 1;
2110 + intr_mask.b.portintr = 1;
2111 + intr_mask.b.hcintr = 1;
2112 + intr_mask.b.ptxfempty = 1;
2113 + intr_mask.b.nptxfempty = 1;
2114 +
2115 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
2116 +}
2117 +
2118 +/**
2119 + * This function initializes the DWC_otg controller registers for
2120 + * host mode.
2121 + *
2122 + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
2123 + * request queues. Host channels are reset to ensure that they are ready for
2124 + * performing transfers.
2125 + *
2126 + * @param core_if Programming view of DWC_otg controller
2127 + *
2128 + */
2129 +void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
2130 +{
2131 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
2132 + dwc_otg_host_if_t *host_if = core_if->host_if;
2133 + dwc_otg_core_params_t *params = core_if->core_params;
2134 + hprt0_data_t hprt0 = { .d32 = 0 };
2135 + fifosize_data_t nptxfifosize;
2136 + fifosize_data_t ptxfifosize;
2137 + int i;
2138 + hcchar_data_t hcchar;
2139 + hcfg_data_t hcfg;
2140 + dwc_otg_hc_regs_t *hc_regs;
2141 + int num_channels;
2142 + gotgctl_data_t gotgctl = { .d32 = 0 };
2143 +
2144 + DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
2145 +
2146 + /* Restart the Phy Clock */
2147 + dwc_write_reg32(core_if->pcgcctl, 0);
2148 +
2149 + /* Initialize Host Configuration Register */
2150 + init_fslspclksel(core_if);
2151 + if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
2152 + {
2153 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
2154 + hcfg.b.fslssupp = 1;
2155 + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
2156 + }
2157 +
2158 + /* Configure data FIFO sizes */
2159 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
2160 + DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
2161 + DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
2162 + DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
2163 + DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
2164 +
2165 + /* Rx FIFO */
2166 + DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2167 + dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
2168 + DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2169 +
2170 + /* Non-periodic Tx FIFO */
2171 + DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2172 + nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
2173 + nptxfifosize.b.startaddr = params->host_rx_fifo_size;
2174 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
2175 + DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2176 +
2177 + /* Periodic Tx FIFO */
2178 + DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2179 + ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
2180 + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
2181 + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
2182 + DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2183 + }
2184 +
2185 + /* Clear Host Set HNP Enable in the OTG Control Register */
2186 + gotgctl.b.hstsethnpen = 1;
2187 + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
2188 +
2189 + /* Make sure the FIFOs are flushed. */
2190 + dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
2191 + dwc_otg_flush_rx_fifo(core_if);
2192 +
2193 + /* Flush out any leftover queued requests. */
2194 + num_channels = core_if->core_params->host_channels;
2195 + for (i = 0; i < num_channels; i++)
2196 + {
2197 + hc_regs = core_if->host_if->hc_regs[i];
2198 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2199 + hcchar.b.chen = 0;
2200 + hcchar.b.chdis = 1;
2201 + hcchar.b.epdir = 0;
2202 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2203 + }
2204 +
2205 + /* Halt all channels to put them into a known state. */
2206 + for (i = 0; i < num_channels; i++)
2207 + {
2208 + int count = 0;
2209 + hc_regs = core_if->host_if->hc_regs[i];
2210 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2211 + hcchar.b.chen = 1;
2212 + hcchar.b.chdis = 1;
2213 + hcchar.b.epdir = 0;
2214 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2215 + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
2216 + do {
2217 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2218 + if (++count > 1000)
2219 + {
2220 + DWC_ERROR("%s: Unable to clear halt on channel %d\n",
2221 + __func__, i);
2222 + break;
2223 + }
2224 + }
2225 + while (hcchar.b.chen);
2226 + }
2227 +
2228 + /* Turn on the vbus power. */
2229 + DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
2230 + if (core_if->op_state == A_HOST) {
2231 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
2232 + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
2233 + if (hprt0.b.prtpwr == 0) {
2234 + hprt0.b.prtpwr = 1;
2235 + dwc_write_reg32(host_if->hprt0, hprt0.d32);
2236 + }
2237 + }
2238 +
2239 + dwc_otg_enable_host_interrupts(core_if);
2240 +}
2241 +
2242 +/**
2243 + * Prepares a host channel for transferring packets to/from a specific
2244 + * endpoint. The HCCHARn register is set up with the characteristics specified
2245 + * in _hc. Host channel interrupts that may need to be serviced while this
2246 + * transfer is in progress are enabled.
2247 + *
2248 + * @param core_if Programming view of DWC_otg controller
2249 + * @param hc Information needed to initialize the host channel
2250 + */
2251 +void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2252 +{
2253 + uint32_t intr_enable;
2254 + hcintmsk_data_t hc_intr_mask;
2255 + gintmsk_data_t gintmsk = { .d32 = 0 };
2256 + hcchar_data_t hcchar;
2257 + hcsplt_data_t hcsplt;
2258 +
2259 + uint8_t hc_num = hc->hc_num;
2260 + dwc_otg_host_if_t *host_if = core_if->host_if;
2261 + dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
2262 +
2263 + /* Clear old interrupt conditions for this host channel. */
2264 + hc_intr_mask.d32 = 0xFFFFFFFF;
2265 + hc_intr_mask.b.reserved = 0;
2266 + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
2267 +
2268 + /* Enable channel interrupts required for this transfer. */
2269 + hc_intr_mask.d32 = 0;
2270 + hc_intr_mask.b.chhltd = 1;
2271 + if (core_if->dma_enable) {
2272 + hc_intr_mask.b.ahberr = 1;
2273 + if (hc->error_state && !hc->do_split &&
2274 + hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
2275 + hc_intr_mask.b.ack = 1;
2276 + if (hc->ep_is_in) {
2277 + hc_intr_mask.b.datatglerr = 1;
2278 + if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
2279 + hc_intr_mask.b.nak = 1;
2280 + }
2281 + }
2282 + }
2283 + }
2284 + else {
2285 + switch (hc->ep_type) {
2286 + case DWC_OTG_EP_TYPE_CONTROL:
2287 + case DWC_OTG_EP_TYPE_BULK:
2288 + hc_intr_mask.b.xfercompl = 1;
2289 + hc_intr_mask.b.stall = 1;
2290 + hc_intr_mask.b.xacterr = 1;
2291 + hc_intr_mask.b.datatglerr = 1;
2292 + if (hc->ep_is_in) {
2293 + hc_intr_mask.b.bblerr = 1;
2294 + }
2295 + else {
2296 + hc_intr_mask.b.nak = 1;
2297 + hc_intr_mask.b.nyet = 1;
2298 + if (hc->do_ping) {
2299 + hc_intr_mask.b.ack = 1;
2300 + }
2301 + }
2302 +
2303 + if (hc->do_split) {
2304 + hc_intr_mask.b.nak = 1;
2305 + if (hc->complete_split) {
2306 + hc_intr_mask.b.nyet = 1;
2307 + }
2308 + else {
2309 + hc_intr_mask.b.ack = 1;
2310 + }
2311 + }
2312 +
2313 + if (hc->error_state) {
2314 + hc_intr_mask.b.ack = 1;
2315 + }
2316 + break;
2317 + case DWC_OTG_EP_TYPE_INTR:
2318 + hc_intr_mask.b.xfercompl = 1;
2319 + hc_intr_mask.b.nak = 1;
2320 + hc_intr_mask.b.stall = 1;
2321 + hc_intr_mask.b.xacterr = 1;
2322 + hc_intr_mask.b.datatglerr = 1;
2323 + hc_intr_mask.b.frmovrun = 1;
2324 +
2325 + if (hc->ep_is_in) {
2326 + hc_intr_mask.b.bblerr = 1;
2327 + }
2328 + if (hc->error_state) {
2329 + hc_intr_mask.b.ack = 1;
2330 + }
2331 + if (hc->do_split) {
2332 + if (hc->complete_split) {
2333 + hc_intr_mask.b.nyet = 1;
2334 + }
2335 + else {
2336 + hc_intr_mask.b.ack = 1;
2337 + }
2338 + }
2339 + break;
2340 + case DWC_OTG_EP_TYPE_ISOC:
2341 + hc_intr_mask.b.xfercompl = 1;
2342 + hc_intr_mask.b.frmovrun = 1;
2343 + hc_intr_mask.b.ack = 1;
2344 +
2345 + if (hc->ep_is_in) {
2346 + hc_intr_mask.b.xacterr = 1;
2347 + hc_intr_mask.b.bblerr = 1;
2348 + }
2349 + break;
2350 + }
2351 + }
2352 + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
2353 +
2354 +// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
2355 +// hc->max_packet = 512;
2356 + /* Enable the top level host channel interrupt. */
2357 + intr_enable = (1 << hc_num);
2358 + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
2359 +
2360 + /* Make sure host channel interrupts are enabled. */
2361 + gintmsk.b.hcintr = 1;
2362 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
2363 +
2364 + /*
2365 + * Program the HCCHARn register with the endpoint characteristics for
2366 + * the current transfer.
2367 + */
2368 + hcchar.d32 = 0;
2369 + hcchar.b.devaddr = hc->dev_addr;
2370 + hcchar.b.epnum = hc->ep_num;
2371 + hcchar.b.epdir = hc->ep_is_in;
2372 + hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
2373 + hcchar.b.eptype = hc->ep_type;
2374 + hcchar.b.mps = hc->max_packet;
2375 +
2376 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
2377 +
2378 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2379 + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
2380 + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
2381 + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
2382 + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
2383 + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
2384 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2385 + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
2386 +
2387 + /*
2388 + * Program the HCSPLIT register for SPLITs
2389 + */
2390 + hcsplt.d32 = 0;
2391 + if (hc->do_split) {
2392 + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
2393 + hc->complete_split ? "CSPLIT" : "SSPLIT");
2394 + hcsplt.b.compsplt = hc->complete_split;
2395 + hcsplt.b.xactpos = hc->xact_pos;
2396 + hcsplt.b.hubaddr = hc->hub_addr;
2397 + hcsplt.b.prtaddr = hc->port_addr;
2398 + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
2399 + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
2400 + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
2401 + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
2402 + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
2403 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2404 + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
2405 + }
2406 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
2407 +
2408 +}
2409 +
2410 +/**
2411 + * Attempts to halt a host channel. This function should only be called in
2412 + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
2413 + * normal circumstances in DMA mode, the controller halts the channel when the
2414 + * transfer is complete or a condition occurs that requires application
2415 + * intervention.
2416 + *
2417 + * In slave mode, checks for a free request queue entry, then sets the Channel
2418 + * Enable and Channel Disable bits of the Host Channel Characteristics
2419 + * register of the specified channel to intiate the halt. If there is no free
2420 + * request queue entry, sets only the Channel Disable bit of the HCCHARn
2421 + * register to flush requests for this channel. In the latter case, sets a
2422 + * flag to indicate that the host channel needs to be halted when a request
2423 + * queue slot is open.
2424 + *
2425 + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
2426 + * HCCHARn register. The controller ensures there is space in the request
2427 + * queue before submitting the halt request.
2428 + *
2429 + * Some time may elapse before the core flushes any posted requests for this
2430 + * host channel and halts. The Channel Halted interrupt handler completes the
2431 + * deactivation of the host channel.
2432 + *
2433 + * @param core_if Controller register interface.
2434 + * @param hc Host channel to halt.
2435 + * @param halt_status Reason for halting the channel.
2436 + */
2437 +void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
2438 + dwc_hc_t *hc,
2439 + dwc_otg_halt_status_e halt_status)
2440 +{
2441 + gnptxsts_data_t nptxsts;
2442 + hptxsts_data_t hptxsts;
2443 + hcchar_data_t hcchar;
2444 + dwc_otg_hc_regs_t *hc_regs;
2445 + dwc_otg_core_global_regs_t *global_regs;
2446 + dwc_otg_host_global_regs_t *host_global_regs;
2447 +
2448 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2449 + global_regs = core_if->core_global_regs;
2450 + host_global_regs = core_if->host_if->host_global_regs;
2451 +
2452 + WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
2453 +
2454 + if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
2455 + halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
2456 + /*
2457 + * Disable all channel interrupts except Ch Halted. The QTD
2458 + * and QH state associated with this transfer has been cleared
2459 + * (in the case of URB_DEQUEUE), so the channel needs to be
2460 + * shut down carefully to prevent crashes.
2461 + */
2462 + hcintmsk_data_t hcintmsk;
2463 + hcintmsk.d32 = 0;
2464 + hcintmsk.b.chhltd = 1;
2465 + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
2466 +
2467 + /*
2468 + * Make sure no other interrupts besides halt are currently
2469 + * pending. Handling another interrupt could cause a crash due
2470 + * to the QTD and QH state.
2471 + */
2472 + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
2473 +
2474 + /*
2475 + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
2476 + * even if the channel was already halted for some other
2477 + * reason.
2478 + */
2479 + hc->halt_status = halt_status;
2480 +
2481 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2482 + if (hcchar.b.chen == 0) {
2483 + /*
2484 + * The channel is either already halted or it hasn't
2485 + * started yet. In DMA mode, the transfer may halt if
2486 + * it finishes normally or a condition occurs that
2487 + * requires driver intervention. Don't want to halt
2488 + * the channel again. In either Slave or DMA mode,
2489 + * it's possible that the transfer has been assigned
2490 + * to a channel, but not started yet when an URB is
2491 + * dequeued. Don't want to halt a channel that hasn't
2492 + * started yet.
2493 + */
2494 + return;
2495 + }
2496 + }
2497 +
2498 + if (hc->halt_pending) {
2499 + /*
2500 + * A halt has already been issued for this channel. This might
2501 + * happen when a transfer is aborted by a higher level in
2502 + * the stack.
2503 + */
2504 +#ifdef DEBUG
2505 + DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
2506 + __func__, hc->hc_num);
2507 +
2508 +/* dwc_otg_dump_global_registers(core_if); */
2509 +/* dwc_otg_dump_host_registers(core_if); */
2510 +#endif
2511 + return;
2512 + }
2513 +
2514 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2515 + hcchar.b.chen = 1;
2516 + hcchar.b.chdis = 1;
2517 +
2518 + if (!core_if->dma_enable) {
2519 + /* Check for space in the request queue to issue the halt. */
2520 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
2521 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
2522 + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
2523 + if (nptxsts.b.nptxqspcavail == 0) {
2524 + hcchar.b.chen = 0;
2525 + }
2526 + }
2527 + else {
2528 + hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
2529 + if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
2530 + hcchar.b.chen = 0;
2531 + }
2532 + }
2533 + }
2534 +
2535 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2536 +
2537 + hc->halt_status = halt_status;
2538 +
2539 + if (hcchar.b.chen) {
2540 + hc->halt_pending = 1;
2541 + hc->halt_on_queue = 0;
2542 + }
2543 + else {
2544 + hc->halt_on_queue = 1;
2545 + }
2546 +
2547 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2548 + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
2549 + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
2550 + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
2551 + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
2552 +
2553 + return;
2554 +}
2555 +
2556 +/**
2557 + * Clears the transfer state for a host channel. This function is normally
2558 + * called after a transfer is done and the host channel is being released.
2559 + *
2560 + * @param core_if Programming view of DWC_otg controller.
2561 + * @param hc Identifies the host channel to clean up.
2562 + */
2563 +void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2564 +{
2565 + dwc_otg_hc_regs_t *hc_regs;
2566 +
2567 + hc->xfer_started = 0;
2568 +
2569 + /*
2570 + * Clear channel interrupt enables and any unhandled channel interrupt
2571 + * conditions.
2572 + */
2573 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2574 + dwc_write_reg32(&hc_regs->hcintmsk, 0);
2575 + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
2576 +
2577 +#ifdef DEBUG
2578 + del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
2579 + {
2580 + hcchar_data_t hcchar;
2581 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2582 + if (hcchar.b.chdis) {
2583 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2584 + __func__, hc->hc_num, hcchar.d32);
2585 + }
2586 + }
2587 +#endif
2588 +}
2589 +
2590 +/**
2591 + * Sets the channel property that indicates in which frame a periodic transfer
2592 + * should occur. This is always set to the _next_ frame. This function has no
2593 + * effect on non-periodic transfers.
2594 + *
2595 + * @param core_if Programming view of DWC_otg controller.
2596 + * @param hc Identifies the host channel to set up and its properties.
2597 + * @param hcchar Current value of the HCCHAR register for the specified host
2598 + * channel.
2599 + */
2600 +static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
2601 + dwc_hc_t *hc,
2602 + hcchar_data_t *hcchar)
2603 +{
2604 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2605 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2606 + hfnum_data_t hfnum;
2607 + hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
2608 +
2609 + /* 1 if _next_ frame is odd, 0 if it's even */
2610 + hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
2611 +#ifdef DEBUG
2612 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
2613 + switch (hfnum.b.frnum & 0x7) {
2614 + case 7:
2615 + core_if->hfnum_7_samples++;
2616 + core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
2617 + break;
2618 + case 0:
2619 + core_if->hfnum_0_samples++;
2620 + core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
2621 + break;
2622 + default:
2623 + core_if->hfnum_other_samples++;
2624 + core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
2625 + break;
2626 + }
2627 + }
2628 +#endif
2629 + }
2630 +}
2631 +
2632 +#ifdef DEBUG
2633 +static void hc_xfer_timeout(unsigned long ptr)
2634 +{
2635 + hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
2636 + int hc_num = xfer_info->hc->hc_num;
2637 + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
2638 + DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
2639 +}
2640 +#endif
2641 +
2642 +/*
2643 + * This function does the setup for a data transfer for a host channel and
2644 + * starts the transfer. May be called in either Slave mode or DMA mode. In
2645 + * Slave mode, the caller must ensure that there is sufficient space in the
2646 + * request queue and Tx Data FIFO.
2647 + *
2648 + * For an OUT transfer in Slave mode, it loads a data packet into the
2649 + * appropriate FIFO. If necessary, additional data packets will be loaded in
2650 + * the Host ISR.
2651 + *
2652 + * For an IN transfer in Slave mode, a data packet is requested. The data
2653 + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
2654 + * additional data packets are requested in the Host ISR.
2655 + *
2656 + * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
2657 + * register along with a packet count of 1 and the channel is enabled. This
2658 + * causes a single PING transaction to occur. Other fields in HCTSIZ are
2659 + * simply set to 0 since no data transfer occurs in this case.
2660 + *
2661 + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
2662 + * all the information required to perform the subsequent data transfer. In
2663 + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
2664 + * controller performs the entire PING protocol, then starts the data
2665 + * transfer.
2666 + *
2667 + * @param core_if Programming view of DWC_otg controller.
2668 + * @param hc Information needed to initialize the host channel. The xfer_len
2669 + * value may be reduced to accommodate the max widths of the XferSize and
2670 + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
2671 + * to reflect the final xfer_len value.
2672 + */
2673 +void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2674 +{
2675 + hcchar_data_t hcchar;
2676 + hctsiz_data_t hctsiz;
2677 + uint16_t num_packets;
2678 + uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
2679 + uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
2680 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2681 +
2682 + hctsiz.d32 = 0;
2683 +
2684 + if (hc->do_ping) {
2685 + if (!core_if->dma_enable) {
2686 + dwc_otg_hc_do_ping(core_if, hc);
2687 + hc->xfer_started = 1;
2688 + return;
2689 + }
2690 + else {
2691 + hctsiz.b.dopng = 1;
2692 + }
2693 + }
2694 +
2695 + if (hc->do_split) {
2696 + num_packets = 1;
2697 +
2698 + if (hc->complete_split && !hc->ep_is_in) {
2699 + /* For CSPLIT OUT Transfer, set the size to 0 so the
2700 + * core doesn't expect any data written to the FIFO */
2701 + hc->xfer_len = 0;
2702 + }
2703 + else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
2704 + hc->xfer_len = hc->max_packet;
2705 + }
2706 + else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
2707 + hc->xfer_len = 188;
2708 + }
2709 +
2710 + hctsiz.b.xfersize = hc->xfer_len;
2711 + }
2712 + else {
2713 + /*
2714 + * Ensure that the transfer length and packet count will fit
2715 + * in the widths allocated for them in the HCTSIZn register.
2716 + */
2717 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2718 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2719 + /*
2720 + * Make sure the transfer size is no larger than one
2721 + * (micro)frame's worth of data. (A check was done
2722 + * when the periodic transfer was accepted to ensure
2723 + * that a (micro)frame's worth of data can be
2724 + * programmed into a channel.)
2725 + */
2726 + uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
2727 + if (hc->xfer_len > max_periodic_len) {
2728 + hc->xfer_len = max_periodic_len;
2729 + }
2730 + else {
2731 + }
2732 + }
2733 + else if (hc->xfer_len > max_hc_xfer_size) {
2734 + /* Make sure that xfer_len is a multiple of max packet size. */
2735 + hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
2736 + }
2737 +
2738 + if (hc->xfer_len > 0) {
2739 + num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
2740 + if (num_packets > max_hc_pkt_count) {
2741 + num_packets = max_hc_pkt_count;
2742 + hc->xfer_len = num_packets * hc->max_packet;
2743 + }
2744 + }
2745 + else {
2746 + /* Need 1 packet for transfer length of 0. */
2747 + num_packets = 1;
2748 + }
2749 +
2750 +#if 0
2751 +//host testusb item 10, would do series of Control transfer
2752 +//with URB_SHORT_NOT_OK set in transfer_flags ,
2753 +//changing the xfer_len would cause the test fail
2754 + if (hc->ep_is_in) {
2755 + /* Always program an integral # of max packets for IN transfers. */
2756 + hc->xfer_len = num_packets * hc->max_packet;
2757 + }
2758 +#endif
2759 +
2760 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2761 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2762 + /*
2763 + * Make sure that the multi_count field matches the
2764 + * actual transfer length.
2765 + */
2766 + hc->multi_count = num_packets;
2767 + }
2768 +
2769 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2770 + /* Set up the initial PID for the transfer. */
2771 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
2772 + if (hc->ep_is_in) {
2773 + if (hc->multi_count == 1) {
2774 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2775 + }
2776 + else if (hc->multi_count == 2) {
2777 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
2778 + }
2779 + else {
2780 + hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
2781 + }
2782 + }
2783 + else {
2784 + if (hc->multi_count == 1) {
2785 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2786 + }
2787 + else {
2788 + hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
2789 + }
2790 + }
2791 + }
2792 + else {
2793 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2794 + }
2795 + }
2796 +
2797 + hctsiz.b.xfersize = hc->xfer_len;
2798 + }
2799 +
2800 + hc->start_pkt_count = num_packets;
2801 + hctsiz.b.pktcnt = num_packets;
2802 + hctsiz.b.pid = hc->data_pid_start;
2803 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2804 +
2805 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2806 + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
2807 + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
2808 + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
2809 +
2810 + if (core_if->dma_enable) {
2811 + dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
2812 + }
2813 +
2814 + /* Start the split */
2815 + if (hc->do_split) {
2816 + hcsplt_data_t hcsplt;
2817 + hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
2818 + hcsplt.b.spltena = 1;
2819 + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
2820 + }
2821 +
2822 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2823 + hcchar.b.multicnt = hc->multi_count;
2824 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2825 +#ifdef DEBUG
2826 + core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
2827 + if (hcchar.b.chdis) {
2828 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2829 + __func__, hc->hc_num, hcchar.d32);
2830 + }
2831 +#endif
2832 +
2833 + /* Set host channel enable after all other setup is complete. */
2834 + hcchar.b.chen = 1;
2835 + hcchar.b.chdis = 0;
2836 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2837 +
2838 + hc->xfer_started = 1;
2839 + hc->requests++;
2840 +
2841 + if (!core_if->dma_enable &&
2842 + !hc->ep_is_in && hc->xfer_len > 0) {
2843 + /* Load OUT packet into the appropriate Tx FIFO. */
2844 + dwc_otg_hc_write_packet(core_if, hc);
2845 + }
2846 +
2847 +#ifdef DEBUG
2848 + /* Start a timer for this transfer. */
2849 + core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
2850 + core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
2851 + core_if->hc_xfer_info[hc->hc_num].hc = hc;
2852 + core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
2853 + core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
2854 + add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
2855 +#endif
2856 +}
2857 +
2858 +/**
2859 + * This function continues a data transfer that was started by previous call
2860 + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
2861 + * sufficient space in the request queue and Tx Data FIFO. This function
2862 + * should only be called in Slave mode. In DMA mode, the controller acts
2863 + * autonomously to complete transfers programmed to a host channel.
2864 + *
2865 + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2866 + * if there is any data remaining to be queued. For an IN transfer, another
2867 + * data packet is always requested. For the SETUP phase of a control transfer,
2868 + * this function does nothing.
2869 + *
2870 + * @return 1 if a new request is queued, 0 if no more requests are required
2871 + * for this transfer.
2872 + */
2873 +int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2874 +{
2875 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2876 +
2877 + if (hc->do_split) {
2878 + /* SPLITs always queue just once per channel */
2879 + return 0;
2880 + }
2881 + else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
2882 + /* SETUPs are queued only once since they can't be NAKed. */
2883 + return 0;
2884 + }
2885 + else if (hc->ep_is_in) {
2886 + /*
2887 + * Always queue another request for other IN transfers. If
2888 + * back-to-back INs are issued and NAKs are received for both,
2889 + * the driver may still be processing the first NAK when the
2890 + * second NAK is received. When the interrupt handler clears
2891 + * the NAK interrupt for the first NAK, the second NAK will
2892 + * not be seen. So we can't depend on the NAK interrupt
2893 + * handler to requeue a NAKed request. Instead, IN requests
2894 + * are issued each time this function is called. When the
2895 + * transfer completes, the extra requests for the channel will
2896 + * be flushed.
2897 + */
2898 + hcchar_data_t hcchar;
2899 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2900 +
2901 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2902 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2903 + hcchar.b.chen = 1;
2904 + hcchar.b.chdis = 0;
2905 + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
2906 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2907 + hc->requests++;
2908 + return 1;
2909 + }
2910 + else {
2911 + /* OUT transfers. */
2912 + if (hc->xfer_count < hc->xfer_len) {
2913 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2914 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2915 + hcchar_data_t hcchar;
2916 + dwc_otg_hc_regs_t *hc_regs;
2917 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2918 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2919 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2920 + }
2921 +
2922 + /* Load OUT packet into the appropriate Tx FIFO. */
2923 + dwc_otg_hc_write_packet(core_if, hc);
2924 + hc->requests++;
2925 + return 1;
2926 + }
2927 + else {
2928 + return 0;
2929 + }
2930 + }
2931 +}
2932 +
2933 +/**
2934 + * Starts a PING transfer. This function should only be called in Slave mode.
2935 + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
2936 + */
2937 +void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2938 +{
2939 + hcchar_data_t hcchar;
2940 + hctsiz_data_t hctsiz;
2941 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2942 +
2943 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2944 +
2945 + hctsiz.d32 = 0;
2946 + hctsiz.b.dopng = 1;
2947 + hctsiz.b.pktcnt = 1;
2948 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2949 +
2950 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2951 + hcchar.b.chen = 1;
2952 + hcchar.b.chdis = 0;
2953 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2954 +}
2955 +
2956 +/*
2957 + * This function writes a packet into the Tx FIFO associated with the Host
2958 + * Channel. For a channel associated with a non-periodic EP, the non-periodic
2959 + * Tx FIFO is written. For a channel associated with a periodic EP, the
2960 + * periodic Tx FIFO is written. This function should only be called in Slave
2961 + * mode.
2962 + *
2963 + * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
2964 + * then number of bytes written to the Tx FIFO.
2965 + */
2966 +void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2967 +{
2968 + uint32_t i;
2969 + uint32_t remaining_count;
2970 + uint32_t byte_count;
2971 + uint32_t dword_count;
2972 +
2973 + uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
2974 + uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
2975 +
2976 + remaining_count = hc->xfer_len - hc->xfer_count;
2977 + if (remaining_count > hc->max_packet) {
2978 + byte_count = hc->max_packet;
2979 + }
2980 + else {
2981 + byte_count = remaining_count;
2982 + }
2983 +
2984 + dword_count = (byte_count + 3) / 4;
2985 +
2986 + if ((((unsigned long)data_buff) & 0x3) == 0) {
2987 + /* xfer_buff is DWORD aligned. */
2988 + for (i = 0; i < dword_count; i++, data_buff++)
2989 + {
2990 + dwc_write_reg32(data_fifo, *data_buff);
2991 + }
2992 + }
2993 + else {
2994 + /* xfer_buff is not DWORD aligned. */
2995 + for (i = 0; i < dword_count; i++, data_buff++)
2996 + {
2997 + dwc_write_reg32(data_fifo, get_unaligned(data_buff));
2998 + }
2999 + }
3000 +
3001 + hc->xfer_count += byte_count;
3002 + hc->xfer_buff += byte_count;
3003 +}
3004 +
3005 +/**
3006 + * Gets the current USB frame number. This is the frame number from the last
3007 + * SOF packet.
3008 + */
3009 +uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
3010 +{
3011 + dsts_data_t dsts;
3012 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
3013 +
3014 + /* read current frame/microframe number from DSTS register */
3015 + return dsts.b.soffn;
3016 +}
3017 +
3018 +/**
3019 + * This function reads a setup packet from the Rx FIFO into the destination
3020 + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
3021 + * Interrupt routine when a SETUP packet has been received in Slave mode.
3022 + *
3023 + * @param core_if Programming view of DWC_otg controller.
3024 + * @param dest Destination buffer for packet data.
3025 + */
3026 +void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
3027 +{
3028 + /* Get the 8 bytes of a setup transaction data */
3029 +
3030 + /* Pop 2 DWORDS off the receive data FIFO into memory */
3031 + dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
3032 + dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
3033 +}
3034 +
3035 +
3036 +/**
3037 + * This function enables EP0 OUT to receive SETUP packets and configures EP0
3038 + * IN for transmitting packets. It is normally called when the
3039 + * "Enumeration Done" interrupt occurs.
3040 + *
3041 + * @param core_if Programming view of DWC_otg controller.
3042 + * @param ep The EP0 data.
3043 + */
3044 +void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3045 +{
3046 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3047 + dsts_data_t dsts;
3048 + depctl_data_t diepctl;
3049 + depctl_data_t doepctl;
3050 + dctl_data_t dctl = { .d32 = 0 };
3051 +
3052 + /* Read the Device Status and Endpoint 0 Control registers */
3053 + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
3054 + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
3055 + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
3056 +
3057 + /* Set the MPS of the IN EP based on the enumeration speed */
3058 + switch (dsts.b.enumspd) {
3059 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
3060 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
3061 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
3062 + diepctl.b.mps = DWC_DEP0CTL_MPS_64;
3063 + break;
3064 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
3065 + diepctl.b.mps = DWC_DEP0CTL_MPS_8;
3066 + break;
3067 + }
3068 +
3069 + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
3070 +
3071 + /* Enable OUT EP for receive */
3072 + doepctl.b.epena = 1;
3073 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
3074 +
3075 +#ifdef VERBOSE
3076 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
3077 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
3078 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
3079 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
3080 +#endif
3081 + dctl.b.cgnpinnak = 1;
3082 +
3083 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
3084 + DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
3085 + dwc_read_reg32(&dev_if->dev_global_regs->dctl));
3086 +}
3087 +
3088 +/**
3089 + * This function activates an EP. The Device EP control register for
3090 + * the EP is configured as defined in the ep structure. Note: This
3091 + * function is not used for EP0.
3092 + *
3093 + * @param core_if Programming view of DWC_otg controller.
3094 + * @param ep The EP to activate.
3095 + */
3096 +void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3097 +{
3098 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3099 + depctl_data_t depctl;
3100 + volatile uint32_t *addr;
3101 + daint_data_t daintmsk = { .d32 = 0 };
3102 +
3103 + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
3104 + (ep->is_in?"IN":"OUT"));
3105 +
3106 + /* Read DEPCTLn register */
3107 + if (ep->is_in == 1) {
3108 + addr = &dev_if->in_ep_regs[ep->num]->diepctl;
3109 + daintmsk.ep.in = 1<<ep->num;
3110 + }
3111 + else {
3112 + addr = &dev_if->out_ep_regs[ep->num]->doepctl;
3113 + daintmsk.ep.out = 1<<ep->num;
3114 + }
3115 +
3116 + /* If the EP is already active don't change the EP Control
3117 + * register. */
3118 + depctl.d32 = dwc_read_reg32(addr);
3119 + if (!depctl.b.usbactep) {
3120 + depctl.b.mps = ep->maxpacket;
3121 + depctl.b.eptype = ep->type;
3122 + depctl.b.txfnum = ep->tx_fifo_num;
3123 +
3124 + if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
3125 + depctl.b.setd0pid = 1; // ???
3126 + }
3127 + else {
3128 + depctl.b.setd0pid = 1;
3129 + }
3130 + depctl.b.usbactep = 1;
3131 +
3132 + dwc_write_reg32(addr, depctl.d32);
3133 + DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
3134 + }
3135 +
3136 + /* Enable the Interrupt for this EP */
3137 + if(core_if->multiproc_int_enable) {
3138 + if (ep->is_in == 1) {
3139 + diepmsk_data_t diepmsk = { .d32 = 0};
3140 + diepmsk.b.xfercompl = 1;
3141 + diepmsk.b.timeout = 1;
3142 + diepmsk.b.epdisabled = 1;
3143 + diepmsk.b.ahberr = 1;
3144 + diepmsk.b.intknepmis = 1;
3145 + diepmsk.b.txfifoundrn = 1; //?????
3146 +
3147 +
3148 + if(core_if->dma_desc_enable) {
3149 + diepmsk.b.bna = 1;
3150 + }
3151 +/*
3152 + if(core_if->dma_enable) {
3153 + doepmsk.b.nak = 1;
3154 + }
3155 +*/
3156 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
3157 +
3158 + } else {
3159 + doepmsk_data_t doepmsk = { .d32 = 0};
3160 + doepmsk.b.xfercompl = 1;
3161 + doepmsk.b.ahberr = 1;
3162 + doepmsk.b.epdisabled = 1;
3163 +
3164 +
3165 + if(core_if->dma_desc_enable) {
3166 + doepmsk.b.bna = 1;
3167 + }
3168 +/*
3169 + doepmsk.b.babble = 1;
3170 + doepmsk.b.nyet = 1;
3171 + doepmsk.b.nak = 1;
3172 +*/
3173 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
3174 + }
3175 + dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
3176 + 0, daintmsk.d32);
3177 + } else {
3178 + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
3179 + 0, daintmsk.d32);
3180 + }
3181 +
3182 + DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
3183 + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
3184 +
3185 + ep->stall_clear_flag = 0;
3186 + return;
3187 +}
3188 +
3189 +/**
3190 + * This function deactivates an EP. This is done by clearing the USB Active
3191 + * EP bit in the Device EP control register. Note: This function is not used
3192 + * for EP0. EP0 cannot be deactivated.
3193 + *
3194 + * @param core_if Programming view of DWC_otg controller.
3195 + * @param ep The EP to deactivate.
3196 + */
3197 +void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3198 +{
3199 + depctl_data_t depctl = { .d32 = 0 };
3200 + volatile uint32_t *addr;
3201 + daint_data_t daintmsk = { .d32 = 0};
3202 +
3203 + /* Read DEPCTLn register */
3204 + if (ep->is_in == 1) {
3205 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
3206 + daintmsk.ep.in = 1<<ep->num;
3207 + }
3208 + else {
3209 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
3210 + daintmsk.ep.out = 1<<ep->num;
3211 + }
3212 +
3213 + //disabled ep only when ep is enabled
3214 + //or got halt in the loop in test in cv9
3215 + depctl.d32=dwc_read_reg32(addr);
3216 + if(depctl.b.epena){
3217 + if (ep->is_in == 1) {
3218 + diepint_data_t diepint;
3219 + dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
3220 +
3221 + //Set ep nak
3222 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3223 + depctl.b.snak=1;
3224 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3225 +
3226 + //wait for diepint.b.inepnakeff
3227 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3228 + while(!diepint.b.inepnakeff){
3229 + udelay(1);
3230 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3231 + }
3232 + diepint.d32=0;
3233 + diepint.b.inepnakeff=1;
3234 + dwc_write_reg32(&in_reg->diepint,diepint.d32);
3235 +
3236 + //set ep disable and snak
3237 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3238 + depctl.b.snak=1;
3239 + depctl.b.epdis=1;
3240 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3241 +
3242 + //wait for diepint.b.epdisabled
3243 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3244 + while(!diepint.b.epdisabled){
3245 + udelay(1);
3246 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3247 + }
3248 + diepint.d32=0;
3249 + diepint.b.epdisabled=1;
3250 + dwc_write_reg32(&in_reg->diepint,diepint.d32);
3251 +
3252 + //clear ep enable and disable bit
3253 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3254 + depctl.b.epena=0;
3255 + depctl.b.epdis=0;
3256 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3257 +
3258 + }
3259 +#if 0
3260 +//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
3261 +//but this doesn't work, the old code do.
3262 + else {
3263 + doepint_data_t doepint;
3264 + dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
3265 + dctl_data_t dctl;
3266 + gintsts_data_t gintsts;
3267 +
3268 + //set dctl global out nak
3269 + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
3270 + dctl.b.sgoutnak=1;
3271 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
3272 +
3273 + //wait for gintsts.goutnakeff
3274 + gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
3275 + while(!gintsts.b.goutnakeff){
3276 + udelay(1);
3277 + gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
3278 + }
3279 + gintsts.d32=0;
3280 + gintsts.b.goutnakeff=1;
3281 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
3282 +
3283 + //set ep disable and snak
3284 + depctl.d32=dwc_read_reg32(&out_reg->doepctl);
3285 + depctl.b.snak=1;
3286 + depctl.b.epdis=1;
3287 + dwc_write_reg32(&out_reg->doepctl,depctl.d32);
3288 +
3289 + //wait for diepint.b.epdisabled
3290 + doepint.d32=dwc_read_reg32(&out_reg->doepint);
3291 + while(!doepint.b.epdisabled){
3292 + udelay(1);
3293 + doepint.d32=dwc_read_reg32(&out_reg->doepint);
3294 + }
3295 + doepint.d32=0;
3296 + doepint.b.epdisabled=1;
3297 + dwc_write_reg32(&out_reg->doepint,doepint.d32);
3298 +
3299 + //clear ep enable and disable bit
3300 + depctl.d32=dwc_read_reg32(&out_reg->doepctl);
3301 + depctl.b.epena=0;
3302 + depctl.b.epdis=0;
3303 + dwc_write_reg32(&out_reg->doepctl,depctl.d32);
3304 + }
3305 +#endif
3306 +
3307 + depctl.d32=0;
3308 + depctl.b.usbactep = 0;
3309 +
3310 + if (ep->is_in == 0) {
3311 + if(core_if->dma_enable||core_if->dma_desc_enable)
3312 + depctl.b.epdis = 1;
3313 + }
3314 +
3315 + dwc_write_reg32(addr, depctl.d32);
3316 + }
3317 +
3318 + /* Disable the Interrupt for this EP */
3319 + if(core_if->multiproc_int_enable) {
3320 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
3321 + daintmsk.d32, 0);
3322 +
3323 + if (ep->is_in == 1) {
3324 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
3325 + } else {
3326 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
3327 + }
3328 + } else {
3329 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
3330 + daintmsk.d32, 0);
3331 + }
3332 +
3333 + if (ep->is_in == 1) {
3334 + DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
3335 + (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
3336 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
3337 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
3338 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
3339 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
3340 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
3341 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3342 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3343 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3344 + }
3345 + else {
3346 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
3347 + (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
3348 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
3349 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
3350 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
3351 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
3352 +
3353 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3354 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3355 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3356 + }
3357 +
3358 +}
3359 +
3360 +/**
3361 + * This function does the setup for a data transfer for an EP and
3362 + * starts the transfer. For an IN transfer, the packets will be
3363 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
3364 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
3365 + *
3366 + * @param core_if Programming view of DWC_otg controller.
3367 + * @param ep The EP to start the transfer on.
3368 + */
3369 +static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3370 +{
3371 + dwc_otg_dma_desc_t* dma_desc;
3372 + uint32_t offset;
3373 + uint32_t xfer_est;
3374 + int i;
3375 +
3376 + ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
3377 + ((ep->total_len % ep->maxxfer) ? 1 : 0);
3378 + if(!ep->desc_cnt)
3379 + ep->desc_cnt = 1;
3380 +
3381 + dma_desc = ep->desc_addr;
3382 + xfer_est = ep->total_len;
3383 + offset = 0;
3384 + for( i = 0; i < ep->desc_cnt; ++i) {
3385 + /** DMA Descriptor Setup */
3386 + if(xfer_est > ep->maxxfer) {
3387 + dma_desc->status.b.bs = BS_HOST_BUSY;
3388 + dma_desc->status.b.l = 0;
3389 + dma_desc->status.b.ioc = 0;
3390 + dma_desc->status.b.sp = 0;
3391 + dma_desc->status.b.bytes = ep->maxxfer;
3392 + dma_desc->buf = ep->dma_addr + offset;
3393 + dma_desc->status.b.bs = BS_HOST_READY;
3394 +
3395 + xfer_est -= ep->maxxfer;
3396 + offset += ep->maxxfer;
3397 + } else {
3398 + dma_desc->status.b.bs = BS_HOST_BUSY;
3399 + dma_desc->status.b.l = 1;
3400 + dma_desc->status.b.ioc = 1;
3401 + if(ep->is_in) {
3402 + dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
3403 + 1 : ((ep->sent_zlp) ? 1 : 0);
3404 + dma_desc->status.b.bytes = xfer_est;
3405 + } else {
3406 + dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
3407 + }
3408 +
3409 + dma_desc->buf = ep->dma_addr + offset;
3410 + dma_desc->status.b.bs = BS_HOST_READY;
3411 + }
3412 + dma_desc ++;
3413 + }
3414 +}
3415 +
3416 +/**
3417 + * This function does the setup for a data transfer for an EP and
3418 + * starts the transfer. For an IN transfer, the packets will be
3419 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
3420 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
3421 + *
3422 + * @param core_if Programming view of DWC_otg controller.
3423 + * @param ep The EP to start the transfer on.
3424 + */
3425 +
3426 +void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3427 +{
3428 + depctl_data_t depctl;
3429 + deptsiz_data_t deptsiz;
3430 + gintmsk_data_t intr_mask = { .d32 = 0};
3431 +
3432 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3433 +
3434 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3435 + "xfer_buff=%p start_xfer_buff=%p\n",
3436 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
3437 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
3438 +
3439 + /* IN endpoint */
3440 + if (ep->is_in == 1) {
3441 + dwc_otg_dev_in_ep_regs_t *in_regs =
3442 + core_if->dev_if->in_ep_regs[ep->num];
3443 +
3444 + gnptxsts_data_t gtxstatus;
3445 +
3446 + gtxstatus.d32 =
3447 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3448 +
3449 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
3450 +#ifdef DEBUG
3451 + DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
3452 +#endif
3453 + return;
3454 + }
3455 +
3456 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3457 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3458 +
3459 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
3460 + ep->maxxfer : (ep->total_len - ep->xfer_len);
3461 +
3462 + /* Zero Length Packet? */
3463 + if ((ep->xfer_len - ep->xfer_count) == 0) {
3464 + deptsiz.b.xfersize = 0;
3465 + deptsiz.b.pktcnt = 1;
3466 + }
3467 + else {
3468 + /* Program the transfer size and packet count
3469 + * as follows: xfersize = N * maxpacket +
3470 + * short_packet pktcnt = N + (short_packet
3471 + * exist ? 1 : 0)
3472 + */
3473 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
3474 + deptsiz.b.pktcnt =
3475 + (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
3476 + ep->maxpacket;
3477 + }
3478 +
3479 +
3480 + /* Write the DMA register */
3481 + if (core_if->dma_enable) {
3482 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3483 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3484 + }
3485 + DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
3486 +
3487 + if (core_if->dma_desc_enable == 0) {
3488 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3489 +
3490 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3491 + dwc_write_reg32 (&(in_regs->diepdma),
3492 + (uint32_t)ep->dma_addr);
3493 + }
3494 + else {
3495 + init_dma_desc_chain(core_if, ep);
3496 + /** DIEPDMAn Register write */
3497 +
3498 + VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
3499 + dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
3500 + }
3501 + }
3502 + else
3503 + {
3504 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3505 + if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
3506 + /**
3507 + * Enable the Non-Periodic Tx FIFO empty interrupt,
3508 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3509 + * the data will be written into the fifo by the ISR.
3510 + */
3511 + if(core_if->en_multiple_tx_fifo == 0) {
3512 + intr_mask.b.nptxfempty = 1;
3513 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3514 + intr_mask.d32, intr_mask.d32);
3515 + }
3516 + else {
3517 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3518 + if(ep->xfer_len > 0) {
3519 + uint32_t fifoemptymsk = 0;
3520 + fifoemptymsk = 1 << ep->num;
3521 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3522 + 0, fifoemptymsk);
3523 +
3524 + }
3525 + }
3526 + }
3527 + }
3528 +
3529 + /* EP enable, IN data in FIFO */
3530 + depctl.b.cnak = 1;
3531 + depctl.b.epena = 1;
3532 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3533 +
3534 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
3535 + depctl.b.nextep = ep->num;
3536 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3537 +
3538 + DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
3539 + (u32)&in_regs->diepctl,
3540 + dwc_read_reg32(&in_regs->diepctl),
3541 + dwc_read_reg32(&in_regs->dieptsiz),
3542 + dwc_read_reg32(&in_regs->diepint),
3543 + dwc_read_reg32(&in_regs->diepdma),
3544 + dwc_read_reg32(&in_regs->dtxfsts));
3545 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3546 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3547 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3548 +
3549 + }
3550 + else {
3551 + /* OUT endpoint */
3552 + dwc_otg_dev_out_ep_regs_t *out_regs =
3553 + core_if->dev_if->out_ep_regs[ep->num];
3554 +
3555 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3556 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3557 +
3558 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
3559 + ep->maxxfer : (ep->total_len - ep->xfer_len);
3560 +
3561 + /* Program the transfer size and packet count as follows:
3562 + *
3563 + * pktcnt = N
3564 + * xfersize = N * maxpacket
3565 + */
3566 + if ((ep->xfer_len - ep->xfer_count) == 0) {
3567 + /* Zero Length Packet */
3568 + deptsiz.b.xfersize = ep->maxpacket;
3569 + deptsiz.b.pktcnt = 1;
3570 + }
3571 + else {
3572 + deptsiz.b.pktcnt =
3573 + (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
3574 + ep->maxpacket;
3575 + ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
3576 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
3577 + }
3578 +
3579 + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
3580 + ep->num,
3581 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3582 +
3583 + if (core_if->dma_enable) {
3584 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3585 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3586 + }
3587 + DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
3588 + ep->num,
3589 + ep->dma_addr);
3590 + if (!core_if->dma_desc_enable) {
3591 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3592 +
3593 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3594 + dwc_write_reg32 (&(out_regs->doepdma),
3595 + (uint32_t)ep->dma_addr);
3596 + }
3597 + else {
3598 + init_dma_desc_chain(core_if, ep);
3599 +
3600 + /** DOEPDMAn Register write */
3601 +
3602 + VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
3603 + dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
3604 + }
3605 + }
3606 + else {
3607 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3608 + }
3609 +
3610 + /* EP enable */
3611 + depctl.b.cnak = 1;
3612 + depctl.b.epena = 1;
3613 +
3614 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3615 +
3616 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
3617 + (u32)&out_regs->doepctl,
3618 + dwc_read_reg32(&out_regs->doepctl),
3619 + dwc_read_reg32(&out_regs->doeptsiz),
3620 + dwc_read_reg32(&out_regs->doepint),
3621 + dwc_read_reg32(&out_regs->doepdma));
3622 +
3623 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3624 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3625 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3626 + }
3627 +}
3628 +
3629 +/**
3630 + * This function setup a zero length transfer in Buffer DMA and
3631 + * Slave modes for usb requests with zero field set
3632 + *
3633 + * @param core_if Programming view of DWC_otg controller.
3634 + * @param ep The EP to start the transfer on.
3635 + *
3636 + */
3637 +void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3638 +{
3639 +
3640 + depctl_data_t depctl;
3641 + deptsiz_data_t deptsiz;
3642 + gintmsk_data_t intr_mask = { .d32 = 0};
3643 +
3644 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3645 +
3646 + /* IN endpoint */
3647 + if (ep->is_in == 1) {
3648 + dwc_otg_dev_in_ep_regs_t *in_regs =
3649 + core_if->dev_if->in_ep_regs[ep->num];
3650 +
3651 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3652 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3653 +
3654 + deptsiz.b.xfersize = 0;
3655 + deptsiz.b.pktcnt = 1;
3656 +
3657 +
3658 + /* Write the DMA register */
3659 + if (core_if->dma_enable) {
3660 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3661 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3662 + }
3663 + if (core_if->dma_desc_enable == 0) {
3664 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3665 +
3666 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3667 + dwc_write_reg32 (&(in_regs->diepdma),
3668 + (uint32_t)ep->dma_addr);
3669 + }
3670 + }
3671 + else {
3672 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3673 + /**
3674 + * Enable the Non-Periodic Tx FIFO empty interrupt,
3675 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3676 + * the data will be written into the fifo by the ISR.
3677 + */
3678 + if(core_if->en_multiple_tx_fifo == 0) {
3679 + intr_mask.b.nptxfempty = 1;
3680 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3681 + intr_mask.d32, intr_mask.d32);
3682 + }
3683 + else {
3684 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3685 + if(ep->xfer_len > 0) {
3686 + uint32_t fifoemptymsk = 0;
3687 + fifoemptymsk = 1 << ep->num;
3688 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3689 + 0, fifoemptymsk);
3690 + }
3691 + }
3692 + }
3693 +
3694 + /* EP enable, IN data in FIFO */
3695 + depctl.b.cnak = 1;
3696 + depctl.b.epena = 1;
3697 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3698 +
3699 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
3700 + depctl.b.nextep = ep->num;
3701 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3702 +
3703 + }
3704 + else {
3705 + /* OUT endpoint */
3706 + dwc_otg_dev_out_ep_regs_t *out_regs =
3707 + core_if->dev_if->out_ep_regs[ep->num];
3708 +
3709 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3710 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3711 +
3712 + /* Zero Length Packet */
3713 + deptsiz.b.xfersize = ep->maxpacket;
3714 + deptsiz.b.pktcnt = 1;
3715 +
3716 + if (core_if->dma_enable) {
3717 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3718 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3719 + }
3720 + if (!core_if->dma_desc_enable) {
3721 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3722 +
3723 +
3724 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3725 + dwc_write_reg32 (&(out_regs->doepdma),
3726 + (uint32_t)ep->dma_addr);
3727 + }
3728 + }
3729 + else {
3730 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3731 + }
3732 +
3733 + /* EP enable */
3734 + depctl.b.cnak = 1;
3735 + depctl.b.epena = 1;
3736 +
3737 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3738 +
3739 + }
3740 +}
3741 +
3742 +/**
3743 + * This function does the setup for a data transfer for EP0 and starts
3744 + * the transfer. For an IN transfer, the packets will be loaded into
3745 + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
3746 + * unloaded from the Rx FIFO in the ISR.
3747 + *
3748 + * @param core_if Programming view of DWC_otg controller.
3749 + * @param ep The EP0 data.
3750 + */
3751 +void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3752 +{
3753 + depctl_data_t depctl;
3754 + deptsiz0_data_t deptsiz;
3755 + gintmsk_data_t intr_mask = { .d32 = 0};
3756 + dwc_otg_dma_desc_t* dma_desc;
3757 +
3758 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3759 + "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
3760 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
3761 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
3762 +
3763 + ep->total_len = ep->xfer_len;
3764 +
3765 + /* IN endpoint */
3766 + if (ep->is_in == 1) {
3767 + dwc_otg_dev_in_ep_regs_t *in_regs =
3768 + core_if->dev_if->in_ep_regs[0];
3769 +
3770 + gnptxsts_data_t gtxstatus;
3771 +
3772 + gtxstatus.d32 =
3773 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3774 +
3775 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
3776 +#ifdef DEBUG
3777 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3778 + DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
3779 + dwc_read_reg32(&in_regs->diepctl));
3780 + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
3781 + deptsiz.d32,
3782 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3783 + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
3784 + gtxstatus.d32);
3785 +#endif
3786 + return;
3787 + }
3788 +
3789 +
3790 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3791 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3792 +
3793 + /* Zero Length Packet? */
3794 + if (ep->xfer_len == 0) {
3795 + deptsiz.b.xfersize = 0;
3796 + deptsiz.b.pktcnt = 1;
3797 + }
3798 + else {
3799 + /* Program the transfer size and packet count
3800 + * as follows: xfersize = N * maxpacket +
3801 + * short_packet pktcnt = N + (short_packet
3802 + * exist ? 1 : 0)
3803 + */
3804 + if (ep->xfer_len > ep->maxpacket) {
3805 + ep->xfer_len = ep->maxpacket;
3806 + deptsiz.b.xfersize = ep->maxpacket;
3807 + }
3808 + else {
3809 + deptsiz.b.xfersize = ep->xfer_len;
3810 + }
3811 + deptsiz.b.pktcnt = 1;
3812 +
3813 + }
3814 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3815 + ep->xfer_len,
3816 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
3817 + /* Write the DMA register */
3818 + if (core_if->dma_enable) {
3819 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3820 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3821 + }
3822 + if(core_if->dma_desc_enable == 0) {
3823 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3824 +
3825 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3826 + dwc_write_reg32 (&(in_regs->diepdma),
3827 + (uint32_t)ep->dma_addr);
3828 + }
3829 + else {
3830 + dma_desc = core_if->dev_if->in_desc_addr;
3831 +
3832 + /** DMA Descriptor Setup */
3833 + dma_desc->status.b.bs = BS_HOST_BUSY;
3834 + dma_desc->status.b.l = 1;
3835 + dma_desc->status.b.ioc = 1;
3836 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
3837 + dma_desc->status.b.bytes = ep->xfer_len;
3838 + dma_desc->buf = ep->dma_addr;
3839 + dma_desc->status.b.bs = BS_HOST_READY;
3840 +
3841 + /** DIEPDMA0 Register write */
3842 +
3843 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
3844 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
3845 + }
3846 + }
3847 + else {
3848 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3849 + }
3850 +
3851 + /* EP enable, IN data in FIFO */
3852 + depctl.b.cnak = 1;
3853 + depctl.b.epena = 1;
3854 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3855 +
3856 + /**
3857 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
3858 + * data will be written into the fifo by the ISR.
3859 + */
3860 + if (!core_if->dma_enable) {
3861 + if(core_if->en_multiple_tx_fifo == 0) {
3862 + intr_mask.b.nptxfempty = 1;
3863 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3864 + intr_mask.d32, intr_mask.d32);
3865 + }
3866 + else {
3867 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3868 + if(ep->xfer_len > 0) {
3869 + uint32_t fifoemptymsk = 0;
3870 + fifoemptymsk |= 1 << ep->num;
3871 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3872 + 0, fifoemptymsk);
3873 + }
3874 + }
3875 + }
3876 + }
3877 + else {
3878 + /* OUT endpoint */
3879 + dwc_otg_dev_out_ep_regs_t *out_regs =
3880 + core_if->dev_if->out_ep_regs[0];
3881 +
3882 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3883 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
3884 +
3885 + /* Program the transfer size and packet count as follows:
3886 + * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
3887 + * pktcnt = N */
3888 + /* Zero Length Packet */
3889 + deptsiz.b.xfersize = ep->maxpacket;
3890 + deptsiz.b.pktcnt = 1;
3891 +
3892 + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
3893 + ep->xfer_len,
3894 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3895 +
3896 + if (core_if->dma_enable) {
3897 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3898 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3899 + }
3900 + if(!core_if->dma_desc_enable) {
3901 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3902 +
3903 +
3904 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3905 + dwc_write_reg32 (&(out_regs->doepdma),
3906 + (uint32_t)ep->dma_addr);
3907 + }
3908 + else {
3909 + dma_desc = core_if->dev_if->out_desc_addr;
3910 +
3911 + /** DMA Descriptor Setup */
3912 + dma_desc->status.b.bs = BS_HOST_BUSY;
3913 + dma_desc->status.b.l = 1;
3914 + dma_desc->status.b.ioc = 1;
3915 + dma_desc->status.b.bytes = ep->maxpacket;
3916 + dma_desc->buf = ep->dma_addr;
3917 + dma_desc->status.b.bs = BS_HOST_READY;
3918 +
3919 + /** DOEPDMA0 Register write */
3920 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
3921 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
3922 + }
3923 + }
3924 + else {
3925 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3926 + }
3927 +
3928 + /* EP enable */
3929 + depctl.b.cnak = 1;
3930 + depctl.b.epena = 1;
3931 + dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
3932 + }
3933 +}
3934 +
3935 +/**
3936 + * This function continues control IN transfers started by
3937 + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
3938 + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
3939 + * bit for the packet count.
3940 + *
3941 + * @param core_if Programming view of DWC_otg controller.
3942 + * @param ep The EP0 data.
3943 + */
3944 +void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3945 +{
3946 + depctl_data_t depctl;
3947 + deptsiz0_data_t deptsiz;
3948 + gintmsk_data_t intr_mask = { .d32 = 0};
3949 + dwc_otg_dma_desc_t* dma_desc;
3950 +
3951 + if (ep->is_in == 1) {
3952 + dwc_otg_dev_in_ep_regs_t *in_regs =
3953 + core_if->dev_if->in_ep_regs[0];
3954 + gnptxsts_data_t tx_status = { .d32 = 0 };
3955 +
3956 + tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3957 + /** @todo Should there be check for room in the Tx
3958 + * Status Queue. If not remove the code above this comment. */
3959 +
3960 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3961 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3962 +
3963 + /* Program the transfer size and packet count
3964 + * as follows: xfersize = N * maxpacket +
3965 + * short_packet pktcnt = N + (short_packet
3966 + * exist ? 1 : 0)
3967 + */
3968 +
3969 +
3970 + if(core_if->dma_desc_enable == 0) {
3971 + deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
3972 + (ep->total_len - ep->xfer_count);
3973 + deptsiz.b.pktcnt = 1;
3974 + if(core_if->dma_enable == 0) {
3975 + ep->xfer_len += deptsiz.b.xfersize;
3976 + } else {
3977 + ep->xfer_len = deptsiz.b.xfersize;
3978 + }
3979 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3980 + }
3981 + else {
3982 + ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
3983 + (ep->total_len - ep->xfer_count);
3984 +
3985 + dma_desc = core_if->dev_if->in_desc_addr;
3986 +
3987 + /** DMA Descriptor Setup */
3988 + dma_desc->status.b.bs = BS_HOST_BUSY;
3989 + dma_desc->status.b.l = 1;
3990 + dma_desc->status.b.ioc = 1;
3991 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
3992 + dma_desc->status.b.bytes = ep->xfer_len;
3993 + dma_desc->buf = ep->dma_addr;
3994 + dma_desc->status.b.bs = BS_HOST_READY;
3995 +
3996 +
3997 + /** DIEPDMA0 Register write */
3998 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
3999 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
4000 + }
4001 +
4002 +
4003 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
4004 + ep->xfer_len,
4005 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
4006 +
4007 + /* Write the DMA register */
4008 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
4009 + if(core_if->dma_desc_enable == 0){
4010 +
4011 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
4012 + dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
4013 + }
4014 + }
4015 +
4016 + /* EP enable, IN data in FIFO */
4017 + depctl.b.cnak = 1;
4018 + depctl.b.epena = 1;
4019 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
4020 +
4021 + /**
4022 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
4023 + * data will be written into the fifo by the ISR.
4024 + */
4025 + if (!core_if->dma_enable) {
4026 + if(core_if->en_multiple_tx_fifo == 0) {
4027 + /* First clear it from GINTSTS */
4028 + intr_mask.b.nptxfempty = 1;
4029 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
4030 + intr_mask.d32, intr_mask.d32);
4031 +
4032 + }
4033 + else {
4034 + /* Enable the Tx FIFO Empty Interrupt for this EP */
4035 + if(ep->xfer_len > 0) {
4036 + uint32_t fifoemptymsk = 0;
4037 + fifoemptymsk |= 1 << ep->num;
4038 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
4039 + 0, fifoemptymsk);
4040 + }
4041 + }
4042 + }
4043 + }
4044 + else {
4045 + dwc_otg_dev_out_ep_regs_t *out_regs =
4046 + core_if->dev_if->out_ep_regs[0];
4047 +
4048 +
4049 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
4050 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
4051 +
4052 + /* Program the transfer size and packet count
4053 + * as follows: xfersize = N * maxpacket +
4054 + * short_packet pktcnt = N + (short_packet
4055 + * exist ? 1 : 0)
4056 + */
4057 + deptsiz.b.xfersize = ep->maxpacket;
4058 + deptsiz.b.pktcnt = 1;
4059 +
4060 +
4061 + if(core_if->dma_desc_enable == 0) {
4062 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
4063 + }
4064 + else {
4065 + dma_desc = core_if->dev_if->out_desc_addr;
4066 +
4067 + /** DMA Descriptor Setup */
4068 + dma_desc->status.b.bs = BS_HOST_BUSY;
4069 + dma_desc->status.b.l = 1;
4070 + dma_desc->status.b.ioc = 1;
4071 + dma_desc->status.b.bytes = ep->maxpacket;
4072 + dma_desc->buf = ep->dma_addr;
4073 + dma_desc->status.b.bs = BS_HOST_READY;
4074 +
4075 + /** DOEPDMA0 Register write */
4076 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
4077 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
4078 + }
4079 +
4080 +
4081 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
4082 + ep->xfer_len,
4083 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
4084 +
4085 + /* Write the DMA register */
4086 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
4087 + if(core_if->dma_desc_enable == 0){
4088 +
4089 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
4090 + dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
4091 + }
4092 + }
4093 +
4094 + /* EP enable, IN data in FIFO */
4095 + depctl.b.cnak = 1;
4096 + depctl.b.epena = 1;
4097 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
4098 +
4099 + }
4100 +}
4101 +
4102 +#ifdef DEBUG
4103 +void dump_msg(const u8 *buf, unsigned int length)
4104 +{
4105 + unsigned int start, num, i;
4106 + char line[52], *p;
4107 +
4108 + if (length >= 512)
4109 + return;
4110 + start = 0;
4111 + while (length > 0) {
4112 + num = min(length, 16u);
4113 + p = line;
4114 + for (i = 0; i < num; ++i)
4115 + {
4116 + if (i == 8)
4117 + *p++ = ' ';
4118 + sprintf(p, " %02x", buf[i]);
4119 + p += 3;
4120 + }
4121 + *p = 0;
4122 + DWC_PRINT("%6x: %s\n", start, line);
4123 + buf += num;
4124 + start += num;
4125 + length -= num;
4126 + }
4127 +}
4128 +#else
4129 +static inline void dump_msg(const u8 *buf, unsigned int length)
4130 +{
4131 +}
4132 +#endif
4133 +
4134 +/**
4135 + * This function writes a packet into the Tx FIFO associated with the
4136 + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
4137 + * periodic EPs the periodic Tx FIFO associated with the EP is written
4138 + * with all packets for the next micro-frame.
4139 + *
4140 + * @param core_if Programming view of DWC_otg controller.
4141 + * @param ep The EP to write packet for.
4142 + * @param dma Indicates if DMA is being used.
4143 + */
4144 +void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
4145 +{
4146 + /**
4147 + * The buffer is padded to DWORD on a per packet basis in
4148 + * slave/dma mode if the MPS is not DWORD aligned. The last
4149 + * packet, if short, is also padded to a multiple of DWORD.
4150 + *
4151 + * ep->xfer_buff always starts DWORD aligned in memory and is a
4152 + * multiple of DWORD in length
4153 + *
4154 + * ep->xfer_len can be any number of bytes
4155 + *
4156 + * ep->xfer_count is a multiple of ep->maxpacket until the last
4157 + * packet
4158 + *
4159 + * FIFO access is DWORD */
4160 +
4161 + uint32_t i;
4162 + uint32_t byte_count;
4163 + uint32_t dword_count;
4164 + uint32_t *fifo;
4165 + uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
4166 +
4167 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
4168 + if (ep->xfer_count >= ep->xfer_len) {
4169 + DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
4170 + return;
4171 + }
4172 +
4173 + /* Find the byte length of the packet either short packet or MPS */
4174 + if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
4175 + byte_count = ep->xfer_len - ep->xfer_count;
4176 + }
4177 + else {
4178 + byte_count = ep->maxpacket;
4179 + }
4180 +
4181 + /* Find the DWORD length, padded by extra bytes as neccessary if MPS
4182 + * is not a multiple of DWORD */
4183 + dword_count = (byte_count + 3) / 4;
4184 +
4185 +#ifdef VERBOSE
4186 + dump_msg(ep->xfer_buff, byte_count);
4187 +#endif
4188 +
4189 + /**@todo NGS Where are the Periodic Tx FIFO addresses
4190 + * intialized? What should this be? */
4191 +
4192 + fifo = core_if->data_fifo[ep->num];
4193 +
4194 +
4195 + DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
4196 +
4197 + if (!dma) {
4198 + for (i=0; i<dword_count; i++, data_buff++) {
4199 + dwc_write_reg32(fifo, *data_buff);
4200 + }
4201 + }
4202 +
4203 + ep->xfer_count += byte_count;
4204 + ep->xfer_buff += byte_count;
4205 + ep->dma_addr += byte_count;
4206 +}
4207 +
4208 +/**
4209 + * Set the EP STALL.
4210 + *
4211 + * @param core_if Programming view of DWC_otg controller.
4212 + * @param ep The EP to set the stall on.
4213 + */
4214 +void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4215 +{
4216 + depctl_data_t depctl;
4217 + volatile uint32_t *depctl_addr;
4218 +
4219 + DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
4220 + (ep->is_in?"IN":"OUT"));
4221 +
4222 + DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
4223 + (ep->is_in?"in":"out"));
4224 +
4225 + if (ep->is_in == 1) {
4226 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
4227 + depctl.d32 = dwc_read_reg32(depctl_addr);
4228 +
4229 + /* set the disable and stall bits */
4230 +#if 0
4231 +//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
4232 +//which cause the testusb item 13 failed(Host:pc, device: otg device)
4233 + if (depctl.b.epena) {
4234 + depctl.b.epdis = 1;
4235 + }
4236 +#endif
4237 + depctl.b.stall = 1;
4238 + dwc_write_reg32(depctl_addr, depctl.d32);
4239 + }
4240 + else {
4241 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
4242 + depctl.d32 = dwc_read_reg32(depctl_addr);
4243 +
4244 + /* set the stall bit */
4245 + depctl.b.stall = 1;
4246 + dwc_write_reg32(depctl_addr, depctl.d32);
4247 + }
4248 +
4249 + DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
4250 +
4251 + return;
4252 +}
4253 +
4254 +/**
4255 + * Clear the EP STALL.
4256 + *
4257 + * @param core_if Programming view of DWC_otg controller.
4258 + * @param ep The EP to clear stall from.
4259 + */
4260 +void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4261 +{
4262 + depctl_data_t depctl;
4263 + volatile uint32_t *depctl_addr;
4264 +
4265 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
4266 + (ep->is_in?"IN":"OUT"));
4267 +
4268 + if (ep->is_in == 1) {
4269 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
4270 + }
4271 + else {
4272 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
4273 + }
4274 +
4275 + depctl.d32 = dwc_read_reg32(depctl_addr);
4276 +
4277 + /* clear the stall bits */
4278 + depctl.b.stall = 0;
4279 +
4280 + /*
4281 + * USB Spec 9.4.5: For endpoints using data toggle, regardless
4282 + * of whether an endpoint has the Halt feature set, a
4283 + * ClearFeature(ENDPOINT_HALT) request always results in the
4284 + * data toggle being reinitialized to DATA0.
4285 + */
4286 + if (ep->type == DWC_OTG_EP_TYPE_INTR ||
4287 + ep->type == DWC_OTG_EP_TYPE_BULK) {
4288 + depctl.b.setd0pid = 1; /* DATA0 */
4289 + }
4290 +
4291 + dwc_write_reg32(depctl_addr, depctl.d32);
4292 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
4293 + return;
4294 +}
4295 +
4296 +/**
4297 + * This function reads a packet from the Rx FIFO into the destination
4298 + * buffer. To read SETUP data use dwc_otg_read_setup_packet.
4299 + *
4300 + * @param core_if Programming view of DWC_otg controller.
4301 + * @param dest Destination buffer for the packet.
4302 + * @param bytes Number of bytes to copy to the destination.
4303 + */
4304 +void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
4305 + uint8_t *dest,
4306 + uint16_t bytes)
4307 +{
4308 + int i;
4309 + int word_count = (bytes + 3) / 4;
4310 +
4311 + volatile uint32_t *fifo = core_if->data_fifo[0];
4312 + uint32_t *data_buff = (uint32_t *)dest;
4313 +
4314 + /**
4315 + * @todo Account for the case where _dest is not dword aligned. This
4316 + * requires reading data from the FIFO into a uint32_t temp buffer,
4317 + * then moving it into the data buffer.
4318 + */
4319 +
4320 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
4321 + core_if, dest, bytes);
4322 +
4323 + for (i=0; i<word_count; i++, data_buff++)
4324 + {
4325 + *data_buff = dwc_read_reg32(fifo);
4326 + }
4327 +
4328 + return;
4329 +}
4330 +
4331 +
4332 +
4333 +/**
4334 + * This functions reads the device registers and prints them
4335 + *
4336 + * @param core_if Programming view of DWC_otg controller.
4337 + */
4338 +void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
4339 +{
4340 + int i;
4341 + volatile uint32_t *addr;
4342 +
4343 + DWC_PRINT("Device Global Registers\n");
4344 + addr=&core_if->dev_if->dev_global_regs->dcfg;
4345 + DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4346 + addr=&core_if->dev_if->dev_global_regs->dctl;
4347 + DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4348 + addr=&core_if->dev_if->dev_global_regs->dsts;
4349 + DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4350 + addr=&core_if->dev_if->dev_global_regs->diepmsk;
4351 + DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4352 + addr=&core_if->dev_if->dev_global_regs->doepmsk;
4353 + DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4354 + addr=&core_if->dev_if->dev_global_regs->daint;
4355 + DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4356 + addr=&core_if->dev_if->dev_global_regs->daintmsk;
4357 + DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4358 + addr=&core_if->dev_if->dev_global_regs->dtknqr1;
4359 + DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4360 + if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
4361 + addr=&core_if->dev_if->dev_global_regs->dtknqr2;
4362 + DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
4363 + (uint32_t)addr,dwc_read_reg32(addr));
4364 + }
4365 +
4366 + addr=&core_if->dev_if->dev_global_regs->dvbusdis;
4367 + DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4368 +
4369 + addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
4370 + DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
4371 + (uint32_t)addr,dwc_read_reg32(addr));
4372 +
4373 + if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
4374 + addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
4375 + DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
4376 + (uint32_t)addr, dwc_read_reg32(addr));
4377 + }
4378 +/*
4379 + if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
4380 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
4381 + DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
4382 + (uint32_t)addr, dwc_read_reg32(addr));
4383 + }
4384 +*/
4385 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
4386 + DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
4387 +
4388 + addr=&core_if->dev_if->dev_global_regs->deachint;
4389 + DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4390 + addr=&core_if->dev_if->dev_global_regs->deachintmsk;
4391 + DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4392 +
4393 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
4394 + addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
4395 + DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
4396 + }
4397 +
4398 +
4399 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
4400 + addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
4401 + DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
4402 + }
4403 +
4404 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
4405 + DWC_PRINT("Device IN EP %d Registers\n", i);
4406 + addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
4407 + DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4408 + addr=&core_if->dev_if->in_ep_regs[i]->diepint;
4409 + DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4410 + addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
4411 + DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4412 + addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
4413 + DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4414 + addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
4415 + DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4416 + //reading depdmab in non desc dma mode would halt the ahb bus...
4417 + if(core_if->dma_desc_enable){
4418 + addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
4419 + DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4420 + }
4421 + }
4422 +
4423 +
4424 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
4425 + DWC_PRINT("Device OUT EP %d Registers\n", i);
4426 + addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
4427 + DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4428 + addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
4429 + DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4430 + addr=&core_if->dev_if->out_ep_regs[i]->doepint;
4431 + DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4432 + addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
4433 + DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4434 + addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
4435 + DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4436 +
4437 + //reading depdmab in non desc dma mode would halt the ahb bus...
4438 + if(core_if->dma_desc_enable){
4439 + addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
4440 + DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4441 + }
4442 +
4443 + }
4444 +
4445 +
4446 +
4447 + return;
4448 +}
4449 +
4450 +/**
4451 + * This functions reads the SPRAM and prints its content
4452 + *
4453 + * @param core_if Programming view of DWC_otg controller.
4454 + */
4455 +void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
4456 +{
4457 + volatile uint8_t *addr, *start_addr, *end_addr;
4458 +
4459 + DWC_PRINT("SPRAM Data:\n");
4460 + start_addr = (void*)core_if->core_global_regs;
4461 + DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
4462 + start_addr += 0x00028000;
4463 + end_addr=(void*)core_if->core_global_regs;
4464 + end_addr += 0x000280e0;
4465 +
4466 + for(addr = start_addr; addr < end_addr; addr+=16)
4467 + {
4468 + DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
4469 + addr[0],
4470 + addr[1],
4471 + addr[2],
4472 + addr[3],
4473 + addr[4],
4474 + addr[5],
4475 + addr[6],
4476 + addr[7],
4477 + addr[8],
4478 + addr[9],
4479 + addr[10],
4480 + addr[11],
4481 + addr[12],
4482 + addr[13],
4483 + addr[14],
4484 + addr[15]
4485 + );
4486 + }
4487 +
4488 + return;
4489 +}
4490 +/**
4491 + * This function reads the host registers and prints them
4492 + *
4493 + * @param core_if Programming view of DWC_otg controller.
4494 + */
4495 +void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
4496 +{
4497 + int i;
4498 + volatile uint32_t *addr;
4499 +
4500 + DWC_PRINT("Host Global Registers\n");
4501 + addr=&core_if->host_if->host_global_regs->hcfg;
4502 + DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4503 + addr=&core_if->host_if->host_global_regs->hfir;
4504 + DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4505 + addr=&core_if->host_if->host_global_regs->hfnum;
4506 + DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4507 + addr=&core_if->host_if->host_global_regs->hptxsts;
4508 + DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4509 + addr=&core_if->host_if->host_global_regs->haint;
4510 + DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4511 + addr=&core_if->host_if->host_global_regs->haintmsk;
4512 + DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4513 + addr=core_if->host_if->hprt0;
4514 + DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4515 +
4516 + for (i=0; i<core_if->core_params->host_channels; i++)
4517 + {
4518 + DWC_PRINT("Host Channel %d Specific Registers\n", i);
4519 + addr=&core_if->host_if->hc_regs[i]->hcchar;
4520 + DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4521 + addr=&core_if->host_if->hc_regs[i]->hcsplt;
4522 + DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4523 + addr=&core_if->host_if->hc_regs[i]->hcint;
4524 + DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4525 + addr=&core_if->host_if->hc_regs[i]->hcintmsk;
4526 + DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4527 + addr=&core_if->host_if->hc_regs[i]->hctsiz;
4528 + DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4529 + addr=&core_if->host_if->hc_regs[i]->hcdma;
4530 + DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4531 + }
4532 + return;
4533 +}
4534 +
4535 +/**
4536 + * This function reads the core global registers and prints them
4537 + *
4538 + * @param core_if Programming view of DWC_otg controller.
4539 + */
4540 +void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
4541 +{
4542 + int i,size;
4543 + char* str;
4544 + volatile uint32_t *addr;
4545 +
4546 + DWC_PRINT("Core Global Registers\n");
4547 + addr=&core_if->core_global_regs->gotgctl;
4548 + DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4549 + addr=&core_if->core_global_regs->gotgint;
4550 + DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4551 + addr=&core_if->core_global_regs->gahbcfg;
4552 + DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4553 + addr=&core_if->core_global_regs->gusbcfg;
4554 + DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4555 + addr=&core_if->core_global_regs->grstctl;
4556 + DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4557 + addr=&core_if->core_global_regs->gintsts;
4558 + DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4559 + addr=&core_if->core_global_regs->gintmsk;
4560 + DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4561 + addr=&core_if->core_global_regs->grxstsr;
4562 + DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4563 + //addr=&core_if->core_global_regs->grxstsp;
4564 + //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4565 + addr=&core_if->core_global_regs->grxfsiz;
4566 + DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4567 + addr=&core_if->core_global_regs->gnptxfsiz;
4568 + DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4569 + addr=&core_if->core_global_regs->gnptxsts;
4570 + DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4571 + addr=&core_if->core_global_regs->gi2cctl;
4572 + DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4573 + addr=&core_if->core_global_regs->gpvndctl;
4574 + DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4575 + addr=&core_if->core_global_regs->ggpio;
4576 + DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4577 + addr=&core_if->core_global_regs->guid;
4578 + DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4579 + addr=&core_if->core_global_regs->gsnpsid;
4580 + DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4581 + addr=&core_if->core_global_regs->ghwcfg1;
4582 + DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4583 + addr=&core_if->core_global_regs->ghwcfg2;
4584 + DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4585 + addr=&core_if->core_global_regs->ghwcfg3;
4586 + DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4587 + addr=&core_if->core_global_regs->ghwcfg4;
4588 + DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4589 + addr=&core_if->core_global_regs->hptxfsiz;
4590 + DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4591 +
4592 + size=(core_if->hwcfg4.b.ded_fifo_en)?
4593 + core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
4594 + str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
4595 + for (i=0; i<size; i++)
4596 + {
4597 + addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
4598 + DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
4599 + }
4600 +}
4601 +
4602 +/**
4603 + * Flush a Tx FIFO.
4604 + *
4605 + * @param core_if Programming view of DWC_otg controller.
4606 + * @param num Tx FIFO to flush.
4607 + */
4608 +void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
4609 + const int num)
4610 +{
4611 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4612 + volatile grstctl_t greset = { .d32 = 0};
4613 + int count = 0;
4614 +
4615 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
4616 +
4617 + greset.b.txfflsh = 1;
4618 + greset.b.txfnum = num;
4619 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4620 +
4621 + do {
4622 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4623 + if (++count > 10000) {
4624 + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
4625 + __func__, greset.d32,
4626 + dwc_read_reg32(&global_regs->gnptxsts));
4627 + break;
4628 + }
4629 + }
4630 + while (greset.b.txfflsh == 1);
4631 +
4632 + /* Wait for 3 PHY Clocks*/
4633 + UDELAY(1);
4634 +}
4635 +
4636 +/**
4637 + * Flush Rx FIFO.
4638 + *
4639 + * @param core_if Programming view of DWC_otg controller.
4640 + */
4641 +void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
4642 +{
4643 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4644 + volatile grstctl_t greset = { .d32 = 0};
4645 + int count = 0;
4646 +
4647 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
4648 + /*
4649 + *
4650 + */
4651 + greset.b.rxfflsh = 1;
4652 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4653 +
4654 + do {
4655 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4656 + if (++count > 10000) {
4657 + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
4658 + greset.d32);
4659 + break;
4660 + }
4661 + }
4662 + while (greset.b.rxfflsh == 1);
4663 +
4664 + /* Wait for 3 PHY Clocks*/
4665 + UDELAY(1);
4666 +}
4667 +
4668 +/**
4669 + * Do core a soft reset of the core. Be careful with this because it
4670 + * resets all the internal state machines of the core.
4671 + */
4672 +void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
4673 +{
4674 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4675 + volatile grstctl_t greset = { .d32 = 0};
4676 + int count = 0;
4677 +
4678 + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
4679 + /* Wait for AHB master IDLE state. */
4680 + do {
4681 + UDELAY(10);
4682 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4683 + if (++count > 100000) {
4684 + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
4685 + greset.d32);
4686 + return;
4687 + }
4688 + }
4689 + while (greset.b.ahbidle == 0);
4690 +
4691 + /* Core Soft Reset */
4692 + count = 0;
4693 + greset.b.csftrst = 1;
4694 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4695 + do {
4696 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4697 + if (++count > 10000) {
4698 + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
4699 + greset.d32);
4700 + break;
4701 + }
4702 + }
4703 + while (greset.b.csftrst == 1);
4704 +
4705 + /* Wait for 3 PHY Clocks*/
4706 + MDELAY(100);
4707 +
4708 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4709 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4710 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4711 +
4712 +}
4713 +
4714 +
4715 +
4716 +/**
4717 + * Register HCD callbacks. The callbacks are used to start and stop
4718 + * the HCD for interrupt processing.
4719 + *
4720 + * @param core_if Programming view of DWC_otg controller.
4721 + * @param cb the HCD callback structure.
4722 + * @param p pointer to be passed to callback function (usb_hcd*).
4723 + */
4724 +void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
4725 + dwc_otg_cil_callbacks_t *cb,
4726 + void *p)
4727 +{
4728 + core_if->hcd_cb = cb;
4729 + cb->p = p;
4730 +}
4731 +
4732 +/**
4733 + * Register PCD callbacks. The callbacks are used to start and stop
4734 + * the PCD for interrupt processing.
4735 + *
4736 + * @param core_if Programming view of DWC_otg controller.
4737 + * @param cb the PCD callback structure.
4738 + * @param p pointer to be passed to callback function (pcd*).
4739 + */
4740 +void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
4741 + dwc_otg_cil_callbacks_t *cb,
4742 + void *p)
4743 +{
4744 + core_if->pcd_cb = cb;
4745 + cb->p = p;
4746 +}
4747 +
4748 +#ifdef DWC_EN_ISOC
4749 +
4750 +/**
4751 + * This function writes isoc data per 1 (micro)frame into tx fifo
4752 + *
4753 + * @param core_if Programming view of DWC_otg controller.
4754 + * @param ep The EP to start the transfer on.
4755 + *
4756 + */
4757 +void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4758 +{
4759 + dwc_otg_dev_in_ep_regs_t *ep_regs;
4760 + dtxfsts_data_t txstatus = {.d32 = 0};
4761 + uint32_t len = 0;
4762 + uint32_t dwords;
4763 +
4764 + ep->xfer_len = ep->data_per_frame;
4765 + ep->xfer_count = 0;
4766 +
4767 + ep_regs = core_if->dev_if->in_ep_regs[ep->num];
4768 +
4769 + len = ep->xfer_len - ep->xfer_count;
4770 +
4771 + if (len > ep->maxpacket) {
4772 + len = ep->maxpacket;
4773 + }
4774 +
4775 + dwords = (len + 3)/4;
4776 +
4777 + /* While there is space in the queue and space in the FIFO and
4778 + * More data to tranfer, Write packets to the Tx FIFO */
4779 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
4780 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
4781 +
4782 + while (txstatus.b.txfspcavail > dwords &&
4783 + ep->xfer_count < ep->xfer_len &&
4784 + ep->xfer_len != 0) {
4785 + /* Write the FIFO */
4786 + dwc_otg_ep_write_packet(core_if, ep, 0);
4787 +
4788 + len = ep->xfer_len - ep->xfer_count;
4789 + if (len > ep->maxpacket) {
4790 + len = ep->maxpacket;
4791 + }
4792 +
4793 + dwords = (len + 3)/4;
4794 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
4795 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
4796 + }
4797 +}
4798 +
4799 +
4800 +/**
4801 + * This function initializes a descriptor chain for Isochronous transfer
4802 + *
4803 + * @param core_if Programming view of DWC_otg controller.
4804 + * @param ep The EP to start the transfer on.
4805 + *
4806 + */
4807 +void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4808 +{
4809 + deptsiz_data_t deptsiz = { .d32 = 0 };
4810 + depctl_data_t depctl = { .d32 = 0 };
4811 + dsts_data_t dsts = { .d32 = 0 };
4812 + volatile uint32_t *addr;
4813 +
4814 + if(ep->is_in) {
4815 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
4816 + } else {
4817 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
4818 + }
4819 +
4820 + ep->xfer_len = ep->data_per_frame;
4821 + ep->xfer_count = 0;
4822 + ep->xfer_buff = ep->cur_pkt_addr;
4823 + ep->dma_addr = ep->cur_pkt_dma_addr;
4824 +
4825 + if(ep->is_in) {
4826 + /* Program the transfer size and packet count
4827 + * as follows: xfersize = N * maxpacket +
4828 + * short_packet pktcnt = N + (short_packet
4829 + * exist ? 1 : 0)
4830 + */
4831 + deptsiz.b.xfersize = ep->xfer_len;
4832 + deptsiz.b.pktcnt =
4833 + (ep->xfer_len - 1 + ep->maxpacket) /
4834 + ep->maxpacket;
4835 + deptsiz.b.mc = deptsiz.b.pktcnt;
4836 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
4837 +
4838 + /* Write the DMA register */
4839 + if (core_if->dma_enable) {
4840 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
4841 + }
4842 + } else {
4843 + deptsiz.b.pktcnt =
4844 + (ep->xfer_len + (ep->maxpacket - 1)) /
4845 + ep->maxpacket;
4846 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
4847 +
4848 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
4849 +
4850 + if (core_if->dma_enable) {
4851 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
4852 + (uint32_t)ep->dma_addr);
4853 + }
4854 + }
4855 +
4856 +
4857 + /** Enable endpoint, clear nak */
4858 +
4859 + depctl.d32 = 0;
4860 + if(ep->bInterval == 1) {
4861 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
4862 + ep->next_frame = dsts.b.soffn + ep->bInterval;
4863 +
4864 + if(ep->next_frame & 0x1) {
4865 + depctl.b.setd1pid = 1;
4866 + } else {
4867 + depctl.b.setd0pid = 1;
4868 + }
4869 + } else {
4870 + ep->next_frame += ep->bInterval;
4871 +
4872 + if(ep->next_frame & 0x1) {
4873 + depctl.b.setd1pid = 1;
4874 + } else {
4875 + depctl.b.setd0pid = 1;
4876 + }
4877 + }
4878 + depctl.b.epena = 1;
4879 + depctl.b.cnak = 1;
4880 +
4881 + dwc_modify_reg32(addr, 0, depctl.d32);
4882 + depctl.d32 = dwc_read_reg32(addr);
4883 +
4884 + if(ep->is_in && core_if->dma_enable == 0) {
4885 + write_isoc_frame_data(core_if, ep);
4886 + }
4887 +
4888 +}
4889 +
4890 +#endif //DWC_EN_ISOC
4891 --- /dev/null
4892 +++ b/drivers/usb/dwc/otg_cil.h
4893 @@ -0,0 +1,1106 @@
4894 +/* ==========================================================================
4895 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
4896 + * $Revision: #91 $
4897 + * $Date: 2008/09/19 $
4898 + * $Change: 1099526 $
4899 + *
4900 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
4901 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
4902 + * otherwise expressly agreed to in writing between Synopsys and you.
4903 + *
4904 + * The Software IS NOT an item of Licensed Software or Licensed Product under
4905 + * any End User Software License Agreement or Agreement for Licensed Product
4906 + * with Synopsys or any supplement thereto. You are permitted to use and
4907 + * redistribute this Software in source and binary forms, with or without
4908 + * modification, provided that redistributions of source code must retain this
4909 + * notice. You may not view, use, disclose, copy or distribute this file or
4910 + * any information contained herein except pursuant to this license grant from
4911 + * Synopsys. If you do not agree with this notice, including the disclaimer
4912 + * below, then you are not authorized to use the Software.
4913 + *
4914 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
4915 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
4916 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
4917 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
4918 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
4919 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
4920 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
4921 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
4922 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4923 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
4924 + * DAMAGE.
4925 + * ========================================================================== */
4926 +
4927 +#if !defined(__DWC_CIL_H__)
4928 +#define __DWC_CIL_H__
4929 +
4930 +#include <linux/workqueue.h>
4931 +#include <linux/version.h>
4932 +#include <asm/param.h>
4933 +//#include <asm/arch/regs-irq.h>
4934 +
4935 +#include "otg_plat.h"
4936 +#include "otg_regs.h"
4937 +#ifdef DEBUG
4938 +#include "linux/timer.h"
4939 +#endif
4940 +
4941 +/**
4942 + * @file
4943 + * This file contains the interface to the Core Interface Layer.
4944 + */
4945 +
4946 +
4947 +/** Macros defined for DWC OTG HW Release verison */
4948 +#define OTG_CORE_REV_2_00 0x4F542000
4949 +#define OTG_CORE_REV_2_60a 0x4F54260A
4950 +#define OTG_CORE_REV_2_71a 0x4F54271A
4951 +#define OTG_CORE_REV_2_72a 0x4F54272A
4952 +
4953 +/**
4954 +*/
4955 +typedef struct iso_pkt_info
4956 +{
4957 + uint32_t offset;
4958 + uint32_t length;
4959 + int32_t status;
4960 +} iso_pkt_info_t;
4961 +/**
4962 + * The <code>dwc_ep</code> structure represents the state of a single
4963 + * endpoint when acting in device mode. It contains the data items
4964 + * needed for an endpoint to be activated and transfer packets.
4965 + */
4966 +typedef struct dwc_ep
4967 +{
4968 + /** EP number used for register address lookup */
4969 + uint8_t num;
4970 + /** EP direction 0 = OUT */
4971 + unsigned is_in : 1;
4972 + /** EP active. */
4973 + unsigned active : 1;
4974 +
4975 + /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
4976 + If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
4977 + unsigned tx_fifo_num : 4;
4978 + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
4979 + unsigned type : 2;
4980 +#define DWC_OTG_EP_TYPE_CONTROL 0
4981 +#define DWC_OTG_EP_TYPE_ISOC 1
4982 +#define DWC_OTG_EP_TYPE_BULK 2
4983 +#define DWC_OTG_EP_TYPE_INTR 3
4984 +
4985 + /** DATA start PID for INTR and BULK EP */
4986 + unsigned data_pid_start : 1;
4987 + /** Frame (even/odd) for ISOC EP */
4988 + unsigned even_odd_frame : 1;
4989 + /** Max Packet bytes */
4990 + unsigned maxpacket : 11;
4991 +
4992 + /** Max Transfer size */
4993 + unsigned maxxfer : 16;
4994 +
4995 + /** @name Transfer state */
4996 + /** @{ */
4997 +
4998 + /**
4999 + * Pointer to the beginning of the transfer buffer -- do not modify
5000 + * during transfer.
5001 + */
5002 +
5003 + uint32_t dma_addr;
5004 +
5005 + uint32_t dma_desc_addr;
5006 + dwc_otg_dma_desc_t* desc_addr;
5007 +
5008 +
5009 + uint8_t *start_xfer_buff;
5010 + /** pointer to the transfer buffer */
5011 + uint8_t *xfer_buff;
5012 + /** Number of bytes to transfer */
5013 + unsigned xfer_len : 19;
5014 + /** Number of bytes transferred. */
5015 + unsigned xfer_count : 19;
5016 + /** Sent ZLP */
5017 + unsigned sent_zlp : 1;
5018 + /** Total len for control transfer */
5019 + unsigned total_len : 19;
5020 +
5021 + /** stall clear flag */
5022 + unsigned stall_clear_flag : 1;
5023 +
5024 + /** Allocated DMA Desc count */
5025 + uint32_t desc_cnt;
5026 +
5027 + uint32_t aligned_dma_addr;
5028 + uint32_t aligned_buf_size;
5029 + uint8_t *aligned_buf;
5030 +
5031 +
5032 +#ifdef DWC_EN_ISOC
5033 + /**
5034 + * Variables specific for ISOC EPs
5035 + *
5036 + */
5037 + /** DMA addresses of ISOC buffers */
5038 + uint32_t dma_addr0;
5039 + uint32_t dma_addr1;
5040 +
5041 + uint32_t iso_dma_desc_addr;
5042 + dwc_otg_dma_desc_t* iso_desc_addr;
5043 +
5044 + /** pointer to the transfer buffers */
5045 + uint8_t *xfer_buff0;
5046 + uint8_t *xfer_buff1;
5047 +
5048 + /** number of ISOC Buffer is processing */
5049 + uint32_t proc_buf_num;
5050 + /** Interval of ISOC Buffer processing */
5051 + uint32_t buf_proc_intrvl;
5052 + /** Data size for regular frame */
5053 + uint32_t data_per_frame;
5054 +
5055 + /* todo - pattern data support is to be implemented in the future */
5056 + /** Data size for pattern frame */
5057 + uint32_t data_pattern_frame;
5058 + /** Frame number of pattern data */
5059 + uint32_t sync_frame;
5060 +
5061 + /** bInterval */
5062 + uint32_t bInterval;
5063 + /** ISO Packet number per frame */
5064 + uint32_t pkt_per_frm;
5065 + /** Next frame num for which will be setup DMA Desc */
5066 + uint32_t next_frame;
5067 + /** Number of packets per buffer processing */
5068 + uint32_t pkt_cnt;
5069 + /** Info for all isoc packets */
5070 + iso_pkt_info_t *pkt_info;
5071 + /** current pkt number */
5072 + uint32_t cur_pkt;
5073 + /** current pkt number */
5074 + uint8_t *cur_pkt_addr;
5075 + /** current pkt number */
5076 + uint32_t cur_pkt_dma_addr;
5077 +#endif //DWC_EN_ISOC
5078 +/** @} */
5079 +} dwc_ep_t;
5080 +
5081 +/*
5082 + * Reasons for halting a host channel.
5083 + */
5084 +typedef enum dwc_otg_halt_status
5085 +{
5086 + DWC_OTG_HC_XFER_NO_HALT_STATUS,
5087 + DWC_OTG_HC_XFER_COMPLETE,
5088 + DWC_OTG_HC_XFER_URB_COMPLETE,
5089 + DWC_OTG_HC_XFER_ACK,
5090 + DWC_OTG_HC_XFER_NAK,
5091 + DWC_OTG_HC_XFER_NYET,
5092 + DWC_OTG_HC_XFER_STALL,
5093 + DWC_OTG_HC_XFER_XACT_ERR,
5094 + DWC_OTG_HC_XFER_FRAME_OVERRUN,
5095 + DWC_OTG_HC_XFER_BABBLE_ERR,
5096 + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
5097 + DWC_OTG_HC_XFER_AHB_ERR,
5098 + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
5099 + DWC_OTG_HC_XFER_URB_DEQUEUE
5100 +} dwc_otg_halt_status_e;
5101 +
5102 +/**
5103 + * Host channel descriptor. This structure represents the state of a single
5104 + * host channel when acting in host mode. It contains the data items needed to
5105 + * transfer packets to an endpoint via a host channel.
5106 + */
5107 +typedef struct dwc_hc
5108 +{
5109 + /** Host channel number used for register address lookup */
5110 + uint8_t hc_num;
5111 +
5112 + /** Device to access */
5113 + unsigned dev_addr : 7;
5114 +
5115 + /** EP to access */
5116 + unsigned ep_num : 4;
5117 +
5118 + /** EP direction. 0: OUT, 1: IN */
5119 + unsigned ep_is_in : 1;
5120 +
5121 + /**
5122 + * EP speed.
5123 + * One of the following values:
5124 + * - DWC_OTG_EP_SPEED_LOW
5125 + * - DWC_OTG_EP_SPEED_FULL
5126 + * - DWC_OTG_EP_SPEED_HIGH
5127 + */
5128 + unsigned speed : 2;
5129 +#define DWC_OTG_EP_SPEED_LOW 0
5130 +#define DWC_OTG_EP_SPEED_FULL 1
5131 +#define DWC_OTG_EP_SPEED_HIGH 2
5132 +
5133 + /**
5134 + * Endpoint type.
5135 + * One of the following values:
5136 + * - DWC_OTG_EP_TYPE_CONTROL: 0
5137 + * - DWC_OTG_EP_TYPE_ISOC: 1
5138 + * - DWC_OTG_EP_TYPE_BULK: 2
5139 + * - DWC_OTG_EP_TYPE_INTR: 3
5140 + */
5141 + unsigned ep_type : 2;
5142 +
5143 + /** Max packet size in bytes */
5144 + unsigned max_packet : 11;
5145 +
5146 + /**
5147 + * PID for initial transaction.
5148 + * 0: DATA0,<br>
5149 + * 1: DATA2,<br>
5150 + * 2: DATA1,<br>
5151 + * 3: MDATA (non-Control EP),
5152 + * SETUP (Control EP)
5153 + */
5154 + unsigned data_pid_start : 2;
5155 +#define DWC_OTG_HC_PID_DATA0 0
5156 +#define DWC_OTG_HC_PID_DATA2 1
5157 +#define DWC_OTG_HC_PID_DATA1 2
5158 +#define DWC_OTG_HC_PID_MDATA 3
5159 +#define DWC_OTG_HC_PID_SETUP 3
5160 +
5161 + /** Number of periodic transactions per (micro)frame */
5162 + unsigned multi_count: 2;
5163 +
5164 + /** @name Transfer State */
5165 + /** @{ */
5166 +
5167 + /** Pointer to the current transfer buffer position. */
5168 + uint8_t *xfer_buff;
5169 + /** Total number of bytes to transfer. */
5170 + uint32_t xfer_len;
5171 + /** Number of bytes transferred so far. */
5172 + uint32_t xfer_count;
5173 + /** Packet count at start of transfer.*/
5174 + uint16_t start_pkt_count;
5175 +
5176 + /**
5177 + * Flag to indicate whether the transfer has been started. Set to 1 if
5178 + * it has been started, 0 otherwise.
5179 + */
5180 + uint8_t xfer_started;
5181 +
5182 + /**
5183 + * Set to 1 to indicate that a PING request should be issued on this
5184 + * channel. If 0, process normally.
5185 + */
5186 + uint8_t do_ping;
5187 +
5188 + /**
5189 + * Set to 1 to indicate that the error count for this transaction is
5190 + * non-zero. Set to 0 if the error count is 0.
5191 + */
5192 + uint8_t error_state;
5193 +
5194 + /**
5195 + * Set to 1 to indicate that this channel should be halted the next
5196 + * time a request is queued for the channel. This is necessary in
5197 + * slave mode if no request queue space is available when an attempt
5198 + * is made to halt the channel.
5199 + */
5200 + uint8_t halt_on_queue;
5201 +
5202 + /**
5203 + * Set to 1 if the host channel has been halted, but the core is not
5204 + * finished flushing queued requests. Otherwise 0.
5205 + */
5206 + uint8_t halt_pending;
5207 +
5208 + /**
5209 + * Reason for halting the host channel.
5210 + */
5211 + dwc_otg_halt_status_e halt_status;
5212 +
5213 + /*
5214 + * Split settings for the host channel
5215 + */
5216 + uint8_t do_split; /**< Enable split for the channel */
5217 + uint8_t complete_split; /**< Enable complete split */
5218 + uint8_t hub_addr; /**< Address of high speed hub */
5219 +
5220 + uint8_t port_addr; /**< Port of the low/full speed device */
5221 + /** Split transaction position
5222 + * One of the following values:
5223 + * - DWC_HCSPLIT_XACTPOS_MID
5224 + * - DWC_HCSPLIT_XACTPOS_BEGIN
5225 + * - DWC_HCSPLIT_XACTPOS_END
5226 + * - DWC_HCSPLIT_XACTPOS_ALL */
5227 + uint8_t xact_pos;
5228 +
5229 + /** Set when the host channel does a short read. */
5230 + uint8_t short_read;
5231 +
5232 + /**
5233 + * Number of requests issued for this channel since it was assigned to
5234 + * the current transfer (not counting PINGs).
5235 + */
5236 + uint8_t requests;
5237 +
5238 + /**
5239 + * Queue Head for the transfer being processed by this channel.
5240 + */
5241 + struct dwc_otg_qh *qh;
5242 +
5243 + /** @} */
5244 +
5245 + /** Entry in list of host channels. */
5246 + struct list_head hc_list_entry;
5247 +} dwc_hc_t;
5248 +
5249 +/**
5250 + * The following parameters may be specified when starting the module. These
5251 + * parameters define how the DWC_otg controller should be configured.
5252 + * Parameter values are passed to the CIL initialization function
5253 + * dwc_otg_cil_init.
5254 + */
5255 +typedef struct dwc_otg_core_params
5256 +{
5257 + int32_t opt;
5258 +#define dwc_param_opt_default 1
5259 +
5260 + /**
5261 + * Specifies the OTG capabilities. The driver will automatically
5262 + * detect the value for this parameter if none is specified.
5263 + * 0 - HNP and SRP capable (default)
5264 + * 1 - SRP Only capable
5265 + * 2 - No HNP/SRP capable
5266 + */
5267 + int32_t otg_cap;
5268 +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
5269 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
5270 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
5271 +//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
5272 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
5273 +
5274 + /**
5275 + * Specifies whether to use slave or DMA mode for accessing the data
5276 + * FIFOs. The driver will automatically detect the value for this
5277 + * parameter if none is specified.
5278 + * 0 - Slave
5279 + * 1 - DMA (default, if available)
5280 + */
5281 + int32_t dma_enable;
5282 +#define dwc_param_dma_enable_default 1
5283 +
5284 + /**
5285 + * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
5286 + * FIFOs in device mode. The driver will automatically detect the value for this
5287 + * parameter if none is specified.
5288 + * 0 - address DMA
5289 + * 1 - DMA Descriptor(default, if available)
5290 + */
5291 + int32_t dma_desc_enable;
5292 +#define dwc_param_dma_desc_enable_default 0
5293 + /** The DMA Burst size (applicable only for External DMA
5294 + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
5295 + */
5296 + int32_t dma_burst_size; /* Translate this to GAHBCFG values */
5297 +//#define dwc_param_dma_burst_size_default 32
5298 +#define dwc_param_dma_burst_size_default 1
5299 +
5300 + /**
5301 + * Specifies the maximum speed of operation in host and device mode.
5302 + * The actual speed depends on the speed of the attached device and
5303 + * the value of phy_type. The actual speed depends on the speed of the
5304 + * attached device.
5305 + * 0 - High Speed (default)
5306 + * 1 - Full Speed
5307 + */
5308 + int32_t speed;
5309 +#define dwc_param_speed_default 0
5310 +#define DWC_SPEED_PARAM_HIGH 0
5311 +#define DWC_SPEED_PARAM_FULL 1
5312 +
5313 + /** Specifies whether low power mode is supported when attached
5314 + * to a Full Speed or Low Speed device in host mode.
5315 + * 0 - Don't support low power mode (default)
5316 + * 1 - Support low power mode
5317 + */
5318 + int32_t host_support_fs_ls_low_power;
5319 +#define dwc_param_host_support_fs_ls_low_power_default 0
5320 +
5321 + /** Specifies the PHY clock rate in low power mode when connected to a
5322 + * Low Speed device in host mode. This parameter is applicable only if
5323 + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
5324 + * then defaults to 6 MHZ otherwise 48 MHZ.
5325 + *
5326 + * 0 - 48 MHz
5327 + * 1 - 6 MHz
5328 + */
5329 + int32_t host_ls_low_power_phy_clk;
5330 +#define dwc_param_host_ls_low_power_phy_clk_default 0
5331 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
5332 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
5333 +
5334 + /**
5335 + * 0 - Use cC FIFO size parameters
5336 + * 1 - Allow dynamic FIFO sizing (default)
5337 + */
5338 + int32_t enable_dynamic_fifo;
5339 +#define dwc_param_enable_dynamic_fifo_default 1
5340 +
5341 + /** Total number of 4-byte words in the data FIFO memory. This
5342 + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
5343 + * Tx FIFOs.
5344 + * 32 to 32768 (default 8192)
5345 + * Note: The total FIFO memory depth in the FPGA configuration is 8192.
5346 + */
5347 + int32_t data_fifo_size;
5348 +#define dwc_param_data_fifo_size_default 8192
5349 +
5350 + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
5351 + * FIFO sizing is enabled.
5352 + * 16 to 32768 (default 1064)
5353 + */
5354 + int32_t dev_rx_fifo_size;
5355 +//#define dwc_param_dev_rx_fifo_size_default 1064
5356 +#define dwc_param_dev_rx_fifo_size_default 0x100
5357 +
5358 + /**
5359 + * Specifies whether dedicated transmit FIFOs are
5360 + * enabled for non periodic IN endpoints in device mode
5361 + * 0 - No
5362 + * 1 - Yes
5363 + */
5364 + int32_t en_multiple_tx_fifo;
5365 +#define dwc_param_en_multiple_tx_fifo_default 1
5366 +
5367 + /** Number of 4-byte words in each of the Tx FIFOs in device
5368 + * mode when dynamic FIFO sizing is enabled.
5369 + * 4 to 768 (default 256)
5370 + */
5371 + uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
5372 +//#define dwc_param_dev_tx_fifo_size_default 256
5373 +#define dwc_param_dev_tx_fifo_size_default 0x80
5374 +
5375 + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
5376 + * when dynamic FIFO sizing is enabled.
5377 + * 16 to 32768 (default 1024)
5378 + */
5379 + int32_t dev_nperio_tx_fifo_size;
5380 +//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
5381 +#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
5382 +
5383 + /** Number of 4-byte words in each of the periodic Tx FIFOs in device
5384 + * mode when dynamic FIFO sizing is enabled.
5385 + * 4 to 768 (default 256)
5386 + */
5387 + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
5388 +//#define dwc_param_dev_perio_tx_fifo_size_default 256
5389 +#define dwc_param_dev_perio_tx_fifo_size_default 0x80
5390 +
5391 + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
5392 + * FIFO sizing is enabled.
5393 + * 16 to 32768 (default 1024)
5394 + */
5395 + int32_t host_rx_fifo_size;
5396 +//#define dwc_param_host_rx_fifo_size_default 1024
5397 +#define dwc_param_host_rx_fifo_size_default 0x292
5398 +
5399 + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
5400 + * when Dynamic FIFO sizing is enabled in the core.
5401 + * 16 to 32768 (default 1024)
5402 + */
5403 + int32_t host_nperio_tx_fifo_size;
5404 +//#define dwc_param_host_nperio_tx_fifo_size_default 1024
5405 +//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
5406 +#define dwc_param_host_nperio_tx_fifo_size_default 0x80
5407 +
5408 + /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
5409 + * FIFO sizing is enabled.
5410 + * 16 to 32768 (default 1024)
5411 + */
5412 + int32_t host_perio_tx_fifo_size;
5413 +//#define dwc_param_host_perio_tx_fifo_size_default 1024
5414 +#define dwc_param_host_perio_tx_fifo_size_default 0x292
5415 +
5416 + /** The maximum transfer size supported in bytes.
5417 + * 2047 to 65,535 (default 65,535)
5418 + */
5419 + int32_t max_transfer_size;
5420 +#define dwc_param_max_transfer_size_default 65535
5421 +
5422 + /** The maximum number of packets in a transfer.
5423 + * 15 to 511 (default 511)
5424 + */
5425 + int32_t max_packet_count;
5426 +#define dwc_param_max_packet_count_default 511
5427 +
5428 + /** The number of host channel registers to use.
5429 + * 1 to 16 (default 12)
5430 + * Note: The FPGA configuration supports a maximum of 12 host channels.
5431 + */
5432 + int32_t host_channels;
5433 +//#define dwc_param_host_channels_default 12
5434 +#define dwc_param_host_channels_default 16
5435 +
5436 + /** The number of endpoints in addition to EP0 available for device
5437 + * mode operations.
5438 + * 1 to 15 (default 6 IN and OUT)
5439 + * Note: The FPGA configuration supports a maximum of 6 IN and OUT
5440 + * endpoints in addition to EP0.
5441 + */
5442 + int32_t dev_endpoints;
5443 +//#define dwc_param_dev_endpoints_default 6
5444 +#define dwc_param_dev_endpoints_default 8
5445 +
5446 + /**
5447 + * Specifies the type of PHY interface to use. By default, the driver
5448 + * will automatically detect the phy_type.
5449 + *
5450 + * 0 - Full Speed PHY
5451 + * 1 - UTMI+ (default)
5452 + * 2 - ULPI
5453 + */
5454 + int32_t phy_type;
5455 +#define DWC_PHY_TYPE_PARAM_FS 0
5456 +#define DWC_PHY_TYPE_PARAM_UTMI 1
5457 +#define DWC_PHY_TYPE_PARAM_ULPI 2
5458 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
5459 +
5460 + /**
5461 + * Specifies the UTMI+ Data Width. This parameter is
5462 + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
5463 + * PHY_TYPE, this parameter indicates the data width between
5464 + * the MAC and the ULPI Wrapper.) Also, this parameter is
5465 + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
5466 + * to "8 and 16 bits", meaning that the core has been
5467 + * configured to work at either data path width.
5468 + *
5469 + * 8 or 16 bits (default 16)
5470 + */
5471 + int32_t phy_utmi_width;
5472 +#define dwc_param_phy_utmi_width_default 16
5473 +
5474 + /**
5475 + * Specifies whether the ULPI operates at double or single
5476 + * data rate. This parameter is only applicable if PHY_TYPE is
5477 + * ULPI.
5478 + *
5479 + * 0 - single data rate ULPI interface with 8 bit wide data
5480 + * bus (default)
5481 + * 1 - double data rate ULPI interface with 4 bit wide data
5482 + * bus
5483 + */
5484 + int32_t phy_ulpi_ddr;
5485 +#define dwc_param_phy_ulpi_ddr_default 0
5486 +
5487 + /**
5488 + * Specifies whether to use the internal or external supply to
5489 + * drive the vbus with a ULPI phy.
5490 + */
5491 + int32_t phy_ulpi_ext_vbus;
5492 +#define DWC_PHY_ULPI_INTERNAL_VBUS 0
5493 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
5494 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
5495 +
5496 + /**
5497 + * Specifies whether to use the I2Cinterface for full speed PHY. This
5498 + * parameter is only applicable if PHY_TYPE is FS.
5499 + * 0 - No (default)
5500 + * 1 - Yes
5501 + */
5502 + int32_t i2c_enable;
5503 +#define dwc_param_i2c_enable_default 0
5504 +
5505 + int32_t ulpi_fs_ls;
5506 +#define dwc_param_ulpi_fs_ls_default 0
5507 +
5508 + int32_t ts_dline;
5509 +#define dwc_param_ts_dline_default 0
5510 +
5511 + /** Thresholding enable flag-
5512 + * bit 0 - enable non-ISO Tx thresholding
5513 + * bit 1 - enable ISO Tx thresholding
5514 + * bit 2 - enable Rx thresholding
5515 + */
5516 + uint32_t thr_ctl;
5517 +#define dwc_param_thr_ctl_default 0
5518 +
5519 + /** Thresholding length for Tx
5520 + * FIFOs in 32 bit DWORDs
5521 + */
5522 + uint32_t tx_thr_length;
5523 +#define dwc_param_tx_thr_length_default 64
5524 +
5525 + /** Thresholding length for Rx
5526 + * FIFOs in 32 bit DWORDs
5527 + */
5528 + uint32_t rx_thr_length;
5529 +#define dwc_param_rx_thr_length_default 64
5530 +
5531 + /** Per Transfer Interrupt
5532 + * mode enable flag
5533 + * 1 - Enabled
5534 + * 0 - Disabled
5535 + */
5536 + uint32_t pti_enable;
5537 +#define dwc_param_pti_enable_default 0
5538 +
5539 + /** Molti Processor Interrupt
5540 + * mode enable flag
5541 + * 1 - Enabled
5542 + * 0 - Disabled
5543 + */
5544 + uint32_t mpi_enable;
5545 +#define dwc_param_mpi_enable_default 0
5546 +
5547 +} dwc_otg_core_params_t;
5548 +
5549 +#ifdef DEBUG
5550 +struct dwc_otg_core_if;
5551 +typedef struct hc_xfer_info
5552 +{
5553 + struct dwc_otg_core_if *core_if;
5554 + dwc_hc_t *hc;
5555 +} hc_xfer_info_t;
5556 +#endif
5557 +
5558 +/**
5559 + * The <code>dwc_otg_core_if</code> structure contains information needed to manage
5560 + * the DWC_otg controller acting in either host or device mode. It
5561 + * represents the programming view of the controller as a whole.
5562 + */
5563 +typedef struct dwc_otg_core_if
5564 +{
5565 + /** Parameters that define how the core should be configured.*/
5566 + dwc_otg_core_params_t *core_params;
5567 +
5568 + /** Core Global registers starting at offset 000h. */
5569 + dwc_otg_core_global_regs_t *core_global_regs;
5570 +
5571 + /** Device-specific information */
5572 + dwc_otg_dev_if_t *dev_if;
5573 + /** Host-specific information */
5574 + dwc_otg_host_if_t *host_if;
5575 +
5576 + /** Value from SNPSID register */
5577 + uint32_t snpsid;
5578 +
5579 + /*
5580 + * Set to 1 if the core PHY interface bits in USBCFG have been
5581 + * initialized.
5582 + */
5583 + uint8_t phy_init_done;
5584 +
5585 + /*
5586 + * SRP Success flag, set by srp success interrupt in FS I2C mode
5587 + */
5588 + uint8_t srp_success;
5589 + uint8_t srp_timer_started;
5590 +
5591 + /* Common configuration information */
5592 + /** Power and Clock Gating Control Register */
5593 + volatile uint32_t *pcgcctl;
5594 +#define DWC_OTG_PCGCCTL_OFFSET 0xE00
5595 +
5596 + /** Push/pop addresses for endpoints or host channels.*/
5597 + uint32_t *data_fifo[MAX_EPS_CHANNELS];
5598 +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
5599 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000
5600 +
5601 + /** Total RAM for FIFOs (Bytes) */
5602 + uint16_t total_fifo_size;
5603 + /** Size of Rx FIFO (Bytes) */
5604 + uint16_t rx_fifo_size;
5605 + /** Size of Non-periodic Tx FIFO (Bytes) */
5606 + uint16_t nperio_tx_fifo_size;
5607 +
5608 +
5609 + /** 1 if DMA is enabled, 0 otherwise. */
5610 + uint8_t dma_enable;
5611 +
5612 + /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
5613 + uint8_t dma_desc_enable;
5614 +
5615 + /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
5616 + uint8_t pti_enh_enable;
5617 +
5618 + /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
5619 + uint8_t multiproc_int_enable;
5620 +
5621 + /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
5622 + uint8_t en_multiple_tx_fifo;
5623 +
5624 + /** Set to 1 if multiple packets of a high-bandwidth transfer is in
5625 + * process of being queued */
5626 + uint8_t queuing_high_bandwidth;
5627 +
5628 + /** Hardware Configuration -- stored here for convenience.*/
5629 + hwcfg1_data_t hwcfg1;
5630 + hwcfg2_data_t hwcfg2;
5631 + hwcfg3_data_t hwcfg3;
5632 + hwcfg4_data_t hwcfg4;
5633 +
5634 + /** Host and Device Configuration -- stored here for convenience.*/
5635 + hcfg_data_t hcfg;
5636 + dcfg_data_t dcfg;
5637 +
5638 + /** The operational State, during transations
5639 + * (a_host>>a_peripherial and b_device=>b_host) this may not
5640 + * match the core but allows the software to determine
5641 + * transitions.
5642 + */
5643 + uint8_t op_state;
5644 +
5645 + /**
5646 + * Set to 1 if the HCD needs to be restarted on a session request
5647 + * interrupt. This is required if no connector ID status change has
5648 + * occurred since the HCD was last disconnected.
5649 + */
5650 + uint8_t restart_hcd_on_session_req;
5651 +
5652 + /** HCD callbacks */
5653 + /** A-Device is a_host */
5654 +#define A_HOST (1)
5655 + /** A-Device is a_suspend */
5656 +#define A_SUSPEND (2)
5657 + /** A-Device is a_peripherial */
5658 +#define A_PERIPHERAL (3)
5659 + /** B-Device is operating as a Peripheral. */
5660 +#define B_PERIPHERAL (4)
5661 + /** B-Device is operating as a Host. */
5662 +#define B_HOST (5)
5663 +
5664 + /** HCD callbacks */
5665 + struct dwc_otg_cil_callbacks *hcd_cb;
5666 + /** PCD callbacks */
5667 + struct dwc_otg_cil_callbacks *pcd_cb;
5668 +
5669 + /** Device mode Periodic Tx FIFO Mask */
5670 + uint32_t p_tx_msk;
5671 + /** Device mode Periodic Tx FIFO Mask */
5672 + uint32_t tx_msk;
5673 +
5674 + /** Workqueue object used for handling several interrupts */
5675 + struct workqueue_struct *wq_otg;
5676 +
5677 + /** Work object used for handling "Connector ID Status Change" Interrupt */
5678 + struct work_struct w_conn_id;
5679 +
5680 + /** Work object used for handling "Wakeup Detected" Interrupt */
5681 + struct delayed_work w_wkp;
5682 +
5683 +#ifdef DEBUG
5684 + uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
5685 +
5686 + hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
5687 + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
5688 +
5689 + uint32_t hfnum_7_samples;
5690 + uint64_t hfnum_7_frrem_accum;
5691 + uint32_t hfnum_0_samples;
5692 + uint64_t hfnum_0_frrem_accum;
5693 + uint32_t hfnum_other_samples;
5694 + uint64_t hfnum_other_frrem_accum;
5695 +#endif
5696 +
5697 +
5698 +} dwc_otg_core_if_t;
5699 +
5700 +/*We must clear S3C24XX_EINTPEND external interrupt register
5701 + * because after clearing in this register trigerred IRQ from
5702 + * H/W core in kernel interrupt can be occured again before OTG
5703 + * handlers clear all IRQ sources of Core registers because of
5704 + * timing latencies and Low Level IRQ Type.
5705 + */
5706 +
5707 +#ifdef CONFIG_MACH_IPMATE
5708 +#define S3C2410X_CLEAR_EINTPEND() \
5709 +do { \
5710 + if (!dwc_otg_read_core_intr(core_if)) { \
5711 + __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
5712 + } \
5713 +} while (0)
5714 +#else
5715 +#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
5716 +#endif
5717 +
5718 +/*
5719 + * The following functions are functions for works
5720 + * using during handling some interrupts
5721 + */
5722 +extern void w_conn_id_status_change(struct work_struct *p);
5723 +extern void w_wakeup_detected(struct work_struct *p);
5724 +
5725 +
5726 +/*
5727 + * The following functions support initialization of the CIL driver component
5728 + * and the DWC_otg controller.
5729 + */
5730 +extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
5731 + dwc_otg_core_params_t *_core_params);
5732 +extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
5733 +extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
5734 +extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
5735 +extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
5736 +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
5737 +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
5738 +
5739 +/** @name Device CIL Functions
5740 + * The following functions support managing the DWC_otg controller in device
5741 + * mode.
5742 + */
5743 +/**@{*/
5744 +extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
5745 +extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
5746 +extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
5747 +extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5748 +extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5749 +extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5750 +extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5751 +extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5752 +extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5753 +extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5754 +extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
5755 +extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5756 +extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5757 +extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
5758 +extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
5759 +extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
5760 +#ifdef DWC_EN_ISOC
5761 +extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
5762 +extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
5763 +#endif //DWC_EN_ISOC
5764 +/**@}*/
5765 +
5766 +/** @name Host CIL Functions
5767 + * The following functions support managing the DWC_otg controller in host
5768 + * mode.
5769 + */
5770 +/**@{*/
5771 +extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5772 +extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
5773 + dwc_hc_t *_hc,
5774 + dwc_otg_halt_status_e _halt_status);
5775 +extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5776 +extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5777 +extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5778 +extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5779 +extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5780 +extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
5781 +extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
5782 +
5783 +/**
5784 + * This function Reads HPRT0 in preparation to modify. It keeps the
5785 + * WC bits 0 so that if they are read as 1, they won't clear when you
5786 + * write it back
5787 + */
5788 +static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
5789 +{
5790 + hprt0_data_t hprt0;
5791 + hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
5792 + hprt0.b.prtena = 0;
5793 + hprt0.b.prtconndet = 0;
5794 + hprt0.b.prtenchng = 0;
5795 + hprt0.b.prtovrcurrchng = 0;
5796 + return hprt0.d32;
5797 +}
5798 +
5799 +extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
5800 +/**@}*/
5801 +
5802 +/** @name Common CIL Functions
5803 + * The following functions support managing the DWC_otg controller in either
5804 + * device or host mode.
5805 + */
5806 +/**@{*/
5807 +
5808 +extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
5809 + uint8_t *dest,
5810 + uint16_t bytes);
5811 +
5812 +extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
5813 +
5814 +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
5815 + const int _num );
5816 +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
5817 +extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
5818 +
5819 +extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
5820 +extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
5821 +
5822 +/**
5823 + * This function returns the Core Interrupt register.
5824 + */
5825 +static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
5826 +{
5827 + return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
5828 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
5829 +}
5830 +
5831 +/**
5832 + * This function returns the OTG Interrupt register.
5833 + */
5834 +static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
5835 +{
5836 + return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
5837 +}
5838 +
5839 +/**
5840 + * This function reads the Device All Endpoints Interrupt register and
5841 + * returns the IN endpoint interrupt bits.
5842 + */
5843 +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
5844 +{
5845 + uint32_t v;
5846 +
5847 + if(core_if->multiproc_int_enable) {
5848 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
5849 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
5850 + } else {
5851 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
5852 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
5853 + }
5854 + return (v & 0xffff);
5855 +
5856 +}
5857 +
5858 +/**
5859 + * This function reads the Device All Endpoints Interrupt register and
5860 + * returns the OUT endpoint interrupt bits.
5861 + */
5862 +static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
5863 +{
5864 + uint32_t v;
5865 +
5866 + if(core_if->multiproc_int_enable) {
5867 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
5868 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
5869 + } else {
5870 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
5871 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
5872 + }
5873 +
5874 + return ((v & 0xffff0000) >> 16);
5875 +}
5876 +
5877 +/**
5878 + * This function returns the Device IN EP Interrupt register
5879 + */
5880 +static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
5881 + dwc_ep_t *ep)
5882 +{
5883 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
5884 + uint32_t v, msk, emp;
5885 +
5886 + if(core_if->multiproc_int_enable) {
5887 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
5888 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
5889 + msk |= ((emp >> ep->num) & 0x1) << 7;
5890 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
5891 + } else {
5892 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
5893 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
5894 + msk |= ((emp >> ep->num) & 0x1) << 7;
5895 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
5896 + }
5897 +
5898 +
5899 + return v;
5900 +}
5901 +/**
5902 + * This function returns the Device OUT EP Interrupt register
5903 + */
5904 +static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
5905 + dwc_ep_t *_ep)
5906 +{
5907 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
5908 + uint32_t v;
5909 + doepmsk_data_t msk = { .d32 = 0 };
5910 +
5911 + if(_core_if->multiproc_int_enable) {
5912 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
5913 + if(_core_if->pti_enh_enable) {
5914 + msk.b.pktdrpsts = 1;
5915 + }
5916 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
5917 + } else {
5918 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
5919 + if(_core_if->pti_enh_enable) {
5920 + msk.b.pktdrpsts = 1;
5921 + }
5922 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
5923 + }
5924 + return v;
5925 +}
5926 +
5927 +/**
5928 + * This function returns the Host All Channel Interrupt register
5929 + */
5930 +static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
5931 +{
5932 + return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
5933 +}
5934 +
5935 +static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
5936 +{
5937 + return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
5938 +}
5939 +
5940 +
5941 +/**
5942 + * This function returns the mode of the operation, host or device.
5943 + *
5944 + * @return 0 - Device Mode, 1 - Host Mode
5945 + */
5946 +static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
5947 +{
5948 + return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
5949 +}
5950 +
5951 +static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
5952 +{
5953 + return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
5954 +}
5955 +static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
5956 +{
5957 + return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
5958 +}
5959 +
5960 +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
5961 +
5962 +
5963 +/**@}*/
5964 +
5965 +/**
5966 + * DWC_otg CIL callback structure. This structure allows the HCD and
5967 + * PCD to register functions used for starting and stopping the PCD
5968 + * and HCD for role change on for a DRD.
5969 + */
5970 +typedef struct dwc_otg_cil_callbacks
5971 +{
5972 + /** Start function for role change */
5973 + int (*start) (void *_p);
5974 + /** Stop Function for role change */
5975 + int (*stop) (void *_p);
5976 + /** Disconnect Function for role change */
5977 + int (*disconnect) (void *_p);
5978 + /** Resume/Remote wakeup Function */
5979 + int (*resume_wakeup) (void *_p);
5980 + /** Suspend function */
5981 + int (*suspend) (void *_p);
5982 + /** Session Start (SRP) */
5983 + int (*session_start) (void *_p);
5984 + /** Pointer passed to start() and stop() */
5985 + void *p;
5986 +} dwc_otg_cil_callbacks_t;
5987 +
5988 +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
5989 + dwc_otg_cil_callbacks_t *_cb,
5990 + void *_p);
5991 +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
5992 + dwc_otg_cil_callbacks_t *_cb,
5993 + void *_p);
5994 +#ifndef warn
5995 +#define warn printk
5996 +#endif
5997 +
5998 +#endif
5999 +
6000 --- /dev/null
6001 +++ b/drivers/usb/dwc/otg_cil_intr.c
6002 @@ -0,0 +1,852 @@
6003 +/* ==========================================================================
6004 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
6005 + * $Revision: #10 $
6006 + * $Date: 2008/07/16 $
6007 + * $Change: 1065567 $
6008 + *
6009 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6010 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6011 + * otherwise expressly agreed to in writing between Synopsys and you.
6012 + *
6013 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6014 + * any End User Software License Agreement or Agreement for Licensed Product
6015 + * with Synopsys or any supplement thereto. You are permitted to use and
6016 + * redistribute this Software in source and binary forms, with or without
6017 + * modification, provided that redistributions of source code must retain this
6018 + * notice. You may not view, use, disclose, copy or distribute this file or
6019 + * any information contained herein except pursuant to this license grant from
6020 + * Synopsys. If you do not agree with this notice, including the disclaimer
6021 + * below, then you are not authorized to use the Software.
6022 + *
6023 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6024 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6025 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6026 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6027 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6028 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6029 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6030 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6031 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6032 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6033 + * DAMAGE.
6034 + * ========================================================================== */
6035 +
6036 +/** @file
6037 + *
6038 + * The Core Interface Layer provides basic services for accessing and
6039 + * managing the DWC_otg hardware. These services are used by both the
6040 + * Host Controller Driver and the Peripheral Controller Driver.
6041 + *
6042 + * This file contains the Common Interrupt handlers.
6043 + */
6044 +#include "otg_plat.h"
6045 +#include "otg_regs.h"
6046 +#include "otg_cil.h"
6047 +#include "otg_pcd.h"
6048 +
6049 +#ifdef DEBUG
6050 +inline const char *op_state_str(dwc_otg_core_if_t *core_if)
6051 +{
6052 + return (core_if->op_state==A_HOST?"a_host":
6053 + (core_if->op_state==A_SUSPEND?"a_suspend":
6054 + (core_if->op_state==A_PERIPHERAL?"a_peripheral":
6055 + (core_if->op_state==B_PERIPHERAL?"b_peripheral":
6056 + (core_if->op_state==B_HOST?"b_host":
6057 + "unknown")))));
6058 +}
6059 +#endif
6060 +
6061 +/** This function will log a debug message
6062 + *
6063 + * @param core_if Programming view of DWC_otg controller.
6064 + */
6065 +int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
6066 +{
6067 + gintsts_data_t gintsts;
6068 + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
6069 + dwc_otg_mode(core_if) ? "Host" : "Device");
6070 +
6071 + /* Clear interrupt */
6072 + gintsts.d32 = 0;
6073 + gintsts.b.modemismatch = 1;
6074 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6075 + return 1;
6076 +}
6077 +
6078 +/** Start the HCD. Helper function for using the HCD callbacks.
6079 + *
6080 + * @param core_if Programming view of DWC_otg controller.
6081 + */
6082 +static inline void hcd_start(dwc_otg_core_if_t *core_if)
6083 +{
6084 + if (core_if->hcd_cb && core_if->hcd_cb->start) {
6085 + core_if->hcd_cb->start(core_if->hcd_cb->p);
6086 + }
6087 +}
6088 +/** Stop the HCD. Helper function for using the HCD callbacks.
6089 + *
6090 + * @param core_if Programming view of DWC_otg controller.
6091 + */
6092 +static inline void hcd_stop(dwc_otg_core_if_t *core_if)
6093 +{
6094 + if (core_if->hcd_cb && core_if->hcd_cb->stop) {
6095 + core_if->hcd_cb->stop(core_if->hcd_cb->p);
6096 + }
6097 +}
6098 +/** Disconnect the HCD. Helper function for using the HCD callbacks.
6099 + *
6100 + * @param core_if Programming view of DWC_otg controller.
6101 + */
6102 +static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
6103 +{
6104 + if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
6105 + core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
6106 + }
6107 +}
6108 +/** Inform the HCD the a New Session has begun. Helper function for
6109 + * using the HCD callbacks.
6110 + *
6111 + * @param core_if Programming view of DWC_otg controller.
6112 + */
6113 +static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
6114 +{
6115 + if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
6116 + core_if->hcd_cb->session_start(core_if->hcd_cb->p);
6117 + }
6118 +}
6119 +
6120 +/** Start the PCD. Helper function for using the PCD callbacks.
6121 + *
6122 + * @param core_if Programming view of DWC_otg controller.
6123 + */
6124 +static inline void pcd_start(dwc_otg_core_if_t *core_if)
6125 +{
6126 + if (core_if->pcd_cb && core_if->pcd_cb->start) {
6127 + core_if->pcd_cb->start(core_if->pcd_cb->p);
6128 + }
6129 +}
6130 +/** Stop the PCD. Helper function for using the PCD callbacks.
6131 + *
6132 + * @param core_if Programming view of DWC_otg controller.
6133 + */
6134 +static inline void pcd_stop(dwc_otg_core_if_t *core_if)
6135 +{
6136 + if (core_if->pcd_cb && core_if->pcd_cb->stop) {
6137 + core_if->pcd_cb->stop(core_if->pcd_cb->p);
6138 + }
6139 +}
6140 +/** Suspend the PCD. Helper function for using the PCD callbacks.
6141 + *
6142 + * @param core_if Programming view of DWC_otg controller.
6143 + */
6144 +static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
6145 +{
6146 + if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
6147 + core_if->pcd_cb->suspend(core_if->pcd_cb->p);
6148 + }
6149 +}
6150 +/** Resume the PCD. Helper function for using the PCD callbacks.
6151 + *
6152 + * @param core_if Programming view of DWC_otg controller.
6153 + */
6154 +static inline void pcd_resume(dwc_otg_core_if_t *core_if)
6155 +{
6156 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
6157 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
6158 + }
6159 +}
6160 +
6161 +/**
6162 + * This function handles the OTG Interrupts. It reads the OTG
6163 + * Interrupt Register (GOTGINT) to determine what interrupt has
6164 + * occurred.
6165 + *
6166 + * @param core_if Programming view of DWC_otg controller.
6167 + */
6168 +int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
6169 +{
6170 + dwc_otg_core_global_regs_t *global_regs =
6171 + core_if->core_global_regs;
6172 + gotgint_data_t gotgint;
6173 + gotgctl_data_t gotgctl;
6174 + gintmsk_data_t gintmsk;
6175 + gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
6176 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6177 + DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
6178 + op_state_str(core_if));
6179 + //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
6180 +
6181 + if (gotgint.b.sesenddet) {
6182 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6183 + "Session End Detected++ (%s)\n",
6184 + op_state_str(core_if));
6185 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6186 +
6187 + if (core_if->op_state == B_HOST) {
6188 +
6189 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
6190 + if(unlikely(!pcd)) {
6191 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6192 + BUG();
6193 + }
6194 + SPIN_LOCK(&pcd->lock);
6195 +
6196 + pcd_start(core_if);
6197 +
6198 + SPIN_UNLOCK(&pcd->lock);
6199 + core_if->op_state = B_PERIPHERAL;
6200 + } else {
6201 + dwc_otg_pcd_t *pcd;
6202 +
6203 + /* If not B_HOST and Device HNP still set. HNP
6204 + * Did not succeed!*/
6205 + if (gotgctl.b.devhnpen) {
6206 + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
6207 + DWC_ERROR("Device Not Connected/Responding!\n");
6208 + }
6209 +
6210 + /* If Session End Detected the B-Cable has
6211 + * been disconnected. */
6212 + /* Reset PCD and Gadget driver to a
6213 + * clean state. */
6214 +
6215 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6216 + if(unlikely(!pcd)) {
6217 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6218 + BUG();
6219 + }
6220 + SPIN_LOCK(&pcd->lock);
6221 +
6222 + pcd_stop(core_if);
6223 +
6224 + SPIN_UNLOCK(&pcd->lock);
6225 + }
6226 + gotgctl.d32 = 0;
6227 + gotgctl.b.devhnpen = 1;
6228 + dwc_modify_reg32(&global_regs->gotgctl,
6229 + gotgctl.d32, 0);
6230 + }
6231 + if (gotgint.b.sesreqsucstschng) {
6232 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6233 + "Session Reqeust Success Status Change++\n");
6234 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6235 + if (gotgctl.b.sesreqscs) {
6236 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
6237 + (core_if->core_params->i2c_enable)) {
6238 + core_if->srp_success = 1;
6239 + }
6240 + else {
6241 + dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6242 + if(unlikely(!pcd)) {
6243 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6244 + BUG();
6245 + }
6246 + SPIN_LOCK(&pcd->lock);
6247 +
6248 + pcd_resume(core_if);
6249 +
6250 + SPIN_UNLOCK(&pcd->lock);
6251 + /* Clear Session Request */
6252 + gotgctl.d32 = 0;
6253 + gotgctl.b.sesreq = 1;
6254 + dwc_modify_reg32(&global_regs->gotgctl,
6255 + gotgctl.d32, 0);
6256 + }
6257 + }
6258 + }
6259 + if (gotgint.b.hstnegsucstschng) {
6260 + /* Print statements during the HNP interrupt handling
6261 + * can cause it to fail.*/
6262 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6263 + if (gotgctl.b.hstnegscs) {
6264 + if (dwc_otg_is_host_mode(core_if)) {
6265 + dwc_otg_pcd_t *pcd;
6266 +
6267 + core_if->op_state = B_HOST;
6268 + /*
6269 + * Need to disable SOF interrupt immediately.
6270 + * When switching from device to host, the PCD
6271 + * interrupt handler won't handle the
6272 + * interrupt if host mode is already set. The
6273 + * HCD interrupt handler won't get called if
6274 + * the HCD state is HALT. This means that the
6275 + * interrupt does not get handled and Linux
6276 + * complains loudly.
6277 + */
6278 + gintmsk.d32 = 0;
6279 + gintmsk.b.sofintr = 1;
6280 + dwc_modify_reg32(&global_regs->gintmsk,
6281 + gintmsk.d32, 0);
6282 +
6283 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6284 + if(unlikely(!pcd)) {
6285 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6286 + BUG();
6287 + }
6288 + SPIN_LOCK(&pcd->lock);
6289 +
6290 + pcd_stop(core_if);
6291 +
6292 + SPIN_UNLOCK(&pcd->lock);
6293 + /*
6294 + * Initialize the Core for Host mode.
6295 + */
6296 + hcd_start(core_if);
6297 + core_if->op_state = B_HOST;
6298 + }
6299 + } else {
6300 + gotgctl.d32 = 0;
6301 + gotgctl.b.hnpreq = 1;
6302 + gotgctl.b.devhnpen = 1;
6303 + dwc_modify_reg32(&global_regs->gotgctl,
6304 + gotgctl.d32, 0);
6305 + DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
6306 + DWC_ERROR("Device Not Connected/Responding\n");
6307 + }
6308 + }
6309 + if (gotgint.b.hstnegdet) {
6310 + /* The disconnect interrupt is set at the same time as
6311 + * Host Negotiation Detected. During the mode
6312 + * switch all interrupts are cleared so the disconnect
6313 + * interrupt handler will not get executed.
6314 + */
6315 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6316 + "Host Negotiation Detected++ (%s)\n",
6317 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
6318 + if (dwc_otg_is_device_mode(core_if)){
6319 + dwc_otg_pcd_t *pcd;
6320 +
6321 + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
6322 + hcd_disconnect(core_if);
6323 +
6324 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6325 + if(unlikely(!pcd)) {
6326 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6327 + BUG();
6328 + }
6329 + SPIN_LOCK(&pcd->lock);
6330 +
6331 + pcd_start(core_if);
6332 +
6333 + SPIN_UNLOCK(&pcd->lock);
6334 + core_if->op_state = A_PERIPHERAL;
6335 + } else {
6336 + dwc_otg_pcd_t *pcd;
6337 +
6338 + /*
6339 + * Need to disable SOF interrupt immediately. When
6340 + * switching from device to host, the PCD interrupt
6341 + * handler won't handle the interrupt if host mode is
6342 + * already set. The HCD interrupt handler won't get
6343 + * called if the HCD state is HALT. This means that
6344 + * the interrupt does not get handled and Linux
6345 + * complains loudly.
6346 + */
6347 + gintmsk.d32 = 0;
6348 + gintmsk.b.sofintr = 1;
6349 + dwc_modify_reg32(&global_regs->gintmsk,
6350 + gintmsk.d32, 0);
6351 +
6352 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6353 + if(unlikely(!pcd)) {
6354 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6355 + BUG();
6356 + }
6357 + SPIN_LOCK(&pcd->lock);
6358 +
6359 + pcd_stop(core_if);
6360 +
6361 + SPIN_UNLOCK(&pcd->lock);
6362 + hcd_start(core_if);
6363 + core_if->op_state = A_HOST;
6364 + }
6365 + }
6366 + if (gotgint.b.adevtoutchng) {
6367 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6368 + "A-Device Timeout Change++\n");
6369 + }
6370 + if (gotgint.b.debdone) {
6371 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6372 + "Debounce Done++\n");
6373 + }
6374 +
6375 + /* Clear GOTGINT */
6376 + dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
6377 +
6378 + return 1;
6379 +}
6380 +
6381 +
6382 +void w_conn_id_status_change(struct work_struct *p)
6383 +{
6384 + dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
6385 +
6386 + uint32_t count = 0;
6387 + gotgctl_data_t gotgctl = { .d32 = 0 };
6388 +
6389 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
6390 + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
6391 + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
6392 +
6393 + /* B-Device connector (Device Mode) */
6394 + if (gotgctl.b.conidsts) {
6395 + dwc_otg_pcd_t *pcd;
6396 +
6397 + /* Wait for switch to device mode. */
6398 + while (!dwc_otg_is_device_mode(core_if)){
6399 + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
6400 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
6401 + MDELAY(100);
6402 + if (++count > 10000) *(uint32_t*)NULL=0;
6403 + }
6404 + core_if->op_state = B_PERIPHERAL;
6405 + dwc_otg_core_init(core_if);
6406 + dwc_otg_enable_global_interrupts(core_if);
6407 +
6408 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6409 + if(unlikely(!pcd)) {
6410 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6411 + BUG();
6412 + }
6413 + SPIN_LOCK(&pcd->lock);
6414 +
6415 + pcd_start(core_if);
6416 +
6417 + SPIN_UNLOCK(&pcd->lock);
6418 + } else {
6419 + /* A-Device connector (Host Mode) */
6420 + while (!dwc_otg_is_host_mode(core_if)) {
6421 + DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
6422 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
6423 + MDELAY(100);
6424 + if (++count > 10000) *(uint32_t*)NULL=0;
6425 + }
6426 + core_if->op_state = A_HOST;
6427 + /*
6428 + * Initialize the Core for Host mode.
6429 + */
6430 + dwc_otg_core_init(core_if);
6431 + dwc_otg_enable_global_interrupts(core_if);
6432 + hcd_start(core_if);
6433 + }
6434 +}
6435 +
6436 +
6437 +/**
6438 + * This function handles the Connector ID Status Change Interrupt. It
6439 + * reads the OTG Interrupt Register (GOTCTL) to determine whether this
6440 + * is a Device to Host Mode transition or a Host Mode to Device
6441 + * Transition.
6442 + *
6443 + * This only occurs when the cable is connected/removed from the PHY
6444 + * connector.
6445 + *
6446 + * @param core_if Programming view of DWC_otg controller.
6447 + */
6448 +int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
6449 +{
6450 +
6451 + /*
6452 + * Need to disable SOF interrupt immediately. If switching from device
6453 + * to host, the PCD interrupt handler won't handle the interrupt if
6454 + * host mode is already set. The HCD interrupt handler won't get
6455 + * called if the HCD state is HALT. This means that the interrupt does
6456 + * not get handled and Linux complains loudly.
6457 + */
6458 + gintmsk_data_t gintmsk = { .d32 = 0 };
6459 + gintsts_data_t gintsts = { .d32 = 0 };
6460 +
6461 + gintmsk.b.sofintr = 1;
6462 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
6463 +
6464 + DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
6465 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
6466 +
6467 + /*
6468 + * Need to schedule a work, as there are possible DELAY function calls
6469 + */
6470 + queue_work(core_if->wq_otg, &core_if->w_conn_id);
6471 +
6472 + /* Set flag and clear interrupt */
6473 + gintsts.b.conidstschng = 1;
6474 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6475 +
6476 + return 1;
6477 +}
6478 +
6479 +/**
6480 + * This interrupt indicates that a device is initiating the Session
6481 + * Request Protocol to request the host to turn on bus power so a new
6482 + * session can begin. The handler responds by turning on bus power. If
6483 + * the DWC_otg controller is in low power mode, the handler brings the
6484 + * controller out of low power mode before turning on bus power.
6485 + *
6486 + * @param core_if Programming view of DWC_otg controller.
6487 + */
6488 +int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
6489 +{
6490 + hprt0_data_t hprt0;
6491 + gintsts_data_t gintsts;
6492 +
6493 +#ifndef DWC_HOST_ONLY
6494 + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
6495 +
6496 + if (dwc_otg_is_device_mode(core_if)) {
6497 + DWC_PRINT("SRP: Device mode\n");
6498 + } else {
6499 + DWC_PRINT("SRP: Host mode\n");
6500 +
6501 + /* Turn on the port power bit. */
6502 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
6503 + hprt0.b.prtpwr = 1;
6504 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
6505 +
6506 + /* Start the Connection timer. So a message can be displayed
6507 + * if connect does not occur within 10 seconds. */
6508 + hcd_session_start(core_if);
6509 + }
6510 +#endif
6511 +
6512 + /* Clear interrupt */
6513 + gintsts.d32 = 0;
6514 + gintsts.b.sessreqintr = 1;
6515 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6516 +
6517 + return 1;
6518 +}
6519 +
6520 +
6521 +void w_wakeup_detected(struct work_struct *p)
6522 +{
6523 + struct delayed_work *dw = container_of(p, struct delayed_work, work);
6524 + dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
6525 +
6526 + /*
6527 + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
6528 + * so that OPT tests pass with all PHYs).
6529 + */
6530 + hprt0_data_t hprt0 = {.d32=0};
6531 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
6532 + DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
6533 +// MDELAY(70);
6534 + hprt0.b.prtres = 0; /* Resume */
6535 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
6536 + DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
6537 +}
6538 +/**
6539 + * This interrupt indicates that the DWC_otg controller has detected a
6540 + * resume or remote wakeup sequence. If the DWC_otg controller is in
6541 + * low power mode, the handler must brings the controller out of low
6542 + * power mode. The controller automatically begins resume
6543 + * signaling. The handler schedules a time to stop resume signaling.
6544 + */
6545 +int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
6546 +{
6547 + gintsts_data_t gintsts;
6548 +
6549 + DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
6550 +
6551 + if (dwc_otg_is_device_mode(core_if)) {
6552 + dctl_data_t dctl = {.d32=0};
6553 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
6554 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
6555 +#ifdef PARTIAL_POWER_DOWN
6556 + if (core_if->hwcfg4.b.power_optimiz) {
6557 + pcgcctl_data_t power = {.d32=0};
6558 +
6559 + power.d32 = dwc_read_reg32(core_if->pcgcctl);
6560 + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
6561 +
6562 + power.b.stoppclk = 0;
6563 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6564 +
6565 + power.b.pwrclmp = 0;
6566 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6567 +
6568 + power.b.rstpdwnmodule = 0;
6569 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6570 + }
6571 +#endif
6572 + /* Clear the Remote Wakeup Signalling */
6573 + dctl.b.rmtwkupsig = 1;
6574 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
6575 + dctl.d32, 0);
6576 +
6577 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
6578 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
6579 + }
6580 +
6581 + } else {
6582 + pcgcctl_data_t pcgcctl = {.d32=0};
6583 +
6584 + /* Restart the Phy Clock */
6585 + pcgcctl.b.stoppclk = 1;
6586 + dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
6587 +
6588 + queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
6589 + }
6590 +
6591 + /* Clear interrupt */
6592 + gintsts.d32 = 0;
6593 + gintsts.b.wkupintr = 1;
6594 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6595 +
6596 + return 1;
6597 +}
6598 +
6599 +/**
6600 + * This interrupt indicates that a device has been disconnected from
6601 + * the root port.
6602 + */
6603 +int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
6604 +{
6605 + gintsts_data_t gintsts;
6606 +
6607 + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
6608 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
6609 + op_state_str(core_if));
6610 +
6611 +/** @todo Consolidate this if statement. */
6612 +#ifndef DWC_HOST_ONLY
6613 + if (core_if->op_state == B_HOST) {
6614 + dwc_otg_pcd_t *pcd;
6615 +
6616 + /* If in device mode Disconnect and stop the HCD, then
6617 + * start the PCD. */
6618 + hcd_disconnect(core_if);
6619 +
6620 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6621 + if(unlikely(!pcd)) {
6622 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6623 + BUG();
6624 + }
6625 + SPIN_LOCK(&pcd->lock);
6626 +
6627 + pcd_start(core_if);
6628 +
6629 + SPIN_UNLOCK(&pcd->lock);
6630 + core_if->op_state = B_PERIPHERAL;
6631 + } else if (dwc_otg_is_device_mode(core_if)) {
6632 + gotgctl_data_t gotgctl = { .d32 = 0 };
6633 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
6634 + if (gotgctl.b.hstsethnpen==1) {
6635 + /* Do nothing, if HNP in process the OTG
6636 + * interrupt "Host Negotiation Detected"
6637 + * interrupt will do the mode switch.
6638 + */
6639 + } else if (gotgctl.b.devhnpen == 0) {
6640 + dwc_otg_pcd_t *pcd;
6641 +
6642 + /* If in device mode Disconnect and stop the HCD, then
6643 + * start the PCD. */
6644 + hcd_disconnect(core_if);
6645 +
6646 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6647 + if(unlikely(!pcd)) {
6648 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6649 + BUG();
6650 + }
6651 + SPIN_LOCK(&pcd->lock);
6652 +
6653 + pcd_start(core_if);
6654 +
6655 + SPIN_UNLOCK(&pcd->lock);
6656 +
6657 + core_if->op_state = B_PERIPHERAL;
6658 + } else {
6659 + DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
6660 + }
6661 + } else {
6662 + if (core_if->op_state == A_HOST) {
6663 + /* A-Cable still connected but device disconnected. */
6664 + hcd_disconnect(core_if);
6665 + }
6666 + }
6667 +#endif
6668 +
6669 + gintsts.d32 = 0;
6670 + gintsts.b.disconnect = 1;
6671 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6672 + return 1;
6673 +}
6674 +/**
6675 + * This interrupt indicates that SUSPEND state has been detected on
6676 + * the USB.
6677 + *
6678 + * For HNP the USB Suspend interrupt signals the change from
6679 + * "a_peripheral" to "a_host".
6680 + *
6681 + * When power management is enabled the core will be put in low power
6682 + * mode.
6683 + */
6684 +int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
6685 +{
6686 + dsts_data_t dsts;
6687 + gintsts_data_t gintsts;
6688 +
6689 + DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
6690 +
6691 + if (dwc_otg_is_device_mode(core_if)) {
6692 + dwc_otg_pcd_t *pcd;
6693 +
6694 + /* Check the Device status register to determine if the Suspend
6695 + * state is active. */
6696 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
6697 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
6698 + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
6699 + "HWCFG4.power Optimize=%d\n",
6700 + dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
6701 +
6702 +
6703 +#ifdef PARTIAL_POWER_DOWN
6704 +/** @todo Add a module parameter for power management. */
6705 + if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
6706 + pcgcctl_data_t power = {.d32=0};
6707 + DWC_DEBUGPL(DBG_CIL, "suspend\n");
6708 +
6709 + power.b.pwrclmp = 1;
6710 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6711 +
6712 + power.b.rstpdwnmodule = 1;
6713 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
6714 +
6715 + power.b.stoppclk = 1;
6716 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
6717 + } else {
6718 + DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
6719 + }
6720 +#endif
6721 + /* PCD callback for suspend. */
6722 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6723 + if(unlikely(!pcd)) {
6724 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6725 + BUG();
6726 + }
6727 + SPIN_LOCK(&pcd->lock);
6728 +
6729 + pcd_suspend(core_if);
6730 +
6731 + SPIN_UNLOCK(&pcd->lock);
6732 + } else {
6733 + if (core_if->op_state == A_PERIPHERAL) {
6734 + dwc_otg_pcd_t *pcd;
6735 +
6736 + DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
6737 + /* Clear the a_peripheral flag, back to a_host. */
6738 +
6739 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6740 + if(unlikely(!pcd)) {
6741 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6742 + BUG();
6743 + }
6744 + SPIN_LOCK(&pcd->lock);
6745 +
6746 + pcd_stop(core_if);
6747 +
6748 + SPIN_UNLOCK(&pcd->lock);
6749 +
6750 + hcd_start(core_if);
6751 + core_if->op_state = A_HOST;
6752 + }
6753 + }
6754 +
6755 + /* Clear interrupt */
6756 + gintsts.d32 = 0;
6757 + gintsts.b.usbsuspend = 1;
6758 + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
6759 +
6760 + return 1;
6761 +}
6762 +
6763 +
6764 +/**
6765 + * This function returns the Core Interrupt register.
6766 + */
6767 +static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
6768 +{
6769 + gintsts_data_t gintsts;
6770 + gintmsk_data_t gintmsk;
6771 + gintmsk_data_t gintmsk_common = {.d32=0};
6772 + gintmsk_common.b.wkupintr = 1;
6773 + gintmsk_common.b.sessreqintr = 1;
6774 + gintmsk_common.b.conidstschng = 1;
6775 + gintmsk_common.b.otgintr = 1;
6776 + gintmsk_common.b.modemismatch = 1;
6777 + gintmsk_common.b.disconnect = 1;
6778 + gintmsk_common.b.usbsuspend = 1;
6779 + /** @todo: The port interrupt occurs while in device
6780 + * mode. Added code to CIL to clear the interrupt for now!
6781 + */
6782 + gintmsk_common.b.portintr = 1;
6783 +
6784 + gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
6785 + gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
6786 +#ifdef DEBUG
6787 + /* if any common interrupts set */
6788 + if (gintsts.d32 & gintmsk_common.d32) {
6789 + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
6790 + gintsts.d32, gintmsk.d32);
6791 + }
6792 +#endif
6793 +
6794 + return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
6795 +
6796 +}
6797 +
6798 +/**
6799 + * Common interrupt handler.
6800 + *
6801 + * The common interrupts are those that occur in both Host and Device mode.
6802 + * This handler handles the following interrupts:
6803 + * - Mode Mismatch Interrupt
6804 + * - Disconnect Interrupt
6805 + * - OTG Interrupt
6806 + * - Connector ID Status Change Interrupt
6807 + * - Session Request Interrupt.
6808 + * - Resume / Remote Wakeup Detected Interrupt.
6809 + *
6810 + */
6811 +int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
6812 +{
6813 + int retval = 0;
6814 + gintsts_data_t gintsts;
6815 +
6816 + gintsts.d32 = dwc_otg_read_common_intr(core_if);
6817 +
6818 + if (gintsts.b.modemismatch) {
6819 + retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
6820 + }
6821 + if (gintsts.b.otgintr) {
6822 + retval |= dwc_otg_handle_otg_intr(core_if);
6823 + }
6824 + if (gintsts.b.conidstschng) {
6825 + retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
6826 + }
6827 + if (gintsts.b.disconnect) {
6828 + retval |= dwc_otg_handle_disconnect_intr(core_if);
6829 + }
6830 + if (gintsts.b.sessreqintr) {
6831 + retval |= dwc_otg_handle_session_req_intr(core_if);
6832 + }
6833 + if (gintsts.b.wkupintr) {
6834 + retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
6835 + }
6836 + if (gintsts.b.usbsuspend) {
6837 + retval |= dwc_otg_handle_usb_suspend_intr(core_if);
6838 + }
6839 + if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
6840 + /* The port interrupt occurs while in device mode with HPRT0
6841 + * Port Enable/Disable.
6842 + */
6843 + gintsts.d32 = 0;
6844 + gintsts.b.portintr = 1;
6845 + dwc_write_reg32(&core_if->core_global_regs->gintsts,
6846 + gintsts.d32);
6847 + retval |= 1;
6848 +
6849 + }
6850 +
6851 + S3C2410X_CLEAR_EINTPEND();
6852 +
6853 + return retval;
6854 +}
6855 --- /dev/null
6856 +++ b/drivers/usb/dwc/otg_driver.c
6857 @@ -0,0 +1,960 @@
6858 +/* ==========================================================================
6859 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
6860 + * $Revision: #63 $
6861 + * $Date: 2008/09/24 $
6862 + * $Change: 1101777 $
6863 + *
6864 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6865 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6866 + * otherwise expressly agreed to in writing between Synopsys and you.
6867 + *
6868 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6869 + * any End User Software License Agreement or Agreement for Licensed Product
6870 + * with Synopsys or any supplement thereto. You are permitted to use and
6871 + * redistribute this Software in source and binary forms, with or without
6872 + * modification, provided that redistributions of source code must retain this
6873 + * notice. You may not view, use, disclose, copy or distribute this file or
6874 + * any information contained herein except pursuant to this license grant from
6875 + * Synopsys. If you do not agree with this notice, including the disclaimer
6876 + * below, then you are not authorized to use the Software.
6877 + *
6878 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6879 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6880 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6881 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6882 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6883 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6884 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6885 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6886 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6887 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6888 + * DAMAGE.
6889 + * ========================================================================== */
6890 +
6891 +/** @file
6892 + * The dwc_otg_driver module provides the initialization and cleanup entry
6893 + * points for the DWC_otg driver. This module will be dynamically installed
6894 + * after Linux is booted using the insmod command. When the module is
6895 + * installed, the dwc_otg_driver_init function is called. When the module is
6896 + * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
6897 + *
6898 + * This module also defines a data structure for the dwc_otg_driver, which is
6899 + * used in conjunction with the standard ARM lm_device structure. These
6900 + * structures allow the OTG driver to comply with the standard Linux driver
6901 + * model in which devices and drivers are registered with a bus driver. This
6902 + * has the benefit that Linux can expose attributes of the driver and device
6903 + * in its special sysfs file system. Users can then read or write files in
6904 + * this file system to perform diagnostics on the driver components or the
6905 + * device.
6906 + */
6907 +
6908 +#include <linux/kernel.h>
6909 +#include <linux/module.h>
6910 +#include <linux/moduleparam.h>
6911 +#include <linux/init.h>
6912 +#include <linux/device.h>
6913 +#include <linux/errno.h>
6914 +#include <linux/types.h>
6915 +#include <linux/stat.h> /* permission constants */
6916 +#include <linux/version.h>
6917 +#include <linux/platform_device.h>
6918 +#include <linux/io.h>
6919 +#include <linux/irq.h>
6920 +#include <asm/io.h>
6921 +
6922 +#include <asm/sizes.h>
6923 +#include <mach/pm.h>
6924 +
6925 +#include "otg_plat.h"
6926 +#include "otg_attr.h"
6927 +#include "otg_driver.h"
6928 +#include "otg_cil.h"
6929 +#include "otg_pcd.h"
6930 +#include "otg_hcd.h"
6931 +
6932 +#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
6933 +#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
6934 +
6935 +static const char dwc_driver_name[] = "dwc_otg";
6936 +
6937 +/*-------------------------------------------------------------------------*/
6938 +/* Encapsulate the module parameter settings */
6939 +
6940 +static dwc_otg_core_params_t dwc_otg_module_params = {
6941 + .opt = -1,
6942 + .otg_cap = -1,
6943 + .dma_enable = -1,
6944 + .dma_desc_enable = -1,
6945 + .dma_burst_size = -1,
6946 + .speed = -1,
6947 + .host_support_fs_ls_low_power = -1,
6948 + .host_ls_low_power_phy_clk = -1,
6949 + .enable_dynamic_fifo = -1,
6950 + .data_fifo_size = -1,
6951 + .dev_rx_fifo_size = -1,
6952 + .dev_nperio_tx_fifo_size = -1,
6953 + .dev_perio_tx_fifo_size = {
6954 + /* dev_perio_tx_fifo_size_1 */
6955 + -1,
6956 + -1,
6957 + -1,
6958 + -1,
6959 + -1,
6960 + -1,
6961 + -1,
6962 + -1,
6963 + -1,
6964 + -1,
6965 + -1,
6966 + -1,
6967 + -1,
6968 + -1,
6969 + -1
6970 + /* 15 */
6971 + },
6972 + .host_rx_fifo_size = -1,
6973 + .host_nperio_tx_fifo_size = -1,
6974 + .host_perio_tx_fifo_size = -1,
6975 + .max_transfer_size = -1,
6976 + .max_packet_count = -1,
6977 + .host_channels = -1,
6978 + .dev_endpoints = -1,
6979 + .phy_type = -1,
6980 + .phy_utmi_width = -1,
6981 + .phy_ulpi_ddr = -1,
6982 + .phy_ulpi_ext_vbus = -1,
6983 + .i2c_enable = -1,
6984 + .ulpi_fs_ls = -1,
6985 + .ts_dline = -1,
6986 + .en_multiple_tx_fifo = -1,
6987 + .dev_tx_fifo_size = {
6988 + /* dev_tx_fifo_size */
6989 + -1,
6990 + -1,
6991 + -1,
6992 + -1,
6993 + -1,
6994 + -1,
6995 + -1,
6996 + -1,
6997 + -1,
6998 + -1,
6999 + -1,
7000 + -1,
7001 + -1,
7002 + -1,
7003 + -1
7004 + /* 15 */
7005 + },
7006 + .thr_ctl = -1,
7007 + .tx_thr_length = -1,
7008 + .rx_thr_length = -1,
7009 + .pti_enable = -1,
7010 + .mpi_enable = -1,
7011 +};
7012 +
7013 +/**
7014 + * Global Debug Level Mask.
7015 + */
7016 +uint32_t g_dbg_lvl = 0; /* OFF */
7017 +
7018 +/**
7019 + * This function is called during module intialization to verify that
7020 + * the module parameters are in a valid state.
7021 + */
7022 +static int check_parameters(dwc_otg_core_if_t *core_if)
7023 +{
7024 + int i;
7025 + int retval = 0;
7026 +
7027 +/* Checks if the parameter is outside of its valid range of values */
7028 +#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
7029 + ((dwc_otg_module_params._param_ < (_low_)) || \
7030 + (dwc_otg_module_params._param_ > (_high_)))
7031 +
7032 +/* If the parameter has been set by the user, check that the parameter value is
7033 + * within the value range of values. If not, report a module error. */
7034 +#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
7035 + do { \
7036 + if (dwc_otg_module_params._param_ != -1) { \
7037 + if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
7038 + DWC_ERROR("`%d' invalid for parameter `%s'\n", \
7039 + dwc_otg_module_params._param_, _string_); \
7040 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
7041 + retval++; \
7042 + } \
7043 + } \
7044 + } while (0)
7045 +
7046 + DWC_OTG_PARAM_ERR(opt,0,1,"opt");
7047 + DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
7048 + DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
7049 + DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
7050 + DWC_OTG_PARAM_ERR(speed,0,1,"speed");
7051 + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
7052 + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
7053 + DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
7054 + DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
7055 + DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
7056 + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
7057 + DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
7058 + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
7059 + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
7060 + DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
7061 + DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
7062 + DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
7063 + DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
7064 + DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
7065 + DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
7066 + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
7067 + DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
7068 + DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
7069 + DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
7070 +
7071 + if (dwc_otg_module_params.dma_burst_size != -1) {
7072 + if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
7073 + DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
7074 + DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
7075 + DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
7076 + DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
7077 + DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
7078 + DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
7079 + DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
7080 + DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
7081 + dwc_otg_module_params.dma_burst_size);
7082 + dwc_otg_module_params.dma_burst_size = 32;
7083 + retval++;
7084 + }
7085 +
7086 + {
7087 + uint8_t brst_sz = 0;
7088 + while(dwc_otg_module_params.dma_burst_size > 1) {
7089 + brst_sz ++;
7090 + dwc_otg_module_params.dma_burst_size >>= 1;
7091 + }
7092 + dwc_otg_module_params.dma_burst_size = brst_sz;
7093 + }
7094 + }
7095 +
7096 + if (dwc_otg_module_params.phy_utmi_width != -1) {
7097 + if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
7098 + DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
7099 + DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
7100 + dwc_otg_module_params.phy_utmi_width);
7101 + dwc_otg_module_params.phy_utmi_width = 16;
7102 + retval++;
7103 + }
7104 + }
7105 +
7106 + for (i = 0; i < 15; i++) {
7107 + /** @todo should be like above */
7108 + //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
7109 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
7110 + if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
7111 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
7112 + dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
7113 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
7114 + retval++;
7115 + }
7116 + }
7117 + }
7118 +
7119 + DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
7120 +
7121 + for (i = 0; i < 15; i++) {
7122 + /** @todo should be like above */
7123 + //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
7124 + if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
7125 + if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
7126 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
7127 + dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
7128 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
7129 + retval++;
7130 + }
7131 + }
7132 + }
7133 +
7134 + DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
7135 + DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
7136 + DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
7137 +
7138 + DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
7139 + DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
7140 +
7141 + /* At this point, all module parameters that have been set by the user
7142 + * are valid, and those that have not are left unset. Now set their
7143 + * default values and/or check the parameters against the hardware
7144 + * configurations of the OTG core. */
7145 +
7146 +/* This sets the parameter to the default value if it has not been set by the
7147 + * user */
7148 +#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
7149 + ({ \
7150 + int changed = 1; \
7151 + if (dwc_otg_module_params._param_ == -1) { \
7152 + changed = 0; \
7153 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
7154 + } \
7155 + changed; \
7156 + })
7157 +
7158 +/* This checks the macro agains the hardware configuration to see if it is
7159 + * valid. It is possible that the default value could be invalid. In this
7160 + * case, it will report a module error if the user touched the parameter.
7161 + * Otherwise it will adjust the value without any error. */
7162 +#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
7163 + ({ \
7164 + int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
7165 + int error = 0; \
7166 + if (!(_is_valid_)) { \
7167 + if (changed) { \
7168 + DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
7169 + error = 1; \
7170 + } \
7171 + dwc_otg_module_params._param_ = (_set_valid_); \
7172 + } \
7173 + error; \
7174 + })
7175 +
7176 + /* OTG Cap */
7177 + retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
7178 + ({
7179 + int valid;
7180 + valid = 1;
7181 + switch (dwc_otg_module_params.otg_cap) {
7182 + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
7183 + if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
7184 + valid = 0;
7185 + break;
7186 + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
7187 + if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
7188 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
7189 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
7190 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
7191 + valid = 0;
7192 + }
7193 + break;
7194 + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
7195 + /* always valid */
7196 + break;
7197 + }
7198 + valid;
7199 + }),
7200 + (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
7201 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
7202 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
7203 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
7204 + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
7205 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
7206 +
7207 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
7208 + ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
7209 + 0);
7210 +
7211 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
7212 + ((dwc_otg_module_params.dma_desc_enable == 1) &&
7213 + ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
7214 + 0);
7215 +
7216 + retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
7217 +
7218 + DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
7219 +
7220 + retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
7221 + "host_support_fs_ls_low_power",
7222 + 1, 0);
7223 +
7224 + retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
7225 + "enable_dynamic_fifo",
7226 + ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
7227 + (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
7228 +
7229 + retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
7230 + "data_fifo_size",
7231 + (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
7232 + core_if->hwcfg3.b.dfifo_depth);
7233 +
7234 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
7235 + "dev_rx_fifo_size",
7236 + (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
7237 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
7238 +
7239 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
7240 + "dev_nperio_tx_fifo_size",
7241 + (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
7242 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
7243 +
7244 + retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
7245 + "host_rx_fifo_size",
7246 + (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
7247 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
7248 +
7249 + retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
7250 + "host_nperio_tx_fifo_size",
7251 + (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
7252 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
7253 +
7254 + retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
7255 + "host_perio_tx_fifo_size",
7256 + (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
7257 + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
7258 +
7259 + retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
7260 + "max_transfer_size",
7261 + (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
7262 + ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
7263 +
7264 + retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
7265 + "max_packet_count",
7266 + (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
7267 + ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
7268 +
7269 + retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
7270 + "host_channels",
7271 + (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
7272 + (core_if->hwcfg2.b.num_host_chan + 1));
7273 +
7274 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
7275 + "dev_endpoints",
7276 + (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
7277 + core_if->hwcfg2.b.num_dev_ep);
7278 +
7279 +/*
7280 + * Define the following to disable the FS PHY Hardware checking. This is for
7281 + * internal testing only.
7282 + *
7283 + * #define NO_FS_PHY_HW_CHECKS
7284 + */
7285 +
7286 +#ifdef NO_FS_PHY_HW_CHECKS
7287 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
7288 + "phy_type", 1, 0);
7289 +#else
7290 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
7291 + "phy_type",
7292 + ({
7293 + int valid = 0;
7294 + if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
7295 + ((core_if->hwcfg2.b.hs_phy_type == 1) ||
7296 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
7297 + valid = 1;
7298 + }
7299 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
7300 + ((core_if->hwcfg2.b.hs_phy_type == 2) ||
7301 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
7302 + valid = 1;
7303 + }
7304 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
7305 + (core_if->hwcfg2.b.fs_phy_type == 1)) {
7306 + valid = 1;
7307 + }
7308 + valid;
7309 + }),
7310 + ({
7311 + int set = DWC_PHY_TYPE_PARAM_FS;
7312 + if (core_if->hwcfg2.b.hs_phy_type) {
7313 + if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
7314 + (core_if->hwcfg2.b.hs_phy_type == 1)) {
7315 + set = DWC_PHY_TYPE_PARAM_UTMI;
7316 + }
7317 + else {
7318 + set = DWC_PHY_TYPE_PARAM_ULPI;
7319 + }
7320 + }
7321 + set;
7322 + }));
7323 +#endif
7324 +
7325 + retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
7326 + (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
7327 + dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
7328 +
7329 + retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
7330 + "host_ls_low_power_phy_clk",
7331 + ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
7332 + ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
7333 +
7334 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
7335 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
7336 + DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
7337 + DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
7338 + DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
7339 +
7340 +#ifdef NO_FS_PHY_HW_CHECKS
7341 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
7342 +#else
7343 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
7344 + "i2c_enable",
7345 + (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
7346 + 0);
7347 +#endif
7348 +
7349 + for (i = 0; i < 15; i++) {
7350 + int changed = 1;
7351 + int error = 0;
7352 +
7353 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
7354 + changed = 0;
7355 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
7356 + }
7357 + if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
7358 + if (changed) {
7359 + DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
7360 + error = 1;
7361 + }
7362 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
7363 + }
7364 + retval += error;
7365 + }
7366 +
7367 + retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
7368 + ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
7369 + 0);
7370 +
7371 + for (i = 0; i < 15; i++) {
7372 + int changed = 1;
7373 + int error = 0;
7374 +
7375 + if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
7376 + changed = 0;
7377 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
7378 + }
7379 + if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
7380 + if (changed) {
7381 + DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
7382 + error = 1;
7383 + }
7384 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
7385 + }
7386 + retval += error;
7387 + }
7388 +
7389 + retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
7390 + ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
7391 + 0);
7392 +
7393 + DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
7394 + DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
7395 +
7396 + retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
7397 + ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
7398 + 0);
7399 +
7400 + retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
7401 + ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
7402 + 0);
7403 + return retval;
7404 +}
7405 +
7406 +/**
7407 + * This function is the top level interrupt handler for the Common
7408 + * (Device and host modes) interrupts.
7409 + */
7410 +static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
7411 +{
7412 + dwc_otg_device_t *otg_dev = dev;
7413 + int32_t retval = IRQ_NONE;
7414 +
7415 + retval = dwc_otg_handle_common_intr(otg_dev->core_if);
7416 + return IRQ_RETVAL(retval);
7417 +}
7418 +
7419 +/**
7420 + * This function is called when a lm_device is unregistered with the
7421 + * dwc_otg_driver. This happens, for example, when the rmmod command is
7422 + * executed. The device may or may not be electrically present. If it is
7423 + * present, the driver stops device processing. Any resources used on behalf
7424 + * of this device are freed.
7425 + *
7426 + * @param[in] lmdev
7427 + */
7428 +static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
7429 +{
7430 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
7431 + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
7432 +
7433 + if (!otg_dev) {
7434 + /* Memory allocation for the dwc_otg_device failed. */
7435 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
7436 + return 0;
7437 + }
7438 +
7439 + /*
7440 + * Free the IRQ
7441 + */
7442 + if (otg_dev->common_irq_installed) {
7443 + free_irq(otg_dev->irq, otg_dev);
7444 + }
7445 +
7446 +#ifndef DWC_DEVICE_ONLY
7447 + if (otg_dev->hcd) {
7448 + dwc_otg_hcd_remove(pdev);
7449 + } else {
7450 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
7451 + return 0;
7452 + }
7453 +#endif
7454 +
7455 +#ifndef DWC_HOST_ONLY
7456 + if (otg_dev->pcd) {
7457 + dwc_otg_pcd_remove(pdev);
7458 + }
7459 +#endif
7460 + if (otg_dev->core_if) {
7461 + dwc_otg_cil_remove(otg_dev->core_if);
7462 + }
7463 +
7464 + /*
7465 + * Remove the device attributes
7466 + */
7467 + dwc_otg_attr_remove(pdev);
7468 +
7469 + /*
7470 + * Return the memory.
7471 + */
7472 + if (otg_dev->base) {
7473 + iounmap(otg_dev->base);
7474 + }
7475 + kfree(otg_dev);
7476 +
7477 + /*
7478 + * Clear the drvdata pointer.
7479 + */
7480 + platform_set_drvdata(pdev, 0);
7481 +
7482 + return 0;
7483 +}
7484 +
7485 +/**
7486 + * This function is called when an lm_device is bound to a
7487 + * dwc_otg_driver. It creates the driver components required to
7488 + * control the device (CIL, HCD, and PCD) and it initializes the
7489 + * device. The driver components are stored in a dwc_otg_device
7490 + * structure. A reference to the dwc_otg_device is saved in the
7491 + * lm_device. This allows the driver to access the dwc_otg_device
7492 + * structure on subsequent calls to driver methods for this device.
7493 + *
7494 + * @param[in] lmdev lm_device definition
7495 + */
7496 +static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
7497 +{
7498 + struct device *dev = &pdev->dev;
7499 + int retval = 0;
7500 + uint32_t snpsid;
7501 + dwc_otg_device_t *dwc_otg_device;
7502 + struct resource *res;
7503 +
7504 + dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
7505 +
7506 + dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
7507 +
7508 + if (!dwc_otg_device) {
7509 + dev_err(dev, "kmalloc of dwc_otg_device failed\n");
7510 + retval = -ENOMEM;
7511 + goto fail;
7512 + }
7513 +
7514 + memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
7515 + dwc_otg_device->reg_offset = 0xFFFFFFFF;
7516 +
7517 + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7518 + if (!res) {
7519 + dev_err(dev, "Found OTG with no register addr.\n");
7520 + retval = -ENODEV;
7521 + goto fail;
7522 + }
7523 + dwc_otg_device->rsrc_start = res->start;
7524 + dwc_otg_device->rsrc_len = res->end - res->start + 1;
7525 +
7526 + dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
7527 +
7528 + if (!dwc_otg_device->base) {
7529 + dev_err(dev, "ioremap() failed\n");
7530 + retval = -ENOMEM;
7531 + goto fail;
7532 + }
7533 + dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
7534 +
7535 + /*
7536 + * Attempt to ensure this device is really a DWC_otg Controller.
7537 + * Read and verify the SNPSID register contents. The value should be
7538 + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
7539 + */
7540 + snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
7541 +
7542 + if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
7543 + dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
7544 + retval = -EINVAL;
7545 + goto fail;
7546 + }
7547 +
7548 + DWC_PRINT("Core Release: %x.%x%x%x\n",
7549 + (snpsid >> 12 & 0xF),
7550 + (snpsid >> 8 & 0xF),
7551 + (snpsid >> 4 & 0xF),
7552 + (snpsid & 0xF));
7553 +
7554 + /*
7555 + * Initialize driver data to point to the global DWC_otg
7556 + * Device structure.
7557 + */
7558 + platform_set_drvdata(pdev, dwc_otg_device);
7559 +
7560 + dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
7561 +
7562 + dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
7563 + &dwc_otg_module_params);
7564 +
7565 + dwc_otg_device->core_if->snpsid = snpsid;
7566 +
7567 + if (!dwc_otg_device->core_if) {
7568 + dev_err(dev, "CIL initialization failed!\n");
7569 + retval = -ENOMEM;
7570 + goto fail;
7571 + }
7572 +
7573 + /*
7574 + * Validate parameter values.
7575 + */
7576 + if (check_parameters(dwc_otg_device->core_if)) {
7577 + retval = -EINVAL;
7578 + goto fail;
7579 + }
7580 +
7581 + /*
7582 + * Create Device Attributes in sysfs
7583 + */
7584 + dwc_otg_attr_create(pdev);
7585 +
7586 + /*
7587 + * Disable the global interrupt until all the interrupt
7588 + * handlers are installed.
7589 + */
7590 + dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
7591 +
7592 + /*
7593 + * Install the interrupt handler for the common interrupts before
7594 + * enabling common interrupts in core_init below.
7595 + */
7596 + res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
7597 + if (!res) {
7598 + dev_err(dev, "Fount OTG with to IRQ.\n");
7599 + retval = -ENODEV;
7600 + goto fail;
7601 + }
7602 + dwc_otg_device->irq = res->start;
7603 +
7604 + retval = request_irq(res->start, dwc_otg_common_irq,
7605 + IRQF_SHARED, "dwc_otg", dwc_otg_device);
7606 + if (retval) {
7607 + DWC_ERROR("request of irq%d failed\n", res->start);
7608 + retval = -EBUSY;
7609 + goto fail;
7610 + } else {
7611 + dwc_otg_device->common_irq_installed = 1;
7612 + }
7613 +
7614 + /*
7615 + * Initialize the DWC_otg core.
7616 + */
7617 + dwc_otg_core_init(dwc_otg_device->core_if);
7618 +
7619 +#ifndef DWC_HOST_ONLY
7620 + /*
7621 + * Initialize the PCD
7622 + */
7623 + retval = dwc_otg_pcd_init(pdev);
7624 + if (retval != 0) {
7625 + DWC_ERROR("dwc_otg_pcd_init failed\n");
7626 + dwc_otg_device->pcd = NULL;
7627 + goto fail;
7628 + }
7629 +#endif
7630 +#ifndef DWC_DEVICE_ONLY
7631 + /*
7632 + * Initialize the HCD
7633 + */
7634 + retval = dwc_otg_hcd_init(pdev);
7635 + if (retval != 0) {
7636 + DWC_ERROR("dwc_otg_hcd_init failed\n");
7637 + dwc_otg_device->hcd = NULL;
7638 + goto fail;
7639 + }
7640 +#endif
7641 +
7642 + /*
7643 + * Enable the global interrupt after all the interrupt
7644 + * handlers are installed.
7645 + */
7646 + dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
7647 +
7648 + return 0;
7649 +
7650 + fail:
7651 + dwc_otg_driver_remove(pdev);
7652 + return retval;
7653 +}
7654 +
7655 +static struct platform_driver dwc_otg_platform_driver = {
7656 + .driver.name = "dwc_otg",
7657 + .probe = dwc_otg_driver_probe,
7658 + .remove = dwc_otg_driver_remove,
7659 +};
7660 +
7661 +static int __init dwc_otg_init_module(void)
7662 +{
7663 + return platform_driver_register(&dwc_otg_platform_driver);
7664 +}
7665 +
7666 +static void __exit dwc_otg_cleanup_module(void)
7667 +{
7668 + platform_driver_unregister(&dwc_otg_platform_driver);
7669 +}
7670 +
7671 +module_init(dwc_otg_init_module);
7672 +module_exit(dwc_otg_cleanup_module);
7673 +
7674 +/**
7675 + * This function is called when the driver is removed from the kernel
7676 + * with the rmmod command. The driver unregisters itself with its bus
7677 + * driver.
7678 + *
7679 + */
7680 +
7681 +MODULE_DESCRIPTION(DWC_DRIVER_DESC);
7682 +MODULE_AUTHOR("Synopsys Inc.");
7683 +MODULE_LICENSE("GPL");
7684 +
7685 +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
7686 +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
7687 +module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
7688 +MODULE_PARM_DESC(opt, "OPT Mode");
7689 +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
7690 +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
7691 +
7692 +module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
7693 +MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
7694 +
7695 +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
7696 +MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
7697 +module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
7698 +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
7699 +module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
7700 +MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
7701 +module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
7702 +MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
7703 +module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
7704 +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
7705 +module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
7706 +MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
7707 +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
7708 +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
7709 +module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
7710 +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
7711 +module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
7712 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
7713 +module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
7714 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
7715 +module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
7716 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
7717 +module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
7718 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
7719 +module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
7720 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
7721 +module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
7722 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
7723 +module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
7724 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
7725 +module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
7726 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
7727 +module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
7728 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
7729 +module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
7730 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
7731 +module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
7732 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
7733 +module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
7734 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
7735 +module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
7736 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
7737 +module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
7738 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
7739 +module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
7740 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
7741 +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
7742 +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
7743 +module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
7744 +MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
7745 +module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
7746 +MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
7747 +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
7748 +/** @todo Set the max to 512K, modify checks */
7749 +MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
7750 +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
7751 +MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
7752 +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
7753 +MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
7754 +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
7755 +MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
7756 +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
7757 +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
7758 +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
7759 +MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
7760 +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
7761 +MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
7762 +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
7763 +MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
7764 +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
7765 +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
7766 +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
7767 +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
7768 +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
7769 +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
7770 +module_param_named(debug, g_dbg_lvl, int, 0444);
7771 +MODULE_PARM_DESC(debug, "");
7772 +
7773 +module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
7774 +MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
7775 +module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
7776 +MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
7777 +module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
7778 +MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
7779 +module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
7780 +MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
7781 +module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
7782 +MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
7783 +module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
7784 +MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
7785 +module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
7786 +MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
7787 +module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
7788 +MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
7789 +module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
7790 +MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
7791 +module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
7792 +MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
7793 +module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
7794 +MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
7795 +module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
7796 +MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
7797 +module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
7798 +MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
7799 +module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
7800 +MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
7801 +module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
7802 +MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
7803 +module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
7804 +MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
7805 +
7806 +module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
7807 +MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
7808 +module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
7809 +MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
7810 +module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
7811 +MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
7812 +
7813 +module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
7814 +MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
7815 +
7816 +module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
7817 +MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
7818 --- /dev/null
7819 +++ b/drivers/usb/dwc/otg_driver.h
7820 @@ -0,0 +1,62 @@
7821 +/* ==========================================================================
7822 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
7823 + * $Revision: #12 $
7824 + * $Date: 2008/07/15 $
7825 + * $Change: 1064918 $
7826 + *
7827 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7828 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7829 + * otherwise expressly agreed to in writing between Synopsys and you.
7830 + *
7831 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7832 + * any End User Software License Agreement or Agreement for Licensed Product
7833 + * with Synopsys or any supplement thereto. You are permitted to use and
7834 + * redistribute this Software in source and binary forms, with or without
7835 + * modification, provided that redistributions of source code must retain this
7836 + * notice. You may not view, use, disclose, copy or distribute this file or
7837 + * any information contained herein except pursuant to this license grant from
7838 + * Synopsys. If you do not agree with this notice, including the disclaimer
7839 + * below, then you are not authorized to use the Software.
7840 + *
7841 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7842 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7843 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7844 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7845 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7846 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7847 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7848 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7849 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7850 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7851 + * DAMAGE.
7852 + * ========================================================================== */
7853 +
7854 +#ifndef __DWC_OTG_DRIVER_H__
7855 +#define __DWC_OTG_DRIVER_H__
7856 +
7857 +/** @file
7858 + * This file contains the interface to the Linux driver.
7859 + */
7860 +#include "otg_cil.h"
7861 +
7862 +/* Type declarations */
7863 +struct dwc_otg_pcd;
7864 +struct dwc_otg_hcd;
7865 +
7866 +/**
7867 + * This structure is a wrapper that encapsulates the driver components used to
7868 + * manage a single DWC_otg controller.
7869 + */
7870 +typedef struct dwc_otg_device {
7871 + void *base;
7872 + dwc_otg_core_if_t *core_if;
7873 + uint32_t reg_offset;
7874 + struct dwc_otg_pcd *pcd;
7875 + struct dwc_otg_hcd *hcd;
7876 + uint8_t common_irq_installed;
7877 + int irq;
7878 + uint32_t rsrc_start;
7879 + uint32_t rsrc_len;
7880 +} dwc_otg_device_t;
7881 +
7882 +#endif
7883 --- /dev/null
7884 +++ b/drivers/usb/dwc/otg_hcd.c
7885 @@ -0,0 +1,2735 @@
7886 +/* ==========================================================================
7887 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
7888 + * $Revision: #75 $
7889 + * $Date: 2008/07/15 $
7890 + * $Change: 1064940 $
7891 + *
7892 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7893 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7894 + * otherwise expressly agreed to in writing between Synopsys and you.
7895 + *
7896 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7897 + * any End User Software License Agreement or Agreement for Licensed Product
7898 + * with Synopsys or any supplement thereto. You are permitted to use and
7899 + * redistribute this Software in source and binary forms, with or without
7900 + * modification, provided that redistributions of source code must retain this
7901 + * notice. You may not view, use, disclose, copy or distribute this file or
7902 + * any information contained herein except pursuant to this license grant from
7903 + * Synopsys. If you do not agree with this notice, including the disclaimer
7904 + * below, then you are not authorized to use the Software.
7905 + *
7906 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7907 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7908 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7909 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7910 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7911 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7912 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7913 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7914 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7915 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7916 + * DAMAGE.
7917 + * ========================================================================== */
7918 +#ifndef DWC_DEVICE_ONLY
7919 +
7920 +/**
7921 + * @file
7922 + *
7923 + * This file contains the implementation of the HCD. In Linux, the HCD
7924 + * implements the hc_driver API.
7925 + */
7926 +#include <linux/kernel.h>
7927 +#include <linux/module.h>
7928 +#include <linux/moduleparam.h>
7929 +#include <linux/init.h>
7930 +#include <linux/device.h>
7931 +#include <linux/platform_device.h>
7932 +#include <linux/errno.h>
7933 +#include <linux/list.h>
7934 +#include <linux/interrupt.h>
7935 +#include <linux/string.h>
7936 +#include <linux/dma-mapping.h>
7937 +#include <linux/version.h>
7938 +
7939 +#include <mach/irqs.h>
7940 +
7941 +#include "otg_driver.h"
7942 +#include "otg_hcd.h"
7943 +#include "otg_regs.h"
7944 +
7945 +static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
7946 +
7947 +static const struct hc_driver dwc_otg_hc_driver = {
7948 +
7949 + .description = dwc_otg_hcd_name,
7950 + .product_desc = "DWC OTG Controller",
7951 + .hcd_priv_size = sizeof(dwc_otg_hcd_t),
7952 + .irq = dwc_otg_hcd_irq,
7953 + .flags = HCD_MEMORY | HCD_USB2,
7954 + .start = dwc_otg_hcd_start,
7955 + .stop = dwc_otg_hcd_stop,
7956 + .urb_enqueue = dwc_otg_hcd_urb_enqueue,
7957 + .urb_dequeue = dwc_otg_hcd_urb_dequeue,
7958 + .endpoint_disable = dwc_otg_hcd_endpoint_disable,
7959 + .get_frame_number = dwc_otg_hcd_get_frame_number,
7960 + .hub_status_data = dwc_otg_hcd_hub_status_data,
7961 + .hub_control = dwc_otg_hcd_hub_control,
7962 +};
7963 +
7964 +/**
7965 + * Work queue function for starting the HCD when A-Cable is connected.
7966 + * The dwc_otg_hcd_start() must be called in a process context.
7967 + */
7968 +static void hcd_start_func(struct work_struct *_work)
7969 +{
7970 + struct delayed_work *dw = container_of(_work, struct delayed_work, work);
7971 + struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
7972 + struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
7973 + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
7974 + if (usb_hcd) {
7975 + dwc_otg_hcd_start(usb_hcd);
7976 + }
7977 +}
7978 +
7979 +/**
7980 + * HCD Callback function for starting the HCD when A-Cable is
7981 + * connected.
7982 + *
7983 + * @param p void pointer to the <code>struct usb_hcd</code>
7984 + */
7985 +static int32_t dwc_otg_hcd_start_cb(void *p)
7986 +{
7987 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
7988 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7989 + hprt0_data_t hprt0;
7990 +
7991 + if (core_if->op_state == B_HOST) {
7992 + /*
7993 + * Reset the port. During a HNP mode switch the reset
7994 + * needs to occur within 1ms and have a duration of at
7995 + * least 50ms.
7996 + */
7997 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
7998 + hprt0.b.prtrst = 1;
7999 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8000 + ((struct usb_hcd *)p)->self.is_b_host = 1;
8001 + } else {
8002 + ((struct usb_hcd *)p)->self.is_b_host = 0;
8003 + }
8004 +
8005 + /* Need to start the HCD in a non-interrupt context. */
8006 +// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
8007 + INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
8008 +// schedule_work(&dwc_otg_hcd->start_work);
8009 + queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
8010 +
8011 + return 1;
8012 +}
8013 +
8014 +/**
8015 + * HCD Callback function for stopping the HCD.
8016 + *
8017 + * @param p void pointer to the <code>struct usb_hcd</code>
8018 + */
8019 +static int32_t dwc_otg_hcd_stop_cb(void *p)
8020 +{
8021 + struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
8022 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8023 + dwc_otg_hcd_stop(usb_hcd);
8024 + return 1;
8025 +}
8026 +
8027 +static void del_xfer_timers(dwc_otg_hcd_t *hcd)
8028 +{
8029 +#ifdef DEBUG
8030 + int i;
8031 + int num_channels = hcd->core_if->core_params->host_channels;
8032 + for (i = 0; i < num_channels; i++) {
8033 + del_timer(&hcd->core_if->hc_xfer_timer[i]);
8034 + }
8035 +#endif
8036 +}
8037 +
8038 +static void del_timers(dwc_otg_hcd_t *hcd)
8039 +{
8040 + del_xfer_timers(hcd);
8041 + del_timer(&hcd->conn_timer);
8042 +}
8043 +
8044 +/**
8045 + * Processes all the URBs in a single list of QHs. Completes them with
8046 + * -ETIMEDOUT and frees the QTD.
8047 + */
8048 +static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
8049 +{
8050 + struct list_head *qh_item;
8051 + dwc_otg_qh_t *qh;
8052 + struct list_head *qtd_item;
8053 + dwc_otg_qtd_t *qtd;
8054 +
8055 + list_for_each(qh_item, qh_list) {
8056 + qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
8057 + for (qtd_item = qh->qtd_list.next;
8058 + qtd_item != &qh->qtd_list;
8059 + qtd_item = qh->qtd_list.next) {
8060 + qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
8061 + if (qtd->urb != NULL) {
8062 + dwc_otg_hcd_complete_urb(hcd, qtd->urb,
8063 + -ETIMEDOUT);
8064 + }
8065 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
8066 + }
8067 + }
8068 +}
8069 +
8070 +/**
8071 + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
8072 + * and periodic schedules. The QTD associated with each URB is removed from
8073 + * the schedule and freed. This function may be called when a disconnect is
8074 + * detected or when the HCD is being stopped.
8075 + */
8076 +static void kill_all_urbs(dwc_otg_hcd_t *hcd)
8077 +{
8078 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
8079 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
8080 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
8081 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
8082 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
8083 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
8084 +}
8085 +
8086 +/**
8087 + * HCD Callback function for disconnect of the HCD.
8088 + *
8089 + * @param p void pointer to the <code>struct usb_hcd</code>
8090 + */
8091 +static int32_t dwc_otg_hcd_disconnect_cb(void *p)
8092 +{
8093 + gintsts_data_t intr;
8094 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
8095 +
8096 + //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8097 +
8098 + /*
8099 + * Set status flags for the hub driver.
8100 + */
8101 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
8102 + dwc_otg_hcd->flags.b.port_connect_status = 0;
8103 +
8104 + /*
8105 + * Shutdown any transfers in process by clearing the Tx FIFO Empty
8106 + * interrupt mask and status bits and disabling subsequent host
8107 + * channel interrupts.
8108 + */
8109 + intr.d32 = 0;
8110 + intr.b.nptxfempty = 1;
8111 + intr.b.ptxfempty = 1;
8112 + intr.b.hcintr = 1;
8113 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
8114 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
8115 +
8116 + del_timers(dwc_otg_hcd);
8117 +
8118 + /*
8119 + * Turn off the vbus power only if the core has transitioned to device
8120 + * mode. If still in host mode, need to keep power on to detect a
8121 + * reconnection.
8122 + */
8123 + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
8124 + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
8125 + hprt0_data_t hprt0 = { .d32=0 };
8126 + DWC_PRINT("Disconnect: PortPower off\n");
8127 + hprt0.b.prtpwr = 0;
8128 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
8129 + }
8130 +
8131 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
8132 + }
8133 +
8134 + /* Respond with an error status to all URBs in the schedule. */
8135 + kill_all_urbs(dwc_otg_hcd);
8136 +
8137 + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
8138 + /* Clean up any host channels that were in use. */
8139 + int num_channels;
8140 + int i;
8141 + dwc_hc_t *channel;
8142 + dwc_otg_hc_regs_t *hc_regs;
8143 + hcchar_data_t hcchar;
8144 +
8145 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
8146 +
8147 + if (!dwc_otg_hcd->core_if->dma_enable) {
8148 + /* Flush out any channel requests in slave mode. */
8149 + for (i = 0; i < num_channels; i++) {
8150 + channel = dwc_otg_hcd->hc_ptr_array[i];
8151 + if (list_empty(&channel->hc_list_entry)) {
8152 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
8153 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8154 + if (hcchar.b.chen) {
8155 + hcchar.b.chen = 0;
8156 + hcchar.b.chdis = 1;
8157 + hcchar.b.epdir = 0;
8158 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8159 + }
8160 + }
8161 + }
8162 + }
8163 +
8164 + for (i = 0; i < num_channels; i++) {
8165 + channel = dwc_otg_hcd->hc_ptr_array[i];
8166 + if (list_empty(&channel->hc_list_entry)) {
8167 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
8168 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8169 + if (hcchar.b.chen) {
8170 + /* Halt the channel. */
8171 + hcchar.b.chdis = 1;
8172 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8173 + }
8174 +
8175 + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
8176 + list_add_tail(&channel->hc_list_entry,
8177 + &dwc_otg_hcd->free_hc_list);
8178 + }
8179 + }
8180 + }
8181 +
8182 + /* A disconnect will end the session so the B-Device is no
8183 + * longer a B-host. */
8184 + ((struct usb_hcd *)p)->self.is_b_host = 0;
8185 + return 1;
8186 +}
8187 +
8188 +/**
8189 + * Connection timeout function. An OTG host is required to display a
8190 + * message if the device does not connect within 10 seconds.
8191 + */
8192 +void dwc_otg_hcd_connect_timeout(unsigned long ptr)
8193 +{
8194 + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
8195 + DWC_PRINT("Connect Timeout\n");
8196 + DWC_ERROR("Device Not Connected/Responding\n");
8197 +}
8198 +
8199 +/**
8200 + * Start the connection timer. An OTG host is required to display a
8201 + * message if the device does not connect within 10 seconds. The
8202 + * timer is deleted if a port connect interrupt occurs before the
8203 + * timer expires.
8204 + */
8205 +static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
8206 +{
8207 + init_timer(&hcd->conn_timer);
8208 + hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
8209 + hcd->conn_timer.data = 0;
8210 + hcd->conn_timer.expires = jiffies + (HZ * 10);
8211 + add_timer(&hcd->conn_timer);
8212 +}
8213 +
8214 +/**
8215 + * HCD Callback function for disconnect of the HCD.
8216 + *
8217 + * @param p void pointer to the <code>struct usb_hcd</code>
8218 + */
8219 +static int32_t dwc_otg_hcd_session_start_cb(void *p)
8220 +{
8221 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
8222 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8223 + dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
8224 + return 1;
8225 +}
8226 +
8227 +/**
8228 + * HCD Callback structure for handling mode switching.
8229 + */
8230 +static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
8231 + .start = dwc_otg_hcd_start_cb,
8232 + .stop = dwc_otg_hcd_stop_cb,
8233 + .disconnect = dwc_otg_hcd_disconnect_cb,
8234 + .session_start = dwc_otg_hcd_session_start_cb,
8235 + .p = 0,
8236 +};
8237 +
8238 +/**
8239 + * Reset tasklet function
8240 + */
8241 +static void reset_tasklet_func(unsigned long data)
8242 +{
8243 + dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
8244 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
8245 + hprt0_data_t hprt0;
8246 +
8247 + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
8248 +
8249 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
8250 + hprt0.b.prtrst = 1;
8251 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8252 + mdelay(60);
8253 +
8254 + hprt0.b.prtrst = 0;
8255 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8256 + dwc_otg_hcd->flags.b.port_reset_change = 1;
8257 +}
8258 +
8259 +static struct tasklet_struct reset_tasklet = {
8260 + .next = NULL,
8261 + .state = 0,
8262 + .count = ATOMIC_INIT(0),
8263 + .func = reset_tasklet_func,
8264 + .data = 0,
8265 +};
8266 +
8267 +/**
8268 + * Initializes the HCD. This function allocates memory for and initializes the
8269 + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
8270 + * USB bus with the core and calls the hc_driver->start() function. It returns
8271 + * a negative error on failure.
8272 + */
8273 +int dwc_otg_hcd_init(struct platform_device *pdev)
8274 +{
8275 + struct usb_hcd *hcd = NULL;
8276 + dwc_otg_hcd_t *dwc_otg_hcd = NULL;
8277 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
8278 +
8279 + int num_channels;
8280 + int i;
8281 + dwc_hc_t *channel;
8282 +
8283 + int retval = 0;
8284 +
8285 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
8286 +
8287 + /* Set device flags indicating whether the HCD supports DMA. */
8288 + if (otg_dev->core_if->dma_enable) {
8289 + DWC_PRINT("Using DMA mode\n");
8290 +
8291 + if (otg_dev->core_if->dma_desc_enable) {
8292 + DWC_PRINT("Device using Descriptor DMA mode\n");
8293 + } else {
8294 + DWC_PRINT("Device using Buffer DMA mode\n");
8295 + }
8296 + }
8297 + /*
8298 + * Allocate memory for the base HCD plus the DWC OTG HCD.
8299 + * Initialize the base HCD.
8300 + */
8301 +
8302 + hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
8303 + if (!hcd) {
8304 + retval = -ENOMEM;
8305 + goto error1;
8306 + }
8307 +
8308 + hcd->regs = otg_dev->base;
8309 + hcd->self.otg_port = 1;
8310 +
8311 + /* Initialize the DWC OTG HCD. */
8312 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8313 + dwc_otg_hcd->core_if = otg_dev->core_if;
8314 + otg_dev->hcd = dwc_otg_hcd;
8315 +
8316 + /* */
8317 + spin_lock_init(&dwc_otg_hcd->lock);
8318 +
8319 + /* Register the HCD CIL Callbacks */
8320 + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
8321 + &hcd_cil_callbacks, hcd);
8322 +
8323 + /* Initialize the non-periodic schedule. */
8324 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
8325 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
8326 +
8327 + /* Initialize the periodic schedule. */
8328 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
8329 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
8330 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
8331 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
8332 +
8333 + /*
8334 + * Create a host channel descriptor for each host channel implemented
8335 + * in the controller. Initialize the channel descriptor array.
8336 + */
8337 + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
8338 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
8339 + memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
8340 + for (i = 0; i < num_channels; i++) {
8341 + channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
8342 + if (channel == NULL) {
8343 + retval = -ENOMEM;
8344 + DWC_ERROR("%s: host channel allocation failed\n", __func__);
8345 + goto error2;
8346 + }
8347 + memset(channel, 0, sizeof(dwc_hc_t));
8348 + channel->hc_num = i;
8349 + dwc_otg_hcd->hc_ptr_array[i] = channel;
8350 +#ifdef DEBUG
8351 + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
8352 +#endif
8353 + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
8354 + }
8355 +
8356 + /* Initialize the Connection timeout timer. */
8357 + init_timer(&dwc_otg_hcd->conn_timer);
8358 +
8359 + /* Initialize reset tasklet. */
8360 + reset_tasklet.data = (unsigned long) dwc_otg_hcd;
8361 + dwc_otg_hcd->reset_tasklet = &reset_tasklet;
8362 +
8363 + /*
8364 + * Finish generic HCD initialization and start the HCD. This function
8365 + * allocates the DMA buffer pool, registers the USB bus, requests the
8366 + * IRQ line, and calls dwc_otg_hcd_start method.
8367 + */
8368 + retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
8369 + if (retval < 0) {
8370 + goto error2;
8371 + }
8372 +
8373 + /*
8374 + * Allocate space for storing data on status transactions. Normally no
8375 + * data is sent, but this space acts as a bit bucket. This must be
8376 + * done after usb_add_hcd since that function allocates the DMA buffer
8377 + * pool.
8378 + */
8379 + if (otg_dev->core_if->dma_enable) {
8380 + dwc_otg_hcd->status_buf =
8381 + dma_alloc_coherent(&pdev->dev,
8382 + DWC_OTG_HCD_STATUS_BUF_SIZE,
8383 + &dwc_otg_hcd->status_buf_dma,
8384 + GFP_KERNEL | GFP_DMA);
8385 + } else {
8386 + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
8387 + GFP_KERNEL);
8388 + }
8389 + if (!dwc_otg_hcd->status_buf) {
8390 + retval = -ENOMEM;
8391 + DWC_ERROR("%s: status_buf allocation failed\n", __func__);
8392 + goto error3;
8393 + }
8394 +
8395 + dwc_otg_hcd->otg_dev = otg_dev;
8396 +
8397 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
8398 + hcd->self.busnum);
8399 + return 0;
8400 +
8401 + /* Error conditions */
8402 + error3:
8403 + usb_remove_hcd(hcd);
8404 + error2:
8405 + dwc_otg_hcd_free(hcd);
8406 + usb_put_hcd(hcd);
8407 + error1:
8408 + return retval;
8409 +}
8410 +
8411 +/**
8412 + * Removes the HCD.
8413 + * Frees memory and resources associated with the HCD and deregisters the bus.
8414 + */
8415 +void dwc_otg_hcd_remove(struct platform_device *pdev)
8416 +{
8417 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
8418 + dwc_otg_hcd_t *dwc_otg_hcd;
8419 + struct usb_hcd *hcd;
8420 +
8421 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
8422 +
8423 + if (!otg_dev) {
8424 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
8425 + return;
8426 + }
8427 +
8428 + dwc_otg_hcd = otg_dev->hcd;
8429 +
8430 + if (!dwc_otg_hcd) {
8431 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
8432 + return;
8433 + }
8434 +
8435 + hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
8436 +
8437 + if (!hcd) {
8438 + DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
8439 + return;
8440 + }
8441 +
8442 + /* Turn off all interrupts */
8443 + dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
8444 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
8445 +
8446 + usb_remove_hcd(hcd);
8447 + dwc_otg_hcd_free(hcd);
8448 + usb_put_hcd(hcd);
8449 +}
8450 +
8451 +/* =========================================================================
8452 + * Linux HC Driver Functions
8453 + * ========================================================================= */
8454 +
8455 +/**
8456 + * Initializes dynamic portions of the DWC_otg HCD state.
8457 + */
8458 +static void hcd_reinit(dwc_otg_hcd_t *hcd)
8459 +{
8460 + struct list_head *item;
8461 + int num_channels;
8462 + int i;
8463 + dwc_hc_t *channel;
8464 +
8465 + hcd->flags.d32 = 0;
8466 +
8467 + hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
8468 + hcd->non_periodic_channels = 0;
8469 + hcd->periodic_channels = 0;
8470 +
8471 + /*
8472 + * Put all channels in the free channel list and clean up channel
8473 + * states.
8474 + */
8475 + item = hcd->free_hc_list.next;
8476 + while (item != &hcd->free_hc_list) {
8477 + list_del(item);
8478 + item = hcd->free_hc_list.next;
8479 + }
8480 + num_channels = hcd->core_if->core_params->host_channels;
8481 + for (i = 0; i < num_channels; i++) {
8482 + channel = hcd->hc_ptr_array[i];
8483 + list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
8484 + dwc_otg_hc_cleanup(hcd->core_if, channel);
8485 + }
8486 +
8487 + /* Initialize the DWC core for host mode operation. */
8488 + dwc_otg_core_host_init(hcd->core_if);
8489 +}
8490 +
8491 +/** Initializes the DWC_otg controller and its root hub and prepares it for host
8492 + * mode operation. Activates the root port. Returns 0 on success and a negative
8493 + * error code on failure. */
8494 +int dwc_otg_hcd_start(struct usb_hcd *hcd)
8495 +{
8496 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8497 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
8498 + struct usb_bus *bus;
8499 +
8500 +
8501 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
8502 +
8503 + bus = hcd_to_bus(hcd);
8504 +
8505 + /* Initialize the bus state. If the core is in Device Mode
8506 + * HALT the USB bus and return. */
8507 + if (dwc_otg_is_device_mode(core_if)) {
8508 + hcd->state = HC_STATE_RUNNING;
8509 + return 0;
8510 + }
8511 + hcd->state = HC_STATE_RUNNING;
8512 +
8513 + /* Initialize and connect root hub if one is not already attached */
8514 + if (bus->root_hub) {
8515 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
8516 + /* Inform the HUB driver to resume. */
8517 + usb_hcd_resume_root_hub(hcd);
8518 + }
8519 + else {
8520 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
8521 + }
8522 +
8523 + hcd_reinit(dwc_otg_hcd);
8524 +
8525 + return 0;
8526 +}
8527 +
8528 +static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
8529 +{
8530 + struct list_head *item;
8531 + dwc_otg_qh_t *qh;
8532 +
8533 + if (!qh_list->next) {
8534 + /* The list hasn't been initialized yet. */
8535 + return;
8536 + }
8537 +
8538 + /* Ensure there are no QTDs or URBs left. */
8539 + kill_urbs_in_qh_list(hcd, qh_list);
8540 +
8541 + for (item = qh_list->next; item != qh_list; item = qh_list->next) {
8542 + qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8543 + dwc_otg_hcd_qh_remove_and_free(hcd, qh);
8544 + }
8545 +}
8546 +
8547 +/**
8548 + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
8549 + * stopped.
8550 + */
8551 +void dwc_otg_hcd_stop(struct usb_hcd *hcd)
8552 +{
8553 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8554 + hprt0_data_t hprt0 = { .d32=0 };
8555 +
8556 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
8557 +
8558 + /* Turn off all host-specific interrupts. */
8559 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
8560 +
8561 + /*
8562 + * The root hub should be disconnected before this function is called.
8563 + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
8564 + * and the QH lists (via ..._hcd_endpoint_disable).
8565 + */
8566 +
8567 + /* Turn off the vbus power */
8568 + DWC_PRINT("PortPower off\n");
8569 + hprt0.b.prtpwr = 0;
8570 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
8571 +}
8572 +
8573 +/** Returns the current frame number. */
8574 +int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
8575 +{
8576 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8577 + hfnum_data_t hfnum;
8578 +
8579 + hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
8580 + host_if->host_global_regs->hfnum);
8581 +
8582 +#ifdef DEBUG_SOF
8583 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
8584 +#endif
8585 + return hfnum.b.frnum;
8586 +}
8587 +
8588 +/**
8589 + * Frees secondary storage associated with the dwc_otg_hcd structure contained
8590 + * in the struct usb_hcd field.
8591 + */
8592 +void dwc_otg_hcd_free(struct usb_hcd *hcd)
8593 +{
8594 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8595 + int i;
8596 +
8597 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
8598 +
8599 + del_timers(dwc_otg_hcd);
8600 +
8601 + /* Free memory for QH/QTD lists */
8602 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
8603 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
8604 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
8605 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
8606 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
8607 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
8608 +
8609 + /* Free memory for the host channels. */
8610 + for (i = 0; i < MAX_EPS_CHANNELS; i++) {
8611 + dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
8612 + if (hc != NULL) {
8613 + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
8614 + kfree(hc);
8615 + }
8616 + }
8617 +
8618 + if (dwc_otg_hcd->core_if->dma_enable) {
8619 + if (dwc_otg_hcd->status_buf_dma) {
8620 + dma_free_coherent(hcd->self.controller,
8621 + DWC_OTG_HCD_STATUS_BUF_SIZE,
8622 + dwc_otg_hcd->status_buf,
8623 + dwc_otg_hcd->status_buf_dma);
8624 + }
8625 + } else if (dwc_otg_hcd->status_buf != NULL) {
8626 + kfree(dwc_otg_hcd->status_buf);
8627 + }
8628 +}
8629 +
8630 +#ifdef DEBUG
8631 +static void dump_urb_info(struct urb *urb, char* fn_name)
8632 +{
8633 + DWC_PRINT("%s, urb %p\n", fn_name, urb);
8634 + DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
8635 + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
8636 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
8637 + DWC_PRINT(" Endpoint type: %s\n",
8638 + ({char *pipetype;
8639 + switch (usb_pipetype(urb->pipe)) {
8640 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
8641 + case PIPE_BULK: pipetype = "BULK"; break;
8642 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
8643 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
8644 + default: pipetype = "UNKNOWN"; break;
8645 + }; pipetype;}));
8646 + DWC_PRINT(" Speed: %s\n",
8647 + ({char *speed;
8648 + switch (urb->dev->speed) {
8649 + case USB_SPEED_HIGH: speed = "HIGH"; break;
8650 + case USB_SPEED_FULL: speed = "FULL"; break;
8651 + case USB_SPEED_LOW: speed = "LOW"; break;
8652 + default: speed = "UNKNOWN"; break;
8653 + }; speed;}));
8654 + DWC_PRINT(" Max packet size: %d\n",
8655 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
8656 + DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
8657 + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
8658 + urb->transfer_buffer, (void *)urb->transfer_dma);
8659 + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
8660 + urb->setup_packet, (void *)urb->setup_dma);
8661 + DWC_PRINT(" Interval: %d\n", urb->interval);
8662 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
8663 + int i;
8664 + for (i = 0; i < urb->number_of_packets; i++) {
8665 + DWC_PRINT(" ISO Desc %d:\n", i);
8666 + DWC_PRINT(" offset: %d, length %d\n",
8667 + urb->iso_frame_desc[i].offset,
8668 + urb->iso_frame_desc[i].length);
8669 + }
8670 + }
8671 +}
8672 +
8673 +static void dump_channel_info(dwc_otg_hcd_t *hcd,
8674 + dwc_otg_qh_t *qh)
8675 +{
8676 + if (qh->channel != NULL) {
8677 + dwc_hc_t *hc = qh->channel;
8678 + struct list_head *item;
8679 + dwc_otg_qh_t *qh_item;
8680 + int num_channels = hcd->core_if->core_params->host_channels;
8681 + int i;
8682 +
8683 + dwc_otg_hc_regs_t *hc_regs;
8684 + hcchar_data_t hcchar;
8685 + hcsplt_data_t hcsplt;
8686 + hctsiz_data_t hctsiz;
8687 + uint32_t hcdma;
8688 +
8689 + hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
8690 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8691 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
8692 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
8693 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
8694 +
8695 + DWC_PRINT(" Assigned to channel %p:\n", hc);
8696 + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
8697 + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
8698 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
8699 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
8700 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
8701 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
8702 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
8703 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
8704 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
8705 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
8706 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
8707 + DWC_PRINT(" qh: %p\n", hc->qh);
8708 + DWC_PRINT(" NP inactive sched:\n");
8709 + list_for_each(item, &hcd->non_periodic_sched_inactive) {
8710 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8711 + DWC_PRINT(" %p\n", qh_item);
8712 + }
8713 + DWC_PRINT(" NP active sched:\n");
8714 + list_for_each(item, &hcd->non_periodic_sched_active) {
8715 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8716 + DWC_PRINT(" %p\n", qh_item);
8717 + }
8718 + DWC_PRINT(" Channels: \n");
8719 + for (i = 0; i < num_channels; i++) {
8720 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
8721 + DWC_PRINT(" %2d: %p\n", i, hc);
8722 + }
8723 + }
8724 +}
8725 +#endif
8726 +
8727 +
8728 +//OTG host require the DMA addr is DWORD-aligned,
8729 +//patch it if the buffer is not DWORD-aligned
8730 +inline
8731 +void hcd_check_and_patch_dma_addr(struct urb *urb){
8732 +
8733 + if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
8734 + return;
8735 +
8736 + if(((u32)urb->transfer_buffer)& 0x3){
8737 + /*
8738 + printk("%s: "
8739 + "urb(%.8x) "
8740 + "transfer_buffer=%.8x, "
8741 + "transfer_dma=%.8x, "
8742 + "transfer_buffer_length=%d, "
8743 + "actual_length=%d(%x), "
8744 + "\n",
8745 + ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
8746 + urb,
8747 + urb->transfer_buffer,
8748 + urb->transfer_dma,
8749 + urb->transfer_buffer_length,
8750 + urb->actual_length,urb->actual_length
8751 + );
8752 + */
8753 + if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
8754 + urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
8755 + if(urb->aligned_transfer_buffer) {
8756 + kfree(urb->aligned_transfer_buffer);
8757 + }
8758 + urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
8759 + urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
8760 + if(!urb->aligned_transfer_buffer){
8761 + DWC_ERROR("Cannot alloc required buffer!!\n");
8762 + BUG();
8763 + }
8764 + //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
8765 + }
8766 + urb->transfer_dma=urb->aligned_transfer_dma;
8767 + if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
8768 + memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
8769 + dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
8770 + }
8771 + }
8772 +}
8773 +
8774 +
8775 +
8776 +/** Starts processing a USB transfer request specified by a USB Request Block
8777 + * (URB). mem_flags indicates the type of memory allocation to use while
8778 + * processing this URB. */
8779 +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
8780 +// struct usb_host_endpoint *ep,
8781 + struct urb *urb,
8782 + gfp_t mem_flags
8783 + )
8784 +{
8785 + int retval = 0;
8786 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8787 + dwc_otg_qtd_t *qtd;
8788 +
8789 +#ifdef DEBUG
8790 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8791 + dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
8792 + }
8793 +#endif
8794 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
8795 + /* No longer connected. */
8796 + return -ENODEV;
8797 + }
8798 +
8799 + hcd_check_and_patch_dma_addr(urb);
8800 + qtd = dwc_otg_hcd_qtd_create(urb);
8801 + if (qtd == NULL) {
8802 + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
8803 + return -ENOMEM;
8804 + }
8805 +
8806 + retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
8807 + if (retval < 0) {
8808 + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
8809 + "Error status %d\n", retval);
8810 + dwc_otg_hcd_qtd_free(qtd);
8811 + }
8812 +
8813 + return retval;
8814 +}
8815 +
8816 +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
8817 + * success. */
8818 +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
8819 + struct urb *urb, int status)
8820 +{
8821 + unsigned long flags;
8822 + dwc_otg_hcd_t *dwc_otg_hcd;
8823 + dwc_otg_qtd_t *urb_qtd;
8824 + dwc_otg_qh_t *qh;
8825 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
8826 +
8827 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
8828 +
8829 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8830 +
8831 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
8832 +
8833 + urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
8834 + qh = (dwc_otg_qh_t *)ep->hcpriv;
8835 +
8836 +#ifdef DEBUG
8837 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8838 + dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
8839 + if (urb_qtd == qh->qtd_in_process) {
8840 + dump_channel_info(dwc_otg_hcd, qh);
8841 + }
8842 + }
8843 +#endif
8844 +
8845 + if (urb_qtd == qh->qtd_in_process) {
8846 + /* The QTD is in process (it has been assigned to a channel). */
8847 +
8848 + if (dwc_otg_hcd->flags.b.port_connect_status) {
8849 + /*
8850 + * If still connected (i.e. in host mode), halt the
8851 + * channel so it can be used for other transfers. If
8852 + * no longer connected, the host registers can't be
8853 + * written to halt the channel since the core is in
8854 + * device mode.
8855 + */
8856 + dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
8857 + DWC_OTG_HC_XFER_URB_DEQUEUE);
8858 + }
8859 + }
8860 +
8861 + /*
8862 + * Free the QTD and clean up the associated QH. Leave the QH in the
8863 + * schedule if it has any remaining QTDs.
8864 + */
8865 + dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
8866 + if (urb_qtd == qh->qtd_in_process) {
8867 + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
8868 + qh->channel = NULL;
8869 + qh->qtd_in_process = NULL;
8870 + } else if (list_empty(&qh->qtd_list)) {
8871 + dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
8872 + }
8873 +
8874 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8875 +
8876 + urb->hcpriv = NULL;
8877 +
8878 + /* Higher layer software sets URB status. */
8879 + usb_hcd_giveback_urb(hcd, urb, status);
8880 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8881 + DWC_PRINT("Called usb_hcd_giveback_urb()\n");
8882 + DWC_PRINT(" urb->status = %d\n", urb->status);
8883 + }
8884 +
8885 + return 0;
8886 +}
8887 +
8888 +/** Frees resources in the DWC_otg controller related to a given endpoint. Also
8889 + * clears state in the HCD related to the endpoint. Any URBs for the endpoint
8890 + * must already be dequeued. */
8891 +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
8892 + struct usb_host_endpoint *ep)
8893 +{
8894 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8895 + dwc_otg_qh_t *qh;
8896 +
8897 + unsigned long flags;
8898 + int retry = 0;
8899 +
8900 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
8901 + "endpoint=%d\n", ep->desc.bEndpointAddress,
8902 + dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
8903 +
8904 +rescan:
8905 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
8906 + qh = (dwc_otg_qh_t *)(ep->hcpriv);
8907 + if (!qh)
8908 + goto done;
8909 +
8910 + /** Check that the QTD list is really empty */
8911 + if (!list_empty(&qh->qtd_list)) {
8912 + if (retry++ < 250) {
8913 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8914 + schedule_timeout_uninterruptible(1);
8915 + goto rescan;
8916 + }
8917 +
8918 + DWC_WARN("DWC OTG HCD EP DISABLE:"
8919 + " QTD List for this endpoint is not empty\n");
8920 + }
8921 +
8922 + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
8923 + ep->hcpriv = NULL;
8924 +done:
8925 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8926 +
8927 +}
8928 +
8929 +/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
8930 + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
8931 + * interrupt.
8932 + *
8933 + * This function is called by the USB core when an interrupt occurs */
8934 +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
8935 +{
8936 + int retVal = 0;
8937 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8938 + retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
8939 + if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
8940 + usb_hcd_poll_rh_status(hcd);
8941 + return IRQ_RETVAL(retVal);
8942 +}
8943 +
8944 +/** Creates Status Change bitmap for the root hub and root port. The bitmap is
8945 + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
8946 + * is the status change indicator for the single root port. Returns 1 if either
8947 + * change indicator is 1, otherwise returns 0. */
8948 +int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
8949 +{
8950 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8951 +
8952 + buf[0] = 0;
8953 + buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
8954 + dwc_otg_hcd->flags.b.port_reset_change ||
8955 + dwc_otg_hcd->flags.b.port_enable_change ||
8956 + dwc_otg_hcd->flags.b.port_suspend_change ||
8957 + dwc_otg_hcd->flags.b.port_over_current_change) << 1;
8958 +
8959 +#ifdef DEBUG
8960 + if (buf[0]) {
8961 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
8962 + " Root port status changed\n");
8963 + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
8964 + dwc_otg_hcd->flags.b.port_connect_status_change);
8965 + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
8966 + dwc_otg_hcd->flags.b.port_reset_change);
8967 + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
8968 + dwc_otg_hcd->flags.b.port_enable_change);
8969 + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
8970 + dwc_otg_hcd->flags.b.port_suspend_change);
8971 + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
8972 + dwc_otg_hcd->flags.b.port_over_current_change);
8973 + }
8974 +#endif
8975 + return (buf[0] != 0);
8976 +}
8977 +
8978 +#ifdef DWC_HS_ELECT_TST
8979 +/*
8980 + * Quick and dirty hack to implement the HS Electrical Test
8981 + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
8982 + *
8983 + * This code was copied from our userspace app "hset". It sends a
8984 + * Get Device Descriptor control sequence in two parts, first the
8985 + * Setup packet by itself, followed some time later by the In and
8986 + * Ack packets. Rather than trying to figure out how to add this
8987 + * functionality to the normal driver code, we just hijack the
8988 + * hardware, using these two function to drive the hardware
8989 + * directly.
8990 + */
8991 +
8992 +dwc_otg_core_global_regs_t *global_regs;
8993 +dwc_otg_host_global_regs_t *hc_global_regs;
8994 +dwc_otg_hc_regs_t *hc_regs;
8995 +uint32_t *data_fifo;
8996 +
8997 +static void do_setup(void)
8998 +{
8999 + gintsts_data_t gintsts;
9000 + hctsiz_data_t hctsiz;
9001 + hcchar_data_t hcchar;
9002 + haint_data_t haint;
9003 + hcint_data_t hcint;
9004 +
9005 + /* Enable HAINTs */
9006 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
9007 +
9008 + /* Enable HCINTs */
9009 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
9010 +
9011 + /* Read GINTSTS */
9012 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9013 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9014 +
9015 + /* Read HAINT */
9016 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9017 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9018 +
9019 + /* Read HCINT */
9020 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9021 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9022 +
9023 + /* Read HCCHAR */
9024 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9025 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9026 +
9027 + /* Clear HCINT */
9028 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9029 +
9030 + /* Clear HAINT */
9031 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9032 +
9033 + /* Clear GINTSTS */
9034 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9035 +
9036 + /* Read GINTSTS */
9037 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9038 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9039 +
9040 + /*
9041 + * Send Setup packet (Get Device Descriptor)
9042 + */
9043 +
9044 + /* Make sure channel is disabled */
9045 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9046 + if (hcchar.b.chen) {
9047 + //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
9048 + hcchar.b.chdis = 1;
9049 +// hcchar.b.chen = 1;
9050 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9051 + //sleep(1);
9052 + mdelay(1000);
9053 +
9054 + /* Read GINTSTS */
9055 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9056 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9057 +
9058 + /* Read HAINT */
9059 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9060 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9061 +
9062 + /* Read HCINT */
9063 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9064 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9065 +
9066 + /* Read HCCHAR */
9067 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9068 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9069 +
9070 + /* Clear HCINT */
9071 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9072 +
9073 + /* Clear HAINT */
9074 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9075 +
9076 + /* Clear GINTSTS */
9077 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9078 +
9079 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9080 + //if (hcchar.b.chen) {
9081 + // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
9082 + //}
9083 + }
9084 +
9085 + /* Set HCTSIZ */
9086 + hctsiz.d32 = 0;
9087 + hctsiz.b.xfersize = 8;
9088 + hctsiz.b.pktcnt = 1;
9089 + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
9090 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9091 +
9092 + /* Set HCCHAR */
9093 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9094 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9095 + hcchar.b.epdir = 0;
9096 + hcchar.b.epnum = 0;
9097 + hcchar.b.mps = 8;
9098 + hcchar.b.chen = 1;
9099 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9100 +
9101 + /* Fill FIFO with Setup data for Get Device Descriptor */
9102 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9103 + dwc_write_reg32(data_fifo++, 0x01000680);
9104 + dwc_write_reg32(data_fifo++, 0x00080000);
9105 +
9106 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9107 + //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
9108 +
9109 + /* Wait for host channel interrupt */
9110 + do {
9111 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9112 + } while (gintsts.b.hcintr == 0);
9113 +
9114 + //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
9115 +
9116 + /* Disable HCINTs */
9117 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
9118 +
9119 + /* Disable HAINTs */
9120 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
9121 +
9122 + /* Read HAINT */
9123 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9124 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9125 +
9126 + /* Read HCINT */
9127 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9128 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9129 +
9130 + /* Read HCCHAR */
9131 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9132 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9133 +
9134 + /* Clear HCINT */
9135 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9136 +
9137 + /* Clear HAINT */
9138 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9139 +
9140 + /* Clear GINTSTS */
9141 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9142 +
9143 + /* Read GINTSTS */
9144 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9145 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9146 +}
9147 +
9148 +static void do_in_ack(void)
9149 +{
9150 + gintsts_data_t gintsts;
9151 + hctsiz_data_t hctsiz;
9152 + hcchar_data_t hcchar;
9153 + haint_data_t haint;
9154 + hcint_data_t hcint;
9155 + host_grxsts_data_t grxsts;
9156 +
9157 + /* Enable HAINTs */
9158 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
9159 +
9160 + /* Enable HCINTs */
9161 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
9162 +
9163 + /* Read GINTSTS */
9164 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9165 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9166 +
9167 + /* Read HAINT */
9168 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9169 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9170 +
9171 + /* Read HCINT */
9172 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9173 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9174 +
9175 + /* Read HCCHAR */
9176 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9177 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9178 +
9179 + /* Clear HCINT */
9180 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9181 +
9182 + /* Clear HAINT */
9183 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9184 +
9185 + /* Clear GINTSTS */
9186 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9187 +
9188 + /* Read GINTSTS */
9189 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9190 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9191 +
9192 + /*
9193 + * Receive Control In packet
9194 + */
9195 +
9196 + /* Make sure channel is disabled */
9197 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9198 + if (hcchar.b.chen) {
9199 + //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
9200 + hcchar.b.chdis = 1;
9201 + hcchar.b.chen = 1;
9202 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9203 + //sleep(1);
9204 + mdelay(1000);
9205 +
9206 + /* Read GINTSTS */
9207 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9208 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9209 +
9210 + /* Read HAINT */
9211 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9212 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9213 +
9214 + /* Read HCINT */
9215 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9216 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9217 +
9218 + /* Read HCCHAR */
9219 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9220 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9221 +
9222 + /* Clear HCINT */
9223 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9224 +
9225 + /* Clear HAINT */
9226 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9227 +
9228 + /* Clear GINTSTS */
9229 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9230 +
9231 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9232 + //if (hcchar.b.chen) {
9233 + // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
9234 + //}
9235 + }
9236 +
9237 + /* Set HCTSIZ */
9238 + hctsiz.d32 = 0;
9239 + hctsiz.b.xfersize = 8;
9240 + hctsiz.b.pktcnt = 1;
9241 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
9242 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9243 +
9244 + /* Set HCCHAR */
9245 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9246 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9247 + hcchar.b.epdir = 1;
9248 + hcchar.b.epnum = 0;
9249 + hcchar.b.mps = 8;
9250 + hcchar.b.chen = 1;
9251 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9252 +
9253 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9254 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
9255 +
9256 + /* Wait for receive status queue interrupt */
9257 + do {
9258 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9259 + } while (gintsts.b.rxstsqlvl == 0);
9260 +
9261 + //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
9262 +
9263 + /* Read RXSTS */
9264 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9265 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
9266 +
9267 + /* Clear RXSTSQLVL in GINTSTS */
9268 + gintsts.d32 = 0;
9269 + gintsts.b.rxstsqlvl = 1;
9270 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9271 +
9272 + switch (grxsts.b.pktsts) {
9273 + case DWC_GRXSTS_PKTSTS_IN:
9274 + /* Read the data into the host buffer */
9275 + if (grxsts.b.bcnt > 0) {
9276 + int i;
9277 + int word_count = (grxsts.b.bcnt + 3) / 4;
9278 +
9279 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9280 +
9281 + for (i = 0; i < word_count; i++) {
9282 + (void)dwc_read_reg32(data_fifo++);
9283 + }
9284 + }
9285 +
9286 + //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
9287 + break;
9288 +
9289 + default:
9290 + //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
9291 + break;
9292 + }
9293 +
9294 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9295 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
9296 +
9297 + /* Wait for receive status queue interrupt */
9298 + do {
9299 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9300 + } while (gintsts.b.rxstsqlvl == 0);
9301 +
9302 + //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
9303 +
9304 + /* Read RXSTS */
9305 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9306 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
9307 +
9308 + /* Clear RXSTSQLVL in GINTSTS */
9309 + gintsts.d32 = 0;
9310 + gintsts.b.rxstsqlvl = 1;
9311 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9312 +
9313 + switch (grxsts.b.pktsts) {
9314 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
9315 + break;
9316 +
9317 + default:
9318 + //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
9319 + break;
9320 + }
9321 +
9322 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9323 + //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
9324 +
9325 + /* Wait for host channel interrupt */
9326 + do {
9327 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9328 + } while (gintsts.b.hcintr == 0);
9329 +
9330 + //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
9331 +
9332 + /* Read HAINT */
9333 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9334 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9335 +
9336 + /* Read HCINT */
9337 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9338 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9339 +
9340 + /* Read HCCHAR */
9341 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9342 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9343 +
9344 + /* Clear HCINT */
9345 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9346 +
9347 + /* Clear HAINT */
9348 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9349 +
9350 + /* Clear GINTSTS */
9351 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9352 +
9353 + /* Read GINTSTS */
9354 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9355 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9356 +
9357 +// usleep(100000);
9358 +// mdelay(100);
9359 + mdelay(1);
9360 +
9361 + /*
9362 + * Send handshake packet
9363 + */
9364 +
9365 + /* Read HAINT */
9366 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9367 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9368 +
9369 + /* Read HCINT */
9370 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9371 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9372 +
9373 + /* Read HCCHAR */
9374 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9375 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9376 +
9377 + /* Clear HCINT */
9378 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9379 +
9380 + /* Clear HAINT */
9381 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9382 +
9383 + /* Clear GINTSTS */
9384 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9385 +
9386 + /* Read GINTSTS */
9387 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9388 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9389 +
9390 + /* Make sure channel is disabled */
9391 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9392 + if (hcchar.b.chen) {
9393 + //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
9394 + hcchar.b.chdis = 1;
9395 + hcchar.b.chen = 1;
9396 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9397 + //sleep(1);
9398 + mdelay(1000);
9399 +
9400 + /* Read GINTSTS */
9401 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9402 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9403 +
9404 + /* Read HAINT */
9405 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9406 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9407 +
9408 + /* Read HCINT */
9409 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9410 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9411 +
9412 + /* Read HCCHAR */
9413 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9414 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9415 +
9416 + /* Clear HCINT */
9417 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9418 +
9419 + /* Clear HAINT */
9420 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9421 +
9422 + /* Clear GINTSTS */
9423 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9424 +
9425 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9426 + //if (hcchar.b.chen) {
9427 + // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
9428 + //}
9429 + }
9430 +
9431 + /* Set HCTSIZ */
9432 + hctsiz.d32 = 0;
9433 + hctsiz.b.xfersize = 0;
9434 + hctsiz.b.pktcnt = 1;
9435 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
9436 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9437 +
9438 + /* Set HCCHAR */
9439 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9440 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9441 + hcchar.b.epdir = 0;
9442 + hcchar.b.epnum = 0;
9443 + hcchar.b.mps = 8;
9444 + hcchar.b.chen = 1;
9445 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9446 +
9447 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9448 + //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
9449 +
9450 + /* Wait for host channel interrupt */
9451 + do {
9452 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9453 + } while (gintsts.b.hcintr == 0);
9454 +
9455 + //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
9456 +
9457 + /* Disable HCINTs */
9458 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
9459 +
9460 + /* Disable HAINTs */
9461 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
9462 +
9463 + /* Read HAINT */
9464 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9465 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9466 +
9467 + /* Read HCINT */
9468 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9469 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9470 +
9471 + /* Read HCCHAR */
9472 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9473 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9474 +
9475 + /* Clear HCINT */
9476 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9477 +
9478 + /* Clear HAINT */
9479 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9480 +
9481 + /* Clear GINTSTS */
9482 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9483 +
9484 + /* Read GINTSTS */
9485 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9486 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9487 +}
9488 +#endif /* DWC_HS_ELECT_TST */
9489 +
9490 +/** Handles hub class-specific requests. */
9491 +int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
9492 + u16 typeReq,
9493 + u16 wValue,
9494 + u16 wIndex,
9495 + char *buf,
9496 + u16 wLength)
9497 +{
9498 + int retval = 0;
9499 +
9500 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
9501 + dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
9502 + struct usb_hub_descriptor *desc;
9503 + hprt0_data_t hprt0 = {.d32 = 0};
9504 +
9505 + uint32_t port_status;
9506 +
9507 + switch (typeReq) {
9508 + case ClearHubFeature:
9509 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9510 + "ClearHubFeature 0x%x\n", wValue);
9511 + switch (wValue) {
9512 + case C_HUB_LOCAL_POWER:
9513 + case C_HUB_OVER_CURRENT:
9514 + /* Nothing required here */
9515 + break;
9516 + default:
9517 + retval = -EINVAL;
9518 + DWC_ERROR("DWC OTG HCD - "
9519 + "ClearHubFeature request %xh unknown\n", wValue);
9520 + }
9521 + break;
9522 + case ClearPortFeature:
9523 + if (!wIndex || wIndex > 1)
9524 + goto error;
9525 +
9526 + switch (wValue) {
9527 + case USB_PORT_FEAT_ENABLE:
9528 + DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
9529 + "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
9530 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9531 + hprt0.b.prtena = 1;
9532 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9533 + break;
9534 + case USB_PORT_FEAT_SUSPEND:
9535 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9536 + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
9537 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9538 + hprt0.b.prtres = 1;
9539 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9540 + /* Clear Resume bit */
9541 + mdelay(100);
9542 + hprt0.b.prtres = 0;
9543 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9544 + break;
9545 + case USB_PORT_FEAT_POWER:
9546 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9547 + "ClearPortFeature USB_PORT_FEAT_POWER\n");
9548 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9549 + hprt0.b.prtpwr = 0;
9550 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9551 + break;
9552 + case USB_PORT_FEAT_INDICATOR:
9553 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9554 + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
9555 + /* Port inidicator not supported */
9556 + break;
9557 + case USB_PORT_FEAT_C_CONNECTION:
9558 + /* Clears drivers internal connect status change
9559 + * flag */
9560 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9561 + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
9562 + dwc_otg_hcd->flags.b.port_connect_status_change = 0;
9563 + break;
9564 + case USB_PORT_FEAT_C_RESET:
9565 + /* Clears the driver's internal Port Reset Change
9566 + * flag */
9567 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9568 + "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
9569 + dwc_otg_hcd->flags.b.port_reset_change = 0;
9570 + break;
9571 + case USB_PORT_FEAT_C_ENABLE:
9572 + /* Clears the driver's internal Port
9573 + * Enable/Disable Change flag */
9574 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9575 + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
9576 + dwc_otg_hcd->flags.b.port_enable_change = 0;
9577 + break;
9578 + case USB_PORT_FEAT_C_SUSPEND:
9579 + /* Clears the driver's internal Port Suspend
9580 + * Change flag, which is set when resume signaling on
9581 + * the host port is complete */
9582 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9583 + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
9584 + dwc_otg_hcd->flags.b.port_suspend_change = 0;
9585 + break;
9586 + case USB_PORT_FEAT_C_OVER_CURRENT:
9587 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9588 + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
9589 + dwc_otg_hcd->flags.b.port_over_current_change = 0;
9590 + break;
9591 + default:
9592 + retval = -EINVAL;
9593 + DWC_ERROR("DWC OTG HCD - "
9594 + "ClearPortFeature request %xh "
9595 + "unknown or unsupported\n", wValue);
9596 + }
9597 + break;
9598 + case GetHubDescriptor:
9599 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9600 + "GetHubDescriptor\n");
9601 + desc = (struct usb_hub_descriptor *)buf;
9602 + desc->bDescLength = 9;
9603 + desc->bDescriptorType = 0x29;
9604 + desc->bNbrPorts = 1;
9605 + desc->wHubCharacteristics = 0x08;
9606 + desc->bPwrOn2PwrGood = 1;
9607 + desc->bHubContrCurrent = 0;
9608 + desc->u.hs.DeviceRemovable[0] = 0;
9609 + desc->u.hs.DeviceRemovable[1] = 0xff;
9610 + break;
9611 + case GetHubStatus:
9612 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9613 + "GetHubStatus\n");
9614 + memset(buf, 0, 4);
9615 + break;
9616 + case GetPortStatus:
9617 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9618 + "GetPortStatus\n");
9619 +
9620 + if (!wIndex || wIndex > 1)
9621 + goto error;
9622 +
9623 + port_status = 0;
9624 +
9625 + if (dwc_otg_hcd->flags.b.port_connect_status_change)
9626 + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
9627 +
9628 + if (dwc_otg_hcd->flags.b.port_enable_change)
9629 + port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
9630 +
9631 + if (dwc_otg_hcd->flags.b.port_suspend_change)
9632 + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
9633 +
9634 + if (dwc_otg_hcd->flags.b.port_reset_change)
9635 + port_status |= (1 << USB_PORT_FEAT_C_RESET);
9636 +
9637 + if (dwc_otg_hcd->flags.b.port_over_current_change) {
9638 + DWC_ERROR("Device Not Supported\n");
9639 + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
9640 + }
9641 +
9642 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
9643 + /*
9644 + * The port is disconnected, which means the core is
9645 + * either in device mode or it soon will be. Just
9646 + * return 0's for the remainder of the port status
9647 + * since the port register can't be read if the core
9648 + * is in device mode.
9649 + */
9650 + *((__le32 *) buf) = cpu_to_le32(port_status);
9651 + break;
9652 + }
9653 +
9654 + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
9655 + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
9656 +
9657 + if (hprt0.b.prtconnsts)
9658 + port_status |= (1 << USB_PORT_FEAT_CONNECTION);
9659 +
9660 + if (hprt0.b.prtena)
9661 + port_status |= (1 << USB_PORT_FEAT_ENABLE);
9662 +
9663 + if (hprt0.b.prtsusp)
9664 + port_status |= (1 << USB_PORT_FEAT_SUSPEND);
9665 +
9666 + if (hprt0.b.prtovrcurract)
9667 + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
9668 +
9669 + if (hprt0.b.prtrst)
9670 + port_status |= (1 << USB_PORT_FEAT_RESET);
9671 +
9672 + if (hprt0.b.prtpwr)
9673 + port_status |= (1 << USB_PORT_FEAT_POWER);
9674 +
9675 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
9676 + port_status |= (USB_PORT_STAT_HIGH_SPEED);
9677 + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
9678 + port_status |= (USB_PORT_STAT_LOW_SPEED);
9679 +
9680 + if (hprt0.b.prttstctl)
9681 + port_status |= (1 << USB_PORT_FEAT_TEST);
9682 +
9683 + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
9684 +
9685 + *((__le32 *) buf) = cpu_to_le32(port_status);
9686 +
9687 + break;
9688 + case SetHubFeature:
9689 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9690 + "SetHubFeature\n");
9691 + /* No HUB features supported */
9692 + break;
9693 + case SetPortFeature:
9694 + if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
9695 + goto error;
9696 +
9697 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
9698 + /*
9699 + * The port is disconnected, which means the core is
9700 + * either in device mode or it soon will be. Just
9701 + * return without doing anything since the port
9702 + * register can't be written if the core is in device
9703 + * mode.
9704 + */
9705 + break;
9706 + }
9707 +
9708 + switch (wValue) {
9709 + case USB_PORT_FEAT_SUSPEND:
9710 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9711 + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
9712 + if (hcd->self.otg_port == wIndex &&
9713 + hcd->self.b_hnp_enable) {
9714 + gotgctl_data_t gotgctl = {.d32=0};
9715 + gotgctl.b.hstsethnpen = 1;
9716 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
9717 + 0, gotgctl.d32);
9718 + core_if->op_state = A_SUSPEND;
9719 + }
9720 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9721 + hprt0.b.prtsusp = 1;
9722 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9723 + //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
9724 + /* Suspend the Phy Clock */
9725 + {
9726 + pcgcctl_data_t pcgcctl = {.d32=0};
9727 + pcgcctl.b.stoppclk = 1;
9728 + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
9729 + }
9730 +
9731 + /* For HNP the bus must be suspended for at least 200ms. */
9732 + if (hcd->self.b_hnp_enable) {
9733 + mdelay(200);
9734 + //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
9735 + }
9736 + break;
9737 + case USB_PORT_FEAT_POWER:
9738 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9739 + "SetPortFeature - USB_PORT_FEAT_POWER\n");
9740 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9741 + hprt0.b.prtpwr = 1;
9742 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9743 + break;
9744 + case USB_PORT_FEAT_RESET:
9745 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9746 + "SetPortFeature - USB_PORT_FEAT_RESET\n");
9747 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9748 + /* When B-Host the Port reset bit is set in
9749 + * the Start HCD Callback function, so that
9750 + * the reset is started within 1ms of the HNP
9751 + * success interrupt. */
9752 + if (!hcd->self.is_b_host) {
9753 + hprt0.b.prtrst = 1;
9754 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9755 + }
9756 + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
9757 + MDELAY(60);
9758 + hprt0.b.prtrst = 0;
9759 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9760 + break;
9761 +
9762 +#ifdef DWC_HS_ELECT_TST
9763 + case USB_PORT_FEAT_TEST:
9764 + {
9765 + uint32_t t;
9766 + gintmsk_data_t gintmsk;
9767 +
9768 + t = (wIndex >> 8); /* MSB wIndex USB */
9769 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9770 + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
9771 + warn("USB_PORT_FEAT_TEST %d\n", t);
9772 + if (t < 6) {
9773 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9774 + hprt0.b.prttstctl = t;
9775 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9776 + } else {
9777 + /* Setup global vars with reg addresses (quick and
9778 + * dirty hack, should be cleaned up)
9779 + */
9780 + global_regs = core_if->core_global_regs;
9781 + hc_global_regs = core_if->host_if->host_global_regs;
9782 + hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
9783 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9784 +
9785 + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
9786 + /* Save current interrupt mask */
9787 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9788 +
9789 + /* Disable all interrupts while we muck with
9790 + * the hardware directly
9791 + */
9792 + dwc_write_reg32(&global_regs->gintmsk, 0);
9793 +
9794 + /* 15 second delay per the test spec */
9795 + mdelay(15000);
9796 +
9797 + /* Drive suspend on the root port */
9798 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9799 + hprt0.b.prtsusp = 1;
9800 + hprt0.b.prtres = 0;
9801 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9802 +
9803 + /* 15 second delay per the test spec */
9804 + mdelay(15000);
9805 +
9806 + /* Drive resume on the root port */
9807 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9808 + hprt0.b.prtsusp = 0;
9809 + hprt0.b.prtres = 1;
9810 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9811 + mdelay(100);
9812 +
9813 + /* Clear the resume bit */
9814 + hprt0.b.prtres = 0;
9815 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9816 +
9817 + /* Restore interrupts */
9818 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9819 + } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
9820 + /* Save current interrupt mask */
9821 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9822 +
9823 + /* Disable all interrupts while we muck with
9824 + * the hardware directly
9825 + */
9826 + dwc_write_reg32(&global_regs->gintmsk, 0);
9827 +
9828 + /* 15 second delay per the test spec */
9829 + mdelay(15000);
9830 +
9831 + /* Send the Setup packet */
9832 + do_setup();
9833 +
9834 + /* 15 second delay so nothing else happens for awhile */
9835 + mdelay(15000);
9836 +
9837 + /* Restore interrupts */
9838 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9839 + } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
9840 + /* Save current interrupt mask */
9841 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9842 +
9843 + /* Disable all interrupts while we muck with
9844 + * the hardware directly
9845 + */
9846 + dwc_write_reg32(&global_regs->gintmsk, 0);
9847 +
9848 + /* Send the Setup packet */
9849 + do_setup();
9850 +
9851 + /* 15 second delay so nothing else happens for awhile */
9852 + mdelay(15000);
9853 +
9854 + /* Send the In and Ack packets */
9855 + do_in_ack();
9856 +
9857 + /* 15 second delay so nothing else happens for awhile */
9858 + mdelay(15000);
9859 +
9860 + /* Restore interrupts */
9861 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9862 + }
9863 + }
9864 + break;
9865 + }
9866 +#endif /* DWC_HS_ELECT_TST */
9867 +
9868 + case USB_PORT_FEAT_INDICATOR:
9869 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9870 + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
9871 + /* Not supported */
9872 + break;
9873 + default:
9874 + retval = -EINVAL;
9875 + DWC_ERROR("DWC OTG HCD - "
9876 + "SetPortFeature request %xh "
9877 + "unknown or unsupported\n", wValue);
9878 + break;
9879 + }
9880 + break;
9881 + default:
9882 + error:
9883 + retval = -EINVAL;
9884 + DWC_WARN("DWC OTG HCD - "
9885 + "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
9886 + typeReq, wIndex, wValue);
9887 + break;
9888 + }
9889 +
9890 + return retval;
9891 +}
9892 +
9893 +/**
9894 + * Assigns transactions from a QTD to a free host channel and initializes the
9895 + * host channel to perform the transactions. The host channel is removed from
9896 + * the free list.
9897 + *
9898 + * @param hcd The HCD state structure.
9899 + * @param qh Transactions from the first QTD for this QH are selected and
9900 + * assigned to a free host channel.
9901 + */
9902 +static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
9903 +{
9904 + dwc_hc_t *hc;
9905 + dwc_otg_qtd_t *qtd;
9906 + struct urb *urb;
9907 +
9908 + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
9909 +
9910 + hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
9911 +
9912 + /* Remove the host channel from the free list. */
9913 + list_del_init(&hc->hc_list_entry);
9914 +
9915 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
9916 + urb = qtd->urb;
9917 + qh->channel = hc;
9918 + qh->qtd_in_process = qtd;
9919 +
9920 + /*
9921 + * Use usb_pipedevice to determine device address. This address is
9922 + * 0 before the SET_ADDRESS command and the correct address afterward.
9923 + */
9924 + hc->dev_addr = usb_pipedevice(urb->pipe);
9925 + hc->ep_num = usb_pipeendpoint(urb->pipe);
9926 +
9927 + if (urb->dev->speed == USB_SPEED_LOW) {
9928 + hc->speed = DWC_OTG_EP_SPEED_LOW;
9929 + } else if (urb->dev->speed == USB_SPEED_FULL) {
9930 + hc->speed = DWC_OTG_EP_SPEED_FULL;
9931 + } else {
9932 + hc->speed = DWC_OTG_EP_SPEED_HIGH;
9933 + }
9934 +
9935 + hc->max_packet = dwc_max_packet(qh->maxp);
9936 +
9937 + hc->xfer_started = 0;
9938 + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
9939 + hc->error_state = (qtd->error_count > 0);
9940 + hc->halt_on_queue = 0;
9941 + hc->halt_pending = 0;
9942 + hc->requests = 0;
9943 +
9944 + /*
9945 + * The following values may be modified in the transfer type section
9946 + * below. The xfer_len value may be reduced when the transfer is
9947 + * started to accommodate the max widths of the XferSize and PktCnt
9948 + * fields in the HCTSIZn register.
9949 + */
9950 + hc->do_ping = qh->ping_state;
9951 + hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
9952 + hc->data_pid_start = qh->data_toggle;
9953 + hc->multi_count = 1;
9954 +
9955 + if (hcd->core_if->dma_enable) {
9956 + hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
9957 + } else {
9958 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
9959 + }
9960 + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
9961 + hc->xfer_count = 0;
9962 +
9963 + /*
9964 + * Set the split attributes
9965 + */
9966 + hc->do_split = 0;
9967 + if (qh->do_split) {
9968 + hc->do_split = 1;
9969 + hc->xact_pos = qtd->isoc_split_pos;
9970 + hc->complete_split = qtd->complete_split;
9971 + hc->hub_addr = urb->dev->tt->hub->devnum;
9972 + hc->port_addr = urb->dev->ttport;
9973 + }
9974 +
9975 + switch (usb_pipetype(urb->pipe)) {
9976 + case PIPE_CONTROL:
9977 + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
9978 + switch (qtd->control_phase) {
9979 + case DWC_OTG_CONTROL_SETUP:
9980 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
9981 + hc->do_ping = 0;
9982 + hc->ep_is_in = 0;
9983 + hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
9984 + if (hcd->core_if->dma_enable) {
9985 + hc->xfer_buff = (uint8_t *)urb->setup_dma;
9986 + } else {
9987 + hc->xfer_buff = (uint8_t *)urb->setup_packet;
9988 + }
9989 + hc->xfer_len = 8;
9990 + break;
9991 + case DWC_OTG_CONTROL_DATA:
9992 + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
9993 + hc->data_pid_start = qtd->data_toggle;
9994 + break;
9995 + case DWC_OTG_CONTROL_STATUS:
9996 + /*
9997 + * Direction is opposite of data direction or IN if no
9998 + * data.
9999 + */
10000 + DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
10001 + if (urb->transfer_buffer_length == 0) {
10002 + hc->ep_is_in = 1;
10003 + } else {
10004 + hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
10005 + }
10006 + if (hc->ep_is_in) {
10007 + hc->do_ping = 0;
10008 + }
10009 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
10010 + hc->xfer_len = 0;
10011 + if (hcd->core_if->dma_enable) {
10012 + hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
10013 + } else {
10014 + hc->xfer_buff = (uint8_t *)hcd->status_buf;
10015 + }
10016 + break;
10017 + }
10018 + break;
10019 + case PIPE_BULK:
10020 + hc->ep_type = DWC_OTG_EP_TYPE_BULK;
10021 + break;
10022 + case PIPE_INTERRUPT:
10023 + hc->ep_type = DWC_OTG_EP_TYPE_INTR;
10024 + break;
10025 + case PIPE_ISOCHRONOUS:
10026 + {
10027 + struct usb_iso_packet_descriptor *frame_desc;
10028 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
10029 + hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
10030 + if (hcd->core_if->dma_enable) {
10031 + hc->xfer_buff = (uint8_t *)urb->transfer_dma;
10032 + } else {
10033 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
10034 + }
10035 + hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
10036 + hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
10037 +
10038 + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
10039 + if (hc->xfer_len <= 188) {
10040 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
10041 + }
10042 + else {
10043 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
10044 + }
10045 + }
10046 + }
10047 + break;
10048 + }
10049 +
10050 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
10051 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
10052 + /*
10053 + * This value may be modified when the transfer is started to
10054 + * reflect the actual transfer length.
10055 + */
10056 + hc->multi_count = dwc_hb_mult(qh->maxp);
10057 + }
10058 +
10059 + dwc_otg_hc_init(hcd->core_if, hc);
10060 + hc->qh = qh;
10061 +}
10062 +
10063 +/**
10064 + * This function selects transactions from the HCD transfer schedule and
10065 + * assigns them to available host channels. It is called from HCD interrupt
10066 + * handler functions.
10067 + *
10068 + * @param hcd The HCD state structure.
10069 + *
10070 + * @return The types of new transactions that were assigned to host channels.
10071 + */
10072 +dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
10073 +{
10074 + struct list_head *qh_ptr;
10075 + dwc_otg_qh_t *qh;
10076 + int num_channels;
10077 + dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
10078 +
10079 +#ifdef DEBUG_SOF
10080 + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
10081 +#endif
10082 +
10083 + /* Process entries in the periodic ready list. */
10084 + qh_ptr = hcd->periodic_sched_ready.next;
10085 + while (qh_ptr != &hcd->periodic_sched_ready &&
10086 + !list_empty(&hcd->free_hc_list)) {
10087 +
10088 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10089 + assign_and_init_hc(hcd, qh);
10090 +
10091 + /*
10092 + * Move the QH from the periodic ready schedule to the
10093 + * periodic assigned schedule.
10094 + */
10095 + qh_ptr = qh_ptr->next;
10096 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
10097 +
10098 + ret_val = DWC_OTG_TRANSACTION_PERIODIC;
10099 + }
10100 +
10101 + /*
10102 + * Process entries in the inactive portion of the non-periodic
10103 + * schedule. Some free host channels may not be used if they are
10104 + * reserved for periodic transfers.
10105 + */
10106 + qh_ptr = hcd->non_periodic_sched_inactive.next;
10107 + num_channels = hcd->core_if->core_params->host_channels;
10108 + while (qh_ptr != &hcd->non_periodic_sched_inactive &&
10109 + (hcd->non_periodic_channels <
10110 + num_channels - hcd->periodic_channels) &&
10111 + !list_empty(&hcd->free_hc_list)) {
10112 +
10113 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10114 + assign_and_init_hc(hcd, qh);
10115 +
10116 + /*
10117 + * Move the QH from the non-periodic inactive schedule to the
10118 + * non-periodic active schedule.
10119 + */
10120 + qh_ptr = qh_ptr->next;
10121 + list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
10122 +
10123 + if (ret_val == DWC_OTG_TRANSACTION_NONE) {
10124 + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
10125 + } else {
10126 + ret_val = DWC_OTG_TRANSACTION_ALL;
10127 + }
10128 +
10129 + hcd->non_periodic_channels++;
10130 + }
10131 +
10132 + return ret_val;
10133 +}
10134 +
10135 +/**
10136 + * Attempts to queue a single transaction request for a host channel
10137 + * associated with either a periodic or non-periodic transfer. This function
10138 + * assumes that there is space available in the appropriate request queue. For
10139 + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
10140 + * is available in the appropriate Tx FIFO.
10141 + *
10142 + * @param hcd The HCD state structure.
10143 + * @param hc Host channel descriptor associated with either a periodic or
10144 + * non-periodic transfer.
10145 + * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
10146 + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
10147 + * transfers.
10148 + *
10149 + * @return 1 if a request is queued and more requests may be needed to
10150 + * complete the transfer, 0 if no more requests are required for this
10151 + * transfer, -1 if there is insufficient space in the Tx FIFO.
10152 + */
10153 +static int queue_transaction(dwc_otg_hcd_t *hcd,
10154 + dwc_hc_t *hc,
10155 + uint16_t fifo_dwords_avail)
10156 +{
10157 + int retval;
10158 +
10159 + if (hcd->core_if->dma_enable) {
10160 + if (!hc->xfer_started) {
10161 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10162 + hc->qh->ping_state = 0;
10163 + }
10164 + retval = 0;
10165 + } else if (hc->halt_pending) {
10166 + /* Don't queue a request if the channel has been halted. */
10167 + retval = 0;
10168 + } else if (hc->halt_on_queue) {
10169 + dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
10170 + retval = 0;
10171 + } else if (hc->do_ping) {
10172 + if (!hc->xfer_started) {
10173 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10174 + }
10175 + retval = 0;
10176 + } else if (!hc->ep_is_in ||
10177 + hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
10178 + if ((fifo_dwords_avail * 4) >= hc->max_packet) {
10179 + if (!hc->xfer_started) {
10180 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10181 + retval = 1;
10182 + } else {
10183 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
10184 + }
10185 + } else {
10186 + retval = -1;
10187 + }
10188 + } else {
10189 + if (!hc->xfer_started) {
10190 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10191 + retval = 1;
10192 + } else {
10193 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
10194 + }
10195 + }
10196 +
10197 + return retval;
10198 +}
10199 +
10200 +/**
10201 + * Processes active non-periodic channels and queues transactions for these
10202 + * channels to the DWC_otg controller. After queueing transactions, the NP Tx
10203 + * FIFO Empty interrupt is enabled if there are more transactions to queue as
10204 + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
10205 + * FIFO Empty interrupt is disabled.
10206 + */
10207 +static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
10208 +{
10209 + gnptxsts_data_t tx_status;
10210 + struct list_head *orig_qh_ptr;
10211 + dwc_otg_qh_t *qh;
10212 + int status;
10213 + int no_queue_space = 0;
10214 + int no_fifo_space = 0;
10215 + int more_to_do = 0;
10216 +
10217 + dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
10218 +
10219 + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
10220 +#ifdef DEBUG
10221 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10222 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
10223 + tx_status.b.nptxqspcavail);
10224 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
10225 + tx_status.b.nptxfspcavail);
10226 +#endif
10227 + /*
10228 + * Keep track of the starting point. Skip over the start-of-list
10229 + * entry.
10230 + */
10231 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
10232 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10233 + }
10234 + orig_qh_ptr = hcd->non_periodic_qh_ptr;
10235 +
10236 + /*
10237 + * Process once through the active list or until no more space is
10238 + * available in the request queue or the Tx FIFO.
10239 + */
10240 + do {
10241 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10242 + if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
10243 + no_queue_space = 1;
10244 + break;
10245 + }
10246 +
10247 + qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
10248 + status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
10249 +
10250 + if (status > 0) {
10251 + more_to_do = 1;
10252 + } else if (status < 0) {
10253 + no_fifo_space = 1;
10254 + break;
10255 + }
10256 +
10257 + /* Advance to next QH, skipping start-of-list entry. */
10258 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10259 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
10260 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10261 + }
10262 +
10263 + } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
10264 +
10265 + if (!hcd->core_if->dma_enable) {
10266 + gintmsk_data_t intr_mask = {.d32 = 0};
10267 + intr_mask.b.nptxfempty = 1;
10268 +
10269 +#ifdef DEBUG
10270 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10271 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
10272 + tx_status.b.nptxqspcavail);
10273 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
10274 + tx_status.b.nptxfspcavail);
10275 +#endif
10276 + if (more_to_do || no_queue_space || no_fifo_space) {
10277 + /*
10278 + * May need to queue more transactions as the request
10279 + * queue or Tx FIFO empties. Enable the non-periodic
10280 + * Tx FIFO empty interrupt. (Always use the half-empty
10281 + * level to ensure that new requests are loaded as
10282 + * soon as possible.)
10283 + */
10284 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
10285 + } else {
10286 + /*
10287 + * Disable the Tx FIFO empty interrupt since there are
10288 + * no more transactions that need to be queued right
10289 + * now. This function is called from interrupt
10290 + * handlers to queue more transactions as transfer
10291 + * states change.
10292 + */
10293 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
10294 + }
10295 + }
10296 +}
10297 +
10298 +/**
10299 + * Processes periodic channels for the next frame and queues transactions for
10300 + * these channels to the DWC_otg controller. After queueing transactions, the
10301 + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
10302 + * to queue as Periodic Tx FIFO or request queue space becomes available.
10303 + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
10304 + */
10305 +static void process_periodic_channels(dwc_otg_hcd_t *hcd)
10306 +{
10307 + hptxsts_data_t tx_status;
10308 + struct list_head *qh_ptr;
10309 + dwc_otg_qh_t *qh;
10310 + int status;
10311 + int no_queue_space = 0;
10312 + int no_fifo_space = 0;
10313 +
10314 + dwc_otg_host_global_regs_t *host_regs;
10315 + host_regs = hcd->core_if->host_if->host_global_regs;
10316 +
10317 + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
10318 +#ifdef DEBUG
10319 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10320 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
10321 + tx_status.b.ptxqspcavail);
10322 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
10323 + tx_status.b.ptxfspcavail);
10324 +#endif
10325 +
10326 + qh_ptr = hcd->periodic_sched_assigned.next;
10327 + while (qh_ptr != &hcd->periodic_sched_assigned) {
10328 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10329 + if (tx_status.b.ptxqspcavail == 0) {
10330 + no_queue_space = 1;
10331 + break;
10332 + }
10333 +
10334 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10335 +
10336 + /*
10337 + * Set a flag if we're queuing high-bandwidth in slave mode.
10338 + * The flag prevents any halts to get into the request queue in
10339 + * the middle of multiple high-bandwidth packets getting queued.
10340 + */
10341 + if (!hcd->core_if->dma_enable &&
10342 + qh->channel->multi_count > 1)
10343 + {
10344 + hcd->core_if->queuing_high_bandwidth = 1;
10345 + }
10346 +
10347 + status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
10348 + if (status < 0) {
10349 + no_fifo_space = 1;
10350 + break;
10351 + }
10352 +
10353 + /*
10354 + * In Slave mode, stay on the current transfer until there is
10355 + * nothing more to do or the high-bandwidth request count is
10356 + * reached. In DMA mode, only need to queue one request. The
10357 + * controller automatically handles multiple packets for
10358 + * high-bandwidth transfers.
10359 + */
10360 + if (hcd->core_if->dma_enable || status == 0 ||
10361 + qh->channel->requests == qh->channel->multi_count) {
10362 + qh_ptr = qh_ptr->next;
10363 + /*
10364 + * Move the QH from the periodic assigned schedule to
10365 + * the periodic queued schedule.
10366 + */
10367 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
10368 +
10369 + /* done queuing high bandwidth */
10370 + hcd->core_if->queuing_high_bandwidth = 0;
10371 + }
10372 + }
10373 +
10374 + if (!hcd->core_if->dma_enable) {
10375 + dwc_otg_core_global_regs_t *global_regs;
10376 + gintmsk_data_t intr_mask = {.d32 = 0};
10377 +
10378 + global_regs = hcd->core_if->core_global_regs;
10379 + intr_mask.b.ptxfempty = 1;
10380 +#ifdef DEBUG
10381 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10382 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
10383 + tx_status.b.ptxqspcavail);
10384 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
10385 + tx_status.b.ptxfspcavail);
10386 +#endif
10387 + if (!list_empty(&hcd->periodic_sched_assigned) ||
10388 + no_queue_space || no_fifo_space) {
10389 + /*
10390 + * May need to queue more transactions as the request
10391 + * queue or Tx FIFO empties. Enable the periodic Tx
10392 + * FIFO empty interrupt. (Always use the half-empty
10393 + * level to ensure that new requests are loaded as
10394 + * soon as possible.)
10395 + */
10396 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
10397 + } else {
10398 + /*
10399 + * Disable the Tx FIFO empty interrupt since there are
10400 + * no more transactions that need to be queued right
10401 + * now. This function is called from interrupt
10402 + * handlers to queue more transactions as transfer
10403 + * states change.
10404 + */
10405 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
10406 + }
10407 + }
10408 +}
10409 +
10410 +/**
10411 + * This function processes the currently active host channels and queues
10412 + * transactions for these channels to the DWC_otg controller. It is called
10413 + * from HCD interrupt handler functions.
10414 + *
10415 + * @param hcd The HCD state structure.
10416 + * @param tr_type The type(s) of transactions to queue (non-periodic,
10417 + * periodic, or both).
10418 + */
10419 +void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
10420 + dwc_otg_transaction_type_e tr_type)
10421 +{
10422 +#ifdef DEBUG_SOF
10423 + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
10424 +#endif
10425 + /* Process host channels associated with periodic transfers. */
10426 + if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
10427 + tr_type == DWC_OTG_TRANSACTION_ALL) &&
10428 + !list_empty(&hcd->periodic_sched_assigned)) {
10429 +
10430 + process_periodic_channels(hcd);
10431 + }
10432 +
10433 + /* Process host channels associated with non-periodic transfers. */
10434 + if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
10435 + tr_type == DWC_OTG_TRANSACTION_ALL) {
10436 + if (!list_empty(&hcd->non_periodic_sched_active)) {
10437 + process_non_periodic_channels(hcd);
10438 + } else {
10439 + /*
10440 + * Ensure NP Tx FIFO empty interrupt is disabled when
10441 + * there are no non-periodic transfers to process.
10442 + */
10443 + gintmsk_data_t gintmsk = {.d32 = 0};
10444 + gintmsk.b.nptxfempty = 1;
10445 + dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
10446 + gintmsk.d32, 0);
10447 + }
10448 + }
10449 +}
10450 +
10451 +/**
10452 + * Sets the final status of an URB and returns it to the device driver. Any
10453 + * required cleanup of the URB is performed.
10454 + */
10455 +void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
10456 +{
10457 +#ifdef DEBUG
10458 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10459 + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
10460 + __func__, urb, usb_pipedevice(urb->pipe),
10461 + usb_pipeendpoint(urb->pipe),
10462 + usb_pipein(urb->pipe) ? "IN" : "OUT", status);
10463 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
10464 + int i;
10465 + for (i = 0; i < urb->number_of_packets; i++) {
10466 + DWC_PRINT(" ISO Desc %d status: %d\n",
10467 + i, urb->iso_frame_desc[i].status);
10468 + }
10469 + }
10470 + }
10471 +#endif
10472 +
10473 + //if we use the aligned buffer instead of the original unaligned buffer,
10474 + //for IN data, we have to move the data to the original buffer
10475 + if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
10476 + dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
10477 + memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
10478 + }
10479 +
10480 +
10481 + urb->status = status;
10482 + urb->hcpriv = NULL;
10483 + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
10484 +}
10485 +
10486 +/*
10487 + * Returns the Queue Head for an URB.
10488 + */
10489 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
10490 +{
10491 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
10492 + return (dwc_otg_qh_t *)ep->hcpriv;
10493 +}
10494 +
10495 +#ifdef DEBUG
10496 +void dwc_print_setup_data(uint8_t *setup)
10497 +{
10498 + int i;
10499 + if (CHK_DEBUG_LEVEL(DBG_HCD)){
10500 + DWC_PRINT("Setup Data = MSB ");
10501 + for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
10502 + DWC_PRINT("\n");
10503 + DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
10504 + DWC_PRINT(" bmRequestType Type = ");
10505 + switch ((setup[0] & 0x60) >> 5) {
10506 + case 0: DWC_PRINT("Standard\n"); break;
10507 + case 1: DWC_PRINT("Class\n"); break;
10508 + case 2: DWC_PRINT("Vendor\n"); break;
10509 + case 3: DWC_PRINT("Reserved\n"); break;
10510 + }
10511 + DWC_PRINT(" bmRequestType Recipient = ");
10512 + switch (setup[0] & 0x1f) {
10513 + case 0: DWC_PRINT("Device\n"); break;
10514 + case 1: DWC_PRINT("Interface\n"); break;
10515 + case 2: DWC_PRINT("Endpoint\n"); break;
10516 + case 3: DWC_PRINT("Other\n"); break;
10517 + default: DWC_PRINT("Reserved\n"); break;
10518 + }
10519 + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
10520 + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
10521 + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
10522 + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
10523 + }
10524 +}
10525 +#endif
10526 +
10527 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
10528 +}
10529 +
10530 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
10531 +{
10532 +#ifdef DEBUG
10533 + int num_channels;
10534 + int i;
10535 + gnptxsts_data_t np_tx_status;
10536 + hptxsts_data_t p_tx_status;
10537 +
10538 + num_channels = hcd->core_if->core_params->host_channels;
10539 + DWC_PRINT("\n");
10540 + DWC_PRINT("************************************************************\n");
10541 + DWC_PRINT("HCD State:\n");
10542 + DWC_PRINT(" Num channels: %d\n", num_channels);
10543 + for (i = 0; i < num_channels; i++) {
10544 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
10545 + DWC_PRINT(" Channel %d:\n", i);
10546 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
10547 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
10548 + DWC_PRINT(" speed: %d\n", hc->speed);
10549 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
10550 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
10551 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
10552 + DWC_PRINT(" multi_count: %d\n", hc->multi_count);
10553 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
10554 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
10555 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
10556 + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
10557 + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
10558 + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
10559 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
10560 + DWC_PRINT(" do_split: %d\n", hc->do_split);
10561 + DWC_PRINT(" complete_split: %d\n", hc->complete_split);
10562 + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
10563 + DWC_PRINT(" port_addr: %d\n", hc->port_addr);
10564 + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
10565 + DWC_PRINT(" requests: %d\n", hc->requests);
10566 + DWC_PRINT(" qh: %p\n", hc->qh);
10567 + if (hc->xfer_started) {
10568 + hfnum_data_t hfnum;
10569 + hcchar_data_t hcchar;
10570 + hctsiz_data_t hctsiz;
10571 + hcint_data_t hcint;
10572 + hcintmsk_data_t hcintmsk;
10573 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
10574 + hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
10575 + hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
10576 + hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
10577 + hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
10578 + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
10579 + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
10580 + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
10581 + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
10582 + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
10583 + }
10584 + if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
10585 + dwc_otg_qtd_t *qtd;
10586 + struct urb *urb;
10587 + qtd = hc->qh->qtd_in_process;
10588 + urb = qtd->urb;
10589 + DWC_PRINT(" URB Info:\n");
10590 + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
10591 + if (urb) {
10592 + DWC_PRINT(" Dev: %d, EP: %d %s\n",
10593 + usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
10594 + usb_pipein(urb->pipe) ? "IN" : "OUT");
10595 + DWC_PRINT(" Max packet size: %d\n",
10596 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
10597 + DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
10598 + DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
10599 + DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
10600 + DWC_PRINT(" actual_length: %d\n", urb->actual_length);
10601 + }
10602 + }
10603 + }
10604 + DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
10605 + DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
10606 + DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
10607 + np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
10608 + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
10609 + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
10610 + p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
10611 + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
10612 + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
10613 + dwc_otg_hcd_dump_frrem(hcd);
10614 + dwc_otg_dump_global_registers(hcd->core_if);
10615 + dwc_otg_dump_host_registers(hcd->core_if);
10616 + DWC_PRINT("************************************************************\n");
10617 + DWC_PRINT("\n");
10618 +#endif
10619 +}
10620 +#endif /* DWC_DEVICE_ONLY */
10621 --- /dev/null
10622 +++ b/drivers/usb/dwc/otg_hcd.h
10623 @@ -0,0 +1,647 @@
10624 +/* ==========================================================================
10625 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
10626 + * $Revision: #45 $
10627 + * $Date: 2008/07/15 $
10628 + * $Change: 1064918 $
10629 + *
10630 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10631 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10632 + * otherwise expressly agreed to in writing between Synopsys and you.
10633 + *
10634 + * The Software IS NOT an item of Licensed Software or Licensed Product under
10635 + * any End User Software License Agreement or Agreement for Licensed Product
10636 + * with Synopsys or any supplement thereto. You are permitted to use and
10637 + * redistribute this Software in source and binary forms, with or without
10638 + * modification, provided that redistributions of source code must retain this
10639 + * notice. You may not view, use, disclose, copy or distribute this file or
10640 + * any information contained herein except pursuant to this license grant from
10641 + * Synopsys. If you do not agree with this notice, including the disclaimer
10642 + * below, then you are not authorized to use the Software.
10643 + *
10644 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10645 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10646 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10647 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10648 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10649 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10650 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10651 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10652 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10653 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10654 + * DAMAGE.
10655 + * ========================================================================== */
10656 +#ifndef DWC_DEVICE_ONLY
10657 +#ifndef __DWC_HCD_H__
10658 +#define __DWC_HCD_H__
10659 +
10660 +#include <linux/list.h>
10661 +#include <linux/usb.h>
10662 +#include <linux/usb/hcd.h>
10663 +
10664 +struct dwc_otg_device;
10665 +
10666 +#include "otg_cil.h"
10667 +
10668 +/**
10669 + * @file
10670 + *
10671 + * This file contains the structures, constants, and interfaces for
10672 + * the Host Contoller Driver (HCD).
10673 + *
10674 + * The Host Controller Driver (HCD) is responsible for translating requests
10675 + * from the USB Driver into the appropriate actions on the DWC_otg controller.
10676 + * It isolates the USBD from the specifics of the controller by providing an
10677 + * API to the USBD.
10678 + */
10679 +
10680 +/**
10681 + * Phases for control transfers.
10682 + */
10683 +typedef enum dwc_otg_control_phase {
10684 + DWC_OTG_CONTROL_SETUP,
10685 + DWC_OTG_CONTROL_DATA,
10686 + DWC_OTG_CONTROL_STATUS
10687 +} dwc_otg_control_phase_e;
10688 +
10689 +/** Transaction types. */
10690 +typedef enum dwc_otg_transaction_type {
10691 + DWC_OTG_TRANSACTION_NONE,
10692 + DWC_OTG_TRANSACTION_PERIODIC,
10693 + DWC_OTG_TRANSACTION_NON_PERIODIC,
10694 + DWC_OTG_TRANSACTION_ALL
10695 +} dwc_otg_transaction_type_e;
10696 +
10697 +/**
10698 + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
10699 + * interrupt, or isochronous transfer. A single QTD is created for each URB
10700 + * (of one of these types) submitted to the HCD. The transfer associated with
10701 + * a QTD may require one or multiple transactions.
10702 + *
10703 + * A QTD is linked to a Queue Head, which is entered in either the
10704 + * non-periodic or periodic schedule for execution. When a QTD is chosen for
10705 + * execution, some or all of its transactions may be executed. After
10706 + * execution, the state of the QTD is updated. The QTD may be retired if all
10707 + * its transactions are complete or if an error occurred. Otherwise, it
10708 + * remains in the schedule so more transactions can be executed later.
10709 + */
10710 +typedef struct dwc_otg_qtd {
10711 + /**
10712 + * Determines the PID of the next data packet for the data phase of
10713 + * control transfers. Ignored for other transfer types.<br>
10714 + * One of the following values:
10715 + * - DWC_OTG_HC_PID_DATA0
10716 + * - DWC_OTG_HC_PID_DATA1
10717 + */
10718 + uint8_t data_toggle;
10719 +
10720 + /** Current phase for control transfers (Setup, Data, or Status). */
10721 + dwc_otg_control_phase_e control_phase;
10722 +
10723 + /** Keep track of the current split type
10724 + * for FS/LS endpoints on a HS Hub */
10725 + uint8_t complete_split;
10726 +
10727 + /** How many bytes transferred during SSPLIT OUT */
10728 + uint32_t ssplit_out_xfer_count;
10729 +
10730 + /**
10731 + * Holds the number of bus errors that have occurred for a transaction
10732 + * within this transfer.
10733 + */
10734 + uint8_t error_count;
10735 +
10736 + /**
10737 + * Index of the next frame descriptor for an isochronous transfer. A
10738 + * frame descriptor describes the buffer position and length of the
10739 + * data to be transferred in the next scheduled (micro)frame of an
10740 + * isochronous transfer. It also holds status for that transaction.
10741 + * The frame index starts at 0.
10742 + */
10743 + int isoc_frame_index;
10744 +
10745 + /** Position of the ISOC split on full/low speed */
10746 + uint8_t isoc_split_pos;
10747 +
10748 + /** Position of the ISOC split in the buffer for the current frame */
10749 + uint16_t isoc_split_offset;
10750 +
10751 + /** URB for this transfer */
10752 + struct urb *urb;
10753 +
10754 + /** This list of QTDs */
10755 + struct list_head qtd_list_entry;
10756 +
10757 +} dwc_otg_qtd_t;
10758 +
10759 +/**
10760 + * A Queue Head (QH) holds the static characteristics of an endpoint and
10761 + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
10762 + * be entered in either the non-periodic or periodic schedule.
10763 + */
10764 +typedef struct dwc_otg_qh {
10765 + /**
10766 + * Endpoint type.
10767 + * One of the following values:
10768 + * - USB_ENDPOINT_XFER_CONTROL
10769 + * - USB_ENDPOINT_XFER_ISOC
10770 + * - USB_ENDPOINT_XFER_BULK
10771 + * - USB_ENDPOINT_XFER_INT
10772 + */
10773 + uint8_t ep_type;
10774 + uint8_t ep_is_in;
10775 +
10776 + /** wMaxPacketSize Field of Endpoint Descriptor. */
10777 + uint16_t maxp;
10778 +
10779 + /**
10780 + * Determines the PID of the next data packet for non-control
10781 + * transfers. Ignored for control transfers.<br>
10782 + * One of the following values:
10783 + * - DWC_OTG_HC_PID_DATA0
10784 + * - DWC_OTG_HC_PID_DATA1
10785 + */
10786 + uint8_t data_toggle;
10787 +
10788 + /** Ping state if 1. */
10789 + uint8_t ping_state;
10790 +
10791 + /**
10792 + * List of QTDs for this QH.
10793 + */
10794 + struct list_head qtd_list;
10795 +
10796 + /** Host channel currently processing transfers for this QH. */
10797 + dwc_hc_t *channel;
10798 +
10799 + /** QTD currently assigned to a host channel for this QH. */
10800 + dwc_otg_qtd_t *qtd_in_process;
10801 +
10802 + /** Full/low speed endpoint on high-speed hub requires split. */
10803 + uint8_t do_split;
10804 +
10805 + /** @name Periodic schedule information */
10806 + /** @{ */
10807 +
10808 + /** Bandwidth in microseconds per (micro)frame. */
10809 + uint8_t usecs;
10810 +
10811 + /** Interval between transfers in (micro)frames. */
10812 + uint16_t interval;
10813 +
10814 + /**
10815 + * (micro)frame to initialize a periodic transfer. The transfer
10816 + * executes in the following (micro)frame.
10817 + */
10818 + uint16_t sched_frame;
10819 +
10820 + /** (micro)frame at which last start split was initialized. */
10821 + uint16_t start_split_frame;
10822 +
10823 + /** @} */
10824 +
10825 + /** Entry for QH in either the periodic or non-periodic schedule. */
10826 + struct list_head qh_list_entry;
10827 +} dwc_otg_qh_t;
10828 +
10829 +/**
10830 + * This structure holds the state of the HCD, including the non-periodic and
10831 + * periodic schedules.
10832 + */
10833 +typedef struct dwc_otg_hcd {
10834 + /** The DWC otg device pointer */
10835 + struct dwc_otg_device *otg_dev;
10836 +
10837 + /** DWC OTG Core Interface Layer */
10838 + dwc_otg_core_if_t *core_if;
10839 +
10840 + /** Internal DWC HCD Flags */
10841 + volatile union dwc_otg_hcd_internal_flags {
10842 + uint32_t d32;
10843 + struct {
10844 + unsigned port_connect_status_change : 1;
10845 + unsigned port_connect_status : 1;
10846 + unsigned port_reset_change : 1;
10847 + unsigned port_enable_change : 1;
10848 + unsigned port_suspend_change : 1;
10849 + unsigned port_over_current_change : 1;
10850 + unsigned reserved : 27;
10851 + } b;
10852 + } flags;
10853 +
10854 + /**
10855 + * Inactive items in the non-periodic schedule. This is a list of
10856 + * Queue Heads. Transfers associated with these Queue Heads are not
10857 + * currently assigned to a host channel.
10858 + */
10859 + struct list_head non_periodic_sched_inactive;
10860 +
10861 + /**
10862 + * Active items in the non-periodic schedule. This is a list of
10863 + * Queue Heads. Transfers associated with these Queue Heads are
10864 + * currently assigned to a host channel.
10865 + */
10866 + struct list_head non_periodic_sched_active;
10867 +
10868 + /**
10869 + * Pointer to the next Queue Head to process in the active
10870 + * non-periodic schedule.
10871 + */
10872 + struct list_head *non_periodic_qh_ptr;
10873 +
10874 + /**
10875 + * Inactive items in the periodic schedule. This is a list of QHs for
10876 + * periodic transfers that are _not_ scheduled for the next frame.
10877 + * Each QH in the list has an interval counter that determines when it
10878 + * needs to be scheduled for execution. This scheduling mechanism
10879 + * allows only a simple calculation for periodic bandwidth used (i.e.
10880 + * must assume that all periodic transfers may need to execute in the
10881 + * same frame). However, it greatly simplifies scheduling and should
10882 + * be sufficient for the vast majority of OTG hosts, which need to
10883 + * connect to a small number of peripherals at one time.
10884 + *
10885 + * Items move from this list to periodic_sched_ready when the QH
10886 + * interval counter is 0 at SOF.
10887 + */
10888 + struct list_head periodic_sched_inactive;
10889 +
10890 + /**
10891 + * List of periodic QHs that are ready for execution in the next
10892 + * frame, but have not yet been assigned to host channels.
10893 + *
10894 + * Items move from this list to periodic_sched_assigned as host
10895 + * channels become available during the current frame.
10896 + */
10897 + struct list_head periodic_sched_ready;
10898 +
10899 + /**
10900 + * List of periodic QHs to be executed in the next frame that are
10901 + * assigned to host channels.
10902 + *
10903 + * Items move from this list to periodic_sched_queued as the
10904 + * transactions for the QH are queued to the DWC_otg controller.
10905 + */
10906 + struct list_head periodic_sched_assigned;
10907 +
10908 + /**
10909 + * List of periodic QHs that have been queued for execution.
10910 + *
10911 + * Items move from this list to either periodic_sched_inactive or
10912 + * periodic_sched_ready when the channel associated with the transfer
10913 + * is released. If the interval for the QH is 1, the item moves to
10914 + * periodic_sched_ready because it must be rescheduled for the next
10915 + * frame. Otherwise, the item moves to periodic_sched_inactive.
10916 + */
10917 + struct list_head periodic_sched_queued;
10918 +
10919 + /**
10920 + * Total bandwidth claimed so far for periodic transfers. This value
10921 + * is in microseconds per (micro)frame. The assumption is that all
10922 + * periodic transfers may occur in the same (micro)frame.
10923 + */
10924 + uint16_t periodic_usecs;
10925 +
10926 + /**
10927 + * Frame number read from the core at SOF. The value ranges from 0 to
10928 + * DWC_HFNUM_MAX_FRNUM.
10929 + */
10930 + uint16_t frame_number;
10931 +
10932 + /**
10933 + * Free host channels in the controller. This is a list of
10934 + * dwc_hc_t items.
10935 + */
10936 + struct list_head free_hc_list;
10937 +
10938 + /**
10939 + * Number of host channels assigned to periodic transfers. Currently
10940 + * assuming that there is a dedicated host channel for each periodic
10941 + * transaction and at least one host channel available for
10942 + * non-periodic transactions.
10943 + */
10944 + int periodic_channels;
10945 +
10946 + /**
10947 + * Number of host channels assigned to non-periodic transfers.
10948 + */
10949 + int non_periodic_channels;
10950 +
10951 + /**
10952 + * Array of pointers to the host channel descriptors. Allows accessing
10953 + * a host channel descriptor given the host channel number. This is
10954 + * useful in interrupt handlers.
10955 + */
10956 + dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
10957 +
10958 + /**
10959 + * Buffer to use for any data received during the status phase of a
10960 + * control transfer. Normally no data is transferred during the status
10961 + * phase. This buffer is used as a bit bucket.
10962 + */
10963 + uint8_t *status_buf;
10964 +
10965 + /**
10966 + * DMA address for status_buf.
10967 + */
10968 + dma_addr_t status_buf_dma;
10969 +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
10970 +
10971 + /**
10972 + * Structure to allow starting the HCD in a non-interrupt context
10973 + * during an OTG role change.
10974 + */
10975 + struct delayed_work start_work;
10976 +
10977 + /**
10978 + * Connection timer. An OTG host must display a message if the device
10979 + * does not connect. Started when the VBus power is turned on via
10980 + * sysfs attribute "buspower".
10981 + */
10982 + struct timer_list conn_timer;
10983 +
10984 + /* Tasket to do a reset */
10985 + struct tasklet_struct *reset_tasklet;
10986 +
10987 + /* */
10988 + spinlock_t lock;
10989 +
10990 +#ifdef DEBUG
10991 + uint32_t frrem_samples;
10992 + uint64_t frrem_accum;
10993 +
10994 + uint32_t hfnum_7_samples_a;
10995 + uint64_t hfnum_7_frrem_accum_a;
10996 + uint32_t hfnum_0_samples_a;
10997 + uint64_t hfnum_0_frrem_accum_a;
10998 + uint32_t hfnum_other_samples_a;
10999 + uint64_t hfnum_other_frrem_accum_a;
11000 +
11001 + uint32_t hfnum_7_samples_b;
11002 + uint64_t hfnum_7_frrem_accum_b;
11003 + uint32_t hfnum_0_samples_b;
11004 + uint64_t hfnum_0_frrem_accum_b;
11005 + uint32_t hfnum_other_samples_b;
11006 + uint64_t hfnum_other_frrem_accum_b;
11007 +#endif
11008 +} dwc_otg_hcd_t;
11009 +
11010 +/** Gets the dwc_otg_hcd from a struct usb_hcd */
11011 +static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
11012 +{
11013 + return (dwc_otg_hcd_t *)(hcd->hcd_priv);
11014 +}
11015 +
11016 +/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
11017 +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
11018 +{
11019 + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
11020 +}
11021 +
11022 +/** @name HCD Create/Destroy Functions */
11023 +/** @{ */
11024 +extern int dwc_otg_hcd_init(struct platform_device *pdev);
11025 +extern void dwc_otg_hcd_remove(struct platform_device *pdev);
11026 +/** @} */
11027 +
11028 +/** @name Linux HC Driver API Functions */
11029 +/** @{ */
11030 +
11031 +extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
11032 +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
11033 +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
11034 +extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
11035 +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
11036 + // struct usb_host_endpoint *ep,
11037 + struct urb *urb,
11038 + gfp_t mem_flags
11039 + );
11040 +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
11041 + struct urb *urb, int status);
11042 +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
11043 + struct usb_host_endpoint *ep);
11044 +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
11045 +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
11046 + char *buf);
11047 +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
11048 + u16 typeReq,
11049 + u16 wValue,
11050 + u16 wIndex,
11051 + char *buf,
11052 + u16 wLength);
11053 +
11054 +/** @} */
11055 +
11056 +/** @name Transaction Execution Functions */
11057 +/** @{ */
11058 +extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
11059 +extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
11060 + dwc_otg_transaction_type_e tr_type);
11061 +extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
11062 + int status);
11063 +/** @} */
11064 +
11065 +/** @name Interrupt Handler Functions */
11066 +/** @{ */
11067 +extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11068 +extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11069 +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11070 +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11071 +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11072 +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11073 +extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11074 +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11075 +extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11076 +extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11077 +extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
11078 +extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11079 +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11080 +/** @} */
11081 +
11082 +
11083 +/** @name Schedule Queue Functions */
11084 +/** @{ */
11085 +
11086 +/* Implemented in dwc_otg_hcd_queue.c */
11087 +extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
11088 +extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
11089 +extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11090 +extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11091 +extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11092 +extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
11093 +
11094 +/** Remove and free a QH */
11095 +static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
11096 + dwc_otg_qh_t *qh)
11097 +{
11098 + dwc_otg_hcd_qh_remove(hcd, qh);
11099 + dwc_otg_hcd_qh_free(hcd, qh);
11100 +}
11101 +
11102 +/** Allocates memory for a QH structure.
11103 + * @return Returns the memory allocate or NULL on error. */
11104 +static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
11105 +{
11106 + return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
11107 +}
11108 +
11109 +extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
11110 +extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
11111 +extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
11112 +
11113 +/** Allocates memory for a QTD structure.
11114 + * @return Returns the memory allocate or NULL on error. */
11115 +static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
11116 +{
11117 + return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
11118 +}
11119 +
11120 +/** Frees the memory for a QTD structure. QTD should already be removed from
11121 + * list.
11122 + * @param[in] qtd QTD to free.*/
11123 +static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
11124 +{
11125 + kfree(qtd);
11126 +}
11127 +
11128 +/** Removes a QTD from list.
11129 + * @param[in] hcd HCD instance.
11130 + * @param[in] qtd QTD to remove from list. */
11131 +static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
11132 +{
11133 + unsigned long flags;
11134 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
11135 + list_del(&qtd->qtd_list_entry);
11136 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
11137 +}
11138 +
11139 +/** Remove and free a QTD */
11140 +static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
11141 +{
11142 + dwc_otg_hcd_qtd_remove(hcd, qtd);
11143 + dwc_otg_hcd_qtd_free(qtd);
11144 +}
11145 +
11146 +/** @} */
11147 +
11148 +
11149 +/** @name Internal Functions */
11150 +/** @{ */
11151 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
11152 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
11153 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
11154 +/** @} */
11155 +
11156 +/** Gets the usb_host_endpoint associated with an URB. */
11157 +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
11158 +{
11159 + struct usb_device *dev = urb->dev;
11160 + int ep_num = usb_pipeendpoint(urb->pipe);
11161 +
11162 + if (usb_pipein(urb->pipe))
11163 + return dev->ep_in[ep_num];
11164 + else
11165 + return dev->ep_out[ep_num];
11166 +}
11167 +
11168 +/**
11169 + * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
11170 + * qualified with its direction (possible 32 endpoints per device).
11171 + */
11172 +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
11173 + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
11174 +
11175 +/** Gets the QH that contains the list_head */
11176 +#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
11177 +
11178 +/** Gets the QTD that contains the list_head */
11179 +#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
11180 +
11181 +/** Check if QH is non-periodic */
11182 +#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
11183 + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
11184 +
11185 +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
11186 +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
11187 +
11188 +/** Packet size for any kind of endpoint descriptor */
11189 +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
11190 +
11191 +/**
11192 + * Returns true if _frame1 is less than or equal to _frame2. The comparison is
11193 + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
11194 + * frame number when the max frame number is reached.
11195 + */
11196 +static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
11197 +{
11198 + return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
11199 + (DWC_HFNUM_MAX_FRNUM >> 1);
11200 +}
11201 +
11202 +/**
11203 + * Returns true if _frame1 is greater than _frame2. The comparison is done
11204 + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
11205 + * number when the max frame number is reached.
11206 + */
11207 +static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
11208 +{
11209 + return (frame1 != frame2) &&
11210 + (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
11211 + (DWC_HFNUM_MAX_FRNUM >> 1));
11212 +}
11213 +
11214 +/**
11215 + * Increments _frame by the amount specified by _inc. The addition is done
11216 + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
11217 + */
11218 +static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
11219 +{
11220 + return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
11221 +}
11222 +
11223 +static inline uint16_t dwc_full_frame_num(uint16_t frame)
11224 +{
11225 + return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
11226 +}
11227 +
11228 +static inline uint16_t dwc_micro_frame_num(uint16_t frame)
11229 +{
11230 + return frame & 0x7;
11231 +}
11232 +
11233 +#ifdef DEBUG
11234 +/**
11235 + * Macro to sample the remaining PHY clocks left in the current frame. This
11236 + * may be used during debugging to determine the average time it takes to
11237 + * execute sections of code. There are two possible sample points, "a" and
11238 + * "b", so the _letter argument must be one of these values.
11239 + *
11240 + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
11241 + * example, "cat /sys/devices/lm0/hcd_frrem".
11242 + */
11243 +#define dwc_sample_frrem(_hcd, _qh, _letter) \
11244 +{ \
11245 + hfnum_data_t hfnum; \
11246 + dwc_otg_qtd_t *qtd; \
11247 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
11248 + if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
11249 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
11250 + switch (hfnum.b.frnum & 0x7) { \
11251 + case 7: \
11252 + _hcd->hfnum_7_samples_##_letter++; \
11253 + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
11254 + break; \
11255 + case 0: \
11256 + _hcd->hfnum_0_samples_##_letter++; \
11257 + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
11258 + break; \
11259 + default: \
11260 + _hcd->hfnum_other_samples_##_letter++; \
11261 + _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
11262 + break; \
11263 + } \
11264 + } \
11265 +}
11266 +#else
11267 +#define dwc_sample_frrem(_hcd, _qh, _letter)
11268 +#endif
11269 +#endif
11270 +#endif /* DWC_DEVICE_ONLY */
11271 --- /dev/null
11272 +++ b/drivers/usb/dwc/otg_hcd_intr.c
11273 @@ -0,0 +1,1826 @@
11274 +/* ==========================================================================
11275 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
11276 + * $Revision: #70 $
11277 + * $Date: 2008/10/16 $
11278 + * $Change: 1117667 $
11279 + *
11280 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
11281 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
11282 + * otherwise expressly agreed to in writing between Synopsys and you.
11283 + *
11284 + * The Software IS NOT an item of Licensed Software or Licensed Product under
11285 + * any End User Software License Agreement or Agreement for Licensed Product
11286 + * with Synopsys or any supplement thereto. You are permitted to use and
11287 + * redistribute this Software in source and binary forms, with or without
11288 + * modification, provided that redistributions of source code must retain this
11289 + * notice. You may not view, use, disclose, copy or distribute this file or
11290 + * any information contained herein except pursuant to this license grant from
11291 + * Synopsys. If you do not agree with this notice, including the disclaimer
11292 + * below, then you are not authorized to use the Software.
11293 + *
11294 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
11295 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
11296 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
11297 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
11298 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
11299 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
11300 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
11301 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
11302 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
11303 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
11304 + * DAMAGE.
11305 + * ========================================================================== */
11306 +#ifndef DWC_DEVICE_ONLY
11307 +
11308 +#include <linux/version.h>
11309 +
11310 +#include "otg_driver.h"
11311 +#include "otg_hcd.h"
11312 +#include "otg_regs.h"
11313 +
11314 +/** @file
11315 + * This file contains the implementation of the HCD Interrupt handlers.
11316 + */
11317 +
11318 +/** This function handles interrupts for the HCD. */
11319 +int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11320 +{
11321 + int retval = 0;
11322 +
11323 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
11324 + gintsts_data_t gintsts;
11325 +#ifdef DEBUG
11326 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
11327 +#endif
11328 +
11329 + /* Check if HOST Mode */
11330 + if (dwc_otg_is_host_mode(core_if)) {
11331 + gintsts.d32 = dwc_otg_read_core_intr(core_if);
11332 + if (!gintsts.d32) {
11333 + return 0;
11334 + }
11335 +
11336 +#ifdef DEBUG
11337 + /* Don't print debug message in the interrupt handler on SOF */
11338 +# ifndef DEBUG_SOF
11339 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11340 +# endif
11341 + DWC_DEBUGPL(DBG_HCD, "\n");
11342 +#endif
11343 +
11344 +#ifdef DEBUG
11345 +# ifndef DEBUG_SOF
11346 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11347 +# endif
11348 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
11349 +#endif
11350 + if (gintsts.b.usbreset) {
11351 + DWC_PRINT("Usb Reset In Host Mode\n");
11352 + }
11353 + if (gintsts.b.sofintr) {
11354 + retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
11355 + }
11356 + if (gintsts.b.rxstsqlvl) {
11357 + retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
11358 + }
11359 + if (gintsts.b.nptxfempty) {
11360 + retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
11361 + }
11362 + if (gintsts.b.i2cintr) {
11363 + /** @todo Implement i2cintr handler. */
11364 + }
11365 + if (gintsts.b.portintr) {
11366 + retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
11367 + }
11368 + if (gintsts.b.hcintr) {
11369 + retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
11370 + }
11371 + if (gintsts.b.ptxfempty) {
11372 + retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
11373 + }
11374 +#ifdef DEBUG
11375 +# ifndef DEBUG_SOF
11376 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11377 +# endif
11378 + {
11379 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
11380 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
11381 + dwc_read_reg32(&global_regs->gintsts));
11382 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
11383 + dwc_read_reg32(&global_regs->gintmsk));
11384 + }
11385 +#endif
11386 +
11387 +#ifdef DEBUG
11388 +# ifndef DEBUG_SOF
11389 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11390 +# endif
11391 + DWC_DEBUGPL(DBG_HCD, "\n");
11392 +#endif
11393 +
11394 + }
11395 + S3C2410X_CLEAR_EINTPEND();
11396 +
11397 + return retval;
11398 +}
11399 +
11400 +#ifdef DWC_TRACK_MISSED_SOFS
11401 +#warning Compiling code to track missed SOFs
11402 +#define FRAME_NUM_ARRAY_SIZE 1000
11403 +/**
11404 + * This function is for debug only.
11405 + */
11406 +static inline void track_missed_sofs(uint16_t curr_frame_number)
11407 +{
11408 + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
11409 + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
11410 + static int frame_num_idx = 0;
11411 + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
11412 + static int dumped_frame_num_array = 0;
11413 +
11414 + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
11415 + if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
11416 + frame_num_array[frame_num_idx] = curr_frame_number;
11417 + last_frame_num_array[frame_num_idx++] = last_frame_num;
11418 + }
11419 + } else if (!dumped_frame_num_array) {
11420 + int i;
11421 + printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
11422 + printk(KERN_EMERG USB_DWC "----- ----------\n");
11423 + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
11424 + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
11425 + frame_num_array[i], last_frame_num_array[i]);
11426 + }
11427 + dumped_frame_num_array = 1;
11428 + }
11429 + last_frame_num = curr_frame_number;
11430 +}
11431 +#endif
11432 +
11433 +/**
11434 + * Handles the start-of-frame interrupt in host mode. Non-periodic
11435 + * transactions may be queued to the DWC_otg controller for the current
11436 + * (micro)frame. Periodic transactions may be queued to the controller for the
11437 + * next (micro)frame.
11438 + */
11439 +int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
11440 +{
11441 + hfnum_data_t hfnum;
11442 + struct list_head *qh_entry;
11443 + dwc_otg_qh_t *qh;
11444 + dwc_otg_transaction_type_e tr_type;
11445 + gintsts_data_t gintsts = {.d32 = 0};
11446 +
11447 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
11448 +
11449 +#ifdef DEBUG_SOF
11450 + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
11451 +#endif
11452 + hcd->frame_number = hfnum.b.frnum;
11453 +
11454 +#ifdef DEBUG
11455 + hcd->frrem_accum += hfnum.b.frrem;
11456 + hcd->frrem_samples++;
11457 +#endif
11458 +
11459 +#ifdef DWC_TRACK_MISSED_SOFS
11460 + track_missed_sofs(hcd->frame_number);
11461 +#endif
11462 +
11463 + /* Determine whether any periodic QHs should be executed. */
11464 + qh_entry = hcd->periodic_sched_inactive.next;
11465 + while (qh_entry != &hcd->periodic_sched_inactive) {
11466 + qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
11467 + qh_entry = qh_entry->next;
11468 + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
11469 + /*
11470 + * Move QH to the ready list to be executed next
11471 + * (micro)frame.
11472 + */
11473 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
11474 + }
11475 + }
11476 +
11477 + tr_type = dwc_otg_hcd_select_transactions(hcd);
11478 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
11479 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
11480 + }
11481 +
11482 + /* Clear interrupt */
11483 + gintsts.b.sofintr = 1;
11484 + dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
11485 +
11486 + return 1;
11487 +}
11488 +
11489 +/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
11490 + * least one packet in the Rx FIFO. The packets are moved from the FIFO to
11491 + * memory if the DWC_otg controller is operating in Slave mode. */
11492 +int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11493 +{
11494 + host_grxsts_data_t grxsts;
11495 + dwc_hc_t *hc = NULL;
11496 +
11497 + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
11498 +
11499 + grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
11500 +
11501 + hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
11502 +
11503 + /* Packet Status */
11504 + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
11505 + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
11506 + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
11507 + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
11508 +
11509 + switch (grxsts.b.pktsts) {
11510 + case DWC_GRXSTS_PKTSTS_IN:
11511 + /* Read the data into the host buffer. */
11512 + if (grxsts.b.bcnt > 0) {
11513 + dwc_otg_read_packet(dwc_otg_hcd->core_if,
11514 + hc->xfer_buff,
11515 + grxsts.b.bcnt);
11516 +
11517 + /* Update the HC fields for the next packet received. */
11518 + hc->xfer_count += grxsts.b.bcnt;
11519 + hc->xfer_buff += grxsts.b.bcnt;
11520 + }
11521 +
11522 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
11523 + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
11524 + case DWC_GRXSTS_PKTSTS_CH_HALTED:
11525 + /* Handled in interrupt, just ignore data */
11526 + break;
11527 + default:
11528 + DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
11529 + break;
11530 + }
11531 +
11532 + return 1;
11533 +}
11534 +
11535 +/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
11536 + * data packets may be written to the FIFO for OUT transfers. More requests
11537 + * may be written to the non-periodic request queue for IN transfers. This
11538 + * interrupt is enabled only in Slave mode. */
11539 +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11540 +{
11541 + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
11542 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11543 + DWC_OTG_TRANSACTION_NON_PERIODIC);
11544 + return 1;
11545 +}
11546 +
11547 +/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
11548 + * packets may be written to the FIFO for OUT transfers. More requests may be
11549 + * written to the periodic request queue for IN transfers. This interrupt is
11550 + * enabled only in Slave mode. */
11551 +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11552 +{
11553 + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
11554 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11555 + DWC_OTG_TRANSACTION_PERIODIC);
11556 + return 1;
11557 +}
11558 +
11559 +/** There are multiple conditions that can cause a port interrupt. This function
11560 + * determines which interrupt conditions have occurred and handles them
11561 + * appropriately. */
11562 +int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11563 +{
11564 + int retval = 0;
11565 + hprt0_data_t hprt0;
11566 + hprt0_data_t hprt0_modify;
11567 +
11568 + hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11569 + hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11570 +
11571 + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
11572 + * GINTSTS */
11573 +
11574 + hprt0_modify.b.prtena = 0;
11575 + hprt0_modify.b.prtconndet = 0;
11576 + hprt0_modify.b.prtenchng = 0;
11577 + hprt0_modify.b.prtovrcurrchng = 0;
11578 +
11579 + /* Port Connect Detected
11580 + * Set flag and clear if detected */
11581 + if (hprt0.b.prtconndet) {
11582 + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
11583 + "Port Connect Detected--\n", hprt0.d32);
11584 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
11585 + dwc_otg_hcd->flags.b.port_connect_status = 1;
11586 + hprt0_modify.b.prtconndet = 1;
11587 +
11588 + /* B-Device has connected, Delete the connection timer. */
11589 + del_timer( &dwc_otg_hcd->conn_timer );
11590 +
11591 + /* The Hub driver asserts a reset when it sees port connect
11592 + * status change flag */
11593 + retval |= 1;
11594 + }
11595 +
11596 + /* Port Enable Changed
11597 + * Clear if detected - Set internal flag if disabled */
11598 + if (hprt0.b.prtenchng) {
11599 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11600 + "Port Enable Changed--\n", hprt0.d32);
11601 + hprt0_modify.b.prtenchng = 1;
11602 + if (hprt0.b.prtena == 1) {
11603 + int do_reset = 0;
11604 + dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
11605 + dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
11606 + dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
11607 +
11608 + /* Check if we need to adjust the PHY clock speed for
11609 + * low power and adjust it */
11610 + if (params->host_support_fs_ls_low_power) {
11611 + gusbcfg_data_t usbcfg;
11612 +
11613 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
11614 +
11615 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
11616 + hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
11617 + /*
11618 + * Low power
11619 + */
11620 + hcfg_data_t hcfg;
11621 + if (usbcfg.b.phylpwrclksel == 0) {
11622 + /* Set PHY low power clock select for FS/LS devices */
11623 + usbcfg.b.phylpwrclksel = 1;
11624 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11625 + do_reset = 1;
11626 + }
11627 +
11628 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
11629 +
11630 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
11631 + params->host_ls_low_power_phy_clk ==
11632 + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
11633 + /* 6 MHZ */
11634 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
11635 + if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
11636 + hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
11637 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
11638 + hcfg.d32);
11639 + do_reset = 1;
11640 + }
11641 + } else {
11642 + /* 48 MHZ */
11643 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
11644 + if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
11645 + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
11646 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
11647 + hcfg.d32);
11648 + do_reset = 1;
11649 + }
11650 + }
11651 + } else {
11652 + /*
11653 + * Not low power
11654 + */
11655 + if (usbcfg.b.phylpwrclksel == 1) {
11656 + usbcfg.b.phylpwrclksel = 0;
11657 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11658 + do_reset = 1;
11659 + }
11660 + }
11661 +
11662 + if (do_reset) {
11663 + tasklet_schedule(dwc_otg_hcd->reset_tasklet);
11664 + }
11665 + }
11666 +
11667 + if (!do_reset) {
11668 + /* Port has been enabled set the reset change flag */
11669 + dwc_otg_hcd->flags.b.port_reset_change = 1;
11670 + }
11671 + } else {
11672 + dwc_otg_hcd->flags.b.port_enable_change = 1;
11673 + }
11674 + retval |= 1;
11675 + }
11676 +
11677 + /** Overcurrent Change Interrupt */
11678 + if (hprt0.b.prtovrcurrchng) {
11679 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11680 + "Port Overcurrent Changed--\n", hprt0.d32);
11681 + dwc_otg_hcd->flags.b.port_over_current_change = 1;
11682 + hprt0_modify.b.prtovrcurrchng = 1;
11683 + retval |= 1;
11684 + }
11685 +
11686 + /* Clear Port Interrupts */
11687 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
11688 +
11689 + return retval;
11690 +}
11691 +
11692 +/** This interrupt indicates that one or more host channels has a pending
11693 + * interrupt. There are multiple conditions that can cause each host channel
11694 + * interrupt. This function determines which conditions have occurred for each
11695 + * host channel interrupt and handles them appropriately. */
11696 +int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11697 +{
11698 + int i;
11699 + int retval = 0;
11700 + haint_data_t haint;
11701 +
11702 + /* Clear appropriate bits in HCINTn to clear the interrupt bit in
11703 + * GINTSTS */
11704 +
11705 + haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
11706 +
11707 + for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
11708 + if (haint.b2.chint & (1 << i)) {
11709 + retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
11710 + }
11711 + }
11712 +
11713 + return retval;
11714 +}
11715 +
11716 +/* Macro used to clear one channel interrupt */
11717 +#define clear_hc_int(_hc_regs_, _intr_) \
11718 +do { \
11719 + hcint_data_t hcint_clear = {.d32 = 0}; \
11720 + hcint_clear.b._intr_ = 1; \
11721 + dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
11722 +} while (0)
11723 +
11724 +/*
11725 + * Macro used to disable one channel interrupt. Channel interrupts are
11726 + * disabled when the channel is halted or released by the interrupt handler.
11727 + * There is no need to handle further interrupts of that type until the
11728 + * channel is re-assigned. In fact, subsequent handling may cause crashes
11729 + * because the channel structures are cleaned up when the channel is released.
11730 + */
11731 +#define disable_hc_int(_hc_regs_, _intr_) \
11732 +do { \
11733 + hcintmsk_data_t hcintmsk = {.d32 = 0}; \
11734 + hcintmsk.b._intr_ = 1; \
11735 + dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
11736 +} while (0)
11737 +
11738 +/**
11739 + * Gets the actual length of a transfer after the transfer halts. _halt_status
11740 + * holds the reason for the halt.
11741 + *
11742 + * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
11743 + * *short_read is set to 1 upon return if less than the requested
11744 + * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
11745 + * return. short_read may also be NULL on entry, in which case it remains
11746 + * unchanged.
11747 + */
11748 +static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
11749 + dwc_otg_hc_regs_t *hc_regs,
11750 + dwc_otg_qtd_t *qtd,
11751 + dwc_otg_halt_status_e halt_status,
11752 + int *short_read)
11753 +{
11754 + hctsiz_data_t hctsiz;
11755 + uint32_t length;
11756 +
11757 + if (short_read != NULL) {
11758 + *short_read = 0;
11759 + }
11760 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11761 +
11762 + if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
11763 + if (hc->ep_is_in) {
11764 + length = hc->xfer_len - hctsiz.b.xfersize;
11765 + if (short_read != NULL) {
11766 + *short_read = (hctsiz.b.xfersize != 0);
11767 + }
11768 + } else if (hc->qh->do_split) {
11769 + length = qtd->ssplit_out_xfer_count;
11770 + } else {
11771 + length = hc->xfer_len;
11772 + }
11773 + } else {
11774 + /*
11775 + * Must use the hctsiz.pktcnt field to determine how much data
11776 + * has been transferred. This field reflects the number of
11777 + * packets that have been transferred via the USB. This is
11778 + * always an integral number of packets if the transfer was
11779 + * halted before its normal completion. (Can't use the
11780 + * hctsiz.xfersize field because that reflects the number of
11781 + * bytes transferred via the AHB, not the USB).
11782 + */
11783 + length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
11784 + }
11785 +
11786 + return length;
11787 +}
11788 +
11789 +/**
11790 + * Updates the state of the URB after a Transfer Complete interrupt on the
11791 + * host channel. Updates the actual_length field of the URB based on the
11792 + * number of bytes transferred via the host channel. Sets the URB status
11793 + * if the data transfer is finished.
11794 + *
11795 + * @return 1 if the data transfer specified by the URB is completely finished,
11796 + * 0 otherwise.
11797 + */
11798 +static int update_urb_state_xfer_comp(dwc_hc_t *hc,
11799 + dwc_otg_hc_regs_t *hc_regs,
11800 + struct urb *urb,
11801 + dwc_otg_qtd_t *qtd)
11802 +{
11803 + int xfer_done = 0;
11804 + int short_read = 0;
11805 +
11806 + urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
11807 + DWC_OTG_HC_XFER_COMPLETE,
11808 + &short_read);
11809 +
11810 + if (short_read || urb->actual_length == urb->transfer_buffer_length) {
11811 + xfer_done = 1;
11812 + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
11813 + urb->status = -EREMOTEIO;
11814 + } else {
11815 + urb->status = 0;
11816 + }
11817 + }
11818 +
11819 +#ifdef DEBUG
11820 + {
11821 + hctsiz_data_t hctsiz;
11822 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11823 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11824 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
11825 + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
11826 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
11827 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
11828 + urb->transfer_buffer_length);
11829 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
11830 + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
11831 + short_read, xfer_done);
11832 + }
11833 +#endif
11834 +
11835 + return xfer_done;
11836 +}
11837 +
11838 +/*
11839 + * Save the starting data toggle for the next transfer. The data toggle is
11840 + * saved in the QH for non-control transfers and it's saved in the QTD for
11841 + * control transfers.
11842 + */
11843 +static void save_data_toggle(dwc_hc_t *hc,
11844 + dwc_otg_hc_regs_t *hc_regs,
11845 + dwc_otg_qtd_t *qtd)
11846 +{
11847 + hctsiz_data_t hctsiz;
11848 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11849 +
11850 + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
11851 + dwc_otg_qh_t *qh = hc->qh;
11852 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11853 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
11854 + } else {
11855 + qh->data_toggle = DWC_OTG_HC_PID_DATA1;
11856 + }
11857 + } else {
11858 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11859 + qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
11860 + } else {
11861 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
11862 + }
11863 + }
11864 +}
11865 +
11866 +/**
11867 + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
11868 + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
11869 + * still linked to the QH, the QH is added to the end of the inactive
11870 + * non-periodic schedule. For periodic QHs, removes the QH from the periodic
11871 + * schedule if no more QTDs are linked to the QH.
11872 + */
11873 +static void deactivate_qh(dwc_otg_hcd_t *hcd,
11874 + dwc_otg_qh_t *qh,
11875 + int free_qtd)
11876 +{
11877 + int continue_split = 0;
11878 + dwc_otg_qtd_t *qtd;
11879 +
11880 + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
11881 +
11882 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
11883 +
11884 + if (qtd->complete_split) {
11885 + continue_split = 1;
11886 + } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
11887 + qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
11888 + continue_split = 1;
11889 + }
11890 +
11891 + if (free_qtd) {
11892 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
11893 + continue_split = 0;
11894 + }
11895 +
11896 + qh->channel = NULL;
11897 + qh->qtd_in_process = NULL;
11898 + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
11899 +}
11900 +
11901 +/**
11902 + * Updates the state of an Isochronous URB when the transfer is stopped for
11903 + * any reason. The fields of the current entry in the frame descriptor array
11904 + * are set based on the transfer state and the input _halt_status. Completes
11905 + * the Isochronous URB if all the URB frames have been completed.
11906 + *
11907 + * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
11908 + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
11909 + */
11910 +static dwc_otg_halt_status_e
11911 +update_isoc_urb_state(dwc_otg_hcd_t *hcd,
11912 + dwc_hc_t *hc,
11913 + dwc_otg_hc_regs_t *hc_regs,
11914 + dwc_otg_qtd_t *qtd,
11915 + dwc_otg_halt_status_e halt_status)
11916 +{
11917 + struct urb *urb = qtd->urb;
11918 + dwc_otg_halt_status_e ret_val = halt_status;
11919 + struct usb_iso_packet_descriptor *frame_desc;
11920 +
11921 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
11922 + switch (halt_status) {
11923 + case DWC_OTG_HC_XFER_COMPLETE:
11924 + frame_desc->status = 0;
11925 + frame_desc->actual_length =
11926 + get_actual_xfer_length(hc, hc_regs, qtd,
11927 + halt_status, NULL);
11928 + break;
11929 + case DWC_OTG_HC_XFER_FRAME_OVERRUN:
11930 + urb->error_count++;
11931 + if (hc->ep_is_in) {
11932 + frame_desc->status = -ENOSR;
11933 + } else {
11934 + frame_desc->status = -ECOMM;
11935 + }
11936 + frame_desc->actual_length = 0;
11937 + break;
11938 + case DWC_OTG_HC_XFER_BABBLE_ERR:
11939 + urb->error_count++;
11940 + frame_desc->status = -EOVERFLOW;
11941 + /* Don't need to update actual_length in this case. */
11942 + break;
11943 + case DWC_OTG_HC_XFER_XACT_ERR:
11944 + urb->error_count++;
11945 + frame_desc->status = -EPROTO;
11946 + frame_desc->actual_length =
11947 + get_actual_xfer_length(hc, hc_regs, qtd,
11948 + halt_status, NULL);
11949 + default:
11950 + DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
11951 + halt_status);
11952 + BUG();
11953 + break;
11954 + }
11955 +
11956 + if (++qtd->isoc_frame_index == urb->number_of_packets) {
11957 + /*
11958 + * urb->status is not used for isoc transfers.
11959 + * The individual frame_desc statuses are used instead.
11960 + */
11961 + dwc_otg_hcd_complete_urb(hcd, urb, 0);
11962 + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
11963 + } else {
11964 + ret_val = DWC_OTG_HC_XFER_COMPLETE;
11965 + }
11966 +
11967 + return ret_val;
11968 +}
11969 +
11970 +/**
11971 + * Releases a host channel for use by other transfers. Attempts to select and
11972 + * queue more transactions since at least one host channel is available.
11973 + *
11974 + * @param hcd The HCD state structure.
11975 + * @param hc The host channel to release.
11976 + * @param qtd The QTD associated with the host channel. This QTD may be freed
11977 + * if the transfer is complete or an error has occurred.
11978 + * @param halt_status Reason the channel is being released. This status
11979 + * determines the actions taken by this function.
11980 + */
11981 +static void release_channel(dwc_otg_hcd_t *hcd,
11982 + dwc_hc_t *hc,
11983 + dwc_otg_qtd_t *qtd,
11984 + dwc_otg_halt_status_e halt_status)
11985 +{
11986 + dwc_otg_transaction_type_e tr_type;
11987 + int free_qtd;
11988 +
11989 + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
11990 + __func__, hc->hc_num, halt_status);
11991 +
11992 + switch (halt_status) {
11993 + case DWC_OTG_HC_XFER_URB_COMPLETE:
11994 + free_qtd = 1;
11995 + break;
11996 + case DWC_OTG_HC_XFER_AHB_ERR:
11997 + case DWC_OTG_HC_XFER_STALL:
11998 + case DWC_OTG_HC_XFER_BABBLE_ERR:
11999 + free_qtd = 1;
12000 + break;
12001 + case DWC_OTG_HC_XFER_XACT_ERR:
12002 + if (qtd->error_count >= 3) {
12003 + DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
12004 + free_qtd = 1;
12005 + qtd->urb->status = -EPROTO;
12006 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
12007 + } else {
12008 + free_qtd = 0;
12009 + }
12010 + break;
12011 + case DWC_OTG_HC_XFER_URB_DEQUEUE:
12012 + /*
12013 + * The QTD has already been removed and the QH has been
12014 + * deactivated. Don't want to do anything except release the
12015 + * host channel and try to queue more transfers.
12016 + */
12017 + goto cleanup;
12018 + case DWC_OTG_HC_XFER_NO_HALT_STATUS:
12019 + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
12020 + free_qtd = 0;
12021 + break;
12022 + default:
12023 + free_qtd = 0;
12024 + break;
12025 + }
12026 +
12027 + deactivate_qh(hcd, hc->qh, free_qtd);
12028 +
12029 + cleanup:
12030 + /*
12031 + * Release the host channel for use by other transfers. The cleanup
12032 + * function clears the channel interrupt enables and conditions, so
12033 + * there's no need to clear the Channel Halted interrupt separately.
12034 + */
12035 + dwc_otg_hc_cleanup(hcd->core_if, hc);
12036 + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
12037 +
12038 + switch (hc->ep_type) {
12039 + case DWC_OTG_EP_TYPE_CONTROL:
12040 + case DWC_OTG_EP_TYPE_BULK:
12041 + hcd->non_periodic_channels--;
12042 + break;
12043 +
12044 + default:
12045 + /*
12046 + * Don't release reservations for periodic channels here.
12047 + * That's done when a periodic transfer is descheduled (i.e.
12048 + * when the QH is removed from the periodic schedule).
12049 + */
12050 + break;
12051 + }
12052 +
12053 + /* Try to queue more transfers now that there's a free channel. */
12054 + tr_type = dwc_otg_hcd_select_transactions(hcd);
12055 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
12056 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
12057 + }
12058 +}
12059 +
12060 +/**
12061 + * Halts a host channel. If the channel cannot be halted immediately because
12062 + * the request queue is full, this function ensures that the FIFO empty
12063 + * interrupt for the appropriate queue is enabled so that the halt request can
12064 + * be queued when there is space in the request queue.
12065 + *
12066 + * This function may also be called in DMA mode. In that case, the channel is
12067 + * simply released since the core always halts the channel automatically in
12068 + * DMA mode.
12069 + */
12070 +static void halt_channel(dwc_otg_hcd_t *hcd,
12071 + dwc_hc_t *hc,
12072 + dwc_otg_qtd_t *qtd,
12073 + dwc_otg_halt_status_e halt_status)
12074 +{
12075 + if (hcd->core_if->dma_enable) {
12076 + release_channel(hcd, hc, qtd, halt_status);
12077 + return;
12078 + }
12079 +
12080 + /* Slave mode processing... */
12081 + dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
12082 +
12083 + if (hc->halt_on_queue) {
12084 + gintmsk_data_t gintmsk = {.d32 = 0};
12085 + dwc_otg_core_global_regs_t *global_regs;
12086 + global_regs = hcd->core_if->core_global_regs;
12087 +
12088 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
12089 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
12090 + /*
12091 + * Make sure the Non-periodic Tx FIFO empty interrupt
12092 + * is enabled so that the non-periodic schedule will
12093 + * be processed.
12094 + */
12095 + gintmsk.b.nptxfempty = 1;
12096 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12097 + } else {
12098 + /*
12099 + * Move the QH from the periodic queued schedule to
12100 + * the periodic assigned schedule. This allows the
12101 + * halt to be queued when the periodic schedule is
12102 + * processed.
12103 + */
12104 + list_move(&hc->qh->qh_list_entry,
12105 + &hcd->periodic_sched_assigned);
12106 +
12107 + /*
12108 + * Make sure the Periodic Tx FIFO Empty interrupt is
12109 + * enabled so that the periodic schedule will be
12110 + * processed.
12111 + */
12112 + gintmsk.b.ptxfempty = 1;
12113 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12114 + }
12115 + }
12116 +}
12117 +
12118 +/**
12119 + * Performs common cleanup for non-periodic transfers after a Transfer
12120 + * Complete interrupt. This function should be called after any endpoint type
12121 + * specific handling is finished to release the host channel.
12122 + */
12123 +static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
12124 + dwc_hc_t *hc,
12125 + dwc_otg_hc_regs_t *hc_regs,
12126 + dwc_otg_qtd_t *qtd,
12127 + dwc_otg_halt_status_e halt_status)
12128 +{
12129 + hcint_data_t hcint;
12130 +
12131 + qtd->error_count = 0;
12132 +
12133 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12134 + if (hcint.b.nyet) {
12135 + /*
12136 + * Got a NYET on the last transaction of the transfer. This
12137 + * means that the endpoint should be in the PING state at the
12138 + * beginning of the next transfer.
12139 + */
12140 + hc->qh->ping_state = 1;
12141 + clear_hc_int(hc_regs, nyet);
12142 + }
12143 +
12144 + /*
12145 + * Always halt and release the host channel to make it available for
12146 + * more transfers. There may still be more phases for a control
12147 + * transfer or more data packets for a bulk transfer at this point,
12148 + * but the host channel is still halted. A channel will be reassigned
12149 + * to the transfer when the non-periodic schedule is processed after
12150 + * the channel is released. This allows transactions to be queued
12151 + * properly via dwc_otg_hcd_queue_transactions, which also enables the
12152 + * Tx FIFO Empty interrupt if necessary.
12153 + */
12154 + if (hc->ep_is_in) {
12155 + /*
12156 + * IN transfers in Slave mode require an explicit disable to
12157 + * halt the channel. (In DMA mode, this call simply releases
12158 + * the channel.)
12159 + */
12160 + halt_channel(hcd, hc, qtd, halt_status);
12161 + } else {
12162 + /*
12163 + * The channel is automatically disabled by the core for OUT
12164 + * transfers in Slave mode.
12165 + */
12166 + release_channel(hcd, hc, qtd, halt_status);
12167 + }
12168 +}
12169 +
12170 +/**
12171 + * Performs common cleanup for periodic transfers after a Transfer Complete
12172 + * interrupt. This function should be called after any endpoint type specific
12173 + * handling is finished to release the host channel.
12174 + */
12175 +static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
12176 + dwc_hc_t *hc,
12177 + dwc_otg_hc_regs_t *hc_regs,
12178 + dwc_otg_qtd_t *qtd,
12179 + dwc_otg_halt_status_e halt_status)
12180 +{
12181 + hctsiz_data_t hctsiz;
12182 + qtd->error_count = 0;
12183 +
12184 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12185 + if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
12186 + /* Core halts channel in these cases. */
12187 + release_channel(hcd, hc, qtd, halt_status);
12188 + } else {
12189 + /* Flush any outstanding requests from the Tx queue. */
12190 + halt_channel(hcd, hc, qtd, halt_status);
12191 + }
12192 +}
12193 +
12194 +/**
12195 + * Handles a host channel Transfer Complete interrupt. This handler may be
12196 + * called in either DMA mode or Slave mode.
12197 + */
12198 +static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
12199 + dwc_hc_t *hc,
12200 + dwc_otg_hc_regs_t *hc_regs,
12201 + dwc_otg_qtd_t *qtd)
12202 +{
12203 + int urb_xfer_done;
12204 + dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
12205 + struct urb *urb = qtd->urb;
12206 + int pipe_type = usb_pipetype(urb->pipe);
12207 +
12208 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12209 + "Transfer Complete--\n", hc->hc_num);
12210 +
12211 + /*
12212 + * Handle xfer complete on CSPLIT.
12213 + */
12214 + if (hc->qh->do_split) {
12215 + qtd->complete_split = 0;
12216 + }
12217 +
12218 + /* Update the QTD and URB states. */
12219 + switch (pipe_type) {
12220 + case PIPE_CONTROL:
12221 + switch (qtd->control_phase) {
12222 + case DWC_OTG_CONTROL_SETUP:
12223 + if (urb->transfer_buffer_length > 0) {
12224 + qtd->control_phase = DWC_OTG_CONTROL_DATA;
12225 + } else {
12226 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
12227 + }
12228 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
12229 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12230 + break;
12231 + case DWC_OTG_CONTROL_DATA: {
12232 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12233 + if (urb_xfer_done) {
12234 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
12235 + DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
12236 + } else {
12237 + save_data_toggle(hc, hc_regs, qtd);
12238 + }
12239 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12240 + break;
12241 + }
12242 + case DWC_OTG_CONTROL_STATUS:
12243 + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
12244 + if (urb->status == -EINPROGRESS) {
12245 + urb->status = 0;
12246 + }
12247 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12248 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12249 + break;
12250 + }
12251 +
12252 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12253 + break;
12254 + case PIPE_BULK:
12255 + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
12256 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12257 + if (urb_xfer_done) {
12258 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12259 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12260 + } else {
12261 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12262 + }
12263 +
12264 + save_data_toggle(hc, hc_regs, qtd);
12265 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12266 + break;
12267 + case PIPE_INTERRUPT:
12268 + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
12269 + update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12270 +
12271 + /*
12272 + * Interrupt URB is done on the first transfer complete
12273 + * interrupt.
12274 + */
12275 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12276 + save_data_toggle(hc, hc_regs, qtd);
12277 + complete_periodic_xfer(hcd, hc, hc_regs, qtd,
12278 + DWC_OTG_HC_XFER_URB_COMPLETE);
12279 + break;
12280 + case PIPE_ISOCHRONOUS:
12281 + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
12282 + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
12283 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12284 + DWC_OTG_HC_XFER_COMPLETE);
12285 + }
12286 + complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12287 + break;
12288 + }
12289 +
12290 + disable_hc_int(hc_regs, xfercompl);
12291 +
12292 + return 1;
12293 +}
12294 +
12295 +/**
12296 + * Handles a host channel STALL interrupt. This handler may be called in
12297 + * either DMA mode or Slave mode.
12298 + */
12299 +static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
12300 + dwc_hc_t *hc,
12301 + dwc_otg_hc_regs_t *hc_regs,
12302 + dwc_otg_qtd_t *qtd)
12303 +{
12304 + struct urb *urb = qtd->urb;
12305 + int pipe_type = usb_pipetype(urb->pipe);
12306 +
12307 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12308 + "STALL Received--\n", hc->hc_num);
12309 +
12310 + if (pipe_type == PIPE_CONTROL) {
12311 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
12312 + }
12313 +
12314 + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
12315 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
12316 + /*
12317 + * USB protocol requires resetting the data toggle for bulk
12318 + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
12319 + * setup command is issued to the endpoint. Anticipate the
12320 + * CLEAR_FEATURE command since a STALL has occurred and reset
12321 + * the data toggle now.
12322 + */
12323 + hc->qh->data_toggle = 0;
12324 + }
12325 +
12326 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
12327 +
12328 + disable_hc_int(hc_regs, stall);
12329 +
12330 + return 1;
12331 +}
12332 +
12333 +/*
12334 + * Updates the state of the URB when a transfer has been stopped due to an
12335 + * abnormal condition before the transfer completes. Modifies the
12336 + * actual_length field of the URB to reflect the number of bytes that have
12337 + * actually been transferred via the host channel.
12338 + */
12339 +static void update_urb_state_xfer_intr(dwc_hc_t *hc,
12340 + dwc_otg_hc_regs_t *hc_regs,
12341 + struct urb *urb,
12342 + dwc_otg_qtd_t *qtd,
12343 + dwc_otg_halt_status_e halt_status)
12344 +{
12345 + uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
12346 + halt_status, NULL);
12347 + urb->actual_length += bytes_transferred;
12348 +
12349 +#ifdef DEBUG
12350 + {
12351 + hctsiz_data_t hctsiz;
12352 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12353 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
12354 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
12355 + DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
12356 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
12357 + DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
12358 + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
12359 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
12360 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
12361 + urb->transfer_buffer_length);
12362 + }
12363 +#endif
12364 +}
12365 +
12366 +/**
12367 + * Handles a host channel NAK interrupt. This handler may be called in either
12368 + * DMA mode or Slave mode.
12369 + */
12370 +static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
12371 + dwc_hc_t *hc,
12372 + dwc_otg_hc_regs_t *hc_regs,
12373 + dwc_otg_qtd_t *qtd)
12374 +{
12375 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12376 + "NAK Received--\n", hc->hc_num);
12377 +
12378 + /*
12379 + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
12380 + * interrupt. Re-start the SSPLIT transfer.
12381 + */
12382 + if (hc->do_split) {
12383 + if (hc->complete_split) {
12384 + qtd->error_count = 0;
12385 + }
12386 + qtd->complete_split = 0;
12387 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12388 + goto handle_nak_done;
12389 + }
12390 +
12391 + switch (usb_pipetype(qtd->urb->pipe)) {
12392 + case PIPE_CONTROL:
12393 + case PIPE_BULK:
12394 + if (hcd->core_if->dma_enable && hc->ep_is_in) {
12395 + /*
12396 + * NAK interrupts are enabled on bulk/control IN
12397 + * transfers in DMA mode for the sole purpose of
12398 + * resetting the error count after a transaction error
12399 + * occurs. The core will continue transferring data.
12400 + */
12401 + qtd->error_count = 0;
12402 + goto handle_nak_done;
12403 + }
12404 +
12405 + /*
12406 + * NAK interrupts normally occur during OUT transfers in DMA
12407 + * or Slave mode. For IN transfers, more requests will be
12408 + * queued as request queue space is available.
12409 + */
12410 + qtd->error_count = 0;
12411 +
12412 + if (!hc->qh->ping_state) {
12413 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12414 + qtd, DWC_OTG_HC_XFER_NAK);
12415 + save_data_toggle(hc, hc_regs, qtd);
12416 + if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
12417 + hc->qh->ping_state = 1;
12418 + }
12419 + }
12420 +
12421 + /*
12422 + * Halt the channel so the transfer can be re-started from
12423 + * the appropriate point or the PING protocol will
12424 + * start/continue.
12425 + */
12426 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12427 + break;
12428 + case PIPE_INTERRUPT:
12429 + qtd->error_count = 0;
12430 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12431 + break;
12432 + case PIPE_ISOCHRONOUS:
12433 + /* Should never get called for isochronous transfers. */
12434 + BUG();
12435 + break;
12436 + }
12437 +
12438 + handle_nak_done:
12439 + disable_hc_int(hc_regs, nak);
12440 +
12441 + return 1;
12442 +}
12443 +
12444 +/**
12445 + * Handles a host channel ACK interrupt. This interrupt is enabled when
12446 + * performing the PING protocol in Slave mode, when errors occur during
12447 + * either Slave mode or DMA mode, and during Start Split transactions.
12448 + */
12449 +static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
12450 + dwc_hc_t *hc,
12451 + dwc_otg_hc_regs_t *hc_regs,
12452 + dwc_otg_qtd_t *qtd)
12453 +{
12454 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12455 + "ACK Received--\n", hc->hc_num);
12456 +
12457 + if (hc->do_split) {
12458 + /*
12459 + * Handle ACK on SSPLIT.
12460 + * ACK should not occur in CSPLIT.
12461 + */
12462 + if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
12463 + qtd->ssplit_out_xfer_count = hc->xfer_len;
12464 + }
12465 + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
12466 + /* Don't need complete for isochronous out transfers. */
12467 + qtd->complete_split = 1;
12468 + }
12469 +
12470 + /* ISOC OUT */
12471 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
12472 + switch (hc->xact_pos) {
12473 + case DWC_HCSPLIT_XACTPOS_ALL:
12474 + break;
12475 + case DWC_HCSPLIT_XACTPOS_END:
12476 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
12477 + qtd->isoc_split_offset = 0;
12478 + break;
12479 + case DWC_HCSPLIT_XACTPOS_BEGIN:
12480 + case DWC_HCSPLIT_XACTPOS_MID:
12481 + /*
12482 + * For BEGIN or MID, calculate the length for
12483 + * the next microframe to determine the correct
12484 + * SSPLIT token, either MID or END.
12485 + */
12486 + {
12487 + struct usb_iso_packet_descriptor *frame_desc;
12488 +
12489 + frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
12490 + qtd->isoc_split_offset += 188;
12491 +
12492 + if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
12493 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
12494 + } else {
12495 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
12496 + }
12497 +
12498 + }
12499 + break;
12500 + }
12501 + } else {
12502 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12503 + }
12504 + } else {
12505 + qtd->error_count = 0;
12506 +
12507 + if (hc->qh->ping_state) {
12508 + hc->qh->ping_state = 0;
12509 + /*
12510 + * Halt the channel so the transfer can be re-started
12511 + * from the appropriate point. This only happens in
12512 + * Slave mode. In DMA mode, the ping_state is cleared
12513 + * when the transfer is started because the core
12514 + * automatically executes the PING, then the transfer.
12515 + */
12516 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12517 + }
12518 + }
12519 +
12520 + /*
12521 + * If the ACK occurred when _not_ in the PING state, let the channel
12522 + * continue transferring data after clearing the error count.
12523 + */
12524 +
12525 + disable_hc_int(hc_regs, ack);
12526 +
12527 + return 1;
12528 +}
12529 +
12530 +/**
12531 + * Handles a host channel NYET interrupt. This interrupt should only occur on
12532 + * Bulk and Control OUT endpoints and for complete split transactions. If a
12533 + * NYET occurs at the same time as a Transfer Complete interrupt, it is
12534 + * handled in the xfercomp interrupt handler, not here. This handler may be
12535 + * called in either DMA mode or Slave mode.
12536 + */
12537 +static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
12538 + dwc_hc_t *hc,
12539 + dwc_otg_hc_regs_t *hc_regs,
12540 + dwc_otg_qtd_t *qtd)
12541 +{
12542 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12543 + "NYET Received--\n", hc->hc_num);
12544 +
12545 + /*
12546 + * NYET on CSPLIT
12547 + * re-do the CSPLIT immediately on non-periodic
12548 + */
12549 + if (hc->do_split && hc->complete_split) {
12550 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12551 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12552 + int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
12553 +
12554 + if (dwc_full_frame_num(frnum) !=
12555 + dwc_full_frame_num(hc->qh->sched_frame)) {
12556 + /*
12557 + * No longer in the same full speed frame.
12558 + * Treat this as a transaction error.
12559 + */
12560 +#if 0
12561 + /** @todo Fix system performance so this can
12562 + * be treated as an error. Right now complete
12563 + * splits cannot be scheduled precisely enough
12564 + * due to other system activity, so this error
12565 + * occurs regularly in Slave mode.
12566 + */
12567 + qtd->error_count++;
12568 +#endif
12569 + qtd->complete_split = 0;
12570 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12571 + /** @todo add support for isoc release */
12572 + goto handle_nyet_done;
12573 + }
12574 + }
12575 +
12576 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12577 + goto handle_nyet_done;
12578 + }
12579 +
12580 + hc->qh->ping_state = 1;
12581 + qtd->error_count = 0;
12582 +
12583 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
12584 + DWC_OTG_HC_XFER_NYET);
12585 + save_data_toggle(hc, hc_regs, qtd);
12586 +
12587 + /*
12588 + * Halt the channel and re-start the transfer so the PING
12589 + * protocol will start.
12590 + */
12591 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12592 +
12593 +handle_nyet_done:
12594 + disable_hc_int(hc_regs, nyet);
12595 + return 1;
12596 +}
12597 +
12598 +/**
12599 + * Handles a host channel babble interrupt. This handler may be called in
12600 + * either DMA mode or Slave mode.
12601 + */
12602 +static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
12603 + dwc_hc_t *hc,
12604 + dwc_otg_hc_regs_t *hc_regs,
12605 + dwc_otg_qtd_t *qtd)
12606 +{
12607 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12608 + "Babble Error--\n", hc->hc_num);
12609 + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
12610 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
12611 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
12612 + } else {
12613 + dwc_otg_halt_status_e halt_status;
12614 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12615 + DWC_OTG_HC_XFER_BABBLE_ERR);
12616 + halt_channel(hcd, hc, qtd, halt_status);
12617 + }
12618 + disable_hc_int(hc_regs, bblerr);
12619 + return 1;
12620 +}
12621 +
12622 +/**
12623 + * Handles a host channel AHB error interrupt. This handler is only called in
12624 + * DMA mode.
12625 + */
12626 +static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
12627 + dwc_hc_t *hc,
12628 + dwc_otg_hc_regs_t *hc_regs,
12629 + dwc_otg_qtd_t *qtd)
12630 +{
12631 + hcchar_data_t hcchar;
12632 + hcsplt_data_t hcsplt;
12633 + hctsiz_data_t hctsiz;
12634 + uint32_t hcdma;
12635 + struct urb *urb = qtd->urb;
12636 +
12637 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12638 + "AHB Error--\n", hc->hc_num);
12639 +
12640 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12641 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12642 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12643 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
12644 +
12645 + DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
12646 + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
12647 + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
12648 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
12649 + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
12650 + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
12651 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
12652 + DWC_ERROR(" Endpoint type: %s\n",
12653 + ({char *pipetype;
12654 + switch (usb_pipetype(urb->pipe)) {
12655 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
12656 + case PIPE_BULK: pipetype = "BULK"; break;
12657 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
12658 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
12659 + default: pipetype = "UNKNOWN"; break;
12660 + }; pipetype;}));
12661 + DWC_ERROR(" Speed: %s\n",
12662 + ({char *speed;
12663 + switch (urb->dev->speed) {
12664 + case USB_SPEED_HIGH: speed = "HIGH"; break;
12665 + case USB_SPEED_FULL: speed = "FULL"; break;
12666 + case USB_SPEED_LOW: speed = "LOW"; break;
12667 + default: speed = "UNKNOWN"; break;
12668 + }; speed;}));
12669 + DWC_ERROR(" Max packet size: %d\n",
12670 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12671 + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
12672 + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
12673 + urb->transfer_buffer, (void *)urb->transfer_dma);
12674 + DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
12675 + urb->setup_packet, (void *)urb->setup_dma);
12676 + DWC_ERROR(" Interval: %d\n", urb->interval);
12677 +
12678 + dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
12679 +
12680 + /*
12681 + * Force a channel halt. Don't call halt_channel because that won't
12682 + * write to the HCCHARn register in DMA mode to force the halt.
12683 + */
12684 + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
12685 +
12686 + disable_hc_int(hc_regs, ahberr);
12687 + return 1;
12688 +}
12689 +
12690 +/**
12691 + * Handles a host channel transaction error interrupt. This handler may be
12692 + * called in either DMA mode or Slave mode.
12693 + */
12694 +static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
12695 + dwc_hc_t *hc,
12696 + dwc_otg_hc_regs_t *hc_regs,
12697 + dwc_otg_qtd_t *qtd)
12698 +{
12699 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12700 + "Transaction Error--\n", hc->hc_num);
12701 +
12702 + switch (usb_pipetype(qtd->urb->pipe)) {
12703 + case PIPE_CONTROL:
12704 + case PIPE_BULK:
12705 + qtd->error_count++;
12706 + if (!hc->qh->ping_state) {
12707 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12708 + qtd, DWC_OTG_HC_XFER_XACT_ERR);
12709 + save_data_toggle(hc, hc_regs, qtd);
12710 + if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
12711 + hc->qh->ping_state = 1;
12712 + }
12713 + }
12714 +
12715 + /*
12716 + * Halt the channel so the transfer can be re-started from
12717 + * the appropriate point or the PING protocol will start.
12718 + */
12719 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12720 + break;
12721 + case PIPE_INTERRUPT:
12722 + qtd->error_count++;
12723 + if (hc->do_split && hc->complete_split) {
12724 + qtd->complete_split = 0;
12725 + }
12726 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12727 + break;
12728 + case PIPE_ISOCHRONOUS:
12729 + {
12730 + dwc_otg_halt_status_e halt_status;
12731 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12732 + DWC_OTG_HC_XFER_XACT_ERR);
12733 +
12734 + halt_channel(hcd, hc, qtd, halt_status);
12735 + }
12736 + break;
12737 + }
12738 +
12739 + disable_hc_int(hc_regs, xacterr);
12740 +
12741 + return 1;
12742 +}
12743 +
12744 +/**
12745 + * Handles a host channel frame overrun interrupt. This handler may be called
12746 + * in either DMA mode or Slave mode.
12747 + */
12748 +static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
12749 + dwc_hc_t *hc,
12750 + dwc_otg_hc_regs_t *hc_regs,
12751 + dwc_otg_qtd_t *qtd)
12752 +{
12753 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12754 + "Frame Overrun--\n", hc->hc_num);
12755 +
12756 + switch (usb_pipetype(qtd->urb->pipe)) {
12757 + case PIPE_CONTROL:
12758 + case PIPE_BULK:
12759 + break;
12760 + case PIPE_INTERRUPT:
12761 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
12762 + break;
12763 + case PIPE_ISOCHRONOUS:
12764 + {
12765 + dwc_otg_halt_status_e halt_status;
12766 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12767 + DWC_OTG_HC_XFER_FRAME_OVERRUN);
12768 +
12769 + halt_channel(hcd, hc, qtd, halt_status);
12770 + }
12771 + break;
12772 + }
12773 +
12774 + disable_hc_int(hc_regs, frmovrun);
12775 +
12776 + return 1;
12777 +}
12778 +
12779 +/**
12780 + * Handles a host channel data toggle error interrupt. This handler may be
12781 + * called in either DMA mode or Slave mode.
12782 + */
12783 +static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
12784 + dwc_hc_t *hc,
12785 + dwc_otg_hc_regs_t *hc_regs,
12786 + dwc_otg_qtd_t *qtd)
12787 +{
12788 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12789 + "Data Toggle Error--\n", hc->hc_num);
12790 +
12791 + if (hc->ep_is_in) {
12792 + qtd->error_count = 0;
12793 + } else {
12794 + DWC_ERROR("Data Toggle Error on OUT transfer,"
12795 + "channel %d\n", hc->hc_num);
12796 + }
12797 +
12798 + disable_hc_int(hc_regs, datatglerr);
12799 +
12800 + return 1;
12801 +}
12802 +
12803 +#ifdef DEBUG
12804 +/**
12805 + * This function is for debug only. It checks that a valid halt status is set
12806 + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
12807 + * taken and a warning is issued.
12808 + * @return 1 if halt status is ok, 0 otherwise.
12809 + */
12810 +static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
12811 + dwc_hc_t *hc,
12812 + dwc_otg_hc_regs_t *hc_regs,
12813 + dwc_otg_qtd_t *qtd)
12814 +{
12815 + hcchar_data_t hcchar;
12816 + hctsiz_data_t hctsiz;
12817 + hcint_data_t hcint;
12818 + hcintmsk_data_t hcintmsk;
12819 + hcsplt_data_t hcsplt;
12820 +
12821 + if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
12822 + /*
12823 + * This code is here only as a check. This condition should
12824 + * never happen. Ignore the halt if it does occur.
12825 + */
12826 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12827 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12828 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12829 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12830 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12831 + DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
12832 + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
12833 + "hcint 0x%08x, hcintmsk 0x%08x, "
12834 + "hcsplt 0x%08x, qtd->complete_split %d\n",
12835 + __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
12836 + hcint.d32, hcintmsk.d32,
12837 + hcsplt.d32, qtd->complete_split);
12838 +
12839 + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
12840 + __func__, hc->hc_num);
12841 + DWC_WARN("\n");
12842 + clear_hc_int(hc_regs, chhltd);
12843 + return 0;
12844 + }
12845 +
12846 + /*
12847 + * This code is here only as a check. hcchar.chdis should
12848 + * never be set when the halt interrupt occurs. Halt the
12849 + * channel again if it does occur.
12850 + */
12851 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12852 + if (hcchar.b.chdis) {
12853 + DWC_WARN("%s: hcchar.chdis set unexpectedly, "
12854 + "hcchar 0x%08x, trying to halt again\n",
12855 + __func__, hcchar.d32);
12856 + clear_hc_int(hc_regs, chhltd);
12857 + hc->halt_pending = 0;
12858 + halt_channel(hcd, hc, qtd, hc->halt_status);
12859 + return 0;
12860 + }
12861 +
12862 + return 1;
12863 +}
12864 +#endif
12865 +
12866 +/**
12867 + * Handles a host Channel Halted interrupt in DMA mode. This handler
12868 + * determines the reason the channel halted and proceeds accordingly.
12869 + */
12870 +static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
12871 + dwc_hc_t *hc,
12872 + dwc_otg_hc_regs_t *hc_regs,
12873 + dwc_otg_qtd_t *qtd)
12874 +{
12875 + hcint_data_t hcint;
12876 + hcintmsk_data_t hcintmsk;
12877 + int out_nak_enh = 0;
12878 +
12879 + /* For core with OUT NAK enhancement, the flow for high-
12880 + * speed CONTROL/BULK OUT is handled a little differently.
12881 + */
12882 + if (hcd->core_if->snpsid >= 0x4F54271A) {
12883 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
12884 + (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
12885 + hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
12886 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
12887 + out_nak_enh = 1;
12888 + } else {
12889 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
12890 + }
12891 + } else {
12892 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
12893 + }
12894 +
12895 + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
12896 + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
12897 + /*
12898 + * Just release the channel. A dequeue can happen on a
12899 + * transfer timeout. In the case of an AHB Error, the channel
12900 + * was forced to halt because there's no way to gracefully
12901 + * recover.
12902 + */
12903 + release_channel(hcd, hc, qtd, hc->halt_status);
12904 + return;
12905 + }
12906 +
12907 + /* Read the HCINTn register to determine the cause for the halt. */
12908 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12909 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12910 +
12911 + if (hcint.b.xfercomp) {
12912 + /** @todo This is here because of a possible hardware bug. Spec
12913 + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
12914 + * interrupt w/ACK bit set should occur, but I only see the
12915 + * XFERCOMP bit, even with it masked out. This is a workaround
12916 + * for that behavior. Should fix this when hardware is fixed.
12917 + */
12918 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
12919 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12920 + }
12921 + handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
12922 + } else if (hcint.b.stall) {
12923 + handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
12924 + } else if (hcint.b.xacterr) {
12925 + if (out_nak_enh) {
12926 + if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
12927 + printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
12928 + qtd->error_count = 0;
12929 + } else {
12930 + printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
12931 + }
12932 + }
12933 +
12934 + /*
12935 + * Must handle xacterr before nak or ack. Could get a xacterr
12936 + * at the same time as either of these on a BULK/CONTROL OUT
12937 + * that started with a PING. The xacterr takes precedence.
12938 + */
12939 + handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
12940 + } else if (!out_nak_enh) {
12941 + if (hcint.b.nyet) {
12942 + /*
12943 + * Must handle nyet before nak or ack. Could get a nyet at the
12944 + * same time as either of those on a BULK/CONTROL OUT that
12945 + * started with a PING. The nyet takes precedence.
12946 + */
12947 + handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
12948 + } else if (hcint.b.bblerr) {
12949 + handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
12950 + } else if (hcint.b.frmovrun) {
12951 + handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
12952 + } else if (hcint.b.nak && !hcintmsk.b.nak) {
12953 + /*
12954 + * If nak is not masked, it's because a non-split IN transfer
12955 + * is in an error state. In that case, the nak is handled by
12956 + * the nak interrupt handler, not here. Handle nak here for
12957 + * BULK/CONTROL OUT transfers, which halt on a NAK to allow
12958 + * rewinding the buffer pointer.
12959 + */
12960 + handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
12961 + } else if (hcint.b.ack && !hcintmsk.b.ack) {
12962 + /*
12963 + * If ack is not masked, it's because a non-split IN transfer
12964 + * is in an error state. In that case, the ack is handled by
12965 + * the ack interrupt handler, not here. Handle ack here for
12966 + * split transfers. Start splits halt on ACK.
12967 + */
12968 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12969 + } else {
12970 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12971 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12972 + /*
12973 + * A periodic transfer halted with no other channel
12974 + * interrupts set. Assume it was halted by the core
12975 + * because it could not be completed in its scheduled
12976 + * (micro)frame.
12977 + */
12978 +#ifdef DEBUG
12979 + DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
12980 + __func__, hc->hc_num);
12981 +#endif
12982 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
12983 + } else {
12984 + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
12985 + "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
12986 + __func__, hc->hc_num, hcint.d32,
12987 + dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
12988 + }
12989 + }
12990 + } else {
12991 + printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
12992 + }
12993 +}
12994 +
12995 +/**
12996 + * Handles a host channel Channel Halted interrupt.
12997 + *
12998 + * In slave mode, this handler is called only when the driver specifically
12999 + * requests a halt. This occurs during handling other host channel interrupts
13000 + * (e.g. nak, xacterr, stall, nyet, etc.).
13001 + *
13002 + * In DMA mode, this is the interrupt that occurs when the core has finished
13003 + * processing a transfer on a channel. Other host channel interrupts (except
13004 + * ahberr) are disabled in DMA mode.
13005 + */
13006 +static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
13007 + dwc_hc_t *hc,
13008 + dwc_otg_hc_regs_t *hc_regs,
13009 + dwc_otg_qtd_t *qtd)
13010 +{
13011 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
13012 + "Channel Halted--\n", hc->hc_num);
13013 +
13014 + if (hcd->core_if->dma_enable) {
13015 + handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
13016 + } else {
13017 +#ifdef DEBUG
13018 + if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
13019 + return 1;
13020 + }
13021 +#endif
13022 + release_channel(hcd, hc, qtd, hc->halt_status);
13023 + }
13024 +
13025 + return 1;
13026 +}
13027 +
13028 +/** Handles interrupt for a specific Host Channel */
13029 +int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
13030 +{
13031 + int retval = 0;
13032 + hcint_data_t hcint;
13033 + hcintmsk_data_t hcintmsk;
13034 + dwc_hc_t *hc;
13035 + dwc_otg_hc_regs_t *hc_regs;
13036 + dwc_otg_qtd_t *qtd;
13037 +
13038 + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
13039 +
13040 + hc = dwc_otg_hcd->hc_ptr_array[num];
13041 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
13042 + qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
13043 +
13044 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
13045 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
13046 + DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
13047 + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
13048 + hcint.d32 = hcint.d32 & hcintmsk.d32;
13049 +
13050 + if (!dwc_otg_hcd->core_if->dma_enable) {
13051 + if (hcint.b.chhltd && hcint.d32 != 0x2) {
13052 + hcint.b.chhltd = 0;
13053 + }
13054 + }
13055 +
13056 + if (hcint.b.xfercomp) {
13057 + retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13058 + /*
13059 + * If NYET occurred at same time as Xfer Complete, the NYET is
13060 + * handled by the Xfer Complete interrupt handler. Don't want
13061 + * to call the NYET interrupt handler in this case.
13062 + */
13063 + hcint.b.nyet = 0;
13064 + }
13065 + if (hcint.b.chhltd) {
13066 + retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13067 + }
13068 + if (hcint.b.ahberr) {
13069 + retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13070 + }
13071 + if (hcint.b.stall) {
13072 + retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13073 + }
13074 + if (hcint.b.nak) {
13075 + retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13076 + }
13077 + if (hcint.b.ack) {
13078 + retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13079 + }
13080 + if (hcint.b.nyet) {
13081 + retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13082 + }
13083 + if (hcint.b.xacterr) {
13084 + retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13085 + }
13086 + if (hcint.b.bblerr) {
13087 + retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13088 + }
13089 + if (hcint.b.frmovrun) {
13090 + retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13091 + }
13092 + if (hcint.b.datatglerr) {
13093 + retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13094 + }
13095 +
13096 + return retval;
13097 +}
13098 +
13099 +#endif /* DWC_DEVICE_ONLY */
13100 --- /dev/null
13101 +++ b/drivers/usb/dwc/otg_hcd_queue.c
13102 @@ -0,0 +1,713 @@
13103 +/* ==========================================================================
13104 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
13105 + * $Revision: #33 $
13106 + * $Date: 2008/07/15 $
13107 + * $Change: 1064918 $
13108 + *
13109 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13110 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13111 + * otherwise expressly agreed to in writing between Synopsys and you.
13112 + *
13113 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13114 + * any End User Software License Agreement or Agreement for Licensed Product
13115 + * with Synopsys or any supplement thereto. You are permitted to use and
13116 + * redistribute this Software in source and binary forms, with or without
13117 + * modification, provided that redistributions of source code must retain this
13118 + * notice. You may not view, use, disclose, copy or distribute this file or
13119 + * any information contained herein except pursuant to this license grant from
13120 + * Synopsys. If you do not agree with this notice, including the disclaimer
13121 + * below, then you are not authorized to use the Software.
13122 + *
13123 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13124 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13125 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13126 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13127 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13128 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13129 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13130 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13131 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13132 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13133 + * DAMAGE.
13134 + * ========================================================================== */
13135 +#ifndef DWC_DEVICE_ONLY
13136 +
13137 +/**
13138 + * @file
13139 + *
13140 + * This file contains the functions to manage Queue Heads and Queue
13141 + * Transfer Descriptors.
13142 + */
13143 +#include <linux/kernel.h>
13144 +#include <linux/module.h>
13145 +#include <linux/moduleparam.h>
13146 +#include <linux/init.h>
13147 +#include <linux/device.h>
13148 +#include <linux/errno.h>
13149 +#include <linux/list.h>
13150 +#include <linux/interrupt.h>
13151 +#include <linux/string.h>
13152 +#include <linux/version.h>
13153 +
13154 +#include <mach/irqs.h>
13155 +
13156 +#include "otg_driver.h"
13157 +#include "otg_hcd.h"
13158 +#include "otg_regs.h"
13159 +
13160 +/**
13161 + * This function allocates and initializes a QH.
13162 + *
13163 + * @param hcd The HCD state structure for the DWC OTG controller.
13164 + * @param[in] urb Holds the information about the device/endpoint that we need
13165 + * to initialize the QH.
13166 + *
13167 + * @return Returns pointer to the newly allocated QH, or NULL on error. */
13168 +dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
13169 +{
13170 + dwc_otg_qh_t *qh;
13171 +
13172 + /* Allocate memory */
13173 + /** @todo add memflags argument */
13174 + qh = dwc_otg_hcd_qh_alloc ();
13175 + if (qh == NULL) {
13176 + return NULL;
13177 + }
13178 +
13179 + dwc_otg_hcd_qh_init (hcd, qh, urb);
13180 + return qh;
13181 +}
13182 +
13183 +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
13184 + * removed from a list. QTD list should already be empty if called from URB
13185 + * Dequeue.
13186 + *
13187 + * @param[in] hcd HCD instance.
13188 + * @param[in] qh The QH to free.
13189 + */
13190 +void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13191 +{
13192 + dwc_otg_qtd_t *qtd;
13193 + struct list_head *pos;
13194 + //unsigned long flags;
13195 +
13196 + /* Free each QTD in the QTD list */
13197 +
13198 +#ifdef CONFIG_SMP
13199 + //the spinlock is locked before this function get called,
13200 + //but in case the lock is needed, the check function is preserved
13201 +
13202 + //but in non-SMP mode, all spinlock is lockable.
13203 + //don't do the test in non-SMP mode
13204 +
13205 + if(spin_trylock(&hcd->lock)) {
13206 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13207 + BUG();
13208 + }
13209 +#endif
13210 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
13211 + for (pos = qh->qtd_list.next;
13212 + pos != &qh->qtd_list;
13213 + pos = qh->qtd_list.next)
13214 + {
13215 + list_del (pos);
13216 + qtd = dwc_list_to_qtd (pos);
13217 + dwc_otg_hcd_qtd_free (qtd);
13218 + }
13219 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
13220 +
13221 + kfree (qh);
13222 + return;
13223 +}
13224 +
13225 +/** Initializes a QH structure.
13226 + *
13227 + * @param[in] hcd The HCD state structure for the DWC OTG controller.
13228 + * @param[in] qh The QH to init.
13229 + * @param[in] urb Holds the information about the device/endpoint that we need
13230 + * to initialize the QH. */
13231 +#define SCHEDULE_SLOP 10
13232 +void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
13233 +{
13234 + char *speed, *type;
13235 + memset (qh, 0, sizeof (dwc_otg_qh_t));
13236 +
13237 + /* Initialize QH */
13238 + switch (usb_pipetype(urb->pipe)) {
13239 + case PIPE_CONTROL:
13240 + qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
13241 + break;
13242 + case PIPE_BULK:
13243 + qh->ep_type = USB_ENDPOINT_XFER_BULK;
13244 + break;
13245 + case PIPE_ISOCHRONOUS:
13246 + qh->ep_type = USB_ENDPOINT_XFER_ISOC;
13247 + break;
13248 + case PIPE_INTERRUPT:
13249 + qh->ep_type = USB_ENDPOINT_XFER_INT;
13250 + break;
13251 + }
13252 +
13253 + qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
13254 +
13255 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
13256 + qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
13257 + INIT_LIST_HEAD(&qh->qtd_list);
13258 + INIT_LIST_HEAD(&qh->qh_list_entry);
13259 + qh->channel = NULL;
13260 +
13261 + /* FS/LS Enpoint on HS Hub
13262 + * NOT virtual root hub */
13263 + qh->do_split = 0;
13264 + if (((urb->dev->speed == USB_SPEED_LOW) ||
13265 + (urb->dev->speed == USB_SPEED_FULL)) &&
13266 + (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
13267 + {
13268 + DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
13269 + usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
13270 + urb->dev->ttport);
13271 + qh->do_split = 1;
13272 + }
13273 +
13274 + if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
13275 + qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
13276 + /* Compute scheduling parameters once and save them. */
13277 + hprt0_data_t hprt;
13278 +
13279 + /** @todo Account for split transfers in the bus time. */
13280 + int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
13281 + qh->usecs = usb_calc_bus_time(urb->dev->speed,
13282 + usb_pipein(urb->pipe),
13283 + (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
13284 + bytecount);
13285 +
13286 + /* Start in a slightly future (micro)frame. */
13287 + qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
13288 + SCHEDULE_SLOP);
13289 + qh->interval = urb->interval;
13290 +#if 0
13291 + /* Increase interrupt polling rate for debugging. */
13292 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13293 + qh->interval = 8;
13294 + }
13295 +#endif
13296 + hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
13297 + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
13298 + ((urb->dev->speed == USB_SPEED_LOW) ||
13299 + (urb->dev->speed == USB_SPEED_FULL))) {
13300 + qh->interval *= 8;
13301 + qh->sched_frame |= 0x7;
13302 + qh->start_split_frame = qh->sched_frame;
13303 + }
13304 +
13305 + }
13306 +
13307 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
13308 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
13309 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
13310 + urb->dev->devnum);
13311 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
13312 + usb_pipeendpoint(urb->pipe),
13313 + usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
13314 +
13315 + switch(urb->dev->speed) {
13316 + case USB_SPEED_LOW:
13317 + speed = "low";
13318 + break;
13319 + case USB_SPEED_FULL:
13320 + speed = "full";
13321 + break;
13322 + case USB_SPEED_HIGH:
13323 + speed = "high";
13324 + break;
13325 + default:
13326 + speed = "?";
13327 + break;
13328 + }
13329 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
13330 +
13331 + switch (qh->ep_type) {
13332 + case USB_ENDPOINT_XFER_ISOC:
13333 + type = "isochronous";
13334 + break;
13335 + case USB_ENDPOINT_XFER_INT:
13336 + type = "interrupt";
13337 + break;
13338 + case USB_ENDPOINT_XFER_CONTROL:
13339 + type = "control";
13340 + break;
13341 + case USB_ENDPOINT_XFER_BULK:
13342 + type = "bulk";
13343 + break;
13344 + default:
13345 + type = "?";
13346 + break;
13347 + }
13348 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
13349 +
13350 +#ifdef DEBUG
13351 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13352 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
13353 + qh->usecs);
13354 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
13355 + qh->interval);
13356 + }
13357 +#endif
13358 +
13359 + return;
13360 +}
13361 +
13362 +/**
13363 + * Checks that a channel is available for a periodic transfer.
13364 + *
13365 + * @return 0 if successful, negative error code otherise.
13366 + */
13367 +static int periodic_channel_available(dwc_otg_hcd_t *hcd)
13368 +{
13369 + /*
13370 + * Currently assuming that there is a dedicated host channnel for each
13371 + * periodic transaction plus at least one host channel for
13372 + * non-periodic transactions.
13373 + */
13374 + int status;
13375 + int num_channels;
13376 +
13377 + num_channels = hcd->core_if->core_params->host_channels;
13378 + if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) &&
13379 + (hcd->periodic_channels < num_channels - 1)) {
13380 + status = 0;
13381 + }
13382 + else {
13383 + DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
13384 + __func__, num_channels, hcd->periodic_channels,
13385 + hcd->non_periodic_channels);
13386 + status = -ENOSPC;
13387 + }
13388 +
13389 + return status;
13390 +}
13391 +
13392 +/**
13393 + * Checks that there is sufficient bandwidth for the specified QH in the
13394 + * periodic schedule. For simplicity, this calculation assumes that all the
13395 + * transfers in the periodic schedule may occur in the same (micro)frame.
13396 + *
13397 + * @param hcd The HCD state structure for the DWC OTG controller.
13398 + * @param qh QH containing periodic bandwidth required.
13399 + *
13400 + * @return 0 if successful, negative error code otherwise.
13401 + */
13402 +static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13403 +{
13404 + int status;
13405 + uint16_t max_claimed_usecs;
13406 +
13407 + status = 0;
13408 +
13409 + if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
13410 + /*
13411 + * High speed mode.
13412 + * Max periodic usecs is 80% x 125 usec = 100 usec.
13413 + */
13414 + max_claimed_usecs = 100 - qh->usecs;
13415 + } else {
13416 + /*
13417 + * Full speed mode.
13418 + * Max periodic usecs is 90% x 1000 usec = 900 usec.
13419 + */
13420 + max_claimed_usecs = 900 - qh->usecs;
13421 + }
13422 +
13423 + if (hcd->periodic_usecs > max_claimed_usecs) {
13424 + DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
13425 + __func__, hcd->periodic_usecs, qh->usecs);
13426 + status = -ENOSPC;
13427 + }
13428 +
13429 + return status;
13430 +}
13431 +
13432 +/**
13433 + * Checks that the max transfer size allowed in a host channel is large enough
13434 + * to handle the maximum data transfer in a single (micro)frame for a periodic
13435 + * transfer.
13436 + *
13437 + * @param hcd The HCD state structure for the DWC OTG controller.
13438 + * @param qh QH for a periodic endpoint.
13439 + *
13440 + * @return 0 if successful, negative error code otherwise.
13441 + */
13442 +static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13443 +{
13444 + int status;
13445 + uint32_t max_xfer_size;
13446 + uint32_t max_channel_xfer_size;
13447 +
13448 + status = 0;
13449 +
13450 + max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
13451 + max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
13452 +
13453 + if (max_xfer_size > max_channel_xfer_size) {
13454 + DWC_NOTICE("%s: Periodic xfer length %d > "
13455 + "max xfer length for channel %d\n",
13456 + __func__, max_xfer_size, max_channel_xfer_size);
13457 + status = -ENOSPC;
13458 + }
13459 +
13460 + return status;
13461 +}
13462 +
13463 +/**
13464 + * Schedules an interrupt or isochronous transfer in the periodic schedule.
13465 + *
13466 + * @param hcd The HCD state structure for the DWC OTG controller.
13467 + * @param qh QH for the periodic transfer. The QH should already contain the
13468 + * scheduling information.
13469 + *
13470 + * @return 0 if successful, negative error code otherwise.
13471 + */
13472 +static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13473 +{
13474 + int status = 0;
13475 +
13476 + status = periodic_channel_available(hcd);
13477 + if (status) {
13478 + DWC_NOTICE("%s: No host channel available for periodic "
13479 + "transfer.\n", __func__);
13480 + return status;
13481 + }
13482 +
13483 + status = check_periodic_bandwidth(hcd, qh);
13484 + if (status) {
13485 + DWC_NOTICE("%s: Insufficient periodic bandwidth for "
13486 + "periodic transfer.\n", __func__);
13487 + return status;
13488 + }
13489 +
13490 + status = check_max_xfer_size(hcd, qh);
13491 + if (status) {
13492 + DWC_NOTICE("%s: Channel max transfer size too small "
13493 + "for periodic transfer.\n", __func__);
13494 + return status;
13495 + }
13496 +
13497 + /* Always start in the inactive schedule. */
13498 + list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
13499 +
13500 + /* Reserve the periodic channel. */
13501 + hcd->periodic_channels++;
13502 +
13503 + /* Update claimed usecs per (micro)frame. */
13504 + hcd->periodic_usecs += qh->usecs;
13505 +
13506 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
13507 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval;
13508 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13509 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
13510 + DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
13511 + qh, qh->usecs, qh->interval);
13512 + } else {
13513 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
13514 + DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
13515 + qh, qh->usecs, qh->interval);
13516 + }
13517 +
13518 + return status;
13519 +}
13520 +
13521 +/**
13522 + * This function adds a QH to either the non periodic or periodic schedule if
13523 + * it is not already in the schedule. If the QH is already in the schedule, no
13524 + * action is taken.
13525 + *
13526 + * @return 0 if successful, negative error code otherwise.
13527 + */
13528 +int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13529 +{
13530 + //unsigned long flags;
13531 + int status = 0;
13532 +
13533 +#ifdef CONFIG_SMP
13534 + //the spinlock is locked before this function get called,
13535 + //but in case the lock is needed, the check function is preserved
13536 + //but in non-SMP mode, all spinlock is lockable.
13537 + //don't do the test in non-SMP mode
13538 +
13539 + if(spin_trylock(&hcd->lock)) {
13540 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13541 + BUG();
13542 + }
13543 +#endif
13544 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
13545 +
13546 + if (!list_empty(&qh->qh_list_entry)) {
13547 + /* QH already in a schedule. */
13548 + goto done;
13549 + }
13550 +
13551 + /* Add the new QH to the appropriate schedule */
13552 + if (dwc_qh_is_non_per(qh)) {
13553 + /* Always start in the inactive schedule. */
13554 + list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
13555 + } else {
13556 + status = schedule_periodic(hcd, qh);
13557 + }
13558 +
13559 + done:
13560 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
13561 +
13562 + return status;
13563 +}
13564 +
13565 +/**
13566 + * Removes an interrupt or isochronous transfer from the periodic schedule.
13567 + *
13568 + * @param hcd The HCD state structure for the DWC OTG controller.
13569 + * @param qh QH for the periodic transfer.
13570 + */
13571 +static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13572 +{
13573 + list_del_init(&qh->qh_list_entry);
13574 +
13575 + /* Release the periodic channel reservation. */
13576 + hcd->periodic_channels--;
13577 +
13578 + /* Update claimed usecs per (micro)frame. */
13579 + hcd->periodic_usecs -= qh->usecs;
13580 +
13581 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
13582 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval;
13583 +
13584 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13585 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
13586 + DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
13587 + qh, qh->usecs, qh->interval);
13588 + } else {
13589 + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
13590 + DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
13591 + qh, qh->usecs, qh->interval);
13592 + }
13593 +}
13594 +
13595 +/**
13596 + * Removes a QH from either the non-periodic or periodic schedule. Memory is
13597 + * not freed.
13598 + *
13599 + * @param[in] hcd The HCD state structure.
13600 + * @param[in] qh QH to remove from schedule. */
13601 +void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13602 +{
13603 + //unsigned long flags;
13604 +
13605 +#ifdef CONFIG_SMP
13606 + //the spinlock is locked before this function get called,
13607 + //but in case the lock is needed, the check function is preserved
13608 + //but in non-SMP mode, all spinlock is lockable.
13609 + //don't do the test in non-SMP mode
13610 +
13611 + if(spin_trylock(&hcd->lock)) {
13612 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13613 + BUG();
13614 + }
13615 +#endif
13616 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
13617 +
13618 + if (list_empty(&qh->qh_list_entry)) {
13619 + /* QH is not in a schedule. */
13620 + goto done;
13621 + }
13622 +
13623 + if (dwc_qh_is_non_per(qh)) {
13624 + if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
13625 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
13626 + }
13627 + list_del_init(&qh->qh_list_entry);
13628 + } else {
13629 + deschedule_periodic(hcd, qh);
13630 + }
13631 +
13632 + done:
13633 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
13634 + return;
13635 +}
13636 +
13637 +/**
13638 + * Deactivates a QH. For non-periodic QHs, removes the QH from the active
13639 + * non-periodic schedule. The QH is added to the inactive non-periodic
13640 + * schedule if any QTDs are still attached to the QH.
13641 + *
13642 + * For periodic QHs, the QH is removed from the periodic queued schedule. If
13643 + * there are any QTDs still attached to the QH, the QH is added to either the
13644 + * periodic inactive schedule or the periodic ready schedule and its next
13645 + * scheduled frame is calculated. The QH is placed in the ready schedule if
13646 + * the scheduled frame has been reached already. Otherwise it's placed in the
13647 + * inactive schedule. If there are no QTDs attached to the QH, the QH is
13648 + * completely removed from the periodic schedule.
13649 + */
13650 +void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
13651 +{
13652 + unsigned long flags;
13653 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
13654 +
13655 + if (dwc_qh_is_non_per(qh)) {
13656 + dwc_otg_hcd_qh_remove(hcd, qh);
13657 + if (!list_empty(&qh->qtd_list)) {
13658 + /* Add back to inactive non-periodic schedule. */
13659 + dwc_otg_hcd_qh_add(hcd, qh);
13660 + }
13661 + } else {
13662 + uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
13663 +
13664 + if (qh->do_split) {
13665 + /* Schedule the next continuing periodic split transfer */
13666 + if (sched_next_periodic_split) {
13667 +
13668 + qh->sched_frame = frame_number;
13669 + if (dwc_frame_num_le(frame_number,
13670 + dwc_frame_num_inc(qh->start_split_frame, 1))) {
13671 + /*
13672 + * Allow one frame to elapse after start
13673 + * split microframe before scheduling
13674 + * complete split, but DONT if we are
13675 + * doing the next start split in the
13676 + * same frame for an ISOC out.
13677 + */
13678 + if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
13679 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
13680 + }
13681 + }
13682 + } else {
13683 + qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
13684 + qh->interval);
13685 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
13686 + qh->sched_frame = frame_number;
13687 + }
13688 + qh->sched_frame |= 0x7;
13689 + qh->start_split_frame = qh->sched_frame;
13690 + }
13691 + } else {
13692 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
13693 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
13694 + qh->sched_frame = frame_number;
13695 + }
13696 + }
13697 +
13698 + if (list_empty(&qh->qtd_list)) {
13699 + dwc_otg_hcd_qh_remove(hcd, qh);
13700 + } else {
13701 + /*
13702 + * Remove from periodic_sched_queued and move to
13703 + * appropriate queue.
13704 + */
13705 + if (qh->sched_frame == frame_number) {
13706 + list_move(&qh->qh_list_entry,
13707 + &hcd->periodic_sched_ready);
13708 + } else {
13709 + list_move(&qh->qh_list_entry,
13710 + &hcd->periodic_sched_inactive);
13711 + }
13712 + }
13713 + }
13714 +
13715 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
13716 +}
13717 +
13718 +/**
13719 + * This function allocates and initializes a QTD.
13720 + *
13721 + * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
13722 + * pointing to each other so each pair should have a unique correlation.
13723 + *
13724 + * @return Returns pointer to the newly allocated QTD, or NULL on error. */
13725 +dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
13726 +{
13727 + dwc_otg_qtd_t *qtd;
13728 +
13729 + qtd = dwc_otg_hcd_qtd_alloc ();
13730 + if (qtd == NULL) {
13731 + return NULL;
13732 + }
13733 +
13734 + dwc_otg_hcd_qtd_init (qtd, urb);
13735 + return qtd;
13736 +}
13737 +
13738 +/**
13739 + * Initializes a QTD structure.
13740 + *
13741 + * @param[in] qtd The QTD to initialize.
13742 + * @param[in] urb The URB to use for initialization. */
13743 +void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
13744 +{
13745 + memset (qtd, 0, sizeof (dwc_otg_qtd_t));
13746 + qtd->urb = urb;
13747 + if (usb_pipecontrol(urb->pipe)) {
13748 + /*
13749 + * The only time the QTD data toggle is used is on the data
13750 + * phase of control transfers. This phase always starts with
13751 + * DATA1.
13752 + */
13753 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13754 + qtd->control_phase = DWC_OTG_CONTROL_SETUP;
13755 + }
13756 +
13757 + /* start split */
13758 + qtd->complete_split = 0;
13759 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
13760 + qtd->isoc_split_offset = 0;
13761 +
13762 + /* Store the qtd ptr in the urb to reference what QTD. */
13763 + urb->hcpriv = qtd;
13764 + return;
13765 +}
13766 +
13767 +/**
13768 + * This function adds a QTD to the QTD-list of a QH. It will find the correct
13769 + * QH to place the QTD into. If it does not find a QH, then it will create a
13770 + * new QH. If the QH to which the QTD is added is not currently scheduled, it
13771 + * is placed into the proper schedule based on its EP type.
13772 + *
13773 + * @param[in] qtd The QTD to add
13774 + * @param[in] dwc_otg_hcd The DWC HCD structure
13775 + *
13776 + * @return 0 if successful, negative error code otherwise.
13777 + */
13778 +int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
13779 + dwc_otg_hcd_t *dwc_otg_hcd)
13780 +{
13781 + struct usb_host_endpoint *ep;
13782 + dwc_otg_qh_t *qh;
13783 + unsigned long flags;
13784 + int retval = 0;
13785 +
13786 + struct urb *urb = qtd->urb;
13787 +
13788 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
13789 +
13790 + /*
13791 + * Get the QH which holds the QTD-list to insert to. Create QH if it
13792 + * doesn't exist.
13793 + */
13794 + ep = dwc_urb_to_endpoint(urb);
13795 + qh = (dwc_otg_qh_t *)ep->hcpriv;
13796 + if (qh == NULL) {
13797 + qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
13798 + if (qh == NULL) {
13799 + goto done;
13800 + }
13801 + ep->hcpriv = qh;
13802 + }
13803 +
13804 + retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
13805 + if (retval == 0) {
13806 + list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
13807 + }
13808 +
13809 + done:
13810 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
13811 +
13812 + return retval;
13813 +}
13814 +
13815 +#endif /* DWC_DEVICE_ONLY */
13816 --- /dev/null
13817 +++ b/drivers/usb/dwc/otg_pcd.c
13818 @@ -0,0 +1,2502 @@
13819 +/* ==========================================================================
13820 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
13821 + * $Revision: #70 $
13822 + * $Date: 2008/10/14 $
13823 + * $Change: 1115682 $
13824 + *
13825 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13826 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13827 + * otherwise expressly agreed to in writing between Synopsys and you.
13828 + *
13829 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13830 + * any End User Software License Agreement or Agreement for Licensed Product
13831 + * with Synopsys or any supplement thereto. You are permitted to use and
13832 + * redistribute this Software in source and binary forms, with or without
13833 + * modification, provided that redistributions of source code must retain this
13834 + * notice. You may not view, use, disclose, copy or distribute this file or
13835 + * any information contained herein except pursuant to this license grant from
13836 + * Synopsys. If you do not agree with this notice, including the disclaimer
13837 + * below, then you are not authorized to use the Software.
13838 + *
13839 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13840 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13841 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13842 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13843 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13844 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13845 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13846 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13847 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13848 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13849 + * DAMAGE.
13850 + * ========================================================================== */
13851 +#ifndef DWC_HOST_ONLY
13852 +
13853 +/** @file
13854 + * This file implements the Peripheral Controller Driver.
13855 + *
13856 + * The Peripheral Controller Driver (PCD) is responsible for
13857 + * translating requests from the Function Driver into the appropriate
13858 + * actions on the DWC_otg controller. It isolates the Function Driver
13859 + * from the specifics of the controller by providing an API to the
13860 + * Function Driver.
13861 + *
13862 + * The Peripheral Controller Driver for Linux will implement the
13863 + * Gadget API, so that the existing Gadget drivers can be used.
13864 + * (Gadget Driver is the Linux terminology for a Function Driver.)
13865 + *
13866 + * The Linux Gadget API is defined in the header file
13867 + * <code><linux/usb_gadget.h></code>. The USB EP operations API is
13868 + * defined in the structure <code>usb_ep_ops</code> and the USB
13869 + * Controller API is defined in the structure
13870 + * <code>usb_gadget_ops</code>.
13871 + *
13872 + * An important function of the PCD is managing interrupts generated
13873 + * by the DWC_otg controller. The implementation of the DWC_otg device
13874 + * mode interrupt service routines is in dwc_otg_pcd_intr.c.
13875 + *
13876 + * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
13877 + * @todo Does it work when the request size is greater than DEPTSIZ
13878 + * transfer size
13879 + *
13880 + */
13881 +
13882 +
13883 +#include <linux/kernel.h>
13884 +#include <linux/module.h>
13885 +#include <linux/moduleparam.h>
13886 +#include <linux/init.h>
13887 +#include <linux/device.h>
13888 +#include <linux/platform_device.h>
13889 +#include <linux/errno.h>
13890 +#include <linux/list.h>
13891 +#include <linux/interrupt.h>
13892 +#include <linux/string.h>
13893 +#include <linux/dma-mapping.h>
13894 +#include <linux/version.h>
13895 +
13896 +#include <mach/irqs.h>
13897 +#include <linux/usb/ch9.h>
13898 +
13899 +//#include <linux/usb_gadget.h>
13900 +
13901 +#include "otg_driver.h"
13902 +#include "otg_pcd.h"
13903 +
13904 +
13905 +
13906 +/**
13907 + * Static PCD pointer for use in usb_gadget_register_driver and
13908 + * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
13909 + */
13910 +static dwc_otg_pcd_t *s_pcd = 0;
13911 +
13912 +
13913 +/* Display the contents of the buffer */
13914 +extern void dump_msg(const u8 *buf, unsigned int length);
13915 +
13916 +
13917 +/**
13918 + * This function completes a request. It call's the request call back.
13919 + */
13920 +void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
13921 + int status)
13922 +{
13923 + unsigned stopped = ep->stopped;
13924 +
13925 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
13926 + list_del_init(&req->queue);
13927 +
13928 + if (req->req.status == -EINPROGRESS) {
13929 + req->req.status = status;
13930 + } else {
13931 + status = req->req.status;
13932 + }
13933 +
13934 + /* don't modify queue heads during completion callback */
13935 + ep->stopped = 1;
13936 + SPIN_UNLOCK(&ep->pcd->lock);
13937 + req->req.complete(&ep->ep, &req->req);
13938 + SPIN_LOCK(&ep->pcd->lock);
13939 +
13940 + if (ep->pcd->request_pending > 0) {
13941 + --ep->pcd->request_pending;
13942 + }
13943 +
13944 + ep->stopped = stopped;
13945 +}
13946 +
13947 +/**
13948 + * This function terminates all the requsts in the EP request queue.
13949 + */
13950 +void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
13951 +{
13952 + dwc_otg_pcd_request_t *req;
13953 +
13954 + ep->stopped = 1;
13955 +
13956 + /* called with irqs blocked?? */
13957 + while (!list_empty(&ep->queue)) {
13958 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
13959 + queue);
13960 + dwc_otg_request_done(ep, req, -ESHUTDOWN);
13961 + }
13962 +}
13963 +
13964 +/* USB Endpoint Operations */
13965 +/*
13966 + * The following sections briefly describe the behavior of the Gadget
13967 + * API endpoint operations implemented in the DWC_otg driver
13968 + * software. Detailed descriptions of the generic behavior of each of
13969 + * these functions can be found in the Linux header file
13970 + * include/linux/usb_gadget.h.
13971 + *
13972 + * The Gadget API provides wrapper functions for each of the function
13973 + * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
13974 + * function, which then calls the underlying PCD function. The
13975 + * following sections are named according to the wrapper
13976 + * functions. Within each section, the corresponding DWC_otg PCD
13977 + * function name is specified.
13978 + *
13979 + */
13980 +
13981 +/**
13982 + * This function assigns periodic Tx FIFO to an periodic EP
13983 + * in shared Tx FIFO mode
13984 + */
13985 +static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
13986 +{
13987 + uint32_t PerTxMsk = 1;
13988 + int i;
13989 + for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
13990 + {
13991 + if((PerTxMsk & core_if->p_tx_msk) == 0) {
13992 + core_if->p_tx_msk |= PerTxMsk;
13993 + return i + 1;
13994 + }
13995 + PerTxMsk <<= 1;
13996 + }
13997 + return 0;
13998 +}
13999 +/**
14000 + * This function releases periodic Tx FIFO
14001 + * in shared Tx FIFO mode
14002 + */
14003 +static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
14004 +{
14005 + core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
14006 +}
14007 +/**
14008 + * This function assigns periodic Tx FIFO to an periodic EP
14009 + * in shared Tx FIFO mode
14010 + */
14011 +static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
14012 +{
14013 + uint32_t TxMsk = 1;
14014 + int i;
14015 +
14016 + for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
14017 + {
14018 + if((TxMsk & core_if->tx_msk) == 0) {
14019 + core_if->tx_msk |= TxMsk;
14020 + return i + 1;
14021 + }
14022 + TxMsk <<= 1;
14023 + }
14024 + return 0;
14025 +}
14026 +/**
14027 + * This function releases periodic Tx FIFO
14028 + * in shared Tx FIFO mode
14029 + */
14030 +static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
14031 +{
14032 + core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
14033 +}
14034 +
14035 +/**
14036 + * This function is called by the Gadget Driver for each EP to be
14037 + * configured for the current configuration (SET_CONFIGURATION).
14038 + *
14039 + * This function initializes the dwc_otg_ep_t data structure, and then
14040 + * calls dwc_otg_ep_activate.
14041 + */
14042 +static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
14043 + const struct usb_endpoint_descriptor *ep_desc)
14044 +{
14045 + dwc_otg_pcd_ep_t *ep = 0;
14046 + dwc_otg_pcd_t *pcd = 0;
14047 + unsigned long flags;
14048 +
14049 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
14050 +
14051 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14052 + if (!usb_ep || !ep_desc || ep->desc ||
14053 + ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
14054 + DWC_WARN("%s, bad ep or descriptor\n", __func__);
14055 + return -EINVAL;
14056 + }
14057 + if (ep == &ep->pcd->ep0) {
14058 + DWC_WARN("%s, bad ep(0)\n", __func__);
14059 + return -EINVAL;
14060 + }
14061 +
14062 + /* Check FIFO size? */
14063 + if (!ep_desc->wMaxPacketSize) {
14064 + DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
14065 + return -ERANGE;
14066 + }
14067 +
14068 + pcd = ep->pcd;
14069 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14070 + DWC_WARN("%s, bogus device state\n", __func__);
14071 + return -ESHUTDOWN;
14072 + }
14073 +
14074 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
14075 +
14076 + ep->desc = ep_desc;
14077 + ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
14078 +
14079 + /*
14080 + * Activate the EP
14081 + */
14082 + ep->stopped = 0;
14083 +
14084 + ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
14085 + ep->dwc_ep.maxpacket = ep->ep.maxpacket;
14086 +
14087 + ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
14088 +
14089 + if(ep->dwc_ep.is_in) {
14090 + if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
14091 + ep->dwc_ep.tx_fifo_num = 0;
14092 +
14093 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
14094 + /*
14095 + * if ISOC EP then assign a Periodic Tx FIFO.
14096 + */
14097 + ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
14098 + }
14099 + } else {
14100 + /*
14101 + * if Dedicated FIFOs mode is on then assign a Tx FIFO.
14102 + */
14103 + ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
14104 +
14105 + }
14106 + }
14107 + /* Set initial data PID. */
14108 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
14109 + ep->dwc_ep.data_pid_start = 0;
14110 + }
14111 +
14112 + DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
14113 + ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
14114 + ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
14115 +
14116 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
14117 + ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
14118 + }
14119 +
14120 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
14121 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14122 +
14123 + return 0;
14124 +}
14125 +
14126 +/**
14127 + * This function is called when an EP is disabled due to disconnect or
14128 + * change in configuration. Any pending requests will terminate with a
14129 + * status of -ESHUTDOWN.
14130 + *
14131 + * This function modifies the dwc_otg_ep_t data structure for this EP,
14132 + * and then calls dwc_otg_ep_deactivate.
14133 + */
14134 +static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
14135 +{
14136 + dwc_otg_pcd_ep_t *ep;
14137 + dwc_otg_pcd_t *pcd = 0;
14138 + unsigned long flags;
14139 +
14140 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
14141 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14142 + if (!usb_ep || !ep->desc) {
14143 + DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
14144 + usb_ep ? ep->ep.name : NULL);
14145 + return -EINVAL;
14146 + }
14147 +
14148 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14149 +
14150 + dwc_otg_request_nuke(ep);
14151 +
14152 + dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
14153 + ep->desc = 0;
14154 + ep->stopped = 1;
14155 +
14156 + if(ep->dwc_ep.is_in) {
14157 + dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14158 + release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14159 + release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14160 + }
14161 +
14162 + /* Free DMA Descriptors */
14163 + pcd = ep->pcd;
14164 +
14165 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
14166 +
14167 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
14168 + dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
14169 + }
14170 +
14171 + DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
14172 + return 0;
14173 +}
14174 +
14175 +
14176 +/**
14177 + * This function allocates a request object to use with the specified
14178 + * endpoint.
14179 + *
14180 + * @param ep The endpoint to be used with with the request
14181 + * @param gfp_flags the GFP_* flags to use.
14182 + */
14183 +static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
14184 + gfp_t gfp_flags)
14185 +{
14186 + dwc_otg_pcd_request_t *req;
14187 +
14188 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
14189 + if (0 == ep) {
14190 + DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
14191 + return 0;
14192 + }
14193 + req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
14194 + if (0 == req) {
14195 + DWC_WARN("%s() %s\n", __func__,
14196 + "request allocation failed!\n");
14197 + return 0;
14198 + }
14199 + memset(req, 0, sizeof(dwc_otg_pcd_request_t));
14200 + req->req.dma = DMA_ADDR_INVALID;
14201 + INIT_LIST_HEAD(&req->queue);
14202 + return &req->req;
14203 +}
14204 +
14205 +/**
14206 + * This function frees a request object.
14207 + *
14208 + * @param ep The endpoint associated with the request
14209 + * @param req The request being freed
14210 + */
14211 +static void dwc_otg_pcd_free_request(struct usb_ep *ep,
14212 + struct usb_request *req)
14213 +{
14214 + dwc_otg_pcd_request_t *request;
14215 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
14216 +
14217 + if (0 == ep || 0 == req) {
14218 + DWC_WARN("%s() %s\n", __func__,
14219 + "Invalid ep or req argument!\n");
14220 + return;
14221 + }
14222 +
14223 + request = container_of(req, dwc_otg_pcd_request_t, req);
14224 + kfree(request);
14225 +}
14226 +
14227 +#if 0
14228 +/**
14229 + * This function allocates an I/O buffer to be used for a transfer
14230 + * to/from the specified endpoint.
14231 + *
14232 + * @param usb_ep The endpoint to be used with with the request
14233 + * @param bytes The desired number of bytes for the buffer
14234 + * @param dma Pointer to the buffer's DMA address; must be valid
14235 + * @param gfp_flags the GFP_* flags to use.
14236 + * @return address of a new buffer or null is buffer could not be allocated.
14237 + */
14238 +static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
14239 + dma_addr_t *dma,
14240 + gfp_t gfp_flags)
14241 +{
14242 + void *buf;
14243 + dwc_otg_pcd_ep_t *ep;
14244 + dwc_otg_pcd_t *pcd = 0;
14245 +
14246 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14247 + pcd = ep->pcd;
14248 +
14249 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
14250 + dma, gfp_flags);
14251 +
14252 + /* Check dword alignment */
14253 + if ((bytes & 0x3UL) != 0) {
14254 + DWC_WARN("%s() Buffer size is not a multiple of"
14255 + "DWORD size (%d)",__func__, bytes);
14256 + }
14257 +
14258 + if (GET_CORE_IF(pcd)->dma_enable) {
14259 + buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
14260 + }
14261 + else {
14262 + buf = kmalloc(bytes, gfp_flags);
14263 + }
14264 +
14265 + /* Check dword alignment */
14266 + if (((int)buf & 0x3UL) != 0) {
14267 + DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
14268 + __func__, buf);
14269 + }
14270 +
14271 + return buf;
14272 +}
14273 +
14274 +/**
14275 + * This function frees an I/O buffer that was allocated by alloc_buffer.
14276 + *
14277 + * @param usb_ep the endpoint associated with the buffer
14278 + * @param buf address of the buffer
14279 + * @param dma The buffer's DMA address
14280 + * @param bytes The number of bytes of the buffer
14281 + */
14282 +static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
14283 + dma_addr_t dma, unsigned bytes)
14284 +{
14285 + dwc_otg_pcd_ep_t *ep;
14286 + dwc_otg_pcd_t *pcd = 0;
14287 +
14288 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14289 + pcd = ep->pcd;
14290 +
14291 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
14292 +
14293 + if (GET_CORE_IF(pcd)->dma_enable) {
14294 + dma_free_coherent (NULL, bytes, buf, dma);
14295 + }
14296 + else {
14297 + kfree(buf);
14298 + }
14299 +}
14300 +#endif
14301 +
14302 +/**
14303 + * This function is used to submit an I/O Request to an EP.
14304 + *
14305 + * - When the request completes the request's completion callback
14306 + * is called to return the request to the driver.
14307 + * - An EP, except control EPs, may have multiple requests
14308 + * pending.
14309 + * - Once submitted the request cannot be examined or modified.
14310 + * - Each request is turned into one or more packets.
14311 + * - A BULK EP can queue any amount of data; the transfer is
14312 + * packetized.
14313 + * - Zero length Packets are specified with the request 'zero'
14314 + * flag.
14315 + */
14316 +static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
14317 + struct usb_request *usb_req,
14318 + gfp_t gfp_flags)
14319 +{
14320 + int prevented = 0;
14321 + dwc_otg_pcd_request_t *req;
14322 + dwc_otg_pcd_ep_t *ep;
14323 + dwc_otg_pcd_t *pcd;
14324 + unsigned long flags = 0;
14325 +
14326 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
14327 + __func__, usb_ep, usb_req, gfp_flags);
14328 +
14329 + req = container_of(usb_req, dwc_otg_pcd_request_t, req);
14330 + if (!usb_req || !usb_req->complete || !usb_req->buf ||
14331 + !list_empty(&req->queue)) {
14332 + DWC_WARN("%s, bad params\n", __func__);
14333 + return -EINVAL;
14334 + }
14335 +
14336 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14337 + if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
14338 + DWC_WARN("%s, bad ep\n", __func__);
14339 + return -EINVAL;
14340 + }
14341 +
14342 + pcd = ep->pcd;
14343 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14344 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
14345 + DWC_WARN("%s, bogus device state\n", __func__);
14346 + return -ESHUTDOWN;
14347 + }
14348 +
14349 +
14350 + DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
14351 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
14352 +
14353 + if (!GET_CORE_IF(pcd)->core_params->opt) {
14354 + if (ep->dwc_ep.num != 0) {
14355 + DWC_ERROR("%s queue req %p, len %d buf %p\n",
14356 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
14357 + }
14358 + }
14359 +
14360 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14361 +
14362 +#if defined(DEBUG) & defined(VERBOSE)
14363 + dump_msg(usb_req->buf, usb_req->length);
14364 +#endif
14365 +
14366 + usb_req->status = -EINPROGRESS;
14367 + usb_req->actual = 0;
14368 +
14369 + /*
14370 + * For EP0 IN without premature status, zlp is required?
14371 + */
14372 + if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
14373 + DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
14374 + //_req->zero = 1;
14375 + }
14376 +
14377 + /* Start the transfer */
14378 + if (list_empty(&ep->queue) && !ep->stopped) {
14379 + /* EP0 Transfer? */
14380 + if (ep->dwc_ep.num == 0) {
14381 + switch (pcd->ep0state) {
14382 + case EP0_IN_DATA_PHASE:
14383 + DWC_DEBUGPL(DBG_PCD,
14384 + "%s ep0: EP0_IN_DATA_PHASE\n",
14385 + __func__);
14386 + break;
14387 +
14388 + case EP0_OUT_DATA_PHASE:
14389 + DWC_DEBUGPL(DBG_PCD,
14390 + "%s ep0: EP0_OUT_DATA_PHASE\n",
14391 + __func__);
14392 + if (pcd->request_config) {
14393 + /* Complete STATUS PHASE */
14394 + ep->dwc_ep.is_in = 1;
14395 + pcd->ep0state = EP0_IN_STATUS_PHASE;
14396 + }
14397 + break;
14398 +
14399 + case EP0_IN_STATUS_PHASE:
14400 + DWC_DEBUGPL(DBG_PCD,
14401 + "%s ep0: EP0_IN_STATUS_PHASE\n",
14402 + __func__);
14403 + break;
14404 +
14405 + default:
14406 + DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
14407 + pcd->ep0state);
14408 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14409 + return -EL2HLT;
14410 + }
14411 + ep->dwc_ep.dma_addr = usb_req->dma;
14412 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
14413 + ep->dwc_ep.xfer_buff = usb_req->buf;
14414 + ep->dwc_ep.xfer_len = usb_req->length;
14415 + ep->dwc_ep.xfer_count = 0;
14416 + ep->dwc_ep.sent_zlp = 0;
14417 + ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
14418 +
14419 + if(usb_req->zero) {
14420 + if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
14421 + && (ep->dwc_ep.xfer_len != 0)) {
14422 + ep->dwc_ep.sent_zlp = 1;
14423 + }
14424 +
14425 + }
14426 +
14427 + ep_check_and_patch_dma_addr(ep);
14428 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
14429 + }
14430 + else {
14431 +
14432 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
14433 +
14434 + /* Setup and start the Transfer */
14435 + ep->dwc_ep.dma_addr = usb_req->dma;
14436 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
14437 + ep->dwc_ep.xfer_buff = usb_req->buf;
14438 + ep->dwc_ep.sent_zlp = 0;
14439 + ep->dwc_ep.total_len = usb_req->length;
14440 + ep->dwc_ep.xfer_len = 0;
14441 + ep->dwc_ep.xfer_count = 0;
14442 +
14443 + if(max_transfer > MAX_TRANSFER_SIZE) {
14444 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
14445 + } else {
14446 + ep->dwc_ep.maxxfer = max_transfer;
14447 + }
14448 +
14449 + if(usb_req->zero) {
14450 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
14451 + && (ep->dwc_ep.total_len != 0)) {
14452 + ep->dwc_ep.sent_zlp = 1;
14453 + }
14454 +
14455 + }
14456 +
14457 + ep_check_and_patch_dma_addr(ep);
14458 + dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
14459 + }
14460 + }
14461 +
14462 + if ((req != 0) || prevented) {
14463 + ++pcd->request_pending;
14464 + list_add_tail(&req->queue, &ep->queue);
14465 + if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
14466 + /** @todo NGS Create a function for this. */
14467 + diepmsk_data_t diepmsk = { .d32 = 0};
14468 + diepmsk.b.intktxfemp = 1;
14469 + if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
14470 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
14471 + 0, diepmsk.d32);
14472 + } else {
14473 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
14474 + }
14475 + }
14476 + }
14477 +
14478 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14479 + return 0;
14480 +}
14481 +
14482 +/**
14483 + * This function cancels an I/O request from an EP.
14484 + */
14485 +static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
14486 + struct usb_request *usb_req)
14487 +{
14488 + dwc_otg_pcd_request_t *req;
14489 + dwc_otg_pcd_ep_t *ep;
14490 + dwc_otg_pcd_t *pcd;
14491 + unsigned long flags;
14492 +
14493 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
14494 +
14495 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14496 + if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
14497 + DWC_WARN("%s, bad argument\n", __func__);
14498 + return -EINVAL;
14499 + }
14500 + pcd = ep->pcd;
14501 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14502 + DWC_WARN("%s, bogus device state\n", __func__);
14503 + return -ESHUTDOWN;
14504 + }
14505 +
14506 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
14507 + DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
14508 + ep->dwc_ep.is_in ? "IN" : "OUT",
14509 + usb_req);
14510 +
14511 + /* make sure it's actually queued on this endpoint */
14512 + list_for_each_entry(req, &ep->queue, queue)
14513 + {
14514 + if (&req->req == usb_req) {
14515 + break;
14516 + }
14517 + }
14518 +
14519 + if (&req->req != usb_req) {
14520 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14521 + return -EINVAL;
14522 + }
14523 +
14524 + if (!list_empty(&req->queue)) {
14525 + dwc_otg_request_done(ep, req, -ECONNRESET);
14526 + }
14527 + else {
14528 + req = 0;
14529 + }
14530 +
14531 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14532 +
14533 + return req ? 0 : -EOPNOTSUPP;
14534 +}
14535 +
14536 +/**
14537 + * usb_ep_set_halt stalls an endpoint.
14538 + *
14539 + * usb_ep_clear_halt clears an endpoint halt and resets its data
14540 + * toggle.
14541 + *
14542 + * Both of these functions are implemented with the same underlying
14543 + * function. The behavior depends on the value argument.
14544 + *
14545 + * @param[in] usb_ep the Endpoint to halt or clear halt.
14546 + * @param[in] value
14547 + * - 0 means clear_halt.
14548 + * - 1 means set_halt,
14549 + * - 2 means clear stall lock flag.
14550 + * - 3 means set stall lock flag.
14551 + */
14552 +static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
14553 +{
14554 + int retval = 0;
14555 + unsigned long flags;
14556 + dwc_otg_pcd_ep_t *ep = 0;
14557 +
14558 +
14559 + DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
14560 +
14561 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14562 +
14563 + if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
14564 + ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
14565 + DWC_WARN("%s, bad ep\n", __func__);
14566 + return -EINVAL;
14567 + }
14568 +
14569 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14570 + if (!list_empty(&ep->queue)) {
14571 + DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
14572 + retval = -EAGAIN;
14573 + }
14574 + else if (value == 0) {
14575 + dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
14576 + &ep->dwc_ep);
14577 + }
14578 + else if(value == 1) {
14579 + if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
14580 + dtxfsts_data_t txstatus;
14581 + fifosize_data_t txfifosize;
14582 +
14583 + txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
14584 + txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
14585 +
14586 + if(txstatus.b.txfspcavail < txfifosize.b.depth) {
14587 + DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
14588 + retval = -EAGAIN;
14589 + }
14590 + else {
14591 + if (ep->dwc_ep.num == 0) {
14592 + ep->pcd->ep0state = EP0_STALL;
14593 + }
14594 +
14595 + ep->stopped = 1;
14596 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
14597 + &ep->dwc_ep);
14598 + }
14599 + }
14600 + else {
14601 + if (ep->dwc_ep.num == 0) {
14602 + ep->pcd->ep0state = EP0_STALL;
14603 + }
14604 +
14605 + ep->stopped = 1;
14606 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
14607 + &ep->dwc_ep);
14608 + }
14609 + }
14610 + else if (value == 2) {
14611 + ep->dwc_ep.stall_clear_flag = 0;
14612 + }
14613 + else if (value == 3) {
14614 + ep->dwc_ep.stall_clear_flag = 1;
14615 + }
14616 +
14617 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
14618 + return retval;
14619 +}
14620 +
14621 +/**
14622 + * This function allocates a DMA Descriptor chain for the Endpoint
14623 + * buffer to be used for a transfer to/from the specified endpoint.
14624 + */
14625 +dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
14626 +{
14627 +
14628 + return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
14629 +}
14630 +
14631 +LIST_HEAD(tofree_list);
14632 +DEFINE_SPINLOCK(tofree_list_lock);
14633 +
14634 +struct free_param {
14635 + struct list_head list;
14636 +
14637 + void* addr;
14638 + dma_addr_t dma_addr;
14639 + uint32_t size;
14640 +};
14641 +void free_list_agent_fn(void *data){
14642 + struct list_head free_list;
14643 + struct free_param *cur,*next;
14644 +
14645 + spin_lock(&tofree_list_lock);
14646 + list_add(&free_list,&tofree_list);
14647 + list_del_init(&tofree_list);
14648 + spin_unlock(&tofree_list_lock);
14649 +
14650 + list_for_each_entry_safe(cur,next,&free_list,list){
14651 + if(cur==&free_list) break;
14652 + dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
14653 + list_del(&cur->list);
14654 + kfree(cur);
14655 + }
14656 +}
14657 +DECLARE_WORK(free_list_agent,free_list_agent_fn);
14658 +/**
14659 + * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
14660 + */
14661 +void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
14662 +{
14663 + if(irqs_disabled()){
14664 + struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
14665 + fp->addr=desc_addr;
14666 + fp->dma_addr=dma_desc_addr;
14667 + fp->size=count*sizeof(dwc_otg_dma_desc_t);
14668 +
14669 + spin_lock(&tofree_list_lock);
14670 + list_add(&fp->list,&tofree_list);
14671 + spin_unlock(&tofree_list_lock);
14672 +
14673 + schedule_work(&free_list_agent);
14674 + return ;
14675 + }
14676 + dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
14677 +}
14678 +
14679 +#ifdef DWC_EN_ISOC
14680 +
14681 +/**
14682 + * This function initializes a descriptor chain for Isochronous transfer
14683 + *
14684 + * @param core_if Programming view of DWC_otg controller.
14685 + * @param dwc_ep The EP to start the transfer on.
14686 + *
14687 + */
14688 +void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
14689 +{
14690 +
14691 + dsts_data_t dsts = { .d32 = 0};
14692 + depctl_data_t depctl = { .d32 = 0 };
14693 + volatile uint32_t *addr;
14694 + int i, j;
14695 +
14696 + if(dwc_ep->is_in)
14697 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
14698 + else
14699 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
14700 +
14701 +
14702 + /** Allocate descriptors for double buffering */
14703 + dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
14704 + if(dwc_ep->desc_addr) {
14705 + DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
14706 + return;
14707 + }
14708 +
14709 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
14710 +
14711 + /** ISO OUT EP */
14712 + if(dwc_ep->is_in == 0) {
14713 + desc_sts_data_t sts = { .d32 =0 };
14714 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
14715 + dma_addr_t dma_ad;
14716 + uint32_t data_per_desc;
14717 + dwc_otg_dev_out_ep_regs_t *out_regs =
14718 + core_if->dev_if->out_ep_regs[dwc_ep->num];
14719 + int offset;
14720 +
14721 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
14722 + dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
14723 +
14724 + /** Buffer 0 descriptors setup */
14725 + dma_ad = dwc_ep->dma_addr0;
14726 +
14727 + sts.b_iso_out.bs = BS_HOST_READY;
14728 + sts.b_iso_out.rxsts = 0;
14729 + sts.b_iso_out.l = 0;
14730 + sts.b_iso_out.sp = 0;
14731 + sts.b_iso_out.ioc = 0;
14732 + sts.b_iso_out.pid = 0;
14733 + sts.b_iso_out.framenum = 0;
14734 +
14735 + offset = 0;
14736 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14737 + {
14738 +
14739 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
14740 + {
14741 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14742 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14743 +
14744 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14745 + sts.b_iso_out.rxbytes = data_per_desc;
14746 + writel((uint32_t)dma_ad, &dma_desc->buf);
14747 + writel(sts.d32, &dma_desc->status);
14748 +
14749 + offset += data_per_desc;
14750 + dma_desc ++;
14751 + //(uint32_t)dma_ad += data_per_desc;
14752 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14753 + }
14754 + }
14755 +
14756 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
14757 + {
14758 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14759 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14760 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14761 + sts.b_iso_out.rxbytes = data_per_desc;
14762 + writel((uint32_t)dma_ad, &dma_desc->buf);
14763 + writel(sts.d32, &dma_desc->status);
14764 +
14765 + offset += data_per_desc;
14766 + dma_desc ++;
14767 + //(uint32_t)dma_ad += data_per_desc;
14768 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14769 + }
14770 +
14771 + sts.b_iso_out.ioc = 1;
14772 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14773 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14774 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14775 + sts.b_iso_out.rxbytes = data_per_desc;
14776 +
14777 + writel((uint32_t)dma_ad, &dma_desc->buf);
14778 + writel(sts.d32, &dma_desc->status);
14779 + dma_desc ++;
14780 +
14781 + /** Buffer 1 descriptors setup */
14782 + sts.b_iso_out.ioc = 0;
14783 + dma_ad = dwc_ep->dma_addr1;
14784 +
14785 + offset = 0;
14786 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14787 + {
14788 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
14789 + {
14790 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14791 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14792 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14793 + sts.b_iso_out.rxbytes = data_per_desc;
14794 + writel((uint32_t)dma_ad, &dma_desc->buf);
14795 + writel(sts.d32, &dma_desc->status);
14796 +
14797 + offset += data_per_desc;
14798 + dma_desc ++;
14799 + //(uint32_t)dma_ad += data_per_desc;
14800 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14801 + }
14802 + }
14803 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
14804 + {
14805 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14806 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14807 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14808 + sts.b_iso_out.rxbytes = data_per_desc;
14809 + writel((uint32_t)dma_ad, &dma_desc->buf);
14810 + writel(sts.d32, &dma_desc->status);
14811 +
14812 + offset += data_per_desc;
14813 + dma_desc ++;
14814 + //(uint32_t)dma_ad += data_per_desc;
14815 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14816 + }
14817 +
14818 + sts.b_iso_out.ioc = 1;
14819 + sts.b_iso_out.l = 1;
14820 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14821 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14822 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14823 + sts.b_iso_out.rxbytes = data_per_desc;
14824 +
14825 + writel((uint32_t)dma_ad, &dma_desc->buf);
14826 + writel(sts.d32, &dma_desc->status);
14827 +
14828 + dwc_ep->next_frame = 0;
14829 +
14830 + /** Write dma_ad into DOEPDMA register */
14831 + dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
14832 +
14833 + }
14834 + /** ISO IN EP */
14835 + else {
14836 + desc_sts_data_t sts = { .d32 =0 };
14837 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
14838 + dma_addr_t dma_ad;
14839 + dwc_otg_dev_in_ep_regs_t *in_regs =
14840 + core_if->dev_if->in_ep_regs[dwc_ep->num];
14841 + unsigned int frmnumber;
14842 + fifosize_data_t txfifosize,rxfifosize;
14843 +
14844 + txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
14845 + rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
14846 +
14847 +
14848 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
14849 +
14850 + dma_ad = dwc_ep->dma_addr0;
14851 +
14852 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
14853 +
14854 + sts.b_iso_in.bs = BS_HOST_READY;
14855 + sts.b_iso_in.txsts = 0;
14856 + sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
14857 + sts.b_iso_in.ioc = 0;
14858 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
14859 +
14860 +
14861 + frmnumber = dwc_ep->next_frame;
14862 +
14863 + sts.b_iso_in.framenum = frmnumber;
14864 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
14865 + sts.b_iso_in.l = 0;
14866 +
14867 + /** Buffer 0 descriptors setup */
14868 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
14869 + {
14870 + writel((uint32_t)dma_ad, &dma_desc->buf);
14871 + writel(sts.d32, &dma_desc->status);
14872 + dma_desc ++;
14873 +
14874 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
14875 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
14876 + sts.b_iso_in.framenum += dwc_ep->bInterval;
14877 + }
14878 +
14879 + sts.b_iso_in.ioc = 1;
14880 + writel((uint32_t)dma_ad, &dma_desc->buf);
14881 + writel(sts.d32, &dma_desc->status);
14882 + ++dma_desc;
14883 +
14884 + /** Buffer 1 descriptors setup */
14885 + sts.b_iso_in.ioc = 0;
14886 + dma_ad = dwc_ep->dma_addr1;
14887 +
14888 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14889 + {
14890 + writel((uint32_t)dma_ad, &dma_desc->buf);
14891 + writel(sts.d32, &dma_desc->status);
14892 + dma_desc ++;
14893 +
14894 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
14895 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
14896 + sts.b_iso_in.framenum += dwc_ep->bInterval;
14897 +
14898 + sts.b_iso_in.ioc = 0;
14899 + }
14900 + sts.b_iso_in.ioc = 1;
14901 + sts.b_iso_in.l = 1;
14902 +
14903 + writel((uint32_t)dma_ad, &dma_desc->buf);
14904 + writel(sts.d32, &dma_desc->status);
14905 +
14906 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
14907 +
14908 + /** Write dma_ad into diepdma register */
14909 + dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
14910 + }
14911 + /** Enable endpoint, clear nak */
14912 + depctl.d32 = 0;
14913 + depctl.b.epena = 1;
14914 + depctl.b.usbactep = 1;
14915 + depctl.b.cnak = 1;
14916 +
14917 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
14918 + depctl.d32 = dwc_read_reg32(addr);
14919 +}
14920 +
14921 +/**
14922 + * This function initializes a descriptor chain for Isochronous transfer
14923 + *
14924 + * @param core_if Programming view of DWC_otg controller.
14925 + * @param ep The EP to start the transfer on.
14926 + *
14927 + */
14928 +
14929 +void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
14930 +{
14931 + depctl_data_t depctl = { .d32 = 0 };
14932 + volatile uint32_t *addr;
14933 +
14934 +
14935 + if(ep->is_in) {
14936 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
14937 + } else {
14938 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
14939 + }
14940 +
14941 +
14942 + if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
14943 + return;
14944 + } else {
14945 + deptsiz_data_t deptsiz = { .d32 = 0 };
14946 +
14947 + ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
14948 + ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
14949 + ep->maxpacket;
14950 + ep->xfer_count = 0;
14951 + ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
14952 + ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
14953 +
14954 + if(ep->is_in) {
14955 + /* Program the transfer size and packet count
14956 + * as follows: xfersize = N * maxpacket +
14957 + * short_packet pktcnt = N + (short_packet
14958 + * exist ? 1 : 0)
14959 + */
14960 + deptsiz.b.mc = ep->pkt_per_frm;
14961 + deptsiz.b.xfersize = ep->xfer_len;
14962 + deptsiz.b.pktcnt =
14963 + (ep->xfer_len - 1 + ep->maxpacket) /
14964 + ep->maxpacket;
14965 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
14966 +
14967 + /* Write the DMA register */
14968 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
14969 +
14970 + } else {
14971 + deptsiz.b.pktcnt =
14972 + (ep->xfer_len + (ep->maxpacket - 1)) /
14973 + ep->maxpacket;
14974 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
14975 +
14976 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
14977 +
14978 + /* Write the DMA register */
14979 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
14980 +
14981 + }
14982 + /** Enable endpoint, clear nak */
14983 + depctl.d32 = 0;
14984 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
14985 +
14986 + depctl.b.epena = 1;
14987 + depctl.b.cnak = 1;
14988 +
14989 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
14990 + }
14991 +}
14992 +
14993 +
14994 +/**
14995 + * This function does the setup for a data transfer for an EP and
14996 + * starts the transfer. For an IN transfer, the packets will be
14997 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
14998 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
14999 + *
15000 + * @param core_if Programming view of DWC_otg controller.
15001 + * @param ep The EP to start the transfer on.
15002 + */
15003 +
15004 +void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
15005 +{
15006 + if(core_if->dma_enable) {
15007 + if(core_if->dma_desc_enable) {
15008 + if(ep->is_in) {
15009 + ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
15010 + } else {
15011 + ep->desc_cnt = ep->pkt_cnt;
15012 + }
15013 + dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
15014 + } else {
15015 + if(core_if->pti_enh_enable) {
15016 + dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
15017 + } else {
15018 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
15019 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
15020 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
15021 + }
15022 + }
15023 + } else {
15024 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
15025 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
15026 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
15027 + }
15028 +}
15029 +
15030 +/**
15031 + * This function does the setup for a data transfer for an EP and
15032 + * starts the transfer. For an IN transfer, the packets will be
15033 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
15034 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
15035 + *
15036 + * @param core_if Programming view of DWC_otg controller.
15037 + * @param ep The EP to start the transfer on.
15038 + */
15039 +
15040 +void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
15041 +{
15042 + depctl_data_t depctl = { .d32 = 0 };
15043 + volatile uint32_t *addr;
15044 +
15045 + if(ep->is_in == 1) {
15046 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
15047 + }
15048 + else {
15049 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
15050 + }
15051 +
15052 + /* disable the ep */
15053 + depctl.d32 = dwc_read_reg32(addr);
15054 +
15055 + depctl.b.epdis = 1;
15056 + depctl.b.snak = 1;
15057 +
15058 + dwc_write_reg32(addr, depctl.d32);
15059 +
15060 + if(core_if->dma_desc_enable &&
15061 + ep->iso_desc_addr && ep->iso_dma_desc_addr) {
15062 + dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
15063 + }
15064 +
15065 + /* reset varibales */
15066 + ep->dma_addr0 = 0;
15067 + ep->dma_addr1 = 0;
15068 + ep->xfer_buff0 = 0;
15069 + ep->xfer_buff1 = 0;
15070 + ep->data_per_frame = 0;
15071 + ep->data_pattern_frame = 0;
15072 + ep->sync_frame = 0;
15073 + ep->buf_proc_intrvl = 0;
15074 + ep->bInterval = 0;
15075 + ep->proc_buf_num = 0;
15076 + ep->pkt_per_frm = 0;
15077 + ep->pkt_per_frm = 0;
15078 + ep->desc_cnt = 0;
15079 + ep->iso_desc_addr = 0;
15080 + ep->iso_dma_desc_addr = 0;
15081 +}
15082 +
15083 +
15084 +/**
15085 + * This function is used to submit an ISOC Transfer Request to an EP.
15086 + *
15087 + * - Every time a sync period completes the request's completion callback
15088 + * is called to provide data to the gadget driver.
15089 + * - Once submitted the request cannot be modified.
15090 + * - Each request is turned into periodic data packets untill ISO
15091 + * Transfer is stopped..
15092 + */
15093 +static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
15094 + gfp_t gfp_flags)
15095 +{
15096 + dwc_otg_pcd_ep_t *ep;
15097 + dwc_otg_pcd_t *pcd;
15098 + dwc_ep_t *dwc_ep;
15099 + unsigned long flags = 0;
15100 + int32_t frm_data;
15101 + dwc_otg_core_if_t *core_if;
15102 + dcfg_data_t dcfg;
15103 + dsts_data_t dsts;
15104 +
15105 +
15106 + if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
15107 + DWC_WARN("%s, bad params\n", __func__);
15108 + return -EINVAL;
15109 + }
15110 +
15111 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
15112 +
15113 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
15114 + DWC_WARN("%s, bad ep\n", __func__);
15115 + return -EINVAL;
15116 + }
15117 +
15118 + pcd = ep->pcd;
15119 + core_if = GET_CORE_IF(pcd);
15120 +
15121 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
15122 +
15123 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
15124 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
15125 + DWC_WARN("%s, bogus device state\n", __func__);
15126 + return -ESHUTDOWN;
15127 + }
15128 +
15129 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
15130 +
15131 + dwc_ep = &ep->dwc_ep;
15132 +
15133 + if(ep->iso_req) {
15134 + DWC_WARN("%s, iso request in progress\n", __func__);
15135 + }
15136 + req->status = -EINPROGRESS;
15137 +
15138 + dwc_ep->dma_addr0 = req->dma0;
15139 + dwc_ep->dma_addr1 = req->dma1;
15140 +
15141 + dwc_ep->xfer_buff0 = req->buf0;
15142 + dwc_ep->xfer_buff1 = req->buf1;
15143 +
15144 + ep->iso_req = req;
15145 +
15146 + dwc_ep->data_per_frame = req->data_per_frame;
15147 +
15148 + /** @todo - pattern data support is to be implemented in the future */
15149 + dwc_ep->data_pattern_frame = req->data_pattern_frame;
15150 + dwc_ep->sync_frame = req->sync_frame;
15151 +
15152 + dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
15153 +
15154 + dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
15155 +
15156 + dwc_ep->proc_buf_num = 0;
15157 +
15158 + dwc_ep->pkt_per_frm = 0;
15159 + frm_data = ep->dwc_ep.data_per_frame;
15160 + while(frm_data > 0) {
15161 + dwc_ep->pkt_per_frm++;
15162 + frm_data -= ep->dwc_ep.maxpacket;
15163 + }
15164 +
15165 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
15166 +
15167 + if(req->flags & USB_REQ_ISO_ASAP) {
15168 + dwc_ep->next_frame = dsts.b.soffn + 1;
15169 + if(dwc_ep->bInterval != 1){
15170 + dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
15171 + }
15172 + } else {
15173 + dwc_ep->next_frame = req->start_frame;
15174 + }
15175 +
15176 +
15177 + if(!core_if->pti_enh_enable) {
15178 + dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
15179 + } else {
15180 + dwc_ep->pkt_cnt =
15181 + (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
15182 + - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
15183 + }
15184 +
15185 + if(core_if->dma_desc_enable) {
15186 + dwc_ep->desc_cnt =
15187 + dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
15188 + }
15189 +
15190 + dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
15191 + if(!dwc_ep->pkt_info) {
15192 + return -ENOMEM;
15193 + }
15194 + if(core_if->pti_enh_enable) {
15195 + memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
15196 + }
15197 +
15198 + dwc_ep->cur_pkt = 0;
15199 +
15200 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15201 +
15202 + dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
15203 +
15204 + return 0;
15205 +}
15206 +
15207 +/**
15208 + * This function stops ISO EP Periodic Data Transfer.
15209 + */
15210 +static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
15211 +{
15212 + dwc_otg_pcd_ep_t *ep;
15213 + dwc_otg_pcd_t *pcd;
15214 + dwc_ep_t *dwc_ep;
15215 + unsigned long flags;
15216 +
15217 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
15218 +
15219 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
15220 + DWC_WARN("%s, bad ep\n", __func__);
15221 + return -EINVAL;
15222 + }
15223 +
15224 + pcd = ep->pcd;
15225 +
15226 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
15227 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
15228 + DWC_WARN("%s, bogus device state\n", __func__);
15229 + return -ESHUTDOWN;
15230 + }
15231 +
15232 + dwc_ep = &ep->dwc_ep;
15233 +
15234 + dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
15235 +
15236 + kfree(dwc_ep->pkt_info);
15237 +
15238 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
15239 +
15240 + if(ep->iso_req != req) {
15241 + return -EINVAL;
15242 + }
15243 +
15244 + req->status = -ECONNRESET;
15245 +
15246 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15247 +
15248 +
15249 + ep->iso_req = 0;
15250 +
15251 + return 0;
15252 +}
15253 +
15254 +/**
15255 + * This function is used for perodical data exchnage between PCD and gadget drivers.
15256 + * for Isochronous EPs
15257 + *
15258 + * - Every time a sync period completes this function is called to
15259 + * perform data exchange between PCD and gadget
15260 + */
15261 +void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
15262 +{
15263 + int i;
15264 + struct usb_gadget_iso_packet_descriptor *iso_packet;
15265 + dwc_ep_t *dwc_ep;
15266 +
15267 + dwc_ep = &ep->dwc_ep;
15268 +
15269 + if(ep->iso_req->status == -ECONNRESET) {
15270 + DWC_PRINT("Device has already disconnected\n");
15271 + /*Device has been disconnected*/
15272 + return;
15273 + }
15274 +
15275 + if(dwc_ep->proc_buf_num != 0) {
15276 + iso_packet = ep->iso_req->iso_packet_desc0;
15277 + }
15278 +
15279 + else {
15280 + iso_packet = ep->iso_req->iso_packet_desc1;
15281 + }
15282 +
15283 + /* Fill in ISOC packets descriptors & pass to gadget driver*/
15284 +
15285 + for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
15286 + iso_packet[i].status = dwc_ep->pkt_info[i].status;
15287 + iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
15288 + iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
15289 + dwc_ep->pkt_info[i].status = 0;
15290 + dwc_ep->pkt_info[i].offset = 0;
15291 + dwc_ep->pkt_info[i].length = 0;
15292 + }
15293 +
15294 + /* Call callback function to process data buffer */
15295 + ep->iso_req->status = 0;/* success */
15296 +
15297 + SPIN_UNLOCK(&ep->pcd->lock);
15298 + ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
15299 + SPIN_LOCK(&ep->pcd->lock);
15300 +}
15301 +
15302 +
15303 +static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
15304 + gfp_t gfp_flags)
15305 +{
15306 + struct usb_iso_request *pReq = NULL;
15307 + uint32_t req_size;
15308 +
15309 +
15310 + req_size = sizeof(struct usb_iso_request);
15311 + req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
15312 +
15313 +
15314 + pReq = kmalloc(req_size, gfp_flags);
15315 + if (!pReq) {
15316 + DWC_WARN("%s, can't allocate Iso Request\n", __func__);
15317 + return 0;
15318 + }
15319 + pReq->iso_packet_desc0 = (void*) (pReq + 1);
15320 +
15321 + pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
15322 +
15323 + return pReq;
15324 +}
15325 +
15326 +static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
15327 +{
15328 + kfree(req);
15329 +}
15330 +
15331 +static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
15332 +{
15333 + .ep_ops =
15334 + {
15335 + .enable = dwc_otg_pcd_ep_enable,
15336 + .disable = dwc_otg_pcd_ep_disable,
15337 +
15338 + .alloc_request = dwc_otg_pcd_alloc_request,
15339 + .free_request = dwc_otg_pcd_free_request,
15340 +
15341 + //.alloc_buffer = dwc_otg_pcd_alloc_buffer,
15342 + //.free_buffer = dwc_otg_pcd_free_buffer,
15343 +
15344 + .queue = dwc_otg_pcd_ep_queue,
15345 + .dequeue = dwc_otg_pcd_ep_dequeue,
15346 +
15347 + .set_halt = dwc_otg_pcd_ep_set_halt,
15348 + .fifo_status = 0,
15349 + .fifo_flush = 0,
15350 + },
15351 + .iso_ep_start = dwc_otg_pcd_iso_ep_start,
15352 + .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
15353 + .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
15354 + .free_iso_request = dwc_otg_pcd_free_iso_request,
15355 +};
15356 +
15357 +#else
15358 +
15359 +
15360 +static struct usb_ep_ops dwc_otg_pcd_ep_ops =
15361 +{
15362 + .enable = dwc_otg_pcd_ep_enable,
15363 + .disable = dwc_otg_pcd_ep_disable,
15364 +
15365 + .alloc_request = dwc_otg_pcd_alloc_request,
15366 + .free_request = dwc_otg_pcd_free_request,
15367 +
15368 +// .alloc_buffer = dwc_otg_pcd_alloc_buffer,
15369 +// .free_buffer = dwc_otg_pcd_free_buffer,
15370 +
15371 + .queue = dwc_otg_pcd_ep_queue,
15372 + .dequeue = dwc_otg_pcd_ep_dequeue,
15373 +
15374 + .set_halt = dwc_otg_pcd_ep_set_halt,
15375 + .fifo_status = 0,
15376 + .fifo_flush = 0,
15377 +
15378 +
15379 +};
15380 +
15381 +#endif /* DWC_EN_ISOC */
15382 +/* Gadget Operations */
15383 +/**
15384 + * The following gadget operations will be implemented in the DWC_otg
15385 + * PCD. Functions in the API that are not described below are not
15386 + * implemented.
15387 + *
15388 + * The Gadget API provides wrapper functions for each of the function
15389 + * pointers defined in usb_gadget_ops. The Gadget Driver calls the
15390 + * wrapper function, which then calls the underlying PCD function. The
15391 + * following sections are named according to the wrapper functions
15392 + * (except for ioctl, which doesn't have a wrapper function). Within
15393 + * each section, the corresponding DWC_otg PCD function name is
15394 + * specified.
15395 + *
15396 + */
15397 +
15398 +/**
15399 + *Gets the USB Frame number of the last SOF.
15400 + */
15401 +static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
15402 +{
15403 + dwc_otg_pcd_t *pcd;
15404 +
15405 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
15406 +
15407 + if (gadget == 0) {
15408 + return -ENODEV;
15409 + }
15410 + else {
15411 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
15412 + dwc_otg_get_frame_number(GET_CORE_IF(pcd));
15413 + }
15414 +
15415 + return 0;
15416 +}
15417 +
15418 +void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
15419 +{
15420 + uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
15421 + gotgctl_data_t mem;
15422 + gotgctl_data_t val;
15423 +
15424 + val.d32 = dwc_read_reg32(addr);
15425 + if (val.b.sesreq) {
15426 + DWC_ERROR("Session Request Already active!\n");
15427 + return;
15428 + }
15429 +
15430 + DWC_NOTICE("Session Request Initated\n");
15431 + mem.d32 = dwc_read_reg32(addr);
15432 + mem.b.sesreq = 1;
15433 + dwc_write_reg32(addr, mem.d32);
15434 +
15435 + /* Start the SRP timer */
15436 + dwc_otg_pcd_start_srp_timer(pcd);
15437 + return;
15438 +}
15439 +
15440 +void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
15441 +{
15442 + dctl_data_t dctl = {.d32=0};
15443 + volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
15444 +
15445 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
15446 + if (pcd->remote_wakeup_enable) {
15447 + if (set) {
15448 + dctl.b.rmtwkupsig = 1;
15449 + dwc_modify_reg32(addr, 0, dctl.d32);
15450 + DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
15451 + mdelay(1);
15452 + dwc_modify_reg32(addr, dctl.d32, 0);
15453 + DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
15454 + }
15455 + else {
15456 + }
15457 + }
15458 + else {
15459 + DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
15460 + }
15461 + }
15462 + return;
15463 +}
15464 +
15465 +/**
15466 + * Initiates Session Request Protocol (SRP) to wakeup the host if no
15467 + * session is in progress. If a session is already in progress, but
15468 + * the device is suspended, remote wakeup signaling is started.
15469 + *
15470 + */
15471 +static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
15472 +{
15473 + unsigned long flags;
15474 + dwc_otg_pcd_t *pcd;
15475 + dsts_data_t dsts;
15476 + gotgctl_data_t gotgctl;
15477 +
15478 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
15479 +
15480 + if (gadget == 0) {
15481 + return -ENODEV;
15482 + }
15483 + else {
15484 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
15485 + }
15486 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
15487 +
15488 + /*
15489 + * This function starts the Protocol if no session is in progress. If
15490 + * a session is already in progress, but the device is suspended,
15491 + * remote wakeup signaling is started.
15492 + */
15493 +
15494 + /* Check if valid session */
15495 + gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
15496 + if (gotgctl.b.bsesvld) {
15497 + /* Check if suspend state */
15498 + dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
15499 + if (dsts.b.suspsts) {
15500 + dwc_otg_pcd_remote_wakeup(pcd, 1);
15501 + }
15502 + }
15503 + else {
15504 + dwc_otg_pcd_initiate_srp(pcd);
15505 + }
15506 +
15507 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15508 + return 0;
15509 +}
15510 +
15511 +static const struct usb_gadget_ops dwc_otg_pcd_ops =
15512 +{
15513 + .get_frame = dwc_otg_pcd_get_frame,
15514 + .wakeup = dwc_otg_pcd_wakeup,
15515 + // current versions must always be self-powered
15516 +};
15517 +
15518 +/**
15519 + * This function updates the otg values in the gadget structure.
15520 + */
15521 +void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
15522 +{
15523 +
15524 + if (!pcd->gadget.is_otg)
15525 + return;
15526 +
15527 + if (reset) {
15528 + pcd->b_hnp_enable = 0;
15529 + pcd->a_hnp_support = 0;
15530 + pcd->a_alt_hnp_support = 0;
15531 + }
15532 +
15533 + pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
15534 + pcd->gadget.a_hnp_support = pcd->a_hnp_support;
15535 + pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
15536 +}
15537 +
15538 +/**
15539 + * This function is the top level PCD interrupt handler.
15540 + */
15541 +static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
15542 +{
15543 + dwc_otg_pcd_t *pcd = dev;
15544 + int32_t retval = IRQ_NONE;
15545 +
15546 + retval = dwc_otg_pcd_handle_intr(pcd);
15547 + return IRQ_RETVAL(retval);
15548 +}
15549 +
15550 +/**
15551 + * PCD Callback function for initializing the PCD when switching to
15552 + * device mode.
15553 + *
15554 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15555 + */
15556 +static int32_t dwc_otg_pcd_start_cb(void *p)
15557 +{
15558 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15559 +
15560 + /*
15561 + * Initialized the Core for Device mode.
15562 + */
15563 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
15564 + dwc_otg_core_dev_init(GET_CORE_IF(pcd));
15565 + }
15566 + return 1;
15567 +}
15568 +
15569 +/**
15570 + * PCD Callback function for stopping the PCD when switching to Host
15571 + * mode.
15572 + *
15573 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15574 + */
15575 +static int32_t dwc_otg_pcd_stop_cb(void *p)
15576 +{
15577 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15578 + extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
15579 +
15580 + dwc_otg_pcd_stop(pcd);
15581 + return 1;
15582 +}
15583 +
15584 +
15585 +/**
15586 + * PCD Callback function for notifying the PCD when resuming from
15587 + * suspend.
15588 + *
15589 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15590 + */
15591 +static int32_t dwc_otg_pcd_suspend_cb(void *p)
15592 +{
15593 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15594 +
15595 + if (pcd->driver && pcd->driver->resume) {
15596 + SPIN_UNLOCK(&pcd->lock);
15597 + pcd->driver->suspend(&pcd->gadget);
15598 + SPIN_LOCK(&pcd->lock);
15599 + }
15600 +
15601 + return 1;
15602 +}
15603 +
15604 +
15605 +/**
15606 + * PCD Callback function for notifying the PCD when resuming from
15607 + * suspend.
15608 + *
15609 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15610 + */
15611 +static int32_t dwc_otg_pcd_resume_cb(void *p)
15612 +{
15613 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15614 +
15615 + if (pcd->driver && pcd->driver->resume) {
15616 + SPIN_UNLOCK(&pcd->lock);
15617 + pcd->driver->resume(&pcd->gadget);
15618 + SPIN_LOCK(&pcd->lock);
15619 + }
15620 +
15621 + /* Stop the SRP timeout timer. */
15622 + if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
15623 + (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
15624 + if (GET_CORE_IF(pcd)->srp_timer_started) {
15625 + GET_CORE_IF(pcd)->srp_timer_started = 0;
15626 + del_timer(&pcd->srp_timer);
15627 + }
15628 + }
15629 + return 1;
15630 +}
15631 +
15632 +
15633 +/**
15634 + * PCD Callback structure for handling mode switching.
15635 + */
15636 +static dwc_otg_cil_callbacks_t pcd_callbacks =
15637 +{
15638 + .start = dwc_otg_pcd_start_cb,
15639 + .stop = dwc_otg_pcd_stop_cb,
15640 + .suspend = dwc_otg_pcd_suspend_cb,
15641 + .resume_wakeup = dwc_otg_pcd_resume_cb,
15642 + .p = 0, /* Set at registration */
15643 +};
15644 +
15645 +/**
15646 + * This function is called when the SRP timer expires. The SRP should
15647 + * complete within 6 seconds.
15648 + */
15649 +static void srp_timeout(unsigned long ptr)
15650 +{
15651 + gotgctl_data_t gotgctl;
15652 + dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
15653 + volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
15654 +
15655 + gotgctl.d32 = dwc_read_reg32(addr);
15656 +
15657 + core_if->srp_timer_started = 0;
15658 +
15659 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
15660 + (core_if->core_params->i2c_enable)) {
15661 + DWC_PRINT("SRP Timeout\n");
15662 +
15663 + if ((core_if->srp_success) &&
15664 + (gotgctl.b.bsesvld)) {
15665 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
15666 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
15667 + }
15668 +
15669 + /* Clear Session Request */
15670 + gotgctl.d32 = 0;
15671 + gotgctl.b.sesreq = 1;
15672 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
15673 + gotgctl.d32, 0);
15674 +
15675 + core_if->srp_success = 0;
15676 + }
15677 + else {
15678 + DWC_ERROR("Device not connected/responding\n");
15679 + gotgctl.b.sesreq = 0;
15680 + dwc_write_reg32(addr, gotgctl.d32);
15681 + }
15682 + }
15683 + else if (gotgctl.b.sesreq) {
15684 + DWC_PRINT("SRP Timeout\n");
15685 +
15686 + DWC_ERROR("Device not connected/responding\n");
15687 + gotgctl.b.sesreq = 0;
15688 + dwc_write_reg32(addr, gotgctl.d32);
15689 + }
15690 + else {
15691 + DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
15692 + }
15693 +}
15694 +
15695 +/**
15696 + * Start the SRP timer to detect when the SRP does not complete within
15697 + * 6 seconds.
15698 + *
15699 + * @param pcd the pcd structure.
15700 + */
15701 +void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
15702 +{
15703 + struct timer_list *srp_timer = &pcd->srp_timer;
15704 + GET_CORE_IF(pcd)->srp_timer_started = 1;
15705 + init_timer(srp_timer);
15706 + srp_timer->function = srp_timeout;
15707 + srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
15708 + srp_timer->expires = jiffies + (HZ*6);
15709 + add_timer(srp_timer);
15710 +}
15711 +
15712 +/**
15713 + * Tasklet
15714 + *
15715 + */
15716 +extern void start_next_request(dwc_otg_pcd_ep_t *ep);
15717 +
15718 +static void start_xfer_tasklet_func (unsigned long data)
15719 +{
15720 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
15721 + dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
15722 +
15723 + int i;
15724 + depctl_data_t diepctl;
15725 +
15726 + DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
15727 +
15728 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
15729 +
15730 + if (pcd->ep0.queue_sof) {
15731 + pcd->ep0.queue_sof = 0;
15732 + start_next_request (&pcd->ep0);
15733 + // break;
15734 + }
15735 +
15736 + for (i=0; i<core_if->dev_if->num_in_eps; i++)
15737 + {
15738 + depctl_data_t diepctl;
15739 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
15740 +
15741 + if (pcd->in_ep[i].queue_sof) {
15742 + pcd->in_ep[i].queue_sof = 0;
15743 + start_next_request (&pcd->in_ep[i]);
15744 + // break;
15745 + }
15746 + }
15747 +
15748 + return;
15749 +}
15750 +
15751 +
15752 +
15753 +
15754 +
15755 +
15756 +
15757 +static struct tasklet_struct start_xfer_tasklet = {
15758 + .next = NULL,
15759 + .state = 0,
15760 + .count = ATOMIC_INIT(0),
15761 + .func = start_xfer_tasklet_func,
15762 + .data = 0,
15763 +};
15764 +/**
15765 + * This function initialized the pcd Dp structures to there default
15766 + * state.
15767 + *
15768 + * @param pcd the pcd structure.
15769 + */
15770 +void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
15771 +{
15772 + static const char * names[] =
15773 + {
15774 +
15775 + "ep0",
15776 + "ep1in",
15777 + "ep2in",
15778 + "ep3in",
15779 + "ep4in",
15780 + "ep5in",
15781 + "ep6in",
15782 + "ep7in",
15783 + "ep8in",
15784 + "ep9in",
15785 + "ep10in",
15786 + "ep11in",
15787 + "ep12in",
15788 + "ep13in",
15789 + "ep14in",
15790 + "ep15in",
15791 + "ep1out",
15792 + "ep2out",
15793 + "ep3out",
15794 + "ep4out",
15795 + "ep5out",
15796 + "ep6out",
15797 + "ep7out",
15798 + "ep8out",
15799 + "ep9out",
15800 + "ep10out",
15801 + "ep11out",
15802 + "ep12out",
15803 + "ep13out",
15804 + "ep14out",
15805 + "ep15out"
15806 +
15807 + };
15808 +
15809 + int i;
15810 + int in_ep_cntr, out_ep_cntr;
15811 + uint32_t hwcfg1;
15812 + uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
15813 + uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
15814 + dwc_otg_pcd_ep_t *ep;
15815 +
15816 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
15817 +
15818 + INIT_LIST_HEAD (&pcd->gadget.ep_list);
15819 + pcd->gadget.ep0 = &pcd->ep0.ep;
15820 + pcd->gadget.speed = USB_SPEED_UNKNOWN;
15821 +
15822 + INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
15823 +
15824 + /**
15825 + * Initialize the EP0 structure.
15826 + */
15827 + ep = &pcd->ep0;
15828 +
15829 + /* Init EP structure */
15830 + ep->desc = 0;
15831 + ep->pcd = pcd;
15832 + ep->stopped = 1;
15833 +
15834 + /* Init DWC ep structure */
15835 + ep->dwc_ep.num = 0;
15836 + ep->dwc_ep.active = 0;
15837 + ep->dwc_ep.tx_fifo_num = 0;
15838 + /* Control until ep is actvated */
15839 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
15840 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
15841 + ep->dwc_ep.dma_addr = 0;
15842 + ep->dwc_ep.start_xfer_buff = 0;
15843 + ep->dwc_ep.xfer_buff = 0;
15844 + ep->dwc_ep.xfer_len = 0;
15845 + ep->dwc_ep.xfer_count = 0;
15846 + ep->dwc_ep.sent_zlp = 0;
15847 + ep->dwc_ep.total_len = 0;
15848 + ep->queue_sof = 0;
15849 + ep->dwc_ep.desc_addr = 0;
15850 + ep->dwc_ep.dma_desc_addr = 0;
15851 +
15852 + ep->dwc_ep.aligned_buf=NULL;
15853 + ep->dwc_ep.aligned_buf_size=0;
15854 + ep->dwc_ep.aligned_dma_addr=0;
15855 +
15856 +
15857 + /* Init the usb_ep structure. */
15858 + ep->ep.name = names[0];
15859 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
15860 +
15861 + /**
15862 + * @todo NGS: What should the max packet size be set to
15863 + * here? Before EP type is set?
15864 + */
15865 + ep->ep.maxpacket = MAX_PACKET_SIZE;
15866 +
15867 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
15868 +
15869 + INIT_LIST_HEAD (&ep->queue);
15870 + /**
15871 + * Initialize the EP structures.
15872 + */
15873 + in_ep_cntr = 0;
15874 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
15875 +
15876 + for (i = 1; in_ep_cntr < num_in_eps; i++)
15877 + {
15878 + if((hwcfg1 & 0x1) == 0) {
15879 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
15880 + in_ep_cntr ++;
15881 +
15882 + /* Init EP structure */
15883 + ep->desc = 0;
15884 + ep->pcd = pcd;
15885 + ep->stopped = 1;
15886 +
15887 + /* Init DWC ep structure */
15888 + ep->dwc_ep.is_in = 1;
15889 + ep->dwc_ep.num = i;
15890 + ep->dwc_ep.active = 0;
15891 + ep->dwc_ep.tx_fifo_num = 0;
15892 +
15893 + /* Control until ep is actvated */
15894 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
15895 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
15896 + ep->dwc_ep.dma_addr = 0;
15897 + ep->dwc_ep.start_xfer_buff = 0;
15898 + ep->dwc_ep.xfer_buff = 0;
15899 + ep->dwc_ep.xfer_len = 0;
15900 + ep->dwc_ep.xfer_count = 0;
15901 + ep->dwc_ep.sent_zlp = 0;
15902 + ep->dwc_ep.total_len = 0;
15903 + ep->queue_sof = 0;
15904 + ep->dwc_ep.desc_addr = 0;
15905 + ep->dwc_ep.dma_desc_addr = 0;
15906 +
15907 + /* Init the usb_ep structure. */
15908 + ep->ep.name = names[i];
15909 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
15910 +
15911 + /**
15912 + * @todo NGS: What should the max packet size be set to
15913 + * here? Before EP type is set?
15914 + */
15915 + ep->ep.maxpacket = MAX_PACKET_SIZE;
15916 +
15917 + //add only even number ep as in
15918 + if((i%2)==1)
15919 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
15920 +
15921 + INIT_LIST_HEAD (&ep->queue);
15922 + }
15923 + hwcfg1 >>= 2;
15924 + }
15925 +
15926 + out_ep_cntr = 0;
15927 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
15928 +
15929 + for (i = 1; out_ep_cntr < num_out_eps; i++)
15930 + {
15931 + if((hwcfg1 & 0x1) == 0) {
15932 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
15933 + out_ep_cntr++;
15934 +
15935 + /* Init EP structure */
15936 + ep->desc = 0;
15937 + ep->pcd = pcd;
15938 + ep->stopped = 1;
15939 +
15940 + /* Init DWC ep structure */
15941 + ep->dwc_ep.is_in = 0;
15942 + ep->dwc_ep.num = i;
15943 + ep->dwc_ep.active = 0;
15944 + ep->dwc_ep.tx_fifo_num = 0;
15945 + /* Control until ep is actvated */
15946 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
15947 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
15948 + ep->dwc_ep.dma_addr = 0;
15949 + ep->dwc_ep.start_xfer_buff = 0;
15950 + ep->dwc_ep.xfer_buff = 0;
15951 + ep->dwc_ep.xfer_len = 0;
15952 + ep->dwc_ep.xfer_count = 0;
15953 + ep->dwc_ep.sent_zlp = 0;
15954 + ep->dwc_ep.total_len = 0;
15955 + ep->queue_sof = 0;
15956 +
15957 + /* Init the usb_ep structure. */
15958 + ep->ep.name = names[15 + i];
15959 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
15960 + /**
15961 + * @todo NGS: What should the max packet size be set to
15962 + * here? Before EP type is set?
15963 + */
15964 + ep->ep.maxpacket = MAX_PACKET_SIZE;
15965 +
15966 + //add only odd number ep as out
15967 + if((i%2)==0)
15968 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
15969 +
15970 + INIT_LIST_HEAD (&ep->queue);
15971 + }
15972 + hwcfg1 >>= 2;
15973 + }
15974 +
15975 + /* remove ep0 from the list. There is a ep0 pointer.*/
15976 + list_del_init (&pcd->ep0.ep.ep_list);
15977 +
15978 + pcd->ep0state = EP0_DISCONNECT;
15979 + pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
15980 + pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
15981 + pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
15982 +}
15983 +
15984 +/**
15985 + * This function releases the Gadget device.
15986 + * required by device_unregister().
15987 + *
15988 + * @todo Should this do something? Should it free the PCD?
15989 + */
15990 +static void dwc_otg_pcd_gadget_release(struct device *dev)
15991 +{
15992 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
15993 +}
15994 +
15995 +
15996 +
15997 +/**
15998 + * This function initialized the PCD portion of the driver.
15999 + *
16000 + */
16001 +u8 dev_id[]="gadget";
16002 +int dwc_otg_pcd_init(struct platform_device *pdev)
16003 +{
16004 + static char pcd_name[] = "dwc_otg_pcd";
16005 + dwc_otg_pcd_t *pcd;
16006 + dwc_otg_core_if_t* core_if;
16007 + dwc_otg_dev_if_t* dev_if;
16008 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
16009 + int retval = 0;
16010 +
16011 +
16012 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
16013 + /*
16014 + * Allocate PCD structure
16015 + */
16016 + pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
16017 +
16018 + if (pcd == 0) {
16019 + return -ENOMEM;
16020 + }
16021 +
16022 + memset(pcd, 0, sizeof(dwc_otg_pcd_t));
16023 + spin_lock_init(&pcd->lock);
16024 +
16025 + otg_dev->pcd = pcd;
16026 + s_pcd = pcd;
16027 + pcd->gadget.name = pcd_name;
16028 +
16029 + pcd->gadget.dev.init_name = dev_id;
16030 + pcd->otg_dev = platform_get_drvdata(pdev);
16031 +
16032 + pcd->gadget.dev.parent = &pdev->dev;
16033 + pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
16034 + pcd->gadget.ops = &dwc_otg_pcd_ops;
16035 +
16036 + core_if = GET_CORE_IF(pcd);
16037 + dev_if = core_if->dev_if;
16038 +
16039 + if(core_if->hwcfg4.b.ded_fifo_en) {
16040 + DWC_PRINT("Dedicated Tx FIFOs mode\n");
16041 + }
16042 + else {
16043 + DWC_PRINT("Shared Tx FIFO mode\n");
16044 + }
16045 +
16046 + /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
16047 + * should not report as dual-speed capable. replace the following line
16048 + * with the block of code below it once the software is debugged for
16049 + * this. If is_dualspeed = 0 then the gadget driver should not report
16050 + * a device qualifier descriptor when queried. */
16051 + if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
16052 + ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
16053 + (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
16054 + (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
16055 + pcd->gadget.is_dualspeed = 0;
16056 + }
16057 + else {
16058 + pcd->gadget.is_dualspeed = 1;
16059 + }
16060 +
16061 + if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
16062 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
16063 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
16064 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
16065 + pcd->gadget.is_otg = 0;
16066 + }
16067 + else {
16068 + pcd->gadget.is_otg = 1;
16069 + }
16070 +
16071 +
16072 + pcd->driver = 0;
16073 + /* Register the gadget device */
16074 +printk("%s: 1\n",__func__);
16075 + retval = device_register(&pcd->gadget.dev);
16076 + if (retval != 0) {
16077 + kfree (pcd);
16078 +printk("%s: 2\n",__func__);
16079 + return retval;
16080 + }
16081 +
16082 +
16083 + /*
16084 + * Initialized the Core for Device mode.
16085 + */
16086 + if (dwc_otg_is_device_mode(core_if)) {
16087 + dwc_otg_core_dev_init(core_if);
16088 + }
16089 +
16090 + /*
16091 + * Initialize EP structures
16092 + */
16093 + dwc_otg_pcd_reinit(pcd);
16094 +
16095 + /*
16096 + * Register the PCD Callbacks.
16097 + */
16098 + dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
16099 + pcd);
16100 + /*
16101 + * Setup interupt handler
16102 + */
16103 + DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
16104 + retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
16105 + IRQF_SHARED, pcd->gadget.name, pcd);
16106 + if (retval != 0) {
16107 + DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
16108 + device_unregister(&pcd->gadget.dev);
16109 + kfree (pcd);
16110 + return -EBUSY;
16111 + }
16112 +
16113 + /*
16114 + * Initialize the DMA buffer for SETUP packets
16115 + */
16116 + if (GET_CORE_IF(pcd)->dma_enable) {
16117 + pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
16118 + if (pcd->setup_pkt == 0) {
16119 + free_irq(otg_dev->irq, pcd);
16120 + device_unregister(&pcd->gadget.dev);
16121 + kfree (pcd);
16122 + return -ENOMEM;
16123 + }
16124 +
16125 + pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
16126 + if (pcd->status_buf == 0) {
16127 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16128 + free_irq(otg_dev->irq, pcd);
16129 + device_unregister(&pcd->gadget.dev);
16130 + kfree (pcd);
16131 + return -ENOMEM;
16132 + }
16133 +
16134 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
16135 + dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
16136 + dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
16137 + dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
16138 + dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
16139 +
16140 + if(dev_if->setup_desc_addr[0] == 0
16141 + || dev_if->setup_desc_addr[1] == 0
16142 + || dev_if->in_desc_addr == 0
16143 + || dev_if->out_desc_addr == 0 ) {
16144 +
16145 + if(dev_if->out_desc_addr)
16146 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
16147 + if(dev_if->in_desc_addr)
16148 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
16149 + if(dev_if->setup_desc_addr[1])
16150 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
16151 + if(dev_if->setup_desc_addr[0])
16152 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
16153 +
16154 +
16155 + dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
16156 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16157 +
16158 + free_irq(otg_dev->irq, pcd);
16159 + device_unregister(&pcd->gadget.dev);
16160 + kfree (pcd);
16161 +
16162 + return -ENOMEM;
16163 + }
16164 + }
16165 + }
16166 + else {
16167 + pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
16168 + if (pcd->setup_pkt == 0) {
16169 + free_irq(otg_dev->irq, pcd);
16170 + device_unregister(&pcd->gadget.dev);
16171 + kfree (pcd);
16172 + return -ENOMEM;
16173 + }
16174 +
16175 + pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
16176 + if (pcd->status_buf == 0) {
16177 + kfree(pcd->setup_pkt);
16178 + free_irq(otg_dev->irq, pcd);
16179 + device_unregister(&pcd->gadget.dev);
16180 + kfree (pcd);
16181 + return -ENOMEM;
16182 + }
16183 + }
16184 +
16185 +
16186 + /* Initialize tasklet */
16187 + start_xfer_tasklet.data = (unsigned long)pcd;
16188 + pcd->start_xfer_tasklet = &start_xfer_tasklet;
16189 +
16190 + return 0;
16191 +}
16192 +
16193 +/**
16194 + * Cleanup the PCD.
16195 + */
16196 +void dwc_otg_pcd_remove(struct platform_device *pdev)
16197 +{
16198 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
16199 + dwc_otg_pcd_t *pcd = otg_dev->pcd;
16200 + dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
16201 +
16202 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
16203 +
16204 + /*
16205 + * Free the IRQ
16206 + */
16207 + free_irq(otg_dev->irq, pcd);
16208 +
16209 + /* start with the driver above us */
16210 + if (pcd->driver) {
16211 + /* should have been done already by driver model core */
16212 + DWC_WARN("driver '%s' is still registered\n",
16213 + pcd->driver->driver.name);
16214 + usb_gadget_unregister_driver(pcd->driver);
16215 + }
16216 + device_unregister(&pcd->gadget.dev);
16217 +
16218 + if (GET_CORE_IF(pcd)->dma_enable) {
16219 + dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16220 + dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
16221 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
16222 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
16223 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
16224 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
16225 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
16226 + }
16227 + }
16228 + else {
16229 + kfree (pcd->setup_pkt);
16230 + kfree (pcd->status_buf);
16231 + }
16232 +
16233 + kfree(pcd);
16234 + otg_dev->pcd = 0;
16235 +}
16236 +
16237 +/**
16238 + * This function registers a gadget driver with the PCD.
16239 + *
16240 + * When a driver is successfully registered, it will receive control
16241 + * requests including set_configuration(), which enables non-control
16242 + * requests. then usb traffic follows until a disconnect is reported.
16243 + * then a host may connect again, or the driver might get unbound.
16244 + *
16245 + * @param driver The driver being registered
16246 + */
16247 +int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
16248 + int (*bind)(struct usb_gadget *))
16249 +{
16250 + int retval;
16251 +
16252 + DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
16253 +
16254 + if (!driver || driver->speed == USB_SPEED_UNKNOWN ||
16255 + !bind ||
16256 + !driver->unbind ||
16257 + !driver->disconnect ||
16258 + !driver->setup) {
16259 + DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
16260 + return -EINVAL;
16261 + }
16262 + if (s_pcd == 0) {
16263 + DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
16264 + return -ENODEV;
16265 + }
16266 + if (s_pcd->driver != 0) {
16267 + DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
16268 + return -EBUSY;
16269 + }
16270 +
16271 + /* hook up the driver */
16272 + s_pcd->driver = driver;
16273 + s_pcd->gadget.dev.driver = &driver->driver;
16274 +
16275 + DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
16276 + retval = bind(&s_pcd->gadget);
16277 + if (retval) {
16278 + DWC_ERROR("bind to driver %s --> error %d\n",
16279 + driver->driver.name, retval);
16280 + s_pcd->driver = 0;
16281 + s_pcd->gadget.dev.driver = 0;
16282 + return retval;
16283 + }
16284 + DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
16285 + driver->driver.name);
16286 + return 0;
16287 +}
16288 +
16289 +EXPORT_SYMBOL(usb_gadget_probe_driver);
16290 +
16291 +/**
16292 + * This function unregisters a gadget driver
16293 + *
16294 + * @param driver The driver being unregistered
16295 + */
16296 +int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
16297 +{
16298 + //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
16299 +
16300 + if (s_pcd == 0) {
16301 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
16302 + -ENODEV);
16303 + return -ENODEV;
16304 + }
16305 + if (driver == 0 || driver != s_pcd->driver) {
16306 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
16307 + -EINVAL);
16308 + return -EINVAL;
16309 + }
16310 +
16311 + driver->unbind(&s_pcd->gadget);
16312 + s_pcd->driver = 0;
16313 +
16314 + DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
16315 + driver->driver.name);
16316 + return 0;
16317 +}
16318 +EXPORT_SYMBOL(usb_gadget_unregister_driver);
16319 +
16320 +#endif /* DWC_HOST_ONLY */
16321 --- /dev/null
16322 +++ b/drivers/usb/dwc/otg_pcd.h
16323 @@ -0,0 +1,292 @@
16324 +/* ==========================================================================
16325 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
16326 + * $Revision: #36 $
16327 + * $Date: 2008/09/26 $
16328 + * $Change: 1103515 $
16329 + *
16330 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
16331 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
16332 + * otherwise expressly agreed to in writing between Synopsys and you.
16333 + *
16334 + * The Software IS NOT an item of Licensed Software or Licensed Product under
16335 + * any End User Software License Agreement or Agreement for Licensed Product
16336 + * with Synopsys or any supplement thereto. You are permitted to use and
16337 + * redistribute this Software in source and binary forms, with or without
16338 + * modification, provided that redistributions of source code must retain this
16339 + * notice. You may not view, use, disclose, copy or distribute this file or
16340 + * any information contained herein except pursuant to this license grant from
16341 + * Synopsys. If you do not agree with this notice, including the disclaimer
16342 + * below, then you are not authorized to use the Software.
16343 + *
16344 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
16345 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16346 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16347 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
16348 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
16349 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16350 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
16351 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
16352 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
16353 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
16354 + * DAMAGE.
16355 + * ========================================================================== */
16356 +#ifndef DWC_HOST_ONLY
16357 +#if !defined(__DWC_PCD_H__)
16358 +#define __DWC_PCD_H__
16359 +
16360 +#include <linux/types.h>
16361 +#include <linux/list.h>
16362 +#include <linux/errno.h>
16363 +#include <linux/device.h>
16364 +#include <linux/platform_device.h>
16365 +
16366 +#include <linux/usb/ch9.h>
16367 +#include <linux/usb/gadget.h>
16368 +
16369 +#include <linux/interrupt.h>
16370 +#include <linux/dma-mapping.h>
16371 +
16372 +struct dwc_otg_device;
16373 +
16374 +#include "otg_cil.h"
16375 +
16376 +/**
16377 + * @file
16378 + *
16379 + * This file contains the structures, constants, and interfaces for
16380 + * the Perpherial Contoller Driver (PCD).
16381 + *
16382 + * The Peripheral Controller Driver (PCD) for Linux will implement the
16383 + * Gadget API, so that the existing Gadget drivers can be used. For
16384 + * the Mass Storage Function driver the File-backed USB Storage Gadget
16385 + * (FBS) driver will be used. The FBS driver supports the
16386 + * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
16387 + * transports.
16388 + *
16389 + */
16390 +
16391 +/** Invalid DMA Address */
16392 +#define DMA_ADDR_INVALID (~(dma_addr_t)0)
16393 +/** Maxpacket size for EP0 */
16394 +#define MAX_EP0_SIZE 64
16395 +/** Maxpacket size for any EP */
16396 +#define MAX_PACKET_SIZE 1024
16397 +
16398 +/** Max Transfer size for any EP */
16399 +#define MAX_TRANSFER_SIZE 65535
16400 +
16401 +/** Max DMA Descriptor count for any EP */
16402 +#define MAX_DMA_DESC_CNT 64
16403 +
16404 +/**
16405 + * Get the pointer to the core_if from the pcd pointer.
16406 + */
16407 +#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
16408 +
16409 +/**
16410 + * States of EP0.
16411 + */
16412 +typedef enum ep0_state
16413 +{
16414 + EP0_DISCONNECT, /* no host */
16415 + EP0_IDLE,
16416 + EP0_IN_DATA_PHASE,
16417 + EP0_OUT_DATA_PHASE,
16418 + EP0_IN_STATUS_PHASE,
16419 + EP0_OUT_STATUS_PHASE,
16420 + EP0_STALL,
16421 +} ep0state_e;
16422 +
16423 +/** Fordward declaration.*/
16424 +struct dwc_otg_pcd;
16425 +
16426 +/** DWC_otg iso request structure.
16427 + *
16428 + */
16429 +typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
16430 +
16431 +/** PCD EP structure.
16432 + * This structure describes an EP, there is an array of EPs in the PCD
16433 + * structure.
16434 + */
16435 +typedef struct dwc_otg_pcd_ep
16436 +{
16437 + /** USB EP data */
16438 + struct usb_ep ep;
16439 + /** USB EP Descriptor */
16440 + const struct usb_endpoint_descriptor *desc;
16441 +
16442 + /** queue of dwc_otg_pcd_requests. */
16443 + struct list_head queue;
16444 + unsigned stopped : 1;
16445 + unsigned disabling : 1;
16446 + unsigned dma : 1;
16447 + unsigned queue_sof : 1;
16448 +
16449 +#ifdef DWC_EN_ISOC
16450 + /** DWC_otg Isochronous Transfer */
16451 + struct usb_iso_request* iso_req;
16452 +#endif //DWC_EN_ISOC
16453 +
16454 + /** DWC_otg ep data. */
16455 + dwc_ep_t dwc_ep;
16456 +
16457 + /** Pointer to PCD */
16458 + struct dwc_otg_pcd *pcd;
16459 +}dwc_otg_pcd_ep_t;
16460 +
16461 +
16462 +
16463 +/** DWC_otg PCD Structure.
16464 + * This structure encapsulates the data for the dwc_otg PCD.
16465 + */
16466 +typedef struct dwc_otg_pcd
16467 +{
16468 + /** USB gadget */
16469 + struct usb_gadget gadget;
16470 + /** USB gadget driver pointer*/
16471 + struct usb_gadget_driver *driver;
16472 + /** The DWC otg device pointer. */
16473 + struct dwc_otg_device *otg_dev;
16474 +
16475 + /** State of EP0 */
16476 + ep0state_e ep0state;
16477 + /** EP0 Request is pending */
16478 + unsigned ep0_pending : 1;
16479 + /** Indicates when SET CONFIGURATION Request is in process */
16480 + unsigned request_config : 1;
16481 + /** The state of the Remote Wakeup Enable. */
16482 + unsigned remote_wakeup_enable : 1;
16483 + /** The state of the B-Device HNP Enable. */
16484 + unsigned b_hnp_enable : 1;
16485 + /** The state of A-Device HNP Support. */
16486 + unsigned a_hnp_support : 1;
16487 + /** The state of the A-Device Alt HNP support. */
16488 + unsigned a_alt_hnp_support : 1;
16489 + /** Count of pending Requests */
16490 + unsigned request_pending;
16491 +
16492 + /** SETUP packet for EP0
16493 + * This structure is allocated as a DMA buffer on PCD initialization
16494 + * with enough space for up to 3 setup packets.
16495 + */
16496 + union
16497 + {
16498 + struct usb_ctrlrequest req;
16499 + uint32_t d32[2];
16500 + } *setup_pkt;
16501 +
16502 + dma_addr_t setup_pkt_dma_handle;
16503 +
16504 + /** 2-byte dma buffer used to return status from GET_STATUS */
16505 + uint16_t *status_buf;
16506 + dma_addr_t status_buf_dma_handle;
16507 +
16508 + /** EP0 */
16509 + dwc_otg_pcd_ep_t ep0;
16510 +
16511 + /** Array of IN EPs. */
16512 + dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
16513 + /** Array of OUT EPs. */
16514 + dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
16515 + /** number of valid EPs in the above array. */
16516 +// unsigned num_eps : 4;
16517 + spinlock_t lock;
16518 + /** Timer for SRP. If it expires before SRP is successful
16519 + * clear the SRP. */
16520 + struct timer_list srp_timer;
16521 +
16522 + /** Tasklet to defer starting of TEST mode transmissions until
16523 + * Status Phase has been completed.
16524 + */
16525 + struct tasklet_struct test_mode_tasklet;
16526 +
16527 + /** Tasklet to delay starting of xfer in DMA mode */
16528 + struct tasklet_struct *start_xfer_tasklet;
16529 +
16530 + /** The test mode to enter when the tasklet is executed. */
16531 + unsigned test_mode;
16532 +
16533 +} dwc_otg_pcd_t;
16534 +
16535 +
16536 +/** DWC_otg request structure.
16537 + * This structure is a list of requests.
16538 + */
16539 +typedef struct
16540 +{
16541 + struct usb_request req; /**< USB Request. */
16542 + struct list_head queue; /**< queue of these requests. */
16543 +} dwc_otg_pcd_request_t;
16544 +
16545 +
16546 +extern int dwc_otg_pcd_init(struct platform_device *pdev);
16547 +
16548 +//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
16549 +extern void dwc_otg_pcd_remove( struct platform_device *pdev );
16550 +extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
16551 +extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
16552 +
16553 +extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
16554 +extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
16555 +
16556 +extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
16557 +extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
16558 + int status);
16559 +extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
16560 +extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
16561 + const unsigned reset);
16562 +#ifndef VERBOSE
16563 +#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
16564 + ((_addr_)==0)||\
16565 + ((_addr_)&0x3))
16566 +#else
16567 +#define VERIFY_PCD_DMA_ADDR(_addr_) {\
16568 + if(((_addr_)==DMA_ADDR_INVALID)||\
16569 + ((_addr_)==0)||\
16570 + ((_addr_)&0x3)) {\
16571 + printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
16572 + BUG();\
16573 + }\
16574 + }
16575 +#endif
16576 +
16577 +
16578 +static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
16579 +//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
16580 + dwc_ep_t *dwc_ep=&ep->dwc_ep;
16581 +
16582 +DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
16583 + if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
16584 + if((((u32)dwc_ep->xfer_buff)&0x3)==0){
16585 + dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
16586 +DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr);
16587 + }else{
16588 +DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
16589 + if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
16590 + if(dwc_ep->aligned_buf){
16591 +//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
16592 + //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
16593 + kfree(dwc_ep->aligned_buf);
16594 + }
16595 + dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
16596 + //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
16597 + dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
16598 + dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
16599 + if(!dwc_ep->aligned_buf){
16600 + DWC_ERROR("Cannot alloc required buffer!!\n");
16601 + BUG();
16602 + }
16603 +DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
16604 + }
16605 + dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
16606 + if(dwc_ep->is_in) {
16607 + memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
16608 + dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
16609 + }
16610 + }
16611 + }
16612 +}
16613 +
16614 +#endif
16615 +#endif /* DWC_HOST_ONLY */
16616 --- /dev/null
16617 +++ b/drivers/usb/dwc/otg_pcd_intr.c
16618 @@ -0,0 +1,3682 @@
16619 +/* ==========================================================================
16620 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
16621 + * $Revision: #83 $
16622 + * $Date: 2008/10/14 $
16623 + * $Change: 1115682 $
16624 + *
16625 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
16626 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
16627 + * otherwise expressly agreed to in writing between Synopsys and you.
16628 + *
16629 + * The Software IS NOT an item of Licensed Software or Licensed Product under
16630 + * any End User Software License Agreement or Agreement for Licensed Product
16631 + * with Synopsys or any supplement thereto. You are permitted to use and
16632 + * redistribute this Software in source and binary forms, with or without
16633 + * modification, provided that redistributions of source code must retain this
16634 + * notice. You may not view, use, disclose, copy or distribute this file or
16635 + * any information contained herein except pursuant to this license grant from
16636 + * Synopsys. If you do not agree with this notice, including the disclaimer
16637 + * below, then you are not authorized to use the Software.
16638 + *
16639 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
16640 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16641 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16642 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
16643 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
16644 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16645 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
16646 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
16647 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
16648 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
16649 + * DAMAGE.
16650 + * ========================================================================== */
16651 +#ifndef DWC_HOST_ONLY
16652 +#include <linux/interrupt.h>
16653 +#include <linux/dma-mapping.h>
16654 +#include <linux/version.h>
16655 +#include <linux/pci.h>
16656 +
16657 +#include "otg_driver.h"
16658 +#include "otg_pcd.h"
16659 +
16660 +
16661 +#define DEBUG_EP0
16662 +
16663 +
16664 +/* request functions defined in "dwc_otg_pcd.c" */
16665 +
16666 +/** @file
16667 + * This file contains the implementation of the PCD Interrupt handlers.
16668 + *
16669 + * The PCD handles the device interrupts. Many conditions can cause a
16670 + * device interrupt. When an interrupt occurs, the device interrupt
16671 + * service routine determines the cause of the interrupt and
16672 + * dispatches handling to the appropriate function. These interrupt
16673 + * handling functions are described below.
16674 + * All interrupt registers are processed from LSB to MSB.
16675 + */
16676 +
16677 +
16678 +/**
16679 + * This function prints the ep0 state for debug purposes.
16680 + */
16681 +static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
16682 +{
16683 +#ifdef DEBUG
16684 + char str[40];
16685 +
16686 + switch (pcd->ep0state) {
16687 + case EP0_DISCONNECT:
16688 + strcpy(str, "EP0_DISCONNECT");
16689 + break;
16690 + case EP0_IDLE:
16691 + strcpy(str, "EP0_IDLE");
16692 + break;
16693 + case EP0_IN_DATA_PHASE:
16694 + strcpy(str, "EP0_IN_DATA_PHASE");
16695 + break;
16696 + case EP0_OUT_DATA_PHASE:
16697 + strcpy(str, "EP0_OUT_DATA_PHASE");
16698 + break;
16699 + case EP0_IN_STATUS_PHASE:
16700 + strcpy(str,"EP0_IN_STATUS_PHASE");
16701 + break;
16702 + case EP0_OUT_STATUS_PHASE:
16703 + strcpy(str,"EP0_OUT_STATUS_PHASE");
16704 + break;
16705 + case EP0_STALL:
16706 + strcpy(str,"EP0_STALL");
16707 + break;
16708 + default:
16709 + strcpy(str,"EP0_INVALID");
16710 + }
16711 +
16712 + DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
16713 +#endif
16714 +}
16715 +
16716 +/**
16717 + * This function returns pointer to in ep struct with number ep_num
16718 + */
16719 +static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
16720 +{
16721 + int i;
16722 + int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
16723 + if(ep_num == 0) {
16724 + return &pcd->ep0;
16725 + }
16726 + else {
16727 + for(i = 0; i < num_in_eps; ++i)
16728 + {
16729 + if(pcd->in_ep[i].dwc_ep.num == ep_num)
16730 + return &pcd->in_ep[i];
16731 + }
16732 + return 0;
16733 + }
16734 +}
16735 +/**
16736 + * This function returns pointer to out ep struct with number ep_num
16737 + */
16738 +static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
16739 +{
16740 + int i;
16741 + int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
16742 + if(ep_num == 0) {
16743 + return &pcd->ep0;
16744 + }
16745 + else {
16746 + for(i = 0; i < num_out_eps; ++i)
16747 + {
16748 + if(pcd->out_ep[i].dwc_ep.num == ep_num)
16749 + return &pcd->out_ep[i];
16750 + }
16751 + return 0;
16752 + }
16753 +}
16754 +/**
16755 + * This functions gets a pointer to an EP from the wIndex address
16756 + * value of the control request.
16757 + */
16758 +static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
16759 +{
16760 + dwc_otg_pcd_ep_t *ep;
16761 +
16762 + if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
16763 + return &pcd->ep0;
16764 + list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
16765 + {
16766 + u8 bEndpointAddress;
16767 +
16768 + if (!ep->desc)
16769 + continue;
16770 +
16771 + bEndpointAddress = ep->desc->bEndpointAddress;
16772 + if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
16773 + == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
16774 + return ep;
16775 + }
16776 + return NULL;
16777 +}
16778 +
16779 +/**
16780 + * This function checks the EP request queue, if the queue is not
16781 + * empty the next request is started.
16782 + */
16783 +void start_next_request(dwc_otg_pcd_ep_t *ep)
16784 +{
16785 + dwc_otg_pcd_request_t *req = 0;
16786 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
16787 + if (!list_empty(&ep->queue)) {
16788 + req = list_entry(ep->queue.next,
16789 + dwc_otg_pcd_request_t, queue);
16790 +
16791 + /* Setup and start the Transfer */
16792 + ep->dwc_ep.dma_addr = req->req.dma;
16793 + ep->dwc_ep.start_xfer_buff = req->req.buf;
16794 + ep->dwc_ep.xfer_buff = req->req.buf;
16795 + ep->dwc_ep.sent_zlp = 0;
16796 + ep->dwc_ep.total_len = req->req.length;
16797 + ep->dwc_ep.xfer_len = 0;
16798 + ep->dwc_ep.xfer_count = 0;
16799 +
16800 + if(max_transfer > MAX_TRANSFER_SIZE) {
16801 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
16802 + } else {
16803 + ep->dwc_ep.maxxfer = max_transfer;
16804 + }
16805 +
16806 + if(req->req.zero) {
16807 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
16808 + && (ep->dwc_ep.total_len != 0)) {
16809 + ep->dwc_ep.sent_zlp = 1;
16810 + }
16811 +
16812 + }
16813 + ep_check_and_patch_dma_addr(ep);
16814 + dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
16815 + }
16816 +}
16817 +
16818 +/**
16819 + * This function handles the SOF Interrupts. At this time the SOF
16820 + * Interrupt is disabled.
16821 + */
16822 +int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
16823 +{
16824 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
16825 +
16826 + gintsts_data_t gintsts;
16827 +
16828 + DWC_DEBUGPL(DBG_PCD, "SOF\n");
16829 +
16830 + /* Clear interrupt */
16831 + gintsts.d32 = 0;
16832 + gintsts.b.sofintr = 1;
16833 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
16834 +
16835 + return 1;
16836 +}
16837 +
16838 +
16839 +/**
16840 + * This function handles the Rx Status Queue Level Interrupt, which
16841 + * indicates that there is a least one packet in the Rx FIFO. The
16842 + * packets are moved from the FIFO to memory, where they will be
16843 + * processed when the Endpoint Interrupt Register indicates Transfer
16844 + * Complete or SETUP Phase Done.
16845 + *
16846 + * Repeat the following until the Rx Status Queue is empty:
16847 + * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
16848 + * info
16849 + * -# If Receive FIFO is empty then skip to step Clear the interrupt
16850 + * and exit
16851 + * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
16852 + * SETUP data to the buffer
16853 + * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
16854 + * to the destination buffer
16855 + */
16856 +int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
16857 +{
16858 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
16859 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
16860 + gintmsk_data_t gintmask = {.d32=0};
16861 + device_grxsts_data_t status;
16862 + dwc_otg_pcd_ep_t *ep;
16863 + gintsts_data_t gintsts;
16864 +#ifdef DEBUG
16865 + static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
16866 +#endif
16867 +
16868 + //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
16869 + /* Disable the Rx Status Queue Level interrupt */
16870 + gintmask.b.rxstsqlvl= 1;
16871 + dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
16872 +
16873 + /* Get the Status from the top of the FIFO */
16874 + status.d32 = dwc_read_reg32(&global_regs->grxstsp);
16875 +
16876 + DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
16877 + "pktsts:%x Frame:%d(0x%0x)\n",
16878 + status.b.epnum, status.b.bcnt,
16879 + dpid_str[status.b.dpid],
16880 + status.b.pktsts, status.b.fn, status.b.fn);
16881 + /* Get pointer to EP structure */
16882 + ep = get_out_ep(pcd, status.b.epnum);
16883 +
16884 + switch (status.b.pktsts) {
16885 + case DWC_DSTS_GOUT_NAK:
16886 + DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
16887 + break;
16888 + case DWC_STS_DATA_UPDT:
16889 + DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
16890 + if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
16891 + /** @todo NGS Check for buffer overflow? */
16892 + dwc_otg_read_packet(core_if,
16893 + ep->dwc_ep.xfer_buff,
16894 + status.b.bcnt);
16895 + ep->dwc_ep.xfer_count += status.b.bcnt;
16896 + ep->dwc_ep.xfer_buff += status.b.bcnt;
16897 + }
16898 + break;
16899 + case DWC_STS_XFER_COMP:
16900 + DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
16901 + break;
16902 + case DWC_DSTS_SETUP_COMP:
16903 +#ifdef DEBUG_EP0
16904 + DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
16905 +#endif
16906 + break;
16907 +case DWC_DSTS_SETUP_UPDT:
16908 + dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
16909 +#ifdef DEBUG_EP0
16910 + DWC_DEBUGPL(DBG_PCD,
16911 + "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
16912 + pcd->setup_pkt->req.bRequestType,
16913 + pcd->setup_pkt->req.bRequest,
16914 + pcd->setup_pkt->req.wValue,
16915 + pcd->setup_pkt->req.wIndex,
16916 + pcd->setup_pkt->req.wLength);
16917 +#endif
16918 + ep->dwc_ep.xfer_count += status.b.bcnt;
16919 + break;
16920 + default:
16921 + DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
16922 + status.b.pktsts);
16923 + break;
16924 + }
16925 +
16926 + /* Enable the Rx Status Queue Level interrupt */
16927 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
16928 + /* Clear interrupt */
16929 + gintsts.d32 = 0;
16930 + gintsts.b.rxstsqlvl = 1;
16931 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
16932 +
16933 + //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
16934 + return 1;
16935 +}
16936 +/**
16937 + * This function examines the Device IN Token Learning Queue to
16938 + * determine the EP number of the last IN token received. This
16939 + * implementation is for the Mass Storage device where there are only
16940 + * 2 IN EPs (Control-IN and BULK-IN).
16941 + *
16942 + * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
16943 + * are 8 EP Numbers in each of the other possible DTKNQ Registers.
16944 + *
16945 + * @param core_if Programming view of DWC_otg controller.
16946 + *
16947 + */
16948 +static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
16949 +{
16950 + dwc_otg_device_global_regs_t *dev_global_regs =
16951 + core_if->dev_if->dev_global_regs;
16952 + const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
16953 + /* Number of Token Queue Registers */
16954 + const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
16955 + dtknq1_data_t dtknqr1;
16956 + uint32_t in_tkn_epnums[4];
16957 + int ndx = 0;
16958 + int i = 0;
16959 + volatile uint32_t *addr = &dev_global_regs->dtknqr1;
16960 + int epnum = 0;
16961 +
16962 + //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
16963 +
16964 + /* Read the DTKNQ Registers */
16965 + for (i = 0; i < DTKNQ_REG_CNT; i++)
16966 + {
16967 + in_tkn_epnums[ i ] = dwc_read_reg32(addr);
16968 + DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
16969 + in_tkn_epnums[i]);
16970 + if (addr == &dev_global_regs->dvbusdis) {
16971 + addr = &dev_global_regs->dtknqr3_dthrctl;
16972 + }
16973 + else {
16974 + ++addr;
16975 + }
16976 + }
16977 +
16978 + /* Copy the DTKNQR1 data to the bit field. */
16979 + dtknqr1.d32 = in_tkn_epnums[0];
16980 + /* Get the EP numbers */
16981 + in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
16982 + ndx = dtknqr1.b.intknwptr - 1;
16983 +
16984 + //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
16985 + if (ndx == -1) {
16986 + /** @todo Find a simpler way to calculate the max
16987 + * queue position.*/
16988 + int cnt = TOKEN_Q_DEPTH;
16989 + if (TOKEN_Q_DEPTH <= 6) {
16990 + cnt = TOKEN_Q_DEPTH - 1;
16991 + }
16992 + else if (TOKEN_Q_DEPTH <= 14) {
16993 + cnt = TOKEN_Q_DEPTH - 7;
16994 + }
16995 + else if (TOKEN_Q_DEPTH <= 22) {
16996 + cnt = TOKEN_Q_DEPTH - 15;
16997 + }
16998 + else {
16999 + cnt = TOKEN_Q_DEPTH - 23;
17000 + }
17001 + epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
17002 + }
17003 + else {
17004 + if (ndx <= 5) {
17005 + epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
17006 + }
17007 + else if (ndx <= 13) {
17008 + ndx -= 6;
17009 + epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
17010 + }
17011 + else if (ndx <= 21) {
17012 + ndx -= 14;
17013 + epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
17014 + }
17015 + else if (ndx <= 29) {
17016 + ndx -= 22;
17017 + epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
17018 + }
17019 + }
17020 + //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
17021 + return epnum;
17022 +}
17023 +
17024 +/**
17025 + * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
17026 + * The active request is checked for the next packet to be loaded into
17027 + * the non-periodic Tx FIFO.
17028 + */
17029 +int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
17030 +{
17031 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17032 + dwc_otg_core_global_regs_t *global_regs =
17033 + core_if->core_global_regs;
17034 + dwc_otg_dev_in_ep_regs_t *ep_regs;
17035 + gnptxsts_data_t txstatus = {.d32 = 0};
17036 + gintsts_data_t gintsts;
17037 +
17038 + int epnum = 0;
17039 + dwc_otg_pcd_ep_t *ep = 0;
17040 + uint32_t len = 0;
17041 + int dwords;
17042 +
17043 + /* Get the epnum from the IN Token Learning Queue. */
17044 + epnum = get_ep_of_last_in_token(core_if);
17045 + ep = get_in_ep(pcd, epnum);
17046 +
17047 + DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
17048 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
17049 +
17050 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17051 + if (len > ep->dwc_ep.maxpacket) {
17052 + len = ep->dwc_ep.maxpacket;
17053 + }
17054 + dwords = (len + 3)/4;
17055 +
17056 + /* While there is space in the queue and space in the FIFO and
17057 + * More data to tranfer, Write packets to the Tx FIFO */
17058 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
17059 + DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
17060 +
17061 + while (txstatus.b.nptxqspcavail > 0 &&
17062 + txstatus.b.nptxfspcavail > dwords &&
17063 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
17064 + /* Write the FIFO */
17065 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
17066 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17067 +
17068 + if (len > ep->dwc_ep.maxpacket) {
17069 + len = ep->dwc_ep.maxpacket;
17070 + }
17071 +
17072 + dwords = (len + 3)/4;
17073 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
17074 + DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
17075 + }
17076 +
17077 + DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
17078 + dwc_read_reg32(&global_regs->gnptxsts));
17079 +
17080 + /* Clear interrupt */
17081 + gintsts.d32 = 0;
17082 + gintsts.b.nptxfempty = 1;
17083 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
17084 +
17085 + return 1;
17086 +}
17087 +
17088 +/**
17089 + * This function is called when dedicated Tx FIFO Empty interrupt occurs.
17090 + * The active request is checked for the next packet to be loaded into
17091 + * apropriate Tx FIFO.
17092 + */
17093 +static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
17094 +{
17095 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17096 + dwc_otg_dev_if_t* dev_if = core_if->dev_if;
17097 + dwc_otg_dev_in_ep_regs_t *ep_regs;
17098 + dtxfsts_data_t txstatus = {.d32 = 0};
17099 + dwc_otg_pcd_ep_t *ep = 0;
17100 + uint32_t len = 0;
17101 + int dwords;
17102 +
17103 + ep = get_in_ep(pcd, epnum);
17104 +
17105 + DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
17106 +
17107 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
17108 +
17109 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17110 +
17111 + if (len > ep->dwc_ep.maxpacket) {
17112 + len = ep->dwc_ep.maxpacket;
17113 + }
17114 +
17115 + dwords = (len + 3)/4;
17116 +
17117 + /* While there is space in the queue and space in the FIFO and
17118 + * More data to tranfer, Write packets to the Tx FIFO */
17119 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
17120 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
17121 +
17122 + while (txstatus.b.txfspcavail > dwords &&
17123 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
17124 + ep->dwc_ep.xfer_len != 0) {
17125 + /* Write the FIFO */
17126 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
17127 +
17128 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17129 + if (len > ep->dwc_ep.maxpacket) {
17130 + len = ep->dwc_ep.maxpacket;
17131 + }
17132 +
17133 + dwords = (len + 3)/4;
17134 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
17135 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
17136 + }
17137 +
17138 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
17139 +
17140 + return 1;
17141 +}
17142 +
17143 +/**
17144 + * This function is called when the Device is disconnected. It stops
17145 + * any active requests and informs the Gadget driver of the
17146 + * disconnect.
17147 + */
17148 +void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
17149 +{
17150 + int i, num_in_eps, num_out_eps;
17151 + dwc_otg_pcd_ep_t *ep;
17152 +
17153 + gintmsk_data_t intr_mask = {.d32 = 0};
17154 +
17155 + num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
17156 + num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
17157 +
17158 + DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
17159 + /* don't disconnect drivers more than once */
17160 + if (pcd->ep0state == EP0_DISCONNECT) {
17161 + DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
17162 + return;
17163 + }
17164 + pcd->ep0state = EP0_DISCONNECT;
17165 +
17166 + /* Reset the OTG state. */
17167 + dwc_otg_pcd_update_otg(pcd, 1);
17168 +
17169 + /* Disable the NP Tx Fifo Empty Interrupt. */
17170 + intr_mask.b.nptxfempty = 1;
17171 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17172 + intr_mask.d32, 0);
17173 +
17174 + /* Flush the FIFOs */
17175 + /**@todo NGS Flush Periodic FIFOs */
17176 + dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
17177 + dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
17178 +
17179 + /* prevent new request submissions, kill any outstanding requests */
17180 + ep = &pcd->ep0;
17181 + dwc_otg_request_nuke(ep);
17182 + /* prevent new request submissions, kill any outstanding requests */
17183 + for (i = 0; i < num_in_eps; i++)
17184 + {
17185 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
17186 + dwc_otg_request_nuke(ep);
17187 + }
17188 + /* prevent new request submissions, kill any outstanding requests */
17189 + for (i = 0; i < num_out_eps; i++)
17190 + {
17191 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
17192 + dwc_otg_request_nuke(ep);
17193 + }
17194 +
17195 + /* report disconnect; the driver is already quiesced */
17196 + if (pcd->driver && pcd->driver->disconnect) {
17197 + SPIN_UNLOCK(&pcd->lock);
17198 + pcd->driver->disconnect(&pcd->gadget);
17199 + SPIN_LOCK(&pcd->lock);
17200 + }
17201 +}
17202 +
17203 +/**
17204 + * This interrupt indicates that ...
17205 + */
17206 +int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
17207 +{
17208 + gintmsk_data_t intr_mask = { .d32 = 0};
17209 + gintsts_data_t gintsts;
17210 +
17211 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
17212 + intr_mask.b.i2cintr = 1;
17213 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17214 + intr_mask.d32, 0);
17215 +
17216 + /* Clear interrupt */
17217 + gintsts.d32 = 0;
17218 + gintsts.b.i2cintr = 1;
17219 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17220 + gintsts.d32);
17221 + return 1;
17222 +}
17223 +
17224 +
17225 +/**
17226 + * This interrupt indicates that ...
17227 + */
17228 +int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
17229 +{
17230 + gintsts_data_t gintsts;
17231 +#if defined(VERBOSE)
17232 + DWC_PRINT("Early Suspend Detected\n");
17233 +#endif
17234 + /* Clear interrupt */
17235 + gintsts.d32 = 0;
17236 + gintsts.b.erlysuspend = 1;
17237 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17238 + gintsts.d32);
17239 + return 1;
17240 +}
17241 +
17242 +/**
17243 + * This function configures EPO to receive SETUP packets.
17244 + *
17245 + * @todo NGS: Update the comments from the HW FS.
17246 + *
17247 + * -# Program the following fields in the endpoint specific registers
17248 + * for Control OUT EP 0, in order to receive a setup packet
17249 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
17250 + * setup packets)
17251 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
17252 + * to back setup packets)
17253 + * - In DMA mode, DOEPDMA0 Register with a memory address to
17254 + * store any setup packets received
17255 + *
17256 + * @param core_if Programming view of DWC_otg controller.
17257 + * @param pcd Programming view of the PCD.
17258 + */
17259 +static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
17260 +{
17261 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
17262 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
17263 + dwc_otg_dma_desc_t* dma_desc;
17264 + depctl_data_t doepctl = { .d32 = 0 };
17265 +
17266 +#ifdef VERBOSE
17267 + DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
17268 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
17269 +#endif
17270 +
17271 + doeptsize0.b.supcnt = 3;
17272 + doeptsize0.b.pktcnt = 1;
17273 + doeptsize0.b.xfersize = 8*3;
17274 +
17275 + if (core_if->dma_enable) {
17276 + if (!core_if->dma_desc_enable) {
17277 + /** put here as for Hermes mode deptisz register should not be written */
17278 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
17279 + doeptsize0.d32);
17280 +
17281 + /** @todo dma needs to handle multiple setup packets (up to 3) */
17282 + VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
17283 +
17284 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
17285 + pcd->setup_pkt_dma_handle);
17286 + } else {
17287 + dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
17288 + dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
17289 +
17290 + /** DMA Descriptor Setup */
17291 + dma_desc->status.b.bs = BS_HOST_BUSY;
17292 + dma_desc->status.b.l = 1;
17293 + dma_desc->status.b.ioc = 1;
17294 + dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
17295 + dma_desc->buf = pcd->setup_pkt_dma_handle;
17296 + dma_desc->status.b.bs = BS_HOST_READY;
17297 +
17298 + /** DOEPDMA0 Register write */
17299 + VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
17300 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
17301 + }
17302 +
17303 + } else {
17304 + /** put here as for Hermes mode deptisz register should not be written */
17305 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
17306 + doeptsize0.d32);
17307 + }
17308 +
17309 + /** DOEPCTL0 Register write */
17310 + doepctl.b.epena = 1;
17311 + doepctl.b.cnak = 1;
17312 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
17313 +
17314 +#ifdef VERBOSE
17315 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
17316 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
17317 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
17318 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
17319 +#endif
17320 +}
17321 +
17322 +/**
17323 + * This interrupt occurs when a USB Reset is detected. When the USB
17324 + * Reset Interrupt occurs the device state is set to DEFAULT and the
17325 + * EP0 state is set to IDLE.
17326 + * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
17327 + * -# Unmask the following interrupt bits
17328 + * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
17329 + * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
17330 + * - DOEPMSK.SETUP = 1
17331 + * - DOEPMSK.XferCompl = 1
17332 + * - DIEPMSK.XferCompl = 1
17333 + * - DIEPMSK.TimeOut = 1
17334 + * -# Program the following fields in the endpoint specific registers
17335 + * for Control OUT EP 0, in order to receive a setup packet
17336 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
17337 + * setup packets)
17338 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
17339 + * to back setup packets)
17340 + * - In DMA mode, DOEPDMA0 Register with a memory address to
17341 + * store any setup packets received
17342 + * At this point, all the required initialization, except for enabling
17343 + * the control 0 OUT endpoint is done, for receiving SETUP packets.
17344 + */
17345 +int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
17346 +{
17347 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17348 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
17349 + depctl_data_t doepctl = { .d32 = 0};
17350 +
17351 + daint_data_t daintmsk = { .d32 = 0};
17352 + doepmsk_data_t doepmsk = { .d32 = 0};
17353 + diepmsk_data_t diepmsk = { .d32 = 0};
17354 +
17355 + dcfg_data_t dcfg = { .d32=0 };
17356 + grstctl_t resetctl = { .d32=0 };
17357 + dctl_data_t dctl = {.d32=0};
17358 + int i = 0;
17359 + gintsts_data_t gintsts;
17360 +
17361 + DWC_PRINT("USB RESET\n");
17362 +#ifdef DWC_EN_ISOC
17363 + for(i = 1;i < 16; ++i)
17364 + {
17365 + dwc_otg_pcd_ep_t *ep;
17366 + dwc_ep_t *dwc_ep;
17367 + ep = get_in_ep(pcd,i);
17368 + if(ep != 0){
17369 + dwc_ep = &ep->dwc_ep;
17370 + dwc_ep->next_frame = 0xffffffff;
17371 + }
17372 + }
17373 +#endif /* DWC_EN_ISOC */
17374 +
17375 + /* reset the HNP settings */
17376 + dwc_otg_pcd_update_otg(pcd, 1);
17377 +
17378 + /* Clear the Remote Wakeup Signalling */
17379 + dctl.b.rmtwkupsig = 1;
17380 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
17381 + dctl.d32, 0);
17382 +
17383 + /* Set NAK for all OUT EPs */
17384 + doepctl.b.snak = 1;
17385 + for (i=0; i <= dev_if->num_out_eps; i++)
17386 + {
17387 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
17388 + doepctl.d32);
17389 + }
17390 +
17391 + /* Flush the NP Tx FIFO */
17392 + dwc_otg_flush_tx_fifo(core_if, 0x10);
17393 + /* Flush the Learning Queue */
17394 + resetctl.b.intknqflsh = 1;
17395 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
17396 +
17397 + if(core_if->multiproc_int_enable) {
17398 + daintmsk.b.inep0 = 1;
17399 + daintmsk.b.outep0 = 1;
17400 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
17401 +
17402 + doepmsk.b.setup = 1;
17403 + doepmsk.b.xfercompl = 1;
17404 + doepmsk.b.ahberr = 1;
17405 + doepmsk.b.epdisabled = 1;
17406 +
17407 + if(core_if->dma_desc_enable) {
17408 + doepmsk.b.stsphsercvd = 1;
17409 + doepmsk.b.bna = 1;
17410 + }
17411 +/*
17412 + doepmsk.b.babble = 1;
17413 + doepmsk.b.nyet = 1;
17414 +
17415 + if(core_if->dma_enable) {
17416 + doepmsk.b.nak = 1;
17417 + }
17418 +*/
17419 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
17420 +
17421 + diepmsk.b.xfercompl = 1;
17422 + diepmsk.b.timeout = 1;
17423 + diepmsk.b.epdisabled = 1;
17424 + diepmsk.b.ahberr = 1;
17425 + diepmsk.b.intknepmis = 1;
17426 +
17427 + if(core_if->dma_desc_enable) {
17428 + diepmsk.b.bna = 1;
17429 + }
17430 +/*
17431 + if(core_if->dma_enable) {
17432 + diepmsk.b.nak = 1;
17433 + }
17434 +*/
17435 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
17436 + } else{
17437 + daintmsk.b.inep0 = 1;
17438 + daintmsk.b.outep0 = 1;
17439 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
17440 +
17441 + doepmsk.b.setup = 1;
17442 + doepmsk.b.xfercompl = 1;
17443 + doepmsk.b.ahberr = 1;
17444 + doepmsk.b.epdisabled = 1;
17445 +
17446 + if(core_if->dma_desc_enable) {
17447 + doepmsk.b.stsphsercvd = 1;
17448 + doepmsk.b.bna = 1;
17449 + }
17450 +/*
17451 + doepmsk.b.babble = 1;
17452 + doepmsk.b.nyet = 1;
17453 + doepmsk.b.nak = 1;
17454 +*/
17455 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
17456 +
17457 + diepmsk.b.xfercompl = 1;
17458 + diepmsk.b.timeout = 1;
17459 + diepmsk.b.epdisabled = 1;
17460 + diepmsk.b.ahberr = 1;
17461 + diepmsk.b.intknepmis = 1;
17462 +
17463 + if(core_if->dma_desc_enable) {
17464 + diepmsk.b.bna = 1;
17465 + }
17466 +
17467 +// diepmsk.b.nak = 1;
17468 +
17469 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
17470 + }
17471 +
17472 + /* Reset Device Address */
17473 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
17474 + dcfg.b.devaddr = 0;
17475 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
17476 +
17477 + /* setup EP0 to receive SETUP packets */
17478 + ep0_out_start(core_if, pcd);
17479 +
17480 + /* Clear interrupt */
17481 + gintsts.d32 = 0;
17482 + gintsts.b.usbreset = 1;
17483 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
17484 +
17485 + return 1;
17486 +}
17487 +
17488 +/**
17489 + * Get the device speed from the device status register and convert it
17490 + * to USB speed constant.
17491 + *
17492 + * @param core_if Programming view of DWC_otg controller.
17493 + */
17494 +static int get_device_speed(dwc_otg_core_if_t *core_if)
17495 +{
17496 + dsts_data_t dsts;
17497 + enum usb_device_speed speed = USB_SPEED_UNKNOWN;
17498 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
17499 +
17500 + switch (dsts.b.enumspd) {
17501 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
17502 + speed = USB_SPEED_HIGH;
17503 + break;
17504 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
17505 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
17506 + speed = USB_SPEED_FULL;
17507 + break;
17508 +
17509 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
17510 + speed = USB_SPEED_LOW;
17511 + break;
17512 + }
17513 +
17514 + return speed;
17515 +}
17516 +
17517 +/**
17518 + * Read the device status register and set the device speed in the
17519 + * data structure.
17520 + * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
17521 + */
17522 +int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
17523 +{
17524 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17525 + gintsts_data_t gintsts;
17526 + gusbcfg_data_t gusbcfg;
17527 + dwc_otg_core_global_regs_t *global_regs =
17528 + GET_CORE_IF(pcd)->core_global_regs;
17529 + uint8_t utmi16b, utmi8b;
17530 +// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
17531 + DWC_PRINT("SPEED ENUM\n");
17532 +
17533 + if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
17534 + utmi16b = 6;
17535 + utmi8b = 9;
17536 + } else {
17537 + utmi16b = 4;
17538 + utmi8b = 8;
17539 + }
17540 + dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
17541 +
17542 +#ifdef DEBUG_EP0
17543 + print_ep0_state(pcd);
17544 +#endif
17545 +
17546 + if (pcd->ep0state == EP0_DISCONNECT) {
17547 + pcd->ep0state = EP0_IDLE;
17548 + }
17549 + else if (pcd->ep0state == EP0_STALL) {
17550 + pcd->ep0state = EP0_IDLE;
17551 + }
17552 +
17553 + pcd->ep0state = EP0_IDLE;
17554 +
17555 + ep0->stopped = 0;
17556 +
17557 + pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
17558 +
17559 + /* Set USB turnaround time based on device speed and PHY interface. */
17560 + gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
17561 + if (pcd->gadget.speed == USB_SPEED_HIGH) {
17562 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
17563 + /* ULPI interface */
17564 + gusbcfg.b.usbtrdtim = 9;
17565 + }
17566 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
17567 + /* UTMI+ interface */
17568 + if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
17569 + gusbcfg.b.usbtrdtim = utmi8b;
17570 + }
17571 + else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
17572 + gusbcfg.b.usbtrdtim = utmi16b;
17573 + }
17574 + else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
17575 + gusbcfg.b.usbtrdtim = utmi8b;
17576 + }
17577 + else {
17578 + gusbcfg.b.usbtrdtim = utmi16b;
17579 + }
17580 + }
17581 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
17582 + /* UTMI+ OR ULPI interface */
17583 + if (gusbcfg.b.ulpi_utmi_sel == 1) {
17584 + /* ULPI interface */
17585 + gusbcfg.b.usbtrdtim = 9;
17586 + }
17587 + else {
17588 + /* UTMI+ interface */
17589 + if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
17590 + gusbcfg.b.usbtrdtim = utmi16b;
17591 + }
17592 + else {
17593 + gusbcfg.b.usbtrdtim = utmi8b;
17594 + }
17595 + }
17596 + }
17597 + }
17598 + else {
17599 + /* Full or low speed */
17600 + gusbcfg.b.usbtrdtim = 9;
17601 + }
17602 + dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
17603 +
17604 + /* Clear interrupt */
17605 + gintsts.d32 = 0;
17606 + gintsts.b.enumdone = 1;
17607 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17608 + gintsts.d32);
17609 + return 1;
17610 +}
17611 +
17612 +/**
17613 + * This interrupt indicates that the ISO OUT Packet was dropped due to
17614 + * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
17615 + * read all the data from the Rx FIFO.
17616 + */
17617 +int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
17618 +{
17619 + gintmsk_data_t intr_mask = { .d32 = 0};
17620 + gintsts_data_t gintsts;
17621 +
17622 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
17623 + "ISOC Out Dropped");
17624 +
17625 + intr_mask.b.isooutdrop = 1;
17626 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17627 + intr_mask.d32, 0);
17628 +
17629 + /* Clear interrupt */
17630 +
17631 + gintsts.d32 = 0;
17632 + gintsts.b.isooutdrop = 1;
17633 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17634 + gintsts.d32);
17635 +
17636 + return 1;
17637 +}
17638 +
17639 +/**
17640 + * This interrupt indicates the end of the portion of the micro-frame
17641 + * for periodic transactions. If there is a periodic transaction for
17642 + * the next frame, load the packets into the EP periodic Tx FIFO.
17643 + */
17644 +int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
17645 +{
17646 + gintmsk_data_t intr_mask = { .d32 = 0};
17647 + gintsts_data_t gintsts;
17648 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
17649 +
17650 + intr_mask.b.eopframe = 1;
17651 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17652 + intr_mask.d32, 0);
17653 +
17654 + /* Clear interrupt */
17655 + gintsts.d32 = 0;
17656 + gintsts.b.eopframe = 1;
17657 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
17658 +
17659 + return 1;
17660 +}
17661 +
17662 +/**
17663 + * This interrupt indicates that EP of the packet on the top of the
17664 + * non-periodic Tx FIFO does not match EP of the IN Token received.
17665 + *
17666 + * The "Device IN Token Queue" Registers are read to determine the
17667 + * order the IN Tokens have been received. The non-periodic Tx FIFO
17668 + * is flushed, so it can be reloaded in the order seen in the IN Token
17669 + * Queue.
17670 + */
17671 +int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
17672 +{
17673 + gintsts_data_t gintsts;
17674 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
17675 +
17676 + /* Clear interrupt */
17677 + gintsts.d32 = 0;
17678 + gintsts.b.epmismatch = 1;
17679 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
17680 +
17681 + return 1;
17682 +}
17683 +
17684 +/**
17685 + * This funcion stalls EP0.
17686 + */
17687 +static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
17688 +{
17689 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17690 + struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
17691 + DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
17692 + ctrl->bRequestType, ctrl->bRequest, err_val);
17693 +
17694 + ep0->dwc_ep.is_in = 1;
17695 + dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
17696 + pcd->ep0.stopped = 1;
17697 + pcd->ep0state = EP0_IDLE;
17698 + ep0_out_start(GET_CORE_IF(pcd), pcd);
17699 +}
17700 +
17701 +/**
17702 + * This functions delegates the setup command to the gadget driver.
17703 + */
17704 +static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
17705 + struct usb_ctrlrequest * ctrl)
17706 +{
17707 + int ret = 0;
17708 + if (pcd->driver && pcd->driver->setup) {
17709 + SPIN_UNLOCK(&pcd->lock);
17710 + ret = pcd->driver->setup(&pcd->gadget, ctrl);
17711 + SPIN_LOCK(&pcd->lock);
17712 + if (ret < 0) {
17713 + ep0_do_stall(pcd, ret);
17714 + }
17715 +
17716 + /** @todo This is a g_file_storage gadget driver specific
17717 + * workaround: a DELAYED_STATUS result from the fsg_setup
17718 + * routine will result in the gadget queueing a EP0 IN status
17719 + * phase for a two-stage control transfer. Exactly the same as
17720 + * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
17721 + * specific request. Need a generic way to know when the gadget
17722 + * driver will queue the status phase. Can we assume when we
17723 + * call the gadget driver setup() function that it will always
17724 + * queue and require the following flag? Need to look into
17725 + * this.
17726 + */
17727 +
17728 + if (ret == 256 + 999) {
17729 + pcd->request_config = 1;
17730 + }
17731 + }
17732 +}
17733 +
17734 +/**
17735 + * This function starts the Zero-Length Packet for the IN status phase
17736 + * of a 2 stage control transfer.
17737 + */
17738 +static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
17739 +{
17740 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17741 + if (pcd->ep0state == EP0_STALL) {
17742 + return;
17743 + }
17744 +
17745 + pcd->ep0state = EP0_IN_STATUS_PHASE;
17746 +
17747 + /* Prepare for more SETUP Packets */
17748 + DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
17749 + ep0->dwc_ep.xfer_len = 0;
17750 + ep0->dwc_ep.xfer_count = 0;
17751 + ep0->dwc_ep.is_in = 1;
17752 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
17753 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
17754 +
17755 + /* Prepare for more SETUP Packets */
17756 +// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
17757 +}
17758 +
17759 +/**
17760 + * This function starts the Zero-Length Packet for the OUT status phase
17761 + * of a 2 stage control transfer.
17762 + */
17763 +static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
17764 +{
17765 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17766 + if (pcd->ep0state == EP0_STALL) {
17767 + DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
17768 + return;
17769 + }
17770 + pcd->ep0state = EP0_OUT_STATUS_PHASE;
17771 +
17772 + DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
17773 + ep0->dwc_ep.xfer_len = 0;
17774 + ep0->dwc_ep.xfer_count = 0;
17775 + ep0->dwc_ep.is_in = 0;
17776 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
17777 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
17778 +
17779 + /* Prepare for more SETUP Packets */
17780 + if(GET_CORE_IF(pcd)->dma_enable == 0) {
17781 + ep0_out_start(GET_CORE_IF(pcd), pcd);
17782 + }
17783 +}
17784 +
17785 +/**
17786 + * Clear the EP halt (STALL) and if pending requests start the
17787 + * transfer.
17788 + */
17789 +static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
17790 +{
17791 + if(ep->dwc_ep.stall_clear_flag == 0)
17792 + dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
17793 +
17794 + /* Reactive the EP */
17795 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
17796 + if (ep->stopped) {
17797 + ep->stopped = 0;
17798 + /* If there is a request in the EP queue start it */
17799 +
17800 + /** @todo FIXME: this causes an EP mismatch in DMA mode.
17801 + * epmismatch not yet implemented. */
17802 +
17803 + /*
17804 + * Above fixme is solved by implmenting a tasklet to call the
17805 + * start_next_request(), outside of interrupt context at some
17806 + * time after the current time, after a clear-halt setup packet.
17807 + * Still need to implement ep mismatch in the future if a gadget
17808 + * ever uses more than one endpoint at once
17809 + */
17810 + ep->queue_sof = 1;
17811 + tasklet_schedule (pcd->start_xfer_tasklet);
17812 + }
17813 + /* Start Control Status Phase */
17814 + do_setup_in_status_phase(pcd);
17815 +}
17816 +
17817 +/**
17818 + * This function is called when the SET_FEATURE TEST_MODE Setup packet
17819 + * is sent from the host. The Device Control register is written with
17820 + * the Test Mode bits set to the specified Test Mode. This is done as
17821 + * a tasklet so that the "Status" phase of the control transfer
17822 + * completes before transmitting the TEST packets.
17823 + *
17824 + * @todo This has not been tested since the tasklet struct was put
17825 + * into the PCD struct!
17826 + *
17827 + */
17828 +static void do_test_mode(unsigned long data)
17829 +{
17830 + dctl_data_t dctl;
17831 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
17832 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17833 + int test_mode = pcd->test_mode;
17834 +
17835 +
17836 +// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
17837 +
17838 + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
17839 + switch (test_mode) {
17840 + case 1: // TEST_J
17841 + dctl.b.tstctl = 1;
17842 + break;
17843 +
17844 + case 2: // TEST_K
17845 + dctl.b.tstctl = 2;
17846 + break;
17847 +
17848 + case 3: // TEST_SE0_NAK
17849 + dctl.b.tstctl = 3;
17850 + break;
17851 +
17852 + case 4: // TEST_PACKET
17853 + dctl.b.tstctl = 4;
17854 + break;
17855 +
17856 + case 5: // TEST_FORCE_ENABLE
17857 + dctl.b.tstctl = 5;
17858 + break;
17859 + }
17860 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
17861 +}
17862 +
17863 +/**
17864 + * This function process the GET_STATUS Setup Commands.
17865 + */
17866 +static inline void do_get_status(dwc_otg_pcd_t *pcd)
17867 +{
17868 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
17869 + dwc_otg_pcd_ep_t *ep;
17870 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17871 + uint16_t *status = pcd->status_buf;
17872 +
17873 +#ifdef DEBUG_EP0
17874 + DWC_DEBUGPL(DBG_PCD,
17875 + "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
17876 + ctrl.bRequestType, ctrl.bRequest,
17877 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
17878 +#endif
17879 +
17880 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
17881 + case USB_RECIP_DEVICE:
17882 + *status = 0x1; /* Self powered */
17883 + *status |= pcd->remote_wakeup_enable << 1;
17884 + break;
17885 +
17886 + case USB_RECIP_INTERFACE:
17887 + *status = 0;
17888 + break;
17889 +
17890 + case USB_RECIP_ENDPOINT:
17891 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
17892 + if (ep == 0 || ctrl.wLength > 2) {
17893 + ep0_do_stall(pcd, -EOPNOTSUPP);
17894 + return;
17895 + }
17896 + /** @todo check for EP stall */
17897 + *status = ep->stopped;
17898 + break;
17899 + }
17900 + pcd->ep0_pending = 1;
17901 + ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
17902 + ep0->dwc_ep.xfer_buff = (uint8_t *)status;
17903 + ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
17904 + ep0->dwc_ep.xfer_len = 2;
17905 + ep0->dwc_ep.xfer_count = 0;
17906 + ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
17907 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
17908 +}
17909 +/**
17910 + * This function process the SET_FEATURE Setup Commands.
17911 + */
17912 +static inline void do_set_feature(dwc_otg_pcd_t *pcd)
17913 +{
17914 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17915 + dwc_otg_core_global_regs_t *global_regs =
17916 + core_if->core_global_regs;
17917 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
17918 + dwc_otg_pcd_ep_t *ep = 0;
17919 + int32_t otg_cap_param = core_if->core_params->otg_cap;
17920 + gotgctl_data_t gotgctl = { .d32 = 0 };
17921 +
17922 + DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
17923 + ctrl.bRequestType, ctrl.bRequest,
17924 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
17925 + DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
17926 +
17927 +
17928 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
17929 + case USB_RECIP_DEVICE:
17930 + switch (ctrl.wValue) {
17931 + case USB_DEVICE_REMOTE_WAKEUP:
17932 + pcd->remote_wakeup_enable = 1;
17933 + break;
17934 +
17935 + case USB_DEVICE_TEST_MODE:
17936 + /* Setup the Test Mode tasklet to do the Test
17937 + * Packet generation after the SETUP Status
17938 + * phase has completed. */
17939 +
17940 + /** @todo This has not been tested since the
17941 + * tasklet struct was put into the PCD
17942 + * struct! */
17943 + pcd->test_mode_tasklet.next = 0;
17944 + pcd->test_mode_tasklet.state = 0;
17945 + atomic_set(&pcd->test_mode_tasklet.count, 0);
17946 + pcd->test_mode_tasklet.func = do_test_mode;
17947 + pcd->test_mode_tasklet.data = (unsigned long)pcd;
17948 + pcd->test_mode = ctrl.wIndex >> 8;
17949 + tasklet_schedule(&pcd->test_mode_tasklet);
17950 + break;
17951 +
17952 + case USB_DEVICE_B_HNP_ENABLE:
17953 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
17954 +
17955 + /* dev may initiate HNP */
17956 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
17957 + pcd->b_hnp_enable = 1;
17958 + dwc_otg_pcd_update_otg(pcd, 0);
17959 + DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
17960 + /**@todo Is the gotgctl.devhnpen cleared
17961 + * by a USB Reset? */
17962 + gotgctl.b.devhnpen = 1;
17963 + gotgctl.b.hnpreq = 1;
17964 + dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
17965 + }
17966 + else {
17967 + ep0_do_stall(pcd, -EOPNOTSUPP);
17968 + }
17969 + break;
17970 +
17971 + case USB_DEVICE_A_HNP_SUPPORT:
17972 + /* RH port supports HNP */
17973 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
17974 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
17975 + pcd->a_hnp_support = 1;
17976 + dwc_otg_pcd_update_otg(pcd, 0);
17977 + }
17978 + else {
17979 + ep0_do_stall(pcd, -EOPNOTSUPP);
17980 + }
17981 + break;
17982 +
17983 + case USB_DEVICE_A_ALT_HNP_SUPPORT:
17984 + /* other RH port does */
17985 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
17986 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
17987 + pcd->a_alt_hnp_support = 1;
17988 + dwc_otg_pcd_update_otg(pcd, 0);
17989 + }
17990 + else {
17991 + ep0_do_stall(pcd, -EOPNOTSUPP);
17992 + }
17993 + break;
17994 + }
17995 + do_setup_in_status_phase(pcd);
17996 + break;
17997 +
17998 + case USB_RECIP_INTERFACE:
17999 + do_gadget_setup(pcd, &ctrl);
18000 + break;
18001 +
18002 + case USB_RECIP_ENDPOINT:
18003 + if (ctrl.wValue == USB_ENDPOINT_HALT) {
18004 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
18005 + if (ep == 0) {
18006 + ep0_do_stall(pcd, -EOPNOTSUPP);
18007 + return;
18008 + }
18009 + ep->stopped = 1;
18010 + dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
18011 + }
18012 + do_setup_in_status_phase(pcd);
18013 + break;
18014 + }
18015 +}
18016 +
18017 +/**
18018 + * This function process the CLEAR_FEATURE Setup Commands.
18019 + */
18020 +static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
18021 +{
18022 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18023 + dwc_otg_pcd_ep_t *ep = 0;
18024 +
18025 + DWC_DEBUGPL(DBG_PCD,
18026 + "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
18027 + ctrl.bRequestType, ctrl.bRequest,
18028 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
18029 +
18030 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
18031 + case USB_RECIP_DEVICE:
18032 + switch (ctrl.wValue) {
18033 + case USB_DEVICE_REMOTE_WAKEUP:
18034 + pcd->remote_wakeup_enable = 0;
18035 + break;
18036 +
18037 + case USB_DEVICE_TEST_MODE:
18038 + /** @todo Add CLEAR_FEATURE for TEST modes. */
18039 + break;
18040 + }
18041 + do_setup_in_status_phase(pcd);
18042 + break;
18043 +
18044 + case USB_RECIP_ENDPOINT:
18045 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
18046 + if (ep == 0) {
18047 + ep0_do_stall(pcd, -EOPNOTSUPP);
18048 + return;
18049 + }
18050 +
18051 + pcd_clear_halt(pcd, ep);
18052 +
18053 + break;
18054 + }
18055 +}
18056 +
18057 +/**
18058 + * This function process the SET_ADDRESS Setup Commands.
18059 + */
18060 +static inline void do_set_address(dwc_otg_pcd_t *pcd)
18061 +{
18062 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
18063 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18064 +
18065 + if (ctrl.bRequestType == USB_RECIP_DEVICE) {
18066 + dcfg_data_t dcfg = {.d32=0};
18067 +
18068 +#ifdef DEBUG_EP0
18069 +// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
18070 +#endif
18071 + dcfg.b.devaddr = ctrl.wValue;
18072 + dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
18073 + do_setup_in_status_phase(pcd);
18074 + }
18075 +}
18076 +
18077 +/**
18078 + * This function processes SETUP commands. In Linux, the USB Command
18079 + * processing is done in two places - the first being the PCD and the
18080 + * second in the Gadget Driver (for example, the File-Backed Storage
18081 + * Gadget Driver).
18082 + *
18083 + * <table>
18084 + * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
18085 + *
18086 + * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
18087 + * defined in chapter 9 of the USB 2.0 Specification chapter 9
18088 + * </td></tr>
18089 + *
18090 + * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
18091 + * requests are the ENDPOINT_HALT feature is procesed, all others the
18092 + * interface requests are ignored.</td></tr>
18093 + *
18094 + * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
18095 + * requests are processed by the PCD. Interface requests are passed
18096 + * to the Gadget Driver.</td></tr>
18097 + *
18098 + * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
18099 + * with device address received </td></tr>
18100 + *
18101 + * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
18102 + * requested descriptor</td></tr>
18103 + *
18104 + * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
18105 + * not implemented by any of the existing Gadget Drivers.</td></tr>
18106 + *
18107 + * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
18108 + * all EPs and enable EPs for new configuration.</td></tr>
18109 + *
18110 + * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
18111 + * the current configuration</td></tr>
18112 + *
18113 + * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
18114 + * EPs and enable EPs for new configuration.</td></tr>
18115 + *
18116 + * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
18117 + * current interface.</td></tr>
18118 + *
18119 + * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
18120 + * message.</td></tr>
18121 + * </table>
18122 + *
18123 + * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
18124 + * processed by pcd_setup. Calling the Function Driver's setup function from
18125 + * pcd_setup processes the gadget SETUP commands.
18126 + */
18127 +static inline void pcd_setup(dwc_otg_pcd_t *pcd)
18128 +{
18129 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18130 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18131 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18132 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
18133 +
18134 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
18135 +
18136 +#ifdef DEBUG_EP0
18137 + DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
18138 + ctrl.bRequestType, ctrl.bRequest,
18139 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
18140 +#endif
18141 +
18142 + doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
18143 +
18144 + /** @todo handle > 1 setup packet , assert error for now */
18145 +
18146 + if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
18147 + DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
18148 + }
18149 +
18150 + /* Clean up the request queue */
18151 + dwc_otg_request_nuke(ep0);
18152 + ep0->stopped = 0;
18153 +
18154 + if (ctrl.bRequestType & USB_DIR_IN) {
18155 + ep0->dwc_ep.is_in = 1;
18156 + pcd->ep0state = EP0_IN_DATA_PHASE;
18157 + }
18158 + else {
18159 + ep0->dwc_ep.is_in = 0;
18160 + pcd->ep0state = EP0_OUT_DATA_PHASE;
18161 + }
18162 +
18163 + if(ctrl.wLength == 0) {
18164 + ep0->dwc_ep.is_in = 1;
18165 + pcd->ep0state = EP0_IN_STATUS_PHASE;
18166 + }
18167 +
18168 + if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
18169 + /* handle non-standard (class/vendor) requests in the gadget driver */
18170 + do_gadget_setup(pcd, &ctrl);
18171 + return;
18172 + }
18173 +
18174 + /** @todo NGS: Handle bad setup packet? */
18175 +
18176 +///////////////////////////////////////////
18177 +//// --- Standard Request handling --- ////
18178 +
18179 + switch (ctrl.bRequest) {
18180 + case USB_REQ_GET_STATUS:
18181 + do_get_status(pcd);
18182 + break;
18183 +
18184 + case USB_REQ_CLEAR_FEATURE:
18185 + do_clear_feature(pcd);
18186 + break;
18187 +
18188 + case USB_REQ_SET_FEATURE:
18189 + do_set_feature(pcd);
18190 + break;
18191 +
18192 + case USB_REQ_SET_ADDRESS:
18193 + do_set_address(pcd);
18194 + break;
18195 +
18196 + case USB_REQ_SET_INTERFACE:
18197 + case USB_REQ_SET_CONFIGURATION:
18198 +// _pcd->request_config = 1; /* Configuration changed */
18199 + do_gadget_setup(pcd, &ctrl);
18200 + break;
18201 +
18202 + case USB_REQ_SYNCH_FRAME:
18203 + do_gadget_setup(pcd, &ctrl);
18204 + break;
18205 +
18206 + default:
18207 + /* Call the Gadget Driver's setup functions */
18208 + do_gadget_setup(pcd, &ctrl);
18209 + break;
18210 + }
18211 +}
18212 +
18213 +/**
18214 + * This function completes the ep0 control transfer.
18215 + */
18216 +static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
18217 +{
18218 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
18219 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18220 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
18221 + dev_if->in_ep_regs[ep->dwc_ep.num];
18222 +#ifdef DEBUG_EP0
18223 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
18224 + dev_if->out_ep_regs[ep->dwc_ep.num];
18225 +#endif
18226 + deptsiz0_data_t deptsiz;
18227 + desc_sts_data_t desc_sts;
18228 + dwc_otg_pcd_request_t *req;
18229 + int is_last = 0;
18230 + dwc_otg_pcd_t *pcd = ep->pcd;
18231 +
18232 + //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
18233 +
18234 + if (pcd->ep0_pending && list_empty(&ep->queue)) {
18235 + if (ep->dwc_ep.is_in) {
18236 +#ifdef DEBUG_EP0
18237 + DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
18238 +#endif
18239 + do_setup_out_status_phase(pcd);
18240 + }
18241 + else {
18242 +#ifdef DEBUG_EP0
18243 + DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
18244 +#endif
18245 + do_setup_in_status_phase(pcd);
18246 + }
18247 + pcd->ep0_pending = 0;
18248 + return 1;
18249 + }
18250 +
18251 + if (list_empty(&ep->queue)) {
18252 + return 0;
18253 + }
18254 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
18255 +
18256 +
18257 + if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
18258 + is_last = 1;
18259 + }
18260 + else if (ep->dwc_ep.is_in) {
18261 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
18262 + if(core_if->dma_desc_enable != 0)
18263 + desc_sts.d32 = readl(dev_if->in_desc_addr);
18264 +#ifdef DEBUG_EP0
18265 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18266 + ep->ep.name, ep->dwc_ep.xfer_len,
18267 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18268 +#endif
18269 +
18270 + if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
18271 + ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
18272 + req->req.actual = ep->dwc_ep.xfer_count;
18273 + /* Is a Zero Len Packet needed? */
18274 + if (req->req.zero) {
18275 +#ifdef DEBUG_EP0
18276 + DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
18277 +#endif
18278 + req->req.zero = 0;
18279 + }
18280 + do_setup_out_status_phase(pcd);
18281 + }
18282 + }
18283 + else {
18284 + /* ep0-OUT */
18285 +#ifdef DEBUG_EP0
18286 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
18287 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
18288 + ep->ep.name, ep->dwc_ep.xfer_len,
18289 + deptsiz.b.xfersize,
18290 + deptsiz.b.pktcnt);
18291 +#endif
18292 + req->req.actual = ep->dwc_ep.xfer_count;
18293 + /* Is a Zero Len Packet needed? */
18294 + if (req->req.zero) {
18295 +#ifdef DEBUG_EP0
18296 + DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
18297 +#endif
18298 + req->req.zero = 0;
18299 + }
18300 + if(core_if->dma_desc_enable == 0)
18301 + do_setup_in_status_phase(pcd);
18302 + }
18303 +
18304 + /* Complete the request */
18305 + if (is_last) {
18306 + dwc_otg_request_done(ep, req, 0);
18307 + ep->dwc_ep.start_xfer_buff = 0;
18308 + ep->dwc_ep.xfer_buff = 0;
18309 + ep->dwc_ep.xfer_len = 0;
18310 + return 1;
18311 + }
18312 + return 0;
18313 +}
18314 +
18315 +inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
18316 +{
18317 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
18318 + if(byte_count && dwc_ep->aligned_buf &&
18319 + dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
18320 + dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
18321 + {
18322 + //aligned buf used, apply complete patch
18323 + u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
18324 + memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
18325 + }
18326 +}
18327 +
18328 +/**
18329 + * This function completes the request for the EP. If there are
18330 + * additional requests for the EP in the queue they will be started.
18331 + */
18332 +static void complete_ep(dwc_otg_pcd_ep_t *ep)
18333 +{
18334 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
18335 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18336 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
18337 + dev_if->in_ep_regs[ep->dwc_ep.num];
18338 + deptsiz_data_t deptsiz;
18339 + desc_sts_data_t desc_sts;
18340 + dwc_otg_pcd_request_t *req = 0;
18341 + dwc_otg_dma_desc_t* dma_desc;
18342 + uint32_t byte_count = 0;
18343 + int is_last = 0;
18344 + int i;
18345 +
18346 + DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
18347 + (ep->dwc_ep.is_in?"IN":"OUT"));
18348 +
18349 + /* Get any pending requests */
18350 + if (!list_empty(&ep->queue)) {
18351 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
18352 + queue);
18353 + if (!req) {
18354 + printk("complete_ep 0x%p, req = NULL!\n", ep);
18355 + return;
18356 + }
18357 + }
18358 + else {
18359 + printk("complete_ep 0x%p, ep->queue empty!\n", ep);
18360 + return;
18361 + }
18362 + DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
18363 +
18364 + if (ep->dwc_ep.is_in) {
18365 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
18366 +
18367 + if (core_if->dma_enable) {
18368 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
18369 + if(core_if->dma_desc_enable == 0) {
18370 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
18371 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
18372 + byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
18373 +DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
18374 +
18375 + ep->dwc_ep.xfer_buff += byte_count;
18376 + ep->dwc_ep.dma_addr += byte_count;
18377 + ep->dwc_ep.xfer_count += byte_count;
18378 +
18379 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18380 + ep->ep.name, ep->dwc_ep.xfer_len,
18381 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18382 +
18383 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18384 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18385 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18386 + } else if(ep->dwc_ep.sent_zlp) {
18387 + /*
18388 + * This fragment of code should initiate 0
18389 + * length trasfer in case if it is queued
18390 + * a trasfer with size divisible to EPs max
18391 + * packet size and with usb_request zero field
18392 + * is set, which means that after data is transfered,
18393 + * it is also should be transfered
18394 + * a 0 length packet at the end. For Slave and
18395 + * Buffer DMA modes in this case SW has
18396 + * to initiate 2 transfers one with transfer size,
18397 + * and the second with 0 size. For Desriptor
18398 + * DMA mode SW is able to initiate a transfer,
18399 + * which will handle all the packets including
18400 + * the last 0 legth.
18401 + */
18402 + ep->dwc_ep.sent_zlp = 0;
18403 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18404 + } else {
18405 + is_last = 1;
18406 + }
18407 + } else {
18408 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
18409 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
18410 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18411 + }
18412 + } else {
18413 +
18414 + dma_desc = ep->dwc_ep.desc_addr;
18415 + byte_count = 0;
18416 + ep->dwc_ep.sent_zlp = 0;
18417 +
18418 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
18419 + desc_sts.d32 = readl(dma_desc);
18420 + byte_count += desc_sts.b.bytes;
18421 + dma_desc++;
18422 + }
18423 +
18424 + if(byte_count == 0) {
18425 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
18426 + is_last = 1;
18427 + } else {
18428 + DWC_WARN("Incomplete transfer\n");
18429 + }
18430 + }
18431 + } else {
18432 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
18433 + /* Check if the whole transfer was completed,
18434 + * if no, setup transfer for next portion of data
18435 + */
18436 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18437 + ep->ep.name, ep->dwc_ep.xfer_len,
18438 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18439 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18440 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18441 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
18442 + } else if(ep->dwc_ep.sent_zlp) {
18443 + /*
18444 + * This fragment of code should initiate 0
18445 + * length trasfer in case if it is queued
18446 + * a trasfer with size divisible to EPs max
18447 + * packet size and with usb_request zero field
18448 + * is set, which means that after data is transfered,
18449 + * it is also should be transfered
18450 + * a 0 length packet at the end. For Slave and
18451 + * Buffer DMA modes in this case SW has
18452 + * to initiate 2 transfers one with transfer size,
18453 + * and the second with 0 size. For Desriptor
18454 + * DMA mode SW is able to initiate a transfer,
18455 + * which will handle all the packets including
18456 + * the last 0 legth.
18457 + */
18458 + ep->dwc_ep.sent_zlp = 0;
18459 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18460 + } else {
18461 + is_last = 1;
18462 + }
18463 + }
18464 + else {
18465 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
18466 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
18467 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18468 + }
18469 + }
18470 + } else {
18471 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
18472 + dev_if->out_ep_regs[ep->dwc_ep.num];
18473 + desc_sts.d32 = 0;
18474 + if(core_if->dma_enable) {
18475 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
18476 + if(core_if->dma_desc_enable) {
18477 + DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
18478 + dma_desc = ep->dwc_ep.desc_addr;
18479 + byte_count = 0;
18480 + ep->dwc_ep.sent_zlp = 0;
18481 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
18482 + desc_sts.d32 = readl(dma_desc);
18483 + byte_count += desc_sts.b.bytes;
18484 + dma_desc++;
18485 + }
18486 +
18487 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
18488 + - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
18489 +
18490 + //todo: invalidate cache & aligned buf patch on completion
18491 + //
18492 +
18493 + is_last = 1;
18494 + } else {
18495 + deptsiz.d32 = 0;
18496 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
18497 +
18498 + byte_count = (ep->dwc_ep.xfer_len -
18499 + ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
18500 +
18501 +// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
18502 +
18503 +DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18504 + //todo: invalidate cache & aligned buf patch on completion
18505 + dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
18506 + aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
18507 +
18508 + ep->dwc_ep.xfer_buff += byte_count;
18509 + ep->dwc_ep.dma_addr += byte_count;
18510 + ep->dwc_ep.xfer_count += byte_count;
18511 +
18512 + /* Check if the whole transfer was completed,
18513 + * if no, setup transfer for next portion of data
18514 + */
18515 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18516 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18517 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18518 + }
18519 + else if(ep->dwc_ep.sent_zlp) {
18520 + /*
18521 + * This fragment of code should initiate 0
18522 + * length trasfer in case if it is queued
18523 + * a trasfer with size divisible to EPs max
18524 + * packet size and with usb_request zero field
18525 + * is set, which means that after data is transfered,
18526 + * it is also should be transfered
18527 + * a 0 length packet at the end. For Slave and
18528 + * Buffer DMA modes in this case SW has
18529 + * to initiate 2 transfers one with transfer size,
18530 + * and the second with 0 size. For Desriptor
18531 + * DMA mode SW is able to initiate a transfer,
18532 + * which will handle all the packets including
18533 + * the last 0 legth.
18534 + */
18535 + ep->dwc_ep.sent_zlp = 0;
18536 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18537 + } else {
18538 + is_last = 1;
18539 + }
18540 + }
18541 + } else {
18542 + /* Check if the whole transfer was completed,
18543 + * if no, setup transfer for next portion of data
18544 + */
18545 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18546 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18547 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
18548 + }
18549 + else if(ep->dwc_ep.sent_zlp) {
18550 + /*
18551 + * This fragment of code should initiate 0
18552 + * length trasfer in case if it is queued
18553 + * a trasfer with size divisible to EPs max
18554 + * packet size and with usb_request zero field
18555 + * is set, which means that after data is transfered,
18556 + * it is also should be transfered
18557 + * a 0 length packet at the end. For Slave and
18558 + * Buffer DMA modes in this case SW has
18559 + * to initiate 2 transfers one with transfer size,
18560 + * and the second with 0 size. For Desriptor
18561 + * DMA mode SW is able to initiate a transfer,
18562 + * which will handle all the packets including
18563 + * the last 0 legth.
18564 + */
18565 + ep->dwc_ep.sent_zlp = 0;
18566 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18567 + } else {
18568 + is_last = 1;
18569 + }
18570 + }
18571 +
18572 +#ifdef DEBUG
18573 +
18574 + DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
18575 + &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
18576 + ep->dwc_ep.xfer_count,
18577 + deptsiz.b.xfersize,
18578 + deptsiz.b.pktcnt);
18579 +#endif
18580 + }
18581 +
18582 + /* Complete the request */
18583 + if (is_last) {
18584 + req->req.actual = ep->dwc_ep.xfer_count;
18585 +
18586 + dwc_otg_request_done(ep, req, 0);
18587 +
18588 + ep->dwc_ep.start_xfer_buff = 0;
18589 + ep->dwc_ep.xfer_buff = 0;
18590 + ep->dwc_ep.xfer_len = 0;
18591 +
18592 + /* If there is a request in the queue start it.*/
18593 + start_next_request(ep);
18594 + }
18595 +}
18596 +
18597 +
18598 +#ifdef DWC_EN_ISOC
18599 +
18600 +/**
18601 + * This function BNA interrupt for Isochronous EPs
18602 + *
18603 + */
18604 +static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
18605 +{
18606 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
18607 + volatile uint32_t *addr;
18608 + depctl_data_t depctl = {.d32 = 0};
18609 + dwc_otg_pcd_t *pcd = ep->pcd;
18610 + dwc_otg_dma_desc_t *dma_desc;
18611 + int i;
18612 +
18613 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
18614 +
18615 + if(dwc_ep->is_in) {
18616 + desc_sts_data_t sts = {.d32 = 0};
18617 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
18618 + {
18619 + sts.d32 = readl(&dma_desc->status);
18620 + sts.b_iso_in.bs = BS_HOST_READY;
18621 + writel(sts.d32,&dma_desc->status);
18622 + }
18623 + }
18624 + else {
18625 + desc_sts_data_t sts = {.d32 = 0};
18626 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
18627 + {
18628 + sts.d32 = readl(&dma_desc->status);
18629 + sts.b_iso_out.bs = BS_HOST_READY;
18630 + writel(sts.d32,&dma_desc->status);
18631 + }
18632 + }
18633 +
18634 + if(dwc_ep->is_in == 0){
18635 + addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
18636 + }
18637 + else{
18638 + addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
18639 + }
18640 + depctl.b.epena = 1;
18641 + dwc_modify_reg32(addr,depctl.d32,depctl.d32);
18642 +}
18643 +
18644 +/**
18645 + * This function sets latest iso packet information(non-PTI mode)
18646 + *
18647 + * @param core_if Programming view of DWC_otg controller.
18648 + * @param ep The EP to start the transfer on.
18649 + *
18650 + */
18651 +void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
18652 +{
18653 + deptsiz_data_t deptsiz = { .d32 = 0 };
18654 + dma_addr_t dma_addr;
18655 + uint32_t offset;
18656 +
18657 + if(ep->proc_buf_num)
18658 + dma_addr = ep->dma_addr1;
18659 + else
18660 + dma_addr = ep->dma_addr0;
18661 +
18662 + if(ep->is_in) {
18663 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
18664 + offset = ep->data_per_frame;
18665 + } else {
18666 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
18667 + offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
18668 + }
18669 +
18670 + if(!deptsiz.b.xfersize) {
18671 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
18672 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
18673 + ep->pkt_info[ep->cur_pkt].status = 0;
18674 + } else {
18675 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
18676 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
18677 + ep->pkt_info[ep->cur_pkt].status = -ENODATA;
18678 + }
18679 + ep->cur_pkt_addr += offset;
18680 + ep->cur_pkt_dma_addr += offset;
18681 + ep->cur_pkt++;
18682 +}
18683 +
18684 +/**
18685 + * This function sets latest iso packet information(DDMA mode)
18686 + *
18687 + * @param core_if Programming view of DWC_otg controller.
18688 + * @param dwc_ep The EP to start the transfer on.
18689 + *
18690 + */
18691 +static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
18692 +{
18693 + dwc_otg_dma_desc_t* dma_desc;
18694 + desc_sts_data_t sts = {.d32 = 0};
18695 + iso_pkt_info_t *iso_packet;
18696 + uint32_t data_per_desc;
18697 + uint32_t offset;
18698 + int i, j;
18699 +
18700 + iso_packet = dwc_ep->pkt_info;
18701 +
18702 + /** Reinit closed DMA Descriptors*/
18703 + /** ISO OUT EP */
18704 + if(dwc_ep->is_in == 0) {
18705 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18706 + offset = 0;
18707 +
18708 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
18709 + {
18710 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
18711 + {
18712 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18713 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18714 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18715 +
18716 + sts.d32 = readl(&dma_desc->status);
18717 +
18718 + /* Write status in iso_packet_decsriptor */
18719 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18720 + if(iso_packet->status) {
18721 + iso_packet->status = -ENODATA;
18722 + }
18723 +
18724 + /* Received data length */
18725 + if(!sts.b_iso_out.rxbytes){
18726 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
18727 + } else {
18728 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
18729 + (4 - dwc_ep->data_per_frame % 4);
18730 + }
18731 +
18732 + iso_packet->offset = offset;
18733 +
18734 + offset += data_per_desc;
18735 + dma_desc ++;
18736 + iso_packet ++;
18737 + }
18738 + }
18739 +
18740 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
18741 + {
18742 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18743 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18744 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18745 +
18746 + sts.d32 = readl(&dma_desc->status);
18747 +
18748 + /* Write status in iso_packet_decsriptor */
18749 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18750 + if(iso_packet->status) {
18751 + iso_packet->status = -ENODATA;
18752 + }
18753 +
18754 + /* Received data length */
18755 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
18756 +
18757 + iso_packet->offset = offset;
18758 +
18759 + offset += data_per_desc;
18760 + iso_packet++;
18761 + dma_desc++;
18762 + }
18763 +
18764 + sts.d32 = readl(&dma_desc->status);
18765 +
18766 + /* Write status in iso_packet_decsriptor */
18767 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18768 + if(iso_packet->status) {
18769 + iso_packet->status = -ENODATA;
18770 + }
18771 + /* Received data length */
18772 + if(!sts.b_iso_out.rxbytes){
18773 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
18774 + } else {
18775 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
18776 + (4 - dwc_ep->data_per_frame % 4);
18777 + }
18778 +
18779 + iso_packet->offset = offset;
18780 + }
18781 + else /** ISO IN EP */
18782 + {
18783 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18784 +
18785 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
18786 + {
18787 + sts.d32 = readl(&dma_desc->status);
18788 +
18789 + /* Write status in iso packet descriptor */
18790 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
18791 + if(iso_packet->status != 0) {
18792 + iso_packet->status = -ENODATA;
18793 +
18794 + }
18795 + /* Bytes has been transfered */
18796 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
18797 +
18798 + dma_desc ++;
18799 + iso_packet++;
18800 + }
18801 +
18802 + sts.d32 = readl(&dma_desc->status);
18803 + while(sts.b_iso_in.bs == BS_DMA_BUSY) {
18804 + sts.d32 = readl(&dma_desc->status);
18805 + }
18806 +
18807 + /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
18808 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
18809 + if(iso_packet->status != 0) {
18810 + iso_packet->status = -ENODATA;
18811 + }
18812 +
18813 + /* Bytes has been transfered */
18814 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
18815 + }
18816 +}
18817 +
18818 +/**
18819 + * This function reinitialize DMA Descriptors for Isochronous transfer
18820 + *
18821 + * @param core_if Programming view of DWC_otg controller.
18822 + * @param dwc_ep The EP to start the transfer on.
18823 + *
18824 + */
18825 +static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
18826 +{
18827 + int i, j;
18828 + dwc_otg_dma_desc_t* dma_desc;
18829 + dma_addr_t dma_ad;
18830 + volatile uint32_t *addr;
18831 + desc_sts_data_t sts = { .d32 =0 };
18832 + uint32_t data_per_desc;
18833 +
18834 + if(dwc_ep->is_in == 0) {
18835 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
18836 + }
18837 + else {
18838 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
18839 + }
18840 +
18841 +
18842 + if(dwc_ep->proc_buf_num == 0) {
18843 + /** Buffer 0 descriptors setup */
18844 + dma_ad = dwc_ep->dma_addr0;
18845 + }
18846 + else {
18847 + /** Buffer 1 descriptors setup */
18848 + dma_ad = dwc_ep->dma_addr1;
18849 + }
18850 +
18851 + /** Reinit closed DMA Descriptors*/
18852 + /** ISO OUT EP */
18853 + if(dwc_ep->is_in == 0) {
18854 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18855 +
18856 + sts.b_iso_out.bs = BS_HOST_READY;
18857 + sts.b_iso_out.rxsts = 0;
18858 + sts.b_iso_out.l = 0;
18859 + sts.b_iso_out.sp = 0;
18860 + sts.b_iso_out.ioc = 0;
18861 + sts.b_iso_out.pid = 0;
18862 + sts.b_iso_out.framenum = 0;
18863 +
18864 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
18865 + {
18866 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
18867 + {
18868 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18869 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18870 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18871 + sts.b_iso_out.rxbytes = data_per_desc;
18872 + writel((uint32_t)dma_ad, &dma_desc->buf);
18873 + writel(sts.d32, &dma_desc->status);
18874 +
18875 + //(uint32_t)dma_ad += data_per_desc;
18876 + dma_ad = (uint32_t)dma_ad + data_per_desc;
18877 + dma_desc ++;
18878 + }
18879 + }
18880 +
18881 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
18882 + {
18883 +
18884 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18885 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18886 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18887 + sts.b_iso_out.rxbytes = data_per_desc;
18888 +
18889 + writel((uint32_t)dma_ad, &dma_desc->buf);
18890 + writel(sts.d32, &dma_desc->status);
18891 +
18892 + dma_desc++;
18893 + //(uint32_t)dma_ad += data_per_desc;
18894 + dma_ad = (uint32_t)dma_ad + data_per_desc;
18895 + }
18896 +
18897 + sts.b_iso_out.ioc = 1;
18898 + sts.b_iso_out.l = dwc_ep->proc_buf_num;
18899 +
18900 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18901 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18902 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18903 + sts.b_iso_out.rxbytes = data_per_desc;
18904 +
18905 + writel((uint32_t)dma_ad, &dma_desc->buf);
18906 + writel(sts.d32, &dma_desc->status);
18907 + }
18908 + else /** ISO IN EP */
18909 + {
18910 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18911 +
18912 + sts.b_iso_in.bs = BS_HOST_READY;
18913 + sts.b_iso_in.txsts = 0;
18914 + sts.b_iso_in.sp = 0;
18915 + sts.b_iso_in.ioc = 0;
18916 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
18917 + sts.b_iso_in.framenum = dwc_ep->next_frame;
18918 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
18919 + sts.b_iso_in.l = 0;
18920 +
18921 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
18922 + {
18923 + writel((uint32_t)dma_ad, &dma_desc->buf);
18924 + writel(sts.d32, &dma_desc->status);
18925 +
18926 + sts.b_iso_in.framenum += dwc_ep->bInterval;
18927 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
18928 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
18929 + dma_desc ++;
18930 + }
18931 +
18932 + sts.b_iso_in.ioc = 1;
18933 + sts.b_iso_in.l = dwc_ep->proc_buf_num;
18934 +
18935 + writel((uint32_t)dma_ad, &dma_desc->buf);
18936 + writel(sts.d32, &dma_desc->status);
18937 +
18938 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
18939 + }
18940 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
18941 +}
18942 +
18943 +
18944 +/**
18945 + * This function is to handle Iso EP transfer complete interrupt
18946 + * in case Iso out packet was dropped
18947 + *
18948 + * @param core_if Programming view of DWC_otg controller.
18949 + * @param dwc_ep The EP for wihich transfer complete was asserted
18950 + *
18951 + */
18952 +static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
18953 +{
18954 + uint32_t dma_addr;
18955 + uint32_t drp_pkt;
18956 + uint32_t drp_pkt_cnt;
18957 + deptsiz_data_t deptsiz = { .d32 = 0 };
18958 + depctl_data_t depctl = { .d32 = 0 };
18959 + int i;
18960 +
18961 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
18962 +
18963 + drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
18964 + drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
18965 +
18966 + /* Setting dropped packets status */
18967 + for(i = 0; i < drp_pkt_cnt; ++i) {
18968 + dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
18969 + drp_pkt ++;
18970 + deptsiz.b.pktcnt--;
18971 + }
18972 +
18973 +
18974 + if(deptsiz.b.pktcnt > 0) {
18975 + deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
18976 + } else {
18977 + deptsiz.b.xfersize = 0;
18978 + deptsiz.b.pktcnt = 0;
18979 + }
18980 +
18981 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
18982 +
18983 + if(deptsiz.b.pktcnt > 0) {
18984 + if(dwc_ep->proc_buf_num) {
18985 + dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
18986 + } else {
18987 + dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
18988 + }
18989 +
18990 + VERIFY_PCD_DMA_ADDR(dma_addr);
18991 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
18992 +
18993 + /** Re-enable endpoint, clear nak */
18994 + depctl.d32 = 0;
18995 + depctl.b.epena = 1;
18996 + depctl.b.cnak = 1;
18997 +
18998 + dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
18999 + depctl.d32,depctl.d32);
19000 + return 0;
19001 + } else {
19002 + return 1;
19003 + }
19004 +}
19005 +
19006 +/**
19007 + * This function sets iso packets information(PTI mode)
19008 + *
19009 + * @param core_if Programming view of DWC_otg controller.
19010 + * @param ep The EP to start the transfer on.
19011 + *
19012 + */
19013 +static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
19014 +{
19015 + int i, j;
19016 + dma_addr_t dma_ad;
19017 + iso_pkt_info_t *packet_info = ep->pkt_info;
19018 + uint32_t offset;
19019 + uint32_t frame_data;
19020 + deptsiz_data_t deptsiz;
19021 +
19022 + if(ep->proc_buf_num == 0) {
19023 + /** Buffer 0 descriptors setup */
19024 + dma_ad = ep->dma_addr0;
19025 + }
19026 + else {
19027 + /** Buffer 1 descriptors setup */
19028 + dma_ad = ep->dma_addr1;
19029 + }
19030 +
19031 + if(ep->is_in) {
19032 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
19033 + } else {
19034 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
19035 + }
19036 +
19037 + if(!deptsiz.b.xfersize) {
19038 + offset = 0;
19039 + for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
19040 + {
19041 + frame_data = ep->data_per_frame;
19042 + for(j = 0; j < ep->pkt_per_frm; ++j) {
19043 +
19044 + /* Packet status - is not set as initially
19045 + * it is set to 0 and if packet was sent
19046 + successfully, status field will remain 0*/
19047 +
19048 + /* Bytes has been transfered */
19049 + packet_info->length = (ep->maxpacket < frame_data) ?
19050 + ep->maxpacket : frame_data;
19051 +
19052 + /* Received packet offset */
19053 + packet_info->offset = offset;
19054 + offset += packet_info->length;
19055 + frame_data -= packet_info->length;
19056 +
19057 + packet_info ++;
19058 + }
19059 + }
19060 + return 1;
19061 + } else {
19062 + /* This is a workaround for in case of Transfer Complete with
19063 + * PktDrpSts interrupts merging - in this case Transfer complete
19064 + * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
19065 + * set and with DOEPTSIZ register non zero. Investigations showed,
19066 + * that this happens when Out packet is dropped, but because of
19067 + * interrupts merging during first interrupt handling PktDrpSts
19068 + * bit is cleared and for next merged interrupts it is not reset.
19069 + * In this case SW hadles the interrupt as if PktDrpSts bit is set.
19070 + */
19071 + if(ep->is_in) {
19072 + return 1;
19073 + } else {
19074 + return handle_iso_out_pkt_dropped(core_if, ep);
19075 + }
19076 + }
19077 +}
19078 +
19079 +/**
19080 + * This function is to handle Iso EP transfer complete interrupt
19081 + *
19082 + * @param ep The EP for which transfer complete was asserted
19083 + *
19084 + */
19085 +static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
19086 +{
19087 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
19088 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
19089 + uint8_t is_last = 0;
19090 +
19091 + if(core_if->dma_enable) {
19092 + if(core_if->dma_desc_enable) {
19093 + set_ddma_iso_pkts_info(core_if, dwc_ep);
19094 + reinit_ddma_iso_xfer(core_if, dwc_ep);
19095 + is_last = 1;
19096 + } else {
19097 + if(core_if->pti_enh_enable) {
19098 + if(set_iso_pkts_info(core_if, dwc_ep)) {
19099 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19100 + dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
19101 + is_last = 1;
19102 + }
19103 + } else {
19104 + set_current_pkt_info(core_if, dwc_ep);
19105 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
19106 + is_last = 1;
19107 + dwc_ep->cur_pkt = 0;
19108 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19109 + if(dwc_ep->proc_buf_num) {
19110 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
19111 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
19112 + } else {
19113 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
19114 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
19115 + }
19116 + }
19117 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
19118 + }
19119 + }
19120 + } else {
19121 + set_current_pkt_info(core_if, dwc_ep);
19122 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
19123 + is_last = 1;
19124 + dwc_ep->cur_pkt = 0;
19125 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19126 + if(dwc_ep->proc_buf_num) {
19127 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
19128 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
19129 + } else {
19130 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
19131 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
19132 + }
19133 + }
19134 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
19135 + }
19136 + if(is_last)
19137 + dwc_otg_iso_buffer_done(ep, ep->iso_req);
19138 +}
19139 +
19140 +#endif //DWC_EN_ISOC
19141 +
19142 +
19143 +/**
19144 + * This function handles EP0 Control transfers.
19145 + *
19146 + * The state of the control tranfers are tracked in
19147 + * <code>ep0state</code>.
19148 + */
19149 +static void handle_ep0(dwc_otg_pcd_t *pcd)
19150 +{
19151 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19152 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19153 + desc_sts_data_t desc_sts;
19154 + deptsiz0_data_t deptsiz;
19155 + uint32_t byte_count;
19156 +
19157 +#ifdef DEBUG_EP0
19158 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
19159 + print_ep0_state(pcd);
19160 +#endif
19161 +
19162 + switch (pcd->ep0state) {
19163 + case EP0_DISCONNECT:
19164 + break;
19165 +
19166 + case EP0_IDLE:
19167 + pcd->request_config = 0;
19168 +
19169 + pcd_setup(pcd);
19170 + break;
19171 +
19172 + case EP0_IN_DATA_PHASE:
19173 +#ifdef DEBUG_EP0
19174 + DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
19175 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
19176 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
19177 +#endif
19178 +
19179 + if (core_if->dma_enable != 0) {
19180 + /*
19181 + * For EP0 we can only program 1 packet at a time so we
19182 + * need to do the make calculations after each complete.
19183 + * Call write_packet to make the calculations, as in
19184 + * slave mode, and use those values to determine if we
19185 + * can complete.
19186 + */
19187 + if(core_if->dma_desc_enable == 0) {
19188 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
19189 + byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
19190 + }
19191 + else {
19192 + desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
19193 + byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
19194 + }
19195 +
19196 + ep0->dwc_ep.xfer_count += byte_count;
19197 + ep0->dwc_ep.xfer_buff += byte_count;
19198 + ep0->dwc_ep.dma_addr += byte_count;
19199 + }
19200 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
19201 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19202 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19203 + }
19204 + else if(ep0->dwc_ep.sent_zlp) {
19205 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19206 + ep0->dwc_ep.sent_zlp = 0;
19207 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19208 + }
19209 + else {
19210 + ep0_complete_request(ep0);
19211 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
19212 + }
19213 + break;
19214 + case EP0_OUT_DATA_PHASE:
19215 +#ifdef DEBUG_EP0
19216 + DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
19217 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
19218 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
19219 +#endif
19220 + if (core_if->dma_enable != 0) {
19221 + if(core_if->dma_desc_enable == 0) {
19222 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
19223 + byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
19224 +
19225 + //todo: invalidate cache & aligned buf patch on completion
19226 + dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
19227 + aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
19228 + }
19229 + else {
19230 + desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
19231 + byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
19232 +
19233 + //todo: invalidate cache & aligned buf patch on completion
19234 + //
19235 +
19236 + }
19237 + ep0->dwc_ep.xfer_count += byte_count;
19238 + ep0->dwc_ep.xfer_buff += byte_count;
19239 + ep0->dwc_ep.dma_addr += byte_count;
19240 + }
19241 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
19242 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19243 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19244 + }
19245 + else if(ep0->dwc_ep.sent_zlp) {
19246 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19247 + ep0->dwc_ep.sent_zlp = 0;
19248 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19249 + }
19250 + else {
19251 + ep0_complete_request(ep0);
19252 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
19253 + }
19254 + break;
19255 +
19256 + case EP0_IN_STATUS_PHASE:
19257 + case EP0_OUT_STATUS_PHASE:
19258 + DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
19259 + ep0_complete_request(ep0);
19260 + pcd->ep0state = EP0_IDLE;
19261 + ep0->stopped = 1;
19262 + ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
19263 +
19264 + /* Prepare for more SETUP Packets */
19265 + if(core_if->dma_enable) {
19266 + ep0_out_start(core_if, pcd);
19267 + }
19268 + break;
19269 +
19270 + case EP0_STALL:
19271 + DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
19272 + break;
19273 + }
19274 +#ifdef DEBUG_EP0
19275 + print_ep0_state(pcd);
19276 +#endif
19277 +}
19278 +
19279 +
19280 +/**
19281 + * Restart transfer
19282 + */
19283 +static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
19284 +{
19285 + dwc_otg_core_if_t *core_if;
19286 + dwc_otg_dev_if_t *dev_if;
19287 + deptsiz_data_t dieptsiz = {.d32=0};
19288 + dwc_otg_pcd_ep_t *ep;
19289 +
19290 + ep = get_in_ep(pcd, epnum);
19291 +
19292 +#ifdef DWC_EN_ISOC
19293 + if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
19294 + return;
19295 + }
19296 +#endif /* DWC_EN_ISOC */
19297 +
19298 + core_if = GET_CORE_IF(pcd);
19299 + dev_if = core_if->dev_if;
19300 +
19301 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
19302 +
19303 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
19304 + " stopped=%d\n", ep->dwc_ep.xfer_buff,
19305 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
19306 + ep->stopped);
19307 + /*
19308 + * If xfersize is 0 and pktcnt in not 0, resend the last packet.
19309 + */
19310 + if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
19311 + ep->dwc_ep.start_xfer_buff != 0) {
19312 + if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
19313 + ep->dwc_ep.xfer_count = 0;
19314 + ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
19315 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
19316 + }
19317 + else {
19318 + ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
19319 + /* convert packet size to dwords. */
19320 + ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
19321 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
19322 + }
19323 + ep->stopped = 0;
19324 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
19325 + "xfer_len=%0x stopped=%d\n",
19326 + ep->dwc_ep.xfer_buff,
19327 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
19328 + ep->stopped
19329 + );
19330 + if (epnum == 0) {
19331 + dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
19332 + }
19333 + else {
19334 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
19335 + }
19336 + }
19337 +}
19338 +
19339 +
19340 +/**
19341 + * handle the IN EP disable interrupt.
19342 + */
19343 +static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
19344 + const uint32_t epnum)
19345 +{
19346 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19347 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19348 + deptsiz_data_t dieptsiz = {.d32=0};
19349 + dctl_data_t dctl = {.d32=0};
19350 + dwc_otg_pcd_ep_t *ep;
19351 + dwc_ep_t *dwc_ep;
19352 +
19353 + ep = get_in_ep(pcd, epnum);
19354 + dwc_ep = &ep->dwc_ep;
19355 +
19356 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19357 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
19358 + return;
19359 + }
19360 +
19361 + DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
19362 + dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
19363 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
19364 +
19365 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
19366 + dieptsiz.b.pktcnt,
19367 + dieptsiz.b.xfersize);
19368 +
19369 + if (ep->stopped) {
19370 + /* Flush the Tx FIFO */
19371 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
19372 + /* Clear the Global IN NP NAK */
19373 + dctl.d32 = 0;
19374 + dctl.b.cgnpinnak = 1;
19375 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
19376 + dctl.d32, 0);
19377 + /* Restart the transaction */
19378 + if (dieptsiz.b.pktcnt != 0 ||
19379 + dieptsiz.b.xfersize != 0) {
19380 + restart_transfer(pcd, epnum);
19381 + }
19382 + }
19383 + else {
19384 + /* Restart the transaction */
19385 + if (dieptsiz.b.pktcnt != 0 ||
19386 + dieptsiz.b.xfersize != 0) {
19387 + restart_transfer(pcd, epnum);
19388 + }
19389 + DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
19390 + }
19391 +}
19392 +
19393 +/**
19394 + * Handler for the IN EP timeout handshake interrupt.
19395 + */
19396 +static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
19397 + const uint32_t epnum)
19398 +{
19399 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19400 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19401 +
19402 +#ifdef DEBUG
19403 + deptsiz_data_t dieptsiz = {.d32=0};
19404 + uint32_t num = 0;
19405 +#endif
19406 + dctl_data_t dctl = {.d32=0};
19407 + dwc_otg_pcd_ep_t *ep;
19408 +
19409 + gintmsk_data_t intr_mask = {.d32 = 0};
19410 +
19411 + ep = get_in_ep(pcd, epnum);
19412 +
19413 + /* Disable the NP Tx Fifo Empty Interrrupt */
19414 + if (!core_if->dma_enable) {
19415 + intr_mask.b.nptxfempty = 1;
19416 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
19417 + }
19418 + /** @todo NGS Check EP type.
19419 + * Implement for Periodic EPs */
19420 + /*
19421 + * Non-periodic EP
19422 + */
19423 + /* Enable the Global IN NAK Effective Interrupt */
19424 + intr_mask.b.ginnakeff = 1;
19425 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
19426 + 0, intr_mask.d32);
19427 +
19428 + /* Set Global IN NAK */
19429 + dctl.b.sgnpinnak = 1;
19430 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
19431 + dctl.d32, dctl.d32);
19432 +
19433 + ep->stopped = 1;
19434 +
19435 +#ifdef DEBUG
19436 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
19437 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
19438 + dieptsiz.b.pktcnt,
19439 + dieptsiz.b.xfersize);
19440 +#endif
19441 +
19442 +#ifdef DISABLE_PERIODIC_EP
19443 + /*
19444 + * Set the NAK bit for this EP to
19445 + * start the disable process.
19446 + */
19447 + diepctl.d32 = 0;
19448 + diepctl.b.snak = 1;
19449 + dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
19450 + ep->disabling = 1;
19451 + ep->stopped = 1;
19452 +#endif
19453 +}
19454 +
19455 +/**
19456 + * Handler for the IN EP NAK interrupt.
19457 + */
19458 +static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
19459 + const uint32_t epnum)
19460 +{
19461 + /** @todo implement ISR */
19462 + dwc_otg_core_if_t* core_if;
19463 + diepmsk_data_t intr_mask = { .d32 = 0};
19464 +
19465 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
19466 + core_if = GET_CORE_IF(pcd);
19467 + intr_mask.b.nak = 1;
19468 +
19469 + if(core_if->multiproc_int_enable) {
19470 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
19471 + intr_mask.d32, 0);
19472 + } else {
19473 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
19474 + intr_mask.d32, 0);
19475 + }
19476 +
19477 + return 1;
19478 +}
19479 +
19480 +/**
19481 + * Handler for the OUT EP Babble interrupt.
19482 + */
19483 +static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
19484 + const uint32_t epnum)
19485 +{
19486 + /** @todo implement ISR */
19487 + dwc_otg_core_if_t* core_if;
19488 + doepmsk_data_t intr_mask = { .d32 = 0};
19489 +
19490 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
19491 + core_if = GET_CORE_IF(pcd);
19492 + intr_mask.b.babble = 1;
19493 +
19494 + if(core_if->multiproc_int_enable) {
19495 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19496 + intr_mask.d32, 0);
19497 + } else {
19498 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19499 + intr_mask.d32, 0);
19500 + }
19501 +
19502 + return 1;
19503 +}
19504 +
19505 +/**
19506 + * Handler for the OUT EP NAK interrupt.
19507 + */
19508 +static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
19509 + const uint32_t epnum)
19510 +{
19511 + /** @todo implement ISR */
19512 + dwc_otg_core_if_t* core_if;
19513 + doepmsk_data_t intr_mask = { .d32 = 0};
19514 +
19515 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
19516 + core_if = GET_CORE_IF(pcd);
19517 + intr_mask.b.nak = 1;
19518 +
19519 + if(core_if->multiproc_int_enable) {
19520 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19521 + intr_mask.d32, 0);
19522 + } else {
19523 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19524 + intr_mask.d32, 0);
19525 + }
19526 +
19527 + return 1;
19528 +}
19529 +
19530 +/**
19531 + * Handler for the OUT EP NYET interrupt.
19532 + */
19533 +static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
19534 + const uint32_t epnum)
19535 +{
19536 + /** @todo implement ISR */
19537 + dwc_otg_core_if_t* core_if;
19538 + doepmsk_data_t intr_mask = { .d32 = 0};
19539 +
19540 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
19541 + core_if = GET_CORE_IF(pcd);
19542 + intr_mask.b.nyet = 1;
19543 +
19544 + if(core_if->multiproc_int_enable) {
19545 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19546 + intr_mask.d32, 0);
19547 + } else {
19548 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19549 + intr_mask.d32, 0);
19550 + }
19551 +
19552 + return 1;
19553 +}
19554 +
19555 +/**
19556 + * This interrupt indicates that an IN EP has a pending Interrupt.
19557 + * The sequence for handling the IN EP interrupt is shown below:
19558 + * -# Read the Device All Endpoint Interrupt register
19559 + * -# Repeat the following for each IN EP interrupt bit set (from
19560 + * LSB to MSB).
19561 + * -# Read the Device Endpoint Interrupt (DIEPINTn) register
19562 + * -# If "Transfer Complete" call the request complete function
19563 + * -# If "Endpoint Disabled" complete the EP disable procedure.
19564 + * -# If "AHB Error Interrupt" log error
19565 + * -# If "Time-out Handshake" log error
19566 + * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
19567 + * FIFO.
19568 + * -# If "IN Token EP Mismatch" (disable, this is handled by EP
19569 + * Mismatch Interrupt)
19570 + */
19571 +static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
19572 +{
19573 +#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
19574 +do { \
19575 + diepint_data_t diepint = {.d32=0}; \
19576 + diepint.b.__intr = 1; \
19577 + dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
19578 + diepint.d32); \
19579 +} while (0)
19580 +
19581 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19582 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19583 + diepint_data_t diepint = {.d32=0};
19584 + dctl_data_t dctl = {.d32=0};
19585 + depctl_data_t depctl = {.d32=0};
19586 + uint32_t ep_intr;
19587 + uint32_t epnum = 0;
19588 + dwc_otg_pcd_ep_t *ep;
19589 + dwc_ep_t *dwc_ep;
19590 + gintmsk_data_t intr_mask = {.d32 = 0};
19591 +
19592 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
19593 +
19594 + /* Read in the device interrupt bits */
19595 + ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
19596 +
19597 + /* Service the Device IN interrupts for each endpoint */
19598 + while(ep_intr) {
19599 + if (ep_intr&0x1) {
19600 + uint32_t empty_msk;
19601 + /* Get EP pointer */
19602 + ep = get_in_ep(pcd, epnum);
19603 + dwc_ep = &ep->dwc_ep;
19604 +
19605 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
19606 + empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
19607 +
19608 + DWC_DEBUGPL(DBG_PCDV,
19609 + "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
19610 + epnum,
19611 + empty_msk,
19612 + depctl.d32);
19613 +
19614 + DWC_DEBUGPL(DBG_PCD,
19615 + "EP%d-%s: type=%d, mps=%d\n",
19616 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
19617 + dwc_ep->type, dwc_ep->maxpacket);
19618 +
19619 + diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
19620 +
19621 + DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
19622 + /* Transfer complete */
19623 + if (diepint.b.xfercompl) {
19624 + /* Disable the NP Tx FIFO Empty
19625 + * Interrrupt */
19626 + if(core_if->en_multiple_tx_fifo == 0) {
19627 + intr_mask.b.nptxfempty = 1;
19628 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
19629 + }
19630 + else {
19631 + /* Disable the Tx FIFO Empty Interrupt for this EP */
19632 + uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
19633 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
19634 + fifoemptymsk, 0);
19635 + }
19636 + /* Clear the bit in DIEPINTn for this interrupt */
19637 + CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
19638 +
19639 + /* Complete the transfer */
19640 + if (epnum == 0) {
19641 + handle_ep0(pcd);
19642 + }
19643 +#ifdef DWC_EN_ISOC
19644 + else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19645 + if(!ep->stopped)
19646 + complete_iso_ep(ep);
19647 + }
19648 +#endif //DWC_EN_ISOC
19649 + else {
19650 +
19651 + complete_ep(ep);
19652 + }
19653 + }
19654 + /* Endpoint disable */
19655 + if (diepint.b.epdisabled) {
19656 + DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
19657 + handle_in_ep_disable_intr(pcd, epnum);
19658 +
19659 + /* Clear the bit in DIEPINTn for this interrupt */
19660 + CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
19661 + }
19662 + /* AHB Error */
19663 + if (diepint.b.ahberr) {
19664 + DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
19665 + /* Clear the bit in DIEPINTn for this interrupt */
19666 + CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
19667 + }
19668 + /* TimeOUT Handshake (non-ISOC IN EPs) */
19669 + if (diepint.b.timeout) {
19670 + DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
19671 + handle_in_ep_timeout_intr(pcd, epnum);
19672 +
19673 + CLEAR_IN_EP_INTR(core_if,epnum,timeout);
19674 + }
19675 + /** IN Token received with TxF Empty */
19676 + if (diepint.b.intktxfemp) {
19677 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
19678 + epnum);
19679 + if (!ep->stopped && epnum != 0) {
19680 +
19681 + diepmsk_data_t diepmsk = { .d32 = 0};
19682 + diepmsk.b.intktxfemp = 1;
19683 +
19684 + if(core_if->multiproc_int_enable) {
19685 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
19686 + diepmsk.d32, 0);
19687 + } else {
19688 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
19689 + }
19690 + start_next_request(ep);
19691 + }
19692 + else if(core_if->dma_desc_enable && epnum == 0 &&
19693 + pcd->ep0state == EP0_OUT_STATUS_PHASE) {
19694 + // EP0 IN set STALL
19695 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
19696 +
19697 + /* set the disable and stall bits */
19698 + if (depctl.b.epena) {
19699 + depctl.b.epdis = 1;
19700 + }
19701 + depctl.b.stall = 1;
19702 + dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
19703 + }
19704 + CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
19705 + }
19706 + /** IN Token Received with EP mismatch */
19707 + if (diepint.b.intknepmis) {
19708 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
19709 + CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
19710 + }
19711 + /** IN Endpoint NAK Effective */
19712 + if (diepint.b.inepnakeff) {
19713 + DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
19714 + /* Periodic EP */
19715 + if (ep->disabling) {
19716 + depctl.d32 = 0;
19717 + depctl.b.snak = 1;
19718 + depctl.b.epdis = 1;
19719 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
19720 + }
19721 + CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
19722 +
19723 + }
19724 +
19725 + /** IN EP Tx FIFO Empty Intr */
19726 + if (diepint.b.emptyintr) {
19727 + DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
19728 + write_empty_tx_fifo(pcd, epnum);
19729 +
19730 + CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
19731 + }
19732 +
19733 + /** IN EP BNA Intr */
19734 + if (diepint.b.bna) {
19735 + CLEAR_IN_EP_INTR(core_if,epnum,bna);
19736 + if(core_if->dma_desc_enable) {
19737 +#ifdef DWC_EN_ISOC
19738 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19739 + /*
19740 + * This checking is performed to prevent first "false" BNA
19741 + * handling occuring right after reconnect
19742 + */
19743 + if(dwc_ep->next_frame != 0xffffffff)
19744 + dwc_otg_pcd_handle_iso_bna(ep);
19745 + }
19746 + else
19747 +#endif //DWC_EN_ISOC
19748 + {
19749 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
19750 +
19751 + /* If Global Continue on BNA is disabled - disable EP */
19752 + if(!dctl.b.gcontbna) {
19753 + depctl.d32 = 0;
19754 + depctl.b.snak = 1;
19755 + depctl.b.epdis = 1;
19756 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
19757 + } else {
19758 + start_next_request(ep);
19759 + }
19760 + }
19761 + }
19762 + }
19763 + /* NAK Interrutp */
19764 + if (diepint.b.nak) {
19765 + DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
19766 + handle_in_ep_nak_intr(pcd, epnum);
19767 +
19768 + CLEAR_IN_EP_INTR(core_if,epnum,nak);
19769 + }
19770 + }
19771 + epnum++;
19772 + ep_intr >>=1;
19773 + }
19774 +
19775 + return 1;
19776 +#undef CLEAR_IN_EP_INTR
19777 +}
19778 +
19779 +/**
19780 + * This interrupt indicates that an OUT EP has a pending Interrupt.
19781 + * The sequence for handling the OUT EP interrupt is shown below:
19782 + * -# Read the Device All Endpoint Interrupt register
19783 + * -# Repeat the following for each OUT EP interrupt bit set (from
19784 + * LSB to MSB).
19785 + * -# Read the Device Endpoint Interrupt (DOEPINTn) register
19786 + * -# If "Transfer Complete" call the request complete function
19787 + * -# If "Endpoint Disabled" complete the EP disable procedure.
19788 + * -# If "AHB Error Interrupt" log error
19789 + * -# If "Setup Phase Done" process Setup Packet (See Standard USB
19790 + * Command Processing)
19791 + */
19792 +static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
19793 +{
19794 +#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
19795 +do { \
19796 + doepint_data_t doepint = {.d32=0}; \
19797 + doepint.b.__intr = 1; \
19798 + dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
19799 + doepint.d32); \
19800 +} while (0)
19801 +
19802 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19803 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19804 + uint32_t ep_intr;
19805 + doepint_data_t doepint = {.d32=0};
19806 + dctl_data_t dctl = {.d32=0};
19807 + depctl_data_t doepctl = {.d32=0};
19808 + uint32_t epnum = 0;
19809 + dwc_otg_pcd_ep_t *ep;
19810 + dwc_ep_t *dwc_ep;
19811 +
19812 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
19813 +
19814 + /* Read in the device interrupt bits */
19815 + ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
19816 +
19817 + while(ep_intr) {
19818 + if (ep_intr&0x1) {
19819 + /* Get EP pointer */
19820 + ep = get_out_ep(pcd, epnum);
19821 + dwc_ep = &ep->dwc_ep;
19822 +
19823 +#ifdef VERBOSE
19824 + DWC_DEBUGPL(DBG_PCDV,
19825 + "EP%d-%s: type=%d, mps=%d\n",
19826 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
19827 + dwc_ep->type, dwc_ep->maxpacket);
19828 +#endif
19829 + doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
19830 +
19831 + /* Transfer complete */
19832 + if (doepint.b.xfercompl) {
19833 + if (epnum == 0) {
19834 + /* Clear the bit in DOEPINTn for this interrupt */
19835 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19836 + if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
19837 + handle_ep0(pcd);
19838 +#ifdef DWC_EN_ISOC
19839 + } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19840 + if (doepint.b.pktdrpsts == 0) {
19841 + /* Clear the bit in DOEPINTn for this interrupt */
19842 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19843 + complete_iso_ep(ep);
19844 + } else {
19845 + doepint_data_t doepint = {.d32=0};
19846 + doepint.b.xfercompl = 1;
19847 + doepint.b.pktdrpsts = 1;
19848 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
19849 + doepint.d32);
19850 + if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
19851 + complete_iso_ep(ep);
19852 + }
19853 + }
19854 +#endif //DWC_EN_ISOC
19855 + } else {
19856 + /* Clear the bit in DOEPINTn for this interrupt */
19857 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19858 + complete_ep(ep);
19859 + }
19860 +
19861 + }
19862 +
19863 + /* Endpoint disable */
19864 + if (doepint.b.epdisabled) {
19865 + /* Clear the bit in DOEPINTn for this interrupt */
19866 + CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
19867 + }
19868 + /* AHB Error */
19869 + if (doepint.b.ahberr) {
19870 + DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
19871 + DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
19872 + CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
19873 + }
19874 + /* Setup Phase Done (contorl EPs) */
19875 + if (doepint.b.setup) {
19876 +#ifdef DEBUG_EP0
19877 + DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
19878 + epnum);
19879 +#endif
19880 + CLEAR_OUT_EP_INTR(core_if,epnum,setup);
19881 + handle_ep0(pcd);
19882 + }
19883 +
19884 + /** OUT EP BNA Intr */
19885 + if (doepint.b.bna) {
19886 + CLEAR_OUT_EP_INTR(core_if,epnum,bna);
19887 + if(core_if->dma_desc_enable) {
19888 +#ifdef DWC_EN_ISOC
19889 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19890 + /*
19891 + * This checking is performed to prevent first "false" BNA
19892 + * handling occuring right after reconnect
19893 + */
19894 + if(dwc_ep->next_frame != 0xffffffff)
19895 + dwc_otg_pcd_handle_iso_bna(ep);
19896 + }
19897 + else
19898 +#endif //DWC_EN_ISOC
19899 + {
19900 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
19901 +
19902 + /* If Global Continue on BNA is disabled - disable EP*/
19903 + if(!dctl.b.gcontbna) {
19904 + doepctl.d32 = 0;
19905 + doepctl.b.snak = 1;
19906 + doepctl.b.epdis = 1;
19907 + dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
19908 + } else {
19909 + start_next_request(ep);
19910 + }
19911 + }
19912 + }
19913 + }
19914 + if (doepint.b.stsphsercvd) {
19915 + CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
19916 + if(core_if->dma_desc_enable) {
19917 + do_setup_in_status_phase(pcd);
19918 + }
19919 + }
19920 + /* Babble Interrutp */
19921 + if (doepint.b.babble) {
19922 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
19923 + handle_out_ep_babble_intr(pcd, epnum);
19924 +
19925 + CLEAR_OUT_EP_INTR(core_if,epnum,babble);
19926 + }
19927 + /* NAK Interrutp */
19928 + if (doepint.b.nak) {
19929 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
19930 + handle_out_ep_nak_intr(pcd, epnum);
19931 +
19932 + CLEAR_OUT_EP_INTR(core_if,epnum,nak);
19933 + }
19934 + /* NYET Interrutp */
19935 + if (doepint.b.nyet) {
19936 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
19937 + handle_out_ep_nyet_intr(pcd, epnum);
19938 +
19939 + CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
19940 + }
19941 + }
19942 +
19943 + epnum++;
19944 + ep_intr >>=1;
19945 + }
19946 +
19947 + return 1;
19948 +
19949 +#undef CLEAR_OUT_EP_INTR
19950 +}
19951 +
19952 +
19953 +/**
19954 + * Incomplete ISO IN Transfer Interrupt.
19955 + * This interrupt indicates one of the following conditions occurred
19956 + * while transmitting an ISOC transaction.
19957 + * - Corrupted IN Token for ISOC EP.
19958 + * - Packet not complete in FIFO.
19959 + * The follow actions will be taken:
19960 + * -# Determine the EP
19961 + * -# Set incomplete flag in dwc_ep structure
19962 + * -# Disable EP; when "Endpoint Disabled" interrupt is received
19963 + * Flush FIFO
19964 + */
19965 +int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
19966 +{
19967 + gintsts_data_t gintsts;
19968 +
19969 +
19970 +#ifdef DWC_EN_ISOC
19971 + dwc_otg_dev_if_t *dev_if;
19972 + deptsiz_data_t deptsiz = { .d32 = 0};
19973 + depctl_data_t depctl = { .d32 = 0};
19974 + dsts_data_t dsts = { .d32 = 0};
19975 + dwc_ep_t *dwc_ep;
19976 + int i;
19977 +
19978 + dev_if = GET_CORE_IF(pcd)->dev_if;
19979 +
19980 + for(i = 1; i <= dev_if->num_in_eps; ++i) {
19981 + dwc_ep = &pcd->in_ep[i].dwc_ep;
19982 + if(dwc_ep->active &&
19983 + dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
19984 + {
19985 + deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
19986 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
19987 +
19988 + if(depctl.b.epdis && deptsiz.d32) {
19989 + set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
19990 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
19991 + dwc_ep->cur_pkt = 0;
19992 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19993 +
19994 + if(dwc_ep->proc_buf_num) {
19995 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
19996 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
19997 + } else {
19998 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
19999 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
20000 + }
20001 + }
20002 +
20003 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
20004 + dwc_ep->next_frame = dsts.b.soffn;
20005 +
20006 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
20007 + }
20008 + }
20009 + }
20010 +
20011 +#else
20012 + gintmsk_data_t intr_mask = { .d32 = 0};
20013 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20014 + "IN ISOC Incomplete");
20015 +
20016 + intr_mask.b.incomplisoin = 1;
20017 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20018 + intr_mask.d32, 0);
20019 +#endif //DWC_EN_ISOC
20020 +
20021 + /* Clear interrupt */
20022 + gintsts.d32 = 0;
20023 + gintsts.b.incomplisoin = 1;
20024 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20025 + gintsts.d32);
20026 +
20027 + return 1;
20028 +}
20029 +
20030 +/**
20031 + * Incomplete ISO OUT Transfer Interrupt.
20032 + *
20033 + * This interrupt indicates that the core has dropped an ISO OUT
20034 + * packet. The following conditions can be the cause:
20035 + * - FIFO Full, the entire packet would not fit in the FIFO.
20036 + * - CRC Error
20037 + * - Corrupted Token
20038 + * The follow actions will be taken:
20039 + * -# Determine the EP
20040 + * -# Set incomplete flag in dwc_ep structure
20041 + * -# Read any data from the FIFO
20042 + * -# Disable EP. when "Endpoint Disabled" interrupt is received
20043 + * re-enable EP.
20044 + */
20045 +int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
20046 +{
20047 + /* @todo implement ISR */
20048 + gintsts_data_t gintsts;
20049 +
20050 +#ifdef DWC_EN_ISOC
20051 + dwc_otg_dev_if_t *dev_if;
20052 + deptsiz_data_t deptsiz = { .d32 = 0};
20053 + depctl_data_t depctl = { .d32 = 0};
20054 + dsts_data_t dsts = { .d32 = 0};
20055 + dwc_ep_t *dwc_ep;
20056 + int i;
20057 +
20058 + dev_if = GET_CORE_IF(pcd)->dev_if;
20059 +
20060 + for(i = 1; i <= dev_if->num_out_eps; ++i) {
20061 + dwc_ep = &pcd->in_ep[i].dwc_ep;
20062 + if(pcd->out_ep[i].dwc_ep.active &&
20063 + pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
20064 + {
20065 + deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
20066 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
20067 +
20068 + if(depctl.b.epdis && deptsiz.d32) {
20069 + set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
20070 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
20071 + dwc_ep->cur_pkt = 0;
20072 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20073 +
20074 + if(dwc_ep->proc_buf_num) {
20075 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
20076 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
20077 + } else {
20078 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
20079 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
20080 + }
20081 + }
20082 +
20083 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
20084 + dwc_ep->next_frame = dsts.b.soffn;
20085 +
20086 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
20087 + }
20088 + }
20089 + }
20090 +#else
20091 + /** @todo implement ISR */
20092 + gintmsk_data_t intr_mask = { .d32 = 0};
20093 +
20094 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20095 + "OUT ISOC Incomplete");
20096 +
20097 + intr_mask.b.incomplisoout = 1;
20098 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20099 + intr_mask.d32, 0);
20100 +
20101 +#endif // DWC_EN_ISOC
20102 +
20103 + /* Clear interrupt */
20104 + gintsts.d32 = 0;
20105 + gintsts.b.incomplisoout = 1;
20106 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20107 + gintsts.d32);
20108 +
20109 + return 1;
20110 +}
20111 +
20112 +/**
20113 + * This function handles the Global IN NAK Effective interrupt.
20114 + *
20115 + */
20116 +int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
20117 +{
20118 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
20119 + depctl_data_t diepctl = { .d32 = 0};
20120 + depctl_data_t diepctl_rd = { .d32 = 0};
20121 + gintmsk_data_t intr_mask = { .d32 = 0};
20122 + gintsts_data_t gintsts;
20123 + int i;
20124 +
20125 + DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
20126 +
20127 + /* Disable all active IN EPs */
20128 + diepctl.b.epdis = 1;
20129 + diepctl.b.snak = 1;
20130 +
20131 + for (i=0; i <= dev_if->num_in_eps; i++)
20132 + {
20133 + diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
20134 + if (diepctl_rd.b.epena) {
20135 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
20136 + diepctl.d32);
20137 + }
20138 + }
20139 + /* Disable the Global IN NAK Effective Interrupt */
20140 + intr_mask.b.ginnakeff = 1;
20141 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20142 + intr_mask.d32, 0);
20143 +
20144 + /* Clear interrupt */
20145 + gintsts.d32 = 0;
20146 + gintsts.b.ginnakeff = 1;
20147 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20148 + gintsts.d32);
20149 +
20150 + return 1;
20151 +}
20152 +
20153 +/**
20154 + * OUT NAK Effective.
20155 + *
20156 + */
20157 +int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
20158 +{
20159 + gintmsk_data_t intr_mask = { .d32 = 0};
20160 + gintsts_data_t gintsts;
20161 +
20162 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20163 + "Global IN NAK Effective\n");
20164 + /* Disable the Global IN NAK Effective Interrupt */
20165 + intr_mask.b.goutnakeff = 1;
20166 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20167 + intr_mask.d32, 0);
20168 +
20169 + /* Clear interrupt */
20170 + gintsts.d32 = 0;
20171 + gintsts.b.goutnakeff = 1;
20172 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20173 + gintsts.d32);
20174 +
20175 + return 1;
20176 +}
20177 +
20178 +
20179 +/**
20180 + * PCD interrupt handler.
20181 + *
20182 + * The PCD handles the device interrupts. Many conditions can cause a
20183 + * device interrupt. When an interrupt occurs, the device interrupt
20184 + * service routine determines the cause of the interrupt and
20185 + * dispatches handling to the appropriate function. These interrupt
20186 + * handling functions are described below.
20187 + *
20188 + * All interrupt registers are processed from LSB to MSB.
20189 + *
20190 + */
20191 +int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
20192 +{
20193 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
20194 +#ifdef VERBOSE
20195 + dwc_otg_core_global_regs_t *global_regs =
20196 + core_if->core_global_regs;
20197 +#endif
20198 + gintsts_data_t gintr_status;
20199 + int32_t retval = 0;
20200 +
20201 +
20202 +#ifdef VERBOSE
20203 + DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
20204 + __func__,
20205 + dwc_read_reg32(&global_regs->gintsts),
20206 + dwc_read_reg32(&global_regs->gintmsk));
20207 +#endif
20208 +
20209 + if (dwc_otg_is_device_mode(core_if)) {
20210 + SPIN_LOCK(&pcd->lock);
20211 +#ifdef VERBOSE
20212 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
20213 + __func__,
20214 + dwc_read_reg32(&global_regs->gintsts),
20215 + dwc_read_reg32(&global_regs->gintmsk));
20216 +#endif
20217 +
20218 + gintr_status.d32 = dwc_otg_read_core_intr(core_if);
20219 +/*
20220 + if (!gintr_status.d32) {
20221 + SPIN_UNLOCK(&pcd->lock);
20222 + return 0;
20223 + }
20224 +*/
20225 + DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
20226 + __func__, gintr_status.d32);
20227 +
20228 + if (gintr_status.b.sofintr) {
20229 + retval |= dwc_otg_pcd_handle_sof_intr(pcd);
20230 + }
20231 + if (gintr_status.b.rxstsqlvl) {
20232 + retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
20233 + }
20234 + if (gintr_status.b.nptxfempty) {
20235 + retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
20236 + }
20237 + if (gintr_status.b.ginnakeff) {
20238 + retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
20239 + }
20240 + if (gintr_status.b.goutnakeff) {
20241 + retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
20242 + }
20243 + if (gintr_status.b.i2cintr) {
20244 + retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
20245 + }
20246 + if (gintr_status.b.erlysuspend) {
20247 + retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
20248 + }
20249 + if (gintr_status.b.usbreset) {
20250 + retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
20251 + }
20252 + if (gintr_status.b.enumdone) {
20253 + retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
20254 + }
20255 + if (gintr_status.b.isooutdrop) {
20256 + retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
20257 + }
20258 + if (gintr_status.b.eopframe) {
20259 + retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
20260 + }
20261 + if (gintr_status.b.epmismatch) {
20262 + retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
20263 + }
20264 + if (gintr_status.b.inepint) {
20265 + if(!core_if->multiproc_int_enable) {
20266 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
20267 + }
20268 + }
20269 + if (gintr_status.b.outepintr) {
20270 + if(!core_if->multiproc_int_enable) {
20271 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
20272 + }
20273 + }
20274 + if (gintr_status.b.incomplisoin) {
20275 + retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
20276 + }
20277 + if (gintr_status.b.incomplisoout) {
20278 + retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
20279 + }
20280 +
20281 + /* In MPI mode De vice Endpoints intterrupts are asserted
20282 + * without setting outepintr and inepint bits set, so these
20283 + * Interrupt handlers are called without checking these bit-fields
20284 + */
20285 + if(core_if->multiproc_int_enable) {
20286 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
20287 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
20288 + }
20289 +#ifdef VERBOSE
20290 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
20291 + dwc_read_reg32(&global_regs->gintsts));
20292 +#endif
20293 + SPIN_UNLOCK(&pcd->lock);
20294 + }
20295 + S3C2410X_CLEAR_EINTPEND();
20296 +
20297 + return retval;
20298 +}
20299 +
20300 +#endif /* DWC_HOST_ONLY */
20301 --- /dev/null
20302 +++ b/drivers/usb/dwc/otg_plat.h
20303 @@ -0,0 +1,266 @@
20304 +/* ==========================================================================
20305 + * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
20306 + * $Revision: #23 $
20307 + * $Date: 2008/07/15 $
20308 + * $Change: 1064915 $
20309 + *
20310 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
20311 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
20312 + * otherwise expressly agreed to in writing between Synopsys and you.
20313 + *
20314 + * The Software IS NOT an item of Licensed Software or Licensed Product under
20315 + * any End User Software License Agreement or Agreement for Licensed Product
20316 + * with Synopsys or any supplement thereto. You are permitted to use and
20317 + * redistribute this Software in source and binary forms, with or without
20318 + * modification, provided that redistributions of source code must retain this
20319 + * notice. You may not view, use, disclose, copy or distribute this file or
20320 + * any information contained herein except pursuant to this license grant from
20321 + * Synopsys. If you do not agree with this notice, including the disclaimer
20322 + * below, then you are not authorized to use the Software.
20323 + *
20324 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
20325 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20326 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20327 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
20328 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20329 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20330 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
20331 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20332 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
20333 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
20334 + * DAMAGE.
20335 + * ========================================================================== */
20336 +
20337 +#if !defined(__DWC_OTG_PLAT_H__)
20338 +#define __DWC_OTG_PLAT_H__
20339 +
20340 +#include <linux/types.h>
20341 +#include <linux/slab.h>
20342 +#include <linux/list.h>
20343 +#include <linux/delay.h>
20344 +#include <asm/io.h>
20345 +
20346 +/* Changed all readl and writel to __raw_readl, __raw_writel */
20347 +
20348 +/**
20349 + * @file
20350 + *
20351 + * This file contains the Platform Specific constants, interfaces
20352 + * (functions and macros) for Linux.
20353 + *
20354 + */
20355 +//#if !defined(__LINUX_ARM_ARCH__)
20356 +//#error "The contents of this file is Linux specific!!!"
20357 +//#endif
20358 +
20359 +/**
20360 + * Reads the content of a register.
20361 + *
20362 + * @param reg address of register to read.
20363 + * @return contents of the register.
20364 + *
20365 +
20366 + * Usage:<br>
20367 + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
20368 + */
20369 +static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
20370 +{
20371 + return __raw_readl(reg);
20372 + // return readl(reg);
20373 +};
20374 +
20375 +/**
20376 + * Writes a register with a 32 bit value.
20377 + *
20378 + * @param reg address of register to read.
20379 + * @param value to write to _reg.
20380 + *
20381 + * Usage:<br>
20382 + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
20383 + */
20384 +static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
20385 +{
20386 + // writel( value, reg );
20387 + __raw_writel(value, reg);
20388 +
20389 +};
20390 +
20391 +/**
20392 + * This function modifies bit values in a register. Using the
20393 + * algorithm: (reg_contents & ~clear_mask) | set_mask.
20394 + *
20395 + * @param reg address of register to read.
20396 + * @param clear_mask bit mask to be cleared.
20397 + * @param set_mask bit mask to be set.
20398 + *
20399 + * Usage:<br>
20400 + * <code> // Clear the SOF Interrupt Mask bit and <br>
20401 + * // set the OTG Interrupt mask bit, leaving all others as they were.
20402 + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
20403 + */
20404 +static __inline__
20405 + void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
20406 +{
20407 + // writel( (readl(reg) & ~clear_mask) | set_mask, reg );
20408 + __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
20409 +};
20410 +
20411 +
20412 +/**
20413 + * Wrapper for the OS micro-second delay function.
20414 + * @param[in] usecs Microseconds of delay
20415 + */
20416 +static __inline__ void UDELAY( const uint32_t usecs )
20417 +{
20418 + udelay( usecs );
20419 +}
20420 +
20421 +/**
20422 + * Wrapper for the OS milli-second delay function.
20423 + * @param[in] msecs milliseconds of delay
20424 + */
20425 +static __inline__ void MDELAY( const uint32_t msecs )
20426 +{
20427 + mdelay( msecs );
20428 +}
20429 +
20430 +/**
20431 + * Wrapper for the Linux spin_lock. On the ARM (Integrator)
20432 + * spin_lock() is a nop.
20433 + *
20434 + * @param lock Pointer to the spinlock.
20435 + */
20436 +static __inline__ void SPIN_LOCK( spinlock_t *lock )
20437 +{
20438 + spin_lock(lock);
20439 +}
20440 +
20441 +/**
20442 + * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
20443 + * spin_lock() is a nop.
20444 + *
20445 + * @param lock Pointer to the spinlock.
20446 + */
20447 +static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
20448 +{
20449 + spin_unlock(lock);
20450 +}
20451 +
20452 +/**
20453 + * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
20454 + * (Integrator) spin_lock() is a nop.
20455 + *
20456 + * @param l Pointer to the spinlock.
20457 + * @param f unsigned long for irq flags storage.
20458 + */
20459 +#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
20460 +
20461 +/**
20462 + * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
20463 + * (Integrator) spin_lock() is a nop.
20464 + *
20465 + * @param l Pointer to the spinlock.
20466 + * @param f unsigned long for irq flags storage.
20467 + */
20468 +#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
20469 +
20470 +/*
20471 + * Debugging support vanishes in non-debug builds.
20472 + */
20473 +
20474 +
20475 +/**
20476 + * The Debug Level bit-mask variable.
20477 + */
20478 +extern uint32_t g_dbg_lvl;
20479 +/**
20480 + * Set the Debug Level variable.
20481 + */
20482 +static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
20483 +{
20484 + uint32_t old = g_dbg_lvl;
20485 + g_dbg_lvl = new;
20486 + return old;
20487 +}
20488 +
20489 +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
20490 +#define DBG_CIL (0x2)
20491 +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
20492 + * messages */
20493 +#define DBG_CILV (0x20)
20494 +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
20495 + * messages */
20496 +#define DBG_PCD (0x4)
20497 +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
20498 + * messages */
20499 +#define DBG_PCDV (0x40)
20500 +/** When debug level has the DBG_HCD bit set, display Host debug messages */
20501 +#define DBG_HCD (0x8)
20502 +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
20503 + * messages */
20504 +#define DBG_HCDV (0x80)
20505 +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
20506 + * mode. */
20507 +#define DBG_HCD_URB (0x800)
20508 +
20509 +/** When debug level has any bit set, display debug messages */
20510 +#define DBG_ANY (0xFF)
20511 +
20512 +/** All debug messages off */
20513 +#define DBG_OFF 0
20514 +
20515 +/** Prefix string for DWC_DEBUG print macros. */
20516 +#define USB_DWC "DWC_otg: "
20517 +
20518 +/**
20519 + * Print a debug message when the Global debug level variable contains
20520 + * the bit defined in <code>lvl</code>.
20521 + *
20522 + * @param[in] lvl - Debug level, use one of the DBG_ constants above.
20523 + * @param[in] x - like printf
20524 + *
20525 + * Example:<p>
20526 + * <code>
20527 + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
20528 + * </code>
20529 + * <br>
20530 + * results in:<br>
20531 + * <code>
20532 + * usb-DWC_otg: dwc_otg_cil_init(ca867000)
20533 + * </code>
20534 + */
20535 +#ifdef DEBUG
20536 +
20537 +# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
20538 +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
20539 +
20540 +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
20541 +
20542 +#else
20543 +
20544 +# define DWC_DEBUGPL(lvl, x...) do{}while(0)
20545 +# define DWC_DEBUGP(x...)
20546 +
20547 +# define CHK_DEBUG_LEVEL(level) (0)
20548 +
20549 +#endif /*DEBUG*/
20550 +
20551 +/**
20552 + * Print an Error message.
20553 + */
20554 +#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
20555 +/**
20556 + * Print a Warning message.
20557 + */
20558 +#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
20559 +/**
20560 + * Print a notice (normal but significant message).
20561 + */
20562 +#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
20563 +/**
20564 + * Basic message printing.
20565 + */
20566 +#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
20567 +
20568 +#endif
20569 +
20570 --- /dev/null
20571 +++ b/drivers/usb/dwc/otg_regs.h
20572 @@ -0,0 +1,2059 @@
20573 +/* ==========================================================================
20574 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
20575 + * $Revision: #72 $
20576 + * $Date: 2008/09/19 $
20577 + * $Change: 1099526 $
20578 + *
20579 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
20580 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
20581 + * otherwise expressly agreed to in writing between Synopsys and you.
20582 + *
20583 + * The Software IS NOT an item of Licensed Software or Licensed Product under
20584 + * any End User Software License Agreement or Agreement for Licensed Product
20585 + * with Synopsys or any supplement thereto. You are permitted to use and
20586 + * redistribute this Software in source and binary forms, with or without
20587 + * modification, provided that redistributions of source code must retain this
20588 + * notice. You may not view, use, disclose, copy or distribute this file or
20589 + * any information contained herein except pursuant to this license grant from
20590 + * Synopsys. If you do not agree with this notice, including the disclaimer
20591 + * below, then you are not authorized to use the Software.
20592 + *
20593 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
20594 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20595 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20596 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
20597 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20598 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20599 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
20600 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20601 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
20602 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
20603 + * DAMAGE.
20604 + * ========================================================================== */
20605 +
20606 +#ifndef __DWC_OTG_REGS_H__
20607 +#define __DWC_OTG_REGS_H__
20608 +
20609 +/**
20610 + * @file
20611 + *
20612 + * This file contains the data structures for accessing the DWC_otg core registers.
20613 + *
20614 + * The application interfaces with the HS OTG core by reading from and
20615 + * writing to the Control and Status Register (CSR) space through the
20616 + * AHB Slave interface. These registers are 32 bits wide, and the
20617 + * addresses are 32-bit-block aligned.
20618 + * CSRs are classified as follows:
20619 + * - Core Global Registers
20620 + * - Device Mode Registers
20621 + * - Device Global Registers
20622 + * - Device Endpoint Specific Registers
20623 + * - Host Mode Registers
20624 + * - Host Global Registers
20625 + * - Host Port CSRs
20626 + * - Host Channel Specific Registers
20627 + *
20628 + * Only the Core Global registers can be accessed in both Device and
20629 + * Host modes. When the HS OTG core is operating in one mode, either
20630 + * Device or Host, the application must not access registers from the
20631 + * other mode. When the core switches from one mode to another, the
20632 + * registers in the new mode of operation must be reprogrammed as they
20633 + * would be after a power-on reset.
20634 + */
20635 +
20636 +/** Maximum number of Periodic FIFOs */
20637 +#define MAX_PERIO_FIFOS 15
20638 +/** Maximum number of Transmit FIFOs */
20639 +#define MAX_TX_FIFOS 15
20640 +
20641 +/** Maximum number of Endpoints/HostChannels */
20642 +#define MAX_EPS_CHANNELS 16
20643 +
20644 +/****************************************************************************/
20645 +/** DWC_otg Core registers .
20646 + * The dwc_otg_core_global_regs structure defines the size
20647 + * and relative field offsets for the Core Global registers.
20648 + */
20649 +typedef struct dwc_otg_core_global_regs
20650 +{
20651 + /** OTG Control and Status Register. <i>Offset: 000h</i> */
20652 + volatile uint32_t gotgctl;
20653 + /** OTG Interrupt Register. <i>Offset: 004h</i> */
20654 + volatile uint32_t gotgint;
20655 + /**Core AHB Configuration Register. <i>Offset: 008h</i> */
20656 + volatile uint32_t gahbcfg;
20657 +
20658 +#define DWC_GLBINTRMASK 0x0001
20659 +#define DWC_DMAENABLE 0x0020
20660 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
20661 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
20662 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100
20663 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
20664 +
20665 + /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
20666 + volatile uint32_t gusbcfg;
20667 + /**Core Reset Register. <i>Offset: 010h</i> */
20668 + volatile uint32_t grstctl;
20669 + /**Core Interrupt Register. <i>Offset: 014h</i> */
20670 + volatile uint32_t gintsts;
20671 + /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
20672 + volatile uint32_t gintmsk;
20673 + /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
20674 + volatile uint32_t grxstsr;
20675 + /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
20676 + volatile uint32_t grxstsp;
20677 + /**Receive FIFO Size Register. <i>Offset: 024h</i> */
20678 + volatile uint32_t grxfsiz;
20679 + /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
20680 + volatile uint32_t gnptxfsiz;
20681 + /**Non Periodic Transmit FIFO/Queue Status Register (Read
20682 + * Only). <i>Offset: 02Ch</i> */
20683 + volatile uint32_t gnptxsts;
20684 + /**I2C Access Register. <i>Offset: 030h</i> */
20685 + volatile uint32_t gi2cctl;
20686 + /**PHY Vendor Control Register. <i>Offset: 034h</i> */
20687 + volatile uint32_t gpvndctl;
20688 + /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
20689 + volatile uint32_t ggpio;
20690 + /**User ID Register. <i>Offset: 03Ch</i> */
20691 + volatile uint32_t guid;
20692 + /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
20693 + volatile uint32_t gsnpsid;
20694 + /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
20695 + volatile uint32_t ghwcfg1;
20696 + /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
20697 + volatile uint32_t ghwcfg2;
20698 +#define DWC_SLAVE_ONLY_ARCH 0
20699 +#define DWC_EXT_DMA_ARCH 1
20700 +#define DWC_INT_DMA_ARCH 2
20701 +
20702 +#define DWC_MODE_HNP_SRP_CAPABLE 0
20703 +#define DWC_MODE_SRP_ONLY_CAPABLE 1
20704 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
20705 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3
20706 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
20707 +#define DWC_MODE_SRP_CAPABLE_HOST 5
20708 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
20709 +
20710 + /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
20711 + volatile uint32_t ghwcfg3;
20712 + /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
20713 + volatile uint32_t ghwcfg4;
20714 + /** Reserved <i>Offset: 054h-0FFh</i> */
20715 + volatile uint32_t reserved[43];
20716 + /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
20717 + volatile uint32_t hptxfsiz;
20718 + /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
20719 + otherwise Device Transmit FIFO#n Register.
20720 + * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
20721 + volatile uint32_t dptxfsiz_dieptxf[15];
20722 +} dwc_otg_core_global_regs_t;
20723 +
20724 +/**
20725 + * This union represents the bit fields of the Core OTG Control
20726 + * and Status Register (GOTGCTL). Set the bits using the bit
20727 + * fields then write the <i>d32</i> value to the register.
20728 + */
20729 +typedef union gotgctl_data
20730 +{
20731 + /** raw register data */
20732 + uint32_t d32;
20733 + /** register bits */
20734 + struct
20735 + {
20736 + unsigned sesreqscs : 1;
20737 + unsigned sesreq : 1;
20738 + unsigned reserved2_7 : 6;
20739 + unsigned hstnegscs : 1;
20740 + unsigned hnpreq : 1;
20741 + unsigned hstsethnpen : 1;
20742 + unsigned devhnpen : 1;
20743 + unsigned reserved12_15 : 4;
20744 + unsigned conidsts : 1;
20745 + unsigned reserved17 : 1;
20746 + unsigned asesvld : 1;
20747 + unsigned bsesvld : 1;
20748 + unsigned currmod : 1;
20749 + unsigned reserved21_31 : 11;
20750 + } b;
20751 +} gotgctl_data_t;
20752 +
20753 +/**
20754 + * This union represents the bit fields of the Core OTG Interrupt Register
20755 + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
20756 + * value to the register.
20757 + */
20758 +typedef union gotgint_data
20759 +{
20760 + /** raw register data */
20761 + uint32_t d32;
20762 + /** register bits */
20763 + struct
20764 + {
20765 + /** Current Mode */
20766 + unsigned reserved0_1 : 2;
20767 +
20768 + /** Session End Detected */
20769 + unsigned sesenddet : 1;
20770 +
20771 + unsigned reserved3_7 : 5;
20772 +
20773 + /** Session Request Success Status Change */
20774 + unsigned sesreqsucstschng : 1;
20775 + /** Host Negotiation Success Status Change */
20776 + unsigned hstnegsucstschng : 1;
20777 +
20778 + unsigned reserver10_16 : 7;
20779 +
20780 + /** Host Negotiation Detected */
20781 + unsigned hstnegdet : 1;
20782 + /** A-Device Timeout Change */
20783 + unsigned adevtoutchng : 1;
20784 + /** Debounce Done */
20785 + unsigned debdone : 1;
20786 +
20787 + unsigned reserved31_20 : 12;
20788 +
20789 + } b;
20790 +} gotgint_data_t;
20791 +
20792 +
20793 +/**
20794 + * This union represents the bit fields of the Core AHB Configuration
20795 + * Register (GAHBCFG). Set/clear the bits using the bit fields then
20796 + * write the <i>d32</i> value to the register.
20797 + */
20798 +typedef union gahbcfg_data
20799 +{
20800 + /** raw register data */
20801 + uint32_t d32;
20802 + /** register bits */
20803 + struct
20804 + {
20805 + unsigned glblintrmsk : 1;
20806 +#define DWC_GAHBCFG_GLBINT_ENABLE 1
20807 +
20808 + unsigned hburstlen : 4;
20809 +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
20810 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
20811 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
20812 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
20813 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
20814 +
20815 + unsigned dmaenable : 1;
20816 +#define DWC_GAHBCFG_DMAENABLE 1
20817 + unsigned reserved : 1;
20818 + unsigned nptxfemplvl_txfemplvl : 1;
20819 + unsigned ptxfemplvl : 1;
20820 +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
20821 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
20822 + unsigned reserved9_31 : 23;
20823 + } b;
20824 +} gahbcfg_data_t;
20825 +
20826 +/**
20827 + * This union represents the bit fields of the Core USB Configuration
20828 + * Register (GUSBCFG). Set the bits using the bit fields then write
20829 + * the <i>d32</i> value to the register.
20830 + */
20831 +typedef union gusbcfg_data
20832 +{
20833 + /** raw register data */
20834 + uint32_t d32;
20835 + /** register bits */
20836 + struct
20837 + {
20838 + unsigned toutcal : 3;
20839 + unsigned phyif : 1;
20840 + unsigned ulpi_utmi_sel : 1;
20841 + unsigned fsintf : 1;
20842 + unsigned physel : 1;
20843 + unsigned ddrsel : 1;
20844 + unsigned srpcap : 1;
20845 + unsigned hnpcap : 1;
20846 + unsigned usbtrdtim : 4;
20847 + unsigned nptxfrwnden : 1;
20848 + unsigned phylpwrclksel : 1;
20849 + unsigned otgutmifssel : 1;
20850 + unsigned ulpi_fsls : 1;
20851 + unsigned ulpi_auto_res : 1;
20852 + unsigned ulpi_clk_sus_m : 1;
20853 + unsigned ulpi_ext_vbus_drv : 1;
20854 + unsigned ulpi_int_vbus_indicator : 1;
20855 + unsigned term_sel_dl_pulse : 1;
20856 + unsigned reserved23_27 : 5;
20857 + unsigned tx_end_delay : 1;
20858 + unsigned reserved29_31 : 3;
20859 + } b;
20860 +} gusbcfg_data_t;
20861 +
20862 +/**
20863 + * This union represents the bit fields of the Core Reset Register
20864 + * (GRSTCTL). Set/clear the bits using the bit fields then write the
20865 + * <i>d32</i> value to the register.
20866 + */
20867 +typedef union grstctl_data
20868 +{
20869 + /** raw register data */
20870 + uint32_t d32;
20871 + /** register bits */
20872 + struct
20873 + {
20874 + /** Core Soft Reset (CSftRst) (Device and Host)
20875 + *
20876 + * The application can flush the control logic in the
20877 + * entire core using this bit. This bit resets the
20878 + * pipelines in the AHB Clock domain as well as the
20879 + * PHY Clock domain.
20880 + *
20881 + * The state machines are reset to an IDLE state, the
20882 + * control bits in the CSRs are cleared, all the
20883 + * transmit FIFOs and the receive FIFO are flushed.
20884 + *
20885 + * The status mask bits that control the generation of
20886 + * the interrupt, are cleared, to clear the
20887 + * interrupt. The interrupt status bits are not
20888 + * cleared, so the application can get the status of
20889 + * any events that occurred in the core after it has
20890 + * set this bit.
20891 + *
20892 + * Any transactions on the AHB are terminated as soon
20893 + * as possible following the protocol. Any
20894 + * transactions on the USB are terminated immediately.
20895 + *
20896 + * The configuration settings in the CSRs are
20897 + * unchanged, so the software doesn't have to
20898 + * reprogram these registers (Device
20899 + * Configuration/Host Configuration/Core System
20900 + * Configuration/Core PHY Configuration).
20901 + *
20902 + * The application can write to this bit, any time it
20903 + * wants to reset the core. This is a self clearing
20904 + * bit and the core clears this bit after all the
20905 + * necessary logic is reset in the core, which may
20906 + * take several clocks, depending on the current state
20907 + * of the core.
20908 + */
20909 + unsigned csftrst : 1;
20910 + /** Hclk Soft Reset
20911 + *
20912 + * The application uses this bit to reset the control logic in
20913 + * the AHB clock domain. Only AHB clock domain pipelines are
20914 + * reset.
20915 + */
20916 + unsigned hsftrst : 1;
20917 + /** Host Frame Counter Reset (Host Only)<br>
20918 + *
20919 + * The application can reset the (micro)frame number
20920 + * counter inside the core, using this bit. When the
20921 + * (micro)frame counter is reset, the subsequent SOF
20922 + * sent out by the core, will have a (micro)frame
20923 + * number of 0.
20924 + */
20925 + unsigned hstfrm : 1;
20926 + /** In Token Sequence Learning Queue Flush
20927 + * (INTknQFlsh) (Device Only)
20928 + */
20929 + unsigned intknqflsh : 1;
20930 + /** RxFIFO Flush (RxFFlsh) (Device and Host)
20931 + *
20932 + * The application can flush the entire Receive FIFO
20933 + * using this bit. <p>The application must first
20934 + * ensure that the core is not in the middle of a
20935 + * transaction. <p>The application should write into
20936 + * this bit, only after making sure that neither the
20937 + * DMA engine is reading from the RxFIFO nor the MAC
20938 + * is writing the data in to the FIFO. <p>The
20939 + * application should wait until the bit is cleared
20940 + * before performing any other operations. This bit
20941 + * will takes 8 clocks (slowest of PHY or AHB clock)
20942 + * to clear.
20943 + */
20944 + unsigned rxfflsh : 1;
20945 + /** TxFIFO Flush (TxFFlsh) (Device and Host).
20946 + *
20947 + * This bit is used to selectively flush a single or
20948 + * all transmit FIFOs. The application must first
20949 + * ensure that the core is not in the middle of a
20950 + * transaction. <p>The application should write into
20951 + * this bit, only after making sure that neither the
20952 + * DMA engine is writing into the TxFIFO nor the MAC
20953 + * is reading the data out of the FIFO. <p>The
20954 + * application should wait until the core clears this
20955 + * bit, before performing any operations. This bit
20956 + * will takes 8 clocks (slowest of PHY or AHB clock)
20957 + * to clear.
20958 + */
20959 + unsigned txfflsh : 1;
20960 + /** TxFIFO Number (TxFNum) (Device and Host).
20961 + *
20962 + * This is the FIFO number which needs to be flushed,
20963 + * using the TxFIFO Flush bit. This field should not
20964 + * be changed until the TxFIFO Flush bit is cleared by
20965 + * the core.
20966 + * - 0x0 : Non Periodic TxFIFO Flush
20967 + * - 0x1 : Periodic TxFIFO #1 Flush in device mode
20968 + * or Periodic TxFIFO in host mode
20969 + * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
20970 + * - ...
20971 + * - 0xF : Periodic TxFIFO #15 Flush in device mode
20972 + * - 0x10: Flush all the Transmit NonPeriodic and
20973 + * Transmit Periodic FIFOs in the core
20974 + */
20975 + unsigned txfnum : 5;
20976 + /** Reserved */
20977 + unsigned reserved11_29 : 19;
20978 + /** DMA Request Signal. Indicated DMA request is in
20979 + * probress. Used for debug purpose. */
20980 + unsigned dmareq : 1;
20981 + /** AHB Master Idle. Indicates the AHB Master State
20982 + * Machine is in IDLE condition. */
20983 + unsigned ahbidle : 1;
20984 + } b;
20985 +} grstctl_t;
20986 +
20987 +
20988 +/**
20989 + * This union represents the bit fields of the Core Interrupt Mask
20990 + * Register (GINTMSK). Set/clear the bits using the bit fields then
20991 + * write the <i>d32</i> value to the register.
20992 + */
20993 +typedef union gintmsk_data
20994 +{
20995 + /** raw register data */
20996 + uint32_t d32;
20997 + /** register bits */
20998 + struct
20999 + {
21000 + unsigned reserved0 : 1;
21001 + unsigned modemismatch : 1;
21002 + unsigned otgintr : 1;
21003 + unsigned sofintr : 1;
21004 + unsigned rxstsqlvl : 1;
21005 + unsigned nptxfempty : 1;
21006 + unsigned ginnakeff : 1;
21007 + unsigned goutnakeff : 1;
21008 + unsigned reserved8 : 1;
21009 + unsigned i2cintr : 1;
21010 + unsigned erlysuspend : 1;
21011 + unsigned usbsuspend : 1;
21012 + unsigned usbreset : 1;
21013 + unsigned enumdone : 1;
21014 + unsigned isooutdrop : 1;
21015 + unsigned eopframe : 1;
21016 + unsigned reserved16 : 1;
21017 + unsigned epmismatch : 1;
21018 + unsigned inepintr : 1;
21019 + unsigned outepintr : 1;
21020 + unsigned incomplisoin : 1;
21021 + unsigned incomplisoout : 1;
21022 + unsigned reserved22_23 : 2;
21023 + unsigned portintr : 1;
21024 + unsigned hcintr : 1;
21025 + unsigned ptxfempty : 1;
21026 + unsigned reserved27 : 1;
21027 + unsigned conidstschng : 1;
21028 + unsigned disconnect : 1;
21029 + unsigned sessreqintr : 1;
21030 + unsigned wkupintr : 1;
21031 + } b;
21032 +} gintmsk_data_t;
21033 +/**
21034 + * This union represents the bit fields of the Core Interrupt Register
21035 + * (GINTSTS). Set/clear the bits using the bit fields then write the
21036 + * <i>d32</i> value to the register.
21037 + */
21038 +typedef union gintsts_data
21039 +{
21040 + /** raw register data */
21041 + uint32_t d32;
21042 +#define DWC_SOF_INTR_MASK 0x0008
21043 + /** register bits */
21044 + struct
21045 + {
21046 +#define DWC_HOST_MODE 1
21047 + unsigned curmode : 1;
21048 + unsigned modemismatch : 1;
21049 + unsigned otgintr : 1;
21050 + unsigned sofintr : 1;
21051 + unsigned rxstsqlvl : 1;
21052 + unsigned nptxfempty : 1;
21053 + unsigned ginnakeff : 1;
21054 + unsigned goutnakeff : 1;
21055 + unsigned reserved8 : 1;
21056 + unsigned i2cintr : 1;
21057 + unsigned erlysuspend : 1;
21058 + unsigned usbsuspend : 1;
21059 + unsigned usbreset : 1;
21060 + unsigned enumdone : 1;
21061 + unsigned isooutdrop : 1;
21062 + unsigned eopframe : 1;
21063 + unsigned intokenrx : 1;
21064 + unsigned epmismatch : 1;
21065 + unsigned inepint: 1;
21066 + unsigned outepintr : 1;
21067 + unsigned incomplisoin : 1;
21068 + unsigned incomplisoout : 1;
21069 + unsigned reserved22_23 : 2;
21070 + unsigned portintr : 1;
21071 + unsigned hcintr : 1;
21072 + unsigned ptxfempty : 1;
21073 + unsigned reserved27 : 1;
21074 + unsigned conidstschng : 1;
21075 + unsigned disconnect : 1;
21076 + unsigned sessreqintr : 1;
21077 + unsigned wkupintr : 1;
21078 + } b;
21079 +} gintsts_data_t;
21080 +
21081 +
21082 +/**
21083 + * This union represents the bit fields in the Device Receive Status Read and
21084 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
21085 + * element then read out the bits using the <i>b</i>it elements.
21086 + */
21087 +typedef union device_grxsts_data
21088 +{
21089 + /** raw register data */
21090 + uint32_t d32;
21091 + /** register bits */
21092 + struct
21093 + {
21094 + unsigned epnum : 4;
21095 + unsigned bcnt : 11;
21096 + unsigned dpid : 2;
21097 +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
21098 +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
21099 +
21100 +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
21101 +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
21102 +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
21103 + unsigned pktsts : 4;
21104 + unsigned fn : 4;
21105 + unsigned reserved : 7;
21106 + } b;
21107 +} device_grxsts_data_t;
21108 +
21109 +/**
21110 + * This union represents the bit fields in the Host Receive Status Read and
21111 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
21112 + * element then read out the bits using the <i>b</i>it elements.
21113 + */
21114 +typedef union host_grxsts_data
21115 +{
21116 + /** raw register data */
21117 + uint32_t d32;
21118 + /** register bits */
21119 + struct
21120 + {
21121 + unsigned chnum : 4;
21122 + unsigned bcnt : 11;
21123 + unsigned dpid : 2;
21124 + unsigned pktsts : 4;
21125 +#define DWC_GRXSTS_PKTSTS_IN 0x2
21126 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
21127 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
21128 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
21129 + unsigned reserved : 11;
21130 + } b;
21131 +} host_grxsts_data_t;
21132 +
21133 +/**
21134 + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
21135 + * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
21136 + * read out the bits using the <i>b</i>it elements.
21137 + */
21138 +typedef union fifosize_data
21139 +{
21140 + /** raw register data */
21141 + uint32_t d32;
21142 + /** register bits */
21143 + struct
21144 + {
21145 + unsigned startaddr : 16;
21146 + unsigned depth : 16;
21147 + } b;
21148 +} fifosize_data_t;
21149 +
21150 +/**
21151 + * This union represents the bit fields in the Non-Periodic Transmit
21152 + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
21153 + * <i>d32</i> element then read out the bits using the <i>b</i>it
21154 + * elements.
21155 + */
21156 +typedef union gnptxsts_data
21157 +{
21158 + /** raw register data */
21159 + uint32_t d32;
21160 + /** register bits */
21161 + struct
21162 + {
21163 + unsigned nptxfspcavail : 16;
21164 + unsigned nptxqspcavail : 8;
21165 + /** Top of the Non-Periodic Transmit Request Queue
21166 + * - bit 24 - Terminate (Last entry for the selected
21167 + * channel/EP)
21168 + * - bits 26:25 - Token Type
21169 + * - 2'b00 - IN/OUT
21170 + * - 2'b01 - Zero Length OUT
21171 + * - 2'b10 - PING/Complete Split
21172 + * - 2'b11 - Channel Halt
21173 + * - bits 30:27 - Channel/EP Number
21174 + */
21175 + unsigned nptxqtop_terminate : 1;
21176 + unsigned nptxqtop_token : 2;
21177 + unsigned nptxqtop_chnep : 4;
21178 + unsigned reserved : 1;
21179 + } b;
21180 +} gnptxsts_data_t;
21181 +
21182 +/**
21183 + * This union represents the bit fields in the Transmit
21184 + * FIFO Status Register (DTXFSTS). Read the register into the
21185 + * <i>d32</i> element then read out the bits using the <i>b</i>it
21186 + * elements.
21187 + */
21188 +typedef union dtxfsts_data
21189 +{
21190 + /** raw register data */
21191 + uint32_t d32;
21192 + /** register bits */
21193 + struct
21194 + {
21195 + unsigned txfspcavail : 16;
21196 + unsigned reserved : 16;
21197 + } b;
21198 +} dtxfsts_data_t;
21199 +
21200 +/**
21201 + * This union represents the bit fields in the I2C Control Register
21202 + * (I2CCTL). Read the register into the <i>d32</i> element then read out the
21203 + * bits using the <i>b</i>it elements.
21204 + */
21205 +typedef union gi2cctl_data
21206 +{
21207 + /** raw register data */
21208 + uint32_t d32;
21209 + /** register bits */
21210 + struct
21211 + {
21212 + unsigned rwdata : 8;
21213 + unsigned regaddr : 8;
21214 + unsigned addr : 7;
21215 + unsigned i2cen : 1;
21216 + unsigned ack : 1;
21217 + unsigned i2csuspctl : 1;
21218 + unsigned i2cdevaddr : 2;
21219 + unsigned reserved : 2;
21220 + unsigned rw : 1;
21221 + unsigned bsydne : 1;
21222 + } b;
21223 +} gi2cctl_data_t;
21224 +
21225 +/**
21226 + * This union represents the bit fields in the User HW Config1
21227 + * Register. Read the register into the <i>d32</i> element then read
21228 + * out the bits using the <i>b</i>it elements.
21229 + */
21230 +typedef union hwcfg1_data
21231 +{
21232 + /** raw register data */
21233 + uint32_t d32;
21234 + /** register bits */
21235 + struct
21236 + {
21237 + unsigned ep_dir0 : 2;
21238 + unsigned ep_dir1 : 2;
21239 + unsigned ep_dir2 : 2;
21240 + unsigned ep_dir3 : 2;
21241 + unsigned ep_dir4 : 2;
21242 + unsigned ep_dir5 : 2;
21243 + unsigned ep_dir6 : 2;
21244 + unsigned ep_dir7 : 2;
21245 + unsigned ep_dir8 : 2;
21246 + unsigned ep_dir9 : 2;
21247 + unsigned ep_dir10 : 2;
21248 + unsigned ep_dir11 : 2;
21249 + unsigned ep_dir12 : 2;
21250 + unsigned ep_dir13 : 2;
21251 + unsigned ep_dir14 : 2;
21252 + unsigned ep_dir15 : 2;
21253 + } b;
21254 +} hwcfg1_data_t;
21255 +
21256 +/**
21257 + * This union represents the bit fields in the User HW Config2
21258 + * Register. Read the register into the <i>d32</i> element then read
21259 + * out the bits using the <i>b</i>it elements.
21260 + */
21261 +typedef union hwcfg2_data
21262 +{
21263 + /** raw register data */
21264 + uint32_t d32;
21265 + /** register bits */
21266 + struct
21267 + {
21268 + /* GHWCFG2 */
21269 + unsigned op_mode : 3;
21270 +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
21271 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
21272 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
21273 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
21274 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
21275 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
21276 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
21277 +
21278 + unsigned architecture : 2;
21279 + unsigned point2point : 1;
21280 + unsigned hs_phy_type : 2;
21281 +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
21282 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
21283 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
21284 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
21285 +
21286 + unsigned fs_phy_type : 2;
21287 + unsigned num_dev_ep : 4;
21288 + unsigned num_host_chan : 4;
21289 + unsigned perio_ep_supported : 1;
21290 + unsigned dynamic_fifo : 1;
21291 + unsigned multi_proc_int : 1;
21292 + unsigned reserved21 : 1;
21293 + unsigned nonperio_tx_q_depth : 2;
21294 + unsigned host_perio_tx_q_depth : 2;
21295 + unsigned dev_token_q_depth : 5;
21296 + unsigned reserved31 : 1;
21297 + } b;
21298 +} hwcfg2_data_t;
21299 +
21300 +/**
21301 + * This union represents the bit fields in the User HW Config3
21302 + * Register. Read the register into the <i>d32</i> element then read
21303 + * out the bits using the <i>b</i>it elements.
21304 + */
21305 +typedef union hwcfg3_data
21306 +{
21307 + /** raw register data */
21308 + uint32_t d32;
21309 + /** register bits */
21310 + struct
21311 + {
21312 + /* GHWCFG3 */
21313 + unsigned xfer_size_cntr_width : 4;
21314 + unsigned packet_size_cntr_width : 3;
21315 + unsigned otg_func : 1;
21316 + unsigned i2c : 1;
21317 + unsigned vendor_ctrl_if : 1;
21318 + unsigned optional_features : 1;
21319 + unsigned synch_reset_type : 1;
21320 + unsigned ahb_phy_clock_synch : 1;
21321 + unsigned reserved15_13 : 3;
21322 + unsigned dfifo_depth : 16;
21323 + } b;
21324 +} hwcfg3_data_t;
21325 +
21326 +/**
21327 + * This union represents the bit fields in the User HW Config4
21328 + * Register. Read the register into the <i>d32</i> element then read
21329 + * out the bits using the <i>b</i>it elements.
21330 + */
21331 +typedef union hwcfg4_data
21332 +{
21333 + /** raw register data */
21334 + uint32_t d32;
21335 + /** register bits */
21336 + struct
21337 + {
21338 + unsigned num_dev_perio_in_ep : 4;
21339 + unsigned power_optimiz : 1;
21340 + unsigned min_ahb_freq : 9;
21341 + unsigned utmi_phy_data_width : 2;
21342 + unsigned num_dev_mode_ctrl_ep : 4;
21343 + unsigned iddig_filt_en : 1;
21344 + unsigned vbus_valid_filt_en : 1;
21345 + unsigned a_valid_filt_en : 1;
21346 + unsigned b_valid_filt_en : 1;
21347 + unsigned session_end_filt_en : 1;
21348 + unsigned ded_fifo_en : 1;
21349 + unsigned num_in_eps : 4;
21350 + unsigned desc_dma : 1;
21351 + unsigned desc_dma_dyn : 1;
21352 + } b;
21353 +} hwcfg4_data_t;
21354 +
21355 +////////////////////////////////////////////
21356 +// Device Registers
21357 +/**
21358 + * Device Global Registers. <i>Offsets 800h-BFFh</i>
21359 + *
21360 + * The following structures define the size and relative field offsets
21361 + * for the Device Mode Registers.
21362 + *
21363 + * <i>These registers are visible only in Device mode and must not be
21364 + * accessed in Host mode, as the results are unknown.</i>
21365 + */
21366 +typedef struct dwc_otg_dev_global_regs
21367 +{
21368 + /** Device Configuration Register. <i>Offset 800h</i> */
21369 + volatile uint32_t dcfg;
21370 + /** Device Control Register. <i>Offset: 804h</i> */
21371 + volatile uint32_t dctl;
21372 + /** Device Status Register (Read Only). <i>Offset: 808h</i> */
21373 + volatile uint32_t dsts;
21374 + /** Reserved. <i>Offset: 80Ch</i> */
21375 + uint32_t unused;
21376 + /** Device IN Endpoint Common Interrupt Mask
21377 + * Register. <i>Offset: 810h</i> */
21378 + volatile uint32_t diepmsk;
21379 + /** Device OUT Endpoint Common Interrupt Mask
21380 + * Register. <i>Offset: 814h</i> */
21381 + volatile uint32_t doepmsk;
21382 + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
21383 + volatile uint32_t daint;
21384 + /** Device All Endpoints Interrupt Mask Register. <i>Offset:
21385 + * 81Ch</i> */
21386 + volatile uint32_t daintmsk;
21387 + /** Device IN Token Queue Read Register-1 (Read Only).
21388 + * <i>Offset: 820h</i> */
21389 + volatile uint32_t dtknqr1;
21390 + /** Device IN Token Queue Read Register-2 (Read Only).
21391 + * <i>Offset: 824h</i> */
21392 + volatile uint32_t dtknqr2;
21393 + /** Device VBUS discharge Register. <i>Offset: 828h</i> */
21394 + volatile uint32_t dvbusdis;
21395 + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
21396 + volatile uint32_t dvbuspulse;
21397 + /** Device IN Token Queue Read Register-3 (Read Only). /
21398 + * Device Thresholding control register (Read/Write)
21399 + * <i>Offset: 830h</i> */
21400 + volatile uint32_t dtknqr3_dthrctl;
21401 + /** Device IN Token Queue Read Register-4 (Read Only). /
21402 + * Device IN EPs empty Inr. Mask Register (Read/Write)
21403 + * <i>Offset: 834h</i> */
21404 + volatile uint32_t dtknqr4_fifoemptymsk;
21405 + /** Device Each Endpoint Interrupt Register (Read Only). /
21406 + * <i>Offset: 838h</i> */
21407 + volatile uint32_t deachint;
21408 + /** Device Each Endpoint Interrupt mask Register (Read/Write). /
21409 + * <i>Offset: 83Ch</i> */
21410 + volatile uint32_t deachintmsk;
21411 + /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
21412 + * <i>Offset: 840h</i> */
21413 + volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
21414 + /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
21415 + * <i>Offset: 880h</i> */
21416 + volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
21417 +} dwc_otg_device_global_regs_t;
21418 +
21419 +/**
21420 + * This union represents the bit fields in the Device Configuration
21421 + * Register. Read the register into the <i>d32</i> member then
21422 + * set/clear the bits using the <i>b</i>it elements. Write the
21423 + * <i>d32</i> member to the dcfg register.
21424 + */
21425 +typedef union dcfg_data
21426 +{
21427 + /** raw register data */
21428 + uint32_t d32;
21429 + /** register bits */
21430 + struct
21431 + {
21432 + /** Device Speed */
21433 + unsigned devspd : 2;
21434 + /** Non Zero Length Status OUT Handshake */
21435 + unsigned nzstsouthshk : 1;
21436 +#define DWC_DCFG_SEND_STALL 1
21437 +
21438 + unsigned reserved3 : 1;
21439 + /** Device Addresses */
21440 + unsigned devaddr : 7;
21441 + /** Periodic Frame Interval */
21442 + unsigned perfrint : 2;
21443 +#define DWC_DCFG_FRAME_INTERVAL_80 0
21444 +#define DWC_DCFG_FRAME_INTERVAL_85 1
21445 +#define DWC_DCFG_FRAME_INTERVAL_90 2
21446 +#define DWC_DCFG_FRAME_INTERVAL_95 3
21447 +
21448 + unsigned reserved13_17 : 5;
21449 + /** In Endpoint Mis-match count */
21450 + unsigned epmscnt : 5;
21451 + /** Enable Descriptor DMA in Device mode */
21452 + unsigned descdma : 1;
21453 + } b;
21454 +} dcfg_data_t;
21455 +
21456 +/**
21457 + * This union represents the bit fields in the Device Control
21458 + * Register. Read the register into the <i>d32</i> member then
21459 + * set/clear the bits using the <i>b</i>it elements.
21460 + */
21461 +typedef union dctl_data
21462 +{
21463 + /** raw register data */
21464 + uint32_t d32;
21465 + /** register bits */
21466 + struct
21467 + {
21468 + /** Remote Wakeup */
21469 + unsigned rmtwkupsig : 1;
21470 + /** Soft Disconnect */
21471 + unsigned sftdiscon : 1;
21472 + /** Global Non-Periodic IN NAK Status */
21473 + unsigned gnpinnaksts : 1;
21474 + /** Global OUT NAK Status */
21475 + unsigned goutnaksts : 1;
21476 + /** Test Control */
21477 + unsigned tstctl : 3;
21478 + /** Set Global Non-Periodic IN NAK */
21479 + unsigned sgnpinnak : 1;
21480 + /** Clear Global Non-Periodic IN NAK */
21481 + unsigned cgnpinnak : 1;
21482 + /** Set Global OUT NAK */
21483 + unsigned sgoutnak : 1;
21484 + /** Clear Global OUT NAK */
21485 + unsigned cgoutnak : 1;
21486 +
21487 + /** Power-On Programming Done */
21488 + unsigned pwronprgdone : 1;
21489 + /** Global Continue on BNA */
21490 + unsigned gcontbna : 1;
21491 + /** Global Multi Count */
21492 + unsigned gmc : 2;
21493 + /** Ignore Frame Number for ISOC EPs */
21494 + unsigned ifrmnum : 1;
21495 + /** NAK on Babble */
21496 + unsigned nakonbble : 1;
21497 +
21498 + unsigned reserved16_31 : 16;
21499 + } b;
21500 +} dctl_data_t;
21501 +
21502 +/**
21503 + * This union represents the bit fields in the Device Status
21504 + * Register. Read the register into the <i>d32</i> member then
21505 + * set/clear the bits using the <i>b</i>it elements.
21506 + */
21507 +typedef union dsts_data
21508 +{
21509 + /** raw register data */
21510 + uint32_t d32;
21511 + /** register bits */
21512 + struct
21513 + {
21514 + /** Suspend Status */
21515 + unsigned suspsts : 1;
21516 + /** Enumerated Speed */
21517 + unsigned enumspd : 2;
21518 +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
21519 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
21520 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
21521 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
21522 + /** Erratic Error */
21523 + unsigned errticerr : 1;
21524 + unsigned reserved4_7: 4;
21525 + /** Frame or Microframe Number of the received SOF */
21526 + unsigned soffn : 14;
21527 + unsigned reserved22_31 : 10;
21528 + } b;
21529 +} dsts_data_t;
21530 +
21531 +
21532 +/**
21533 + * This union represents the bit fields in the Device IN EP Interrupt
21534 + * Register and the Device IN EP Common Mask Register.
21535 + *
21536 + * - Read the register into the <i>d32</i> member then set/clear the
21537 + * bits using the <i>b</i>it elements.
21538 + */
21539 +typedef union diepint_data
21540 +{
21541 + /** raw register data */
21542 + uint32_t d32;
21543 + /** register bits */
21544 + struct
21545 + {
21546 + /** Transfer complete mask */
21547 + unsigned xfercompl : 1;
21548 + /** Endpoint disable mask */
21549 + unsigned epdisabled : 1;
21550 + /** AHB Error mask */
21551 + unsigned ahberr : 1;
21552 + /** TimeOUT Handshake mask (non-ISOC EPs) */
21553 + unsigned timeout : 1;
21554 + /** IN Token received with TxF Empty mask */
21555 + unsigned intktxfemp : 1;
21556 + /** IN Token Received with EP mismatch mask */
21557 + unsigned intknepmis : 1;
21558 + /** IN Endpoint HAK Effective mask */
21559 + unsigned inepnakeff : 1;
21560 + /** IN Endpoint HAK Effective mask */
21561 + unsigned emptyintr : 1;
21562 + unsigned txfifoundrn : 1;
21563 +
21564 + /** BNA Interrupt mask */
21565 + unsigned bna : 1;
21566 + unsigned reserved10_12 : 3;
21567 + /** BNA Interrupt mask */
21568 + unsigned nak : 1;
21569 + unsigned reserved14_31 : 18;
21570 + } b;
21571 +} diepint_data_t;
21572 +
21573 +/**
21574 + * This union represents the bit fields in the Device IN EP
21575 + * Common/Dedicated Interrupt Mask Register.
21576 + */
21577 +typedef union diepint_data diepmsk_data_t;
21578 +
21579 +/**
21580 + * This union represents the bit fields in the Device OUT EP Interrupt
21581 + * Registerand Device OUT EP Common Interrupt Mask Register.
21582 + *
21583 + * - Read the register into the <i>d32</i> member then set/clear the
21584 + * bits using the <i>b</i>it elements.
21585 + */
21586 +typedef union doepint_data
21587 +{
21588 + /** raw register data */
21589 + uint32_t d32;
21590 + /** register bits */
21591 + struct
21592 + {
21593 + /** Transfer complete */
21594 + unsigned xfercompl : 1;
21595 + /** Endpoint disable */
21596 + unsigned epdisabled : 1;
21597 + /** AHB Error */
21598 + unsigned ahberr : 1;
21599 + /** Setup Phase Done (contorl EPs) */
21600 + unsigned setup : 1;
21601 + /** OUT Token Received when Endpoint Disabled */
21602 + unsigned outtknepdis : 1;
21603 + unsigned stsphsercvd : 1;
21604 + /** Back-to-Back SETUP Packets Received */
21605 + unsigned back2backsetup : 1;
21606 + unsigned reserved7 : 1;
21607 + /** OUT packet Error */
21608 + unsigned outpkterr : 1;
21609 + /** BNA Interrupt */
21610 + unsigned bna : 1;
21611 + unsigned reserved10 : 1;
21612 + /** Packet Drop Status */
21613 + unsigned pktdrpsts : 1;
21614 + /** Babble Interrupt */
21615 + unsigned babble : 1;
21616 + /** NAK Interrupt */
21617 + unsigned nak : 1;
21618 + /** NYET Interrupt */
21619 + unsigned nyet : 1;
21620 +
21621 + unsigned reserved15_31 : 17;
21622 + } b;
21623 +} doepint_data_t;
21624 +
21625 +/**
21626 + * This union represents the bit fields in the Device OUT EP
21627 + * Common/Dedicated Interrupt Mask Register.
21628 + */
21629 +typedef union doepint_data doepmsk_data_t;
21630 +
21631 +/**
21632 + * This union represents the bit fields in the Device All EP Interrupt
21633 + * and Mask Registers.
21634 + * - Read the register into the <i>d32</i> member then set/clear the
21635 + * bits using the <i>b</i>it elements.
21636 + */
21637 +typedef union daint_data
21638 +{
21639 + /** raw register data */
21640 + uint32_t d32;
21641 + /** register bits */
21642 + struct
21643 + {
21644 + /** IN Endpoint bits */
21645 + unsigned in : 16;
21646 + /** OUT Endpoint bits */
21647 + unsigned out : 16;
21648 + } ep;
21649 + struct
21650 + {
21651 + /** IN Endpoint bits */
21652 + unsigned inep0 : 1;
21653 + unsigned inep1 : 1;
21654 + unsigned inep2 : 1;
21655 + unsigned inep3 : 1;
21656 + unsigned inep4 : 1;
21657 + unsigned inep5 : 1;
21658 + unsigned inep6 : 1;
21659 + unsigned inep7 : 1;
21660 + unsigned inep8 : 1;
21661 + unsigned inep9 : 1;
21662 + unsigned inep10 : 1;
21663 + unsigned inep11 : 1;
21664 + unsigned inep12 : 1;
21665 + unsigned inep13 : 1;
21666 + unsigned inep14 : 1;
21667 + unsigned inep15 : 1;
21668 + /** OUT Endpoint bits */
21669 + unsigned outep0 : 1;
21670 + unsigned outep1 : 1;
21671 + unsigned outep2 : 1;
21672 + unsigned outep3 : 1;
21673 + unsigned outep4 : 1;
21674 + unsigned outep5 : 1;
21675 + unsigned outep6 : 1;
21676 + unsigned outep7 : 1;
21677 + unsigned outep8 : 1;
21678 + unsigned outep9 : 1;
21679 + unsigned outep10 : 1;
21680 + unsigned outep11 : 1;
21681 + unsigned outep12 : 1;
21682 + unsigned outep13 : 1;
21683 + unsigned outep14 : 1;
21684 + unsigned outep15 : 1;
21685 + } b;
21686 +} daint_data_t;
21687 +
21688 +/**
21689 + * This union represents the bit fields in the Device IN Token Queue
21690 + * Read Registers.
21691 + * - Read the register into the <i>d32</i> member.
21692 + * - READ-ONLY Register
21693 + */
21694 +typedef union dtknq1_data
21695 +{
21696 + /** raw register data */
21697 + uint32_t d32;
21698 + /** register bits */
21699 + struct
21700 + {
21701 + /** In Token Queue Write Pointer */
21702 + unsigned intknwptr : 5;
21703 + /** Reserved */
21704 + unsigned reserved05_06 : 2;
21705 + /** write pointer has wrapped. */
21706 + unsigned wrap_bit : 1;
21707 + /** EP Numbers of IN Tokens 0 ... 4 */
21708 + unsigned epnums0_5 : 24;
21709 + }b;
21710 +} dtknq1_data_t;
21711 +
21712 +/**
21713 + * This union represents Threshold control Register
21714 + * - Read and write the register into the <i>d32</i> member.
21715 + * - READ-WRITABLE Register
21716 + */
21717 +typedef union dthrctl_data
21718 +{
21719 + /** raw register data */
21720 + uint32_t d32;
21721 + /** register bits */
21722 + struct
21723 + {
21724 + /** non ISO Tx Thr. Enable */
21725 + unsigned non_iso_thr_en : 1;
21726 + /** ISO Tx Thr. Enable */
21727 + unsigned iso_thr_en : 1;
21728 + /** Tx Thr. Length */
21729 + unsigned tx_thr_len : 9;
21730 + /** Reserved */
21731 + unsigned reserved11_15 : 5;
21732 + /** Rx Thr. Enable */
21733 + unsigned rx_thr_en : 1;
21734 + /** Rx Thr. Length */
21735 + unsigned rx_thr_len : 9;
21736 + /** Reserved */
21737 + unsigned reserved26_31 : 6;
21738 + }b;
21739 +} dthrctl_data_t;
21740 +
21741 +
21742 +/**
21743 + * Device Logical IN Endpoint-Specific Registers. <i>Offsets
21744 + * 900h-AFCh</i>
21745 + *
21746 + * There will be one set of endpoint registers per logical endpoint
21747 + * implemented.
21748 + *
21749 + * <i>These registers are visible only in Device mode and must not be
21750 + * accessed in Host mode, as the results are unknown.</i>
21751 + */
21752 +typedef struct dwc_otg_dev_in_ep_regs
21753 +{
21754 + /** Device IN Endpoint Control Register. <i>Offset:900h +
21755 + * (ep_num * 20h) + 00h</i> */
21756 + volatile uint32_t diepctl;
21757 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
21758 + uint32_t reserved04;
21759 + /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
21760 + * (ep_num * 20h) + 08h</i> */
21761 + volatile uint32_t diepint;
21762 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
21763 + uint32_t reserved0C;
21764 + /** Device IN Endpoint Transfer Size
21765 + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
21766 + volatile uint32_t dieptsiz;
21767 + /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
21768 + * (ep_num * 20h) + 14h</i> */
21769 + volatile uint32_t diepdma;
21770 + /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
21771 + * (ep_num * 20h) + 18h</i> */
21772 + volatile uint32_t dtxfsts;
21773 + /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
21774 + * (ep_num * 20h) + 1Ch</i> */
21775 + volatile uint32_t diepdmab;
21776 +} dwc_otg_dev_in_ep_regs_t;
21777 +
21778 +/**
21779 + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
21780 + * B00h-CFCh</i>
21781 + *
21782 + * There will be one set of endpoint registers per logical endpoint
21783 + * implemented.
21784 + *
21785 + * <i>These registers are visible only in Device mode and must not be
21786 + * accessed in Host mode, as the results are unknown.</i>
21787 + */
21788 +typedef struct dwc_otg_dev_out_ep_regs
21789 +{
21790 + /** Device OUT Endpoint Control Register. <i>Offset:B00h +
21791 + * (ep_num * 20h) + 00h</i> */
21792 + volatile uint32_t doepctl;
21793 + /** Device OUT Endpoint Frame number Register. <i>Offset:
21794 + * B00h + (ep_num * 20h) + 04h</i> */
21795 + volatile uint32_t doepfn;
21796 + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
21797 + * (ep_num * 20h) + 08h</i> */
21798 + volatile uint32_t doepint;
21799 + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
21800 + uint32_t reserved0C;
21801 + /** Device OUT Endpoint Transfer Size Register. <i>Offset:
21802 + * B00h + (ep_num * 20h) + 10h</i> */
21803 + volatile uint32_t doeptsiz;
21804 + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
21805 + * + (ep_num * 20h) + 14h</i> */
21806 + volatile uint32_t doepdma;
21807 + /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
21808 + uint32_t unused;
21809 + /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
21810 + * + (ep_num * 20h) + 1Ch</i> */
21811 + uint32_t doepdmab;
21812 +} dwc_otg_dev_out_ep_regs_t;
21813 +
21814 +/**
21815 + * This union represents the bit fields in the Device EP Control
21816 + * Register. Read the register into the <i>d32</i> member then
21817 + * set/clear the bits using the <i>b</i>it elements.
21818 + */
21819 +typedef union depctl_data
21820 +{
21821 + /** raw register data */
21822 + uint32_t d32;
21823 + /** register bits */
21824 + struct
21825 + {
21826 + /** Maximum Packet Size
21827 + * IN/OUT EPn
21828 + * IN/OUT EP0 - 2 bits
21829 + * 2'b00: 64 Bytes
21830 + * 2'b01: 32
21831 + * 2'b10: 16
21832 + * 2'b11: 8 */
21833 + unsigned mps : 11;
21834 +#define DWC_DEP0CTL_MPS_64 0
21835 +#define DWC_DEP0CTL_MPS_32 1
21836 +#define DWC_DEP0CTL_MPS_16 2
21837 +#define DWC_DEP0CTL_MPS_8 3
21838 +
21839 + /** Next Endpoint
21840 + * IN EPn/IN EP0
21841 + * OUT EPn/OUT EP0 - reserved */
21842 + unsigned nextep : 4;
21843 +
21844 + /** USB Active Endpoint */
21845 + unsigned usbactep : 1;
21846 +
21847 + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
21848 + * This field contains the PID of the packet going to
21849 + * be received or transmitted on this endpoint. The
21850 + * application should program the PID of the first
21851 + * packet going to be received or transmitted on this
21852 + * endpoint , after the endpoint is
21853 + * activated. Application use the SetD1PID and
21854 + * SetD0PID fields of this register to program either
21855 + * D0 or D1 PID.
21856 + *
21857 + * The encoding for this field is
21858 + * - 0: D0
21859 + * - 1: D1
21860 + */
21861 + unsigned dpid : 1;
21862 +
21863 + /** NAK Status */
21864 + unsigned naksts : 1;
21865 +
21866 + /** Endpoint Type
21867 + * 2'b00: Control
21868 + * 2'b01: Isochronous
21869 + * 2'b10: Bulk
21870 + * 2'b11: Interrupt */
21871 + unsigned eptype : 2;
21872 +
21873 + /** Snoop Mode
21874 + * OUT EPn/OUT EP0
21875 + * IN EPn/IN EP0 - reserved */
21876 + unsigned snp : 1;
21877 +
21878 + /** Stall Handshake */
21879 + unsigned stall : 1;
21880 +
21881 + /** Tx Fifo Number
21882 + * IN EPn/IN EP0
21883 + * OUT EPn/OUT EP0 - reserved */
21884 + unsigned txfnum : 4;
21885 +
21886 + /** Clear NAK */
21887 + unsigned cnak : 1;
21888 + /** Set NAK */
21889 + unsigned snak : 1;
21890 + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
21891 + * Writing to this field sets the Endpoint DPID (DPID)
21892 + * field in this register to DATA0. Set Even
21893 + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
21894 + * Writing to this field sets the Even/Odd
21895 + * (micro)frame (EO_FrNum) field to even (micro)
21896 + * frame.
21897 + */
21898 + unsigned setd0pid : 1;
21899 + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
21900 + * Writing to this field sets the Endpoint DPID (DPID)
21901 + * field in this register to DATA1 Set Odd
21902 + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
21903 + * Writing to this field sets the Even/Odd
21904 + * (micro)frame (EO_FrNum) field to odd (micro) frame.
21905 + */
21906 + unsigned setd1pid : 1;
21907 + /** Endpoint Disable */
21908 + unsigned epdis : 1;
21909 + /** Endpoint Enable */
21910 + unsigned epena : 1;
21911 + } b;
21912 +} depctl_data_t;
21913 +
21914 +/**
21915 + * This union represents the bit fields in the Device EP Transfer
21916 + * Size Register. Read the register into the <i>d32</i> member then
21917 + * set/clear the bits using the <i>b</i>it elements.
21918 + */
21919 +typedef union deptsiz_data
21920 +{
21921 + /** raw register data */
21922 + uint32_t d32;
21923 + /** register bits */
21924 + struct {
21925 + /** Transfer size */
21926 + unsigned xfersize : 19;
21927 + /** Packet Count */
21928 + unsigned pktcnt : 10;
21929 + /** Multi Count - Periodic IN endpoints */
21930 + unsigned mc : 2;
21931 + unsigned reserved : 1;
21932 + } b;
21933 +} deptsiz_data_t;
21934 +
21935 +/**
21936 + * This union represents the bit fields in the Device EP 0 Transfer
21937 + * Size Register. Read the register into the <i>d32</i> member then
21938 + * set/clear the bits using the <i>b</i>it elements.
21939 + */
21940 +typedef union deptsiz0_data
21941 +{
21942 + /** raw register data */
21943 + uint32_t d32;
21944 + /** register bits */
21945 + struct {
21946 + /** Transfer size */
21947 + unsigned xfersize : 7;
21948 + /** Reserved */
21949 + unsigned reserved7_18 : 12;
21950 + /** Packet Count */
21951 + unsigned pktcnt : 1;
21952 + /** Reserved */
21953 + unsigned reserved20_28 : 9;
21954 + /**Setup Packet Count (DOEPTSIZ0 Only) */
21955 + unsigned supcnt : 2;
21956 + unsigned reserved31;
21957 + } b;
21958 +} deptsiz0_data_t;
21959 +
21960 +
21961 +/////////////////////////////////////////////////
21962 +// DMA Descriptor Specific Structures
21963 +//
21964 +
21965 +/** Buffer status definitions */
21966 +
21967 +#define BS_HOST_READY 0x0
21968 +#define BS_DMA_BUSY 0x1
21969 +#define BS_DMA_DONE 0x2
21970 +#define BS_HOST_BUSY 0x3
21971 +
21972 +/** Receive/Transmit status definitions */
21973 +
21974 +#define RTS_SUCCESS 0x0
21975 +#define RTS_BUFFLUSH 0x1
21976 +#define RTS_RESERVED 0x2
21977 +#define RTS_BUFERR 0x3
21978 +
21979 +
21980 +/**
21981 + * This union represents the bit fields in the DMA Descriptor
21982 + * status quadlet. Read the quadlet into the <i>d32</i> member then
21983 + * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
21984 + * <i>b_iso_in</i> elements.
21985 + */
21986 +typedef union desc_sts_data
21987 +{
21988 + /** raw register data */
21989 + uint32_t d32;
21990 + /** quadlet bits */
21991 + struct {
21992 + /** Received number of bytes */
21993 + unsigned bytes : 16;
21994 +
21995 + unsigned reserved16_22 : 7;
21996 + /** Multiple Transfer - only for OUT EPs */
21997 + unsigned mtrf : 1;
21998 + /** Setup Packet received - only for OUT EPs */
21999 + unsigned sr : 1;
22000 + /** Interrupt On Complete */
22001 + unsigned ioc : 1;
22002 + /** Short Packet */
22003 + unsigned sp : 1;
22004 + /** Last */
22005 + unsigned l : 1;
22006 + /** Receive Status */
22007 + unsigned sts : 2;
22008 + /** Buffer Status */
22009 + unsigned bs : 2;
22010 + } b;
22011 +
22012 +#ifdef DWC_EN_ISOC
22013 + /** iso out quadlet bits */
22014 + struct {
22015 + /** Received number of bytes */
22016 + unsigned rxbytes : 11;
22017 +
22018 + unsigned reserved11 : 1;
22019 + /** Frame Number */
22020 + unsigned framenum : 11;
22021 + /** Received ISO Data PID */
22022 + unsigned pid : 2;
22023 + /** Interrupt On Complete */
22024 + unsigned ioc : 1;
22025 + /** Short Packet */
22026 + unsigned sp : 1;
22027 + /** Last */
22028 + unsigned l : 1;
22029 + /** Receive Status */
22030 + unsigned rxsts : 2;
22031 + /** Buffer Status */
22032 + unsigned bs : 2;
22033 + } b_iso_out;
22034 +
22035 + /** iso in quadlet bits */
22036 + struct {
22037 + /** Transmited number of bytes */
22038 + unsigned txbytes : 12;
22039 + /** Frame Number */
22040 + unsigned framenum : 11;
22041 + /** Transmited ISO Data PID */
22042 + unsigned pid : 2;
22043 + /** Interrupt On Complete */
22044 + unsigned ioc : 1;
22045 + /** Short Packet */
22046 + unsigned sp : 1;
22047 + /** Last */
22048 + unsigned l : 1;
22049 + /** Transmit Status */
22050 + unsigned txsts : 2;
22051 + /** Buffer Status */
22052 + unsigned bs : 2;
22053 + } b_iso_in;
22054 +#endif //DWC_EN_ISOC
22055 +} desc_sts_data_t;
22056 +
22057 +/**
22058 + * DMA Descriptor structure
22059 + *
22060 + * DMA Descriptor structure contains two quadlets:
22061 + * Status quadlet and Data buffer pointer.
22062 + */
22063 +typedef struct dwc_otg_dma_desc
22064 +{
22065 + /** DMA Descriptor status quadlet */
22066 + desc_sts_data_t status;
22067 + /** DMA Descriptor data buffer pointer */
22068 + dma_addr_t buf;
22069 +} dwc_otg_dma_desc_t;
22070 +
22071 +/**
22072 + * The dwc_otg_dev_if structure contains information needed to manage
22073 + * the DWC_otg controller acting in device mode. It represents the
22074 + * programming view of the device-specific aspects of the controller.
22075 + */
22076 +typedef struct dwc_otg_dev_if
22077 +{
22078 + /** Pointer to device Global registers.
22079 + * Device Global Registers starting at offset 800h
22080 + */
22081 + dwc_otg_device_global_regs_t *dev_global_regs;
22082 +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
22083 +
22084 + /**
22085 + * Device Logical IN Endpoint-Specific Registers 900h-AFCh
22086 + */
22087 + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
22088 +#define DWC_DEV_IN_EP_REG_OFFSET 0x900
22089 +#define DWC_EP_REG_OFFSET 0x20
22090 +
22091 + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
22092 + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
22093 +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
22094 +
22095 + /* Device configuration information*/
22096 + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
22097 + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
22098 + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
22099 +
22100 + /** Size of periodic FIFOs (Bytes) */
22101 + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
22102 +
22103 + /** Size of Tx FIFOs (Bytes) */
22104 + uint16_t tx_fifo_size[MAX_TX_FIFOS];
22105 +
22106 + /** Thresholding enable flags and length varaiables **/
22107 + uint16_t rx_thr_en;
22108 + uint16_t iso_tx_thr_en;
22109 + uint16_t non_iso_tx_thr_en;
22110 +
22111 + uint16_t rx_thr_length;
22112 + uint16_t tx_thr_length;
22113 +
22114 + /**
22115 + * Pointers to the DMA Descriptors for EP0 Control
22116 + * transfers (virtual and physical)
22117 + */
22118 + /** 2 descriptors for SETUP packets */
22119 + uint32_t dma_setup_desc_addr[2];
22120 + dwc_otg_dma_desc_t* setup_desc_addr[2];
22121 +
22122 + /** Pointer to Descriptor with latest SETUP packet */
22123 + dwc_otg_dma_desc_t* psetup;
22124 +
22125 + /** Index of current SETUP handler descriptor */
22126 + uint32_t setup_desc_index;
22127 +
22128 + /** Descriptor for Data In or Status In phases */
22129 + uint32_t dma_in_desc_addr;
22130 + dwc_otg_dma_desc_t* in_desc_addr;;
22131 +
22132 + /** Descriptor for Data Out or Status Out phases */
22133 + uint32_t dma_out_desc_addr;
22134 + dwc_otg_dma_desc_t* out_desc_addr;
22135 +} dwc_otg_dev_if_t;
22136 +
22137 +
22138 +
22139 +
22140 +/////////////////////////////////////////////////
22141 +// Host Mode Register Structures
22142 +//
22143 +/**
22144 + * The Host Global Registers structure defines the size and relative
22145 + * field offsets for the Host Mode Global Registers. Host Global
22146 + * Registers offsets 400h-7FFh.
22147 +*/
22148 +typedef struct dwc_otg_host_global_regs
22149 +{
22150 + /** Host Configuration Register. <i>Offset: 400h</i> */
22151 + volatile uint32_t hcfg;
22152 + /** Host Frame Interval Register. <i>Offset: 404h</i> */
22153 + volatile uint32_t hfir;
22154 + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
22155 + volatile uint32_t hfnum;
22156 + /** Reserved. <i>Offset: 40Ch</i> */
22157 + uint32_t reserved40C;
22158 + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
22159 + volatile uint32_t hptxsts;
22160 + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
22161 + volatile uint32_t haint;
22162 + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
22163 + volatile uint32_t haintmsk;
22164 +} dwc_otg_host_global_regs_t;
22165 +
22166 +/**
22167 + * This union represents the bit fields in the Host Configuration Register.
22168 + * Read the register into the <i>d32</i> member then set/clear the bits using
22169 + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
22170 + */
22171 +typedef union hcfg_data
22172 +{
22173 + /** raw register data */
22174 + uint32_t d32;
22175 +
22176 + /** register bits */
22177 + struct
22178 + {
22179 + /** FS/LS Phy Clock Select */
22180 + unsigned fslspclksel : 2;
22181 +#define DWC_HCFG_30_60_MHZ 0
22182 +#define DWC_HCFG_48_MHZ 1
22183 +#define DWC_HCFG_6_MHZ 2
22184 +
22185 + /** FS/LS Only Support */
22186 + unsigned fslssupp : 1;
22187 + } b;
22188 +} hcfg_data_t;
22189 +
22190 +/**
22191 + * This union represents the bit fields in the Host Frame Remaing/Number
22192 + * Register.
22193 + */
22194 +typedef union hfir_data
22195 +{
22196 + /** raw register data */
22197 + uint32_t d32;
22198 +
22199 + /** register bits */
22200 + struct
22201 + {
22202 + unsigned frint : 16;
22203 + unsigned reserved : 16;
22204 + } b;
22205 +} hfir_data_t;
22206 +
22207 +/**
22208 + * This union represents the bit fields in the Host Frame Remaing/Number
22209 + * Register.
22210 + */
22211 +typedef union hfnum_data
22212 +{
22213 + /** raw register data */
22214 + uint32_t d32;
22215 +
22216 + /** register bits */
22217 + struct
22218 + {
22219 + unsigned frnum : 16;
22220 +#define DWC_HFNUM_MAX_FRNUM 0x3FFF
22221 + unsigned frrem : 16;
22222 + } b;
22223 +} hfnum_data_t;
22224 +
22225 +typedef union hptxsts_data
22226 +{
22227 + /** raw register data */
22228 + uint32_t d32;
22229 +
22230 + /** register bits */
22231 + struct
22232 + {
22233 + unsigned ptxfspcavail : 16;
22234 + unsigned ptxqspcavail : 8;
22235 + /** Top of the Periodic Transmit Request Queue
22236 + * - bit 24 - Terminate (last entry for the selected channel)
22237 + * - bits 26:25 - Token Type
22238 + * - 2'b00 - Zero length
22239 + * - 2'b01 - Ping
22240 + * - 2'b10 - Disable
22241 + * - bits 30:27 - Channel Number
22242 + * - bit 31 - Odd/even microframe
22243 + */
22244 + unsigned ptxqtop_terminate : 1;
22245 + unsigned ptxqtop_token : 2;
22246 + unsigned ptxqtop_chnum : 4;
22247 + unsigned ptxqtop_odd : 1;
22248 + } b;
22249 +} hptxsts_data_t;
22250 +
22251 +/**
22252 + * This union represents the bit fields in the Host Port Control and Status
22253 + * Register. Read the register into the <i>d32</i> member then set/clear the
22254 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22255 + * hprt0 register.
22256 + */
22257 +typedef union hprt0_data
22258 +{
22259 + /** raw register data */
22260 + uint32_t d32;
22261 + /** register bits */
22262 + struct
22263 + {
22264 + unsigned prtconnsts : 1;
22265 + unsigned prtconndet : 1;
22266 + unsigned prtena : 1;
22267 + unsigned prtenchng : 1;
22268 + unsigned prtovrcurract : 1;
22269 + unsigned prtovrcurrchng : 1;
22270 + unsigned prtres : 1;
22271 + unsigned prtsusp : 1;
22272 + unsigned prtrst : 1;
22273 + unsigned reserved9 : 1;
22274 + unsigned prtlnsts : 2;
22275 + unsigned prtpwr : 1;
22276 + unsigned prttstctl : 4;
22277 + unsigned prtspd : 2;
22278 +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
22279 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
22280 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
22281 + unsigned reserved19_31 : 13;
22282 + } b;
22283 +} hprt0_data_t;
22284 +
22285 +/**
22286 + * This union represents the bit fields in the Host All Interrupt
22287 + * Register.
22288 + */
22289 +typedef union haint_data
22290 +{
22291 + /** raw register data */
22292 + uint32_t d32;
22293 + /** register bits */
22294 + struct
22295 + {
22296 + unsigned ch0 : 1;
22297 + unsigned ch1 : 1;
22298 + unsigned ch2 : 1;
22299 + unsigned ch3 : 1;
22300 + unsigned ch4 : 1;
22301 + unsigned ch5 : 1;
22302 + unsigned ch6 : 1;
22303 + unsigned ch7 : 1;
22304 + unsigned ch8 : 1;
22305 + unsigned ch9 : 1;
22306 + unsigned ch10 : 1;
22307 + unsigned ch11 : 1;
22308 + unsigned ch12 : 1;
22309 + unsigned ch13 : 1;
22310 + unsigned ch14 : 1;
22311 + unsigned ch15 : 1;
22312 + unsigned reserved : 16;
22313 + } b;
22314 +
22315 + struct
22316 + {
22317 + unsigned chint : 16;
22318 + unsigned reserved : 16;
22319 + } b2;
22320 +} haint_data_t;
22321 +
22322 +/**
22323 + * This union represents the bit fields in the Host All Interrupt
22324 + * Register.
22325 + */
22326 +typedef union haintmsk_data
22327 +{
22328 + /** raw register data */
22329 + uint32_t d32;
22330 + /** register bits */
22331 + struct
22332 + {
22333 + unsigned ch0 : 1;
22334 + unsigned ch1 : 1;
22335 + unsigned ch2 : 1;
22336 + unsigned ch3 : 1;
22337 + unsigned ch4 : 1;
22338 + unsigned ch5 : 1;
22339 + unsigned ch6 : 1;
22340 + unsigned ch7 : 1;
22341 + unsigned ch8 : 1;
22342 + unsigned ch9 : 1;
22343 + unsigned ch10 : 1;
22344 + unsigned ch11 : 1;
22345 + unsigned ch12 : 1;
22346 + unsigned ch13 : 1;
22347 + unsigned ch14 : 1;
22348 + unsigned ch15 : 1;
22349 + unsigned reserved : 16;
22350 + } b;
22351 +
22352 + struct
22353 + {
22354 + unsigned chint : 16;
22355 + unsigned reserved : 16;
22356 + } b2;
22357 +} haintmsk_data_t;
22358 +
22359 +/**
22360 + * Host Channel Specific Registers. <i>500h-5FCh</i>
22361 + */
22362 +typedef struct dwc_otg_hc_regs
22363 +{
22364 + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
22365 + volatile uint32_t hcchar;
22366 + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
22367 + volatile uint32_t hcsplt;
22368 + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
22369 + volatile uint32_t hcint;
22370 + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
22371 + volatile uint32_t hcintmsk;
22372 + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
22373 + volatile uint32_t hctsiz;
22374 + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
22375 + volatile uint32_t hcdma;
22376 + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
22377 + uint32_t reserved[2];
22378 +} dwc_otg_hc_regs_t;
22379 +
22380 +/**
22381 + * This union represents the bit fields in the Host Channel Characteristics
22382 + * Register. Read the register into the <i>d32</i> member then set/clear the
22383 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22384 + * hcchar register.
22385 + */
22386 +typedef union hcchar_data
22387 +{
22388 + /** raw register data */
22389 + uint32_t d32;
22390 +
22391 + /** register bits */
22392 + struct
22393 + {
22394 + /** Maximum packet size in bytes */
22395 + unsigned mps : 11;
22396 +
22397 + /** Endpoint number */
22398 + unsigned epnum : 4;
22399 +
22400 + /** 0: OUT, 1: IN */
22401 + unsigned epdir : 1;
22402 +
22403 + unsigned reserved : 1;
22404 +
22405 + /** 0: Full/high speed device, 1: Low speed device */
22406 + unsigned lspddev : 1;
22407 +
22408 + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
22409 + unsigned eptype : 2;
22410 +
22411 + /** Packets per frame for periodic transfers. 0 is reserved. */
22412 + unsigned multicnt : 2;
22413 +
22414 + /** Device address */
22415 + unsigned devaddr : 7;
22416 +
22417 + /**
22418 + * Frame to transmit periodic transaction.
22419 + * 0: even, 1: odd
22420 + */
22421 + unsigned oddfrm : 1;
22422 +
22423 + /** Channel disable */
22424 + unsigned chdis : 1;
22425 +
22426 + /** Channel enable */
22427 + unsigned chen : 1;
22428 + } b;
22429 +} hcchar_data_t;
22430 +
22431 +typedef union hcsplt_data
22432 +{
22433 + /** raw register data */
22434 + uint32_t d32;
22435 +
22436 + /** register bits */
22437 + struct
22438 + {
22439 + /** Port Address */
22440 + unsigned prtaddr : 7;
22441 +
22442 + /** Hub Address */
22443 + unsigned hubaddr : 7;
22444 +
22445 + /** Transaction Position */
22446 + unsigned xactpos : 2;
22447 +#define DWC_HCSPLIT_XACTPOS_MID 0
22448 +#define DWC_HCSPLIT_XACTPOS_END 1
22449 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2
22450 +#define DWC_HCSPLIT_XACTPOS_ALL 3
22451 +
22452 + /** Do Complete Split */
22453 + unsigned compsplt : 1;
22454 +
22455 + /** Reserved */
22456 + unsigned reserved : 14;
22457 +
22458 + /** Split Enble */
22459 + unsigned spltena : 1;
22460 + } b;
22461 +} hcsplt_data_t;
22462 +
22463 +
22464 +/**
22465 + * This union represents the bit fields in the Host All Interrupt
22466 + * Register.
22467 + */
22468 +typedef union hcint_data
22469 +{
22470 + /** raw register data */
22471 + uint32_t d32;
22472 + /** register bits */
22473 + struct
22474 + {
22475 + /** Transfer Complete */
22476 + unsigned xfercomp : 1;
22477 + /** Channel Halted */
22478 + unsigned chhltd : 1;
22479 + /** AHB Error */
22480 + unsigned ahberr : 1;
22481 + /** STALL Response Received */
22482 + unsigned stall : 1;
22483 + /** NAK Response Received */
22484 + unsigned nak : 1;
22485 + /** ACK Response Received */
22486 + unsigned ack : 1;
22487 + /** NYET Response Received */
22488 + unsigned nyet : 1;
22489 + /** Transaction Err */
22490 + unsigned xacterr : 1;
22491 + /** Babble Error */
22492 + unsigned bblerr : 1;
22493 + /** Frame Overrun */
22494 + unsigned frmovrun : 1;
22495 + /** Data Toggle Error */
22496 + unsigned datatglerr : 1;
22497 + /** Reserved */
22498 + unsigned reserved : 21;
22499 + } b;
22500 +} hcint_data_t;
22501 +
22502 +/**
22503 + * This union represents the bit fields in the Host Channel Transfer Size
22504 + * Register. Read the register into the <i>d32</i> member then set/clear the
22505 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22506 + * hcchar register.
22507 + */
22508 +typedef union hctsiz_data
22509 +{
22510 + /** raw register data */
22511 + uint32_t d32;
22512 +
22513 + /** register bits */
22514 + struct
22515 + {
22516 + /** Total transfer size in bytes */
22517 + unsigned xfersize : 19;
22518 +
22519 + /** Data packets to transfer */
22520 + unsigned pktcnt : 10;
22521 +
22522 + /**
22523 + * Packet ID for next data packet
22524 + * 0: DATA0
22525 + * 1: DATA2
22526 + * 2: DATA1
22527 + * 3: MDATA (non-Control), SETUP (Control)
22528 + */
22529 + unsigned pid : 2;
22530 +#define DWC_HCTSIZ_DATA0 0
22531 +#define DWC_HCTSIZ_DATA1 2
22532 +#define DWC_HCTSIZ_DATA2 1
22533 +#define DWC_HCTSIZ_MDATA 3
22534 +#define DWC_HCTSIZ_SETUP 3
22535 +
22536 + /** Do PING protocol when 1 */
22537 + unsigned dopng : 1;
22538 + } b;
22539 +} hctsiz_data_t;
22540 +
22541 +/**
22542 + * This union represents the bit fields in the Host Channel Interrupt Mask
22543 + * Register. Read the register into the <i>d32</i> member then set/clear the
22544 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22545 + * hcintmsk register.
22546 + */
22547 +typedef union hcintmsk_data
22548 +{
22549 + /** raw register data */
22550 + uint32_t d32;
22551 +
22552 + /** register bits */
22553 + struct
22554 + {
22555 + unsigned xfercompl : 1;
22556 + unsigned chhltd : 1;
22557 + unsigned ahberr : 1;
22558 + unsigned stall : 1;
22559 + unsigned nak : 1;
22560 + unsigned ack : 1;
22561 + unsigned nyet : 1;
22562 + unsigned xacterr : 1;
22563 + unsigned bblerr : 1;
22564 + unsigned frmovrun : 1;
22565 + unsigned datatglerr : 1;
22566 + unsigned reserved : 21;
22567 + } b;
22568 +} hcintmsk_data_t;
22569 +
22570 +/** OTG Host Interface Structure.
22571 + *
22572 + * The OTG Host Interface Structure structure contains information
22573 + * needed to manage the DWC_otg controller acting in host mode. It
22574 + * represents the programming view of the host-specific aspects of the
22575 + * controller.
22576 + */
22577 +typedef struct dwc_otg_host_if
22578 +{
22579 + /** Host Global Registers starting at offset 400h.*/
22580 + dwc_otg_host_global_regs_t *host_global_regs;
22581 +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
22582 +
22583 + /** Host Port 0 Control and Status Register */
22584 + volatile uint32_t *hprt0;
22585 +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
22586 +
22587 + /** Host Channel Specific Registers at offsets 500h-5FCh. */
22588 + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
22589 +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
22590 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20
22591 +
22592 +
22593 + /* Host configuration information */
22594 + /** Number of Host Channels (range: 1-16) */
22595 + uint8_t num_host_channels;
22596 + /** Periodic EPs supported (0: no, 1: yes) */
22597 + uint8_t perio_eps_supported;
22598 + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
22599 + uint16_t perio_tx_fifo_size;
22600 +} dwc_otg_host_if_t;
22601 +
22602 +
22603 +/**
22604 + * This union represents the bit fields in the Power and Clock Gating Control
22605 + * Register. Read the register into the <i>d32</i> member then set/clear the
22606 + * bits using the <i>b</i>it elements.
22607 + */
22608 +typedef union pcgcctl_data
22609 +{
22610 + /** raw register data */
22611 + uint32_t d32;
22612 +
22613 + /** register bits */
22614 + struct
22615 + {
22616 + /** Stop Pclk */
22617 + unsigned stoppclk : 1;
22618 + /** Gate Hclk */
22619 + unsigned gatehclk : 1;
22620 + /** Power Clamp */
22621 + unsigned pwrclmp : 1;
22622 + /** Reset Power Down Modules */
22623 + unsigned rstpdwnmodule : 1;
22624 + /** PHY Suspended */
22625 + unsigned physuspended : 1;
22626 + unsigned reserved : 27;
22627 + } b;
22628 +} pcgcctl_data_t;
22629 +
22630 +
22631 +#endif
22632 --- a/drivers/usb/core/urb.c
22633 +++ b/drivers/usb/core/urb.c
22634 @@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
22635
22636 if (urb->transfer_flags & URB_FREE_BUFFER)
22637 kfree(urb->transfer_buffer);
22638 -
22639 + if (urb->aligned_transfer_buffer) {
22640 + kfree(urb->aligned_transfer_buffer);
22641 + urb->aligned_transfer_buffer = 0;
22642 + urb->aligned_transfer_dma = 0;
22643 + }
22644 kfree(urb);
22645 }
22646
22647 --- a/include/linux/usb.h
22648 +++ b/include/linux/usb.h
22649 @@ -1200,6 +1200,9 @@ struct urb {
22650 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
22651 void *transfer_buffer; /* (in) associated data buffer */
22652 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
22653 + void *aligned_transfer_buffer; /* (in) associeated data buffer */
22654 + dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
22655 + u32 aligned_transfer_buffer_length; /* (in) data buffer length */
22656 struct scatterlist *sg; /* (in) scatter gather buffer list */
22657 int num_sgs; /* (in) number of entries in the sg list */
22658 u32 transfer_buffer_length; /* (in) data buffer length */
22659 --- a/drivers/usb/gadget/Kconfig
22660 +++ b/drivers/usb/gadget/Kconfig
22661 @@ -111,7 +111,7 @@ config USB_GADGET_SELECTED
22662 #
22663 choice
22664 prompt "USB Peripheral Controller"
22665 - depends on USB_GADGET
22666 + depends on USB_GADGET && !USB_DWC_OTG
22667 help
22668 A USB device uses a controller to talk to its host.
22669 Systems should have only one such upstream link.
This page took 0.96638 seconds and 5 git commands to generate.