add Id tag, standardize
[openwrt.git] / target / linux / linux-2.6 / patches / generic / 002-squashfs_lzma.patch
1 diff -Nur linux-2.6.12.5-brcm-squashfs/fs/squashfs/LzmaDecode.c linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/LzmaDecode.c
2 --- linux-2.6.12.5-brcm-squashfs/fs/squashfs/LzmaDecode.c 1970-01-01 01:00:00.000000000 +0100
3 +++ linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/LzmaDecode.c 2005-08-29 00:02:44.099124176 +0200
4 @@ -0,0 +1,663 @@
5 +/*
6 + LzmaDecode.c
7 + LZMA Decoder
8 +
9 + LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
10 + http://www.7-zip.org/
11 +
12 + LZMA SDK is licensed under two licenses:
13 + 1) GNU Lesser General Public License (GNU LGPL)
14 + 2) Common Public License (CPL)
15 + It means that you can select one of these two licenses and
16 + follow rules of that license.
17 +
18 + SPECIAL EXCEPTION:
19 + Igor Pavlov, as the author of this code, expressly permits you to
20 + statically or dynamically link your code (or bind by name) to the
21 + interfaces of this file without subjecting your linked code to the
22 + terms of the CPL or GNU LGPL. Any modifications or additions
23 + to this file, however, are subject to the LGPL or CPL terms.
24 +*/
25 +
26 +#include "LzmaDecode.h"
27 +
28 +#ifndef Byte
29 +#define Byte unsigned char
30 +#endif
31 +
32 +#define kNumTopBits 24
33 +#define kTopValue ((UInt32)1 << kNumTopBits)
34 +
35 +#define kNumBitModelTotalBits 11
36 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
37 +#define kNumMoveBits 5
38 +
39 +typedef struct _CRangeDecoder
40 +{
41 + Byte *Buffer;
42 + Byte *BufferLim;
43 + UInt32 Range;
44 + UInt32 Code;
45 + #ifdef _LZMA_IN_CB
46 + ILzmaInCallback *InCallback;
47 + int Result;
48 + #endif
49 + int ExtraBytes;
50 +} CRangeDecoder;
51 +
52 +Byte RangeDecoderReadByte(CRangeDecoder *rd)
53 +{
54 + if (rd->Buffer == rd->BufferLim)
55 + {
56 + #ifdef _LZMA_IN_CB
57 + UInt32 size;
58 + rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
59 + rd->BufferLim = rd->Buffer + size;
60 + if (size == 0)
61 + #endif
62 + {
63 + rd->ExtraBytes = 1;
64 + return 0xFF;
65 + }
66 + }
67 + return (*rd->Buffer++);
68 +}
69 +
70 +/* #define ReadByte (*rd->Buffer++) */
71 +#define ReadByte (RangeDecoderReadByte(rd))
72 +
73 +void RangeDecoderInit(CRangeDecoder *rd,
74 + #ifdef _LZMA_IN_CB
75 + ILzmaInCallback *inCallback
76 + #else
77 + Byte *stream, UInt32 bufferSize
78 + #endif
79 + )
80 +{
81 + int i;
82 + #ifdef _LZMA_IN_CB
83 + rd->InCallback = inCallback;
84 + rd->Buffer = rd->BufferLim = 0;
85 + #else
86 + rd->Buffer = stream;
87 + rd->BufferLim = stream + bufferSize;
88 + #endif
89 + rd->ExtraBytes = 0;
90 + rd->Code = 0;
91 + rd->Range = (0xFFFFFFFF);
92 + for(i = 0; i < 5; i++)
93 + rd->Code = (rd->Code << 8) | ReadByte;
94 +}
95 +
96 +#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;
97 +#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
98 +#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
99 +
100 +UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
101 +{
102 + RC_INIT_VAR
103 + UInt32 result = 0;
104 + int i;
105 + for (i = numTotalBits; i > 0; i--)
106 + {
107 + /* UInt32 t; */
108 + range >>= 1;
109 +
110 + result <<= 1;
111 + if (code >= range)
112 + {
113 + code -= range;
114 + result |= 1;
115 + }
116 + /*
117 + t = (code - range) >> 31;
118 + t &= 1;
119 + code -= range & (t - 1);
120 + result = (result + result) | (1 - t);
121 + */
122 + RC_NORMALIZE
123 + }
124 + RC_FLUSH_VAR
125 + return result;
126 +}
127 +
128 +int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
129 +{
130 + UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
131 + if (rd->Code < bound)
132 + {
133 + rd->Range = bound;
134 + *prob += (kBitModelTotal - *prob) >> kNumMoveBits;
135 + if (rd->Range < kTopValue)
136 + {
137 + rd->Code = (rd->Code << 8) | ReadByte;
138 + rd->Range <<= 8;
139 + }
140 + return 0;
141 + }
142 + else
143 + {
144 + rd->Range -= bound;
145 + rd->Code -= bound;
146 + *prob -= (*prob) >> kNumMoveBits;
147 + if (rd->Range < kTopValue)
148 + {
149 + rd->Code = (rd->Code << 8) | ReadByte;
150 + rd->Range <<= 8;
151 + }
152 + return 1;
153 + }
154 +}
155 +
156 +#define RC_GET_BIT2(prob, mi, A0, A1) \
157 + UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
158 + if (code < bound) \
159 + { A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
160 + else \
161 + { A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
162 + RC_NORMALIZE
163 +
164 +#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
165 +
166 +int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
167 +{
168 + int mi = 1;
169 + int i;
170 + #ifdef _LZMA_LOC_OPT
171 + RC_INIT_VAR
172 + #endif
173 + for(i = numLevels; i > 0; i--)
174 + {
175 + #ifdef _LZMA_LOC_OPT
176 + CProb *prob = probs + mi;
177 + RC_GET_BIT(prob, mi)
178 + #else
179 + mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
180 + #endif
181 + }
182 + #ifdef _LZMA_LOC_OPT
183 + RC_FLUSH_VAR
184 + #endif
185 + return mi - (1 << numLevels);
186 +}
187 +
188 +int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
189 +{
190 + int mi = 1;
191 + int i;
192 + int symbol = 0;
193 + #ifdef _LZMA_LOC_OPT
194 + RC_INIT_VAR
195 + #endif
196 + for(i = 0; i < numLevels; i++)
197 + {
198 + #ifdef _LZMA_LOC_OPT
199 + CProb *prob = probs + mi;
200 + RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
201 + #else
202 + int bit = RangeDecoderBitDecode(probs + mi, rd);
203 + mi = mi + mi + bit;
204 + symbol |= (bit << i);
205 + #endif
206 + }
207 + #ifdef _LZMA_LOC_OPT
208 + RC_FLUSH_VAR
209 + #endif
210 + return symbol;
211 +}
212 +
213 +Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
214 +{
215 + int symbol = 1;
216 + #ifdef _LZMA_LOC_OPT
217 + RC_INIT_VAR
218 + #endif
219 + do
220 + {
221 + #ifdef _LZMA_LOC_OPT
222 + CProb *prob = probs + symbol;
223 + RC_GET_BIT(prob, symbol)
224 + #else
225 + symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
226 + #endif
227 + }
228 + while (symbol < 0x100);
229 + #ifdef _LZMA_LOC_OPT
230 + RC_FLUSH_VAR
231 + #endif
232 + return symbol;
233 +}
234 +
235 +Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
236 +{
237 + int symbol = 1;
238 + #ifdef _LZMA_LOC_OPT
239 + RC_INIT_VAR
240 + #endif
241 + do
242 + {
243 + int bit;
244 + int matchBit = (matchByte >> 7) & 1;
245 + matchByte <<= 1;
246 + #ifdef _LZMA_LOC_OPT
247 + {
248 + CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
249 + RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
250 + }
251 + #else
252 + bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
253 + symbol = (symbol << 1) | bit;
254 + #endif
255 + if (matchBit != bit)
256 + {
257 + while (symbol < 0x100)
258 + {
259 + #ifdef _LZMA_LOC_OPT
260 + CProb *prob = probs + symbol;
261 + RC_GET_BIT(prob, symbol)
262 + #else
263 + symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
264 + #endif
265 + }
266 + break;
267 + }
268 + }
269 + while (symbol < 0x100);
270 + #ifdef _LZMA_LOC_OPT
271 + RC_FLUSH_VAR
272 + #endif
273 + return symbol;
274 +}
275 +
276 +#define kNumPosBitsMax 4
277 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
278 +
279 +#define kLenNumLowBits 3
280 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
281 +#define kLenNumMidBits 3
282 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
283 +#define kLenNumHighBits 8
284 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
285 +
286 +#define LenChoice 0
287 +#define LenChoice2 (LenChoice + 1)
288 +#define LenLow (LenChoice2 + 1)
289 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
290 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
291 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
292 +
293 +int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
294 +{
295 + if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
296 + return RangeDecoderBitTreeDecode(p + LenLow +
297 + (posState << kLenNumLowBits), kLenNumLowBits, rd);
298 + if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
299 + return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
300 + (posState << kLenNumMidBits), kLenNumMidBits, rd);
301 + return kLenNumLowSymbols + kLenNumMidSymbols +
302 + RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
303 +}
304 +
305 +#define kNumStates 12
306 +
307 +#define kStartPosModelIndex 4
308 +#define kEndPosModelIndex 14
309 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
310 +
311 +#define kNumPosSlotBits 6
312 +#define kNumLenToPosStates 4
313 +
314 +#define kNumAlignBits 4
315 +#define kAlignTableSize (1 << kNumAlignBits)
316 +
317 +#define kMatchMinLen 2
318 +
319 +#define IsMatch 0
320 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
321 +#define IsRepG0 (IsRep + kNumStates)
322 +#define IsRepG1 (IsRepG0 + kNumStates)
323 +#define IsRepG2 (IsRepG1 + kNumStates)
324 +#define IsRep0Long (IsRepG2 + kNumStates)
325 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
326 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
327 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
328 +#define LenCoder (Align + kAlignTableSize)
329 +#define RepLenCoder (LenCoder + kNumLenProbs)
330 +#define Literal (RepLenCoder + kNumLenProbs)
331 +
332 +#if Literal != LZMA_BASE_SIZE
333 +StopCompilingDueBUG
334 +#endif
335 +
336 +#ifdef _LZMA_OUT_READ
337 +
338 +typedef struct _LzmaVarState
339 +{
340 + CRangeDecoder RangeDecoder;
341 + Byte *Dictionary;
342 + UInt32 DictionarySize;
343 + UInt32 DictionaryPos;
344 + UInt32 GlobalPos;
345 + UInt32 Reps[4];
346 + int lc;
347 + int lp;
348 + int pb;
349 + int State;
350 + int PreviousIsMatch;
351 + int RemainLen;
352 +} LzmaVarState;
353 +
354 +int LzmaDecoderInit(
355 + unsigned char *buffer, UInt32 bufferSize,
356 + int lc, int lp, int pb,
357 + unsigned char *dictionary, UInt32 dictionarySize,
358 + #ifdef _LZMA_IN_CB
359 + ILzmaInCallback *inCallback
360 + #else
361 + unsigned char *inStream, UInt32 inSize
362 + #endif
363 + )
364 +{
365 + LzmaVarState *vs = (LzmaVarState *)buffer;
366 + CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
367 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
368 + UInt32 i;
369 + if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
370 + return LZMA_RESULT_NOT_ENOUGH_MEM;
371 + vs->Dictionary = dictionary;
372 + vs->DictionarySize = dictionarySize;
373 + vs->DictionaryPos = 0;
374 + vs->GlobalPos = 0;
375 + vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
376 + vs->lc = lc;
377 + vs->lp = lp;
378 + vs->pb = pb;
379 + vs->State = 0;
380 + vs->PreviousIsMatch = 0;
381 + vs->RemainLen = 0;
382 + dictionary[dictionarySize - 1] = 0;
383 + for (i = 0; i < numProbs; i++)
384 + p[i] = kBitModelTotal >> 1;
385 + RangeDecoderInit(&vs->RangeDecoder,
386 + #ifdef _LZMA_IN_CB
387 + inCallback
388 + #else
389 + inStream, inSize
390 + #endif
391 + );
392 + return LZMA_RESULT_OK;
393 +}
394 +
395 +int LzmaDecode(unsigned char *buffer,
396 + unsigned char *outStream, UInt32 outSize,
397 + UInt32 *outSizeProcessed)
398 +{
399 + LzmaVarState *vs = (LzmaVarState *)buffer;
400 + CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
401 + CRangeDecoder rd = vs->RangeDecoder;
402 + int state = vs->State;
403 + int previousIsMatch = vs->PreviousIsMatch;
404 + Byte previousByte;
405 + UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
406 + UInt32 nowPos = 0;
407 + UInt32 posStateMask = (1 << (vs->pb)) - 1;
408 + UInt32 literalPosMask = (1 << (vs->lp)) - 1;
409 + int lc = vs->lc;
410 + int len = vs->RemainLen;
411 + UInt32 globalPos = vs->GlobalPos;
412 +
413 + Byte *dictionary = vs->Dictionary;
414 + UInt32 dictionarySize = vs->DictionarySize;
415 + UInt32 dictionaryPos = vs->DictionaryPos;
416 +
417 + if (len == -1)
418 + {
419 + *outSizeProcessed = 0;
420 + return LZMA_RESULT_OK;
421 + }
422 +
423 + while(len > 0 && nowPos < outSize)
424 + {
425 + UInt32 pos = dictionaryPos - rep0;
426 + if (pos >= dictionarySize)
427 + pos += dictionarySize;
428 + outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
429 + if (++dictionaryPos == dictionarySize)
430 + dictionaryPos = 0;
431 + len--;
432 + }
433 + if (dictionaryPos == 0)
434 + previousByte = dictionary[dictionarySize - 1];
435 + else
436 + previousByte = dictionary[dictionaryPos - 1];
437 +#else
438 +
439 +int LzmaDecode(
440 + Byte *buffer, UInt32 bufferSize,
441 + int lc, int lp, int pb,
442 + #ifdef _LZMA_IN_CB
443 + ILzmaInCallback *inCallback,
444 + #else
445 + unsigned char *inStream, UInt32 inSize,
446 + #endif
447 + unsigned char *outStream, UInt32 outSize,
448 + UInt32 *outSizeProcessed)
449 +{
450 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
451 + CProb *p = (CProb *)buffer;
452 + CRangeDecoder rd;
453 + UInt32 i;
454 + int state = 0;
455 + int previousIsMatch = 0;
456 + Byte previousByte = 0;
457 + UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
458 + UInt32 nowPos = 0;
459 + UInt32 posStateMask = (1 << pb) - 1;
460 + UInt32 literalPosMask = (1 << lp) - 1;
461 + int len = 0;
462 + if (bufferSize < numProbs * sizeof(CProb))
463 + return LZMA_RESULT_NOT_ENOUGH_MEM;
464 + for (i = 0; i < numProbs; i++)
465 + p[i] = kBitModelTotal >> 1;
466 + RangeDecoderInit(&rd,
467 + #ifdef _LZMA_IN_CB
468 + inCallback
469 + #else
470 + inStream, inSize
471 + #endif
472 + );
473 +#endif
474 +
475 + *outSizeProcessed = 0;
476 + while(nowPos < outSize)
477 + {
478 + int posState = (int)(
479 + (nowPos
480 + #ifdef _LZMA_OUT_READ
481 + + globalPos
482 + #endif
483 + )
484 + & posStateMask);
485 + #ifdef _LZMA_IN_CB
486 + if (rd.Result != LZMA_RESULT_OK)
487 + return rd.Result;
488 + #endif
489 + if (rd.ExtraBytes != 0)
490 + return LZMA_RESULT_DATA_ERROR;
491 + if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
492 + {
493 + CProb *probs = p + Literal + (LZMA_LIT_SIZE *
494 + (((
495 + (nowPos
496 + #ifdef _LZMA_OUT_READ
497 + + globalPos
498 + #endif
499 + )
500 + & literalPosMask) << lc) + (previousByte >> (8 - lc))));
501 +
502 + if (state < 4) state = 0;
503 + else if (state < 10) state -= 3;
504 + else state -= 6;
505 + if (previousIsMatch)
506 + {
507 + Byte matchByte;
508 + #ifdef _LZMA_OUT_READ
509 + UInt32 pos = dictionaryPos - rep0;
510 + if (pos >= dictionarySize)
511 + pos += dictionarySize;
512 + matchByte = dictionary[pos];
513 + #else
514 + matchByte = outStream[nowPos - rep0];
515 + #endif
516 + previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
517 + previousIsMatch = 0;
518 + }
519 + else
520 + previousByte = LzmaLiteralDecode(probs, &rd);
521 + outStream[nowPos++] = previousByte;
522 + #ifdef _LZMA_OUT_READ
523 + dictionary[dictionaryPos] = previousByte;
524 + if (++dictionaryPos == dictionarySize)
525 + dictionaryPos = 0;
526 + #endif
527 + }
528 + else
529 + {
530 + previousIsMatch = 1;
531 + if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
532 + {
533 + if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
534 + {
535 + if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
536 + {
537 + #ifdef _LZMA_OUT_READ
538 + UInt32 pos;
539 + #endif
540 + if (
541 + (nowPos
542 + #ifdef _LZMA_OUT_READ
543 + + globalPos
544 + #endif
545 + )
546 + == 0)
547 + return LZMA_RESULT_DATA_ERROR;
548 + state = state < 7 ? 9 : 11;
549 + #ifdef _LZMA_OUT_READ
550 + pos = dictionaryPos - rep0;
551 + if (pos >= dictionarySize)
552 + pos += dictionarySize;
553 + previousByte = dictionary[pos];
554 + dictionary[dictionaryPos] = previousByte;
555 + if (++dictionaryPos == dictionarySize)
556 + dictionaryPos = 0;
557 + #else
558 + previousByte = outStream[nowPos - rep0];
559 + #endif
560 + outStream[nowPos++] = previousByte;
561 + continue;
562 + }
563 + }
564 + else
565 + {
566 + UInt32 distance;
567 + if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
568 + distance = rep1;
569 + else
570 + {
571 + if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
572 + distance = rep2;
573 + else
574 + {
575 + distance = rep3;
576 + rep3 = rep2;
577 + }
578 + rep2 = rep1;
579 + }
580 + rep1 = rep0;
581 + rep0 = distance;
582 + }
583 + len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
584 + state = state < 7 ? 8 : 11;
585 + }
586 + else
587 + {
588 + int posSlot;
589 + rep3 = rep2;
590 + rep2 = rep1;
591 + rep1 = rep0;
592 + state = state < 7 ? 7 : 10;
593 + len = LzmaLenDecode(p + LenCoder, &rd, posState);
594 + posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
595 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
596 + kNumPosSlotBits), kNumPosSlotBits, &rd);
597 + if (posSlot >= kStartPosModelIndex)
598 + {
599 + int numDirectBits = ((posSlot >> 1) - 1);
600 + rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
601 + if (posSlot < kEndPosModelIndex)
602 + {
603 + rep0 += RangeDecoderReverseBitTreeDecode(
604 + p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
605 + }
606 + else
607 + {
608 + rep0 += RangeDecoderDecodeDirectBits(&rd,
609 + numDirectBits - kNumAlignBits) << kNumAlignBits;
610 + rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
611 + }
612 + }
613 + else
614 + rep0 = posSlot;
615 + rep0++;
616 + }
617 + if (rep0 == (UInt32)(0))
618 + {
619 + /* it's for stream version */
620 + len = -1;
621 + break;
622 + }
623 + if (rep0 > nowPos
624 + #ifdef _LZMA_OUT_READ
625 + + globalPos
626 + #endif
627 + )
628 + {
629 + return LZMA_RESULT_DATA_ERROR;
630 + }
631 + len += kMatchMinLen;
632 + do
633 + {
634 + #ifdef _LZMA_OUT_READ
635 + UInt32 pos = dictionaryPos - rep0;
636 + if (pos >= dictionarySize)
637 + pos += dictionarySize;
638 + previousByte = dictionary[pos];
639 + dictionary[dictionaryPos] = previousByte;
640 + if (++dictionaryPos == dictionarySize)
641 + dictionaryPos = 0;
642 + #else
643 + previousByte = outStream[nowPos - rep0];
644 + #endif
645 + outStream[nowPos++] = previousByte;
646 + len--;
647 + }
648 + while(len > 0 && nowPos < outSize);
649 + }
650 + }
651 +
652 + #ifdef _LZMA_OUT_READ
653 + vs->RangeDecoder = rd;
654 + vs->DictionaryPos = dictionaryPos;
655 + vs->GlobalPos = globalPos + nowPos;
656 + vs->Reps[0] = rep0;
657 + vs->Reps[1] = rep1;
658 + vs->Reps[2] = rep2;
659 + vs->Reps[3] = rep3;
660 + vs->State = state;
661 + vs->PreviousIsMatch = previousIsMatch;
662 + vs->RemainLen = len;
663 + #endif
664 +
665 + *outSizeProcessed = nowPos;
666 + return LZMA_RESULT_OK;
667 +}
668 diff -Nur linux-2.6.12.5-brcm-squashfs/fs/squashfs/LzmaDecode.h linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/LzmaDecode.h
669 --- linux-2.6.12.5-brcm-squashfs/fs/squashfs/LzmaDecode.h 1970-01-01 01:00:00.000000000 +0100
670 +++ linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/LzmaDecode.h 2005-08-29 00:02:44.099124176 +0200
671 @@ -0,0 +1,100 @@
672 +/*
673 + LzmaDecode.h
674 + LZMA Decoder interface
675 +
676 + LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
677 + http://www.7-zip.org/
678 +
679 + LZMA SDK is licensed under two licenses:
680 + 1) GNU Lesser General Public License (GNU LGPL)
681 + 2) Common Public License (CPL)
682 + It means that you can select one of these two licenses and
683 + follow rules of that license.
684 +
685 + SPECIAL EXCEPTION:
686 + Igor Pavlov, as the author of this code, expressly permits you to
687 + statically or dynamically link your code (or bind by name) to the
688 + interfaces of this file without subjecting your linked code to the
689 + terms of the CPL or GNU LGPL. Any modifications or additions
690 + to this file, however, are subject to the LGPL or CPL terms.
691 +*/
692 +
693 +#ifndef __LZMADECODE_H
694 +#define __LZMADECODE_H
695 +
696 +/* #define _LZMA_IN_CB */
697 +/* Use callback for input data */
698 +
699 +/* #define _LZMA_OUT_READ */
700 +/* Use read function for output data */
701 +
702 +/* #define _LZMA_PROB32 */
703 +/* It can increase speed on some 32-bit CPUs,
704 + but memory usage will be doubled in that case */
705 +
706 +/* #define _LZMA_LOC_OPT */
707 +/* Enable local speed optimizations inside code */
708 +
709 +#ifndef UInt32
710 +#ifdef _LZMA_UINT32_IS_ULONG
711 +#define UInt32 unsigned long
712 +#else
713 +#define UInt32 unsigned int
714 +#endif
715 +#endif
716 +
717 +#ifdef _LZMA_PROB32
718 +#define CProb UInt32
719 +#else
720 +#define CProb unsigned short
721 +#endif
722 +
723 +#define LZMA_RESULT_OK 0
724 +#define LZMA_RESULT_DATA_ERROR 1
725 +#define LZMA_RESULT_NOT_ENOUGH_MEM 2
726 +
727 +#ifdef _LZMA_IN_CB
728 +typedef struct _ILzmaInCallback
729 +{
730 + int (*Read)(void *object, unsigned char **buffer, UInt32 *bufferSize);
731 +} ILzmaInCallback;
732 +#endif
733 +
734 +#define LZMA_BASE_SIZE 1846
735 +#define LZMA_LIT_SIZE 768
736 +
737 +/*
738 +bufferSize = (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)))* sizeof(CProb)
739 +bufferSize += 100 in case of _LZMA_OUT_READ
740 +by default CProb is unsigned short,
741 +but if specify _LZMA_PROB_32, CProb will be UInt32(unsigned int)
742 +*/
743 +
744 +#ifdef _LZMA_OUT_READ
745 +int LzmaDecoderInit(
746 + unsigned char *buffer, UInt32 bufferSize,
747 + int lc, int lp, int pb,
748 + unsigned char *dictionary, UInt32 dictionarySize,
749 + #ifdef _LZMA_IN_CB
750 + ILzmaInCallback *inCallback
751 + #else
752 + unsigned char *inStream, UInt32 inSize
753 + #endif
754 +);
755 +#endif
756 +
757 +int LzmaDecode(
758 + unsigned char *buffer,
759 + #ifndef _LZMA_OUT_READ
760 + UInt32 bufferSize,
761 + int lc, int lp, int pb,
762 + #ifdef _LZMA_IN_CB
763 + ILzmaInCallback *inCallback,
764 + #else
765 + unsigned char *inStream, UInt32 inSize,
766 + #endif
767 + #endif
768 + unsigned char *outStream, UInt32 outSize,
769 + UInt32 *outSizeProcessed);
770 +
771 +#endif
772 diff -Nur linux-2.6.12.5-brcm-squashfs/fs/squashfs/Makefile linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/Makefile
773 --- linux-2.6.12.5-brcm-squashfs/fs/squashfs/Makefile 2005-08-28 23:44:05.046246000 +0200
774 +++ linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/Makefile 2005-08-29 00:06:21.872017664 +0200
775 @@ -4,4 +4,4 @@
776
777 obj-$(CONFIG_SQUASHFS) += squashfs.o
778
779 -squashfs-objs := inode.o
780 +squashfs-objs := inode.o LzmaDecode.o
781 diff -Nur linux-2.6.12.5-brcm-squashfs/fs/squashfs/inode.c linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/inode.c
782 --- linux-2.6.12.5-brcm-squashfs/fs/squashfs/inode.c 2005-08-28 23:44:05.045246000 +0200
783 +++ linux-2.6.12.5-brcm-squashfs-lzma/fs/squashfs/inode.c 2005-08-29 00:19:48.473476904 +0200
784 @@ -3,6 +3,9 @@
785 *
786 * Copyright (c) 2002, 2003, 2004, 2005 Phillip Lougher <phillip@lougher.demon.co.uk>
787 *
788 + * LZMA decompressor support added by Oleg I. Vdovikin
789 + * Copyright (c) 2005 Oleg I.Vdovikin <oleg@cs.msu.su>
790 + *
791 * This program is free software; you can redistribute it and/or
792 * modify it under the terms of the GNU General Public License
793 * as published by the Free Software Foundation; either version 2,
794 @@ -20,7 +23,11 @@
795 * inode.c
796 */
797
798 +#define SQUASHFS_LZMA
799 +
800 +#ifndef SQUASHFS_LZMA
801 #define SQUASHFS_1_0_COMPATIBILITY
802 +#endif
803
804 #include <linux/types.h>
805 #include <linux/squashfs_fs.h>
806 @@ -43,6 +50,19 @@
807 #include <linux/blkdev.h>
808 #include <linux/vmalloc.h>
809
810 +#ifdef SQUASHFS_LZMA
811 +#include "LzmaDecode.h"
812 +
813 +/* default LZMA settings, should be in sync with mksquashfs */
814 +#define LZMA_LC 3
815 +#define LZMA_LP 0
816 +#define LZMA_PB 2
817 +
818 +#define LZMA_WORKSPACE_SIZE ((LZMA_BASE_SIZE + \
819 + (LZMA_LIT_SIZE << (LZMA_LC + LZMA_LP))) * sizeof(CProb))
820 +
821 +#endif
822 +
823 #ifdef SQUASHFS_TRACE
824 #define TRACE(s, args...) printk(KERN_NOTICE "SQUASHFS: "s, ## args)
825 #else
826 @@ -85,7 +105,11 @@
827
828 DECLARE_MUTEX(read_data_mutex);
829
830 +#ifdef SQUASHFS_LZMA
831 +static unsigned char lzma_workspace[LZMA_WORKSPACE_SIZE];
832 +#else
833 static z_stream stream;
834 +#endif
835
836 static struct file_system_type squashfs_fs_type = {
837 .owner = THIS_MODULE,
838 @@ -274,6 +298,15 @@
839 if(compressed) {
840 int zlib_err;
841
842 +#ifdef SQUASHFS_LZMA
843 + if ((zlib_err = LzmaDecode(lzma_workspace,
844 + LZMA_WORKSPACE_SIZE, LZMA_LC, LZMA_LP, LZMA_PB,
845 + c_buffer, c_byte, buffer, msBlk->read_size, &bytes)) != LZMA_RESULT_OK)
846 + {
847 + ERROR("lzma returned unexpected result 0x%x\n", zlib_err);
848 + bytes = 0;
849 + }
850 +#else
851 stream.next_in = c_buffer;
852 stream.avail_in = c_byte;
853 stream.next_out = buffer;
854 @@ -285,6 +318,7 @@
855 bytes = 0;
856 } else
857 bytes = stream.total_out;
858 +#endif
859 up(&read_data_mutex);
860 }
861
862 @@ -1725,14 +1759,17 @@
863
864 printk(KERN_INFO "Squashfs 2.2 (released 2005/07/03) (C) 2002-2005 Phillip Lougher\n");
865
866 +#ifndef SQUASHFS_LZMA
867 if(!(stream.workspace = (char *) vmalloc(zlib_inflate_workspacesize()))) {
868 ERROR("Failed to allocate zlib workspace\n");
869 destroy_inodecache();
870 return -ENOMEM;
871 }
872 -
873 +#endif
874 if((err = register_filesystem(&squashfs_fs_type))) {
875 +#ifndef SQUASHFS_LZMA
876 vfree(stream.workspace);
877 +#endif
878 destroy_inodecache();
879 }
880
881 @@ -1742,7 +1779,9 @@
882
883 static void __exit exit_squashfs_fs(void)
884 {
885 +#ifndef SQUASHFS_LZMA
886 vfree(stream.workspace);
887 +#endif
888 unregister_filesystem(&squashfs_fs_type);
889 destroy_inodecache();
890 }
This page took 0.091247 seconds and 5 git commands to generate.