ramips_eth: simplify tx_next computation
[openwrt.git] / target / linux / adm5120 / files / drivers / net / adm5120sw.c
1 /*
2 * ADM5120 built-in ethernet switch driver
3 *
4 * Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org>
5 *
6 * This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken.
7 * Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005
8 * NAPI extension for the Jeroen's driver
9 * Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007
10 * Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007
11 * Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver.
12 * Copyright ADMtek Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License version 2 as published
16 * by the Free Software Foundation.
17 *
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/spinlock.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33
34 #include <asm/mipsregs.h>
35
36 #include <asm/mach-adm5120/adm5120_info.h>
37 #include <asm/mach-adm5120/adm5120_defs.h>
38 #include <asm/mach-adm5120/adm5120_switch.h>
39
40 #include "adm5120sw.h"
41
42 #define DRV_NAME "adm5120-switch"
43 #define DRV_DESC "ADM5120 built-in ethernet switch driver"
44 #define DRV_VERSION "0.1.1"
45
46 #define CONFIG_ADM5120_SWITCH_NAPI 1
47 #undef CONFIG_ADM5120_SWITCH_DEBUG
48
49 /* ------------------------------------------------------------------------ */
50
51 #ifdef CONFIG_ADM5120_SWITCH_DEBUG
52 #define SW_DBG(f, a...) printk(KERN_DBG "%s: " f, DRV_NAME , ## a)
53 #else
54 #define SW_DBG(f, a...) do {} while (0)
55 #endif
56 #define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a)
57 #define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a)
58
59 #define SWITCH_NUM_PORTS 6
60 #define ETH_CSUM_LEN 4
61
62 #define RX_MAX_PKTLEN 1550
63 #define RX_RING_SIZE 64
64
65 #define TX_RING_SIZE 32
66 #define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */
67 #define TX_TIMEOUT HZ*400
68
69 #define RX_DESCS_SIZE (RX_RING_SIZE * sizeof(struct dma_desc *))
70 #define RX_SKBS_SIZE (RX_RING_SIZE * sizeof(struct sk_buff *))
71 #define TX_DESCS_SIZE (TX_RING_SIZE * sizeof(struct dma_desc *))
72 #define TX_SKBS_SIZE (TX_RING_SIZE * sizeof(struct sk_buff *))
73
74 #define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32)
75 #define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD)
76
77 #define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF)
78 #define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF)
79 #define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH)
80 #define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \
81 SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \
82 SWITCH_INT_CPQF | SWITCH_INT_GQF)
83
84 #define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \
85 SWITCH_INTS_ERR | SWITCH_INTS_Q | \
86 SWITCH_INT_MD | SWITCH_INT_PSC)
87
88 #define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC)
89 #define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD)
90
91 /* ------------------------------------------------------------------------ */
92
93 struct adm5120_if_priv {
94 struct net_device *dev;
95
96 unsigned int vlan_no;
97 unsigned int port_mask;
98
99 #ifdef CONFIG_ADM5120_SWITCH_NAPI
100 struct napi_struct napi;
101 #endif
102 };
103
104 struct dma_desc {
105 __u32 buf1;
106 #define DESC_OWN (1UL << 31) /* Owned by the switch */
107 #define DESC_EOR (1UL << 28) /* End of Ring */
108 #define DESC_ADDR_MASK 0x1FFFFFF
109 #define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK)
110 __u32 buf2;
111 #define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */
112 __u32 buflen;
113 __u32 misc;
114 /* definitions for tx/rx descriptors */
115 #define DESC_PKTLEN_SHIFT 16
116 #define DESC_PKTLEN_MASK 0x7FF
117 /* tx descriptor specific part */
118 #define DESC_CSUM (1UL << 31) /* Append checksum */
119 #define DESC_DSTPORT_SHIFT 8
120 #define DESC_DSTPORT_MASK 0x3F
121 #define DESC_VLAN_MASK 0x3F
122 /* rx descriptor specific part */
123 #define DESC_SRCPORT_SHIFT 12
124 #define DESC_SRCPORT_MASK 0x7
125 #define DESC_DA_MASK 0x3
126 #define DESC_DA_SHIFT 4
127 #define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */
128 #define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */
129 #define DESC_TYPE_MASK 0x3 /* mask for Packet type */
130 #define DESC_TYPE_IP 0x0 /* IP packet */
131 #define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */
132 } __attribute__ ((aligned(16)));
133
134 /* ------------------------------------------------------------------------ */
135
136 static int adm5120_nrdevs;
137
138 static struct net_device *adm5120_devs[SWITCH_NUM_PORTS];
139 /* Lookup table port -> device */
140 static struct net_device *adm5120_port[SWITCH_NUM_PORTS];
141
142 static struct dma_desc *txl_descs;
143 static struct dma_desc *rxl_descs;
144
145 static dma_addr_t txl_descs_dma;
146 static dma_addr_t rxl_descs_dma;
147
148 static struct sk_buff **txl_skbuff;
149 static struct sk_buff **rxl_skbuff;
150
151 static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */
152 static unsigned int cur_txl, dirty_txl;
153
154 static unsigned int sw_used;
155
156 static spinlock_t tx_lock = SPIN_LOCK_UNLOCKED;
157
158 /* ------------------------------------------------------------------------ */
159
160 static inline u32 sw_read_reg(u32 reg)
161 {
162 return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
163 }
164
165 static inline void sw_write_reg(u32 reg, u32 val)
166 {
167 __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
168 }
169
170 static inline void sw_int_mask(u32 mask)
171 {
172 u32 t;
173
174 t = sw_read_reg(SWITCH_REG_INT_MASK);
175 t |= mask;
176 sw_write_reg(SWITCH_REG_INT_MASK, t);
177 }
178
179 static inline void sw_int_unmask(u32 mask)
180 {
181 u32 t;
182
183 t = sw_read_reg(SWITCH_REG_INT_MASK);
184 t &= ~mask;
185 sw_write_reg(SWITCH_REG_INT_MASK, t);
186 }
187
188 static inline void sw_int_ack(u32 mask)
189 {
190 sw_write_reg(SWITCH_REG_INT_STATUS, mask);
191 }
192
193 static inline u32 sw_int_status(void)
194 {
195 u32 t;
196
197 t = sw_read_reg(SWITCH_REG_INT_STATUS);
198 t &= ~sw_read_reg(SWITCH_REG_INT_MASK);
199 return t;
200 }
201
202 static inline u32 desc_get_srcport(struct dma_desc *desc)
203 {
204 return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK;
205 }
206
207 static inline u32 desc_get_pktlen(struct dma_desc *desc)
208 {
209 return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK;
210 }
211
212 static inline int desc_ipcsum_fail(struct dma_desc *desc)
213 {
214 return ((desc->misc & DESC_IPCSUM_FAIL) != 0);
215 }
216
217 /* ------------------------------------------------------------------------ */
218
219 static void sw_dump_desc(char *label, struct dma_desc *desc, int tx)
220 {
221 u32 t;
222
223 SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc);
224
225 t = desc->buf1;
226 SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t,
227 t & DESC_ADDR_MASK,
228 desc->buflen,
229 (t & DESC_OWN) ? "SWITCH" : "CPU",
230 (t & DESC_EOR) ? " RE" : "");
231
232 t = desc->buf2;
233 SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2,
234 t & DESC_ADDR_MASK,
235 (t & DESC_BUF2_EN) ? " EN" : "" );
236
237 t = desc->misc;
238 if (tx)
239 SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t,
240 (t & DESC_CSUM) ? " CSUM" : "",
241 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
242 (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK,
243 t & DESC_VLAN_MASK);
244 else
245 SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n",
246 t,
247 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
248 (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK,
249 (t >> DESC_DA_SHIFT) & DESC_DA_MASK,
250 (t & DESC_IPCSUM_FAIL) ? " IPCF" : "",
251 (t & DESC_VLAN_TAG) ? " VLAN" : "",
252 (t & DESC_TYPE_MASK));
253 }
254
255 static void sw_dump_intr_mask(char *label, u32 mask)
256 {
257 SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
258 label, mask,
259 (mask & SWITCH_INT_SHD) ? " SHD" : "",
260 (mask & SWITCH_INT_SLD) ? " SLD" : "",
261 (mask & SWITCH_INT_RHD) ? " RHD" : "",
262 (mask & SWITCH_INT_RLD) ? " RLD" : "",
263 (mask & SWITCH_INT_HDF) ? " HDF" : "",
264 (mask & SWITCH_INT_LDF) ? " LDF" : "",
265 (mask & SWITCH_INT_P0QF) ? " P0QF" : "",
266 (mask & SWITCH_INT_P1QF) ? " P1QF" : "",
267 (mask & SWITCH_INT_P2QF) ? " P2QF" : "",
268 (mask & SWITCH_INT_P3QF) ? " P3QF" : "",
269 (mask & SWITCH_INT_P4QF) ? " P4QF" : "",
270 (mask & SWITCH_INT_CPQF) ? " CPQF" : "",
271 (mask & SWITCH_INT_GQF) ? " GQF" : "",
272 (mask & SWITCH_INT_MD) ? " MD" : "",
273 (mask & SWITCH_INT_BCS) ? " BCS" : "",
274 (mask & SWITCH_INT_PSC) ? " PSC" : "",
275 (mask & SWITCH_INT_ID) ? " ID" : "",
276 (mask & SWITCH_INT_W0TE) ? " W0TE" : "",
277 (mask & SWITCH_INT_W1TE) ? " W1TE" : "",
278 (mask & SWITCH_INT_RDE) ? " RDE" : "",
279 (mask & SWITCH_INT_SDE) ? " SDE" : "",
280 (mask & SWITCH_INT_CPUH) ? " CPUH" : "");
281 }
282
283 static void sw_dump_regs(void)
284 {
285 u32 t;
286
287 t = sw_read_reg(SWITCH_REG_PHY_STATUS);
288 SW_DBG("phy_status: %08X\n", t);
289
290 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
291 SW_DBG("cpup_conf: %08X%s%s%s\n", t,
292 (t & CPUP_CONF_DCPUP) ? " DCPUP" : "",
293 (t & CPUP_CONF_CRCP) ? " CRCP" : "",
294 (t & CPUP_CONF_BTM) ? " BTM" : "");
295
296 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
297 SW_DBG("port_conf0: %08X\n", t);
298 t = sw_read_reg(SWITCH_REG_PORT_CONF1);
299 SW_DBG("port_conf1: %08X\n", t);
300 t = sw_read_reg(SWITCH_REG_PORT_CONF2);
301 SW_DBG("port_conf2: %08X\n", t);
302
303 t = sw_read_reg(SWITCH_REG_VLAN_G1);
304 SW_DBG("vlan g1: %08X\n", t);
305 t = sw_read_reg(SWITCH_REG_VLAN_G2);
306 SW_DBG("vlan g2: %08X\n", t);
307
308 t = sw_read_reg(SWITCH_REG_BW_CNTL0);
309 SW_DBG("bw_cntl0: %08X\n", t);
310 t = sw_read_reg(SWITCH_REG_BW_CNTL1);
311 SW_DBG("bw_cntl1: %08X\n", t);
312
313 t = sw_read_reg(SWITCH_REG_PHY_CNTL0);
314 SW_DBG("phy_cntl0: %08X\n", t);
315 t = sw_read_reg(SWITCH_REG_PHY_CNTL1);
316 SW_DBG("phy_cntl1: %08X\n", t);
317 t = sw_read_reg(SWITCH_REG_PHY_CNTL2);
318 SW_DBG("phy_cntl2: %08X\n", t);
319 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
320 SW_DBG("phy_cntl3: %08X\n", t);
321 t = sw_read_reg(SWITCH_REG_PHY_CNTL4);
322 SW_DBG("phy_cntl4: %08X\n", t);
323
324 t = sw_read_reg(SWITCH_REG_INT_STATUS);
325 sw_dump_intr_mask("int_status: ", t);
326
327 t = sw_read_reg(SWITCH_REG_INT_MASK);
328 sw_dump_intr_mask("int_mask: ", t);
329
330 t = sw_read_reg(SWITCH_REG_SHDA);
331 SW_DBG("shda: %08X\n", t);
332 t = sw_read_reg(SWITCH_REG_SLDA);
333 SW_DBG("slda: %08X\n", t);
334 t = sw_read_reg(SWITCH_REG_RHDA);
335 SW_DBG("rhda: %08X\n", t);
336 t = sw_read_reg(SWITCH_REG_RLDA);
337 SW_DBG("rlda: %08X\n", t);
338 }
339
340 /* ------------------------------------------------------------------------ */
341
342 static inline void adm5120_rx_dma_update(struct dma_desc *desc,
343 struct sk_buff *skb, int end)
344 {
345 desc->misc = 0;
346 desc->buf2 = 0;
347 desc->buflen = RX_MAX_PKTLEN;
348 desc->buf1 = DESC_ADDR(skb->data) |
349 DESC_OWN | (end ? DESC_EOR : 0);
350 }
351
352 static void adm5120_switch_rx_refill(void)
353 {
354 unsigned int entry;
355
356 for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) {
357 struct dma_desc *desc;
358 struct sk_buff *skb;
359
360 entry = dirty_rxl % RX_RING_SIZE;
361 desc = &rxl_descs[entry];
362
363 skb = rxl_skbuff[entry];
364 if (skb == NULL) {
365 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
366 if (skb) {
367 skb_reserve(skb, SKB_RESERVE_LEN);
368 rxl_skbuff[entry] = skb;
369 } else {
370 SW_ERR("no memory for skb\n");
371 desc->buflen = 0;
372 desc->buf2 = 0;
373 desc->misc = 0;
374 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN;
375 break;
376 }
377 }
378
379 desc->buf2 = 0;
380 desc->buflen = RX_MAX_PKTLEN;
381 desc->misc = 0;
382 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN |
383 DESC_ADDR(skb->data);
384 }
385 }
386
387 static int adm5120_switch_rx(int limit)
388 {
389 unsigned int done = 0;
390
391 SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n",
392 limit, cur_rxl, dirty_rxl);
393
394 while (done < limit) {
395 int entry = cur_rxl % RX_RING_SIZE;
396 struct dma_desc *desc = &rxl_descs[entry];
397 struct net_device *rdev;
398 unsigned int port;
399
400 if (desc->buf1 & DESC_OWN)
401 break;
402
403 if (dirty_rxl + RX_RING_SIZE == cur_rxl)
404 break;
405
406 port = desc_get_srcport(desc);
407 rdev = adm5120_port[port];
408
409 SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc,
410 rxl_skbuff[entry]);
411
412 if ((rdev) && netif_running(rdev)) {
413 struct sk_buff *skb = rxl_skbuff[entry];
414 int pktlen;
415
416 pktlen = desc_get_pktlen(desc);
417 pktlen -= ETH_CSUM_LEN;
418
419 if ((pktlen == 0) || desc_ipcsum_fail(desc)) {
420 rdev->stats.rx_errors++;
421 if (pktlen == 0)
422 rdev->stats.rx_length_errors++;
423 if (desc_ipcsum_fail(desc))
424 rdev->stats.rx_crc_errors++;
425 SW_DBG("rx error, recycling skb %u\n", entry);
426 } else {
427 skb_put(skb, pktlen);
428
429 skb->dev = rdev;
430 skb->protocol = eth_type_trans(skb, rdev);
431 skb->ip_summed = CHECKSUM_UNNECESSARY;
432
433 dma_cache_wback_inv((unsigned long)skb->data,
434 skb->len);
435
436 #ifdef CONFIG_ADM5120_SWITCH_NAPI
437 netif_receive_skb(skb);
438 #else
439 netif_rx(skb);
440 #endif
441
442 rdev->last_rx = jiffies;
443 rdev->stats.rx_packets++;
444 rdev->stats.rx_bytes += pktlen;
445
446 rxl_skbuff[entry] = NULL;
447 done++;
448 }
449 } else {
450 SW_DBG("no rx device, recycling skb %u\n", entry);
451 }
452
453 cur_rxl++;
454 if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4)
455 adm5120_switch_rx_refill();
456 }
457
458 adm5120_switch_rx_refill();
459
460 SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n",
461 cur_rxl, dirty_rxl, done);
462
463 return done;
464 }
465
466 static void adm5120_switch_tx(void)
467 {
468 unsigned int entry;
469
470 spin_lock(&tx_lock);
471 entry = dirty_txl % TX_RING_SIZE;
472 while (dirty_txl != cur_txl) {
473 struct dma_desc *desc = &txl_descs[entry];
474 struct sk_buff *skb = txl_skbuff[entry];
475
476 if (desc->buf1 & DESC_OWN)
477 break;
478
479 if (netif_running(skb->dev)) {
480 skb->dev->stats.tx_bytes += skb->len;
481 skb->dev->stats.tx_packets++;
482 }
483
484 dev_kfree_skb_irq(skb);
485 txl_skbuff[entry] = NULL;
486 entry = (++dirty_txl) % TX_RING_SIZE;
487 }
488
489 if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) {
490 int i;
491 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
492 if (!adm5120_devs[i])
493 continue;
494 netif_wake_queue(adm5120_devs[i]);
495 }
496 }
497 spin_unlock(&tx_lock);
498 }
499
500 #ifdef CONFIG_ADM5120_SWITCH_NAPI
501 static int adm5120_if_poll(struct napi_struct *napi, int limit)
502 {
503 struct adm5120_if_priv *priv = container_of(napi,
504 struct adm5120_if_priv, napi);
505 struct net_device *dev = priv->dev;
506 int done;
507 u32 status;
508
509 sw_int_ack(SWITCH_INTS_POLL);
510
511 SW_DBG("%s: processing TX ring\n", dev->name);
512 adm5120_switch_tx();
513
514 SW_DBG("%s: processing RX ring\n", dev->name);
515 done = adm5120_switch_rx(limit);
516
517 status = sw_int_status() & SWITCH_INTS_POLL;
518 if ((done < limit) && (!status)) {
519 SW_DBG("disable polling mode for %s\n", dev->name);
520 napi_complete(napi);
521 sw_int_unmask(SWITCH_INTS_POLL);
522 return 0;
523 }
524
525 SW_DBG("%s still in polling mode, done=%d, status=%x\n",
526 dev->name, done, status);
527 return 1;
528 }
529 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
530
531
532 static irqreturn_t adm5120_switch_irq(int irq, void *dev_id)
533 {
534 u32 status;
535
536 status = sw_int_status();
537 status &= SWITCH_INTS_ALL;
538 if (!status)
539 return IRQ_NONE;
540
541 #ifdef CONFIG_ADM5120_SWITCH_NAPI
542 sw_int_ack(status & ~SWITCH_INTS_POLL);
543
544 if (status & SWITCH_INTS_POLL) {
545 struct net_device *dev = dev_id;
546 struct adm5120_if_priv *priv = netdev_priv(dev);
547
548 sw_dump_intr_mask("poll ints", status);
549 SW_DBG("enable polling mode for %s\n", dev->name);
550 sw_int_mask(SWITCH_INTS_POLL);
551 napi_schedule(&priv->napi);
552 }
553 #else
554 sw_int_ack(status);
555
556 if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF)) {
557 adm5120_switch_rx(RX_RING_SIZE);
558 }
559
560 if (status & SWITCH_INT_SLD) {
561 adm5120_switch_tx();
562 }
563 #endif
564
565 return IRQ_HANDLED;
566 }
567
568 static void adm5120_set_bw(char *matrix)
569 {
570 unsigned long val;
571
572 /* Port 0 to 3 are set using the bandwidth control 0 register */
573 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
574 sw_write_reg(SWITCH_REG_BW_CNTL0, val);
575
576 /* Port 4 and 5 are set using the bandwidth control 1 register */
577 val = matrix[4];
578 if (matrix[5] == 1)
579 sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000);
580 else
581 sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000);
582
583 SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0),
584 sw_read_reg(SWITCH_REG_BW_CNTL1));
585 }
586
587 static void adm5120_switch_tx_ring_reset(struct dma_desc *desc,
588 struct sk_buff **skbl, int num)
589 {
590 memset(desc, 0, num * sizeof(*desc));
591 desc[num-1].buf1 |= DESC_EOR;
592 memset(skbl, 0, sizeof(struct skb*)*num);
593
594 cur_txl = 0;
595 dirty_txl = 0;
596 }
597
598 static void adm5120_switch_rx_ring_reset(struct dma_desc *desc,
599 struct sk_buff **skbl, int num)
600 {
601 int i;
602
603 memset(desc, 0, num * sizeof(*desc));
604 for (i = 0; i < num; i++) {
605 skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN);
606 if (!skbl[i]) {
607 i = num;
608 break;
609 }
610 skb_reserve(skbl[i], SKB_RESERVE_LEN);
611 adm5120_rx_dma_update(&desc[i], skbl[i], (num-1==i));
612 }
613
614 cur_rxl = 0;
615 dirty_rxl = 0;
616 }
617
618 static int adm5120_switch_tx_ring_alloc(void)
619 {
620 int err;
621
622 txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma,
623 GFP_ATOMIC);
624 if (!txl_descs) {
625 err = -ENOMEM;
626 goto err;
627 }
628
629 txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL);
630 if (!txl_skbuff) {
631 err = -ENOMEM;
632 goto err;
633 }
634
635 return 0;
636
637 err:
638 return err;
639 }
640
641 static void adm5120_switch_tx_ring_free(void)
642 {
643 int i;
644
645 if (txl_skbuff) {
646 for (i = 0; i < TX_RING_SIZE; i++)
647 if (txl_skbuff[i])
648 kfree_skb(txl_skbuff[i]);
649 kfree(txl_skbuff);
650 }
651
652 if (txl_descs)
653 dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs,
654 txl_descs_dma);
655 }
656
657 static int adm5120_switch_rx_ring_alloc(void)
658 {
659 int err;
660 int i;
661
662 /* init RX ring */
663 rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma,
664 GFP_ATOMIC);
665 if (!rxl_descs) {
666 err = -ENOMEM;
667 goto err;
668 }
669
670 rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL);
671 if (!rxl_skbuff) {
672 err = -ENOMEM;
673 goto err;
674 }
675
676 for (i = 0; i < RX_RING_SIZE; i++) {
677 struct sk_buff *skb;
678 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
679 if (!skb) {
680 err = -ENOMEM;
681 goto err;
682 }
683 rxl_skbuff[i] = skb;
684 skb_reserve(skb, SKB_RESERVE_LEN);
685 }
686
687 return 0;
688
689 err:
690 return err;
691 }
692
693 static void adm5120_switch_rx_ring_free(void)
694 {
695 int i;
696
697 if (rxl_skbuff) {
698 for (i = 0; i < RX_RING_SIZE; i++)
699 if (rxl_skbuff[i])
700 kfree_skb(rxl_skbuff[i]);
701 kfree(rxl_skbuff);
702 }
703
704 if (rxl_descs)
705 dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs,
706 rxl_descs_dma);
707 }
708
709 static void adm5120_write_mac(struct net_device *dev)
710 {
711 struct adm5120_if_priv *priv = netdev_priv(dev);
712 unsigned char *mac = dev->dev_addr;
713 u32 t;
714
715 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) |
716 (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT);
717 sw_write_reg(SWITCH_REG_MAC_WT1, t);
718
719 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
720 MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3);
721
722 sw_write_reg(SWITCH_REG_MAC_WT0, t);
723
724 while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD));
725 }
726
727 static void adm5120_set_vlan(char *matrix)
728 {
729 unsigned long val;
730 int vlan_port, port;
731
732 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
733 sw_write_reg(SWITCH_REG_VLAN_G1, val);
734 val = matrix[4] + (matrix[5]<<8);
735 sw_write_reg(SWITCH_REG_VLAN_G2, val);
736
737 /* Now set/update the port vs. device lookup table */
738 for (port=0; port<SWITCH_NUM_PORTS; port++) {
739 for (vlan_port=0; vlan_port<SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++);
740 if (vlan_port <SWITCH_NUM_PORTS)
741 adm5120_port[port] = adm5120_devs[vlan_port];
742 else
743 adm5120_port[port] = NULL;
744 }
745 }
746
747 static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac)
748 {
749 u32 t;
750
751 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT)
752 | (mac[4] << MAC_WT1_MAC4_SHIFT)
753 | (mac[5] << MAC_WT1_MAC5_SHIFT);
754 sw_write_reg(SWITCH_REG_MAC_WT1, t);
755
756 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
757 MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) |
758 (MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT);
759 sw_write_reg(SWITCH_REG_MAC_WT0, t);
760
761 do {
762 t = sw_read_reg(SWITCH_REG_MAC_WT0);
763 } while ((t & MAC_WT0_MWD) == 0);
764 }
765
766 static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports)
767 {
768 unsigned int reg;
769 u32 t;
770
771 if (vlan < 4)
772 reg = SWITCH_REG_VLAN_G1;
773 else {
774 vlan -= 4;
775 reg = SWITCH_REG_VLAN_G2;
776 }
777
778 t = sw_read_reg(reg);
779 t &= ~(0xFF << (vlan*8));
780 t |= (ports << (vlan*8));
781 sw_write_reg(reg, t);
782 }
783
784 /* ------------------------------------------------------------------------ */
785
786 #ifdef CONFIG_ADM5120_SWITCH_NAPI
787 static inline void adm5120_if_napi_enable(struct net_device *dev)
788 {
789 struct adm5120_if_priv *priv = netdev_priv(dev);
790 napi_enable(&priv->napi);
791 }
792
793 static inline void adm5120_if_napi_disable(struct net_device *dev)
794 {
795 struct adm5120_if_priv *priv = netdev_priv(dev);
796 napi_disable(&priv->napi);
797 }
798 #else
799 static inline void adm5120_if_napi_enable(struct net_device *dev) {}
800 static inline void adm5120_if_napi_disable(struct net_device *dev) {}
801 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
802
803 static int adm5120_if_open(struct net_device *dev)
804 {
805 u32 t;
806 int err;
807 int i;
808
809 adm5120_if_napi_enable(dev);
810
811 err = request_irq(dev->irq, adm5120_switch_irq, IRQF_SHARED,
812 dev->name, dev);
813 if (err) {
814 SW_ERR("unable to get irq for %s\n", dev->name);
815 goto err;
816 }
817
818 if (!sw_used++)
819 /* enable interrupts on first open */
820 sw_int_unmask(SWITCH_INTS_USED);
821
822 /* enable (additional) port */
823 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
824 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
825 if (dev == adm5120_devs[i])
826 t &= ~adm5120_eth_vlans[i];
827 }
828 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
829
830 netif_start_queue(dev);
831
832 return 0;
833
834 err:
835 adm5120_if_napi_disable(dev);
836 return err;
837 }
838
839 static int adm5120_if_stop(struct net_device *dev)
840 {
841 u32 t;
842 int i;
843
844 netif_stop_queue(dev);
845 adm5120_if_napi_disable(dev);
846
847 /* disable port if not assigned to other devices */
848 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
849 t |= SWITCH_PORTS_NOCPU;
850 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
851 if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i]))
852 t &= ~adm5120_eth_vlans[i];
853 }
854 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
855
856 if (!--sw_used)
857 sw_int_mask(SWITCH_INTS_USED);
858
859 free_irq(dev->irq, dev);
860
861 return 0;
862 }
863
864 static int adm5120_if_hard_start_xmit(struct sk_buff *skb,
865 struct net_device *dev)
866 {
867 struct dma_desc *desc;
868 struct adm5120_if_priv *priv = netdev_priv(dev);
869 unsigned int entry;
870 unsigned long data;
871 int i;
872
873 /* lock switch irq */
874 spin_lock_irq(&tx_lock);
875
876 /* calculate the next TX descriptor entry. */
877 entry = cur_txl % TX_RING_SIZE;
878
879 desc = &txl_descs[entry];
880 if (desc->buf1 & DESC_OWN) {
881 /* We want to write a packet but the TX queue is still
882 * occupied by the DMA. We are faster than the DMA... */
883 SW_DBG("%s unable to transmit, packet dopped\n", dev->name);
884 dev_kfree_skb(skb);
885 dev->stats.tx_dropped++;
886 return 0;
887 }
888
889 txl_skbuff[entry] = skb;
890 data = (desc->buf1 & DESC_EOR);
891 data |= DESC_ADDR(skb->data);
892
893 desc->misc =
894 ((skb->len<ETH_ZLEN?ETH_ZLEN:skb->len) << DESC_PKTLEN_SHIFT) |
895 (0x1 << priv->vlan_no);
896
897 desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
898
899 desc->buf1 = data | DESC_OWN;
900 sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL);
901
902 cur_txl++;
903 if (cur_txl == dirty_txl + TX_QUEUE_LEN) {
904 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
905 if (!adm5120_devs[i])
906 continue;
907 netif_stop_queue(adm5120_devs[i]);
908 }
909 }
910
911 dev->trans_start = jiffies;
912
913 spin_unlock_irq(&tx_lock);
914
915 return 0;
916 }
917
918 static void adm5120_if_tx_timeout(struct net_device *dev)
919 {
920 SW_INFO("TX timeout on %s\n",dev->name);
921 }
922
923 static void adm5120_if_set_multicast_list(struct net_device *dev)
924 {
925 struct adm5120_if_priv *priv = netdev_priv(dev);
926 u32 ports;
927 u32 t;
928
929 ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU;
930
931 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
932 if (dev->flags & IFF_PROMISC)
933 /* enable unknown packets */
934 t &= ~(ports << CPUP_CONF_DUNP_SHIFT);
935 else
936 /* disable unknown packets */
937 t |= (ports << CPUP_CONF_DUNP_SHIFT);
938
939 if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI ||
940 dev->mc_count)
941 /* enable multicast packets */
942 t &= ~(ports << CPUP_CONF_DMCP_SHIFT);
943 else
944 /* disable multicast packets */
945 t |= (ports << CPUP_CONF_DMCP_SHIFT);
946
947 /* If there is any port configured to be in promiscuous mode, then the */
948 /* Bridge Test Mode has to be activated. This will result in */
949 /* transporting also packets learned in another VLAN to be forwarded */
950 /* to the CPU. */
951 /* The difficult scenario is when we want to build a bridge on the CPU.*/
952 /* Assume we have port0 and the CPU port in VLAN0 and port1 and the */
953 /* CPU port in VLAN1. Now we build a bridge on the CPU between */
954 /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */
955 /* Now assume a packet with ethernet source address 99 enters port 0 */
956 /* It will be forwarded to the CPU because it is unknown. Then the */
957 /* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */
958 /* When now a packet with ethernet destination address 99 comes in at */
959 /* port 1 in VLAN1, then the switch has learned that this address is */
960 /* located at port 0 in VLAN0. Therefore the switch will drop */
961 /* this packet. In order to avoid this and to send the packet still */
962 /* to the CPU, the Bridge Test Mode has to be activated. */
963
964 /* Check if there is any vlan in promisc mode. */
965 if (t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT))
966 t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */
967 else
968 t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */
969
970 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
971
972 }
973
974 static int adm5120_if_set_mac_address(struct net_device *dev, void *p)
975 {
976 int ret;
977
978 ret = eth_mac_addr(dev, p);
979 if (ret)
980 return ret;
981
982 adm5120_write_mac(dev);
983 return 0;
984 }
985
986 static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq,
987 int cmd)
988 {
989 int err;
990 struct adm5120_sw_info info;
991 struct adm5120_if_priv *priv = netdev_priv(dev);
992
993 switch(cmd) {
994 case SIOCGADMINFO:
995 info.magic = 0x5120;
996 info.ports = adm5120_nrdevs;
997 info.vlan = priv->vlan_no;
998 err = copy_to_user(rq->ifr_data, &info, sizeof(info));
999 if (err)
1000 return -EFAULT;
1001 break;
1002 case SIOCSMATRIX:
1003 if (!capable(CAP_NET_ADMIN))
1004 return -EPERM;
1005 err = copy_from_user(adm5120_eth_vlans, rq->ifr_data,
1006 sizeof(adm5120_eth_vlans));
1007 if (err)
1008 return -EFAULT;
1009 adm5120_set_vlan(adm5120_eth_vlans);
1010 break;
1011 case SIOCGMATRIX:
1012 err = copy_to_user(rq->ifr_data, adm5120_eth_vlans,
1013 sizeof(adm5120_eth_vlans));
1014 if (err)
1015 return -EFAULT;
1016 break;
1017 default:
1018 return -EOPNOTSUPP;
1019 }
1020 return 0;
1021 }
1022
1023 static const struct net_device_ops adm5120sw_netdev_ops = {
1024 .ndo_open = adm5120_if_open,
1025 .ndo_stop = adm5120_if_stop,
1026 .ndo_start_xmit = adm5120_if_hard_start_xmit,
1027 .ndo_set_multicast_list = adm5120_if_set_multicast_list,
1028 .ndo_do_ioctl = adm5120_if_do_ioctl,
1029 .ndo_tx_timeout = adm5120_if_tx_timeout,
1030 .ndo_validate_addr = eth_validate_addr,
1031 .ndo_change_mtu = eth_change_mtu,
1032 .ndo_set_mac_address = adm5120_if_set_mac_address,
1033 };
1034
1035 static struct net_device *adm5120_if_alloc(void)
1036 {
1037 struct net_device *dev;
1038 struct adm5120_if_priv *priv;
1039
1040 dev = alloc_etherdev(sizeof(*priv));
1041 if (!dev)
1042 return NULL;
1043
1044 priv = netdev_priv(dev);
1045 priv->dev = dev;
1046
1047 dev->irq = ADM5120_IRQ_SWITCH;
1048 dev->netdev_ops = &adm5120sw_netdev_ops;
1049 dev->watchdog_timeo = TX_TIMEOUT;
1050
1051 #ifdef CONFIG_ADM5120_SWITCH_NAPI
1052 netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64);
1053 #endif
1054
1055 return dev;
1056 }
1057
1058 /* ------------------------------------------------------------------------ */
1059
1060 static void adm5120_switch_cleanup(void)
1061 {
1062 int i;
1063
1064 /* disable interrupts */
1065 sw_int_mask(SWITCH_INTS_ALL);
1066
1067 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1068 struct net_device *dev = adm5120_devs[i];
1069 if (dev) {
1070 unregister_netdev(dev);
1071 free_netdev(dev);
1072 }
1073 }
1074
1075 adm5120_switch_tx_ring_free();
1076 adm5120_switch_rx_ring_free();
1077 }
1078
1079 static int __init adm5120_switch_probe(struct platform_device *pdev)
1080 {
1081 u32 t;
1082 int i, err;
1083
1084 adm5120_nrdevs = adm5120_eth_num_ports;
1085
1086 t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
1087 SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT |
1088 SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ;
1089 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1090
1091 t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) |
1092 (SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) |
1093 (SWITCH_PORTS_NOCPU);
1094 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
1095
1096 /* setup ports to Autoneg/100M/Full duplex/Auto MDIX */
1097 t = SWITCH_PORTS_PHY |
1098 (SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) |
1099 (SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) |
1100 (SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) |
1101 (SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) |
1102 PHY_CNTL2_RMAE;
1103 sw_write_reg(SWITCH_REG_PHY_CNTL2, t);
1104
1105 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
1106 t |= PHY_CNTL3_RNT;
1107 sw_write_reg(SWITCH_REG_PHY_CNTL3, t);
1108
1109 /* Force all the packets from all ports are low priority */
1110 sw_write_reg(SWITCH_REG_PRI_CNTL, 0);
1111
1112 sw_int_mask(SWITCH_INTS_ALL);
1113 sw_int_ack(SWITCH_INTS_ALL);
1114
1115 err = adm5120_switch_rx_ring_alloc();
1116 if (err)
1117 goto err;
1118
1119 err = adm5120_switch_tx_ring_alloc();
1120 if (err)
1121 goto err;
1122
1123 adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE);
1124 adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE);
1125
1126 sw_write_reg(SWITCH_REG_SHDA, 0);
1127 sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs));
1128 sw_write_reg(SWITCH_REG_RHDA, 0);
1129 sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs));
1130
1131 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1132 struct net_device *dev;
1133 struct adm5120_if_priv *priv;
1134
1135 dev = adm5120_if_alloc();
1136 if (!dev) {
1137 err = -ENOMEM;
1138 goto err;
1139 }
1140
1141 adm5120_devs[i] = dev;
1142 priv = netdev_priv(dev);
1143
1144 priv->vlan_no = i;
1145 priv->port_mask = adm5120_eth_vlans[i];
1146
1147 memcpy(dev->dev_addr, adm5120_eth_macs[i], 6);
1148 adm5120_write_mac(dev);
1149
1150 err = register_netdev(dev);
1151 if (err) {
1152 SW_INFO("%s register failed, error=%d\n",
1153 dev->name, err);
1154 goto err;
1155 }
1156 }
1157
1158 /* setup vlan/port mapping after devs are filled up */
1159 adm5120_set_vlan(adm5120_eth_vlans);
1160
1161 /* enable CPU port */
1162 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
1163 t &= ~CPUP_CONF_DCPUP;
1164 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1165
1166 return 0;
1167
1168 err:
1169 adm5120_switch_cleanup();
1170
1171 SW_ERR("init failed\n");
1172 return err;
1173 }
1174
1175 static int adm5120_switch_remove(struct platform_device *dev)
1176 {
1177 adm5120_switch_cleanup();
1178 return 0;
1179 }
1180
1181 static struct platform_driver adm5120_switch_driver = {
1182 .probe = adm5120_switch_probe,
1183 .remove = adm5120_switch_remove,
1184 .driver = {
1185 .name = DRV_NAME,
1186 },
1187 };
1188
1189 /* -------------------------------------------------------------------------- */
1190
1191 static int __init adm5120_switch_mod_init(void)
1192 {
1193 int err;
1194
1195 pr_info(DRV_DESC " version " DRV_VERSION "\n");
1196 err = platform_driver_register(&adm5120_switch_driver);
1197
1198 return err;
1199 }
1200
1201 static void __exit adm5120_switch_mod_exit(void)
1202 {
1203 platform_driver_unregister(&adm5120_switch_driver);
1204 }
1205
1206 module_init(adm5120_switch_mod_init);
1207 module_exit(adm5120_switch_mod_exit);
1208
1209 MODULE_LICENSE("GPL v2");
1210 MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
1211 MODULE_DESCRIPTION(DRV_DESC);
1212 MODULE_VERSION(DRV_VERSION);
This page took 0.118228 seconds and 5 git commands to generate.