mac80211: ignore errors in the command to set the rx/tx antenna - many drivers do...
[openwrt.git] / target / linux / lantiq / patches / 700-dwc_otg.patch
1 --- a/drivers/usb/Kconfig
2 +++ b/drivers/usb/Kconfig
3 @@ -111,6 +111,8 @@
4
5 source "drivers/usb/host/Kconfig"
6
7 +source "drivers/usb/dwc_otg/Kconfig"
8 +
9 source "drivers/usb/musb/Kconfig"
10
11 source "drivers/usb/class/Kconfig"
12 --- a/drivers/usb/Makefile
13 +++ b/drivers/usb/Makefile
14 @@ -27,6 +27,8 @@
15
16 obj-$(CONFIG_USB_WUSB) += wusbcore/
17
18 +obj-$(CONFIG_DWC_OTG) += dwc_otg/
19 +
20 obj-$(CONFIG_USB_ACM) += class/
21 obj-$(CONFIG_USB_PRINTER) += class/
22 obj-$(CONFIG_USB_WDM) += class/
23 --- /dev/null
24 +++ b/drivers/usb/dwc_otg/Kconfig
25 @@ -0,0 +1,37 @@
26 +config DWC_OTG
27 + tristate "Synopsis DWC_OTG support"
28 + depends on USB
29 + help
30 + This driver supports Synopsis DWC_OTG IP core
31 + embebbed on many SOCs (ralink, infineon, etc)
32 +
33 +choice
34 + prompt "USB Operation Mode"
35 + depends on DWC_OTG
36 + default DWC_OTG_HOST_ONLY
37 +
38 +config DWC_OTG_HOST_ONLY
39 + bool "HOST ONLY MODE"
40 + depends on DWC_OTG
41 +
42 +config DWC_OTG_DEVICE_ONLY
43 + bool "DEVICE ONLY MODE"
44 + depends on DWC_OTG
45 +endchoice
46 +
47 +choice
48 + prompt "Platform"
49 + depends on DWC_OTG
50 + default DWC_OTG_LANTIQ
51 +
52 +config DWC_OTG_LANTIQ
53 + bool "Lantiq"
54 + depends on LANTIQ
55 + help
56 + Danube USB Host Controller
57 + platform support
58 +endchoice
59 +
60 +config DWC_OTG_DEBUG
61 + bool "Enable debug mode"
62 + depends on DWC_OTG
63 --- /dev/null
64 +++ b/drivers/usb/dwc_otg/Makefile
65 @@ -0,0 +1,39 @@
66 +#
67 +# Makefile for DWC_otg Highspeed USB controller driver
68 +#
69 +
70 +ifeq ($(CONFIG_DWC_OTG_DEBUG),y)
71 +EXTRA_CFLAGS += -DDEBUG
72 +endif
73 +
74 +# Use one of the following flags to compile the software in host-only or
75 +# device-only mode based on the configuration selected by the user
76 +ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y)
77 + EXTRA_CFLAGS += -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY
78 + EXTRA_CFLAGS += -DDWC_OTG_EN_ISOC -DDWC_EN_ISOC
79 +else ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y)
80 + EXTRA_CFLAGS += -DDWC_OTG_DEVICE_ONLY
81 +else
82 + EXTRA_CFLAGS += -DDWC_OTG_MODE
83 +endif
84 +
85 +# EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
86 +# EXTRA_CFLAGS += -DDWC_OTG_EXT_CHG_PUMP
87 +
88 +ifeq ($(CONFIG_DWC_OTG_LANTIQ),y)
89 + EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY -D__KERNEL__
90 +endif
91 +ifeq ($(CONFIG_DWC_OTG_LANTIQ),m)
92 + EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_HOST_ONLY -DMODULE -D__KERNEL__ -DDEBUG
93 +endif
94 +
95 +obj-$(CONFIG_DWC_OTG) := dwc_otg.o
96 +dwc_otg-objs := dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
97 +#dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o
98 +dwc_otg-objs += dwc_otg_attr.o
99 +dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o
100 +dwc_otg-objs += dwc_otg_ifx.o
101 +dwc_otg-objs += dwc_otg_driver.o
102 +
103 +#obj-$(CONFIG_DWC_OTG_IFX) := dwc_otg_ifx.o
104 +#dwc_otg_ifx-objs := dwc_otg_ifx.o
105 --- /dev/null
106 +++ b/drivers/usb/dwc_otg/dwc_otg_attr.c
107 @@ -0,0 +1,802 @@
108 +/* ==========================================================================
109 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $
110 + * $Revision: 1.1.1.1 $
111 + * $Date: 2009-04-17 06:15:34 $
112 + * $Change: 537387 $
113 + *
114 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
115 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
116 + * otherwise expressly agreed to in writing between Synopsys and you.
117 + *
118 + * The Software IS NOT an item of Licensed Software or Licensed Product under
119 + * any End User Software License Agreement or Agreement for Licensed Product
120 + * with Synopsys or any supplement thereto. You are permitted to use and
121 + * redistribute this Software in source and binary forms, with or without
122 + * modification, provided that redistributions of source code must retain this
123 + * notice. You may not view, use, disclose, copy or distribute this file or
124 + * any information contained herein except pursuant to this license grant from
125 + * Synopsys. If you do not agree with this notice, including the disclaimer
126 + * below, then you are not authorized to use the Software.
127 + *
128 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
129 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
130 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
131 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
132 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
133 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
134 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
135 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
136 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
137 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
138 + * DAMAGE.
139 + * ========================================================================== */
140 +
141 +/** @file
142 + *
143 + * The diagnostic interface will provide access to the controller for
144 + * bringing up the hardware and testing. The Linux driver attributes
145 + * feature will be used to provide the Linux Diagnostic
146 + * Interface. These attributes are accessed through sysfs.
147 + */
148 +
149 +/** @page "Linux Module Attributes"
150 + *
151 + * The Linux module attributes feature is used to provide the Linux
152 + * Diagnostic Interface. These attributes are accessed through sysfs.
153 + * The diagnostic interface will provide access to the controller for
154 + * bringing up the hardware and testing.
155 +
156 +
157 + The following table shows the attributes.
158 + <table>
159 + <tr>
160 + <td><b> Name</b></td>
161 + <td><b> Description</b></td>
162 + <td><b> Access</b></td>
163 + </tr>
164 +
165 + <tr>
166 + <td> mode </td>
167 + <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
168 + <td> Read</td>
169 + </tr>
170 +
171 + <tr>
172 + <td> hnpcapable </td>
173 + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
174 + Read returns the current value.</td>
175 + <td> Read/Write</td>
176 + </tr>
177 +
178 + <tr>
179 + <td> srpcapable </td>
180 + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
181 + Read returns the current value.</td>
182 + <td> Read/Write</td>
183 + </tr>
184 +
185 + <tr>
186 + <td> hnp </td>
187 + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
188 + <td> Read/Write</td>
189 + </tr>
190 +
191 + <tr>
192 + <td> srp </td>
193 + <td> Initiates the Session Request Protocol. Read returns the status.</td>
194 + <td> Read/Write</td>
195 + </tr>
196 +
197 + <tr>
198 + <td> buspower </td>
199 + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
200 + <td> Read/Write</td>
201 + </tr>
202 +
203 + <tr>
204 + <td> bussuspend </td>
205 + <td> Suspends the USB bus.</td>
206 + <td> Read/Write</td>
207 + </tr>
208 +
209 + <tr>
210 + <td> busconnected </td>
211 + <td> Gets the connection status of the bus</td>
212 + <td> Read</td>
213 + </tr>
214 +
215 + <tr>
216 + <td> gotgctl </td>
217 + <td> Gets or sets the Core Control Status Register.</td>
218 + <td> Read/Write</td>
219 + </tr>
220 +
221 + <tr>
222 + <td> gusbcfg </td>
223 + <td> Gets or sets the Core USB Configuration Register</td>
224 + <td> Read/Write</td>
225 + </tr>
226 +
227 + <tr>
228 + <td> grxfsiz </td>
229 + <td> Gets or sets the Receive FIFO Size Register</td>
230 + <td> Read/Write</td>
231 + </tr>
232 +
233 + <tr>
234 + <td> gnptxfsiz </td>
235 + <td> Gets or sets the non-periodic Transmit Size Register</td>
236 + <td> Read/Write</td>
237 + </tr>
238 +
239 + <tr>
240 + <td> gpvndctl </td>
241 + <td> Gets or sets the PHY Vendor Control Register</td>
242 + <td> Read/Write</td>
243 + </tr>
244 +
245 + <tr>
246 + <td> ggpio </td>
247 + <td> Gets the value in the lower 16-bits of the General Purpose IO Register
248 + or sets the upper 16 bits.</td>
249 + <td> Read/Write</td>
250 + </tr>
251 +
252 + <tr>
253 + <td> guid </td>
254 + <td> Gets or sets the value of the User ID Register</td>
255 + <td> Read/Write</td>
256 + </tr>
257 +
258 + <tr>
259 + <td> gsnpsid </td>
260 + <td> Gets the value of the Synopsys ID Regester</td>
261 + <td> Read</td>
262 + </tr>
263 +
264 + <tr>
265 + <td> devspeed </td>
266 + <td> Gets or sets the device speed setting in the DCFG register</td>
267 + <td> Read/Write</td>
268 + </tr>
269 +
270 + <tr>
271 + <td> enumspeed </td>
272 + <td> Gets the device enumeration Speed.</td>
273 + <td> Read</td>
274 + </tr>
275 +
276 + <tr>
277 + <td> hptxfsiz </td>
278 + <td> Gets the value of the Host Periodic Transmit FIFO</td>
279 + <td> Read</td>
280 + </tr>
281 +
282 + <tr>
283 + <td> hprt0 </td>
284 + <td> Gets or sets the value in the Host Port Control and Status Register</td>
285 + <td> Read/Write</td>
286 + </tr>
287 +
288 + <tr>
289 + <td> regoffset </td>
290 + <td> Sets the register offset for the next Register Access</td>
291 + <td> Read/Write</td>
292 + </tr>
293 +
294 + <tr>
295 + <td> regvalue </td>
296 + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
297 + <td> Read/Write</td>
298 + </tr>
299 +
300 + <tr>
301 + <td> remote_wakeup </td>
302 + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
303 + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
304 + Wakeup signalling bit in the Device Control Register is set for 1
305 + milli-second.</td>
306 + <td> Read/Write</td>
307 + </tr>
308 +
309 + <tr>
310 + <td> regdump </td>
311 + <td> Dumps the contents of core registers.</td>
312 + <td> Read</td>
313 + </tr>
314 +
315 + <tr>
316 + <td> hcddump </td>
317 + <td> Dumps the current HCD state.</td>
318 + <td> Read</td>
319 + </tr>
320 +
321 + <tr>
322 + <td> hcd_frrem </td>
323 + <td> Shows the average value of the Frame Remaining
324 + field in the Host Frame Number/Frame Remaining register when an SOF interrupt
325 + occurs. This can be used to determine the average interrupt latency. Also
326 + shows the average Frame Remaining value for start_transfer and the "a" and
327 + "b" sample points. The "a" and "b" sample points may be used during debugging
328 + bto determine how long it takes to execute a section of the HCD code.</td>
329 + <td> Read</td>
330 + </tr>
331 +
332 + <tr>
333 + <td> rd_reg_test </td>
334 + <td> Displays the time required to read the GNPTXFSIZ register many times
335 + (the output shows the number of times the register is read).
336 + <td> Read</td>
337 + </tr>
338 +
339 + <tr>
340 + <td> wr_reg_test </td>
341 + <td> Displays the time required to write the GNPTXFSIZ register many times
342 + (the output shows the number of times the register is written).
343 + <td> Read</td>
344 + </tr>
345 +
346 + </table>
347 +
348 + Example usage:
349 + To get the current mode:
350 + cat /sys/devices/lm0/mode
351 +
352 + To power down the USB:
353 + echo 0 > /sys/devices/lm0/buspower
354 + */
355 +#include <linux/kernel.h>
356 +#include <linux/module.h>
357 +#include <linux/moduleparam.h>
358 +#include <linux/init.h>
359 +#include <linux/device.h>
360 +#include <linux/errno.h>
361 +#include <linux/types.h>
362 +#include <linux/stat.h> /* permission constants */
363 +
364 +#include <asm/io.h>
365 +
366 +#include "dwc_otg_plat.h"
367 +#include "dwc_otg_attr.h"
368 +#include "dwc_otg_driver.h"
369 +// #include "dwc_otg_pcd.h"
370 +#include "dwc_otg_hcd.h"
371 +
372 +// 20070316, winder added.
373 +#ifndef SZ_256K
374 +#define SZ_256K 0x00040000
375 +#endif
376 +
377 +/*
378 + * MACROs for defining sysfs attribute
379 + */
380 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
381 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
382 +{ \
383 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
384 + uint32_t val; \
385 + val = dwc_read_reg32 (_addr_); \
386 + val = (val & (_mask_)) >> _shift_; \
387 + return sprintf (buf, "%s = 0x%x\n", _string_, val); \
388 +}
389 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
390 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
391 +{ \
392 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
393 + uint32_t set = simple_strtoul(buf, NULL, 16); \
394 + uint32_t clear = set; \
395 + clear = ((~clear) << _shift_) & _mask_; \
396 + set = (set << _shift_) & _mask_; \
397 + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
398 + dwc_modify_reg32(_addr_, clear, set); \
399 + return count; \
400 +}
401 +
402 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
403 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
404 +DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
405 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
406 +
407 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
408 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
409 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
410 +
411 +/*
412 + * MACROs for defining sysfs attribute for 32-bit registers
413 + */
414 +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
415 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
416 +{ \
417 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
418 + uint32_t val; \
419 + val = dwc_read_reg32 (_addr_); \
420 + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
421 +}
422 +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
423 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
424 +{ \
425 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
426 + uint32_t val = simple_strtoul(buf, NULL, 16); \
427 + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
428 + dwc_write_reg32(_addr_, val); \
429 + return count; \
430 +}
431 +
432 +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
433 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
434 +DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
435 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
436 +
437 +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
438 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
439 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
440 +
441 +
442 +/** @name Functions for Show/Store of Attributes */
443 +/**@{*/
444 +
445 +/**
446 + * Show the register offset of the Register Access.
447 + */
448 +static ssize_t regoffset_show( struct device *_dev, struct device_attribute *attr, char *buf)
449 +{
450 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
451 + return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
452 +}
453 +
454 +/**
455 + * Set the register offset for the next Register Access Read/Write
456 + */
457 +static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf,
458 + size_t count )
459 +{
460 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
461 + uint32_t offset = simple_strtoul(buf, NULL, 16);
462 + //dev_dbg(_dev, "Offset=0x%08x\n", offset);
463 + if (offset < SZ_256K ) {
464 + otg_dev->reg_offset = offset;
465 + }
466 + else {
467 + dev_err( _dev, "invalid offset\n" );
468 + }
469 +
470 + return count;
471 +}
472 +DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store);
473 +
474 +/**
475 + * Show the value of the register at the offset in the reg_offset
476 + * attribute.
477 + */
478 +static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf)
479 +{
480 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
481 + uint32_t val;
482 + volatile uint32_t *addr;
483 +
484 + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
485 + /* Calculate the address */
486 + addr = (uint32_t*)(otg_dev->reg_offset +
487 + (uint8_t*)otg_dev->base);
488 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
489 + val = dwc_read_reg32( addr );
490 + return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
491 + "Reg@0x%06x = 0x%08x\n",
492 + otg_dev->reg_offset, val);
493 + }
494 + else {
495 + dev_err(_dev, "Invalid offset (0x%0x)\n",
496 + otg_dev->reg_offset);
497 + return sprintf(buf, "invalid offset\n" );
498 + }
499 +}
500 +
501 +/**
502 + * Store the value in the register at the offset in the reg_offset
503 + * attribute.
504 + *
505 + */
506 +static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf,
507 + size_t count )
508 +{
509 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
510 + volatile uint32_t * addr;
511 + uint32_t val = simple_strtoul(buf, NULL, 16);
512 + //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
513 + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
514 + /* Calculate the address */
515 + addr = (uint32_t*)(otg_dev->reg_offset +
516 + (uint8_t*)otg_dev->base);
517 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
518 + dwc_write_reg32( addr, val );
519 + }
520 + else {
521 + dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
522 + otg_dev->reg_offset);
523 + }
524 + return count;
525 +}
526 +DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
527 +
528 +/*
529 + * Attributes
530 + */
531 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
532 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
533 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
534 +
535 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
536 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
537 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
538 +
539 +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
540 +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
541 +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
542 +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
543 +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
544 +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
545 +DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
546 +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
547 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
548 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
549 +
550 +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
551 +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
552 +
553 +
554 +/**
555 + * @todo Add code to initiate the HNP.
556 + */
557 +/**
558 + * Show the HNP status bit
559 + */
560 +static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf)
561 +{
562 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
563 + gotgctl_data_t val;
564 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
565 + return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
566 +}
567 +
568 +/**
569 + * Set the HNP Request bit
570 + */
571 +static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
572 + size_t count )
573 +{
574 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
575 + uint32_t in = simple_strtoul(buf, NULL, 16);
576 + uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
577 + gotgctl_data_t mem;
578 + mem.d32 = dwc_read_reg32(addr);
579 + mem.b.hnpreq = in;
580 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
581 + dwc_write_reg32(addr, mem.d32);
582 + return count;
583 +}
584 +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
585 +
586 +/**
587 + * @todo Add code to initiate the SRP.
588 + */
589 +/**
590 + * Show the SRP status bit
591 + */
592 +static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf)
593 +{
594 +#ifndef DWC_HOST_ONLY
595 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
596 + gotgctl_data_t val;
597 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
598 + return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
599 +#else
600 + return sprintf(buf, "Host Only Mode!\n");
601 +#endif
602 +}
603 +
604 +/**
605 + * Set the SRP Request bit
606 + */
607 +static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
608 + size_t count )
609 +{
610 +#ifndef DWC_HOST_ONLY
611 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
612 + dwc_otg_pcd_initiate_srp(otg_dev->pcd);
613 +#endif
614 + return count;
615 +}
616 +DEVICE_ATTR(srp, 0644, srp_show, srp_store);
617 +
618 +/**
619 + * @todo Need to do more for power on/off?
620 + */
621 +/**
622 + * Show the Bus Power status
623 + */
624 +static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf)
625 +{
626 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
627 + hprt0_data_t val;
628 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
629 + return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
630 +}
631 +
632 +
633 +/**
634 + * Set the Bus Power status
635 + */
636 +static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf,
637 + size_t count )
638 +{
639 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
640 + uint32_t on = simple_strtoul(buf, NULL, 16);
641 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
642 + hprt0_data_t mem;
643 +
644 + mem.d32 = dwc_read_reg32(addr);
645 + mem.b.prtpwr = on;
646 +
647 + //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
648 + dwc_write_reg32(addr, mem.d32);
649 +
650 + return count;
651 +}
652 +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
653 +
654 +/**
655 + * @todo Need to do more for suspend?
656 + */
657 +/**
658 + * Show the Bus Suspend status
659 + */
660 +static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf)
661 +{
662 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
663 + hprt0_data_t val;
664 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
665 + return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
666 +}
667 +
668 +/**
669 + * Set the Bus Suspend status
670 + */
671 +static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf,
672 + size_t count )
673 +{
674 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
675 + uint32_t in = simple_strtoul(buf, NULL, 16);
676 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
677 + hprt0_data_t mem;
678 + mem.d32 = dwc_read_reg32(addr);
679 + mem.b.prtsusp = in;
680 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
681 + dwc_write_reg32(addr, mem.d32);
682 + return count;
683 +}
684 +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
685 +
686 +/**
687 + * Show the status of Remote Wakeup.
688 + */
689 +static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf)
690 +{
691 +#ifndef DWC_HOST_ONLY
692 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
693 + dctl_data_t val;
694 + val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
695 + return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
696 + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
697 +#else
698 + return sprintf(buf, "Host Only Mode!\n");
699 +#endif
700 +}
701 +
702 +/**
703 + * Initiate a remote wakeup of the host. The Device control register
704 + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
705 + * flag is set.
706 + *
707 + */
708 +static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, const char *buf,
709 + size_t count )
710 +{
711 +#ifndef DWC_HOST_ONLY
712 + uint32_t val = simple_strtoul(buf, NULL, 16);
713 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
714 + if (val&1) {
715 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
716 + }
717 + else {
718 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
719 + }
720 +#endif
721 + return count;
722 +}
723 +DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
724 + remote_wakeup_store);
725 +
726 +/**
727 + * Dump global registers and either host or device registers (depending on the
728 + * current mode of the core).
729 + */
730 +static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf)
731 +{
732 +#ifdef DEBUG
733 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
734 + printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev);
735 +
736 + dwc_otg_dump_global_registers( otg_dev->core_if);
737 + if (dwc_otg_is_host_mode(otg_dev->core_if)) {
738 + dwc_otg_dump_host_registers( otg_dev->core_if);
739 + } else {
740 + dwc_otg_dump_dev_registers( otg_dev->core_if);
741 + }
742 +#endif
743 +
744 + return sprintf( buf, "Register Dump\n" );
745 +}
746 +
747 +DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
748 +
749 +/**
750 + * Dump the current hcd state.
751 + */
752 +static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf)
753 +{
754 +#ifndef DWC_DEVICE_ONLY
755 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
756 + dwc_otg_hcd_dump_state(otg_dev->hcd);
757 +#endif
758 + return sprintf( buf, "HCD Dump\n" );
759 +}
760 +
761 +DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
762 +
763 +/**
764 + * Dump the average frame remaining at SOF. This can be used to
765 + * determine average interrupt latency. Frame remaining is also shown for
766 + * start transfer and two additional sample points.
767 + */
768 +static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf)
769 +{
770 +#ifndef DWC_DEVICE_ONLY
771 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
772 + dwc_otg_hcd_dump_frrem(otg_dev->hcd);
773 +#endif
774 + return sprintf( buf, "HCD Dump Frame Remaining\n" );
775 +}
776 +
777 +DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
778 +
779 +/**
780 + * Displays the time required to read the GNPTXFSIZ register many times (the
781 + * output shows the number of times the register is read).
782 + */
783 +#define RW_REG_COUNT 10000000
784 +#define MSEC_PER_JIFFIE 1000/HZ
785 +static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
786 +{
787 + int i;
788 + int time;
789 + int start_jiffies;
790 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
791 +
792 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
793 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
794 + start_jiffies = jiffies;
795 + for (i = 0; i < RW_REG_COUNT; i++) {
796 + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
797 + }
798 + time = jiffies - start_jiffies;
799 + return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
800 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
801 +}
802 +
803 +DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
804 +
805 +/**
806 + * Displays the time required to write the GNPTXFSIZ register many times (the
807 + * output shows the number of times the register is written).
808 + */
809 +static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
810 +{
811 + int i;
812 + int time;
813 + int start_jiffies;
814 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
815 + uint32_t reg_val;
816 +
817 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
818 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
819 + reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
820 + start_jiffies = jiffies;
821 + for (i = 0; i < RW_REG_COUNT; i++) {
822 + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
823 + }
824 + time = jiffies - start_jiffies;
825 + return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
826 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
827 +}
828 +
829 +DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
830 +/**@}*/
831 +
832 +/**
833 + * Create the device files
834 + */
835 +void dwc_otg_attr_create (struct device *_dev)
836 +{
837 + int retval;
838 +
839 + retval = device_create_file(_dev, &dev_attr_regoffset);
840 + retval += device_create_file(_dev, &dev_attr_regvalue);
841 + retval += device_create_file(_dev, &dev_attr_mode);
842 + retval += device_create_file(_dev, &dev_attr_hnpcapable);
843 + retval += device_create_file(_dev, &dev_attr_srpcapable);
844 + retval += device_create_file(_dev, &dev_attr_hnp);
845 + retval += device_create_file(_dev, &dev_attr_srp);
846 + retval += device_create_file(_dev, &dev_attr_buspower);
847 + retval += device_create_file(_dev, &dev_attr_bussuspend);
848 + retval += device_create_file(_dev, &dev_attr_busconnected);
849 + retval += device_create_file(_dev, &dev_attr_gotgctl);
850 + retval += device_create_file(_dev, &dev_attr_gusbcfg);
851 + retval += device_create_file(_dev, &dev_attr_grxfsiz);
852 + retval += device_create_file(_dev, &dev_attr_gnptxfsiz);
853 + retval += device_create_file(_dev, &dev_attr_gpvndctl);
854 + retval += device_create_file(_dev, &dev_attr_ggpio);
855 + retval += device_create_file(_dev, &dev_attr_guid);
856 + retval += device_create_file(_dev, &dev_attr_gsnpsid);
857 + retval += device_create_file(_dev, &dev_attr_devspeed);
858 + retval += device_create_file(_dev, &dev_attr_enumspeed);
859 + retval += device_create_file(_dev, &dev_attr_hptxfsiz);
860 + retval += device_create_file(_dev, &dev_attr_hprt0);
861 + retval += device_create_file(_dev, &dev_attr_remote_wakeup);
862 + retval += device_create_file(_dev, &dev_attr_regdump);
863 + retval += device_create_file(_dev, &dev_attr_hcddump);
864 + retval += device_create_file(_dev, &dev_attr_hcd_frrem);
865 + retval += device_create_file(_dev, &dev_attr_rd_reg_test);
866 + retval += device_create_file(_dev, &dev_attr_wr_reg_test);
867 +
868 + if(retval != 0)
869 + {
870 + DWC_PRINT("cannot create sysfs device files.\n");
871 + // DWC_PRINT("killing own sysfs device files!\n");
872 + dwc_otg_attr_remove(_dev);
873 + }
874 +}
875 +
876 +/**
877 + * Remove the device files
878 + */
879 +void dwc_otg_attr_remove (struct device *_dev)
880 +{
881 + device_remove_file(_dev, &dev_attr_regoffset);
882 + device_remove_file(_dev, &dev_attr_regvalue);
883 + device_remove_file(_dev, &dev_attr_mode);
884 + device_remove_file(_dev, &dev_attr_hnpcapable);
885 + device_remove_file(_dev, &dev_attr_srpcapable);
886 + device_remove_file(_dev, &dev_attr_hnp);
887 + device_remove_file(_dev, &dev_attr_srp);
888 + device_remove_file(_dev, &dev_attr_buspower);
889 + device_remove_file(_dev, &dev_attr_bussuspend);
890 + device_remove_file(_dev, &dev_attr_busconnected);
891 + device_remove_file(_dev, &dev_attr_gotgctl);
892 + device_remove_file(_dev, &dev_attr_gusbcfg);
893 + device_remove_file(_dev, &dev_attr_grxfsiz);
894 + device_remove_file(_dev, &dev_attr_gnptxfsiz);
895 + device_remove_file(_dev, &dev_attr_gpvndctl);
896 + device_remove_file(_dev, &dev_attr_ggpio);
897 + device_remove_file(_dev, &dev_attr_guid);
898 + device_remove_file(_dev, &dev_attr_gsnpsid);
899 + device_remove_file(_dev, &dev_attr_devspeed);
900 + device_remove_file(_dev, &dev_attr_enumspeed);
901 + device_remove_file(_dev, &dev_attr_hptxfsiz);
902 + device_remove_file(_dev, &dev_attr_hprt0);
903 + device_remove_file(_dev, &dev_attr_remote_wakeup);
904 + device_remove_file(_dev, &dev_attr_regdump);
905 + device_remove_file(_dev, &dev_attr_hcddump);
906 + device_remove_file(_dev, &dev_attr_hcd_frrem);
907 + device_remove_file(_dev, &dev_attr_rd_reg_test);
908 + device_remove_file(_dev, &dev_attr_wr_reg_test);
909 +}
910 --- /dev/null
911 +++ b/drivers/usb/dwc_otg/dwc_otg_attr.h
912 @@ -0,0 +1,67 @@
913 +/* ==========================================================================
914 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $
915 + * $Revision: 1.1.1.1 $
916 + * $Date: 2009-04-17 06:15:34 $
917 + * $Change: 510275 $
918 + *
919 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
920 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
921 + * otherwise expressly agreed to in writing between Synopsys and you.
922 + *
923 + * The Software IS NOT an item of Licensed Software or Licensed Product under
924 + * any End User Software License Agreement or Agreement for Licensed Product
925 + * with Synopsys or any supplement thereto. You are permitted to use and
926 + * redistribute this Software in source and binary forms, with or without
927 + * modification, provided that redistributions of source code must retain this
928 + * notice. You may not view, use, disclose, copy or distribute this file or
929 + * any information contained herein except pursuant to this license grant from
930 + * Synopsys. If you do not agree with this notice, including the disclaimer
931 + * below, then you are not authorized to use the Software.
932 + *
933 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
934 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
935 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
936 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
937 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
938 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
939 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
940 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
941 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
942 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
943 + * DAMAGE.
944 + * ========================================================================== */
945 +
946 +#if !defined(__DWC_OTG_ATTR_H__)
947 +#define __DWC_OTG_ATTR_H__
948 +
949 +/** @file
950 + * This file contains the interface to the Linux device attributes.
951 + */
952 +extern struct device_attribute dev_attr_regoffset;
953 +extern struct device_attribute dev_attr_regvalue;
954 +
955 +extern struct device_attribute dev_attr_mode;
956 +extern struct device_attribute dev_attr_hnpcapable;
957 +extern struct device_attribute dev_attr_srpcapable;
958 +extern struct device_attribute dev_attr_hnp;
959 +extern struct device_attribute dev_attr_srp;
960 +extern struct device_attribute dev_attr_buspower;
961 +extern struct device_attribute dev_attr_bussuspend;
962 +extern struct device_attribute dev_attr_busconnected;
963 +extern struct device_attribute dev_attr_gotgctl;
964 +extern struct device_attribute dev_attr_gusbcfg;
965 +extern struct device_attribute dev_attr_grxfsiz;
966 +extern struct device_attribute dev_attr_gnptxfsiz;
967 +extern struct device_attribute dev_attr_gpvndctl;
968 +extern struct device_attribute dev_attr_ggpio;
969 +extern struct device_attribute dev_attr_guid;
970 +extern struct device_attribute dev_attr_gsnpsid;
971 +extern struct device_attribute dev_attr_devspeed;
972 +extern struct device_attribute dev_attr_enumspeed;
973 +extern struct device_attribute dev_attr_hptxfsiz;
974 +extern struct device_attribute dev_attr_hprt0;
975 +
976 +void dwc_otg_attr_create (struct device *_dev);
977 +void dwc_otg_attr_remove (struct device *_dev);
978 +
979 +#endif
980 --- /dev/null
981 +++ b/drivers/usb/dwc_otg/dwc_otg_cil.c
982 @@ -0,0 +1,3025 @@
983 +/* ==========================================================================
984 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $
985 + * $Revision: 1.1.1.1 $
986 + * $Date: 2009-04-17 06:15:34 $
987 + * $Change: 631780 $
988 + *
989 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
990 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
991 + * otherwise expressly agreed to in writing between Synopsys and you.
992 + *
993 + * The Software IS NOT an item of Licensed Software or Licensed Product under
994 + * any End User Software License Agreement or Agreement for Licensed Product
995 + * with Synopsys or any supplement thereto. You are permitted to use and
996 + * redistribute this Software in source and binary forms, with or without
997 + * modification, provided that redistributions of source code must retain this
998 + * notice. You may not view, use, disclose, copy or distribute this file or
999 + * any information contained herein except pursuant to this license grant from
1000 + * Synopsys. If you do not agree with this notice, including the disclaimer
1001 + * below, then you are not authorized to use the Software.
1002 + *
1003 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1004 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1005 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1006 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1007 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1008 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1009 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1010 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1011 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1012 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1013 + * DAMAGE.
1014 + * ========================================================================== */
1015 +
1016 +/** @file
1017 + *
1018 + * The Core Interface Layer provides basic services for accessing and
1019 + * managing the DWC_otg hardware. These services are used by both the
1020 + * Host Controller Driver and the Peripheral Controller Driver.
1021 + *
1022 + * The CIL manages the memory map for the core so that the HCD and PCD
1023 + * don't have to do this separately. It also handles basic tasks like
1024 + * reading/writing the registers and data FIFOs in the controller.
1025 + * Some of the data access functions provide encapsulation of several
1026 + * operations required to perform a task, such as writing multiple
1027 + * registers to start a transfer. Finally, the CIL performs basic
1028 + * services that are not specific to either the host or device modes
1029 + * of operation. These services include management of the OTG Host
1030 + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
1031 + * Diagnostic API is also provided to allow testing of the controller
1032 + * hardware.
1033 + *
1034 + * The Core Interface Layer has the following requirements:
1035 + * - Provides basic controller operations.
1036 + * - Minimal use of OS services.
1037 + * - The OS services used will be abstracted by using inline functions
1038 + * or macros.
1039 + *
1040 + */
1041 +#include <asm/unaligned.h>
1042 +
1043 +#ifdef DEBUG
1044 +#include <linux/jiffies.h>
1045 +#endif
1046 +
1047 +#include "dwc_otg_plat.h"
1048 +
1049 +#include "dwc_otg_regs.h"
1050 +#include "dwc_otg_cil.h"
1051 +
1052 +/**
1053 + * This function is called to initialize the DWC_otg CSR data
1054 + * structures. The register addresses in the device and host
1055 + * structures are initialized from the base address supplied by the
1056 + * caller. The calling function must make the OS calls to get the
1057 + * base address of the DWC_otg controller registers. The core_params
1058 + * argument holds the parameters that specify how the core should be
1059 + * configured.
1060 + *
1061 + * @param[in] _reg_base_addr Base address of DWC_otg core registers
1062 + * @param[in] _core_params Pointer to the core configuration parameters
1063 + *
1064 + */
1065 +dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
1066 + dwc_otg_core_params_t *_core_params)
1067 +{
1068 + dwc_otg_core_if_t *core_if = 0;
1069 + dwc_otg_dev_if_t *dev_if = 0;
1070 + dwc_otg_host_if_t *host_if = 0;
1071 + uint8_t *reg_base = (uint8_t *)_reg_base_addr;
1072 + int i = 0;
1073 +
1074 + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params);
1075 +
1076 + core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL);
1077 + if (core_if == 0) {
1078 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
1079 + return 0;
1080 + }
1081 + memset(core_if, 0, sizeof(dwc_otg_core_if_t));
1082 +
1083 + core_if->core_params = _core_params;
1084 + core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
1085 + /*
1086 + * Allocate the Device Mode structures.
1087 + */
1088 + dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
1089 + if (dev_if == 0) {
1090 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
1091 + kfree( core_if );
1092 + return 0;
1093 + }
1094 +
1095 + dev_if->dev_global_regs =
1096 + (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
1097 +
1098 + for (i=0; i<MAX_EPS_CHANNELS; i++) {
1099 + dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
1100 + (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
1101 + (i * DWC_EP_REG_OFFSET));
1102 +
1103 + dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
1104 + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
1105 + (i * DWC_EP_REG_OFFSET));
1106 + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
1107 + i, &dev_if->in_ep_regs[i]->diepctl);
1108 + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
1109 + i, &dev_if->out_ep_regs[i]->doepctl);
1110 + }
1111 + dev_if->speed = 0; // unknown
1112 + //dev_if->num_eps = MAX_EPS_CHANNELS;
1113 + //dev_if->num_perio_eps = 0;
1114 +
1115 + core_if->dev_if = dev_if;
1116 + /*
1117 + * Allocate the Host Mode structures.
1118 + */
1119 + host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL);
1120 + if (host_if == 0) {
1121 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
1122 + kfree( dev_if );
1123 + kfree( core_if );
1124 + return 0;
1125 + }
1126 +
1127 + host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
1128 + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
1129 + host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
1130 + for (i=0; i<MAX_EPS_CHANNELS; i++) {
1131 + host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
1132 + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
1133 + (i * DWC_OTG_CHAN_REGS_OFFSET));
1134 + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
1135 + i, &host_if->hc_regs[i]->hcchar);
1136 + }
1137 + host_if->num_host_channels = MAX_EPS_CHANNELS;
1138 + core_if->host_if = host_if;
1139 +
1140 + for (i=0; i<MAX_EPS_CHANNELS; i++) {
1141 + core_if->data_fifo[i] =
1142 + (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
1143 + (i * DWC_OTG_DATA_FIFO_SIZE));
1144 + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
1145 + i, (unsigned)core_if->data_fifo[i]);
1146 + } // for loop.
1147 +
1148 + core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
1149 +
1150 + /*
1151 + * Store the contents of the hardware configuration registers here for
1152 + * easy access later.
1153 + */
1154 + core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
1155 + core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
1156 + core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
1157 + core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
1158 +
1159 + DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
1160 + DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
1161 + DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
1162 + DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
1163 +
1164 +
1165 + DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
1166 + DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
1167 + DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
1168 + DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
1169 + DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
1170 + DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
1171 + DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
1172 +
1173 + DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
1174 + DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
1175 +
1176 + /*
1177 + * Set the SRP sucess bit for FS-I2c
1178 + */
1179 + core_if->srp_success = 0;
1180 + core_if->srp_timer_started = 0;
1181 +
1182 + return core_if;
1183 +}
1184 +/**
1185 + * This function frees the structures allocated by dwc_otg_cil_init().
1186 + *
1187 + * @param[in] _core_if The core interface pointer returned from
1188 + * dwc_otg_cil_init().
1189 + *
1190 + */
1191 +void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if )
1192 +{
1193 + /* Disable all interrupts */
1194 + dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0);
1195 + dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0);
1196 +
1197 + if ( _core_if->dev_if ) {
1198 + kfree( _core_if->dev_if );
1199 + }
1200 + if ( _core_if->host_if ) {
1201 + kfree( _core_if->host_if );
1202 + }
1203 + kfree( _core_if );
1204 +}
1205 +
1206 +/**
1207 + * This function enables the controller's Global Interrupt in the AHB Config
1208 + * register.
1209 + *
1210 + * @param[in] _core_if Programming view of DWC_otg controller.
1211 + */
1212 +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if )
1213 +{
1214 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1215 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1216 + dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
1217 +}
1218 +/**
1219 + * This function disables the controller's Global Interrupt in the AHB Config
1220 + * register.
1221 + *
1222 + * @param[in] _core_if Programming view of DWC_otg controller.
1223 + */
1224 +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if )
1225 +{
1226 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1227 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1228 + dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
1229 +}
1230 +
1231 +/**
1232 + * This function initializes the commmon interrupts, used in both
1233 + * device and host modes.
1234 + *
1235 + * @param[in] _core_if Programming view of the DWC_otg controller
1236 + *
1237 + */
1238 +static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if)
1239 +{
1240 + dwc_otg_core_global_regs_t *global_regs =
1241 + _core_if->core_global_regs;
1242 + gintmsk_data_t intr_mask = { .d32 = 0};
1243 + /* Clear any pending OTG Interrupts */
1244 + dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF);
1245 + /* Clear any pending interrupts */
1246 + dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
1247 + /*
1248 + * Enable the interrupts in the GINTMSK.
1249 + */
1250 + intr_mask.b.modemismatch = 1;
1251 + intr_mask.b.otgintr = 1;
1252 + if (!_core_if->dma_enable) {
1253 + intr_mask.b.rxstsqlvl = 1;
1254 + }
1255 + intr_mask.b.conidstschng = 1;
1256 + intr_mask.b.wkupintr = 1;
1257 + intr_mask.b.disconnect = 1;
1258 + intr_mask.b.usbsuspend = 1;
1259 + intr_mask.b.sessreqintr = 1;
1260 + dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32);
1261 +}
1262 +
1263 +/**
1264 + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
1265 + * type.
1266 + */
1267 +static void init_fslspclksel(dwc_otg_core_if_t *_core_if)
1268 +{
1269 + uint32_t val;
1270 + hcfg_data_t hcfg;
1271 +
1272 + if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1273 + (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1274 + (_core_if->core_params->ulpi_fs_ls)) ||
1275 + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
1276 + {
1277 + /* Full speed PHY */
1278 + val = DWC_HCFG_48_MHZ;
1279 + } else {
1280 + /* High speed PHY running at full speed or high speed */
1281 + val = DWC_HCFG_30_60_MHZ;
1282 + }
1283 +
1284 + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
1285 + hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg);
1286 + hcfg.b.fslspclksel = val;
1287 + dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32);
1288 +}
1289 +
1290 +/**
1291 + * Initializes the DevSpd field of the DCFG register depending on the PHY type
1292 + * and the enumeration speed of the device.
1293 + */
1294 +static void init_devspd(dwc_otg_core_if_t *_core_if)
1295 +{
1296 + uint32_t val;
1297 + dcfg_data_t dcfg;
1298 +
1299 + if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1300 + (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1301 + (_core_if->core_params->ulpi_fs_ls)) ||
1302 + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
1303 + {
1304 + /* Full speed PHY */
1305 + val = 0x3;
1306 + } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
1307 + /* High speed PHY running at full speed */
1308 + val = 0x1;
1309 + } else {
1310 + /* High speed PHY running at high speed */
1311 + val = 0x0;
1312 + }
1313 +
1314 + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
1315 + dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg);
1316 + dcfg.b.devspd = val;
1317 + dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
1318 +}
1319 +
1320 +/**
1321 + * This function calculates the number of IN EPS
1322 + * using GHWCFG1 and GHWCFG2 registers values
1323 + *
1324 + * @param _pcd the pcd structure.
1325 + */
1326 +static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if)
1327 +{
1328 + uint32_t num_in_eps = 0;
1329 + uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
1330 + uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
1331 + uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps;
1332 + int i;
1333 + for (i = 0; i < num_eps; ++i) {
1334 + if (!(hwcfg1 & 0x1))
1335 + num_in_eps++;
1336 + hwcfg1 >>= 2;
1337 + }
1338 + if (_core_if->hwcfg4.b.ded_fifo_en) {
1339 + num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
1340 + }
1341 + return num_in_eps;
1342 +}
1343 +
1344 +
1345 +/**
1346 + * This function calculates the number of OUT EPS
1347 + * using GHWCFG1 and GHWCFG2 registers values
1348 + *
1349 + * @param _pcd the pcd structure.
1350 + */
1351 +static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if)
1352 +{
1353 + uint32_t num_out_eps = 0;
1354 + uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
1355 + uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
1356 + int i;
1357 + for (i = 0; i < num_eps; ++i) {
1358 + if (!(hwcfg1 & 0x2))
1359 + num_out_eps++;
1360 + hwcfg1 >>= 2;
1361 + }
1362 + return num_out_eps;
1363 +}
1364 +/**
1365 + * This function initializes the DWC_otg controller registers and
1366 + * prepares the core for device mode or host mode operation.
1367 + *
1368 + * @param _core_if Programming view of the DWC_otg controller
1369 + *
1370 + */
1371 +void dwc_otg_core_init(dwc_otg_core_if_t *_core_if)
1372 +{
1373 + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
1374 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
1375 + int i = 0;
1376 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1377 + gusbcfg_data_t usbcfg = { .d32 = 0 };
1378 + gi2cctl_data_t i2cctl = {.d32 = 0};
1379 +
1380 + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if);
1381 +
1382 + /* Common Initialization */
1383 +
1384 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1385 + DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32);
1386 +
1387 + /* Program the ULPI External VBUS bit if needed */
1388 + //usbcfg.b.ulpi_ext_vbus_drv = 1;
1389 + //usbcfg.b.ulpi_ext_vbus_drv = 0;
1390 + usbcfg.b.ulpi_ext_vbus_drv =
1391 + (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
1392 +
1393 + /* Set external TS Dline pulsing */
1394 + usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0;
1395 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1396 +
1397 + /* Reset the Controller */
1398 + dwc_otg_core_reset( _core_if );
1399 +
1400 + /* Initialize parameters from Hardware configuration registers. */
1401 +#if 0
1402 + dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep;
1403 + dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep;
1404 +#else
1405 + dev_if->num_in_eps = calc_num_in_eps(_core_if);
1406 + dev_if->num_out_eps = calc_num_out_eps(_core_if);
1407 +#endif
1408 + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
1409 + _core_if->hwcfg4.b.num_dev_perio_in_ep);
1410 + DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n",
1411 + _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No");
1412 + DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n",
1413 + _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No");
1414 + DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n",
1415 + _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No");
1416 +
1417 + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep);
1418 + for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
1419 + dev_if->perio_tx_fifo_size[i] =
1420 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1421 + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i,
1422 + dev_if->perio_tx_fifo_size[i]);
1423 + }
1424 + for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) {
1425 + dev_if->tx_fifo_size[i] =
1426 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1427 + DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i,
1428 + dev_if->perio_tx_fifo_size[i]);
1429 + }
1430 +
1431 + _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth;
1432 + _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
1433 + _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
1434 +
1435 + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size);
1436 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size);
1437 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size);
1438 +
1439 + /* This programming sequence needs to happen in FS mode before any other
1440 + * programming occurs */
1441 + if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
1442 + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1443 + /* If FS mode with FS PHY */
1444 +
1445 + /* core_init() is now called on every switch so only call the
1446 + * following for the first time through. */
1447 + if (!_core_if->phy_init_done) {
1448 + _core_if->phy_init_done = 1;
1449 + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
1450 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1451 + usbcfg.b.physel = 1;
1452 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1453 +
1454 + /* Reset after a PHY select */
1455 + dwc_otg_core_reset( _core_if );
1456 + }
1457 +
1458 + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
1459 + * do this on HNP Dev/Host mode switches (done in dev_init and
1460 + * host_init). */
1461 + if (dwc_otg_is_host_mode(_core_if)) {
1462 + DWC_DEBUGPL(DBG_CIL, "host mode\n");
1463 + init_fslspclksel(_core_if);
1464 + } else {
1465 + DWC_DEBUGPL(DBG_CIL, "device mode\n");
1466 + init_devspd(_core_if);
1467 + }
1468 +
1469 + if (_core_if->core_params->i2c_enable) {
1470 + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
1471 + /* Program GUSBCFG.OtgUtmifsSel to I2C */
1472 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1473 + usbcfg.b.otgutmifssel = 1;
1474 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1475 +
1476 + /* Program GI2CCTL.I2CEn */
1477 + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
1478 + i2cctl.b.i2cdevaddr = 1;
1479 + i2cctl.b.i2cen = 0;
1480 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1481 + i2cctl.b.i2cen = 1;
1482 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1483 + }
1484 +
1485 + } /* endif speed == DWC_SPEED_PARAM_FULL */
1486 + else {
1487 + /* High speed PHY. */
1488 + if (!_core_if->phy_init_done) {
1489 + _core_if->phy_init_done = 1;
1490 + DWC_DEBUGPL(DBG_CIL, "High spped PHY\n");
1491 + /* HS PHY parameters. These parameters are preserved
1492 + * during soft reset so only program the first time. Do
1493 + * a soft reset immediately after setting phyif. */
1494 + usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type;
1495 + if (usbcfg.b.ulpi_utmi_sel == 2) { // winder
1496 + DWC_DEBUGPL(DBG_CIL, "ULPI\n");
1497 + /* ULPI interface */
1498 + usbcfg.b.phyif = 0;
1499 + usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr;
1500 + } else {
1501 + /* UTMI+ interface */
1502 + if (_core_if->core_params->phy_utmi_width == 16) {
1503 + usbcfg.b.phyif = 1;
1504 + DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n");
1505 + } else {
1506 + DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n");
1507 + usbcfg.b.phyif = 0;
1508 + }
1509 + }
1510 + dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
1511 +
1512 + /* Reset after setting the PHY parameters */
1513 + dwc_otg_core_reset( _core_if );
1514 + }
1515 + }
1516 +
1517 + if ((_core_if->hwcfg2.b.hs_phy_type == 2) &&
1518 + (_core_if->hwcfg2.b.fs_phy_type == 1) &&
1519 + (_core_if->core_params->ulpi_fs_ls))
1520 + {
1521 + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
1522 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1523 + usbcfg.b.ulpi_fsls = 1;
1524 + usbcfg.b.ulpi_clk_sus_m = 1;
1525 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1526 + } else {
1527 + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n");
1528 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1529 + usbcfg.b.ulpi_fsls = 0;
1530 + usbcfg.b.ulpi_clk_sus_m = 0;
1531 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1532 + }
1533 +
1534 + /* Program the GAHBCFG Register.*/
1535 + switch (_core_if->hwcfg2.b.architecture){
1536 +
1537 + case DWC_SLAVE_ONLY_ARCH:
1538 + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
1539 + ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1540 + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1541 + _core_if->dma_enable = 0;
1542 + break;
1543 +
1544 + case DWC_EXT_DMA_ARCH:
1545 + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
1546 + ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size;
1547 + _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
1548 + break;
1549 +
1550 + case DWC_INT_DMA_ARCH:
1551 + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
1552 + //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
1553 + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4;
1554 + _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
1555 + break;
1556 + }
1557 + ahbcfg.b.dmaenable = _core_if->dma_enable;
1558 + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
1559 + _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en;
1560 +
1561 + /*
1562 + * Program the GUSBCFG register.
1563 + */
1564 + usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg );
1565 +
1566 + switch (_core_if->hwcfg2.b.op_mode) {
1567 + case DWC_MODE_HNP_SRP_CAPABLE:
1568 + usbcfg.b.hnpcap = (_core_if->core_params->otg_cap ==
1569 + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
1570 + usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1571 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1572 + break;
1573 +
1574 + case DWC_MODE_SRP_ONLY_CAPABLE:
1575 + usbcfg.b.hnpcap = 0;
1576 + usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1577 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1578 + break;
1579 +
1580 + case DWC_MODE_NO_HNP_SRP_CAPABLE:
1581 + usbcfg.b.hnpcap = 0;
1582 + usbcfg.b.srpcap = 0;
1583 + break;
1584 +
1585 + case DWC_MODE_SRP_CAPABLE_DEVICE:
1586 + usbcfg.b.hnpcap = 0;
1587 + usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1588 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1589 + break;
1590 +
1591 + case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
1592 + usbcfg.b.hnpcap = 0;
1593 + usbcfg.b.srpcap = 0;
1594 + break;
1595 +
1596 + case DWC_MODE_SRP_CAPABLE_HOST:
1597 + usbcfg.b.hnpcap = 0;
1598 + usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
1599 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1600 + break;
1601 +
1602 + case DWC_MODE_NO_SRP_CAPABLE_HOST:
1603 + usbcfg.b.hnpcap = 0;
1604 + usbcfg.b.srpcap = 0;
1605 + break;
1606 + }
1607 +
1608 + dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
1609 +
1610 + /* Enable common interrupts */
1611 + dwc_otg_enable_common_interrupts( _core_if );
1612 +
1613 + /* Do device or host intialization based on mode during PCD
1614 + * and HCD initialization */
1615 + if (dwc_otg_is_host_mode( _core_if )) {
1616 + DWC_DEBUGPL(DBG_ANY, "Host Mode\n" );
1617 + _core_if->op_state = A_HOST;
1618 + } else {
1619 + DWC_DEBUGPL(DBG_ANY, "Device Mode\n" );
1620 + _core_if->op_state = B_PERIPHERAL;
1621 +#ifdef DWC_DEVICE_ONLY
1622 + dwc_otg_core_dev_init( _core_if );
1623 +#endif
1624 + }
1625 +}
1626 +
1627 +
1628 +/**
1629 + * This function enables the Device mode interrupts.
1630 + *
1631 + * @param _core_if Programming view of DWC_otg controller
1632 + */
1633 +void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if)
1634 +{
1635 + gintmsk_data_t intr_mask = { .d32 = 0};
1636 + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
1637 +
1638 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1639 +
1640 + /* Disable all interrupts. */
1641 + dwc_write_reg32( &global_regs->gintmsk, 0);
1642 +
1643 + /* Clear any pending interrupts */
1644 + dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
1645 +
1646 + /* Enable the common interrupts */
1647 + dwc_otg_enable_common_interrupts( _core_if );
1648 +
1649 + /* Enable interrupts */
1650 + intr_mask.b.usbreset = 1;
1651 + intr_mask.b.enumdone = 1;
1652 + //intr_mask.b.epmismatch = 1;
1653 + intr_mask.b.inepintr = 1;
1654 + intr_mask.b.outepintr = 1;
1655 + intr_mask.b.erlysuspend = 1;
1656 + if (_core_if->en_multiple_tx_fifo == 0) {
1657 + intr_mask.b.epmismatch = 1;
1658 + }
1659 +
1660 + /** @todo NGS: Should this be a module parameter? */
1661 + intr_mask.b.isooutdrop = 1;
1662 + intr_mask.b.eopframe = 1;
1663 + intr_mask.b.incomplisoin = 1;
1664 + intr_mask.b.incomplisoout = 1;
1665 +
1666 + dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1667 +
1668 + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
1669 + dwc_read_reg32( &global_regs->gintmsk));
1670 +}
1671 +
1672 +/**
1673 + * This function initializes the DWC_otg controller registers for
1674 + * device mode.
1675 + *
1676 + * @param _core_if Programming view of DWC_otg controller
1677 + *
1678 + */
1679 +void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if)
1680 +{
1681 + dwc_otg_core_global_regs_t *global_regs =
1682 + _core_if->core_global_regs;
1683 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
1684 + dwc_otg_core_params_t *params = _core_if->core_params;
1685 + dcfg_data_t dcfg = {.d32 = 0};
1686 + grstctl_t resetctl = { .d32=0 };
1687 + int i;
1688 + uint32_t rx_fifo_size;
1689 + fifosize_data_t nptxfifosize;
1690 + fifosize_data_t txfifosize;
1691 + dthrctl_data_t dthrctl;
1692 +
1693 + fifosize_data_t ptxfifosize;
1694 +
1695 + /* Restart the Phy Clock */
1696 + dwc_write_reg32(_core_if->pcgcctl, 0);
1697 +
1698 + /* Device configuration register */
1699 + init_devspd(_core_if);
1700 + dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg);
1701 + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
1702 + dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 );
1703 +
1704 + /* Configure data FIFO sizes */
1705 + if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) {
1706 +
1707 + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size);
1708 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
1709 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
1710 +
1711 + /* Rx FIFO */
1712 + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
1713 + dwc_read_reg32(&global_regs->grxfsiz));
1714 + rx_fifo_size = params->dev_rx_fifo_size;
1715 + dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size );
1716 + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
1717 + dwc_read_reg32(&global_regs->grxfsiz));
1718 +
1719 + /** Set Periodic Tx FIFO Mask all bits 0 */
1720 + _core_if->p_tx_msk = 0;
1721 +
1722 + /** Set Tx FIFO Mask all bits 0 */
1723 + _core_if->tx_msk = 0;
1724 + if (_core_if->en_multiple_tx_fifo == 0) {
1725 + /* Non-periodic Tx FIFO */
1726 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1727 + dwc_read_reg32(&global_regs->gnptxfsiz));
1728 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1729 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1730 + dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 );
1731 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1732 + dwc_read_reg32(&global_regs->gnptxfsiz));
1733 +
1734 +
1735 + /**@todo NGS: Fix Periodic FIFO Sizing! */
1736 + /*
1737 + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
1738 + * Indexes of the FIFO size module parameters in the
1739 + * dev_perio_tx_fifo_size array and the FIFO size registers in
1740 + * the dptxfsiz array run from 0 to 14.
1741 + */
1742 + /** @todo Finish debug of this */
1743 + ptxfifosize.b.startaddr =
1744 + nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1745 + for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
1746 + ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
1747 + DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
1748 + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1749 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32);
1750 + DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
1751 + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1752 + ptxfifosize.b.startaddr += ptxfifosize.b.depth;
1753 + }
1754 + } else {
1755 +
1756 + /*
1757 + * Tx FIFOs These FIFOs are numbered from 1 to 15.
1758 + * Indexes of the FIFO size module parameters in the
1759 + * dev_tx_fifo_size array and the FIFO size registers in
1760 + * the dptxfsiz_dieptxf array run from 0 to 14.
1761 + */
1762 +
1763 + /* Non-periodic Tx FIFO */
1764 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1765 + dwc_read_reg32(&global_regs->gnptxfsiz));
1766 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1767 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1768 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
1769 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1770 + dwc_read_reg32(&global_regs->gnptxfsiz));
1771 + txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1772 + for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
1773 + txfifosize.b.depth = params->dev_tx_fifo_size[i];
1774 + DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
1775 + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1776 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32);
1777 + DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
1778 + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1]));
1779 + txfifosize.b.startaddr += txfifosize.b.depth;
1780 + }
1781 + }
1782 + }
1783 + /* Flush the FIFOs */
1784 + dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */
1785 + dwc_otg_flush_rx_fifo(_core_if);
1786 +
1787 + /* Flush the Learning Queue. */
1788 + resetctl.b.intknqflsh = 1;
1789 + dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32);
1790 +
1791 + /* Clear all pending Device Interrupts */
1792 + dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 );
1793 + dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 );
1794 + dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF );
1795 + dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 );
1796 +
1797 + for (i = 0; i <= dev_if->num_in_eps; i++) {
1798 + depctl_data_t depctl;
1799 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
1800 + if (depctl.b.epena) {
1801 + depctl.d32 = 0;
1802 + depctl.b.epdis = 1;
1803 + depctl.b.snak = 1;
1804 + } else {
1805 + depctl.d32 = 0;
1806 + }
1807 + dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32);
1808 +
1809 + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
1810 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
1811 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
1812 + }
1813 + for (i = 0; i <= dev_if->num_out_eps; i++) {
1814 + depctl_data_t depctl;
1815 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
1816 + if (depctl.b.epena) {
1817 + depctl.d32 = 0;
1818 + depctl.b.epdis = 1;
1819 + depctl.b.snak = 1;
1820 + } else {
1821 + depctl.d32 = 0;
1822 + }
1823 + dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32);
1824 +
1825 + //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0);
1826 + dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0);
1827 + //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0);
1828 + dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0);
1829 + //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF);
1830 + dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF);
1831 + }
1832 +
1833 + if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) {
1834 + dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1;
1835 + dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1;
1836 + dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1;
1837 + dev_if->rx_thr_length = _core_if->core_params->rx_thr_length;
1838 + dev_if->tx_thr_length = _core_if->core_params->tx_thr_length;
1839 + dthrctl.d32 = 0;
1840 + dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
1841 + dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
1842 + dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
1843 + dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
1844 + dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
1845 + dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32);
1846 + DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n"
1847 + "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
1848 + dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en,
1849 + dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len,
1850 + dthrctl.b.rx_thr_len);
1851 + }
1852 + dwc_otg_enable_device_interrupts( _core_if );
1853 + {
1854 + diepmsk_data_t msk = {.d32 = 0};
1855 + msk.b.txfifoundrn = 1;
1856 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32);
1857 +}
1858 +}
1859 +
1860 +/**
1861 + * This function enables the Host mode interrupts.
1862 + *
1863 + * @param _core_if Programming view of DWC_otg controller
1864 + */
1865 +void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if)
1866 +{
1867 + dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
1868 + gintmsk_data_t intr_mask = {.d32 = 0};
1869 +
1870 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1871 +
1872 + /* Disable all interrupts. */
1873 + dwc_write_reg32(&global_regs->gintmsk, 0);
1874 +
1875 + /* Clear any pending interrupts. */
1876 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1877 +
1878 + /* Enable the common interrupts */
1879 + dwc_otg_enable_common_interrupts(_core_if);
1880 +
1881 + /*
1882 + * Enable host mode interrupts without disturbing common
1883 + * interrupts.
1884 + */
1885 + intr_mask.b.sofintr = 1;
1886 + intr_mask.b.portintr = 1;
1887 + intr_mask.b.hcintr = 1;
1888 +
1889 + //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1890 + //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
1891 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1892 +}
1893 +
1894 +/**
1895 + * This function disables the Host Mode interrupts.
1896 + *
1897 + * @param _core_if Programming view of DWC_otg controller
1898 + */
1899 +void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if)
1900 +{
1901 + dwc_otg_core_global_regs_t *global_regs =
1902 + _core_if->core_global_regs;
1903 + gintmsk_data_t intr_mask = {.d32 = 0};
1904 +
1905 + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
1906 +
1907 + /*
1908 + * Disable host mode interrupts without disturbing common
1909 + * interrupts.
1910 + */
1911 + intr_mask.b.sofintr = 1;
1912 + intr_mask.b.portintr = 1;
1913 + intr_mask.b.hcintr = 1;
1914 + intr_mask.b.ptxfempty = 1;
1915 + intr_mask.b.nptxfempty = 1;
1916 +
1917 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
1918 +}
1919 +
1920 +#if 1
1921 +/* currently not used, keep it here as if needed later */
1922 +static int phy_read(dwc_otg_core_if_t * _core_if, int addr)
1923 +{
1924 + u32 val;
1925 + int timeout = 10;
1926 +
1927 + dwc_write_reg32(&_core_if->core_global_regs->gpvndctl,
1928 + 0x02000000 | (addr << 16));
1929 + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1930 + while (((val & 0x08000000) == 0) && (timeout--)) {
1931 + udelay(1000);
1932 + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1933 + }
1934 + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
1935 + printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff);
1936 +
1937 + return 0;
1938 +}
1939 +#endif
1940 +
1941 +/**
1942 + * This function initializes the DWC_otg controller registers for
1943 + * host mode.
1944 + *
1945 + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
1946 + * request queues. Host channels are reset to ensure that they are ready for
1947 + * performing transfers.
1948 + *
1949 + * @param _core_if Programming view of DWC_otg controller
1950 + *
1951 + */
1952 +void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if)
1953 +{
1954 + dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
1955 + dwc_otg_host_if_t *host_if = _core_if->host_if;
1956 + dwc_otg_core_params_t *params = _core_if->core_params;
1957 + hprt0_data_t hprt0 = {.d32 = 0};
1958 + fifosize_data_t nptxfifosize;
1959 + fifosize_data_t ptxfifosize;
1960 + int i;
1961 + hcchar_data_t hcchar;
1962 + hcfg_data_t hcfg;
1963 + dwc_otg_hc_regs_t *hc_regs;
1964 + int num_channels;
1965 + gotgctl_data_t gotgctl = {.d32 = 0};
1966 +
1967 + DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if);
1968 +
1969 + /* Restart the Phy Clock */
1970 + dwc_write_reg32(_core_if->pcgcctl, 0);
1971 +
1972 + /* Initialize Host Configuration Register */
1973 + init_fslspclksel(_core_if);
1974 + if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
1975 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
1976 + hcfg.b.fslssupp = 1;
1977 + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
1978 + }
1979 +
1980 + /* Configure data FIFO sizes */
1981 + if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
1982 + DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size);
1983 + DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
1984 + DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
1985 + DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
1986 +
1987 + /* Rx FIFO */
1988 + DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
1989 + dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
1990 + DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
1991 +
1992 + /* Non-periodic Tx FIFO */
1993 + DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
1994 + nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
1995 + nptxfifosize.b.startaddr = params->host_rx_fifo_size;
1996 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
1997 + DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
1998 +
1999 + /* Periodic Tx FIFO */
2000 + DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2001 + ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
2002 + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
2003 + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
2004 + DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2005 + }
2006 +
2007 + /* Clear Host Set HNP Enable in the OTG Control Register */
2008 + gotgctl.b.hstsethnpen = 1;
2009 + dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0);
2010 +
2011 + /* Make sure the FIFOs are flushed. */
2012 + dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */);
2013 + dwc_otg_flush_rx_fifo(_core_if);
2014 +
2015 + /* Flush out any leftover queued requests. */
2016 + num_channels = _core_if->core_params->host_channels;
2017 + for (i = 0; i < num_channels; i++) {
2018 + hc_regs = _core_if->host_if->hc_regs[i];
2019 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2020 + hcchar.b.chen = 0;
2021 + hcchar.b.chdis = 1;
2022 + hcchar.b.epdir = 0;
2023 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2024 + }
2025 +
2026 + /* Halt all channels to put them into a known state. */
2027 + for (i = 0; i < num_channels; i++) {
2028 + int count = 0;
2029 + hc_regs = _core_if->host_if->hc_regs[i];
2030 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2031 + hcchar.b.chen = 1;
2032 + hcchar.b.chdis = 1;
2033 + hcchar.b.epdir = 0;
2034 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2035 + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
2036 + do {
2037 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2038 + if (++count > 200) {
2039 + DWC_ERROR("%s: Unable to clear halt on channel %d\n",
2040 + __func__, i);
2041 + break;
2042 + }
2043 + udelay(100);
2044 + } while (hcchar.b.chen);
2045 + }
2046 +
2047 + /* Turn on the vbus power. */
2048 + DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state);
2049 + if (_core_if->op_state == A_HOST){
2050 + hprt0.d32 = dwc_otg_read_hprt0(_core_if);
2051 + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
2052 + if (hprt0.b.prtpwr == 0 ) {
2053 + hprt0.b.prtpwr = 1;
2054 + dwc_write_reg32(host_if->hprt0, hprt0.d32);
2055 + }
2056 + }
2057 +
2058 + dwc_otg_enable_host_interrupts( _core_if );
2059 +}
2060 +
2061 +/**
2062 + * Prepares a host channel for transferring packets to/from a specific
2063 + * endpoint. The HCCHARn register is set up with the characteristics specified
2064 + * in _hc. Host channel interrupts that may need to be serviced while this
2065 + * transfer is in progress are enabled.
2066 + *
2067 + * @param _core_if Programming view of DWC_otg controller
2068 + * @param _hc Information needed to initialize the host channel
2069 + */
2070 +void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2071 +{
2072 + uint32_t intr_enable;
2073 + hcintmsk_data_t hc_intr_mask;
2074 + gintmsk_data_t gintmsk = {.d32 = 0};
2075 + hcchar_data_t hcchar;
2076 + hcsplt_data_t hcsplt;
2077 +
2078 + uint8_t hc_num = _hc->hc_num;
2079 + dwc_otg_host_if_t *host_if = _core_if->host_if;
2080 + dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
2081 +
2082 + /* Clear old interrupt conditions for this host channel. */
2083 + hc_intr_mask.d32 = 0xFFFFFFFF;
2084 + hc_intr_mask.b.reserved = 0;
2085 + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
2086 +
2087 + /* Enable channel interrupts required for this transfer. */
2088 + hc_intr_mask.d32 = 0;
2089 + hc_intr_mask.b.chhltd = 1;
2090 + if (_core_if->dma_enable) {
2091 + hc_intr_mask.b.ahberr = 1;
2092 + if (_hc->error_state && !_hc->do_split &&
2093 + _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
2094 + hc_intr_mask.b.ack = 1;
2095 + if (_hc->ep_is_in) {
2096 + hc_intr_mask.b.datatglerr = 1;
2097 + if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
2098 + hc_intr_mask.b.nak = 1;
2099 + }
2100 + }
2101 + }
2102 + } else {
2103 + switch (_hc->ep_type) {
2104 + case DWC_OTG_EP_TYPE_CONTROL:
2105 + case DWC_OTG_EP_TYPE_BULK:
2106 + hc_intr_mask.b.xfercompl = 1;
2107 + hc_intr_mask.b.stall = 1;
2108 + hc_intr_mask.b.xacterr = 1;
2109 + hc_intr_mask.b.datatglerr = 1;
2110 + if (_hc->ep_is_in) {
2111 + hc_intr_mask.b.bblerr = 1;
2112 + } else {
2113 + hc_intr_mask.b.nak = 1;
2114 + hc_intr_mask.b.nyet = 1;
2115 + if (_hc->do_ping) {
2116 + hc_intr_mask.b.ack = 1;
2117 + }
2118 + }
2119 +
2120 + if (_hc->do_split) {
2121 + hc_intr_mask.b.nak = 1;
2122 + if (_hc->complete_split) {
2123 + hc_intr_mask.b.nyet = 1;
2124 + }
2125 + else {
2126 + hc_intr_mask.b.ack = 1;
2127 + }
2128 + }
2129 +
2130 + if (_hc->error_state) {
2131 + hc_intr_mask.b.ack = 1;
2132 + }
2133 + break;
2134 + case DWC_OTG_EP_TYPE_INTR:
2135 + hc_intr_mask.b.xfercompl = 1;
2136 + hc_intr_mask.b.nak = 1;
2137 + hc_intr_mask.b.stall = 1;
2138 + hc_intr_mask.b.xacterr = 1;
2139 + hc_intr_mask.b.datatglerr = 1;
2140 + hc_intr_mask.b.frmovrun = 1;
2141 +
2142 + if (_hc->ep_is_in) {
2143 + hc_intr_mask.b.bblerr = 1;
2144 + }
2145 + if (_hc->error_state) {
2146 + hc_intr_mask.b.ack = 1;
2147 + }
2148 + if (_hc->do_split) {
2149 + if (_hc->complete_split) {
2150 + hc_intr_mask.b.nyet = 1;
2151 + }
2152 + else {
2153 + hc_intr_mask.b.ack = 1;
2154 + }
2155 + }
2156 + break;
2157 + case DWC_OTG_EP_TYPE_ISOC:
2158 + hc_intr_mask.b.xfercompl = 1;
2159 + hc_intr_mask.b.frmovrun = 1;
2160 + hc_intr_mask.b.ack = 1;
2161 +
2162 + if (_hc->ep_is_in) {
2163 + hc_intr_mask.b.xacterr = 1;
2164 + hc_intr_mask.b.bblerr = 1;
2165 + }
2166 + break;
2167 + }
2168 + }
2169 + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
2170 +
2171 + /* Enable the top level host channel interrupt. */
2172 + intr_enable = (1 << hc_num);
2173 + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
2174 +
2175 + /* Make sure host channel interrupts are enabled. */
2176 + gintmsk.b.hcintr = 1;
2177 + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
2178 +
2179 + /*
2180 + * Program the HCCHARn register with the endpoint characteristics for
2181 + * the current transfer.
2182 + */
2183 + hcchar.d32 = 0;
2184 + hcchar.b.devaddr = _hc->dev_addr;
2185 + hcchar.b.epnum = _hc->ep_num;
2186 + hcchar.b.epdir = _hc->ep_is_in;
2187 + hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW);
2188 + hcchar.b.eptype = _hc->ep_type;
2189 + hcchar.b.mps = _hc->max_packet;
2190 +
2191 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
2192 +
2193 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2194 + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
2195 + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
2196 + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
2197 + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
2198 + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
2199 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2200 + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
2201 +
2202 + /*
2203 + * Program the HCSPLIT register for SPLITs
2204 + */
2205 + hcsplt.d32 = 0;
2206 + if (_hc->do_split) {
2207 + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num,
2208 + _hc->complete_split ? "CSPLIT" : "SSPLIT");
2209 + hcsplt.b.compsplt = _hc->complete_split;
2210 + hcsplt.b.xactpos = _hc->xact_pos;
2211 + hcsplt.b.hubaddr = _hc->hub_addr;
2212 + hcsplt.b.prtaddr = _hc->port_addr;
2213 + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split);
2214 + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos);
2215 + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr);
2216 + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr);
2217 + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in);
2218 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2219 + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len);
2220 + }
2221 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
2222 +
2223 +}
2224 +
2225 +/**
2226 + * Attempts to halt a host channel. This function should only be called in
2227 + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
2228 + * normal circumstances in DMA mode, the controller halts the channel when the
2229 + * transfer is complete or a condition occurs that requires application
2230 + * intervention.
2231 + *
2232 + * In slave mode, checks for a free request queue entry, then sets the Channel
2233 + * Enable and Channel Disable bits of the Host Channel Characteristics
2234 + * register of the specified channel to intiate the halt. If there is no free
2235 + * request queue entry, sets only the Channel Disable bit of the HCCHARn
2236 + * register to flush requests for this channel. In the latter case, sets a
2237 + * flag to indicate that the host channel needs to be halted when a request
2238 + * queue slot is open.
2239 + *
2240 + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
2241 + * HCCHARn register. The controller ensures there is space in the request
2242 + * queue before submitting the halt request.
2243 + *
2244 + * Some time may elapse before the core flushes any posted requests for this
2245 + * host channel and halts. The Channel Halted interrupt handler completes the
2246 + * deactivation of the host channel.
2247 + *
2248 + * @param _core_if Controller register interface.
2249 + * @param _hc Host channel to halt.
2250 + * @param _halt_status Reason for halting the channel.
2251 + */
2252 +void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
2253 + dwc_hc_t *_hc,
2254 + dwc_otg_halt_status_e _halt_status)
2255 +{
2256 + gnptxsts_data_t nptxsts;
2257 + hptxsts_data_t hptxsts;
2258 + hcchar_data_t hcchar;
2259 + dwc_otg_hc_regs_t *hc_regs;
2260 + dwc_otg_core_global_regs_t *global_regs;
2261 + dwc_otg_host_global_regs_t *host_global_regs;
2262 +
2263 + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2264 + global_regs = _core_if->core_global_regs;
2265 + host_global_regs = _core_if->host_if->host_global_regs;
2266 +
2267 + WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
2268 +
2269 + if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
2270 + _halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
2271 + /*
2272 + * Disable all channel interrupts except Ch Halted. The QTD
2273 + * and QH state associated with this transfer has been cleared
2274 + * (in the case of URB_DEQUEUE), so the channel needs to be
2275 + * shut down carefully to prevent crashes.
2276 + */
2277 + hcintmsk_data_t hcintmsk;
2278 + hcintmsk.d32 = 0;
2279 + hcintmsk.b.chhltd = 1;
2280 + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
2281 +
2282 + /*
2283 + * Make sure no other interrupts besides halt are currently
2284 + * pending. Handling another interrupt could cause a crash due
2285 + * to the QTD and QH state.
2286 + */
2287 + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
2288 +
2289 + /*
2290 + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
2291 + * even if the channel was already halted for some other
2292 + * reason.
2293 + */
2294 + _hc->halt_status = _halt_status;
2295 +
2296 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2297 + if (hcchar.b.chen == 0) {
2298 + /*
2299 + * The channel is either already halted or it hasn't
2300 + * started yet. In DMA mode, the transfer may halt if
2301 + * it finishes normally or a condition occurs that
2302 + * requires driver intervention. Don't want to halt
2303 + * the channel again. In either Slave or DMA mode,
2304 + * it's possible that the transfer has been assigned
2305 + * to a channel, but not started yet when an URB is
2306 + * dequeued. Don't want to halt a channel that hasn't
2307 + * started yet.
2308 + */
2309 + return;
2310 + }
2311 + }
2312 +
2313 + if (_hc->halt_pending) {
2314 + /*
2315 + * A halt has already been issued for this channel. This might
2316 + * happen when a transfer is aborted by a higher level in
2317 + * the stack.
2318 + */
2319 +#ifdef DEBUG
2320 + DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
2321 + __func__, _hc->hc_num);
2322 +
2323 +/* dwc_otg_dump_global_registers(_core_if); */
2324 +/* dwc_otg_dump_host_registers(_core_if); */
2325 +#endif
2326 + return;
2327 + }
2328 +
2329 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2330 + hcchar.b.chen = 1;
2331 + hcchar.b.chdis = 1;
2332 +
2333 + if (!_core_if->dma_enable) {
2334 + /* Check for space in the request queue to issue the halt. */
2335 + if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
2336 + _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
2337 + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
2338 + if (nptxsts.b.nptxqspcavail == 0) {
2339 + hcchar.b.chen = 0;
2340 + }
2341 + } else {
2342 + hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
2343 + if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) {
2344 + hcchar.b.chen = 0;
2345 + }
2346 + }
2347 + }
2348 +
2349 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2350 +
2351 + _hc->halt_status = _halt_status;
2352 +
2353 + if (hcchar.b.chen) {
2354 + _hc->halt_pending = 1;
2355 + _hc->halt_on_queue = 0;
2356 + } else {
2357 + _hc->halt_on_queue = 1;
2358 + }
2359 +
2360 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2361 + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
2362 + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending);
2363 + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue);
2364 + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status);
2365 +
2366 + return;
2367 +}
2368 +
2369 +/**
2370 + * Clears the transfer state for a host channel. This function is normally
2371 + * called after a transfer is done and the host channel is being released.
2372 + *
2373 + * @param _core_if Programming view of DWC_otg controller.
2374 + * @param _hc Identifies the host channel to clean up.
2375 + */
2376 +void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2377 +{
2378 + dwc_otg_hc_regs_t *hc_regs;
2379 +
2380 + _hc->xfer_started = 0;
2381 +
2382 + /*
2383 + * Clear channel interrupt enables and any unhandled channel interrupt
2384 + * conditions.
2385 + */
2386 + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2387 + dwc_write_reg32(&hc_regs->hcintmsk, 0);
2388 + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
2389 +
2390 +#ifdef DEBUG
2391 + del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
2392 + {
2393 + hcchar_data_t hcchar;
2394 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2395 + if (hcchar.b.chdis) {
2396 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2397 + __func__, _hc->hc_num, hcchar.d32);
2398 + }
2399 + }
2400 +#endif
2401 +}
2402 +
2403 +/**
2404 + * Sets the channel property that indicates in which frame a periodic transfer
2405 + * should occur. This is always set to the _next_ frame. This function has no
2406 + * effect on non-periodic transfers.
2407 + *
2408 + * @param _core_if Programming view of DWC_otg controller.
2409 + * @param _hc Identifies the host channel to set up and its properties.
2410 + * @param _hcchar Current value of the HCCHAR register for the specified host
2411 + * channel.
2412 + */
2413 +static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if,
2414 + dwc_hc_t *_hc,
2415 + hcchar_data_t *_hcchar)
2416 +{
2417 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2418 + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2419 + hfnum_data_t hfnum;
2420 + hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum);
2421 + /* 1 if _next_ frame is odd, 0 if it's even */
2422 + _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
2423 +#ifdef DEBUG
2424 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) {
2425 + switch (hfnum.b.frnum & 0x7) {
2426 + case 7:
2427 + _core_if->hfnum_7_samples++;
2428 + _core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
2429 + break;
2430 + case 0:
2431 + _core_if->hfnum_0_samples++;
2432 + _core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
2433 + break;
2434 + default:
2435 + _core_if->hfnum_other_samples++;
2436 + _core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
2437 + break;
2438 + }
2439 + }
2440 +#endif
2441 + }
2442 +}
2443 +
2444 +#ifdef DEBUG
2445 +static void hc_xfer_timeout(unsigned long _ptr)
2446 +{
2447 + hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr;
2448 + int hc_num = xfer_info->hc->hc_num;
2449 + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
2450 + DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
2451 +}
2452 +#endif
2453 +
2454 +/*
2455 + * This function does the setup for a data transfer for a host channel and
2456 + * starts the transfer. May be called in either Slave mode or DMA mode. In
2457 + * Slave mode, the caller must ensure that there is sufficient space in the
2458 + * request queue and Tx Data FIFO.
2459 + *
2460 + * For an OUT transfer in Slave mode, it loads a data packet into the
2461 + * appropriate FIFO. If necessary, additional data packets will be loaded in
2462 + * the Host ISR.
2463 + *
2464 + * For an IN transfer in Slave mode, a data packet is requested. The data
2465 + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
2466 + * additional data packets are requested in the Host ISR.
2467 + *
2468 + * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
2469 + * register along with a packet count of 1 and the channel is enabled. This
2470 + * causes a single PING transaction to occur. Other fields in HCTSIZ are
2471 + * simply set to 0 since no data transfer occurs in this case.
2472 + *
2473 + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
2474 + * all the information required to perform the subsequent data transfer. In
2475 + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
2476 + * controller performs the entire PING protocol, then starts the data
2477 + * transfer.
2478 + *
2479 + * @param _core_if Programming view of DWC_otg controller.
2480 + * @param _hc Information needed to initialize the host channel. The xfer_len
2481 + * value may be reduced to accommodate the max widths of the XferSize and
2482 + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
2483 + * to reflect the final xfer_len value.
2484 + */
2485 +void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2486 +{
2487 + hcchar_data_t hcchar;
2488 + hctsiz_data_t hctsiz;
2489 + uint16_t num_packets;
2490 + uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size;
2491 + uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count;
2492 + dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2493 +
2494 + hctsiz.d32 = 0;
2495 +
2496 + if (_hc->do_ping) {
2497 + if (!_core_if->dma_enable) {
2498 + dwc_otg_hc_do_ping(_core_if, _hc);
2499 + _hc->xfer_started = 1;
2500 + return;
2501 + } else {
2502 + hctsiz.b.dopng = 1;
2503 + }
2504 + }
2505 +
2506 + if (_hc->do_split) {
2507 + num_packets = 1;
2508 +
2509 + if (_hc->complete_split && !_hc->ep_is_in) {
2510 + /* For CSPLIT OUT Transfer, set the size to 0 so the
2511 + * core doesn't expect any data written to the FIFO */
2512 + _hc->xfer_len = 0;
2513 + } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) {
2514 + _hc->xfer_len = _hc->max_packet;
2515 + } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) {
2516 + _hc->xfer_len = 188;
2517 + }
2518 +
2519 + hctsiz.b.xfersize = _hc->xfer_len;
2520 + } else {
2521 + /*
2522 + * Ensure that the transfer length and packet count will fit
2523 + * in the widths allocated for them in the HCTSIZn register.
2524 + */
2525 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2526 + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2527 + /*
2528 + * Make sure the transfer size is no larger than one
2529 + * (micro)frame's worth of data. (A check was done
2530 + * when the periodic transfer was accepted to ensure
2531 + * that a (micro)frame's worth of data can be
2532 + * programmed into a channel.)
2533 + */
2534 + uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet;
2535 + if (_hc->xfer_len > max_periodic_len) {
2536 + _hc->xfer_len = max_periodic_len;
2537 + } else {
2538 + }
2539 + } else if (_hc->xfer_len > max_hc_xfer_size) {
2540 + /* Make sure that xfer_len is a multiple of max packet size. */
2541 + _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1;
2542 + }
2543 +
2544 + if (_hc->xfer_len > 0) {
2545 + num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet;
2546 + if (num_packets > max_hc_pkt_count) {
2547 + num_packets = max_hc_pkt_count;
2548 + _hc->xfer_len = num_packets * _hc->max_packet;
2549 + }
2550 + } else {
2551 + /* Need 1 packet for transfer length of 0. */
2552 + num_packets = 1;
2553 + }
2554 +
2555 + if (_hc->ep_is_in) {
2556 + /* Always program an integral # of max packets for IN transfers. */
2557 + _hc->xfer_len = num_packets * _hc->max_packet;
2558 + }
2559 +
2560 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2561 + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2562 + /*
2563 + * Make sure that the multi_count field matches the
2564 + * actual transfer length.
2565 + */
2566 + _hc->multi_count = num_packets;
2567 +
2568 + }
2569 +
2570 + if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2571 + /* Set up the initial PID for the transfer. */
2572 + if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) {
2573 + if (_hc->ep_is_in) {
2574 + if (_hc->multi_count == 1) {
2575 + _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2576 + } else if (_hc->multi_count == 2) {
2577 + _hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
2578 + } else {
2579 + _hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
2580 + }
2581 + } else {
2582 + if (_hc->multi_count == 1) {
2583 + _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2584 + } else {
2585 + _hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
2586 + }
2587 + }
2588 + } else {
2589 + _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2590 + }
2591 + }
2592 +
2593 + hctsiz.b.xfersize = _hc->xfer_len;
2594 + }
2595 +
2596 + _hc->start_pkt_count = num_packets;
2597 + hctsiz.b.pktcnt = num_packets;
2598 + hctsiz.b.pid = _hc->data_pid_start;
2599 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2600 +
2601 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2602 + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
2603 + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
2604 + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
2605 +
2606 + if (_core_if->dma_enable) {
2607 +#ifdef DEBUG
2608 +if(((uint32_t)_hc->xfer_buff)%4)
2609 +printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n");
2610 +#endif
2611 + dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff);
2612 + }
2613 +
2614 + /* Start the split */
2615 + if (_hc->do_split) {
2616 + hcsplt_data_t hcsplt;
2617 + hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
2618 + hcsplt.b.spltena = 1;
2619 + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
2620 + }
2621 +
2622 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2623 + hcchar.b.multicnt = _hc->multi_count;
2624 + hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2625 +#ifdef DEBUG
2626 + _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32;
2627 + if (hcchar.b.chdis) {
2628 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2629 + __func__, _hc->hc_num, hcchar.d32);
2630 + }
2631 +#endif
2632 +
2633 + /* Set host channel enable after all other setup is complete. */
2634 + hcchar.b.chen = 1;
2635 + hcchar.b.chdis = 0;
2636 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2637 +
2638 + _hc->xfer_started = 1;
2639 + _hc->requests++;
2640 +
2641 + if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) {
2642 + /* Load OUT packet into the appropriate Tx FIFO. */
2643 + dwc_otg_hc_write_packet(_core_if, _hc);
2644 + }
2645 +
2646 +#ifdef DEBUG
2647 + /* Start a timer for this transfer. */
2648 + _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout;
2649 + _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if;
2650 + _core_if->hc_xfer_info[_hc->hc_num].hc = _hc;
2651 + _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]);
2652 + _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10);
2653 + add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
2654 +#endif
2655 +}
2656 +
2657 +/**
2658 + * This function continues a data transfer that was started by previous call
2659 + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
2660 + * sufficient space in the request queue and Tx Data FIFO. This function
2661 + * should only be called in Slave mode. In DMA mode, the controller acts
2662 + * autonomously to complete transfers programmed to a host channel.
2663 + *
2664 + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2665 + * if there is any data remaining to be queued. For an IN transfer, another
2666 + * data packet is always requested. For the SETUP phase of a control transfer,
2667 + * this function does nothing.
2668 + *
2669 + * @return 1 if a new request is queued, 0 if no more requests are required
2670 + * for this transfer.
2671 + */
2672 +int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2673 +{
2674 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2675 +
2676 + if (_hc->do_split) {
2677 + /* SPLITs always queue just once per channel */
2678 + return 0;
2679 + } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
2680 + /* SETUPs are queued only once since they can't be NAKed. */
2681 + return 0;
2682 + } else if (_hc->ep_is_in) {
2683 + /*
2684 + * Always queue another request for other IN transfers. If
2685 + * back-to-back INs are issued and NAKs are received for both,
2686 + * the driver may still be processing the first NAK when the
2687 + * second NAK is received. When the interrupt handler clears
2688 + * the NAK interrupt for the first NAK, the second NAK will
2689 + * not be seen. So we can't depend on the NAK interrupt
2690 + * handler to requeue a NAKed request. Instead, IN requests
2691 + * are issued each time this function is called. When the
2692 + * transfer completes, the extra requests for the channel will
2693 + * be flushed.
2694 + */
2695 + hcchar_data_t hcchar;
2696 + dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2697 +
2698 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2699 + hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2700 + hcchar.b.chen = 1;
2701 + hcchar.b.chdis = 0;
2702 + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
2703 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2704 + _hc->requests++;
2705 + return 1;
2706 + } else {
2707 + /* OUT transfers. */
2708 + if (_hc->xfer_count < _hc->xfer_len) {
2709 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2710 + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2711 + hcchar_data_t hcchar;
2712 + dwc_otg_hc_regs_t *hc_regs;
2713 + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2714 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2715 + hc_set_even_odd_frame(_core_if, _hc, &hcchar);
2716 + }
2717 +
2718 + /* Load OUT packet into the appropriate Tx FIFO. */
2719 + dwc_otg_hc_write_packet(_core_if, _hc);
2720 + _hc->requests++;
2721 + return 1;
2722 + } else {
2723 + return 0;
2724 + }
2725 + }
2726 +}
2727 +
2728 +/**
2729 + * Starts a PING transfer. This function should only be called in Slave mode.
2730 + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
2731 + */
2732 +void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2733 +{
2734 + hcchar_data_t hcchar;
2735 + hctsiz_data_t hctsiz;
2736 + dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
2737 +
2738 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
2739 +
2740 + hctsiz.d32 = 0;
2741 + hctsiz.b.dopng = 1;
2742 + hctsiz.b.pktcnt = 1;
2743 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2744 +
2745 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2746 + hcchar.b.chen = 1;
2747 + hcchar.b.chdis = 0;
2748 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2749 +}
2750 +
2751 +/*
2752 + * This function writes a packet into the Tx FIFO associated with the Host
2753 + * Channel. For a channel associated with a non-periodic EP, the non-periodic
2754 + * Tx FIFO is written. For a channel associated with a periodic EP, the
2755 + * periodic Tx FIFO is written. This function should only be called in Slave
2756 + * mode.
2757 + *
2758 + * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
2759 + * then number of bytes written to the Tx FIFO.
2760 + */
2761 +void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
2762 +{
2763 + uint32_t i;
2764 + uint32_t remaining_count;
2765 + uint32_t byte_count;
2766 + uint32_t dword_count;
2767 +
2768 + uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff);
2769 + uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num];
2770 +
2771 + remaining_count = _hc->xfer_len - _hc->xfer_count;
2772 + if (remaining_count > _hc->max_packet) {
2773 + byte_count = _hc->max_packet;
2774 + } else {
2775 + byte_count = remaining_count;
2776 + }
2777 +
2778 + dword_count = (byte_count + 3) / 4;
2779 +
2780 + if ((((unsigned long)data_buff) & 0x3) == 0) {
2781 + /* xfer_buff is DWORD aligned. */
2782 + for (i = 0; i < dword_count; i++, data_buff++) {
2783 + dwc_write_reg32(data_fifo, *data_buff);
2784 + }
2785 + } else {
2786 + /* xfer_buff is not DWORD aligned. */
2787 + for (i = 0; i < dword_count; i++, data_buff++) {
2788 + dwc_write_reg32(data_fifo, get_unaligned(data_buff));
2789 + }
2790 + }
2791 +
2792 + _hc->xfer_count += byte_count;
2793 + _hc->xfer_buff += byte_count;
2794 +}
2795 +
2796 +/**
2797 + * Gets the current USB frame number. This is the frame number from the last
2798 + * SOF packet.
2799 + */
2800 +uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if)
2801 +{
2802 + dsts_data_t dsts;
2803 + dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts);
2804 +
2805 + /* read current frame/microfreme number from DSTS register */
2806 + return dsts.b.soffn;
2807 +}
2808 +
2809 +/**
2810 + * This function reads a setup packet from the Rx FIFO into the destination
2811 + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
2812 + * Interrupt routine when a SETUP packet has been received in Slave mode.
2813 + *
2814 + * @param _core_if Programming view of DWC_otg controller.
2815 + * @param _dest Destination buffer for packet data.
2816 + */
2817 +void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest)
2818 +{
2819 + /* Get the 8 bytes of a setup transaction data */
2820 +
2821 + /* Pop 2 DWORDS off the receive data FIFO into memory */
2822 + _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]);
2823 + _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]);
2824 + //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]);
2825 + //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]);
2826 +}
2827 +
2828 +
2829 +/**
2830 + * This function enables EP0 OUT to receive SETUP packets and configures EP0
2831 + * IN for transmitting packets. It is normally called when the
2832 + * "Enumeration Done" interrupt occurs.
2833 + *
2834 + * @param _core_if Programming view of DWC_otg controller.
2835 + * @param _ep The EP0 data.
2836 + */
2837 +void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2838 +{
2839 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
2840 + dsts_data_t dsts;
2841 + depctl_data_t diepctl;
2842 + depctl_data_t doepctl;
2843 + dctl_data_t dctl ={.d32=0};
2844 +
2845 + /* Read the Device Status and Endpoint 0 Control registers */
2846 + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
2847 + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
2848 + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
2849 +
2850 + /* Set the MPS of the IN EP based on the enumeration speed */
2851 + switch (dsts.b.enumspd) {
2852 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
2853 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
2854 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
2855 + diepctl.b.mps = DWC_DEP0CTL_MPS_64;
2856 + break;
2857 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
2858 + diepctl.b.mps = DWC_DEP0CTL_MPS_8;
2859 + break;
2860 + }
2861 +
2862 + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
2863 +
2864 + /* Enable OUT EP for receive */
2865 + doepctl.b.epena = 1;
2866 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
2867 +
2868 +#ifdef VERBOSE
2869 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
2870 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
2871 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
2872 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
2873 +#endif
2874 + dctl.b.cgnpinnak = 1;
2875 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
2876 + DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
2877 + dwc_read_reg32(&dev_if->dev_global_regs->dctl));
2878 +}
2879 +
2880 +/**
2881 + * This function activates an EP. The Device EP control register for
2882 + * the EP is configured as defined in the ep structure. Note: This
2883 + * function is not used for EP0.
2884 + *
2885 + * @param _core_if Programming view of DWC_otg controller.
2886 + * @param _ep The EP to activate.
2887 + */
2888 +void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2889 +{
2890 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
2891 + depctl_data_t depctl;
2892 + volatile uint32_t *addr;
2893 + daint_data_t daintmsk = {.d32=0};
2894 +
2895 + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num,
2896 + (_ep->is_in?"IN":"OUT"));
2897 +
2898 + /* Read DEPCTLn register */
2899 + if (_ep->is_in == 1) {
2900 + addr = &dev_if->in_ep_regs[_ep->num]->diepctl;
2901 + daintmsk.ep.in = 1<<_ep->num;
2902 + } else {
2903 + addr = &dev_if->out_ep_regs[_ep->num]->doepctl;
2904 + daintmsk.ep.out = 1<<_ep->num;
2905 + }
2906 +
2907 + /* If the EP is already active don't change the EP Control
2908 + * register. */
2909 + depctl.d32 = dwc_read_reg32(addr);
2910 + if (!depctl.b.usbactep) {
2911 + depctl.b.mps = _ep->maxpacket;
2912 + depctl.b.eptype = _ep->type;
2913 + depctl.b.txfnum = _ep->tx_fifo_num;
2914 +
2915 + if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
2916 + depctl.b.setd0pid = 1; // ???
2917 + } else {
2918 + depctl.b.setd0pid = 1;
2919 + }
2920 + depctl.b.usbactep = 1;
2921 +
2922 + dwc_write_reg32(addr, depctl.d32);
2923 + DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr));
2924 + }
2925 +
2926 +
2927 + /* Enable the Interrupt for this EP */
2928 + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
2929 + 0, daintmsk.d32);
2930 + DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
2931 + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
2932 + _ep->stall_clear_flag = 0;
2933 + return;
2934 +}
2935 +
2936 +/**
2937 + * This function deactivates an EP. This is done by clearing the USB Active
2938 + * EP bit in the Device EP control register. Note: This function is not used
2939 + * for EP0. EP0 cannot be deactivated.
2940 + *
2941 + * @param _core_if Programming view of DWC_otg controller.
2942 + * @param _ep The EP to deactivate.
2943 + */
2944 +void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2945 +{
2946 + depctl_data_t depctl ={.d32 = 0};
2947 + volatile uint32_t *addr;
2948 + daint_data_t daintmsk = {.d32=0};
2949 +
2950 + /* Read DEPCTLn register */
2951 + if (_ep->is_in == 1) {
2952 + addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl;
2953 + daintmsk.ep.in = 1<<_ep->num;
2954 + } else {
2955 + addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl;
2956 + daintmsk.ep.out = 1<<_ep->num;
2957 + }
2958 +
2959 + depctl.b.usbactep = 0;
2960 + dwc_write_reg32(addr, depctl.d32);
2961 +
2962 + /* Disable the Interrupt for this EP */
2963 + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk,
2964 + daintmsk.d32, 0);
2965 +
2966 + return;
2967 +}
2968 +
2969 +/**
2970 + * This function does the setup for a data transfer for an EP and
2971 + * starts the transfer. For an IN transfer, the packets will be
2972 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
2973 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
2974 + *
2975 + * @param _core_if Programming view of DWC_otg controller.
2976 + * @param _ep The EP to start the transfer on.
2977 + */
2978 +void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
2979 +{
2980 + /** @todo Refactor this funciton to check the transfer size
2981 + * count value does not execed the number bits in the Transfer
2982 + * count register. */
2983 + depctl_data_t depctl;
2984 + deptsiz_data_t deptsiz;
2985 + gintmsk_data_t intr_mask = { .d32 = 0};
2986 +
2987 +#ifdef CHECK_PACKET_COUNTER_WIDTH
2988 + const uint32_t MAX_XFER_SIZE =
2989 + _core_if->core_params->max_transfer_size;
2990 + const uint32_t MAX_PKT_COUNT =
2991 + _core_if->core_params->max_packet_count;
2992 + uint32_t num_packets;
2993 + uint32_t transfer_len;
2994 + dwc_otg_dev_out_ep_regs_t *out_regs =
2995 + _core_if->dev_if->out_ep_regs[_ep->num];
2996 + dwc_otg_dev_in_ep_regs_t *in_regs =
2997 + _core_if->dev_if->in_ep_regs[_ep->num];
2998 + gnptxsts_data_t txstatus;
2999 +
3000 + int lvl = SET_DEBUG_LEVEL(DBG_PCD);
3001 +
3002 +
3003 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3004 + "xfer_buff=%p start_xfer_buff=%p\n",
3005 + _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3006 + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
3007 +
3008 + transfer_len = _ep->xfer_len - _ep->xfer_count;
3009 + if (transfer_len > MAX_XFER_SIZE) {
3010 + transfer_len = MAX_XFER_SIZE;
3011 + }
3012 + if (transfer_len == 0) {
3013 + num_packets = 1;
3014 + /* OUT EP to recieve Zero-length packet set transfer
3015 + * size to maxpacket size. */
3016 + if (!_ep->is_in) {
3017 + transfer_len = _ep->maxpacket;
3018 + }
3019 + } else {
3020 + num_packets =
3021 + (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket;
3022 + if (num_packets > MAX_PKT_COUNT) {
3023 + num_packets = MAX_PKT_COUNT;
3024 + }
3025 + }
3026 + DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
3027 + num_packets);
3028 +
3029 + deptsiz.b.xfersize = transfer_len;
3030 + deptsiz.b.pktcnt = num_packets;
3031 +
3032 + /* IN endpoint */
3033 + if (_ep->is_in == 1) {
3034 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3035 + } else {/* OUT endpoint */
3036 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3037 + }
3038 +
3039 + /* EP enable, IN data in FIFO */
3040 + depctl.b.cnak = 1;
3041 + depctl.b.epena = 1;
3042 + /* IN endpoint */
3043 + if (_ep->is_in == 1) {
3044 + txstatus.d32 =
3045 + dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3046 + if (txstatus.b.nptxqspcavail == 0) {
3047 + DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
3048 + txstatus.d32);
3049 + return;
3050 + }
3051 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3052 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3053 + /**
3054 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
3055 + * data will be written into the fifo by the ISR.
3056 + */
3057 + if (_core_if->dma_enable) {
3058 + dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff);
3059 + } else {
3060 + if (_core_if->en_multiple_tx_fifo == 0) {
3061 + intr_mask.b.nptxfempty = 1;
3062 + dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
3063 + intr_mask.d32, 0);
3064 + dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3065 + intr_mask.d32, intr_mask.d32);
3066 + } else {
3067 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3068 + if (_ep->xfer_len > 0 &&
3069 + _ep->type != DWC_OTG_EP_TYPE_ISOC) {
3070 + uint32_t fifoemptymsk = 0;
3071 + fifoemptymsk = (0x1 << _ep->num);
3072 + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
3073 + dtknqr4_fifoemptymsk,0, fifoemptymsk);
3074 + }
3075 + }
3076 + }
3077 + } else { /* OUT endpoint */
3078 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3079 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3080 + if (_core_if->dma_enable) {
3081 + dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff);
3082 + }
3083 + }
3084 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
3085 + dwc_read_reg32(&out_regs->doepctl),
3086 + dwc_read_reg32(&out_regs->doeptsiz));
3087 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3088 + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
3089 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
3090 +
3091 + SET_DEBUG_LEVEL(lvl);
3092 +#endif
3093 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3094 +
3095 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3096 + "xfer_buff=%p start_xfer_buff=%p\n",
3097 + _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3098 + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
3099 +
3100 + /* IN endpoint */
3101 + if (_ep->is_in == 1) {
3102 + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num];
3103 + gnptxsts_data_t gtxstatus;
3104 + gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3105 + if (_core_if->en_multiple_tx_fifo == 0 &&
3106 + gtxstatus.b.nptxqspcavail == 0) {
3107 +#ifdef DEBUG
3108 + DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
3109 +#endif
3110 + //return;
3111 + MDELAY(100); //james
3112 + }
3113 +
3114 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3115 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3116 +
3117 + /* Zero Length Packet? */
3118 + if (_ep->xfer_len == 0) {
3119 + deptsiz.b.xfersize = 0;
3120 + deptsiz.b.pktcnt = 1;
3121 + } else {
3122 +
3123 + /* Program the transfer size and packet count
3124 + * as follows: xfersize = N * maxpacket +
3125 + * short_packet pktcnt = N + (short_packet
3126 + * exist ? 1 : 0)
3127 + */
3128 + deptsiz.b.xfersize = _ep->xfer_len;
3129 + deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket;
3130 + }
3131 +
3132 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3133 +
3134 + /* Write the DMA register */
3135 + if (_core_if->dma_enable) {
3136 +#if 1 // winder
3137 + dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder
3138 + dwc_write_reg32 (&(in_regs->diepdma),
3139 + CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
3140 +#else
3141 + dwc_write_reg32 (&(in_regs->diepdma),
3142 + (uint32_t)_ep->dma_addr);
3143 +#endif
3144 + } else {
3145 + if (_ep->type != DWC_OTG_EP_TYPE_ISOC) {
3146 + /**
3147 + * Enable the Non-Periodic Tx FIFO empty interrupt,
3148 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3149 + * the data will be written into the fifo by the ISR.
3150 + */
3151 + if (_core_if->en_multiple_tx_fifo == 0) {
3152 + intr_mask.b.nptxfempty = 1;
3153 + dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
3154 + intr_mask.d32, 0);
3155 + dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3156 + intr_mask.d32, intr_mask.d32);
3157 + } else {
3158 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3159 + if (_ep->xfer_len > 0) {
3160 + uint32_t fifoemptymsk = 0;
3161 + fifoemptymsk = 1 << _ep->num;
3162 + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
3163 + dtknqr4_fifoemptymsk,0,fifoemptymsk);
3164 + }
3165 + }
3166 + }
3167 + }
3168 +
3169 + /* EP enable, IN data in FIFO */
3170 + depctl.b.cnak = 1;
3171 + depctl.b.epena = 1;
3172 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3173 +
3174 + if (_core_if->dma_enable) {
3175 + depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl);
3176 + depctl.b.nextep = _ep->num;
3177 + dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3178 +
3179 + }
3180 + } else {
3181 + /* OUT endpoint */
3182 + dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
3183 +
3184 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3185 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3186 +
3187 + /* Program the transfer size and packet count as follows:
3188 + *
3189 + * pktcnt = N
3190 + * xfersize = N * maxpacket
3191 + */
3192 + if (_ep->xfer_len == 0) {
3193 + /* Zero Length Packet */
3194 + deptsiz.b.xfersize = _ep->maxpacket;
3195 + deptsiz.b.pktcnt = 1;
3196 + } else {
3197 + deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
3198 + deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
3199 + }
3200 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3201 +
3202 + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
3203 + _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
3204 +
3205 + if (_core_if->dma_enable) {
3206 +#if 1 // winder
3207 + dwc_write_reg32 (&(out_regs->doepdma),
3208 + CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
3209 +#else
3210 + dwc_write_reg32 (&(out_regs->doepdma),
3211 + (uint32_t)_ep->dma_addr);
3212 +#endif
3213 + }
3214 +
3215 + if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
3216 + /** @todo NGS: dpid is read-only. Use setd0pid
3217 + * or setd1pid. */
3218 + if (_ep->even_odd_frame) {
3219 + depctl.b.setd1pid = 1;
3220 + } else {
3221 + depctl.b.setd0pid = 1;
3222 + }
3223 + }
3224 +
3225 + /* EP enable */
3226 + depctl.b.cnak = 1;
3227 + depctl.b.epena = 1;
3228 +
3229 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3230 +
3231 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
3232 + dwc_read_reg32(&out_regs->doepctl),
3233 + dwc_read_reg32(&out_regs->doeptsiz));
3234 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3235 + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
3236 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
3237 + }
3238 +}
3239 +
3240 +
3241 +/**
3242 + * This function does the setup for a data transfer for EP0 and starts
3243 + * the transfer. For an IN transfer, the packets will be loaded into
3244 + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
3245 + * unloaded from the Rx FIFO in the ISR.
3246 + *
3247 + * @param _core_if Programming view of DWC_otg controller.
3248 + * @param _ep The EP0 data.
3249 + */
3250 +void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3251 +{
3252 + volatile depctl_data_t depctl;
3253 + volatile deptsiz0_data_t deptsiz;
3254 + gintmsk_data_t intr_mask = { .d32 = 0};
3255 +
3256 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3257 + "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
3258 + _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
3259 + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff,
3260 + _ep->total_len);
3261 + _ep->total_len = _ep->xfer_len;
3262 +
3263 + /* IN endpoint */
3264 + if (_ep->is_in == 1) {
3265 + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0];
3266 + gnptxsts_data_t gtxstatus;
3267 + gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
3268 + if (_core_if->en_multiple_tx_fifo == 0 &&
3269 + gtxstatus.b.nptxqspcavail == 0) {
3270 +#ifdef DEBUG
3271 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3272 + DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
3273 + dwc_read_reg32(&in_regs->diepctl));
3274 + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
3275 + deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt);
3276 + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32);
3277 +#endif /* */
3278 + printk("TX Queue or FIFO Full!!!!\n"); // test-only
3279 + //return;
3280 + MDELAY(100); //james
3281 + }
3282 +
3283 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3284 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3285 +
3286 + /* Zero Length Packet? */
3287 + if (_ep->xfer_len == 0) {
3288 + deptsiz.b.xfersize = 0;
3289 + deptsiz.b.pktcnt = 1;
3290 + } else {
3291 + /* Program the transfer size and packet count
3292 + * as follows: xfersize = N * maxpacket +
3293 + * short_packet pktcnt = N + (short_packet
3294 + * exist ? 1 : 0)
3295 + */
3296 + if (_ep->xfer_len > _ep->maxpacket) {
3297 + _ep->xfer_len = _ep->maxpacket;
3298 + deptsiz.b.xfersize = _ep->maxpacket;
3299 + }
3300 + else {
3301 + deptsiz.b.xfersize = _ep->xfer_len;
3302 + }
3303 + deptsiz.b.pktcnt = 1;
3304 +
3305 + }
3306 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3307 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3308 + _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32);
3309 +
3310 + /* Write the DMA register */
3311 + if (_core_if->dma_enable) {
3312 + dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr);
3313 + }
3314 +
3315 + /* EP enable, IN data in FIFO */
3316 + depctl.b.cnak = 1;
3317 + depctl.b.epena = 1;
3318 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3319 +
3320 + /**
3321 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
3322 + * data will be written into the fifo by the ISR.
3323 + */
3324 + if (!_core_if->dma_enable) {
3325 + if (_core_if->en_multiple_tx_fifo == 0) {
3326 + intr_mask.b.nptxfempty = 1;
3327 + dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0);
3328 + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32,
3329 + intr_mask.d32);
3330 + } else {
3331 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3332 + if (_ep->xfer_len > 0) {
3333 + uint32_t fifoemptymsk = 0;
3334 + fifoemptymsk |= 1 << _ep->num;
3335 + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3336 + 0, fifoemptymsk);
3337 + }
3338 +
3339 + }
3340 + }
3341 + } else {
3342 + /* OUT endpoint */
3343 + dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
3344 +
3345 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3346 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
3347 +
3348 + /* Program the transfer size and packet count as follows:
3349 + * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
3350 + * pktcnt = N */
3351 + if (_ep->xfer_len == 0) {
3352 + /* Zero Length Packet */
3353 + deptsiz.b.xfersize = _ep->maxpacket;
3354 + deptsiz.b.pktcnt = 1;
3355 + } else {
3356 + deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
3357 + deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
3358 + }
3359 +
3360 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3361 + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
3362 + _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt);
3363 +
3364 + if (_core_if->dma_enable) {
3365 + dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr);
3366 + }
3367 +
3368 + /* EP enable */
3369 + depctl.b.cnak = 1;
3370 + depctl.b.epena = 1;
3371 + dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
3372 + }
3373 +}
3374 +
3375 +/**
3376 + * This function continues control IN transfers started by
3377 + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
3378 + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
3379 + * bit for the packet count.
3380 + *
3381 + * @param _core_if Programming view of DWC_otg controller.
3382 + * @param _ep The EP0 data.
3383 + */
3384 +void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3385 +{
3386 + depctl_data_t depctl;
3387 + deptsiz0_data_t deptsiz;
3388 + gintmsk_data_t intr_mask = { .d32 = 0};
3389 +
3390 + if (_ep->is_in == 1) {
3391 + dwc_otg_dev_in_ep_regs_t *in_regs =
3392 + _core_if->dev_if->in_ep_regs[0];
3393 + gnptxsts_data_t tx_status = {.d32 = 0};
3394 +
3395 + tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts );
3396 + /** @todo Should there be check for room in the Tx
3397 + * Status Queue. If not remove the code above this comment. */
3398 +
3399 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3400 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3401 +
3402 + /* Program the transfer size and packet count
3403 + * as follows: xfersize = N * maxpacket +
3404 + * short_packet pktcnt = N + (short_packet
3405 + * exist ? 1 : 0)
3406 + */
3407 + deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket :
3408 + (_ep->total_len - _ep->xfer_count);
3409 + deptsiz.b.pktcnt = 1;
3410 + _ep->xfer_len += deptsiz.b.xfersize;
3411 +
3412 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3413 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3414 + _ep->xfer_len,
3415 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
3416 +
3417 + /* Write the DMA register */
3418 + if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
3419 + dwc_write_reg32 (&(in_regs->diepdma),
3420 + CPHYSADDR((uint32_t)_ep->dma_addr)); // winder
3421 + }
3422 +
3423 + /* EP enable, IN data in FIFO */
3424 + depctl.b.cnak = 1;
3425 + depctl.b.epena = 1;
3426 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3427 +
3428 + /**
3429 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
3430 + * data will be written into the fifo by the ISR.
3431 + */
3432 + if (!_core_if->dma_enable) {
3433 + /* First clear it from GINTSTS */
3434 + intr_mask.b.nptxfempty = 1;
3435 + dwc_write_reg32( &_core_if->core_global_regs->gintsts,
3436 + intr_mask.d32 );
3437 +
3438 + dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
3439 + intr_mask.d32, intr_mask.d32);
3440 + }
3441 +
3442 + }
3443 +
3444 +}
3445 +
3446 +#ifdef DEBUG
3447 +void dump_msg(const u8 *buf, unsigned int length)
3448 +{
3449 + unsigned int start, num, i;
3450 + char line[52], *p;
3451 +
3452 + if (length >= 512)
3453 + return;
3454 + start = 0;
3455 + while (length > 0) {
3456 + num = min(length, 16u);
3457 + p = line;
3458 + for (i = 0; i < num; ++i) {
3459 + if (i == 8)
3460 + *p++ = ' ';
3461 + sprintf(p, " %02x", buf[i]);
3462 + p += 3;
3463 + }
3464 + *p = 0;
3465 + DWC_PRINT( "%6x: %s\n", start, line);
3466 + buf += num;
3467 + start += num;
3468 + length -= num;
3469 + }
3470 +}
3471 +#else
3472 +static inline void dump_msg(const u8 *buf, unsigned int length)
3473 +{
3474 +}
3475 +#endif
3476 +
3477 +/**
3478 + * This function writes a packet into the Tx FIFO associated with the
3479 + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
3480 + * periodic EPs the periodic Tx FIFO associated with the EP is written
3481 + * with all packets for the next micro-frame.
3482 + *
3483 + * @param _core_if Programming view of DWC_otg controller.
3484 + * @param _ep The EP to write packet for.
3485 + * @param _dma Indicates if DMA is being used.
3486 + */
3487 +void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma)
3488 +{
3489 + /**
3490 + * The buffer is padded to DWORD on a per packet basis in
3491 + * slave/dma mode if the MPS is not DWORD aligned. The last
3492 + * packet, if short, is also padded to a multiple of DWORD.
3493 + *
3494 + * ep->xfer_buff always starts DWORD aligned in memory and is a
3495 + * multiple of DWORD in length
3496 + *
3497 + * ep->xfer_len can be any number of bytes
3498 + *
3499 + * ep->xfer_count is a multiple of ep->maxpacket until the last
3500 + * packet
3501 + *
3502 + * FIFO access is DWORD */
3503 +
3504 + uint32_t i;
3505 + uint32_t byte_count;
3506 + uint32_t dword_count;
3507 + uint32_t *fifo;
3508 + uint32_t *data_buff = (uint32_t *)_ep->xfer_buff;
3509 +
3510 + //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep);
3511 + if (_ep->xfer_count >= _ep->xfer_len) {
3512 + DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num);
3513 + return;
3514 + }
3515 +
3516 + /* Find the byte length of the packet either short packet or MPS */
3517 + if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) {
3518 + byte_count = _ep->xfer_len - _ep->xfer_count;
3519 + }
3520 + else {
3521 + byte_count = _ep->maxpacket;
3522 + }
3523 +
3524 + /* Find the DWORD length, padded by extra bytes as neccessary if MPS
3525 + * is not a multiple of DWORD */
3526 + dword_count = (byte_count + 3) / 4;
3527 +
3528 +#ifdef VERBOSE
3529 + dump_msg(_ep->xfer_buff, byte_count);
3530 +#endif
3531 + if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
3532 + /**@todo NGS Where are the Periodic Tx FIFO addresses
3533 + * intialized? What should this be? */
3534 + fifo = _core_if->data_fifo[_ep->tx_fifo_num];
3535 + } else {
3536 + fifo = _core_if->data_fifo[_ep->num];
3537 + }
3538 +
3539 + DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
3540 + fifo, data_buff, *data_buff, byte_count);
3541 +
3542 +
3543 + if (!_dma) {
3544 + for (i=0; i<dword_count; i++, data_buff++) {
3545 + dwc_write_reg32( fifo, *data_buff );
3546 + }
3547 + }
3548 +
3549 + _ep->xfer_count += byte_count;
3550 + _ep->xfer_buff += byte_count;
3551 +#if 1 // winder, why do we need this??
3552 + _ep->dma_addr += byte_count;
3553 +#endif
3554 +}
3555 +
3556 +/**
3557 + * Set the EP STALL.
3558 + *
3559 + * @param _core_if Programming view of DWC_otg controller.
3560 + * @param _ep The EP to set the stall on.
3561 + */
3562 +void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3563 +{
3564 + depctl_data_t depctl;
3565 + volatile uint32_t *depctl_addr;
3566 +
3567 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
3568 + (_ep->is_in?"IN":"OUT"));
3569 +
3570 + if (_ep->is_in == 1) {
3571 + depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
3572 + depctl.d32 = dwc_read_reg32(depctl_addr);
3573 +
3574 + /* set the disable and stall bits */
3575 + if (depctl.b.epena) {
3576 + depctl.b.epdis = 1;
3577 + }
3578 + depctl.b.stall = 1;
3579 + dwc_write_reg32(depctl_addr, depctl.d32);
3580 +
3581 + } else {
3582 + depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
3583 + depctl.d32 = dwc_read_reg32(depctl_addr);
3584 +
3585 + /* set the stall bit */
3586 + depctl.b.stall = 1;
3587 + dwc_write_reg32(depctl_addr, depctl.d32);
3588 + }
3589 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
3590 + return;
3591 +}
3592 +
3593 +/**
3594 + * Clear the EP STALL.
3595 + *
3596 + * @param _core_if Programming view of DWC_otg controller.
3597 + * @param _ep The EP to clear stall from.
3598 + */
3599 +void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
3600 +{
3601 + depctl_data_t depctl;
3602 + volatile uint32_t *depctl_addr;
3603 +
3604 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
3605 + (_ep->is_in?"IN":"OUT"));
3606 +
3607 + if (_ep->is_in == 1) {
3608 + depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
3609 + } else {
3610 + depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
3611 + }
3612 +
3613 + depctl.d32 = dwc_read_reg32(depctl_addr);
3614 +
3615 + /* clear the stall bits */
3616 + depctl.b.stall = 0;
3617 +
3618 + /*
3619 + * USB Spec 9.4.5: For endpoints using data toggle, regardless
3620 + * of whether an endpoint has the Halt feature set, a
3621 + * ClearFeature(ENDPOINT_HALT) request always results in the
3622 + * data toggle being reinitialized to DATA0.
3623 + */
3624 + if (_ep->type == DWC_OTG_EP_TYPE_INTR ||
3625 + _ep->type == DWC_OTG_EP_TYPE_BULK) {
3626 + depctl.b.setd0pid = 1; /* DATA0 */
3627 + }
3628 +
3629 + dwc_write_reg32(depctl_addr, depctl.d32);
3630 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
3631 + return;
3632 +}
3633 +
3634 +/**
3635 + * This function reads a packet from the Rx FIFO into the destination
3636 + * buffer. To read SETUP data use dwc_otg_read_setup_packet.
3637 + *
3638 + * @param _core_if Programming view of DWC_otg controller.
3639 + * @param _dest Destination buffer for the packet.
3640 + * @param _bytes Number of bytes to copy to the destination.
3641 + */
3642 +void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if,
3643 + uint8_t *_dest,
3644 + uint16_t _bytes)
3645 +{
3646 + int i;
3647 + int word_count = (_bytes + 3) / 4;
3648 +
3649 + volatile uint32_t *fifo = _core_if->data_fifo[0];
3650 + uint32_t *data_buff = (uint32_t *)_dest;
3651 +
3652 + /**
3653 + * @todo Account for the case where _dest is not dword aligned. This
3654 + * requires reading data from the FIFO into a uint32_t temp buffer,
3655 + * then moving it into the data buffer.
3656 + */
3657 +
3658 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
3659 + _core_if, _dest, _bytes);
3660 +
3661 + for (i=0; i<word_count; i++, data_buff++) {
3662 + *data_buff = dwc_read_reg32(fifo);
3663 + }
3664 +
3665 + return;
3666 +}
3667 +
3668 +
3669 +#ifdef DEBUG
3670 +/**
3671 + * This functions reads the device registers and prints them
3672 + *
3673 + * @param _core_if Programming view of DWC_otg controller.
3674 + */
3675 +void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if)
3676 +{
3677 + int i;
3678 + volatile uint32_t *addr;
3679 +
3680 + DWC_PRINT("Device Global Registers\n");
3681 + addr=&_core_if->dev_if->dev_global_regs->dcfg;
3682 + DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3683 + addr=&_core_if->dev_if->dev_global_regs->dctl;
3684 + DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3685 + addr=&_core_if->dev_if->dev_global_regs->dsts;
3686 + DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3687 + addr=&_core_if->dev_if->dev_global_regs->diepmsk;
3688 + DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3689 + addr=&_core_if->dev_if->dev_global_regs->doepmsk;
3690 + DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3691 + addr=&_core_if->dev_if->dev_global_regs->daint;
3692 + DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3693 + addr=&_core_if->dev_if->dev_global_regs->dtknqr1;
3694 + DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3695 + if (_core_if->hwcfg2.b.dev_token_q_depth > 6) {
3696 + addr=&_core_if->dev_if->dev_global_regs->dtknqr2;
3697 + DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
3698 + (uint32_t)addr,dwc_read_reg32(addr));
3699 + }
3700 +
3701 + addr=&_core_if->dev_if->dev_global_regs->dvbusdis;
3702 + DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3703 +
3704 + addr=&_core_if->dev_if->dev_global_regs->dvbuspulse;
3705 + DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
3706 + (uint32_t)addr,dwc_read_reg32(addr));
3707 +
3708 + if (_core_if->hwcfg2.b.dev_token_q_depth > 14) {
3709 + addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
3710 + DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n",
3711 + (uint32_t)addr, dwc_read_reg32(addr));
3712 + }
3713 +
3714 + if (_core_if->hwcfg2.b.dev_token_q_depth > 22) {
3715 + addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
3716 + DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr,
3717 + dwc_read_reg32(addr));
3718 + }
3719 + for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) {
3720 + DWC_PRINT("Device IN EP %d Registers\n", i);
3721 + addr=&_core_if->dev_if->in_ep_regs[i]->diepctl;
3722 + DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3723 + addr=&_core_if->dev_if->in_ep_regs[i]->diepint;
3724 + DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3725 + addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz;
3726 + DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3727 + addr=&_core_if->dev_if->in_ep_regs[i]->diepdma;
3728 + DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3729 +
3730 +addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts;
3731 + DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
3732 + dwc_read_reg32(addr));
3733 + }
3734 + for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) {
3735 + DWC_PRINT("Device OUT EP %d Registers\n", i);
3736 + addr=&_core_if->dev_if->out_ep_regs[i]->doepctl;
3737 + DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3738 + addr=&_core_if->dev_if->out_ep_regs[i]->doepfn;
3739 + DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3740 + addr=&_core_if->dev_if->out_ep_regs[i]->doepint;
3741 + DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3742 + addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz;
3743 + DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3744 + addr=&_core_if->dev_if->out_ep_regs[i]->doepdma;
3745 + DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3746 + }
3747 + return;
3748 +}
3749 +
3750 +/**
3751 + * This function reads the host registers and prints them
3752 + *
3753 + * @param _core_if Programming view of DWC_otg controller.
3754 + */
3755 +void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if)
3756 +{
3757 + int i;
3758 + volatile uint32_t *addr;
3759 +
3760 + DWC_PRINT("Host Global Registers\n");
3761 + addr=&_core_if->host_if->host_global_regs->hcfg;
3762 + DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3763 + addr=&_core_if->host_if->host_global_regs->hfir;
3764 + DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3765 + addr=&_core_if->host_if->host_global_regs->hfnum;
3766 + DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3767 + addr=&_core_if->host_if->host_global_regs->hptxsts;
3768 + DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3769 + addr=&_core_if->host_if->host_global_regs->haint;
3770 + DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3771 + addr=&_core_if->host_if->host_global_regs->haintmsk;
3772 + DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3773 + addr=_core_if->host_if->hprt0;
3774 + DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3775 +
3776 + for (i=0; i<_core_if->core_params->host_channels; i++) {
3777 + DWC_PRINT("Host Channel %d Specific Registers\n", i);
3778 + addr=&_core_if->host_if->hc_regs[i]->hcchar;
3779 + DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3780 + addr=&_core_if->host_if->hc_regs[i]->hcsplt;
3781 + DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3782 + addr=&_core_if->host_if->hc_regs[i]->hcint;
3783 + DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3784 + addr=&_core_if->host_if->hc_regs[i]->hcintmsk;
3785 + DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3786 + addr=&_core_if->host_if->hc_regs[i]->hctsiz;
3787 + DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3788 + addr=&_core_if->host_if->hc_regs[i]->hcdma;
3789 + DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3790 +
3791 + }
3792 + return;
3793 +}
3794 +
3795 +/**
3796 + * This function reads the core global registers and prints them
3797 + *
3798 + * @param _core_if Programming view of DWC_otg controller.
3799 + */
3800 +void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if)
3801 +{
3802 + int i;
3803 + volatile uint32_t *addr;
3804 +
3805 + DWC_PRINT("Core Global Registers\n");
3806 + addr=&_core_if->core_global_regs->gotgctl;
3807 + DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3808 + addr=&_core_if->core_global_regs->gotgint;
3809 + DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3810 + addr=&_core_if->core_global_regs->gahbcfg;
3811 + DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3812 + addr=&_core_if->core_global_regs->gusbcfg;
3813 + DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3814 + addr=&_core_if->core_global_regs->grstctl;
3815 + DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3816 + addr=&_core_if->core_global_regs->gintsts;
3817 + DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3818 + addr=&_core_if->core_global_regs->gintmsk;
3819 + DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3820 + addr=&_core_if->core_global_regs->grxstsr;
3821 + DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3822 + //addr=&_core_if->core_global_regs->grxstsp;
3823 + //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3824 + addr=&_core_if->core_global_regs->grxfsiz;
3825 + DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3826 + addr=&_core_if->core_global_regs->gnptxfsiz;
3827 + DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3828 + addr=&_core_if->core_global_regs->gnptxsts;
3829 + DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3830 + addr=&_core_if->core_global_regs->gi2cctl;
3831 + DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3832 + addr=&_core_if->core_global_regs->gpvndctl;
3833 + DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3834 + addr=&_core_if->core_global_regs->ggpio;
3835 + DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3836 + addr=&_core_if->core_global_regs->guid;
3837 + DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3838 + addr=&_core_if->core_global_regs->gsnpsid;
3839 + DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3840 + addr=&_core_if->core_global_regs->ghwcfg1;
3841 + DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3842 + addr=&_core_if->core_global_regs->ghwcfg2;
3843 + DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3844 + addr=&_core_if->core_global_regs->ghwcfg3;
3845 + DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3846 + addr=&_core_if->core_global_regs->ghwcfg4;
3847 + DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3848 + addr=&_core_if->core_global_regs->hptxfsiz;
3849 + DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
3850 +
3851 + for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
3852 + addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i];
3853 + DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr));
3854 + }
3855 +
3856 +}
3857 +#endif
3858 +
3859 +/**
3860 + * Flush a Tx FIFO.
3861 + *
3862 + * @param _core_if Programming view of DWC_otg controller.
3863 + * @param _num Tx FIFO to flush.
3864 + */
3865 +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
3866 + const int _num )
3867 +{
3868 + dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3869 + volatile grstctl_t greset = { .d32 = 0};
3870 + int count = 0;
3871 +
3872 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num);
3873 +
3874 + greset.b.txfflsh = 1;
3875 + greset.b.txfnum = _num;
3876 + dwc_write_reg32( &global_regs->grstctl, greset.d32 );
3877 +
3878 + do {
3879 + greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3880 + if (++count > 10000){
3881 + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
3882 + __func__, greset.d32,
3883 + dwc_read_reg32( &global_regs->gnptxsts));
3884 + break;
3885 + }
3886 +
3887 + udelay(1);
3888 + } while (greset.b.txfflsh == 1);
3889 + /* Wait for 3 PHY Clocks*/
3890 + UDELAY(1);
3891 +}
3892 +
3893 +/**
3894 + * Flush Rx FIFO.
3895 + *
3896 + * @param _core_if Programming view of DWC_otg controller.
3897 + */
3898 +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if )
3899 +{
3900 + dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3901 + volatile grstctl_t greset = { .d32 = 0};
3902 + int count = 0;
3903 +
3904 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
3905 + /*
3906 + *
3907 + */
3908 + greset.b.rxfflsh = 1;
3909 + dwc_write_reg32( &global_regs->grstctl, greset.d32 );
3910 +
3911 + do {
3912 + greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3913 + if (++count > 10000){
3914 + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
3915 + greset.d32);
3916 + break;
3917 + }
3918 + } while (greset.b.rxfflsh == 1);
3919 + /* Wait for 3 PHY Clocks*/
3920 + UDELAY(1);
3921 +}
3922 +
3923 +/**
3924 + * Do core a soft reset of the core. Be careful with this because it
3925 + * resets all the internal state machines of the core.
3926 + */
3927 +
3928 +void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if)
3929 +{
3930 + dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
3931 + volatile grstctl_t greset = { .d32 = 0};
3932 + int count = 0;
3933 +
3934 + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
3935 + /* Wait for AHB master IDLE state. */
3936 + do {
3937 + UDELAY(10);
3938 + greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3939 + if (++count > 100000){
3940 + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__,
3941 + greset.d32, greset.b.ahbidle);
3942 + return;
3943 + }
3944 + } while (greset.b.ahbidle == 0);
3945 +
3946 +// winder add.
3947 +#if 1
3948 + /* Note: Actually, I don't exactly why we need to put delay here. */
3949 + MDELAY(100);
3950 +#endif
3951 + /* Core Soft Reset */
3952 + count = 0;
3953 + greset.b.csftrst = 1;
3954 + dwc_write_reg32( &global_regs->grstctl, greset.d32 );
3955 +// winder add.
3956 +#if 1
3957 + /* Note: Actually, I don't exactly why we need to put delay here. */
3958 + MDELAY(100);
3959 +#endif
3960 + do {
3961 + greset.d32 = dwc_read_reg32( &global_regs->grstctl);
3962 + if (++count > 10000){
3963 + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
3964 + greset.d32);
3965 + break;
3966 + }
3967 + udelay(1);
3968 + } while (greset.b.csftrst == 1);
3969 + /* Wait for 3 PHY Clocks*/
3970 + //DWC_PRINT("100ms\n");
3971 + MDELAY(100);
3972 +}
3973 +
3974 +
3975 +
3976 +/**
3977 + * Register HCD callbacks. The callbacks are used to start and stop
3978 + * the HCD for interrupt processing.
3979 + *
3980 + * @param _core_if Programming view of DWC_otg controller.
3981 + * @param _cb the HCD callback structure.
3982 + * @param _p pointer to be passed to callback function (usb_hcd*).
3983 + */
3984 +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
3985 + dwc_otg_cil_callbacks_t *_cb,
3986 + void *_p)
3987 +{
3988 + _core_if->hcd_cb = _cb;
3989 + _cb->p = _p;
3990 +}
3991 +
3992 +/**
3993 + * Register PCD callbacks. The callbacks are used to start and stop
3994 + * the PCD for interrupt processing.
3995 + *
3996 + * @param _core_if Programming view of DWC_otg controller.
3997 + * @param _cb the PCD callback structure.
3998 + * @param _p pointer to be passed to callback function (pcd*).
3999 + */
4000 +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
4001 + dwc_otg_cil_callbacks_t *_cb,
4002 + void *_p)
4003 +{
4004 + _core_if->pcd_cb = _cb;
4005 + _cb->p = _p;
4006 +}
4007 +
4008 --- /dev/null
4009 +++ b/drivers/usb/dwc_otg/dwc_otg_cil.h
4010 @@ -0,0 +1,911 @@
4011 +/* ==========================================================================
4012 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $
4013 + * $Revision: 1.1.1.1 $
4014 + * $Date: 2009-04-17 06:15:34 $
4015 + * $Change: 631780 $
4016 + *
4017 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
4018 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
4019 + * otherwise expressly agreed to in writing between Synopsys and you.
4020 + *
4021 + * The Software IS NOT an item of Licensed Software or Licensed Product under
4022 + * any End User Software License Agreement or Agreement for Licensed Product
4023 + * with Synopsys or any supplement thereto. You are permitted to use and
4024 + * redistribute this Software in source and binary forms, with or without
4025 + * modification, provided that redistributions of source code must retain this
4026 + * notice. You may not view, use, disclose, copy or distribute this file or
4027 + * any information contained herein except pursuant to this license grant from
4028 + * Synopsys. If you do not agree with this notice, including the disclaimer
4029 + * below, then you are not authorized to use the Software.
4030 + *
4031 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
4032 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
4033 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
4034 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
4035 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
4036 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
4037 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
4038 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
4039 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4040 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
4041 + * DAMAGE.
4042 + * ========================================================================== */
4043 +
4044 +#if !defined(__DWC_CIL_H__)
4045 +#define __DWC_CIL_H__
4046 +
4047 +#include "dwc_otg_plat.h"
4048 +
4049 +#include "dwc_otg_regs.h"
4050 +#ifdef DEBUG
4051 +#include "linux/timer.h"
4052 +#endif
4053 +
4054 +/* the OTG capabilities. */
4055 +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
4056 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
4057 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
4058 +/* the maximum speed of operation in host and device mode. */
4059 +#define DWC_SPEED_PARAM_HIGH 0
4060 +#define DWC_SPEED_PARAM_FULL 1
4061 +/* the PHY clock rate in low power mode when connected to a
4062 + * Low Speed device in host mode. */
4063 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
4064 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
4065 +/* the type of PHY interface to use. */
4066 +#define DWC_PHY_TYPE_PARAM_FS 0
4067 +#define DWC_PHY_TYPE_PARAM_UTMI 1
4068 +#define DWC_PHY_TYPE_PARAM_ULPI 2
4069 +/* whether to use the internal or external supply to
4070 + * drive the vbus with a ULPI phy. */
4071 +#define DWC_PHY_ULPI_INTERNAL_VBUS 0
4072 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
4073 +/* EP type. */
4074 +
4075 +/**
4076 + * @file
4077 + * This file contains the interface to the Core Interface Layer.
4078 + */
4079 +
4080 +/**
4081 + * The <code>dwc_ep</code> structure represents the state of a single
4082 + * endpoint when acting in device mode. It contains the data items
4083 + * needed for an endpoint to be activated and transfer packets.
4084 + */
4085 +typedef struct dwc_ep {
4086 + /** EP number used for register address lookup */
4087 + uint8_t num;
4088 + /** EP direction 0 = OUT */
4089 + unsigned is_in : 1;
4090 + /** EP active. */
4091 + unsigned active : 1;
4092 +
4093 + /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
4094 + If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
4095 + unsigned tx_fifo_num : 4;
4096 + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
4097 + unsigned type : 2;
4098 +#define DWC_OTG_EP_TYPE_CONTROL 0
4099 +#define DWC_OTG_EP_TYPE_ISOC 1
4100 +#define DWC_OTG_EP_TYPE_BULK 2
4101 +#define DWC_OTG_EP_TYPE_INTR 3
4102 +
4103 + /** DATA start PID for INTR and BULK EP */
4104 + unsigned data_pid_start : 1;
4105 + /** Frame (even/odd) for ISOC EP */
4106 + unsigned even_odd_frame : 1;
4107 + /** Max Packet bytes */
4108 + unsigned maxpacket : 11;
4109 +
4110 + /** @name Transfer state */
4111 + /** @{ */
4112 +
4113 + /**
4114 + * Pointer to the beginning of the transfer buffer -- do not modify
4115 + * during transfer.
4116 + */
4117 +
4118 + uint32_t dma_addr;
4119 +
4120 + uint8_t *start_xfer_buff;
4121 + /** pointer to the transfer buffer */
4122 + uint8_t *xfer_buff;
4123 + /** Number of bytes to transfer */
4124 + unsigned xfer_len : 19;
4125 + /** Number of bytes transferred. */
4126 + unsigned xfer_count : 19;
4127 + /** Sent ZLP */
4128 + unsigned sent_zlp : 1;
4129 + /** Total len for control transfer */
4130 + unsigned total_len : 19;
4131 +
4132 + /** stall clear flag */
4133 + unsigned stall_clear_flag : 1;
4134 +
4135 + /** @} */
4136 +} dwc_ep_t;
4137 +
4138 +/*
4139 + * Reasons for halting a host channel.
4140 + */
4141 +typedef enum dwc_otg_halt_status {
4142 + DWC_OTG_HC_XFER_NO_HALT_STATUS,
4143 + DWC_OTG_HC_XFER_COMPLETE,
4144 + DWC_OTG_HC_XFER_URB_COMPLETE,
4145 + DWC_OTG_HC_XFER_ACK,
4146 + DWC_OTG_HC_XFER_NAK,
4147 + DWC_OTG_HC_XFER_NYET,
4148 + DWC_OTG_HC_XFER_STALL,
4149 + DWC_OTG_HC_XFER_XACT_ERR,
4150 + DWC_OTG_HC_XFER_FRAME_OVERRUN,
4151 + DWC_OTG_HC_XFER_BABBLE_ERR,
4152 + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
4153 + DWC_OTG_HC_XFER_AHB_ERR,
4154 + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
4155 + DWC_OTG_HC_XFER_URB_DEQUEUE
4156 +} dwc_otg_halt_status_e;
4157 +
4158 +/**
4159 + * Host channel descriptor. This structure represents the state of a single
4160 + * host channel when acting in host mode. It contains the data items needed to
4161 + * transfer packets to an endpoint via a host channel.
4162 + */
4163 +typedef struct dwc_hc {
4164 + /** Host channel number used for register address lookup */
4165 + uint8_t hc_num;
4166 +
4167 + /** Device to access */
4168 + unsigned dev_addr : 7;
4169 +
4170 + /** EP to access */
4171 + unsigned ep_num : 4;
4172 +
4173 + /** EP direction. 0: OUT, 1: IN */
4174 + unsigned ep_is_in : 1;
4175 +
4176 + /**
4177 + * EP speed.
4178 + * One of the following values:
4179 + * - DWC_OTG_EP_SPEED_LOW
4180 + * - DWC_OTG_EP_SPEED_FULL
4181 + * - DWC_OTG_EP_SPEED_HIGH
4182 + */
4183 + unsigned speed : 2;
4184 +#define DWC_OTG_EP_SPEED_LOW 0
4185 +#define DWC_OTG_EP_SPEED_FULL 1
4186 +#define DWC_OTG_EP_SPEED_HIGH 2
4187 +
4188 + /**
4189 + * Endpoint type.
4190 + * One of the following values:
4191 + * - DWC_OTG_EP_TYPE_CONTROL: 0
4192 + * - DWC_OTG_EP_TYPE_ISOC: 1
4193 + * - DWC_OTG_EP_TYPE_BULK: 2
4194 + * - DWC_OTG_EP_TYPE_INTR: 3
4195 + */
4196 + unsigned ep_type : 2;
4197 +
4198 + /** Max packet size in bytes */
4199 + unsigned max_packet : 11;
4200 +
4201 + /**
4202 + * PID for initial transaction.
4203 + * 0: DATA0,<br>
4204 + * 1: DATA2,<br>
4205 + * 2: DATA1,<br>
4206 + * 3: MDATA (non-Control EP),
4207 + * SETUP (Control EP)
4208 + */
4209 + unsigned data_pid_start : 2;
4210 +#define DWC_OTG_HC_PID_DATA0 0
4211 +#define DWC_OTG_HC_PID_DATA2 1
4212 +#define DWC_OTG_HC_PID_DATA1 2
4213 +#define DWC_OTG_HC_PID_MDATA 3
4214 +#define DWC_OTG_HC_PID_SETUP 3
4215 +
4216 + /** Number of periodic transactions per (micro)frame */
4217 + unsigned multi_count: 2;
4218 +
4219 + /** @name Transfer State */
4220 + /** @{ */
4221 +
4222 + /** Pointer to the current transfer buffer position. */
4223 + uint8_t *xfer_buff;
4224 + /** Total number of bytes to transfer. */
4225 + uint32_t xfer_len;
4226 + /** Number of bytes transferred so far. */
4227 + uint32_t xfer_count;
4228 + /** Packet count at start of transfer.*/
4229 + uint16_t start_pkt_count;
4230 +
4231 + /**
4232 + * Flag to indicate whether the transfer has been started. Set to 1 if
4233 + * it has been started, 0 otherwise.
4234 + */
4235 + uint8_t xfer_started;
4236 +
4237 + /**
4238 + * Set to 1 to indicate that a PING request should be issued on this
4239 + * channel. If 0, process normally.
4240 + */
4241 + uint8_t do_ping;
4242 +
4243 + /**
4244 + * Set to 1 to indicate that the error count for this transaction is
4245 + * non-zero. Set to 0 if the error count is 0.
4246 + */
4247 + uint8_t error_state;
4248 +
4249 + /**
4250 + * Set to 1 to indicate that this channel should be halted the next
4251 + * time a request is queued for the channel. This is necessary in
4252 + * slave mode if no request queue space is available when an attempt
4253 + * is made to halt the channel.
4254 + */
4255 + uint8_t halt_on_queue;
4256 +
4257 + /**
4258 + * Set to 1 if the host channel has been halted, but the core is not
4259 + * finished flushing queued requests. Otherwise 0.
4260 + */
4261 + uint8_t halt_pending;
4262 +
4263 + /**
4264 + * Reason for halting the host channel.
4265 + */
4266 + dwc_otg_halt_status_e halt_status;
4267 +
4268 + /*
4269 + * Split settings for the host channel
4270 + */
4271 + uint8_t do_split; /**< Enable split for the channel */
4272 + uint8_t complete_split; /**< Enable complete split */
4273 + uint8_t hub_addr; /**< Address of high speed hub */
4274 +
4275 + uint8_t port_addr; /**< Port of the low/full speed device */
4276 + /** Split transaction position
4277 + * One of the following values:
4278 + * - DWC_HCSPLIT_XACTPOS_MID
4279 + * - DWC_HCSPLIT_XACTPOS_BEGIN
4280 + * - DWC_HCSPLIT_XACTPOS_END
4281 + * - DWC_HCSPLIT_XACTPOS_ALL */
4282 + uint8_t xact_pos;
4283 +
4284 + /** Set when the host channel does a short read. */
4285 + uint8_t short_read;
4286 +
4287 + /**
4288 + * Number of requests issued for this channel since it was assigned to
4289 + * the current transfer (not counting PINGs).
4290 + */
4291 + uint8_t requests;
4292 +
4293 + /**
4294 + * Queue Head for the transfer being processed by this channel.
4295 + */
4296 + struct dwc_otg_qh *qh;
4297 +
4298 + /** @} */
4299 +
4300 + /** Entry in list of host channels. */
4301 + struct list_head hc_list_entry;
4302 +} dwc_hc_t;
4303 +
4304 +/**
4305 + * The following parameters may be specified when starting the module. These
4306 + * parameters define how the DWC_otg controller should be configured.
4307 + * Parameter values are passed to the CIL initialization function
4308 + * dwc_otg_cil_init.
4309 + */
4310 +
4311 +typedef struct dwc_otg_core_params
4312 +{
4313 + int32_t opt;
4314 +//#define dwc_param_opt_default 1
4315 + /**
4316 + * Specifies the OTG capabilities. The driver will automatically
4317 + * detect the value for this parameter if none is specified.
4318 + * 0 - HNP and SRP capable (default)
4319 + * 1 - SRP Only capable
4320 + * 2 - No HNP/SRP capable
4321 + */
4322 + int32_t otg_cap;
4323 +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
4324 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
4325 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
4326 +//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
4327 + /**
4328 + * Specifies whether to use slave or DMA mode for accessing the data
4329 + * FIFOs. The driver will automatically detect the value for this
4330 + * parameter if none is specified.
4331 + * 0 - Slave
4332 + * 1 - DMA (default, if available)
4333 + */
4334 + int32_t dma_enable;
4335 +//#define dwc_param_dma_enable_default 1
4336 + /** The DMA Burst size (applicable only for External DMA
4337 + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
4338 + */
4339 + int32_t dma_burst_size; /* Translate this to GAHBCFG values */
4340 +//#define dwc_param_dma_burst_size_default 32
4341 + /**
4342 + * Specifies the maximum speed of operation in host and device mode.
4343 + * The actual speed depends on the speed of the attached device and
4344 + * the value of phy_type. The actual speed depends on the speed of the
4345 + * attached device.
4346 + * 0 - High Speed (default)
4347 + * 1 - Full Speed
4348 + */
4349 + int32_t speed;
4350 +//#define dwc_param_speed_default 0
4351 +#define DWC_SPEED_PARAM_HIGH 0
4352 +#define DWC_SPEED_PARAM_FULL 1
4353 +
4354 + /** Specifies whether low power mode is supported when attached
4355 + * to a Full Speed or Low Speed device in host mode.
4356 + * 0 - Don't support low power mode (default)
4357 + * 1 - Support low power mode
4358 + */
4359 + int32_t host_support_fs_ls_low_power;
4360 +//#define dwc_param_host_support_fs_ls_low_power_default 0
4361 + /** Specifies the PHY clock rate in low power mode when connected to a
4362 + * Low Speed device in host mode. This parameter is applicable only if
4363 + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
4364 + * then defaults to 6 MHZ otherwise 48 MHZ.
4365 + *
4366 + * 0 - 48 MHz
4367 + * 1 - 6 MHz
4368 + */
4369 + int32_t host_ls_low_power_phy_clk;
4370 +//#define dwc_param_host_ls_low_power_phy_clk_default 0
4371 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
4372 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
4373 + /**
4374 + * 0 - Use cC FIFO size parameters
4375 + * 1 - Allow dynamic FIFO sizing (default)
4376 + */
4377 + int32_t enable_dynamic_fifo;
4378 +//#define dwc_param_enable_dynamic_fifo_default 1
4379 + /** Total number of 4-byte words in the data FIFO memory. This
4380 + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
4381 + * Tx FIFOs.
4382 + * 32 to 32768 (default 8192)
4383 + * Note: The total FIFO memory depth in the FPGA configuration is 8192.
4384 + */
4385 + int32_t data_fifo_size;
4386 +//#define dwc_param_data_fifo_size_default 8192
4387 + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
4388 + * FIFO sizing is enabled.
4389 + * 16 to 32768 (default 1064)
4390 + */
4391 + int32_t dev_rx_fifo_size;
4392 +//#define dwc_param_dev_rx_fifo_size_default 1064
4393 + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
4394 + * when dynamic FIFO sizing is enabled.
4395 + * 16 to 32768 (default 1024)
4396 + */
4397 + int32_t dev_nperio_tx_fifo_size;
4398 +//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
4399 + /** Number of 4-byte words in each of the periodic Tx FIFOs in device
4400 + * mode when dynamic FIFO sizing is enabled.
4401 + * 4 to 768 (default 256)
4402 + */
4403 + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
4404 +//#define dwc_param_dev_perio_tx_fifo_size_default 256
4405 + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
4406 + * FIFO sizing is enabled.
4407 + * 16 to 32768 (default 1024)
4408 + */
4409 + int32_t host_rx_fifo_size;
4410 +//#define dwc_param_host_rx_fifo_size_default 1024
4411 + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
4412 + * when Dynamic FIFO sizing is enabled in the core.
4413 + * 16 to 32768 (default 1024)
4414 + */
4415 + int32_t host_nperio_tx_fifo_size;
4416 +//#define dwc_param_host_nperio_tx_fifo_size_default 1024
4417 + /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
4418 + * FIFO sizing is enabled.
4419 + * 16 to 32768 (default 1024)
4420 + */
4421 + int32_t host_perio_tx_fifo_size;
4422 +//#define dwc_param_host_perio_tx_fifo_size_default 1024
4423 + /** The maximum transfer size supported in bytes.
4424 + * 2047 to 65,535 (default 65,535)
4425 + */
4426 + int32_t max_transfer_size;
4427 +//#define dwc_param_max_transfer_size_default 65535
4428 + /** The maximum number of packets in a transfer.
4429 + * 15 to 511 (default 511)
4430 + */
4431 + int32_t max_packet_count;
4432 +//#define dwc_param_max_packet_count_default 511
4433 + /** The number of host channel registers to use.
4434 + * 1 to 16 (default 12)
4435 + * Note: The FPGA configuration supports a maximum of 12 host channels.
4436 + */
4437 + int32_t host_channels;
4438 +//#define dwc_param_host_channels_default 12
4439 + /** The number of endpoints in addition to EP0 available for device
4440 + * mode operations.
4441 + * 1 to 15 (default 6 IN and OUT)
4442 + * Note: The FPGA configuration supports a maximum of 6 IN and OUT
4443 + * endpoints in addition to EP0.
4444 + */
4445 + int32_t dev_endpoints;
4446 +//#define dwc_param_dev_endpoints_default 6
4447 + /**
4448 + * Specifies the type of PHY interface to use. By default, the driver
4449 + * will automatically detect the phy_type.
4450 + *
4451 + * 0 - Full Speed PHY
4452 + * 1 - UTMI+ (default)
4453 + * 2 - ULPI
4454 + */
4455 + int32_t phy_type;
4456 +#define DWC_PHY_TYPE_PARAM_FS 0
4457 +#define DWC_PHY_TYPE_PARAM_UTMI 1
4458 +#define DWC_PHY_TYPE_PARAM_ULPI 2
4459 +//#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
4460 + /**
4461 + * Specifies the UTMI+ Data Width. This parameter is
4462 + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
4463 + * PHY_TYPE, this parameter indicates the data width between
4464 + * the MAC and the ULPI Wrapper.) Also, this parameter is
4465 + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
4466 + * to "8 and 16 bits", meaning that the core has been
4467 + * configured to work at either data path width.
4468 + *
4469 + * 8 or 16 bits (default 16)
4470 + */
4471 + int32_t phy_utmi_width;
4472 +//#define dwc_param_phy_utmi_width_default 16
4473 + /**
4474 + * Specifies whether the ULPI operates at double or single
4475 + * data rate. This parameter is only applicable if PHY_TYPE is
4476 + * ULPI.
4477 + *
4478 + * 0 - single data rate ULPI interface with 8 bit wide data
4479 + * bus (default)
4480 + * 1 - double data rate ULPI interface with 4 bit wide data
4481 + * bus
4482 + */
4483 + int32_t phy_ulpi_ddr;
4484 +//#define dwc_param_phy_ulpi_ddr_default 0
4485 + /**
4486 + * Specifies whether to use the internal or external supply to
4487 + * drive the vbus with a ULPI phy.
4488 + */
4489 + int32_t phy_ulpi_ext_vbus;
4490 +#define DWC_PHY_ULPI_INTERNAL_VBUS 0
4491 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
4492 +//#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
4493 + /**
4494 + * Specifies whether to use the I2Cinterface for full speed PHY. This
4495 + * parameter is only applicable if PHY_TYPE is FS.
4496 + * 0 - No (default)
4497 + * 1 - Yes
4498 + */
4499 + int32_t i2c_enable;
4500 +//#define dwc_param_i2c_enable_default 0
4501 +
4502 + int32_t ulpi_fs_ls;
4503 +//#define dwc_param_ulpi_fs_ls_default 0
4504 +
4505 + int32_t ts_dline;
4506 +//#define dwc_param_ts_dline_default 0
4507 +
4508 + /**
4509 + * Specifies whether dedicated transmit FIFOs are
4510 + * enabled for non periodic IN endpoints in device mode
4511 + * 0 - No
4512 + * 1 - Yes
4513 + */
4514 + int32_t en_multiple_tx_fifo;
4515 +#define dwc_param_en_multiple_tx_fifo_default 1
4516 +
4517 + /** Number of 4-byte words in each of the Tx FIFOs in device
4518 + * mode when dynamic FIFO sizing is enabled.
4519 + * 4 to 768 (default 256)
4520 + */
4521 + uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
4522 +#define dwc_param_dev_tx_fifo_size_default 256
4523 +
4524 + /** Thresholding enable flag-
4525 + * bit 0 - enable non-ISO Tx thresholding
4526 + * bit 1 - enable ISO Tx thresholding
4527 + * bit 2 - enable Rx thresholding
4528 + */
4529 + uint32_t thr_ctl;
4530 +#define dwc_param_thr_ctl_default 0
4531 +
4532 + /** Thresholding length for Tx
4533 + * FIFOs in 32 bit DWORDs
4534 + */
4535 + uint32_t tx_thr_length;
4536 +#define dwc_param_tx_thr_length_default 64
4537 +
4538 + /** Thresholding length for Rx
4539 + * FIFOs in 32 bit DWORDs
4540 + */
4541 + uint32_t rx_thr_length;
4542 +#define dwc_param_rx_thr_length_default 64
4543 +} dwc_otg_core_params_t;
4544 +
4545 +#ifdef DEBUG
4546 +struct dwc_otg_core_if;
4547 +typedef struct hc_xfer_info
4548 +{
4549 + struct dwc_otg_core_if *core_if;
4550 + dwc_hc_t *hc;
4551 +} hc_xfer_info_t;
4552 +#endif
4553 +
4554 +/**
4555 + * The <code>dwc_otg_core_if</code> structure contains information needed to manage
4556 + * the DWC_otg controller acting in either host or device mode. It
4557 + * represents the programming view of the controller as a whole.
4558 + */
4559 +typedef struct dwc_otg_core_if
4560 +{
4561 + /** Parameters that define how the core should be configured.*/
4562 + dwc_otg_core_params_t *core_params;
4563 +
4564 + /** Core Global registers starting at offset 000h. */
4565 + dwc_otg_core_global_regs_t *core_global_regs;
4566 +
4567 + /** Device-specific information */
4568 + dwc_otg_dev_if_t *dev_if;
4569 + /** Host-specific information */
4570 + dwc_otg_host_if_t *host_if;
4571 +
4572 + /*
4573 + * Set to 1 if the core PHY interface bits in USBCFG have been
4574 + * initialized.
4575 + */
4576 + uint8_t phy_init_done;
4577 +
4578 + /*
4579 + * SRP Success flag, set by srp success interrupt in FS I2C mode
4580 + */
4581 + uint8_t srp_success;
4582 + uint8_t srp_timer_started;
4583 +
4584 + /* Common configuration information */
4585 + /** Power and Clock Gating Control Register */
4586 + volatile uint32_t *pcgcctl;
4587 +#define DWC_OTG_PCGCCTL_OFFSET 0xE00
4588 +
4589 + /** Push/pop addresses for endpoints or host channels.*/
4590 + uint32_t *data_fifo[MAX_EPS_CHANNELS];
4591 +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
4592 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000
4593 +
4594 + /** Total RAM for FIFOs (Bytes) */
4595 + uint16_t total_fifo_size;
4596 + /** Size of Rx FIFO (Bytes) */
4597 + uint16_t rx_fifo_size;
4598 + /** Size of Non-periodic Tx FIFO (Bytes) */
4599 + uint16_t nperio_tx_fifo_size;
4600 +
4601 + /** 1 if DMA is enabled, 0 otherwise. */
4602 + uint8_t dma_enable;
4603 +
4604 + /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
4605 + uint8_t en_multiple_tx_fifo;
4606 +
4607 + /** Set to 1 if multiple packets of a high-bandwidth transfer is in
4608 + * process of being queued */
4609 + uint8_t queuing_high_bandwidth;
4610 +
4611 + /** Hardware Configuration -- stored here for convenience.*/
4612 + hwcfg1_data_t hwcfg1;
4613 + hwcfg2_data_t hwcfg2;
4614 + hwcfg3_data_t hwcfg3;
4615 + hwcfg4_data_t hwcfg4;
4616 +
4617 + /** The operational State, during transations
4618 + * (a_host>>a_peripherial and b_device=>b_host) this may not
4619 + * match the core but allows the software to determine
4620 + * transitions.
4621 + */
4622 + uint8_t op_state;
4623 +
4624 + /**
4625 + * Set to 1 if the HCD needs to be restarted on a session request
4626 + * interrupt. This is required if no connector ID status change has
4627 + * occurred since the HCD was last disconnected.
4628 + */
4629 + uint8_t restart_hcd_on_session_req;
4630 +
4631 + /** HCD callbacks */
4632 + /** A-Device is a_host */
4633 +#define A_HOST (1)
4634 + /** A-Device is a_suspend */
4635 +#define A_SUSPEND (2)
4636 + /** A-Device is a_peripherial */
4637 +#define A_PERIPHERAL (3)
4638 + /** B-Device is operating as a Peripheral. */
4639 +#define B_PERIPHERAL (4)
4640 + /** B-Device is operating as a Host. */
4641 +#define B_HOST (5)
4642 +
4643 + /** HCD callbacks */
4644 + struct dwc_otg_cil_callbacks *hcd_cb;
4645 + /** PCD callbacks */
4646 + struct dwc_otg_cil_callbacks *pcd_cb;
4647 +
4648 + /** Device mode Periodic Tx FIFO Mask */
4649 + uint32_t p_tx_msk;
4650 + /** Device mode Periodic Tx FIFO Mask */
4651 + uint32_t tx_msk;
4652 +
4653 +#ifdef DEBUG
4654 + uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
4655 +
4656 + hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
4657 + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
4658 +
4659 +#if 1 // winder
4660 + uint32_t hfnum_7_samples;
4661 + uint32_t hfnum_7_frrem_accum;
4662 + uint32_t hfnum_0_samples;
4663 + uint32_t hfnum_0_frrem_accum;
4664 + uint32_t hfnum_other_samples;
4665 + uint32_t hfnum_other_frrem_accum;
4666 +#else
4667 + uint32_t hfnum_7_samples;
4668 + uint64_t hfnum_7_frrem_accum;
4669 + uint32_t hfnum_0_samples;
4670 + uint64_t hfnum_0_frrem_accum;
4671 + uint32_t hfnum_other_samples;
4672 + uint64_t hfnum_other_frrem_accum;
4673 +#endif
4674 + resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */
4675 +#endif
4676 +
4677 +} dwc_otg_core_if_t;
4678 +
4679 +/*
4680 + * The following functions support initialization of the CIL driver component
4681 + * and the DWC_otg controller.
4682 + */
4683 +extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
4684 + dwc_otg_core_params_t *_core_params);
4685 +extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
4686 +extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
4687 +extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
4688 +extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
4689 +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
4690 +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
4691 +
4692 +/** @name Device CIL Functions
4693 + * The following functions support managing the DWC_otg controller in device
4694 + * mode.
4695 + */
4696 +/**@{*/
4697 +extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
4698 +extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
4699 +extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
4700 +extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4701 +extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4702 +extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4703 +extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4704 +extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4705 +extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4706 +extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
4707 +extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4708 +extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
4709 +extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
4710 +extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
4711 +/**@}*/
4712 +
4713 +/** @name Host CIL Functions
4714 + * The following functions support managing the DWC_otg controller in host
4715 + * mode.
4716 + */
4717 +/**@{*/
4718 +extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4719 +extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
4720 + dwc_hc_t *_hc,
4721 + dwc_otg_halt_status_e _halt_status);
4722 +extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4723 +extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4724 +extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4725 +extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4726 +extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
4727 +extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
4728 +extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
4729 +
4730 +/**
4731 + * This function Reads HPRT0 in preparation to modify. It keeps the
4732 + * WC bits 0 so that if they are read as 1, they won't clear when you
4733 + * write it back
4734 + */
4735 +static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
4736 +{
4737 + hprt0_data_t hprt0;
4738 + hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
4739 + hprt0.b.prtena = 0;
4740 + hprt0.b.prtconndet = 0;
4741 + hprt0.b.prtenchng = 0;
4742 + hprt0.b.prtovrcurrchng = 0;
4743 + return hprt0.d32;
4744 +}
4745 +
4746 +extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
4747 +/**@}*/
4748 +
4749 +/** @name Common CIL Functions
4750 + * The following functions support managing the DWC_otg controller in either
4751 + * device or host mode.
4752 + */
4753 +/**@{*/
4754 +
4755 +extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
4756 + uint8_t *dest,
4757 + uint16_t bytes);
4758 +
4759 +extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
4760 +
4761 +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
4762 + const int _num );
4763 +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
4764 +extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
4765 +
4766 +#define NP_TXFIFO_EMPTY -1
4767 +#define MAX_NP_TXREQUEST_Q_SLOTS 8
4768 +/**
4769 + * This function returns the endpoint number of the request at
4770 + * the top of non-periodic TX FIFO, or -1 if the request FIFO is
4771 + * empty.
4772 + */
4773 +static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) {
4774 + gnptxsts_data_t txstatus = {.d32 = 0};
4775 +
4776 + txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
4777 + return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ?
4778 + -1 : txstatus.b.nptxqtop_chnep);
4779 +}
4780 +/**
4781 + * This function returns the Core Interrupt register.
4782 + */
4783 +static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) {
4784 + return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
4785 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
4786 +}
4787 +
4788 +/**
4789 + * This function returns the OTG Interrupt register.
4790 + */
4791 +static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) {
4792 + return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
4793 +}
4794 +
4795 +/**
4796 + * This function reads the Device All Endpoints Interrupt register and
4797 + * returns the IN endpoint interrupt bits.
4798 + */
4799 +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) {
4800 + uint32_t v;
4801 + v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
4802 + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
4803 + return (v & 0xffff);
4804 +
4805 +}
4806 +
4807 +/**
4808 + * This function reads the Device All Endpoints Interrupt register and
4809 + * returns the OUT endpoint interrupt bits.
4810 + */
4811 +static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) {
4812 + uint32_t v;
4813 + v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
4814 + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
4815 + return ((v & 0xffff0000) >> 16);
4816 +}
4817 +
4818 +/**
4819 + * This function returns the Device IN EP Interrupt register
4820 + */
4821 +static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if,
4822 + dwc_ep_t *_ep)
4823 +{
4824 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4825 + uint32_t v, msk, emp;
4826 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
4827 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
4828 + msk |= ((emp >> _ep->num) & 0x1) << 7;
4829 + v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk;
4830 +/*
4831 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4832 + uint32_t v;
4833 + v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) &
4834 + dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
4835 +*/
4836 + return v;
4837 +}
4838 +/**
4839 + * This function returns the Device OUT EP Interrupt register
4840 + */
4841 +static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
4842 + dwc_ep_t *_ep)
4843 +{
4844 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
4845 + uint32_t v;
4846 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) &
4847 + dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
4848 + return v;
4849 +}
4850 +
4851 +/**
4852 + * This function returns the Host All Channel Interrupt register
4853 + */
4854 +static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
4855 +{
4856 + return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
4857 +}
4858 +
4859 +static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
4860 +{
4861 + return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
4862 +}
4863 +
4864 +
4865 +/**
4866 + * This function returns the mode of the operation, host or device.
4867 + *
4868 + * @return 0 - Device Mode, 1 - Host Mode
4869 + */
4870 +static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) {
4871 + return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
4872 +}
4873 +
4874 +static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
4875 +{
4876 + return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
4877 +}
4878 +static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
4879 +{
4880 + return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
4881 +}
4882 +
4883 +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
4884 +
4885 +
4886 +/**@}*/
4887 +
4888 +/**
4889 + * DWC_otg CIL callback structure. This structure allows the HCD and
4890 + * PCD to register functions used for starting and stopping the PCD
4891 + * and HCD for role change on for a DRD.
4892 + */
4893 +typedef struct dwc_otg_cil_callbacks
4894 +{
4895 + /** Start function for role change */
4896 + int (*start) (void *_p);
4897 + /** Stop Function for role change */
4898 + int (*stop) (void *_p);
4899 + /** Disconnect Function for role change */
4900 + int (*disconnect) (void *_p);
4901 + /** Resume/Remote wakeup Function */
4902 + int (*resume_wakeup) (void *_p);
4903 + /** Suspend function */
4904 + int (*suspend) (void *_p);
4905 + /** Session Start (SRP) */
4906 + int (*session_start) (void *_p);
4907 + /** Pointer passed to start() and stop() */
4908 + void *p;
4909 +} dwc_otg_cil_callbacks_t;
4910 +
4911 +
4912 +
4913 +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
4914 + dwc_otg_cil_callbacks_t *_cb,
4915 + void *_p);
4916 +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
4917 + dwc_otg_cil_callbacks_t *_cb,
4918 + void *_p);
4919 +
4920 +
4921 +#endif
4922 --- /dev/null
4923 +++ b/drivers/usb/dwc_otg/dwc_otg_cil_ifx.h
4924 @@ -0,0 +1,58 @@
4925 +/******************************************************************************
4926 +**
4927 +** FILE NAME : dwc_otg_cil_ifx.h
4928 +** PROJECT : Twinpass/Danube
4929 +** MODULES : DWC OTG USB
4930 +**
4931 +** DATE : 07 Sep. 2007
4932 +** AUTHOR : Sung Winder
4933 +** DESCRIPTION : Default param value.
4934 +** COPYRIGHT : Copyright (c) 2007
4935 +** Infineon Technologies AG
4936 +** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
4937 +** Hsin-chu City, 300 Taiwan.
4938 +**
4939 +** This program is free software; you can redistribute it and/or modify
4940 +** it under the terms of the GNU General Public License as published by
4941 +** the Free Software Foundation; either version 2 of the License, or
4942 +** (at your option) any later version.
4943 +**
4944 +** HISTORY
4945 +** $Date $Author $Comment
4946 +** 12 April 2007 Sung Winder Initiate Version
4947 +*******************************************************************************/
4948 +#if !defined(__DWC_OTG_CIL_IFX_H__)
4949 +#define __DWC_OTG_CIL_IFX_H__
4950 +
4951 +/* ================ Default param value ================== */
4952 +#define dwc_param_opt_default 1
4953 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
4954 +#define dwc_param_dma_enable_default 1
4955 +#define dwc_param_dma_burst_size_default 32
4956 +#define dwc_param_speed_default DWC_SPEED_PARAM_HIGH
4957 +#define dwc_param_host_support_fs_ls_low_power_default 0
4958 +#define dwc_param_host_ls_low_power_phy_clk_default DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
4959 +#define dwc_param_enable_dynamic_fifo_default 1
4960 +#define dwc_param_data_fifo_size_default 2048
4961 +#define dwc_param_dev_rx_fifo_size_default 1024
4962 +#define dwc_param_dev_nperio_tx_fifo_size_default 1024
4963 +#define dwc_param_dev_perio_tx_fifo_size_default 768
4964 +#define dwc_param_host_rx_fifo_size_default 640
4965 +#define dwc_param_host_nperio_tx_fifo_size_default 640
4966 +#define dwc_param_host_perio_tx_fifo_size_default 768
4967 +#define dwc_param_max_transfer_size_default 65535
4968 +#define dwc_param_max_packet_count_default 511
4969 +#define dwc_param_host_channels_default 16
4970 +#define dwc_param_dev_endpoints_default 6
4971 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
4972 +#define dwc_param_phy_utmi_width_default 16
4973 +#define dwc_param_phy_ulpi_ddr_default 0
4974 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
4975 +#define dwc_param_i2c_enable_default 0
4976 +#define dwc_param_ulpi_fs_ls_default 0
4977 +#define dwc_param_ts_dline_default 0
4978 +
4979 +/* ======================================================= */
4980 +
4981 +#endif // __DWC_OTG_CIL_IFX_H__
4982 +
4983 --- /dev/null
4984 +++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
4985 @@ -0,0 +1,708 @@
4986 +/* ==========================================================================
4987 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $
4988 + * $Revision: 1.1.1.1 $
4989 + * $Date: 2009-04-17 06:15:34 $
4990 + * $Change: 553126 $
4991 + *
4992 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
4993 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
4994 + * otherwise expressly agreed to in writing between Synopsys and you.
4995 + *
4996 + * The Software IS NOT an item of Licensed Software or Licensed Product under
4997 + * any End User Software License Agreement or Agreement for Licensed Product
4998 + * with Synopsys or any supplement thereto. You are permitted to use and
4999 + * redistribute this Software in source and binary forms, with or without
5000 + * modification, provided that redistributions of source code must retain this
5001 + * notice. You may not view, use, disclose, copy or distribute this file or
5002 + * any information contained herein except pursuant to this license grant from
5003 + * Synopsys. If you do not agree with this notice, including the disclaimer
5004 + * below, then you are not authorized to use the Software.
5005 + *
5006 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
5007 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
5008 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
5009 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
5010 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
5011 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
5012 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
5013 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
5014 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
5015 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
5016 + * DAMAGE.
5017 + * ========================================================================== */
5018 +
5019 +/** @file
5020 + *
5021 + * The Core Interface Layer provides basic services for accessing and
5022 + * managing the DWC_otg hardware. These services are used by both the
5023 + * Host Controller Driver and the Peripheral Controller Driver.
5024 + *
5025 + * This file contains the Common Interrupt handlers.
5026 + */
5027 +#include "dwc_otg_plat.h"
5028 +#include "dwc_otg_regs.h"
5029 +#include "dwc_otg_cil.h"
5030 +
5031 +#ifdef DEBUG
5032 +inline const char *op_state_str( dwc_otg_core_if_t *_core_if )
5033 +{
5034 + return (_core_if->op_state==A_HOST?"a_host":
5035 + (_core_if->op_state==A_SUSPEND?"a_suspend":
5036 + (_core_if->op_state==A_PERIPHERAL?"a_peripheral":
5037 + (_core_if->op_state==B_PERIPHERAL?"b_peripheral":
5038 + (_core_if->op_state==B_HOST?"b_host":
5039 + "unknown")))));
5040 +}
5041 +#endif
5042 +
5043 +/** This function will log a debug message
5044 + *
5045 + * @param _core_if Programming view of DWC_otg controller.
5046 + */
5047 +int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *_core_if)
5048 +{
5049 + gintsts_data_t gintsts;
5050 + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
5051 + dwc_otg_mode(_core_if) ? "Host" : "Device");
5052 +
5053 + /* Clear interrupt */
5054 + gintsts.d32 = 0;
5055 + gintsts.b.modemismatch = 1;
5056 + dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5057 + return 1;
5058 +}
5059 +
5060 +/** Start the HCD. Helper function for using the HCD callbacks.
5061 + *
5062 + * @param _core_if Programming view of DWC_otg controller.
5063 + */
5064 +static inline void hcd_start( dwc_otg_core_if_t *_core_if )
5065 +{
5066 + if (_core_if->hcd_cb && _core_if->hcd_cb->start) {
5067 + _core_if->hcd_cb->start( _core_if->hcd_cb->p );
5068 + }
5069 +}
5070 +/** Stop the HCD. Helper function for using the HCD callbacks.
5071 + *
5072 + * @param _core_if Programming view of DWC_otg controller.
5073 + */
5074 +static inline void hcd_stop( dwc_otg_core_if_t *_core_if )
5075 +{
5076 + if (_core_if->hcd_cb && _core_if->hcd_cb->stop) {
5077 + _core_if->hcd_cb->stop( _core_if->hcd_cb->p );
5078 + }
5079 +}
5080 +/** Disconnect the HCD. Helper function for using the HCD callbacks.
5081 + *
5082 + * @param _core_if Programming view of DWC_otg controller.
5083 + */
5084 +static inline void hcd_disconnect( dwc_otg_core_if_t *_core_if )
5085 +{
5086 + if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) {
5087 + _core_if->hcd_cb->disconnect( _core_if->hcd_cb->p );
5088 + }
5089 +}
5090 +/** Inform the HCD the a New Session has begun. Helper function for
5091 + * using the HCD callbacks.
5092 + *
5093 + * @param _core_if Programming view of DWC_otg controller.
5094 + */
5095 +static inline void hcd_session_start( dwc_otg_core_if_t *_core_if )
5096 +{
5097 + if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) {
5098 + _core_if->hcd_cb->session_start( _core_if->hcd_cb->p );
5099 + }
5100 +}
5101 +
5102 +/** Start the PCD. Helper function for using the PCD callbacks.
5103 + *
5104 + * @param _core_if Programming view of DWC_otg controller.
5105 + */
5106 +static inline void pcd_start( dwc_otg_core_if_t *_core_if )
5107 +{
5108 + if (_core_if->pcd_cb && _core_if->pcd_cb->start ) {
5109 + _core_if->pcd_cb->start( _core_if->pcd_cb->p );
5110 + }
5111 +}
5112 +/** Stop the PCD. Helper function for using the PCD callbacks.
5113 + *
5114 + * @param _core_if Programming view of DWC_otg controller.
5115 + */
5116 +static inline void pcd_stop( dwc_otg_core_if_t *_core_if )
5117 +{
5118 + if (_core_if->pcd_cb && _core_if->pcd_cb->stop ) {
5119 + _core_if->pcd_cb->stop( _core_if->pcd_cb->p );
5120 + }
5121 +}
5122 +/** Suspend the PCD. Helper function for using the PCD callbacks.
5123 + *
5124 + * @param _core_if Programming view of DWC_otg controller.
5125 + */
5126 +static inline void pcd_suspend( dwc_otg_core_if_t *_core_if )
5127 +{
5128 + if (_core_if->pcd_cb && _core_if->pcd_cb->suspend ) {
5129 + _core_if->pcd_cb->suspend( _core_if->pcd_cb->p );
5130 + }
5131 +}
5132 +/** Resume the PCD. Helper function for using the PCD callbacks.
5133 + *
5134 + * @param _core_if Programming view of DWC_otg controller.
5135 + */
5136 +static inline void pcd_resume( dwc_otg_core_if_t *_core_if )
5137 +{
5138 + if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup ) {
5139 + _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
5140 + }
5141 +}
5142 +
5143 +/**
5144 + * This function handles the OTG Interrupts. It reads the OTG
5145 + * Interrupt Register (GOTGINT) to determine what interrupt has
5146 + * occurred.
5147 + *
5148 + * @param _core_if Programming view of DWC_otg controller.
5149 + */
5150 +int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *_core_if)
5151 +{
5152 + dwc_otg_core_global_regs_t *global_regs =
5153 + _core_if->core_global_regs;
5154 + gotgint_data_t gotgint;
5155 + gotgctl_data_t gotgctl;
5156 + gintmsk_data_t gintmsk;
5157 +
5158 + gotgint.d32 = dwc_read_reg32( &global_regs->gotgint);
5159 + gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5160 + DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
5161 + op_state_str(_core_if));
5162 + //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 );
5163 +
5164 + if (gotgint.b.sesenddet) {
5165 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5166 + "Session End Detected++ (%s)\n",
5167 + op_state_str(_core_if));
5168 + gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5169 +
5170 + if (_core_if->op_state == B_HOST) {
5171 + pcd_start( _core_if );
5172 + _core_if->op_state = B_PERIPHERAL;
5173 + } else {
5174 + /* If not B_HOST and Device HNP still set. HNP
5175 + * Did not succeed!*/
5176 + if (gotgctl.b.devhnpen) {
5177 + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
5178 + DWC_ERROR( "Device Not Connected/Responding!\n" );
5179 + }
5180 +
5181 + /* If Session End Detected the B-Cable has
5182 + * been disconnected. */
5183 + /* Reset PCD and Gadget driver to a
5184 + * clean state. */
5185 + pcd_stop(_core_if);
5186 + }
5187 + gotgctl.d32 = 0;
5188 + gotgctl.b.devhnpen = 1;
5189 + dwc_modify_reg32( &global_regs->gotgctl,
5190 + gotgctl.d32, 0);
5191 + }
5192 + if (gotgint.b.sesreqsucstschng) {
5193 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5194 + "Session Reqeust Success Status Change++\n");
5195 + gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
5196 + if (gotgctl.b.sesreqscs) {
5197 + if ((_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
5198 + (_core_if->core_params->i2c_enable)) {
5199 + _core_if->srp_success = 1;
5200 + }
5201 + else {
5202 + pcd_resume( _core_if );
5203 + /* Clear Session Request */
5204 + gotgctl.d32 = 0;
5205 + gotgctl.b.sesreq = 1;
5206 + dwc_modify_reg32( &global_regs->gotgctl,
5207 + gotgctl.d32, 0);
5208 + }
5209 + }
5210 + }
5211 + if (gotgint.b.hstnegsucstschng) {
5212 + /* Print statements during the HNP interrupt handling
5213 + * can cause it to fail.*/
5214 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
5215 + if (gotgctl.b.hstnegscs) {
5216 + if (dwc_otg_is_host_mode(_core_if) ) {
5217 + _core_if->op_state = B_HOST;
5218 + /*
5219 + * Need to disable SOF interrupt immediately.
5220 + * When switching from device to host, the PCD
5221 + * interrupt handler won't handle the
5222 + * interrupt if host mode is already set. The
5223 + * HCD interrupt handler won't get called if
5224 + * the HCD state is HALT. This means that the
5225 + * interrupt does not get handled and Linux
5226 + * complains loudly.
5227 + */
5228 + gintmsk.d32 = 0;
5229 + gintmsk.b.sofintr = 1;
5230 + dwc_modify_reg32(&global_regs->gintmsk,
5231 + gintmsk.d32, 0);
5232 + pcd_stop(_core_if);
5233 + /*
5234 + * Initialize the Core for Host mode.
5235 + */
5236 + hcd_start( _core_if );
5237 + _core_if->op_state = B_HOST;
5238 + }
5239 + } else {
5240 + gotgctl.d32 = 0;
5241 + gotgctl.b.hnpreq = 1;
5242 + gotgctl.b.devhnpen = 1;
5243 + dwc_modify_reg32( &global_regs->gotgctl,
5244 + gotgctl.d32, 0);
5245 + DWC_DEBUGPL( DBG_ANY, "HNP Failed\n");
5246 + DWC_ERROR( "Device Not Connected/Responding\n" );
5247 + }
5248 + }
5249 + if (gotgint.b.hstnegdet) {
5250 + /* The disconnect interrupt is set at the same time as
5251 + * Host Negotiation Detected. During the mode
5252 + * switch all interrupts are cleared so the disconnect
5253 + * interrupt handler will not get executed.
5254 + */
5255 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5256 + "Host Negotiation Detected++ (%s)\n",
5257 + (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
5258 + if (dwc_otg_is_device_mode(_core_if)){
5259 + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",_core_if->op_state);
5260 + hcd_disconnect( _core_if );
5261 + pcd_start( _core_if );
5262 + _core_if->op_state = A_PERIPHERAL;
5263 + } else {
5264 + /*
5265 + * Need to disable SOF interrupt immediately. When
5266 + * switching from device to host, the PCD interrupt
5267 + * handler won't handle the interrupt if host mode is
5268 + * already set. The HCD interrupt handler won't get
5269 + * called if the HCD state is HALT. This means that
5270 + * the interrupt does not get handled and Linux
5271 + * complains loudly.
5272 + */
5273 + gintmsk.d32 = 0;
5274 + gintmsk.b.sofintr = 1;
5275 + dwc_modify_reg32(&global_regs->gintmsk,
5276 + gintmsk.d32, 0);
5277 + pcd_stop( _core_if );
5278 + hcd_start( _core_if );
5279 + _core_if->op_state = A_HOST;
5280 + }
5281 + }
5282 + if (gotgint.b.adevtoutchng) {
5283 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5284 + "A-Device Timeout Change++\n");
5285 + }
5286 + if (gotgint.b.debdone) {
5287 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
5288 + "Debounce Done++\n");
5289 + }
5290 +
5291 + /* Clear GOTGINT */
5292 + dwc_write_reg32 (&_core_if->core_global_regs->gotgint, gotgint.d32);
5293 +
5294 + return 1;
5295 +}
5296 +
5297 +/**
5298 + * This function handles the Connector ID Status Change Interrupt. It
5299 + * reads the OTG Interrupt Register (GOTCTL) to determine whether this
5300 + * is a Device to Host Mode transition or a Host Mode to Device
5301 + * Transition.
5302 + *
5303 + * This only occurs when the cable is connected/removed from the PHY
5304 + * connector.
5305 + *
5306 + * @param _core_if Programming view of DWC_otg controller.
5307 + */
5308 +int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *_core_if)
5309 +{
5310 + uint32_t count = 0;
5311 +
5312 + gintsts_data_t gintsts = { .d32 = 0 };
5313 + gintmsk_data_t gintmsk = { .d32 = 0 };
5314 + gotgctl_data_t gotgctl = { .d32 = 0 };
5315 +
5316 + /*
5317 + * Need to disable SOF interrupt immediately. If switching from device
5318 + * to host, the PCD interrupt handler won't handle the interrupt if
5319 + * host mode is already set. The HCD interrupt handler won't get
5320 + * called if the HCD state is HALT. This means that the interrupt does
5321 + * not get handled and Linux complains loudly.
5322 + */
5323 + gintmsk.b.sofintr = 1;
5324 + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
5325 +
5326 + DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
5327 + (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
5328 + gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
5329 + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
5330 + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
5331 +
5332 + /* B-Device connector (Device Mode) */
5333 + if (gotgctl.b.conidsts) {
5334 + /* Wait for switch to device mode. */
5335 + while (!dwc_otg_is_device_mode(_core_if) ){
5336 + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
5337 + (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
5338 + MDELAY(100);
5339 + if (++count > 10000) *(uint32_t*)NULL=0;
5340 + }
5341 + _core_if->op_state = B_PERIPHERAL;
5342 + dwc_otg_core_init(_core_if);
5343 + dwc_otg_enable_global_interrupts(_core_if);
5344 + pcd_start( _core_if );
5345 + } else {
5346 + /* A-Device connector (Host Mode) */
5347 + while (!dwc_otg_is_host_mode(_core_if) ) {
5348 + DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
5349 + (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
5350 + MDELAY(100);
5351 + if (++count > 10000) *(uint32_t*)NULL=0;
5352 + }
5353 + _core_if->op_state = A_HOST;
5354 + /*
5355 + * Initialize the Core for Host mode.
5356 + */
5357 + dwc_otg_core_init(_core_if);
5358 + dwc_otg_enable_global_interrupts(_core_if);
5359 + hcd_start( _core_if );
5360 + }
5361 +
5362 + /* Set flag and clear interrupt */
5363 + gintsts.b.conidstschng = 1;
5364 + dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5365 +
5366 + return 1;
5367 +}
5368 +
5369 +/**
5370 + * This interrupt indicates that a device is initiating the Session
5371 + * Request Protocol to request the host to turn on bus power so a new
5372 + * session can begin. The handler responds by turning on bus power. If
5373 + * the DWC_otg controller is in low power mode, the handler brings the
5374 + * controller out of low power mode before turning on bus power.
5375 + *
5376 + * @param _core_if Programming view of DWC_otg controller.
5377 + */
5378 +int32_t dwc_otg_handle_session_req_intr( dwc_otg_core_if_t *_core_if )
5379 +{
5380 +#ifndef DWC_HOST_ONLY // winder
5381 + hprt0_data_t hprt0;
5382 +#endif
5383 + gintsts_data_t gintsts;
5384 +
5385 +#ifndef DWC_HOST_ONLY
5386 + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
5387 +
5388 + if (dwc_otg_is_device_mode(_core_if) ) {
5389 + DWC_PRINT("SRP: Device mode\n");
5390 + } else {
5391 + DWC_PRINT("SRP: Host mode\n");
5392 +
5393 + /* Turn on the port power bit. */
5394 + hprt0.d32 = dwc_otg_read_hprt0( _core_if );
5395 + hprt0.b.prtpwr = 1;
5396 + dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
5397 +
5398 + /* Start the Connection timer. So a message can be displayed
5399 + * if connect does not occur within 10 seconds. */
5400 + hcd_session_start( _core_if );
5401 + }
5402 +#endif
5403 +
5404 + /* Clear interrupt */
5405 + gintsts.d32 = 0;
5406 + gintsts.b.sessreqintr = 1;
5407 + dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5408 +
5409 + return 1;
5410 +}
5411 +
5412 +/**
5413 + * This interrupt indicates that the DWC_otg controller has detected a
5414 + * resume or remote wakeup sequence. If the DWC_otg controller is in
5415 + * low power mode, the handler must brings the controller out of low
5416 + * power mode. The controller automatically begins resume
5417 + * signaling. The handler schedules a time to stop resume signaling.
5418 + */
5419 +int32_t dwc_otg_handle_wakeup_detected_intr( dwc_otg_core_if_t *_core_if )
5420 +{
5421 + gintsts_data_t gintsts;
5422 +
5423 + DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
5424 +
5425 + if (dwc_otg_is_device_mode(_core_if) ) {
5426 + dctl_data_t dctl = {.d32=0};
5427 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
5428 + dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts));
5429 +#ifdef PARTIAL_POWER_DOWN
5430 + if (_core_if->hwcfg4.b.power_optimiz) {
5431 + pcgcctl_data_t power = {.d32=0};
5432 +
5433 + power.d32 = dwc_read_reg32( _core_if->pcgcctl );
5434 + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
5435 +
5436 + power.b.stoppclk = 0;
5437 + dwc_write_reg32( _core_if->pcgcctl, power.d32);
5438 +
5439 + power.b.pwrclmp = 0;
5440 + dwc_write_reg32( _core_if->pcgcctl, power.d32);
5441 +
5442 + power.b.rstpdwnmodule = 0;
5443 + dwc_write_reg32( _core_if->pcgcctl, power.d32);
5444 + }
5445 +#endif
5446 + /* Clear the Remote Wakeup Signalling */
5447 + dctl.b.rmtwkupsig = 1;
5448 + dwc_modify_reg32( &_core_if->dev_if->dev_global_regs->dctl,
5449 + dctl.d32, 0 );
5450 +
5451 + if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) {
5452 + _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
5453 + }
5454 +
5455 + } else {
5456 + /*
5457 + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
5458 + * so that OPT tests pass with all PHYs).
5459 + */
5460 + hprt0_data_t hprt0 = {.d32=0};
5461 + pcgcctl_data_t pcgcctl = {.d32=0};
5462 + /* Restart the Phy Clock */
5463 + pcgcctl.b.stoppclk = 1;
5464 + dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0);
5465 + UDELAY(10);
5466 +
5467 + /* Now wait for 70 ms. */
5468 + hprt0.d32 = dwc_otg_read_hprt0( _core_if );
5469 + DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
5470 + MDELAY(70);
5471 + hprt0.b.prtres = 0; /* Resume */
5472 + dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
5473 + DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(_core_if->host_if->hprt0));
5474 + }
5475 +
5476 + /* Clear interrupt */
5477 + gintsts.d32 = 0;
5478 + gintsts.b.wkupintr = 1;
5479 + dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5480 +
5481 + return 1;
5482 +}
5483 +
5484 +/**
5485 + * This interrupt indicates that a device has been disconnected from
5486 + * the root port.
5487 + */
5488 +int32_t dwc_otg_handle_disconnect_intr( dwc_otg_core_if_t *_core_if)
5489 +{
5490 + gintsts_data_t gintsts;
5491 +
5492 + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
5493 + (dwc_otg_is_host_mode(_core_if)?"Host":"Device"),
5494 + op_state_str(_core_if));
5495 +
5496 +/** @todo Consolidate this if statement. */
5497 +#ifndef DWC_HOST_ONLY
5498 + if (_core_if->op_state == B_HOST) {
5499 + /* If in device mode Disconnect and stop the HCD, then
5500 + * start the PCD. */
5501 + hcd_disconnect( _core_if );
5502 + pcd_start( _core_if );
5503 + _core_if->op_state = B_PERIPHERAL;
5504 + } else if (dwc_otg_is_device_mode(_core_if)) {
5505 + gotgctl_data_t gotgctl = { .d32 = 0 };
5506 + gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
5507 + if (gotgctl.b.hstsethnpen==1) {
5508 + /* Do nothing, if HNP in process the OTG
5509 + * interrupt "Host Negotiation Detected"
5510 + * interrupt will do the mode switch.
5511 + */
5512 + } else if (gotgctl.b.devhnpen == 0) {
5513 + /* If in device mode Disconnect and stop the HCD, then
5514 + * start the PCD. */
5515 + hcd_disconnect( _core_if );
5516 + pcd_start( _core_if );
5517 + _core_if->op_state = B_PERIPHERAL;
5518 + } else {
5519 + DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
5520 + }
5521 + } else {
5522 + if (_core_if->op_state == A_HOST) {
5523 + /* A-Cable still connected but device disconnected. */
5524 + hcd_disconnect( _core_if );
5525 + }
5526 + }
5527 +#endif
5528 +/* Without OTG, we should use the disconnect function!? winder added.*/
5529 +#if 1 // NO OTG, so host only!!
5530 + hcd_disconnect( _core_if );
5531 +#endif
5532 +
5533 + gintsts.d32 = 0;
5534 + gintsts.b.disconnect = 1;
5535 + dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
5536 + return 1;
5537 +}
5538 +/**
5539 + * This interrupt indicates that SUSPEND state has been detected on
5540 + * the USB.
5541 + *
5542 + * For HNP the USB Suspend interrupt signals the change from
5543 + * "a_peripheral" to "a_host".
5544 + *
5545 + * When power management is enabled the core will be put in low power
5546 + * mode.
5547 + */
5548 +int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *_core_if )
5549 +{
5550 + dsts_data_t dsts;
5551 + gintsts_data_t gintsts;
5552 +
5553 + //805141:<IFTW-fchang>.removed DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
5554 +
5555 + if (dwc_otg_is_device_mode( _core_if ) ) {
5556 + /* Check the Device status register to determine if the Suspend
5557 + * state is active. */
5558 + dsts.d32 = dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts);
5559 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
5560 + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
5561 + "HWCFG4.power Optimize=%d\n",
5562 + dsts.b.suspsts, _core_if->hwcfg4.b.power_optimiz);
5563 +
5564 +
5565 +#ifdef PARTIAL_POWER_DOWN
5566 +/** @todo Add a module parameter for power management. */
5567 +
5568 + if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) {
5569 + pcgcctl_data_t power = {.d32=0};
5570 + DWC_DEBUGPL(DBG_CIL, "suspend\n");
5571 +
5572 + power.b.pwrclmp = 1;
5573 + dwc_write_reg32( _core_if->pcgcctl, power.d32);
5574 +
5575 + power.b.rstpdwnmodule = 1;
5576 + dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
5577 +
5578 + power.b.stoppclk = 1;
5579 + dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
5580 +
5581 + } else {
5582 + DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
5583 + }
5584 +#endif
5585 + /* PCD callback for suspend. */
5586 + pcd_suspend(_core_if);
5587 + } else {
5588 + if (_core_if->op_state == A_PERIPHERAL) {
5589 + DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
5590 + /* Clear the a_peripheral flag, back to a_host. */
5591 + pcd_stop( _core_if );
5592 + hcd_start( _core_if );
5593 + _core_if->op_state = A_HOST;
5594 + }
5595 + }
5596 +
5597 + /* Clear interrupt */
5598 + gintsts.d32 = 0;
5599 + gintsts.b.usbsuspend = 1;
5600 + dwc_write_reg32( &_core_if->core_global_regs->gintsts, gintsts.d32);
5601 +
5602 + return 1;
5603 +}
5604 +
5605 +
5606 +/**
5607 + * This function returns the Core Interrupt register.
5608 + */
5609 +static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *_core_if)
5610 +{
5611 + gintsts_data_t gintsts;
5612 + gintmsk_data_t gintmsk;
5613 + gintmsk_data_t gintmsk_common = {.d32=0};
5614 + gintmsk_common.b.wkupintr = 1;
5615 + gintmsk_common.b.sessreqintr = 1;
5616 + gintmsk_common.b.conidstschng = 1;
5617 + gintmsk_common.b.otgintr = 1;
5618 + gintmsk_common.b.modemismatch = 1;
5619 + gintmsk_common.b.disconnect = 1;
5620 + gintmsk_common.b.usbsuspend = 1;
5621 + /** @todo: The port interrupt occurs while in device
5622 + * mode. Added code to CIL to clear the interrupt for now!
5623 + */
5624 + gintmsk_common.b.portintr = 1;
5625 +
5626 + gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts);
5627 + gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk);
5628 +#ifdef DEBUG
5629 + /* if any common interrupts set */
5630 + if (gintsts.d32 & gintmsk_common.d32) {
5631 + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
5632 + gintsts.d32, gintmsk.d32);
5633 + }
5634 +#endif
5635 +
5636 + return ((gintsts.d32 & gintmsk.d32 ) & gintmsk_common.d32);
5637 +
5638 +}
5639 +
5640 +/**
5641 + * Common interrupt handler.
5642 + *
5643 + * The common interrupts are those that occur in both Host and Device mode.
5644 + * This handler handles the following interrupts:
5645 + * - Mode Mismatch Interrupt
5646 + * - Disconnect Interrupt
5647 + * - OTG Interrupt
5648 + * - Connector ID Status Change Interrupt
5649 + * - Session Request Interrupt.
5650 + * - Resume / Remote Wakeup Detected Interrupt.
5651 + *
5652 + */
5653 +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if )
5654 +{
5655 + int retval = 0;
5656 + gintsts_data_t gintsts;
5657 +
5658 + gintsts.d32 = dwc_otg_read_common_intr(_core_if);
5659 +
5660 + if (gintsts.b.modemismatch) {
5661 + retval |= dwc_otg_handle_mode_mismatch_intr( _core_if );
5662 + }
5663 + if (gintsts.b.otgintr) {
5664 + retval |= dwc_otg_handle_otg_intr( _core_if );
5665 + }
5666 + if (gintsts.b.conidstschng) {
5667 + retval |= dwc_otg_handle_conn_id_status_change_intr( _core_if );
5668 + }
5669 + if (gintsts.b.disconnect) {
5670 + retval |= dwc_otg_handle_disconnect_intr( _core_if );
5671 + }
5672 + if (gintsts.b.sessreqintr) {
5673 + retval |= dwc_otg_handle_session_req_intr( _core_if );
5674 + }
5675 + if (gintsts.b.wkupintr) {
5676 + retval |= dwc_otg_handle_wakeup_detected_intr( _core_if );
5677 + }
5678 + if (gintsts.b.usbsuspend) {
5679 + retval |= dwc_otg_handle_usb_suspend_intr( _core_if );
5680 + }
5681 + if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) {
5682 + /* The port interrupt occurs while in device mode with HPRT0
5683 + * Port Enable/Disable.
5684 + */
5685 + gintsts.d32 = 0;
5686 + gintsts.b.portintr = 1;
5687 + dwc_write_reg32(&_core_if->core_global_regs->gintsts,
5688 + gintsts.d32);
5689 + retval |= 1;
5690 +
5691 + }
5692 + return retval;
5693 +}
5694 --- /dev/null
5695 +++ b/drivers/usb/dwc_otg/dwc_otg_driver.c
5696 @@ -0,0 +1,1269 @@
5697 +/* ==========================================================================
5698 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $
5699 + * $Revision: 1.1.1.1 $
5700 + * $Date: 2009-04-17 06:15:34 $
5701 + * $Change: 631780 $
5702 + *
5703 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
5704 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
5705 + * otherwise expressly agreed to in writing between Synopsys and you.
5706 + *
5707 + * The Software IS NOT an item of Licensed Software or Licensed Product under
5708 + * any End User Software License Agreement or Agreement for Licensed Product
5709 + * with Synopsys or any supplement thereto. You are permitted to use and
5710 + * redistribute this Software in source and binary forms, with or without
5711 + * modification, provided that redistributions of source code must retain this
5712 + * notice. You may not view, use, disclose, copy or distribute this file or
5713 + * any information contained herein except pursuant to this license grant from
5714 + * Synopsys. If you do not agree with this notice, including the disclaimer
5715 + * below, then you are not authorized to use the Software.
5716 + *
5717 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
5718 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
5719 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
5720 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
5721 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
5722 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
5723 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
5724 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
5725 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
5726 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
5727 + * DAMAGE.
5728 + * ========================================================================== */
5729 +
5730 +/** @file
5731 + * The dwc_otg_driver module provides the initialization and cleanup entry
5732 + * points for the DWC_otg driver. This module will be dynamically installed
5733 + * after Linux is booted using the insmod command. When the module is
5734 + * installed, the dwc_otg_init function is called. When the module is
5735 + * removed (using rmmod), the dwc_otg_cleanup function is called.
5736 + *
5737 + * This module also defines a data structure for the dwc_otg_driver, which is
5738 + * used in conjunction with the standard ARM lm_device structure. These
5739 + * structures allow the OTG driver to comply with the standard Linux driver
5740 + * model in which devices and drivers are registered with a bus driver. This
5741 + * has the benefit that Linux can expose attributes of the driver and device
5742 + * in its special sysfs file system. Users can then read or write files in
5743 + * this file system to perform diagnostics on the driver components or the
5744 + * device.
5745 + */
5746 +
5747 +#include <linux/kernel.h>
5748 +#include <linux/module.h>
5749 +#include <linux/moduleparam.h>
5750 +#include <linux/init.h>
5751 +#include <linux/gpio.h>
5752 +
5753 +#include <linux/device.h>
5754 +#include <linux/platform_device.h>
5755 +
5756 +#include <linux/errno.h>
5757 +#include <linux/types.h>
5758 +#include <linux/stat.h> /* permission constants */
5759 +#include <linux/irq.h>
5760 +#include <asm/io.h>
5761 +
5762 +#include "dwc_otg_plat.h"
5763 +#include "dwc_otg_attr.h"
5764 +#include "dwc_otg_driver.h"
5765 +#include "dwc_otg_cil.h"
5766 +#include "dwc_otg_cil_ifx.h"
5767 +
5768 +// #include "dwc_otg_pcd.h" // device
5769 +#include "dwc_otg_hcd.h" // host
5770 +
5771 +#include "dwc_otg_ifx.h" // for Infineon platform specific.
5772 +
5773 +#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006"
5774 +#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
5775 +
5776 +const char dwc_driver_name[] = "dwc_otg";
5777 +
5778 +static unsigned long dwc_iomem_base = IFX_USB_IOMEM_BASE;
5779 +int dwc_irq = LQ_USB_INT;
5780 +//int dwc_irq = 54;
5781 +//int dwc_irq = IFXMIPS_USB_OC_INT;
5782 +
5783 +extern int ifx_usb_hc_init(unsigned long base_addr, int irq);
5784 +extern void ifx_usb_hc_remove(void);
5785 +
5786 +/*-------------------------------------------------------------------------*/
5787 +/* Encapsulate the module parameter settings */
5788 +
5789 +static dwc_otg_core_params_t dwc_otg_module_params = {
5790 + .opt = -1,
5791 + .otg_cap = -1,
5792 + .dma_enable = -1,
5793 + .dma_burst_size = -1,
5794 + .speed = -1,
5795 + .host_support_fs_ls_low_power = -1,
5796 + .host_ls_low_power_phy_clk = -1,
5797 + .enable_dynamic_fifo = -1,
5798 + .data_fifo_size = -1,
5799 + .dev_rx_fifo_size = -1,
5800 + .dev_nperio_tx_fifo_size = -1,
5801 + .dev_perio_tx_fifo_size = /* dev_perio_tx_fifo_size_1 */ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 15 */
5802 + .host_rx_fifo_size = -1,
5803 + .host_nperio_tx_fifo_size = -1,
5804 + .host_perio_tx_fifo_size = -1,
5805 + .max_transfer_size = -1,
5806 + .max_packet_count = -1,
5807 + .host_channels = -1,
5808 + .dev_endpoints = -1,
5809 + .phy_type = -1,
5810 + .phy_utmi_width = -1,
5811 + .phy_ulpi_ddr = -1,
5812 + .phy_ulpi_ext_vbus = -1,
5813 + .i2c_enable = -1,
5814 + .ulpi_fs_ls = -1,
5815 + .ts_dline = -1,
5816 + .en_multiple_tx_fifo = -1,
5817 + .dev_tx_fifo_size = { /* dev_tx_fifo_size */
5818 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
5819 + }, /* 15 */
5820 + .thr_ctl = -1,
5821 + .tx_thr_length = -1,
5822 + .rx_thr_length = -1,
5823 +};
5824 +
5825 +/**
5826 + * This function shows the Driver Version.
5827 + */
5828 +static ssize_t version_show(struct device_driver *dev, char *buf)
5829 +{
5830 + return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2,"%s\n",
5831 + DWC_DRIVER_VERSION);
5832 +}
5833 +static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
5834 +
5835 +/**
5836 + * Global Debug Level Mask.
5837 + */
5838 +uint32_t g_dbg_lvl = 0xff; /* OFF */
5839 +
5840 +/**
5841 + * This function shows the driver Debug Level.
5842 + */
5843 +static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf)
5844 +{
5845 + return sprintf(_buf, "0x%0x\n", g_dbg_lvl);
5846 +}
5847 +/**
5848 + * This function stores the driver Debug Level.
5849 + */
5850 +static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf,
5851 + size_t _count)
5852 +{
5853 + g_dbg_lvl = simple_strtoul(_buf, NULL, 16);
5854 + return _count;
5855 +}
5856 +static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store);
5857 +
5858 +/**
5859 + * This function is called during module intialization to verify that
5860 + * the module parameters are in a valid state.
5861 + */
5862 +static int check_parameters(dwc_otg_core_if_t *core_if)
5863 +{
5864 + int i;
5865 + int retval = 0;
5866 +
5867 +/* Checks if the parameter is outside of its valid range of values */
5868 +#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \
5869 + ((dwc_otg_module_params._param_ < (_low_)) || \
5870 + (dwc_otg_module_params._param_ > (_high_)))
5871 +
5872 +/* If the parameter has been set by the user, check that the parameter value is
5873 + * within the value range of values. If not, report a module error. */
5874 +#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \
5875 + do { \
5876 + if (dwc_otg_module_params._param_ != -1) { \
5877 + if (DWC_OTG_PARAM_TEST(_param_,(_low_),(_high_))) { \
5878 + DWC_ERROR("`%d' invalid for parameter `%s'\n", \
5879 + dwc_otg_module_params._param_, _string_); \
5880 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
5881 + retval ++; \
5882 + } \
5883 + } \
5884 + } while (0)
5885 +
5886 + DWC_OTG_PARAM_ERR(opt,0,1,"opt");
5887 + DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
5888 + DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
5889 + DWC_OTG_PARAM_ERR(speed,0,1,"speed");
5890 + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
5891 + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
5892 + DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
5893 + DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
5894 + DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
5895 + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
5896 + DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
5897 + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
5898 + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
5899 + DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
5900 + DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
5901 + DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
5902 + DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
5903 + DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
5904 + DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
5905 + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
5906 + DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
5907 + DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
5908 + DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
5909 +
5910 + if (dwc_otg_module_params.dma_burst_size != -1) {
5911 + if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
5912 + DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
5913 + DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
5914 + DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
5915 + DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
5916 + DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
5917 + DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
5918 + DWC_OTG_PARAM_TEST(dma_burst_size,256,256))
5919 + {
5920 + DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
5921 + dwc_otg_module_params.dma_burst_size);
5922 + dwc_otg_module_params.dma_burst_size = 32;
5923 + retval ++;
5924 + }
5925 + }
5926 +
5927 + if (dwc_otg_module_params.phy_utmi_width != -1) {
5928 + if (DWC_OTG_PARAM_TEST(phy_utmi_width,8,8) &&
5929 + DWC_OTG_PARAM_TEST(phy_utmi_width,16,16))
5930 + {
5931 + DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
5932 + dwc_otg_module_params.phy_utmi_width);
5933 + //dwc_otg_module_params.phy_utmi_width = 16;
5934 + dwc_otg_module_params.phy_utmi_width = 8;
5935 + retval ++;
5936 + }
5937 + }
5938 +
5939 + for (i=0; i<15; i++) {
5940 + /** @todo should be like above */
5941 + //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size");
5942 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
5943 + if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i],4,768)) {
5944 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
5945 + dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
5946 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
5947 + retval ++;
5948 + }
5949 + }
5950 + }
5951 +
5952 + DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
5953 + for (i = 0; i < 15; i++) {
5954 + /** @todo should be like above */
5955 + //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size");
5956 + if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
5957 + if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
5958 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
5959 + dwc_otg_module_params.dev_tx_fifo_size[i],
5960 + "dev_tx_fifo_size", i);
5961 + dwc_otg_module_params.dev_tx_fifo_size[i] =
5962 + dwc_param_dev_tx_fifo_size_default;
5963 + retval++;
5964 + }
5965 + }
5966 + }
5967 + DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
5968 + DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
5969 + DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
5970 +
5971 + /* At this point, all module parameters that have been set by the user
5972 + * are valid, and those that have not are left unset. Now set their
5973 + * default values and/or check the parameters against the hardware
5974 + * configurations of the OTG core. */
5975 +
5976 +
5977 +
5978 +/* This sets the parameter to the default value if it has not been set by the
5979 + * user */
5980 +#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
5981 + ({ \
5982 + int changed = 1; \
5983 + if (dwc_otg_module_params._param_ == -1) { \
5984 + changed = 0; \
5985 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
5986 + } \
5987 + changed; \
5988 + })
5989 +
5990 +/* This checks the macro agains the hardware configuration to see if it is
5991 + * valid. It is possible that the default value could be invalid. In this
5992 + * case, it will report a module error if the user touched the parameter.
5993 + * Otherwise it will adjust the value without any error. */
5994 +#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \
5995 + ({ \
5996 + int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
5997 + int error = 0; \
5998 + if (!(_is_valid_)) { \
5999 + if (changed) { \
6000 + DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_,_str_); \
6001 + error = 1; \
6002 + } \
6003 + dwc_otg_module_params._param_ = (_set_valid_); \
6004 + } \
6005 + error; \
6006 + })
6007 +
6008 + /* OTG Cap */
6009 + retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap,"otg_cap",
6010 + ({
6011 + int valid;
6012 + valid = 1;
6013 + switch (dwc_otg_module_params.otg_cap) {
6014 + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
6015 + if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) valid = 0;
6016 + break;
6017 + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
6018 + if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
6019 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
6020 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
6021 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
6022 + {
6023 + valid = 0;
6024 + }
6025 + break;
6026 + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
6027 + /* always valid */
6028 + break;
6029 + }
6030 + valid;
6031 + }),
6032 + (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
6033 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
6034 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
6035 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
6036 + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
6037 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
6038 +
6039 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable,"dma_enable",
6040 + ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
6041 + 0);
6042 +
6043 + retval += DWC_OTG_PARAM_CHECK_VALID(opt,"opt",
6044 + 1,
6045 + 0);
6046 +
6047 + DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
6048 +
6049 + retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
6050 + "host_support_fs_ls_low_power",
6051 + 1, 0);
6052 +
6053 + retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
6054 + "enable_dynamic_fifo",
6055 + ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
6056 + (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
6057 +
6058 +
6059 + retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
6060 + "data_fifo_size",
6061 + (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
6062 + core_if->hwcfg3.b.dfifo_depth);
6063 +
6064 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
6065 + "dev_rx_fifo_size",
6066 + (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
6067 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
6068 +
6069 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
6070 + "dev_nperio_tx_fifo_size",
6071 + (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
6072 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
6073 +
6074 + retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
6075 + "host_rx_fifo_size",
6076 + (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
6077 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
6078 +
6079 +
6080 + retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
6081 + "host_nperio_tx_fifo_size",
6082 + (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
6083 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
6084 +
6085 + retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
6086 + "host_perio_tx_fifo_size",
6087 + (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
6088 + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
6089 +
6090 + retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
6091 + "max_transfer_size",
6092 + (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
6093 + ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
6094 +
6095 + retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
6096 + "max_packet_count",
6097 + (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
6098 + ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
6099 +
6100 + retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
6101 + "host_channels",
6102 + (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
6103 + (core_if->hwcfg2.b.num_host_chan + 1));
6104 +
6105 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
6106 + "dev_endpoints",
6107 + (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
6108 + core_if->hwcfg2.b.num_dev_ep);
6109 +
6110 +/*
6111 + * Define the following to disable the FS PHY Hardware checking. This is for
6112 + * internal testing only.
6113 + *
6114 + * #define NO_FS_PHY_HW_CHECKS
6115 + */
6116 +
6117 +#ifdef NO_FS_PHY_HW_CHECKS
6118 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
6119 + "phy_type", 1, 0);
6120 +#else
6121 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
6122 + "phy_type",
6123 + ({
6124 + int valid = 0;
6125 + if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
6126 + ((core_if->hwcfg2.b.hs_phy_type == 1) ||
6127 + (core_if->hwcfg2.b.hs_phy_type == 3)))
6128 + {
6129 + valid = 1;
6130 + }
6131 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
6132 + ((core_if->hwcfg2.b.hs_phy_type == 2) ||
6133 + (core_if->hwcfg2.b.hs_phy_type == 3)))
6134 + {
6135 + valid = 1;
6136 + }
6137 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
6138 + (core_if->hwcfg2.b.fs_phy_type == 1))
6139 + {
6140 + valid = 1;
6141 + }
6142 + valid;
6143 + }),
6144 + ({
6145 + int set = DWC_PHY_TYPE_PARAM_FS;
6146 + if (core_if->hwcfg2.b.hs_phy_type) {
6147 + if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
6148 + (core_if->hwcfg2.b.hs_phy_type == 1)) {
6149 + set = DWC_PHY_TYPE_PARAM_UTMI;
6150 + }
6151 + else {
6152 + set = DWC_PHY_TYPE_PARAM_ULPI;
6153 + }
6154 + }
6155 + set;
6156 + }));
6157 +#endif
6158 +
6159 + retval += DWC_OTG_PARAM_CHECK_VALID(speed,"speed",
6160 + (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
6161 + dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
6162 +
6163 + retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
6164 + "host_ls_low_power_phy_clk",
6165 + ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
6166 + ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
6167 +
6168 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
6169 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
6170 + DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
6171 + DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
6172 + DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
6173 +
6174 +#ifdef NO_FS_PHY_HW_CHECKS
6175 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
6176 + "i2c_enable", 1, 0);
6177 +#else
6178 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
6179 + "i2c_enable",
6180 + (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
6181 + 0);
6182 +#endif
6183 +
6184 + for (i=0; i<16; i++) {
6185 +
6186 + int changed = 1;
6187 + int error = 0;
6188 +
6189 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
6190 + changed = 0;
6191 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
6192 + }
6193 + if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
6194 + if (changed) {
6195 + DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i],i);
6196 + error = 1;
6197 + }
6198 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
6199 + }
6200 + retval += error;
6201 + }
6202 +
6203 + retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo,
6204 + "en_multiple_tx_fifo",
6205 + ((dwc_otg_module_params.en_multiple_tx_fifo == 1) &&
6206 + (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0);
6207 +
6208 + for (i = 0; i < 16; i++) {
6209 + int changed = 1;
6210 + int error = 0;
6211 + if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
6212 + changed = 0;
6213 + dwc_otg_module_params.dev_tx_fifo_size[i] =
6214 + dwc_param_dev_tx_fifo_size_default;
6215 + }
6216 + if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <=
6217 + (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
6218 + if (changed) {
6219 + DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'."
6220 + "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i);
6221 + error = 1;
6222 + }
6223 + dwc_otg_module_params.dev_tx_fifo_size[i] =
6224 + dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
6225 + }
6226 + retval += error;
6227 + }
6228 + DWC_OTG_PARAM_SET_DEFAULT(thr_ctl);
6229 + DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
6230 + DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
6231 + return retval;
6232 +} // check_parameters
6233 +
6234 +
6235 +/**
6236 + * This function is the top level interrupt handler for the Common
6237 + * (Device and host modes) interrupts.
6238 + */
6239 +static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
6240 +{
6241 + dwc_otg_device_t *otg_dev = _dev;
6242 + int32_t retval = IRQ_NONE;
6243 +
6244 + retval = dwc_otg_handle_common_intr( otg_dev->core_if );
6245 +
6246 + mask_and_ack_ifx_irq (_irq);
6247 +
6248 + return IRQ_RETVAL(retval);
6249 +}
6250 +
6251 +
6252 +/**
6253 + * This function is called when a DWC_OTG device is unregistered with the
6254 + * dwc_otg_driver. This happens, for example, when the rmmod command is
6255 + * executed. The device may or may not be electrically present. If it is
6256 + * present, the driver stops device processing. Any resources used on behalf
6257 + * of this device are freed.
6258 + *
6259 + * @return
6260 + */
6261 +static int
6262 +dwc_otg_driver_remove(struct platform_device *_dev)
6263 +{
6264 + //dwc_otg_device_t *otg_dev = dev_get_drvdata(&_dev->dev);
6265 + dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev);
6266 +
6267 + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev);
6268 +
6269 + if (otg_dev == NULL) {
6270 + /* Memory allocation for the dwc_otg_device failed. */
6271 + return 0;
6272 + }
6273 +
6274 + /*
6275 + * Free the IRQ
6276 + */
6277 + if (otg_dev->common_irq_installed) {
6278 + free_irq( otg_dev->irq, otg_dev );
6279 + }
6280 +
6281 +#ifndef DWC_DEVICE_ONLY
6282 + if (otg_dev->hcd != NULL) {
6283 + dwc_otg_hcd_remove(&_dev->dev);
6284 + }
6285 +#endif
6286 + printk("after removehcd\n");
6287 +
6288 +// Note: Integrate HOST and DEVICE(Gadget) is not planned yet.
6289 +#ifndef DWC_HOST_ONLY
6290 + if (otg_dev->pcd != NULL) {
6291 + dwc_otg_pcd_remove(otg_dev);
6292 + }
6293 +#endif
6294 + if (otg_dev->core_if != NULL) {
6295 + dwc_otg_cil_remove( otg_dev->core_if );
6296 + }
6297 + printk("after removecil\n");
6298 +
6299 + /*
6300 + * Remove the device attributes
6301 + */
6302 + dwc_otg_attr_remove(&_dev->dev);
6303 + printk("after removeattr\n");
6304 +
6305 + /*
6306 + * Return the memory.
6307 + */
6308 + if (otg_dev->base != NULL) {
6309 + iounmap(otg_dev->base);
6310 + }
6311 + if (otg_dev->phys_addr != 0) {
6312 + release_mem_region(otg_dev->phys_addr, otg_dev->base_len);
6313 + }
6314 + kfree(otg_dev);
6315 +
6316 + /*
6317 + * Clear the drvdata pointer.
6318 + */
6319 + //dev_set_drvdata(&_dev->dev, 0);
6320 + platform_set_drvdata(_dev, 0);
6321 + return 0;
6322 +}
6323 +
6324 +/**
6325 + * This function is called when an DWC_OTG device is bound to a
6326 + * dwc_otg_driver. It creates the driver components required to
6327 + * control the device (CIL, HCD, and PCD) and it initializes the
6328 + * device. The driver components are stored in a dwc_otg_device
6329 + * structure. A reference to the dwc_otg_device is saved in the
6330 + * lm_device. This allows the driver to access the dwc_otg_device
6331 + * structure on subsequent calls to driver methods for this device.
6332 + *
6333 + * @return
6334 + */
6335 +static int __devinit
6336 +dwc_otg_driver_probe(struct platform_device *_dev)
6337 +{
6338 + int retval = 0;
6339 + dwc_otg_device_t *dwc_otg_device;
6340 + int32_t snpsid;
6341 + struct resource *res;
6342 + gusbcfg_data_t usbcfg = {.d32 = 0};
6343 +
6344 + // GPIOs
6345 + gpio_request(_dev->dev.platform_data, "USB_POWER");
6346 + gpio_direction_output(_dev->dev.platform_data, 1);
6347 +
6348 + dev_dbg(&_dev->dev, "dwc_otg_driver_probe (%p)\n", _dev);
6349 +
6350 + dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
6351 + if (dwc_otg_device == 0) {
6352 + dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n");
6353 + retval = -ENOMEM;
6354 + goto fail;
6355 + }
6356 + memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
6357 + dwc_otg_device->reg_offset = 0xFFFFFFFF;
6358 +
6359 + /*
6360 + * Retrieve the memory and IRQ resources.
6361 + */
6362 + dwc_otg_device->irq = platform_get_irq(_dev, 0);
6363 + if (dwc_otg_device->irq == 0) {
6364 + dev_err(&_dev->dev, "no device irq\n");
6365 + retval = -ENODEV;
6366 + goto fail;
6367 + }
6368 + dev_dbg(&_dev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq);
6369 + res = platform_get_resource(_dev, IORESOURCE_MEM, 0);
6370 + if (res == NULL) {
6371 + dev_err(&_dev->dev, "no CSR address\n");
6372 + retval = -ENODEV;
6373 + goto fail;
6374 + }
6375 + dev_dbg(&_dev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n",
6376 + (unsigned)res->start, (unsigned)res->end);
6377 + dwc_otg_device->phys_addr = res->start;
6378 + dwc_otg_device->base_len = res->end - res->start + 1;
6379 + if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len,
6380 + dwc_driver_name) == NULL) {
6381 + dev_err(&_dev->dev, "request_mem_region failed\n");
6382 + retval = -EBUSY;
6383 + goto fail;
6384 + }
6385 +
6386 + /*
6387 + * Map the DWC_otg Core memory into virtual address space.
6388 + */
6389 + dwc_otg_device->base = ioremap_nocache(dwc_otg_device->phys_addr, dwc_otg_device->base_len);
6390 + if (dwc_otg_device->base == NULL) {
6391 + dev_err(&_dev->dev, "ioremap() failed\n");
6392 + retval = -ENOMEM;
6393 + goto fail;
6394 + }
6395 + dev_dbg(&_dev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base);
6396 +
6397 + /*
6398 + * Attempt to ensure this device is really a DWC_otg Controller.
6399 + * Read and verify the SNPSID register contents. The value should be
6400 + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
6401 + */
6402 + snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
6403 + if ((snpsid & 0xFFFFF000) != 0x4F542000) {
6404 + dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
6405 + retval = -EINVAL;
6406 + goto fail;
6407 + }
6408 +
6409 + /*
6410 + * Initialize driver data to point to the global DWC_otg
6411 + * Device structure.
6412 + */
6413 + platform_set_drvdata(_dev, dwc_otg_device);
6414 + dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
6415 + dwc_otg_device->core_if = dwc_otg_cil_init( dwc_otg_device->base, &dwc_otg_module_params);
6416 + if (dwc_otg_device->core_if == 0) {
6417 + dev_err(&_dev->dev, "CIL initialization failed!\n");
6418 + retval = -ENOMEM;
6419 + goto fail;
6420 + }
6421 +
6422 + /*
6423 + * Validate parameter values.
6424 + */
6425 + if (check_parameters(dwc_otg_device->core_if) != 0) {
6426 + retval = -EINVAL;
6427 + goto fail;
6428 + }
6429 +
6430 + /* Added for PLB DMA phys virt mapping */
6431 + //dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr;
6432 + /*
6433 + * Create Device Attributes in sysfs
6434 + */
6435 + dwc_otg_attr_create (&_dev->dev);
6436 +
6437 + /*
6438 + * Disable the global interrupt until all the interrupt
6439 + * handlers are installed.
6440 + */
6441 + dwc_otg_disable_global_interrupts( dwc_otg_device->core_if );
6442 + /*
6443 + * Install the interrupt handler for the common interrupts before
6444 + * enabling common interrupts in core_init below.
6445 + */
6446 + DWC_DEBUGPL( DBG_CIL, "registering (common) handler for irq%d\n", dwc_otg_device->irq);
6447 +
6448 + retval = request_irq((unsigned int)dwc_otg_device->irq, dwc_otg_common_irq,
6449 + //SA_INTERRUPT|SA_SHIRQ, "dwc_otg", (void *)dwc_otg_device );
6450 + IRQF_SHARED, "dwc_otg", (void *)dwc_otg_device );
6451 + //IRQF_DISABLED, "dwc_otg", (void *)dwc_otg_device );
6452 + if (retval != 0) {
6453 + DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval);
6454 + retval = -EBUSY;
6455 + goto fail;
6456 + } else {
6457 + dwc_otg_device->common_irq_installed = 1;
6458 + }
6459 +
6460 + /*
6461 + * Initialize the DWC_otg core.
6462 + */
6463 + dwc_otg_core_init( dwc_otg_device->core_if );
6464 +
6465 +
6466 +#ifndef DWC_HOST_ONLY // otg device mode. (gadget.)
6467 + /*
6468 + * Initialize the PCD
6469 + */
6470 + retval = dwc_otg_pcd_init(dwc_otg_device);
6471 + if (retval != 0) {
6472 + DWC_ERROR("dwc_otg_pcd_init failed\n");
6473 + dwc_otg_device->pcd = NULL;
6474 + goto fail;
6475 + }
6476 +#endif // DWC_HOST_ONLY
6477 +
6478 +#ifndef DWC_DEVICE_ONLY // otg host mode. (HCD)
6479 + /*
6480 + * Initialize the HCD
6481 + */
6482 +#if 1 /*fscz*/
6483 + /* force_host_mode */
6484 + usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
6485 + usbcfg.b.force_host_mode = 1;
6486 + dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
6487 +#endif
6488 + retval = dwc_otg_hcd_init(&_dev->dev, dwc_otg_device);
6489 + if (retval != 0) {
6490 + DWC_ERROR("dwc_otg_hcd_init failed\n");
6491 + dwc_otg_device->hcd = NULL;
6492 + goto fail;
6493 + }
6494 +#endif // DWC_DEVICE_ONLY
6495 +
6496 + /*
6497 + * Enable the global interrupt after all the interrupt
6498 + * handlers are installed.
6499 + */
6500 + dwc_otg_enable_global_interrupts( dwc_otg_device->core_if );
6501 +#if 0 /*fscz*/
6502 + usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
6503 + usbcfg.b.force_host_mode = 0;
6504 + dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
6505 +#endif
6506 +
6507 +
6508 + return 0;
6509 +
6510 +fail:
6511 + dwc_otg_driver_remove(_dev);
6512 + return retval;
6513 +}
6514 +
6515 +/**
6516 + * This structure defines the methods to be called by a bus driver
6517 + * during the lifecycle of a device on that bus. Both drivers and
6518 + * devices are registered with a bus driver. The bus driver matches
6519 + * devices to drivers based on information in the device and driver
6520 + * structures.
6521 + *
6522 + * The probe function is called when the bus driver matches a device
6523 + * to this driver. The remove function is called when a device is
6524 + * unregistered with the bus driver.
6525 + */
6526 +struct platform_driver dwc_otg_driver = {
6527 + .probe = dwc_otg_driver_probe,
6528 + .remove = dwc_otg_driver_remove,
6529 +// .suspend = dwc_otg_driver_suspend,
6530 +// .resume = dwc_otg_driver_resume,
6531 + .driver = {
6532 + .name = dwc_driver_name,
6533 + .owner = THIS_MODULE,
6534 + },
6535 +};
6536 +EXPORT_SYMBOL(dwc_otg_driver);
6537 +
6538 +/**
6539 + * This function is called when the dwc_otg_driver is installed with the
6540 + * insmod command. It registers the dwc_otg_driver structure with the
6541 + * appropriate bus driver. This will cause the dwc_otg_driver_probe function
6542 + * to be called. In addition, the bus driver will automatically expose
6543 + * attributes defined for the device and driver in the special sysfs file
6544 + * system.
6545 + *
6546 + * @return
6547 + */
6548 +static int __init dwc_otg_init(void)
6549 +{
6550 + int retval = 0;
6551 +
6552 + printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
6553 +
6554 + // ifxmips setup
6555 + retval = ifx_usb_hc_init(dwc_iomem_base, dwc_irq);
6556 + if (retval < 0)
6557 + {
6558 + printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6559 + return retval;
6560 + }
6561 + dwc_otg_power_on(); // ifx only!!
6562 +
6563 +
6564 + retval = platform_driver_register(&dwc_otg_driver);
6565 +
6566 + if (retval < 0) {
6567 + printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6568 + goto error1;
6569 + }
6570 +
6571 + retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version);
6572 + if (retval < 0)
6573 + {
6574 + printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6575 + goto error2;
6576 + }
6577 + retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
6578 + if (retval < 0)
6579 + {
6580 + printk(KERN_ERR "%s retval=%d\n", __func__, retval);
6581 + goto error3;
6582 + }
6583 + return retval;
6584 +
6585 +
6586 +error3:
6587 + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
6588 +error2:
6589 + driver_unregister(&dwc_otg_driver.driver);
6590 +error1:
6591 + ifx_usb_hc_remove();
6592 + return retval;
6593 +}
6594 +module_init(dwc_otg_init);
6595 +
6596 +/**
6597 + * This function is called when the driver is removed from the kernel
6598 + * with the rmmod command. The driver unregisters itself with its bus
6599 + * driver.
6600 + *
6601 + */
6602 +static void __exit dwc_otg_cleanup(void)
6603 +{
6604 + printk(KERN_DEBUG "dwc_otg_cleanup()\n");
6605 +
6606 + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
6607 + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
6608 +
6609 + platform_driver_unregister(&dwc_otg_driver);
6610 + ifx_usb_hc_remove();
6611 +
6612 + printk(KERN_INFO "%s module removed\n", dwc_driver_name);
6613 +}
6614 +module_exit(dwc_otg_cleanup);
6615 +
6616 +MODULE_DESCRIPTION(DWC_DRIVER_DESC);
6617 +MODULE_AUTHOR("Synopsys Inc.");
6618 +MODULE_LICENSE("GPL");
6619 +
6620 +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
6621 +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
6622 +module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
6623 +MODULE_PARM_DESC(opt, "OPT Mode");
6624 +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
6625 +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
6626 +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
6627 +MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
6628 +module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
6629 +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
6630 +module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
6631 +MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
6632 +module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
6633 +MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
6634 +module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
6635 +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
6636 +module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
6637 +MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
6638 +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
6639 +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
6640 +module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
6641 +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
6642 +module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
6643 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
6644 +module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
6645 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
6646 +module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
6647 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
6648 +module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
6649 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
6650 +module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
6651 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
6652 +module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
6653 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
6654 +module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
6655 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
6656 +module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
6657 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
6658 +module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
6659 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
6660 +module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
6661 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
6662 +module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
6663 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
6664 +module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
6665 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
6666 +module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
6667 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
6668 +module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
6669 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
6670 +module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
6671 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
6672 +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
6673 +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
6674 +module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
6675 +MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
6676 +module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
6677 +MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
6678 +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
6679 +/** @todo Set the max to 512K, modify checks */
6680 +MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
6681 +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
6682 +MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
6683 +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
6684 +MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
6685 +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
6686 +MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
6687 +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
6688 +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
6689 +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
6690 +MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
6691 +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
6692 +MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
6693 +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
6694 +MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
6695 +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
6696 +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
6697 +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
6698 +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
6699 +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
6700 +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
6701 +module_param_named(debug, g_dbg_lvl, int, 0444);
6702 +MODULE_PARM_DESC(debug, "0");
6703 +module_param_named(en_multiple_tx_fifo,
6704 + dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
6705 +MODULE_PARM_DESC(en_multiple_tx_fifo,
6706 + "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
6707 +module_param_named(dev_tx_fifo_size_1,
6708 + dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
6709 +MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
6710 +module_param_named(dev_tx_fifo_size_2,
6711 + dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
6712 +MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
6713 +module_param_named(dev_tx_fifo_size_3,
6714 + dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
6715 +MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
6716 +module_param_named(dev_tx_fifo_size_4,
6717 + dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
6718 +MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
6719 +module_param_named(dev_tx_fifo_size_5,
6720 + dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
6721 +MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
6722 +module_param_named(dev_tx_fifo_size_6,
6723 + dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
6724 +MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
6725 +module_param_named(dev_tx_fifo_size_7,
6726 + dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
6727 +MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
6728 +module_param_named(dev_tx_fifo_size_8,
6729 + dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
6730 +MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
6731 +module_param_named(dev_tx_fifo_size_9,
6732 + dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
6733 +MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
6734 +module_param_named(dev_tx_fifo_size_10,
6735 + dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
6736 +MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
6737 +module_param_named(dev_tx_fifo_size_11,
6738 + dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
6739 +MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
6740 +module_param_named(dev_tx_fifo_size_12,
6741 + dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
6742 +MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
6743 +module_param_named(dev_tx_fifo_size_13,
6744 + dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
6745 +MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
6746 +module_param_named(dev_tx_fifo_size_14,
6747 + dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
6748 +MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
6749 +module_param_named(dev_tx_fifo_size_15,
6750 + dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
6751 +MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
6752 +module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
6753 +MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit"
6754 + "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
6755 +module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
6756 +MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
6757 +module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
6758 +MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
6759 +module_param_named (iomem_base, dwc_iomem_base, ulong, 0444);
6760 +MODULE_PARM_DESC (dwc_iomem_base, "The base address of the DWC_OTG register.");
6761 +module_param_named (irq, dwc_irq, int, 0444);
6762 +MODULE_PARM_DESC (dwc_irq, "The interrupt number");
6763 +
6764 +/** @page "Module Parameters"
6765 + *
6766 + * The following parameters may be specified when starting the module.
6767 + * These parameters define how the DWC_otg controller should be
6768 + * configured. Parameter values are passed to the CIL initialization
6769 + * function dwc_otg_cil_init
6770 + *
6771 + * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
6772 + *
6773 +
6774 + <table>
6775 + <tr><td>Parameter Name</td><td>Meaning</td></tr>
6776 +
6777 + <tr>
6778 + <td>otg_cap</td>
6779 + <td>Specifies the OTG capabilities. The driver will automatically detect the
6780 + value for this parameter if none is specified.
6781 + - 0: HNP and SRP capable (default, if available)
6782 + - 1: SRP Only capable
6783 + - 2: No HNP/SRP capable
6784 + </td></tr>
6785 +
6786 + <tr>
6787 + <td>dma_enable</td>
6788 + <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
6789 + The driver will automatically detect the value for this parameter if none is
6790 + specified.
6791 + - 0: Slave
6792 + - 1: DMA (default, if available)
6793 + </td></tr>
6794 +
6795 + <tr>
6796 + <td>dma_burst_size</td>
6797 + <td>The DMA Burst size (applicable only for External DMA Mode).
6798 + - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
6799 + </td></tr>
6800 +
6801 + <tr>
6802 + <td>speed</td>
6803 + <td>Specifies the maximum speed of operation in host and device mode. The
6804 + actual speed depends on the speed of the attached device and the value of
6805 + phy_type.
6806 + - 0: High Speed (default)
6807 + - 1: Full Speed
6808 + </td></tr>
6809 +
6810 + <tr>
6811 + <td>host_support_fs_ls_low_power</td>
6812 + <td>Specifies whether low power mode is supported when attached to a Full
6813 + Speed or Low Speed device in host mode.
6814 + - 0: Don't support low power mode (default)
6815 + - 1: Support low power mode
6816 + </td></tr>
6817 +
6818 + <tr>
6819 + <td>host_ls_low_power_phy_clk</td>
6820 + <td>Specifies the PHY clock rate in low power mode when connected to a Low
6821 + Speed device in host mode. This parameter is applicable only if
6822 + HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
6823 + - 0: 48 MHz (default)
6824 + - 1: 6 MHz
6825 + </td></tr>
6826 +
6827 + <tr>
6828 + <td>enable_dynamic_fifo</td>
6829 + <td> Specifies whether FIFOs may be resized by the driver software.
6830 + - 0: Use cC FIFO size parameters
6831 + - 1: Allow dynamic FIFO sizing (default)
6832 + </td></tr>
6833 +
6834 + <tr>
6835 + <td>data_fifo_size</td>
6836 + <td>Total number of 4-byte words in the data FIFO memory. This memory
6837 + includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
6838 + - Values: 32 to 32768 (default 8192)
6839 +
6840 + Note: The total FIFO memory depth in the FPGA configuration is 8192.
6841 + </td></tr>
6842 +
6843 + <tr>
6844 + <td>dev_rx_fifo_size</td>
6845 + <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
6846 + FIFO sizing is enabled.
6847 + - Values: 16 to 32768 (default 1064)
6848 + </td></tr>
6849 +
6850 + <tr>
6851 + <td>dev_nperio_tx_fifo_size</td>
6852 + <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
6853 + dynamic FIFO sizing is enabled.
6854 + - Values: 16 to 32768 (default 1024)
6855 + </td></tr>
6856 +
6857 + <tr>
6858 + <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
6859 + <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
6860 + when dynamic FIFO sizing is enabled.
6861 + - Values: 4 to 768 (default 256)
6862 + </td></tr>
6863 +
6864 + <tr>
6865 + <td>host_rx_fifo_size</td>
6866 + <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
6867 + sizing is enabled.
6868 + - Values: 16 to 32768 (default 1024)
6869 + </td></tr>
6870 +
6871 + <tr>
6872 + <td>host_nperio_tx_fifo_size</td>
6873 + <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
6874 + dynamic FIFO sizing is enabled in the core.
6875 + - Values: 16 to 32768 (default 1024)
6876 + </td></tr>
6877 +
6878 + <tr>
6879 + <td>host_perio_tx_fifo_size</td>
6880 + <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
6881 + sizing is enabled.
6882 + - Values: 16 to 32768 (default 1024)
6883 + </td></tr>
6884 +
6885 + <tr>
6886 + <td>max_transfer_size</td>
6887 + <td>The maximum transfer size supported in bytes.
6888 + - Values: 2047 to 65,535 (default 65,535)
6889 + </td></tr>
6890 +
6891 + <tr>
6892 + <td>max_packet_count</td>
6893 + <td>The maximum number of packets in a transfer.
6894 + - Values: 15 to 511 (default 511)
6895 + </td></tr>
6896 +
6897 + <tr>
6898 + <td>host_channels</td>
6899 + <td>The number of host channel registers to use.
6900 + - Values: 1 to 16 (default 12)
6901 +
6902 + Note: The FPGA configuration supports a maximum of 12 host channels.
6903 + </td></tr>
6904 +
6905 + <tr>
6906 + <td>dev_endpoints</td>
6907 + <td>The number of endpoints in addition to EP0 available for device mode
6908 + operations.
6909 + - Values: 1 to 15 (default 6 IN and OUT)
6910 +
6911 + Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
6912 + addition to EP0.
6913 + </td></tr>
6914 +
6915 + <tr>
6916 + <td>phy_type</td>
6917 + <td>Specifies the type of PHY interface to use. By default, the driver will
6918 + automatically detect the phy_type.
6919 + - 0: Full Speed
6920 + - 1: UTMI+ (default, if available)
6921 + - 2: ULPI
6922 + </td></tr>
6923 +
6924 + <tr>
6925 + <td>phy_utmi_width</td>
6926 + <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
6927 + phy_type of UTMI+. Also, this parameter is applicable only if the
6928 + OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
6929 + core has been configured to work at either data path width.
6930 + - Values: 8 or 16 bits (default 16)
6931 + </td></tr>
6932 +
6933 + <tr>
6934 + <td>phy_ulpi_ddr</td>
6935 + <td>Specifies whether the ULPI operates at double or single data rate. This
6936 + parameter is only applicable if phy_type is ULPI.
6937 + - 0: single data rate ULPI interface with 8 bit wide data bus (default)
6938 + - 1: double data rate ULPI interface with 4 bit wide data bus
6939 + </td></tr>
6940 +
6941 + <tr>
6942 + <td>i2c_enable</td>
6943 + <td>Specifies whether to use the I2C interface for full speed PHY. This
6944 + parameter is only applicable if PHY_TYPE is FS.
6945 + - 0: Disabled (default)
6946 + - 1: Enabled
6947 + </td></tr>
6948 +
6949 + <tr>
6950 + <td>otg_en_multiple_tx_fifo</td>
6951 + <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs.
6952 + The driver will automatically detect the value for this parameter if none is
6953 + specified.
6954 + - 0: Disabled
6955 + - 1: Enabled (default, if available)
6956 + </td></tr>
6957 +
6958 + <tr>
6959 + <td>dev_tx_fifo_size_n (n = 1 to 15)</td>
6960 + <td>Number of 4-byte words in each of the Tx FIFOs in device mode
6961 + when dynamic FIFO sizing is enabled.
6962 + - Values: 4 to 768 (default 256)
6963 + </td></tr>
6964 +
6965 +*/
6966 --- /dev/null
6967 +++ b/drivers/usb/dwc_otg/dwc_otg_driver.h
6968 @@ -0,0 +1,84 @@
6969 +/* ==========================================================================
6970 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $
6971 + * $Revision: 1.1.1.1 $
6972 + * $Date: 2009-04-17 06:15:34 $
6973 + * $Change: 510275 $
6974 + *
6975 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6976 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6977 + * otherwise expressly agreed to in writing between Synopsys and you.
6978 + *
6979 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6980 + * any End User Software License Agreement or Agreement for Licensed Product
6981 + * with Synopsys or any supplement thereto. You are permitted to use and
6982 + * redistribute this Software in source and binary forms, with or without
6983 + * modification, provided that redistributions of source code must retain this
6984 + * notice. You may not view, use, disclose, copy or distribute this file or
6985 + * any information contained herein except pursuant to this license grant from
6986 + * Synopsys. If you do not agree with this notice, including the disclaimer
6987 + * below, then you are not authorized to use the Software.
6988 + *
6989 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6990 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6991 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6992 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6993 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6994 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6995 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6996 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6997 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6998 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6999 + * DAMAGE.
7000 + * ========================================================================== */
7001 +
7002 +#if !defined(__DWC_OTG_DRIVER_H__)
7003 +#define __DWC_OTG_DRIVER_H__
7004 +
7005 +/** @file
7006 + * This file contains the interface to the Linux driver.
7007 + */
7008 +#include "dwc_otg_cil.h"
7009 +
7010 +/* Type declarations */
7011 +struct dwc_otg_pcd;
7012 +struct dwc_otg_hcd;
7013 +
7014 +/**
7015 + * This structure is a wrapper that encapsulates the driver components used to
7016 + * manage a single DWC_otg controller.
7017 + */
7018 +typedef struct dwc_otg_device
7019 +{
7020 + /** Base address returned from ioremap() */
7021 + void *base;
7022 +
7023 + /** Pointer to the core interface structure. */
7024 + dwc_otg_core_if_t *core_if;
7025 +
7026 + /** Register offset for Diagnostic API.*/
7027 + uint32_t reg_offset;
7028 +
7029 + /** Pointer to the PCD structure. */
7030 + struct dwc_otg_pcd *pcd;
7031 +
7032 + /** Pointer to the HCD structure. */
7033 + struct dwc_otg_hcd *hcd;
7034 +
7035 + /** Flag to indicate whether the common IRQ handler is installed. */
7036 + uint8_t common_irq_installed;
7037 +
7038 + /** Interrupt request number. */
7039 + unsigned int irq;
7040 +
7041 + /** Physical address of Control and Status registers, used by
7042 + * release_mem_region().
7043 + */
7044 + resource_size_t phys_addr;
7045 +
7046 + /** Length of memory region, used by release_mem_region(). */
7047 + unsigned long base_len;
7048 +} dwc_otg_device_t;
7049 +
7050 +//#define dev_dbg(fake, format, arg...) printk(KERN_CRIT __FILE__ ":%d: " format "\n" , __LINE__, ## arg)
7051 +
7052 +#endif
7053 --- /dev/null
7054 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c
7055 @@ -0,0 +1,2870 @@
7056 +/* ==========================================================================
7057 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $
7058 + * $Revision: 1.1.1.1 $
7059 + * $Date: 2009-04-17 06:15:34 $
7060 + * $Change: 631780 $
7061 + *
7062 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7063 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7064 + * otherwise expressly agreed to in writing between Synopsys and you.
7065 + *
7066 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7067 + * any End User Software License Agreement or Agreement for Licensed Product
7068 + * with Synopsys or any supplement thereto. You are permitted to use and
7069 + * redistribute this Software in source and binary forms, with or without
7070 + * modification, provided that redistributions of source code must retain this
7071 + * notice. You may not view, use, disclose, copy or distribute this file or
7072 + * any information contained herein except pursuant to this license grant from
7073 + * Synopsys. If you do not agree with this notice, including the disclaimer
7074 + * below, then you are not authorized to use the Software.
7075 + *
7076 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7077 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7078 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7079 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7080 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7081 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7082 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7083 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7084 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7085 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7086 + * DAMAGE.
7087 + * ========================================================================== */
7088 +#ifndef DWC_DEVICE_ONLY
7089 +
7090 +/**
7091 + * @file
7092 + *
7093 + * This file contains the implementation of the HCD. In Linux, the HCD
7094 + * implements the hc_driver API.
7095 + */
7096 +#include <linux/kernel.h>
7097 +#include <linux/module.h>
7098 +#include <linux/moduleparam.h>
7099 +#include <linux/init.h>
7100 +
7101 +#include <linux/device.h>
7102 +
7103 +#include <linux/errno.h>
7104 +#include <linux/list.h>
7105 +#include <linux/interrupt.h>
7106 +#include <linux/string.h>
7107 +
7108 +#include <linux/dma-mapping.h>
7109 +
7110 +#include "dwc_otg_driver.h"
7111 +#include "dwc_otg_hcd.h"
7112 +#include "dwc_otg_regs.h"
7113 +
7114 +#include <asm/irq.h>
7115 +#include "dwc_otg_ifx.h" // for Infineon platform specific.
7116 +extern atomic_t release_later;
7117 +
7118 +static u64 dma_mask = DMA_BIT_MASK(32);
7119 +
7120 +static const char dwc_otg_hcd_name [] = "dwc_otg_hcd";
7121 +static const struct hc_driver dwc_otg_hc_driver =
7122 +{
7123 + .description = dwc_otg_hcd_name,
7124 + .product_desc = "DWC OTG Controller",
7125 + .hcd_priv_size = sizeof(dwc_otg_hcd_t),
7126 + .irq = dwc_otg_hcd_irq,
7127 + .flags = HCD_MEMORY | HCD_USB2,
7128 + //.reset =
7129 + .start = dwc_otg_hcd_start,
7130 + //.suspend =
7131 + //.resume =
7132 + .stop = dwc_otg_hcd_stop,
7133 + .urb_enqueue = dwc_otg_hcd_urb_enqueue,
7134 + .urb_dequeue = dwc_otg_hcd_urb_dequeue,
7135 + .endpoint_disable = dwc_otg_hcd_endpoint_disable,
7136 + .get_frame_number = dwc_otg_hcd_get_frame_number,
7137 + .hub_status_data = dwc_otg_hcd_hub_status_data,
7138 + .hub_control = dwc_otg_hcd_hub_control,
7139 + //.hub_suspend =
7140 + //.hub_resume =
7141 +};
7142 +
7143 +
7144 +/**
7145 + * Work queue function for starting the HCD when A-Cable is connected.
7146 + * The dwc_otg_hcd_start() must be called in a process context.
7147 + */
7148 +static void hcd_start_func(struct work_struct *work)
7149 +{
7150 + struct dwc_otg_hcd *priv =
7151 + container_of(work, struct dwc_otg_hcd, start_work);
7152 + struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p;
7153 + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
7154 + if (usb_hcd) {
7155 + dwc_otg_hcd_start(usb_hcd);
7156 + }
7157 +}
7158 +
7159 +
7160 +/**
7161 + * HCD Callback function for starting the HCD when A-Cable is
7162 + * connected.
7163 + *
7164 + * @param _p void pointer to the <code>struct usb_hcd</code>
7165 + */
7166 +static int32_t dwc_otg_hcd_start_cb(void *_p)
7167 +{
7168 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
7169 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7170 + hprt0_data_t hprt0;
7171 + if (core_if->op_state == B_HOST) {
7172 + /*
7173 + * Reset the port. During a HNP mode switch the reset
7174 + * needs to occur within 1ms and have a duration of at
7175 + * least 50ms.
7176 + */
7177 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
7178 + hprt0.b.prtrst = 1;
7179 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7180 + ((struct usb_hcd *)_p)->self.is_b_host = 1;
7181 + } else {
7182 + ((struct usb_hcd *)_p)->self.is_b_host = 0;
7183 + }
7184 + /* Need to start the HCD in a non-interrupt context. */
7185 + INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
7186 + dwc_otg_hcd->_p = _p;
7187 + schedule_work(&dwc_otg_hcd->start_work);
7188 + return 1;
7189 +}
7190 +
7191 +
7192 +/**
7193 + * HCD Callback function for stopping the HCD.
7194 + *
7195 + * @param _p void pointer to the <code>struct usb_hcd</code>
7196 + */
7197 +static int32_t dwc_otg_hcd_stop_cb( void *_p )
7198 +{
7199 + struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
7200 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7201 + dwc_otg_hcd_stop( usb_hcd );
7202 + return 1;
7203 +}
7204 +static void del_xfer_timers(dwc_otg_hcd_t *_hcd)
7205 +{
7206 +#ifdef DEBUG
7207 + int i;
7208 + int num_channels = _hcd->core_if->core_params->host_channels;
7209 + for (i = 0; i < num_channels; i++) {
7210 + del_timer(&_hcd->core_if->hc_xfer_timer[i]);
7211 + }
7212 +#endif /* */
7213 +}
7214 +
7215 +static void del_timers(dwc_otg_hcd_t *_hcd)
7216 +{
7217 + del_xfer_timers(_hcd);
7218 + del_timer(&_hcd->conn_timer);
7219 +}
7220 +
7221 +/**
7222 + * Processes all the URBs in a single list of QHs. Completes them with
7223 + * -ETIMEDOUT and frees the QTD.
7224 + */
7225 +static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd,
7226 + struct list_head *_qh_list)
7227 +{
7228 + struct list_head *qh_item;
7229 + dwc_otg_qh_t *qh;
7230 + struct list_head *qtd_item;
7231 + dwc_otg_qtd_t *qtd;
7232 +
7233 + list_for_each(qh_item, _qh_list) {
7234 + qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
7235 + for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list;
7236 + qtd_item = qh->qtd_list.next) {
7237 + qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
7238 + if (qtd->urb != NULL) {
7239 + dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT);
7240 + }
7241 + dwc_otg_hcd_qtd_remove_and_free(qtd);
7242 + }
7243 + }
7244 +}
7245 +
7246 +/**
7247 + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
7248 + * and periodic schedules. The QTD associated with each URB is removed from
7249 + * the schedule and freed. This function may be called when a disconnect is
7250 + * detected or when the HCD is being stopped.
7251 + */
7252 +static void kill_all_urbs(dwc_otg_hcd_t *_hcd)
7253 +{
7254 + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred);
7255 + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive);
7256 + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active);
7257 + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive);
7258 + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready);
7259 + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned);
7260 + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued);
7261 +}
7262 +
7263 +/**
7264 + * HCD Callback function for disconnect of the HCD.
7265 + *
7266 + * @param _p void pointer to the <code>struct usb_hcd</code>
7267 + */
7268 +static int32_t dwc_otg_hcd_disconnect_cb( void *_p )
7269 +{
7270 + gintsts_data_t intr;
7271 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
7272 +
7273 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7274 +
7275 + /*
7276 + * Set status flags for the hub driver.
7277 + */
7278 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
7279 + dwc_otg_hcd->flags.b.port_connect_status = 0;
7280 +
7281 + /*
7282 + * Shutdown any transfers in process by clearing the Tx FIFO Empty
7283 + * interrupt mask and status bits and disabling subsequent host
7284 + * channel interrupts.
7285 + */
7286 + intr.d32 = 0;
7287 + intr.b.nptxfempty = 1;
7288 + intr.b.ptxfempty = 1;
7289 + intr.b.hcintr = 1;
7290 + dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
7291 + dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
7292 +
7293 + del_timers(dwc_otg_hcd);
7294 +
7295 + /*
7296 + * Turn off the vbus power only if the core has transitioned to device
7297 + * mode. If still in host mode, need to keep power on to detect a
7298 + * reconnection.
7299 + */
7300 + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
7301 + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
7302 + hprt0_data_t hprt0 = { .d32=0 };
7303 + DWC_PRINT("Disconnect: PortPower off\n");
7304 + hprt0.b.prtpwr = 0;
7305 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
7306 + }
7307 +
7308 + dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
7309 + }
7310 +
7311 + /* Respond with an error status to all URBs in the schedule. */
7312 + kill_all_urbs(dwc_otg_hcd);
7313 +
7314 + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
7315 + /* Clean up any host channels that were in use. */
7316 + int num_channels;
7317 + int i;
7318 + dwc_hc_t *channel;
7319 + dwc_otg_hc_regs_t *hc_regs;
7320 + hcchar_data_t hcchar;
7321 +
7322 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
7323 +
7324 + if (!dwc_otg_hcd->core_if->dma_enable) {
7325 + /* Flush out any channel requests in slave mode. */
7326 + for (i = 0; i < num_channels; i++) {
7327 + channel = dwc_otg_hcd->hc_ptr_array[i];
7328 + if (list_empty(&channel->hc_list_entry)) {
7329 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
7330 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7331 + if (hcchar.b.chen) {
7332 + hcchar.b.chen = 0;
7333 + hcchar.b.chdis = 1;
7334 + hcchar.b.epdir = 0;
7335 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
7336 + }
7337 + }
7338 + }
7339 + }
7340 +
7341 + for (i = 0; i < num_channels; i++) {
7342 + channel = dwc_otg_hcd->hc_ptr_array[i];
7343 + if (list_empty(&channel->hc_list_entry)) {
7344 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
7345 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7346 + if (hcchar.b.chen) {
7347 + /* Halt the channel. */
7348 + hcchar.b.chdis = 1;
7349 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
7350 + }
7351 +
7352 + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
7353 + list_add_tail(&channel->hc_list_entry,
7354 + &dwc_otg_hcd->free_hc_list);
7355 + }
7356 + }
7357 + }
7358 +
7359 + /* A disconnect will end the session so the B-Device is no
7360 + * longer a B-host. */
7361 + ((struct usb_hcd *)_p)->self.is_b_host = 0;
7362 +
7363 + return 1;
7364 +}
7365 +
7366 +/**
7367 + * Connection timeout function. An OTG host is required to display a
7368 + * message if the device does not connect within 10 seconds.
7369 + */
7370 +void dwc_otg_hcd_connect_timeout( unsigned long _ptr )
7371 +{
7372 + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
7373 + DWC_PRINT( "Connect Timeout\n");
7374 + DWC_ERROR( "Device Not Connected/Responding\n" );
7375 +}
7376 +
7377 +/**
7378 + * Start the connection timer. An OTG host is required to display a
7379 + * message if the device does not connect within 10 seconds. The
7380 + * timer is deleted if a port connect interrupt occurs before the
7381 + * timer expires.
7382 + */
7383 +static void dwc_otg_hcd_start_connect_timer( dwc_otg_hcd_t *_hcd)
7384 +{
7385 + init_timer( &_hcd->conn_timer );
7386 + _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
7387 + _hcd->conn_timer.data = (unsigned long)0;
7388 + _hcd->conn_timer.expires = jiffies + (HZ*10);
7389 + add_timer( &_hcd->conn_timer );
7390 +}
7391 +
7392 +/**
7393 + * HCD Callback function for disconnect of the HCD.
7394 + *
7395 + * @param _p void pointer to the <code>struct usb_hcd</code>
7396 + */
7397 +static int32_t dwc_otg_hcd_session_start_cb( void *_p )
7398 +{
7399 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
7400 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
7401 + dwc_otg_hcd_start_connect_timer( dwc_otg_hcd );
7402 + return 1;
7403 +}
7404 +
7405 +/**
7406 + * HCD Callback structure for handling mode switching.
7407 + */
7408 +static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
7409 + .start = dwc_otg_hcd_start_cb,
7410 + .stop = dwc_otg_hcd_stop_cb,
7411 + .disconnect = dwc_otg_hcd_disconnect_cb,
7412 + .session_start = dwc_otg_hcd_session_start_cb,
7413 + .p = 0,
7414 +};
7415 +
7416 +
7417 +/**
7418 + * Reset tasklet function
7419 + */
7420 +static void reset_tasklet_func (unsigned long data)
7421 +{
7422 + dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t*)data;
7423 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7424 + hprt0_data_t hprt0;
7425 +
7426 + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
7427 +
7428 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
7429 + hprt0.b.prtrst = 1;
7430 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7431 + mdelay (60);
7432 +
7433 + hprt0.b.prtrst = 0;
7434 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
7435 + dwc_otg_hcd->flags.b.port_reset_change = 1;
7436 +
7437 + return;
7438 +}
7439 +
7440 +static struct tasklet_struct reset_tasklet = {
7441 + .next = NULL,
7442 + .state = 0,
7443 + .count = ATOMIC_INIT(0),
7444 + .func = reset_tasklet_func,
7445 + .data = 0,
7446 +};
7447 +
7448 +/**
7449 + * Initializes the HCD. This function allocates memory for and initializes the
7450 + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
7451 + * USB bus with the core and calls the hc_driver->start() function. It returns
7452 + * a negative error on failure.
7453 + */
7454 +int init_hcd_usecs(dwc_otg_hcd_t *_hcd);
7455 +
7456 +int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device)
7457 +{
7458 + struct usb_hcd *hcd = NULL;
7459 + dwc_otg_hcd_t *dwc_otg_hcd = NULL;
7460 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
7461 +
7462 + int num_channels;
7463 + int i;
7464 + dwc_hc_t *channel;
7465 +
7466 + int retval = 0;
7467 +
7468 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
7469 +
7470 + /*
7471 + * Allocate memory for the base HCD plus the DWC OTG HCD.
7472 + * Initialize the base HCD.
7473 + */
7474 + hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev));
7475 + if (hcd == NULL) {
7476 + retval = -ENOMEM;
7477 + goto error1;
7478 + }
7479 + dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */
7480 + hcd->regs = otg_dev->base;
7481 + hcd->rsrc_start = (int)otg_dev->base;
7482 +
7483 + hcd->self.otg_port = 1;
7484 +
7485 + /* Initialize the DWC OTG HCD. */
7486 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
7487 + dwc_otg_hcd->core_if = otg_dev->core_if;
7488 + otg_dev->hcd = dwc_otg_hcd;
7489 +
7490 + /* Register the HCD CIL Callbacks */
7491 + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
7492 + &hcd_cil_callbacks, hcd);
7493 +
7494 + /* Initialize the non-periodic schedule. */
7495 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
7496 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
7497 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred);
7498 +
7499 + /* Initialize the periodic schedule. */
7500 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
7501 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
7502 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
7503 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
7504 +
7505 + /*
7506 + * Create a host channel descriptor for each host channel implemented
7507 + * in the controller. Initialize the channel descriptor array.
7508 + */
7509 + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
7510 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
7511 + for (i = 0; i < num_channels; i++) {
7512 + channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
7513 + if (channel == NULL) {
7514 + retval = -ENOMEM;
7515 + DWC_ERROR("%s: host channel allocation failed\n", __func__);
7516 + goto error2;
7517 + }
7518 + memset(channel, 0, sizeof(dwc_hc_t));
7519 + channel->hc_num = i;
7520 + dwc_otg_hcd->hc_ptr_array[i] = channel;
7521 +#ifdef DEBUG
7522 + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
7523 +#endif
7524 +
7525 + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
7526 + }
7527 +
7528 + /* Initialize the Connection timeout timer. */
7529 + init_timer( &dwc_otg_hcd->conn_timer );
7530 +
7531 + /* Initialize reset tasklet. */
7532 + reset_tasklet.data = (unsigned long) dwc_otg_hcd;
7533 + dwc_otg_hcd->reset_tasklet = &reset_tasklet;
7534 +
7535 + /* Set device flags indicating whether the HCD supports DMA. */
7536 + if (otg_dev->core_if->dma_enable) {
7537 + DWC_PRINT("Using DMA mode\n");
7538 + //_dev->dma_mask = (void *)~0;
7539 + //_dev->coherent_dma_mask = ~0;
7540 + _dev->dma_mask = &dma_mask;
7541 + _dev->coherent_dma_mask = DMA_BIT_MASK(32);
7542 + } else {
7543 + DWC_PRINT("Using Slave mode\n");
7544 + _dev->dma_mask = (void *)0;
7545 + _dev->coherent_dma_mask = 0;
7546 + }
7547 +
7548 + init_hcd_usecs(dwc_otg_hcd);
7549 + /*
7550 + * Finish generic HCD initialization and start the HCD. This function
7551 + * allocates the DMA buffer pool, registers the USB bus, requests the
7552 + * IRQ line, and calls dwc_otg_hcd_start method.
7553 + */
7554 + retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
7555 + if (retval < 0) {
7556 + goto error2;
7557 + }
7558 +
7559 + /*
7560 + * Allocate space for storing data on status transactions. Normally no
7561 + * data is sent, but this space acts as a bit bucket. This must be
7562 + * done after usb_add_hcd since that function allocates the DMA buffer
7563 + * pool.
7564 + */
7565 + if (otg_dev->core_if->dma_enable) {
7566 + dwc_otg_hcd->status_buf =
7567 + dma_alloc_coherent(_dev,
7568 + DWC_OTG_HCD_STATUS_BUF_SIZE,
7569 + &dwc_otg_hcd->status_buf_dma,
7570 + GFP_KERNEL | GFP_DMA);
7571 + } else {
7572 + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
7573 + GFP_KERNEL);
7574 + }
7575 + if (dwc_otg_hcd->status_buf == NULL) {
7576 + retval = -ENOMEM;
7577 + DWC_ERROR("%s: status_buf allocation failed\n", __func__);
7578 + goto error3;
7579 + }
7580 +
7581 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n",
7582 + dev_name(_dev), hcd->self.busnum);
7583 +
7584 + return 0;
7585 +
7586 + /* Error conditions */
7587 +error3:
7588 + usb_remove_hcd(hcd);
7589 +error2:
7590 + dwc_otg_hcd_free(hcd);
7591 + usb_put_hcd(hcd);
7592 +error1:
7593 + return retval;
7594 +}
7595 +
7596 +/**
7597 + * Removes the HCD.
7598 + * Frees memory and resources associated with the HCD and deregisters the bus.
7599 + */
7600 +void dwc_otg_hcd_remove(struct device *_dev)
7601 +{
7602 + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
7603 + dwc_otg_hcd_t *dwc_otg_hcd = otg_dev->hcd;
7604 + struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
7605 +
7606 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
7607 +
7608 + /* Turn off all interrupts */
7609 + dwc_write_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
7610 + dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
7611 +
7612 + usb_remove_hcd(hcd);
7613 +
7614 + dwc_otg_hcd_free(hcd);
7615 +
7616 + usb_put_hcd(hcd);
7617 +
7618 + return;
7619 +}
7620 +
7621 +
7622 +/* =========================================================================
7623 + * Linux HC Driver Functions
7624 + * ========================================================================= */
7625 +
7626 +/**
7627 + * Initializes dynamic portions of the DWC_otg HCD state.
7628 + */
7629 +static void hcd_reinit(dwc_otg_hcd_t *_hcd)
7630 +{
7631 + struct list_head *item;
7632 + int num_channels;
7633 + int i;
7634 + dwc_hc_t *channel;
7635 +
7636 + _hcd->flags.d32 = 0;
7637 +
7638 + _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active;
7639 + _hcd->available_host_channels = _hcd->core_if->core_params->host_channels;
7640 +
7641 + /*
7642 + * Put all channels in the free channel list and clean up channel
7643 + * states.
7644 + */
7645 + item = _hcd->free_hc_list.next;
7646 + while (item != &_hcd->free_hc_list) {
7647 + list_del(item);
7648 + item = _hcd->free_hc_list.next;
7649 + }
7650 + num_channels = _hcd->core_if->core_params->host_channels;
7651 + for (i = 0; i < num_channels; i++) {
7652 + channel = _hcd->hc_ptr_array[i];
7653 + list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list);
7654 + dwc_otg_hc_cleanup(_hcd->core_if, channel);
7655 + }
7656 +
7657 + /* Initialize the DWC core for host mode operation. */
7658 + dwc_otg_core_host_init(_hcd->core_if);
7659 +}
7660 +
7661 +/** Initializes the DWC_otg controller and its root hub and prepares it for host
7662 + * mode operation. Activates the root port. Returns 0 on success and a negative
7663 + * error code on failure. */
7664 +int dwc_otg_hcd_start(struct usb_hcd *_hcd)
7665 +{
7666 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
7667 + dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if;
7668 + struct usb_bus *bus;
7669 +
7670 + // int retval;
7671 +
7672 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
7673 +
7674 + bus = hcd_to_bus(_hcd);
7675 +
7676 + /* Initialize the bus state. If the core is in Device Mode
7677 + * HALT the USB bus and return. */
7678 + if (dwc_otg_is_device_mode (core_if)) {
7679 + _hcd->state = HC_STATE_HALT;
7680 + return 0;
7681 + }
7682 + _hcd->state = HC_STATE_RUNNING;
7683 +
7684 + /* Initialize and connect root hub if one is not already attached */
7685 + if (bus->root_hub) {
7686 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
7687 + /* Inform the HUB driver to resume. */
7688 + usb_hcd_resume_root_hub(_hcd);
7689 + }
7690 + else {
7691 +#if 0
7692 + struct usb_device *udev;
7693 + udev = usb_alloc_dev(NULL, bus, 0);
7694 + if (!udev) {
7695 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
7696 + return -ENODEV;
7697 + }
7698 + udev->speed = USB_SPEED_HIGH;
7699 + /* Not needed - VJ
7700 + if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) {
7701 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval);
7702 + return -ENODEV;
7703 + }
7704 + */
7705 +#else
7706 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
7707 +#endif
7708 + }
7709 +
7710 + hcd_reinit(dwc_otg_hcd);
7711 +
7712 + return 0;
7713 +}
7714 +
7715 +static void qh_list_free(dwc_otg_hcd_t *_hcd, struct list_head *_qh_list)
7716 +{
7717 + struct list_head *item;
7718 + dwc_otg_qh_t *qh;
7719 +
7720 + if (_qh_list->next == NULL) {
7721 + /* The list hasn't been initialized yet. */
7722 + return;
7723 + }
7724 +
7725 + /* Ensure there are no QTDs or URBs left. */
7726 + kill_urbs_in_qh_list(_hcd, _qh_list);
7727 +
7728 + for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
7729 + qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7730 + dwc_otg_hcd_qh_remove_and_free(_hcd, qh);
7731 + }
7732 +}
7733 +
7734 +/**
7735 + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
7736 + * stopped.
7737 + */
7738 +void dwc_otg_hcd_stop(struct usb_hcd *_hcd)
7739 +{
7740 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
7741 + hprt0_data_t hprt0 = { .d32=0 };
7742 +
7743 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
7744 +
7745 + /* Turn off all host-specific interrupts. */
7746 + dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
7747 +
7748 + /*
7749 + * The root hub should be disconnected before this function is called.
7750 + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
7751 + * and the QH lists (via ..._hcd_endpoint_disable).
7752 + */
7753 +
7754 + /* Turn off the vbus power */
7755 + DWC_PRINT("PortPower off\n");
7756 + hprt0.b.prtpwr = 0;
7757 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
7758 +
7759 + return;
7760 +}
7761 +
7762 +
7763 +/** Returns the current frame number. */
7764 +int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd)
7765 +{
7766 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
7767 + hfnum_data_t hfnum;
7768 +
7769 + hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
7770 + host_if->host_global_regs->hfnum);
7771 +
7772 +#ifdef DEBUG_SOF
7773 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
7774 +#endif
7775 + return hfnum.b.frnum;
7776 +}
7777 +
7778 +/**
7779 + * Frees secondary storage associated with the dwc_otg_hcd structure contained
7780 + * in the struct usb_hcd field.
7781 + */
7782 +void dwc_otg_hcd_free(struct usb_hcd *_hcd)
7783 +{
7784 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
7785 + int i;
7786 +
7787 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
7788 +
7789 + del_timers(dwc_otg_hcd);
7790 +
7791 + /* Free memory for QH/QTD lists */
7792 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
7793 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred);
7794 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
7795 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
7796 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
7797 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
7798 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
7799 +
7800 + /* Free memory for the host channels. */
7801 + for (i = 0; i < MAX_EPS_CHANNELS; i++) {
7802 + dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
7803 + if (hc != NULL) {
7804 + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
7805 + kfree(hc);
7806 + }
7807 + }
7808 +
7809 + if (dwc_otg_hcd->core_if->dma_enable) {
7810 + if (dwc_otg_hcd->status_buf_dma) {
7811 + dma_free_coherent(_hcd->self.controller,
7812 + DWC_OTG_HCD_STATUS_BUF_SIZE,
7813 + dwc_otg_hcd->status_buf,
7814 + dwc_otg_hcd->status_buf_dma);
7815 + }
7816 + } else if (dwc_otg_hcd->status_buf != NULL) {
7817 + kfree(dwc_otg_hcd->status_buf);
7818 + }
7819 +
7820 + return;
7821 +}
7822 +
7823 +
7824 +#ifdef DEBUG
7825 +static void dump_urb_info(struct urb *_urb, char* _fn_name)
7826 +{
7827 + DWC_PRINT("%s, urb %p\n", _fn_name, _urb);
7828 + DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe));
7829 + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe),
7830 + (usb_pipein(_urb->pipe) ? "IN" : "OUT"));
7831 + DWC_PRINT(" Endpoint type: %s\n",
7832 + ({char *pipetype;
7833 + switch (usb_pipetype(_urb->pipe)) {
7834 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
7835 + case PIPE_BULK: pipetype = "BULK"; break;
7836 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
7837 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
7838 + default: pipetype = "UNKNOWN"; break;
7839 + }; pipetype;}));
7840 + DWC_PRINT(" Speed: %s\n",
7841 + ({char *speed;
7842 + switch (_urb->dev->speed) {
7843 + case USB_SPEED_HIGH: speed = "HIGH"; break;
7844 + case USB_SPEED_FULL: speed = "FULL"; break;
7845 + case USB_SPEED_LOW: speed = "LOW"; break;
7846 + default: speed = "UNKNOWN"; break;
7847 + }; speed;}));
7848 + DWC_PRINT(" Max packet size: %d\n",
7849 + usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe)));
7850 + DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length);
7851 + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
7852 + _urb->transfer_buffer, (void *)_urb->transfer_dma);
7853 + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
7854 + _urb->setup_packet, (void *)_urb->setup_dma);
7855 + DWC_PRINT(" Interval: %d\n", _urb->interval);
7856 + if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
7857 + int i;
7858 + for (i = 0; i < _urb->number_of_packets; i++) {
7859 + DWC_PRINT(" ISO Desc %d:\n", i);
7860 + DWC_PRINT(" offset: %d, length %d\n",
7861 + _urb->iso_frame_desc[i].offset,
7862 + _urb->iso_frame_desc[i].length);
7863 + }
7864 + }
7865 +}
7866 +
7867 +static void dump_channel_info(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *qh)
7868 +{
7869 + if (qh->channel != NULL) {
7870 + dwc_hc_t *hc = qh->channel;
7871 + struct list_head *item;
7872 + dwc_otg_qh_t *qh_item;
7873 + int num_channels = _hcd->core_if->core_params->host_channels;
7874 + int i;
7875 +
7876 + dwc_otg_hc_regs_t *hc_regs;
7877 + hcchar_data_t hcchar;
7878 + hcsplt_data_t hcsplt;
7879 + hctsiz_data_t hctsiz;
7880 + uint32_t hcdma;
7881 +
7882 + hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num];
7883 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
7884 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
7885 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
7886 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
7887 +
7888 + DWC_PRINT(" Assigned to channel %p:\n", hc);
7889 + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
7890 + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
7891 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
7892 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
7893 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
7894 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
7895 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
7896 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
7897 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
7898 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
7899 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
7900 + DWC_PRINT(" qh: %p\n", hc->qh);
7901 + DWC_PRINT(" NP inactive sched:\n");
7902 + list_for_each(item, &_hcd->non_periodic_sched_inactive) {
7903 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7904 + DWC_PRINT(" %p\n", qh_item);
7905 + } DWC_PRINT(" NP active sched:\n");
7906 + list_for_each(item, &_hcd->non_periodic_sched_deferred) {
7907 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7908 + DWC_PRINT(" %p\n", qh_item);
7909 + } DWC_PRINT(" NP deferred sched:\n");
7910 + list_for_each(item, &_hcd->non_periodic_sched_active) {
7911 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
7912 + DWC_PRINT(" %p\n", qh_item);
7913 + } DWC_PRINT(" Channels: \n");
7914 + for (i = 0; i < num_channels; i++) {
7915 + dwc_hc_t *hc = _hcd->hc_ptr_array[i];
7916 + DWC_PRINT(" %2d: %p\n", i, hc);
7917 + }
7918 + }
7919 +}
7920 +#endif // DEBUG
7921 +
7922 +/** Starts processing a USB transfer request specified by a USB Request Block
7923 + * (URB). mem_flags indicates the type of memory allocation to use while
7924 + * processing this URB. */
7925 +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd,
7926 + struct urb *_urb,
7927 + gfp_t _mem_flags)
7928 +{
7929 + unsigned long flags;
7930 + int retval;
7931 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
7932 + dwc_otg_qtd_t *qtd;
7933 +
7934 + local_irq_save(flags);
7935 + retval = usb_hcd_link_urb_to_ep(_hcd, _urb);
7936 + if (retval) {
7937 + local_irq_restore(flags);
7938 + return retval;
7939 + }
7940 +#ifdef DEBUG
7941 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
7942 + dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue");
7943 + }
7944 +#endif // DEBUG
7945 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
7946 + /* No longer connected. */
7947 + local_irq_restore(flags);
7948 + return -ENODEV;
7949 + }
7950 +
7951 + qtd = dwc_otg_hcd_qtd_create (_urb);
7952 + if (qtd == NULL) {
7953 + local_irq_restore(flags);
7954 + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
7955 + return -ENOMEM;
7956 + }
7957 +
7958 + retval = dwc_otg_hcd_qtd_add (qtd, dwc_otg_hcd);
7959 + if (retval < 0) {
7960 + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
7961 + "Error status %d\n", retval);
7962 + dwc_otg_hcd_qtd_free(qtd);
7963 + }
7964 +
7965 + local_irq_restore (flags);
7966 + return retval;
7967 +}
7968 +
7969 +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
7970 + * success. */
7971 +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status)
7972 +{
7973 + unsigned long flags;
7974 + dwc_otg_hcd_t *dwc_otg_hcd;
7975 + dwc_otg_qtd_t *urb_qtd;
7976 + dwc_otg_qh_t *qh;
7977 + int retval;
7978 + //struct usb_host_endpoint *_ep = NULL;
7979 +
7980 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
7981 +
7982 + local_irq_save(flags);
7983 +
7984 + retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status);
7985 + if (retval) {
7986 + local_irq_restore(flags);
7987 + return retval;
7988 + }
7989 +
7990 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
7991 + urb_qtd = (dwc_otg_qtd_t *)_urb->hcpriv;
7992 + if (urb_qtd == NULL) {
7993 + printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb);
7994 + goto done;
7995 + }
7996 + qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr;
7997 + if (qh == NULL) {
7998 + goto done;
7999 + }
8000 +
8001 +#ifdef DEBUG
8002 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8003 + dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue");
8004 + if (urb_qtd == qh->qtd_in_process) {
8005 + dump_channel_info(dwc_otg_hcd, qh);
8006 + }
8007 + }
8008 +#endif // DEBUG
8009 +
8010 + if (urb_qtd == qh->qtd_in_process) {
8011 + /* The QTD is in process (it has been assigned to a channel). */
8012 +
8013 + if (dwc_otg_hcd->flags.b.port_connect_status) {
8014 + /*
8015 + * If still connected (i.e. in host mode), halt the
8016 + * channel so it can be used for other transfers. If
8017 + * no longer connected, the host registers can't be
8018 + * written to halt the channel since the core is in
8019 + * device mode.
8020 + */
8021 + dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
8022 + DWC_OTG_HC_XFER_URB_DEQUEUE);
8023 + }
8024 + }
8025 +
8026 + /*
8027 + * Free the QTD and clean up the associated QH. Leave the QH in the
8028 + * schedule if it has any remaining QTDs.
8029 + */
8030 + dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
8031 + if (urb_qtd == qh->qtd_in_process) {
8032 + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
8033 + qh->channel = NULL;
8034 + qh->qtd_in_process = NULL;
8035 + } else if (list_empty(&qh->qtd_list)) {
8036 + dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
8037 + }
8038 +
8039 +done:
8040 + local_irq_restore(flags);
8041 + _urb->hcpriv = NULL;
8042 +
8043 + /* Higher layer software sets URB status. */
8044 + usb_hcd_unlink_urb_from_ep(_hcd, _urb);
8045 + usb_hcd_giveback_urb(_hcd, _urb, _status);
8046 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8047 + DWC_PRINT("Called usb_hcd_giveback_urb()\n");
8048 + DWC_PRINT(" urb->status = %d\n", _urb->status);
8049 + }
8050 +
8051 + return 0;
8052 +}
8053 +
8054 +
8055 +/** Frees resources in the DWC_otg controller related to a given endpoint. Also
8056 + * clears state in the HCD related to the endpoint. Any URBs for the endpoint
8057 + * must already be dequeued. */
8058 +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd,
8059 + struct usb_host_endpoint *_ep)
8060 +
8061 +{
8062 + dwc_otg_qh_t *qh;
8063 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
8064 +
8065 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
8066 + "endpoint=%d\n", _ep->desc.bEndpointAddress,
8067 + dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
8068 +
8069 + qh = (dwc_otg_qh_t *)(_ep->hcpriv);
8070 + if (qh != NULL) {
8071 +#ifdef DEBUG
8072 + /** Check that the QTD list is really empty */
8073 + if (!list_empty(&qh->qtd_list)) {
8074 + DWC_WARN("DWC OTG HCD EP DISABLE:"
8075 + " QTD List for this endpoint is not empty\n");
8076 + }
8077 +#endif // DEBUG
8078 +
8079 + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
8080 + _ep->hcpriv = NULL;
8081 + }
8082 +
8083 + return;
8084 +}
8085 +extern int dwc_irq;
8086 +/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
8087 + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
8088 + * interrupt.
8089 + *
8090 + * This function is called by the USB core when an interrupt occurs */
8091 +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *_hcd)
8092 +{
8093 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8094 +
8095 + mask_and_ack_ifx_irq (dwc_irq);
8096 + return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
8097 +}
8098 +
8099 +/** Creates Status Change bitmap for the root hub and root port. The bitmap is
8100 + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
8101 + * is the status change indicator for the single root port. Returns 1 if either
8102 + * change indicator is 1, otherwise returns 0. */
8103 +int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf)
8104 +{
8105 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8106 +
8107 + _buf[0] = 0;
8108 + _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
8109 + dwc_otg_hcd->flags.b.port_reset_change ||
8110 + dwc_otg_hcd->flags.b.port_enable_change ||
8111 + dwc_otg_hcd->flags.b.port_suspend_change ||
8112 + dwc_otg_hcd->flags.b.port_over_current_change) << 1;
8113 +
8114 +#ifdef DEBUG
8115 + if (_buf[0]) {
8116 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
8117 + " Root port status changed\n");
8118 + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
8119 + dwc_otg_hcd->flags.b.port_connect_status_change);
8120 + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
8121 + dwc_otg_hcd->flags.b.port_reset_change);
8122 + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
8123 + dwc_otg_hcd->flags.b.port_enable_change);
8124 + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
8125 + dwc_otg_hcd->flags.b.port_suspend_change);
8126 + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
8127 + dwc_otg_hcd->flags.b.port_over_current_change);
8128 + }
8129 +#endif // DEBUG
8130 + return (_buf[0] != 0);
8131 +}
8132 +
8133 +#ifdef DWC_HS_ELECT_TST
8134 +/*
8135 + * Quick and dirty hack to implement the HS Electrical Test
8136 + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
8137 + *
8138 + * This code was copied from our userspace app "hset". It sends a
8139 + * Get Device Descriptor control sequence in two parts, first the
8140 + * Setup packet by itself, followed some time later by the In and
8141 + * Ack packets. Rather than trying to figure out how to add this
8142 + * functionality to the normal driver code, we just hijack the
8143 + * hardware, using these two function to drive the hardware
8144 + * directly.
8145 + */
8146 +
8147 +dwc_otg_core_global_regs_t *global_regs;
8148 +dwc_otg_host_global_regs_t *hc_global_regs;
8149 +dwc_otg_hc_regs_t *hc_regs;
8150 +uint32_t *data_fifo;
8151 +
8152 +static void do_setup(void)
8153 +{
8154 + gintsts_data_t gintsts;
8155 + hctsiz_data_t hctsiz;
8156 + hcchar_data_t hcchar;
8157 + haint_data_t haint;
8158 + hcint_data_t hcint;
8159 +
8160 + /* Enable HAINTs */
8161 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8162 +
8163 + /* Enable HCINTs */
8164 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8165 +
8166 + /* Read GINTSTS */
8167 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8168 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8169 +
8170 + /* Read HAINT */
8171 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8172 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8173 +
8174 + /* Read HCINT */
8175 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8176 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8177 +
8178 + /* Read HCCHAR */
8179 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8180 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8181 +
8182 + /* Clear HCINT */
8183 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8184 +
8185 + /* Clear HAINT */
8186 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8187 +
8188 + /* Clear GINTSTS */
8189 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8190 +
8191 + /* Read GINTSTS */
8192 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8193 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8194 +
8195 + /*
8196 + * Send Setup packet (Get Device Descriptor)
8197 + */
8198 +
8199 + /* Make sure channel is disabled */
8200 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8201 + if (hcchar.b.chen) {
8202 + //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
8203 + hcchar.b.chdis = 1;
8204 + // hcchar.b.chen = 1;
8205 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8206 + //sleep(1);
8207 + MDELAY(1000);
8208 +
8209 + /* Read GINTSTS */
8210 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8211 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8212 +
8213 + /* Read HAINT */
8214 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8215 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8216 +
8217 + /* Read HCINT */
8218 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8219 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8220 +
8221 + /* Read HCCHAR */
8222 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8223 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8224 +
8225 + /* Clear HCINT */
8226 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8227 +
8228 + /* Clear HAINT */
8229 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8230 +
8231 + /* Clear GINTSTS */
8232 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8233 +
8234 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8235 + //if (hcchar.b.chen) {
8236 + // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
8237 + //}
8238 + }
8239 +
8240 + /* Set HCTSIZ */
8241 + hctsiz.d32 = 0;
8242 + hctsiz.b.xfersize = 8;
8243 + hctsiz.b.pktcnt = 1;
8244 + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
8245 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8246 +
8247 + /* Set HCCHAR */
8248 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8249 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8250 + hcchar.b.epdir = 0;
8251 + hcchar.b.epnum = 0;
8252 + hcchar.b.mps = 8;
8253 + hcchar.b.chen = 1;
8254 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8255 +
8256 + /* Fill FIFO with Setup data for Get Device Descriptor */
8257 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
8258 + dwc_write_reg32(data_fifo++, 0x01000680);
8259 + dwc_write_reg32(data_fifo++, 0x00080000);
8260 +
8261 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8262 + //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
8263 +
8264 + /* Wait for host channel interrupt */
8265 + do {
8266 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8267 + } while (gintsts.b.hcintr == 0);
8268 +
8269 + //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
8270 +
8271 + /* Disable HCINTs */
8272 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
8273 +
8274 + /* Disable HAINTs */
8275 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
8276 +
8277 + /* Read HAINT */
8278 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8279 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8280 +
8281 + /* Read HCINT */
8282 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8283 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8284 +
8285 + /* Read HCCHAR */
8286 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8287 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8288 +
8289 + /* Clear HCINT */
8290 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8291 +
8292 + /* Clear HAINT */
8293 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8294 +
8295 + /* Clear GINTSTS */
8296 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8297 +
8298 + /* Read GINTSTS */
8299 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8300 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8301 +}
8302 +
8303 +static void do_in_ack(void)
8304 +{
8305 + gintsts_data_t gintsts;
8306 + hctsiz_data_t hctsiz;
8307 + hcchar_data_t hcchar;
8308 + haint_data_t haint;
8309 + hcint_data_t hcint;
8310 + host_grxsts_data_t grxsts;
8311 +
8312 + /* Enable HAINTs */
8313 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
8314 +
8315 + /* Enable HCINTs */
8316 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
8317 +
8318 + /* Read GINTSTS */
8319 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8320 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8321 +
8322 + /* Read HAINT */
8323 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8324 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8325 +
8326 + /* Read HCINT */
8327 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8328 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8329 +
8330 + /* Read HCCHAR */
8331 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8332 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8333 +
8334 + /* Clear HCINT */
8335 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8336 +
8337 + /* Clear HAINT */
8338 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8339 +
8340 + /* Clear GINTSTS */
8341 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8342 +
8343 + /* Read GINTSTS */
8344 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8345 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8346 +
8347 + /*
8348 + * Receive Control In packet
8349 + */
8350 +
8351 + /* Make sure channel is disabled */
8352 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8353 + if (hcchar.b.chen) {
8354 + //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
8355 + hcchar.b.chdis = 1;
8356 + hcchar.b.chen = 1;
8357 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8358 + //sleep(1);
8359 + MDELAY(1000);
8360 +
8361 + /* Read GINTSTS */
8362 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8363 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8364 +
8365 + /* Read HAINT */
8366 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8367 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8368 +
8369 + /* Read HCINT */
8370 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8371 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8372 +
8373 + /* Read HCCHAR */
8374 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8375 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8376 +
8377 + /* Clear HCINT */
8378 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8379 +
8380 + /* Clear HAINT */
8381 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8382 +
8383 + /* Clear GINTSTS */
8384 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8385 +
8386 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8387 + //if (hcchar.b.chen) {
8388 + // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
8389 + //}
8390 + }
8391 +
8392 + /* Set HCTSIZ */
8393 + hctsiz.d32 = 0;
8394 + hctsiz.b.xfersize = 8;
8395 + hctsiz.b.pktcnt = 1;
8396 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
8397 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8398 +
8399 + /* Set HCCHAR */
8400 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8401 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8402 + hcchar.b.epdir = 1;
8403 + hcchar.b.epnum = 0;
8404 + hcchar.b.mps = 8;
8405 + hcchar.b.chen = 1;
8406 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8407 +
8408 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8409 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
8410 +
8411 + /* Wait for receive status queue interrupt */
8412 + do {
8413 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8414 + } while (gintsts.b.rxstsqlvl == 0);
8415 +
8416 + //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
8417 +
8418 + /* Read RXSTS */
8419 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
8420 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
8421 +
8422 + /* Clear RXSTSQLVL in GINTSTS */
8423 + gintsts.d32 = 0;
8424 + gintsts.b.rxstsqlvl = 1;
8425 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8426 +
8427 + switch (grxsts.b.pktsts) {
8428 + case DWC_GRXSTS_PKTSTS_IN:
8429 + /* Read the data into the host buffer */
8430 + if (grxsts.b.bcnt > 0) {
8431 + int i;
8432 + int word_count = (grxsts.b.bcnt + 3) / 4;
8433 +
8434 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
8435 +
8436 + for (i = 0; i < word_count; i++) {
8437 + (void)dwc_read_reg32(data_fifo++);
8438 + }
8439 + }
8440 +
8441 + //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
8442 + break;
8443 +
8444 + default:
8445 + //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
8446 + break;
8447 + }
8448 +
8449 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8450 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
8451 +
8452 + /* Wait for receive status queue interrupt */
8453 + do {
8454 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8455 + } while (gintsts.b.rxstsqlvl == 0);
8456 +
8457 + //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
8458 +
8459 + /* Read RXSTS */
8460 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
8461 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
8462 +
8463 + /* Clear RXSTSQLVL in GINTSTS */
8464 + gintsts.d32 = 0;
8465 + gintsts.b.rxstsqlvl = 1;
8466 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8467 +
8468 + switch (grxsts.b.pktsts) {
8469 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
8470 + break;
8471 +
8472 + default:
8473 + //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
8474 + break;
8475 + }
8476 +
8477 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8478 + //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
8479 +
8480 + /* Wait for host channel interrupt */
8481 + do {
8482 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8483 + } while (gintsts.b.hcintr == 0);
8484 +
8485 + //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
8486 +
8487 + /* Read HAINT */
8488 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8489 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8490 +
8491 + /* Read HCINT */
8492 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8493 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8494 +
8495 + /* Read HCCHAR */
8496 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8497 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8498 +
8499 + /* Clear HCINT */
8500 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8501 +
8502 + /* Clear HAINT */
8503 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8504 +
8505 + /* Clear GINTSTS */
8506 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8507 +
8508 + /* Read GINTSTS */
8509 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8510 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8511 +
8512 + // usleep(100000);
8513 + // mdelay(100);
8514 + MDELAY(1);
8515 +
8516 + /*
8517 + * Send handshake packet
8518 + */
8519 +
8520 + /* Read HAINT */
8521 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8522 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8523 +
8524 + /* Read HCINT */
8525 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8526 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8527 +
8528 + /* Read HCCHAR */
8529 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8530 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8531 +
8532 + /* Clear HCINT */
8533 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8534 +
8535 + /* Clear HAINT */
8536 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8537 +
8538 + /* Clear GINTSTS */
8539 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8540 +
8541 + /* Read GINTSTS */
8542 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8543 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8544 +
8545 + /* Make sure channel is disabled */
8546 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8547 + if (hcchar.b.chen) {
8548 + //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
8549 + hcchar.b.chdis = 1;
8550 + hcchar.b.chen = 1;
8551 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8552 + //sleep(1);
8553 + MDELAY(1000);
8554 +
8555 + /* Read GINTSTS */
8556 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8557 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8558 +
8559 + /* Read HAINT */
8560 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8561 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8562 +
8563 + /* Read HCINT */
8564 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8565 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8566 +
8567 + /* Read HCCHAR */
8568 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8569 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8570 +
8571 + /* Clear HCINT */
8572 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8573 +
8574 + /* Clear HAINT */
8575 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8576 +
8577 + /* Clear GINTSTS */
8578 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8579 +
8580 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8581 + //if (hcchar.b.chen) {
8582 + // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
8583 + //}
8584 + }
8585 +
8586 + /* Set HCTSIZ */
8587 + hctsiz.d32 = 0;
8588 + hctsiz.b.xfersize = 0;
8589 + hctsiz.b.pktcnt = 1;
8590 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
8591 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
8592 +
8593 + /* Set HCCHAR */
8594 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8595 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
8596 + hcchar.b.epdir = 0;
8597 + hcchar.b.epnum = 0;
8598 + hcchar.b.mps = 8;
8599 + hcchar.b.chen = 1;
8600 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8601 +
8602 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8603 + //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
8604 +
8605 + /* Wait for host channel interrupt */
8606 + do {
8607 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8608 + } while (gintsts.b.hcintr == 0);
8609 +
8610 + //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
8611 +
8612 + /* Disable HCINTs */
8613 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
8614 +
8615 + /* Disable HAINTs */
8616 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
8617 +
8618 + /* Read HAINT */
8619 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
8620 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
8621 +
8622 + /* Read HCINT */
8623 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
8624 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
8625 +
8626 + /* Read HCCHAR */
8627 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8628 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
8629 +
8630 + /* Clear HCINT */
8631 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
8632 +
8633 + /* Clear HAINT */
8634 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
8635 +
8636 + /* Clear GINTSTS */
8637 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
8638 +
8639 + /* Read GINTSTS */
8640 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
8641 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
8642 +}
8643 +#endif /* DWC_HS_ELECT_TST */
8644 +
8645 +/** Handles hub class-specific requests.*/
8646 +int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd,
8647 + u16 _typeReq,
8648 + u16 _wValue,
8649 + u16 _wIndex,
8650 + char *_buf,
8651 + u16 _wLength)
8652 +{
8653 + int retval = 0;
8654 +
8655 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
8656 + dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd (_hcd)->core_if;
8657 + struct usb_hub_descriptor *desc;
8658 + hprt0_data_t hprt0 = {.d32 = 0};
8659 +
8660 + uint32_t port_status;
8661 +
8662 + switch (_typeReq) {
8663 + case ClearHubFeature:
8664 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8665 + "ClearHubFeature 0x%x\n", _wValue);
8666 + switch (_wValue) {
8667 + case C_HUB_LOCAL_POWER:
8668 + case C_HUB_OVER_CURRENT:
8669 + /* Nothing required here */
8670 + break;
8671 + default:
8672 + retval = -EINVAL;
8673 + DWC_ERROR ("DWC OTG HCD - "
8674 + "ClearHubFeature request %xh unknown\n", _wValue);
8675 + }
8676 + break;
8677 + case ClearPortFeature:
8678 + if (!_wIndex || _wIndex > 1)
8679 + goto error;
8680 +
8681 + switch (_wValue) {
8682 + case USB_PORT_FEAT_ENABLE:
8683 + DWC_DEBUGPL (DBG_ANY, "DWC OTG HCD HUB CONTROL - "
8684 + "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
8685 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8686 + hprt0.b.prtena = 1;
8687 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8688 + break;
8689 + case USB_PORT_FEAT_SUSPEND:
8690 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8691 + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
8692 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8693 + hprt0.b.prtres = 1;
8694 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8695 + /* Clear Resume bit */
8696 + mdelay (100);
8697 + hprt0.b.prtres = 0;
8698 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8699 + break;
8700 + case USB_PORT_FEAT_POWER:
8701 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8702 + "ClearPortFeature USB_PORT_FEAT_POWER\n");
8703 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8704 + hprt0.b.prtpwr = 0;
8705 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8706 + break;
8707 + case USB_PORT_FEAT_INDICATOR:
8708 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8709 + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
8710 + /* Port inidicator not supported */
8711 + break;
8712 + case USB_PORT_FEAT_C_CONNECTION:
8713 + /* Clears drivers internal connect status change
8714 + * flag */
8715 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8716 + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
8717 + dwc_otg_hcd->flags.b.port_connect_status_change = 0;
8718 + break;
8719 + case USB_PORT_FEAT_C_RESET:
8720 + /* Clears the driver's internal Port Reset Change
8721 + * flag */
8722 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8723 + "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
8724 + dwc_otg_hcd->flags.b.port_reset_change = 0;
8725 + break;
8726 + case USB_PORT_FEAT_C_ENABLE:
8727 + /* Clears the driver's internal Port
8728 + * Enable/Disable Change flag */
8729 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8730 + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
8731 + dwc_otg_hcd->flags.b.port_enable_change = 0;
8732 + break;
8733 + case USB_PORT_FEAT_C_SUSPEND:
8734 + /* Clears the driver's internal Port Suspend
8735 + * Change flag, which is set when resume signaling on
8736 + * the host port is complete */
8737 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8738 + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
8739 + dwc_otg_hcd->flags.b.port_suspend_change = 0;
8740 + break;
8741 + case USB_PORT_FEAT_C_OVER_CURRENT:
8742 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8743 + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
8744 + dwc_otg_hcd->flags.b.port_over_current_change = 0;
8745 + break;
8746 + default:
8747 + retval = -EINVAL;
8748 + DWC_ERROR ("DWC OTG HCD - "
8749 + "ClearPortFeature request %xh "
8750 + "unknown or unsupported\n", _wValue);
8751 + }
8752 + break;
8753 + case GetHubDescriptor:
8754 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8755 + "GetHubDescriptor\n");
8756 + desc = (struct usb_hub_descriptor *)_buf;
8757 + desc->bDescLength = 9;
8758 + desc->bDescriptorType = 0x29;
8759 + desc->bNbrPorts = 1;
8760 + desc->wHubCharacteristics = 0x08;
8761 + desc->bPwrOn2PwrGood = 1;
8762 + desc->bHubContrCurrent = 0;
8763 + desc->bitmap[0] = 0;
8764 + desc->bitmap[1] = 0xff;
8765 + break;
8766 + case GetHubStatus:
8767 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8768 + "GetHubStatus\n");
8769 + memset (_buf, 0, 4);
8770 + break;
8771 + case GetPortStatus:
8772 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8773 + "GetPortStatus\n");
8774 +
8775 + if (!_wIndex || _wIndex > 1)
8776 + goto error;
8777 +
8778 + port_status = 0;
8779 +
8780 + if (dwc_otg_hcd->flags.b.port_connect_status_change)
8781 + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
8782 +
8783 + if (dwc_otg_hcd->flags.b.port_enable_change)
8784 + port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
8785 +
8786 + if (dwc_otg_hcd->flags.b.port_suspend_change)
8787 + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
8788 +
8789 + if (dwc_otg_hcd->flags.b.port_reset_change)
8790 + port_status |= (1 << USB_PORT_FEAT_C_RESET);
8791 +
8792 + if (dwc_otg_hcd->flags.b.port_over_current_change) {
8793 + DWC_ERROR("Device Not Supported\n");
8794 + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
8795 + }
8796 +
8797 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
8798 + printk("DISCONNECTED PORT\n");
8799 + /*
8800 + * The port is disconnected, which means the core is
8801 + * either in device mode or it soon will be. Just
8802 + * return 0's for the remainder of the port status
8803 + * since the port register can't be read if the core
8804 + * is in device mode.
8805 + */
8806 +#if 1 // winder.
8807 + *((u32 *) _buf) = cpu_to_le32(port_status);
8808 +#else
8809 + *((__le32 *) _buf) = cpu_to_le32(port_status);
8810 +#endif
8811 + break;
8812 + }
8813 +
8814 + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
8815 + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
8816 +
8817 + if (hprt0.b.prtconnsts)
8818 + port_status |= (1 << USB_PORT_FEAT_CONNECTION);
8819 +
8820 + if (hprt0.b.prtena)
8821 + port_status |= (1 << USB_PORT_FEAT_ENABLE);
8822 +
8823 + if (hprt0.b.prtsusp)
8824 + port_status |= (1 << USB_PORT_FEAT_SUSPEND);
8825 +
8826 + if (hprt0.b.prtovrcurract)
8827 + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
8828 +
8829 + if (hprt0.b.prtrst)
8830 + port_status |= (1 << USB_PORT_FEAT_RESET);
8831 +
8832 + if (hprt0.b.prtpwr)
8833 + port_status |= (1 << USB_PORT_FEAT_POWER);
8834 +
8835 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
8836 + port_status |= USB_PORT_STAT_HIGH_SPEED;
8837 +
8838 + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
8839 + port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
8840 +
8841 + if (hprt0.b.prttstctl)
8842 + port_status |= (1 << USB_PORT_FEAT_TEST);
8843 +
8844 + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
8845 +#if 1 // winder.
8846 + *((u32 *) _buf) = cpu_to_le32(port_status);
8847 +#else
8848 + *((__le32 *) _buf) = cpu_to_le32(port_status);
8849 +#endif
8850 +
8851 + break;
8852 + case SetHubFeature:
8853 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8854 + "SetHubFeature\n");
8855 + /* No HUB features supported */
8856 + break;
8857 + case SetPortFeature:
8858 + if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
8859 + goto error;
8860 +
8861 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
8862 + /*
8863 + * The port is disconnected, which means the core is
8864 + * either in device mode or it soon will be. Just
8865 + * return without doing anything since the port
8866 + * register can't be written if the core is in device
8867 + * mode.
8868 + */
8869 + break;
8870 + }
8871 +
8872 + switch (_wValue) {
8873 + case USB_PORT_FEAT_SUSPEND:
8874 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8875 + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
8876 + if (_hcd->self.otg_port == _wIndex
8877 + && _hcd->self.b_hnp_enable) {
8878 + gotgctl_data_t gotgctl = {.d32=0};
8879 + gotgctl.b.hstsethnpen = 1;
8880 + dwc_modify_reg32(&core_if->core_global_regs->
8881 + gotgctl, 0, gotgctl.d32);
8882 + core_if->op_state = A_SUSPEND;
8883 + }
8884 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8885 + hprt0.b.prtsusp = 1;
8886 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8887 + //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32);
8888 + /* Suspend the Phy Clock */
8889 + {
8890 + pcgcctl_data_t pcgcctl = {.d32=0};
8891 + pcgcctl.b.stoppclk = 1;
8892 + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
8893 + }
8894 +
8895 + /* For HNP the bus must be suspended for at least 200ms.*/
8896 + if (_hcd->self.b_hnp_enable) {
8897 + mdelay(200);
8898 + //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state);
8899 + }
8900 + break;
8901 + case USB_PORT_FEAT_POWER:
8902 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8903 + "SetPortFeature - USB_PORT_FEAT_POWER\n");
8904 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8905 + hprt0.b.prtpwr = 1;
8906 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8907 + break;
8908 + case USB_PORT_FEAT_RESET:
8909 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8910 + "SetPortFeature - USB_PORT_FEAT_RESET\n");
8911 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8912 + /* TODO: Is this for OTG protocol??
8913 + * We shoudl remove OTG totally for Danube system.
8914 + * But, in the future, maybe we need this.
8915 + */
8916 +#if 1 // winder
8917 + hprt0.b.prtrst = 1;
8918 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8919 +#else
8920 + /* When B-Host the Port reset bit is set in
8921 + * the Start HCD Callback function, so that
8922 + * the reset is started within 1ms of the HNP
8923 + * success interrupt. */
8924 + if (!_hcd->self.is_b_host) {
8925 + hprt0.b.prtrst = 1;
8926 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8927 + }
8928 +#endif
8929 + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
8930 + MDELAY (60);
8931 + hprt0.b.prtrst = 0;
8932 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8933 + break;
8934 +
8935 +#ifdef DWC_HS_ELECT_TST
8936 + case USB_PORT_FEAT_TEST:
8937 + {
8938 + uint32_t t;
8939 + gintmsk_data_t gintmsk;
8940 +
8941 + t = (_wIndex >> 8); /* MSB wIndex USB */
8942 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
8943 + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
8944 + printk("USB_PORT_FEAT_TEST %d\n", t);
8945 + if (t < 6) {
8946 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8947 + hprt0.b.prttstctl = t;
8948 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8949 + } else {
8950 + /* Setup global vars with reg addresses (quick and
8951 + * dirty hack, should be cleaned up)
8952 + */
8953 + global_regs = core_if->core_global_regs;
8954 + hc_global_regs = core_if->host_if->host_global_regs;
8955 + hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
8956 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
8957 +
8958 + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
8959 + /* Save current interrupt mask */
8960 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
8961 +
8962 + /* Disable all interrupts while we muck with
8963 + * the hardware directly
8964 + */
8965 + dwc_write_reg32(&global_regs->gintmsk, 0);
8966 +
8967 + /* 15 second delay per the test spec */
8968 + mdelay(15000);
8969 +
8970 + /* Drive suspend on the root port */
8971 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8972 + hprt0.b.prtsusp = 1;
8973 + hprt0.b.prtres = 0;
8974 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8975 +
8976 + /* 15 second delay per the test spec */
8977 + mdelay(15000);
8978 +
8979 + /* Drive resume on the root port */
8980 + hprt0.d32 = dwc_otg_read_hprt0 (core_if);
8981 + hprt0.b.prtsusp = 0;
8982 + hprt0.b.prtres = 1;
8983 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8984 + mdelay(100);
8985 +
8986 + /* Clear the resume bit */
8987 + hprt0.b.prtres = 0;
8988 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8989 +
8990 + /* Restore interrupts */
8991 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
8992 + } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
8993 + /* Save current interrupt mask */
8994 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
8995 +
8996 + /* Disable all interrupts while we muck with
8997 + * the hardware directly
8998 + */
8999 + dwc_write_reg32(&global_regs->gintmsk, 0);
9000 +
9001 + /* 15 second delay per the test spec */
9002 + mdelay(15000);
9003 +
9004 + /* Send the Setup packet */
9005 + do_setup();
9006 +
9007 + /* 15 second delay so nothing else happens for awhile */
9008 + mdelay(15000);
9009 +
9010 + /* Restore interrupts */
9011 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9012 + } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
9013 + /* Save current interrupt mask */
9014 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9015 +
9016 + /* Disable all interrupts while we muck with
9017 + * the hardware directly
9018 + */
9019 + dwc_write_reg32(&global_regs->gintmsk, 0);
9020 +
9021 + /* Send the Setup packet */
9022 + do_setup();
9023 +
9024 + /* 15 second delay so nothing else happens for awhile */
9025 + mdelay(15000);
9026 +
9027 + /* Send the In and Ack packets */
9028 + do_in_ack();
9029 +
9030 + /* 15 second delay so nothing else happens for awhile */
9031 + mdelay(15000);
9032 +
9033 + /* Restore interrupts */
9034 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9035 + }
9036 + }
9037 + break;
9038 + }
9039 +#endif /* DWC_HS_ELECT_TST */
9040 +
9041 + case USB_PORT_FEAT_INDICATOR:
9042 + DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9043 + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
9044 + /* Not supported */
9045 + break;
9046 + default:
9047 + retval = -EINVAL;
9048 + DWC_ERROR ("DWC OTG HCD - "
9049 + "SetPortFeature request %xh "
9050 + "unknown or unsupported\n", _wValue);
9051 + break;
9052 + }
9053 + break;
9054 + default:
9055 +error:
9056 + retval = -EINVAL;
9057 + DWC_WARN ("DWC OTG HCD - "
9058 + "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
9059 + _typeReq, _wIndex, _wValue);
9060 + break;
9061 + }
9062 +
9063 + return retval;
9064 +}
9065 +
9066 +
9067 +/**
9068 + * Assigns transactions from a QTD to a free host channel and initializes the
9069 + * host channel to perform the transactions. The host channel is removed from
9070 + * the free list.
9071 + *
9072 + * @param _hcd The HCD state structure.
9073 + * @param _qh Transactions from the first QTD for this QH are selected and
9074 + * assigned to a free host channel.
9075 + */
9076 +static void assign_and_init_hc(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
9077 +{
9078 + dwc_hc_t *hc;
9079 + dwc_otg_qtd_t *qtd;
9080 + struct urb *urb;
9081 +
9082 + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh);
9083 +
9084 + hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
9085 +
9086 + /* Remove the host channel from the free list. */
9087 + list_del_init(&hc->hc_list_entry);
9088 +
9089 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
9090 + urb = qtd->urb;
9091 + _qh->channel = hc;
9092 + _qh->qtd_in_process = qtd;
9093 +
9094 + /*
9095 + * Use usb_pipedevice to determine device address. This address is
9096 + * 0 before the SET_ADDRESS command and the correct address afterward.
9097 + */
9098 + hc->dev_addr = usb_pipedevice(urb->pipe);
9099 + hc->ep_num = usb_pipeendpoint(urb->pipe);
9100 +
9101 + if (urb->dev->speed == USB_SPEED_LOW) {
9102 + hc->speed = DWC_OTG_EP_SPEED_LOW;
9103 + } else if (urb->dev->speed == USB_SPEED_FULL) {
9104 + hc->speed = DWC_OTG_EP_SPEED_FULL;
9105 + } else {
9106 + hc->speed = DWC_OTG_EP_SPEED_HIGH;
9107 + }
9108 + hc->max_packet = dwc_max_packet(_qh->maxp);
9109 +
9110 + hc->xfer_started = 0;
9111 + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
9112 + hc->error_state = (qtd->error_count > 0);
9113 + hc->halt_on_queue = 0;
9114 + hc->halt_pending = 0;
9115 + hc->requests = 0;
9116 +
9117 + /*
9118 + * The following values may be modified in the transfer type section
9119 + * below. The xfer_len value may be reduced when the transfer is
9120 + * started to accommodate the max widths of the XferSize and PktCnt
9121 + * fields in the HCTSIZn register.
9122 + */
9123 + hc->do_ping = _qh->ping_state;
9124 + hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
9125 + hc->data_pid_start = _qh->data_toggle;
9126 + hc->multi_count = 1;
9127 +
9128 + if (_hcd->core_if->dma_enable) {
9129 + hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma + urb->actual_length;
9130 + } else {
9131 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
9132 + }
9133 + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
9134 + hc->xfer_count = 0;
9135 +
9136 + /*
9137 + * Set the split attributes
9138 + */
9139 + hc->do_split = 0;
9140 + if (_qh->do_split) {
9141 + hc->do_split = 1;
9142 + hc->xact_pos = qtd->isoc_split_pos;
9143 + hc->complete_split = qtd->complete_split;
9144 + hc->hub_addr = urb->dev->tt->hub->devnum;
9145 + hc->port_addr = urb->dev->ttport;
9146 + }
9147 +
9148 + switch (usb_pipetype(urb->pipe)) {
9149 + case PIPE_CONTROL:
9150 + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
9151 + switch (qtd->control_phase) {
9152 + case DWC_OTG_CONTROL_SETUP:
9153 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
9154 + hc->do_ping = 0;
9155 + hc->ep_is_in = 0;
9156 + hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
9157 + if (_hcd->core_if->dma_enable) {
9158 + hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma;
9159 + } else {
9160 + hc->xfer_buff = (uint8_t *)urb->setup_packet;
9161 + }
9162 + hc->xfer_len = 8;
9163 + break;
9164 + case DWC_OTG_CONTROL_DATA:
9165 + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
9166 + hc->data_pid_start = qtd->data_toggle;
9167 + break;
9168 + case DWC_OTG_CONTROL_STATUS:
9169 + /*
9170 + * Direction is opposite of data direction or IN if no
9171 + * data.
9172 + */
9173 + DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
9174 + if (urb->transfer_buffer_length == 0) {
9175 + hc->ep_is_in = 1;
9176 + } else {
9177 + hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
9178 + }
9179 + if (hc->ep_is_in) {
9180 + hc->do_ping = 0;
9181 + }
9182 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
9183 + hc->xfer_len = 0;
9184 + if (_hcd->core_if->dma_enable) {
9185 + hc->xfer_buff = (uint8_t *)_hcd->status_buf_dma;
9186 + } else {
9187 + hc->xfer_buff = (uint8_t *)_hcd->status_buf;
9188 + }
9189 + break;
9190 + }
9191 + break;
9192 + case PIPE_BULK:
9193 + hc->ep_type = DWC_OTG_EP_TYPE_BULK;
9194 + break;
9195 + case PIPE_INTERRUPT:
9196 + hc->ep_type = DWC_OTG_EP_TYPE_INTR;
9197 + break;
9198 + case PIPE_ISOCHRONOUS:
9199 + {
9200 + struct usb_iso_packet_descriptor *frame_desc;
9201 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
9202 + hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
9203 + if (_hcd->core_if->dma_enable) {
9204 + hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma;
9205 + } else {
9206 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
9207 + }
9208 + hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
9209 + hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
9210 +
9211 + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
9212 + if (hc->xfer_len <= 188) {
9213 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
9214 + }
9215 + else {
9216 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
9217 + }
9218 + }
9219 + }
9220 + break;
9221 + }
9222 +
9223 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
9224 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
9225 + /*
9226 + * This value may be modified when the transfer is started to
9227 + * reflect the actual transfer length.
9228 + */
9229 + hc->multi_count = dwc_hb_mult(_qh->maxp);
9230 + }
9231 +
9232 + dwc_otg_hc_init(_hcd->core_if, hc);
9233 + hc->qh = _qh;
9234 +}
9235 +#define DEBUG_HOST_CHANNELS
9236 +#ifdef DEBUG_HOST_CHANNELS
9237 +static int last_sel_trans_num_per_scheduled = 0;
9238 +module_param(last_sel_trans_num_per_scheduled, int, 0444);
9239 +
9240 +static int last_sel_trans_num_nonper_scheduled = 0;
9241 +module_param(last_sel_trans_num_nonper_scheduled, int, 0444);
9242 +
9243 +static int last_sel_trans_num_avail_hc_at_start = 0;
9244 +module_param(last_sel_trans_num_avail_hc_at_start, int, 0444);
9245 +
9246 +static int last_sel_trans_num_avail_hc_at_end = 0;
9247 +module_param(last_sel_trans_num_avail_hc_at_end, int, 0444);
9248 +#endif /* DEBUG_HOST_CHANNELS */
9249 +
9250 +/**
9251 + * This function selects transactions from the HCD transfer schedule and
9252 + * assigns them to available host channels. It is called from HCD interrupt
9253 + * handler functions.
9254 + *
9255 + * @param _hcd The HCD state structure.
9256 + *
9257 + * @return The types of new transactions that were assigned to host channels.
9258 + */
9259 +dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd)
9260 +{
9261 + struct list_head *qh_ptr;
9262 + dwc_otg_qh_t *qh;
9263 + int num_channels;
9264 + unsigned long flags;
9265 + dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
9266 +
9267 +#ifdef DEBUG_SOF
9268 + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
9269 +#endif /* */
9270 +
9271 +#ifdef DEBUG_HOST_CHANNELS
9272 + last_sel_trans_num_per_scheduled = 0;
9273 + last_sel_trans_num_nonper_scheduled = 0;
9274 + last_sel_trans_num_avail_hc_at_start = _hcd->available_host_channels;
9275 +#endif /* DEBUG_HOST_CHANNELS */
9276 +
9277 + /* Process entries in the periodic ready list. */
9278 + num_channels = _hcd->core_if->core_params->host_channels;
9279 + qh_ptr = _hcd->periodic_sched_ready.next;
9280 + while (qh_ptr != &_hcd->periodic_sched_ready
9281 + && !list_empty(&_hcd->free_hc_list)) {
9282 +
9283 + // Make sure we leave one channel for non periodic transactions.
9284 + local_irq_save(flags);
9285 + if (_hcd->available_host_channels <= 1) {
9286 + local_irq_restore(flags);
9287 + break;
9288 + }
9289 + _hcd->available_host_channels--;
9290 + local_irq_restore(flags);
9291 +#ifdef DEBUG_HOST_CHANNELS
9292 + last_sel_trans_num_per_scheduled++;
9293 +#endif /* DEBUG_HOST_CHANNELS */
9294 +
9295 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9296 + assign_and_init_hc(_hcd, qh);
9297 +
9298 + /*
9299 + * Move the QH from the periodic ready schedule to the
9300 + * periodic assigned schedule.
9301 + */
9302 + qh_ptr = qh_ptr->next;
9303 + local_irq_save(flags);
9304 + list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned);
9305 + local_irq_restore(flags);
9306 + ret_val = DWC_OTG_TRANSACTION_PERIODIC;
9307 + }
9308 +
9309 + /*
9310 + * Process entries in the deferred portion of the non-periodic list.
9311 + * A NAK put them here and, at the right time, they need to be
9312 + * placed on the sched_inactive list.
9313 + */
9314 + qh_ptr = _hcd->non_periodic_sched_deferred.next;
9315 + while (qh_ptr != &_hcd->non_periodic_sched_deferred) {
9316 + uint16_t frame_number =
9317 + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
9318 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9319 + qh_ptr = qh_ptr->next;
9320 +
9321 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
9322 + // NAK did this
9323 + /*
9324 + * Move the QH from the non periodic deferred schedule to
9325 + * the non periodic inactive schedule.
9326 + */
9327 + local_irq_save(flags);
9328 + list_move(&qh->qh_list_entry,
9329 + &_hcd->non_periodic_sched_inactive);
9330 + local_irq_restore(flags);
9331 + }
9332 + }
9333 +
9334 + /*
9335 + * Process entries in the inactive portion of the non-periodic
9336 + * schedule. Some free host channels may not be used if they are
9337 + * reserved for periodic transfers.
9338 + */
9339 + qh_ptr = _hcd->non_periodic_sched_inactive.next;
9340 + num_channels = _hcd->core_if->core_params->host_channels;
9341 + while (qh_ptr != &_hcd->non_periodic_sched_inactive
9342 + && !list_empty(&_hcd->free_hc_list)) {
9343 +
9344 + local_irq_save(flags);
9345 + if (_hcd->available_host_channels < 1) {
9346 + local_irq_restore(flags);
9347 + break;
9348 + }
9349 + _hcd->available_host_channels--;
9350 + local_irq_restore(flags);
9351 +#ifdef DEBUG_HOST_CHANNELS
9352 + last_sel_trans_num_nonper_scheduled++;
9353 +#endif /* DEBUG_HOST_CHANNELS */
9354 +
9355 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9356 + assign_and_init_hc(_hcd, qh);
9357 +
9358 + /*
9359 + * Move the QH from the non-periodic inactive schedule to the
9360 + * non-periodic active schedule.
9361 + */
9362 + qh_ptr = qh_ptr->next;
9363 + local_irq_save(flags);
9364 + list_move(&qh->qh_list_entry, &_hcd->non_periodic_sched_active);
9365 + local_irq_restore(flags);
9366 +
9367 + if (ret_val == DWC_OTG_TRANSACTION_NONE) {
9368 + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
9369 + } else {
9370 + ret_val = DWC_OTG_TRANSACTION_ALL;
9371 + }
9372 +
9373 + }
9374 +#ifdef DEBUG_HOST_CHANNELS
9375 + last_sel_trans_num_avail_hc_at_end = _hcd->available_host_channels;
9376 +#endif /* DEBUG_HOST_CHANNELS */
9377 +
9378 + return ret_val;
9379 +}
9380 +
9381 +/**
9382 + * Attempts to queue a single transaction request for a host channel
9383 + * associated with either a periodic or non-periodic transfer. This function
9384 + * assumes that there is space available in the appropriate request queue. For
9385 + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
9386 + * is available in the appropriate Tx FIFO.
9387 + *
9388 + * @param _hcd The HCD state structure.
9389 + * @param _hc Host channel descriptor associated with either a periodic or
9390 + * non-periodic transfer.
9391 + * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx
9392 + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
9393 + * transfers.
9394 + *
9395 + * @return 1 if a request is queued and more requests may be needed to
9396 + * complete the transfer, 0 if no more requests are required for this
9397 + * transfer, -1 if there is insufficient space in the Tx FIFO.
9398 + */
9399 +static int queue_transaction(dwc_otg_hcd_t *_hcd,
9400 + dwc_hc_t *_hc,
9401 + uint16_t _fifo_dwords_avail)
9402 +{
9403 + int retval;
9404 +
9405 + if (_hcd->core_if->dma_enable) {
9406 + if (!_hc->xfer_started) {
9407 + dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9408 + _hc->qh->ping_state = 0;
9409 + }
9410 + retval = 0;
9411 + } else if (_hc->halt_pending) {
9412 + /* Don't queue a request if the channel has been halted. */
9413 + retval = 0;
9414 + } else if (_hc->halt_on_queue) {
9415 + dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status);
9416 + retval = 0;
9417 + } else if (_hc->do_ping) {
9418 + if (!_hc->xfer_started) {
9419 + dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9420 + }
9421 + retval = 0;
9422 + } else if (!_hc->ep_is_in ||
9423 + _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
9424 + if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
9425 + if (!_hc->xfer_started) {
9426 + dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9427 + retval = 1;
9428 + } else {
9429 + retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
9430 + }
9431 + } else {
9432 + retval = -1;
9433 + }
9434 + } else {
9435 + if (!_hc->xfer_started) {
9436 + dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
9437 + retval = 1;
9438 + } else {
9439 + retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
9440 + }
9441 + }
9442 +
9443 + return retval;
9444 +}
9445 +
9446 +/**
9447 + * Processes active non-periodic channels and queues transactions for these
9448 + * channels to the DWC_otg controller. After queueing transactions, the NP Tx
9449 + * FIFO Empty interrupt is enabled if there are more transactions to queue as
9450 + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
9451 + * FIFO Empty interrupt is disabled.
9452 + */
9453 +static void process_non_periodic_channels(dwc_otg_hcd_t *_hcd)
9454 +{
9455 + gnptxsts_data_t tx_status;
9456 + struct list_head *orig_qh_ptr;
9457 + dwc_otg_qh_t *qh;
9458 + int status;
9459 + int no_queue_space = 0;
9460 + int no_fifo_space = 0;
9461 + int more_to_do = 0;
9462 +
9463 + dwc_otg_core_global_regs_t *global_regs = _hcd->core_if->core_global_regs;
9464 +
9465 + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
9466 +#ifdef DEBUG
9467 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9468 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
9469 + tx_status.b.nptxqspcavail);
9470 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
9471 + tx_status.b.nptxfspcavail);
9472 +#endif
9473 + /*
9474 + * Keep track of the starting point. Skip over the start-of-list
9475 + * entry.
9476 + */
9477 + if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
9478 + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9479 + }
9480 + orig_qh_ptr = _hcd->non_periodic_qh_ptr;
9481 +
9482 + /*
9483 + * Process once through the active list or until no more space is
9484 + * available in the request queue or the Tx FIFO.
9485 + */
9486 + do {
9487 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9488 + if (!_hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
9489 + no_queue_space = 1;
9490 + break;
9491 + }
9492 +
9493 + qh = list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
9494 + status = queue_transaction(_hcd, qh->channel, tx_status.b.nptxfspcavail);
9495 +
9496 + if (status > 0) {
9497 + more_to_do = 1;
9498 + } else if (status < 0) {
9499 + no_fifo_space = 1;
9500 + break;
9501 + }
9502 +
9503 + /* Advance to next QH, skipping start-of-list entry. */
9504 + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9505 + if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
9506 + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
9507 + }
9508 +
9509 + } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr);
9510 +
9511 + if (!_hcd->core_if->dma_enable) {
9512 + gintmsk_data_t intr_mask = {.d32 = 0};
9513 + intr_mask.b.nptxfempty = 1;
9514 +
9515 +#ifdef DEBUG
9516 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
9517 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
9518 + tx_status.b.nptxqspcavail);
9519 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
9520 + tx_status.b.nptxfspcavail);
9521 +#endif
9522 + if (more_to_do || no_queue_space || no_fifo_space) {
9523 + /*
9524 + * May need to queue more transactions as the request
9525 + * queue or Tx FIFO empties. Enable the non-periodic
9526 + * Tx FIFO empty interrupt. (Always use the half-empty
9527 + * level to ensure that new requests are loaded as
9528 + * soon as possible.)
9529 + */
9530 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
9531 + } else {
9532 + /*
9533 + * Disable the Tx FIFO empty interrupt since there are
9534 + * no more transactions that need to be queued right
9535 + * now. This function is called from interrupt
9536 + * handlers to queue more transactions as transfer
9537 + * states change.
9538 + */
9539 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
9540 + }
9541 + }
9542 +}
9543 +
9544 +/**
9545 + * Processes periodic channels for the next frame and queues transactions for
9546 + * these channels to the DWC_otg controller. After queueing transactions, the
9547 + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
9548 + * to queue as Periodic Tx FIFO or request queue space becomes available.
9549 + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
9550 + */
9551 +static void process_periodic_channels(dwc_otg_hcd_t *_hcd)
9552 +{
9553 + hptxsts_data_t tx_status;
9554 + struct list_head *qh_ptr;
9555 + dwc_otg_qh_t *qh;
9556 + int status;
9557 + int no_queue_space = 0;
9558 + int no_fifo_space = 0;
9559 +
9560 + dwc_otg_host_global_regs_t *host_regs;
9561 + host_regs = _hcd->core_if->host_if->host_global_regs;
9562 +
9563 + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
9564 +#ifdef DEBUG
9565 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9566 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
9567 + tx_status.b.ptxqspcavail);
9568 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
9569 + tx_status.b.ptxfspcavail);
9570 +#endif
9571 +
9572 + qh_ptr = _hcd->periodic_sched_assigned.next;
9573 + while (qh_ptr != &_hcd->periodic_sched_assigned) {
9574 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9575 + if (tx_status.b.ptxqspcavail == 0) {
9576 + no_queue_space = 1;
9577 + break;
9578 + }
9579 +
9580 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
9581 +
9582 + /*
9583 + * Set a flag if we're queuing high-bandwidth in slave mode.
9584 + * The flag prevents any halts to get into the request queue in
9585 + * the middle of multiple high-bandwidth packets getting queued.
9586 + */
9587 + if ((!_hcd->core_if->dma_enable) &&
9588 + (qh->channel->multi_count > 1))
9589 + {
9590 + _hcd->core_if->queuing_high_bandwidth = 1;
9591 + }
9592 +
9593 + status = queue_transaction(_hcd, qh->channel, tx_status.b.ptxfspcavail);
9594 + if (status < 0) {
9595 + no_fifo_space = 1;
9596 + break;
9597 + }
9598 +
9599 + /*
9600 + * In Slave mode, stay on the current transfer until there is
9601 + * nothing more to do or the high-bandwidth request count is
9602 + * reached. In DMA mode, only need to queue one request. The
9603 + * controller automatically handles multiple packets for
9604 + * high-bandwidth transfers.
9605 + */
9606 + if (_hcd->core_if->dma_enable ||
9607 + (status == 0 ||
9608 + qh->channel->requests == qh->channel->multi_count)) {
9609 + qh_ptr = qh_ptr->next;
9610 + /*
9611 + * Move the QH from the periodic assigned schedule to
9612 + * the periodic queued schedule.
9613 + */
9614 + list_move(&qh->qh_list_entry, &_hcd->periodic_sched_queued);
9615 +
9616 + /* done queuing high bandwidth */
9617 + _hcd->core_if->queuing_high_bandwidth = 0;
9618 + }
9619 + }
9620 +
9621 + if (!_hcd->core_if->dma_enable) {
9622 + dwc_otg_core_global_regs_t *global_regs;
9623 + gintmsk_data_t intr_mask = {.d32 = 0};
9624 +
9625 + global_regs = _hcd->core_if->core_global_regs;
9626 + intr_mask.b.ptxfempty = 1;
9627 +#ifdef DEBUG
9628 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
9629 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
9630 + tx_status.b.ptxqspcavail);
9631 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
9632 + tx_status.b.ptxfspcavail);
9633 +#endif
9634 + if (!(list_empty(&_hcd->periodic_sched_assigned)) ||
9635 + no_queue_space || no_fifo_space) {
9636 + /*
9637 + * May need to queue more transactions as the request
9638 + * queue or Tx FIFO empties. Enable the periodic Tx
9639 + * FIFO empty interrupt. (Always use the half-empty
9640 + * level to ensure that new requests are loaded as
9641 + * soon as possible.)
9642 + */
9643 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
9644 + } else {
9645 + /*
9646 + * Disable the Tx FIFO empty interrupt since there are
9647 + * no more transactions that need to be queued right
9648 + * now. This function is called from interrupt
9649 + * handlers to queue more transactions as transfer
9650 + * states change.
9651 + */
9652 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
9653 + }
9654 + }
9655 +}
9656 +
9657 +/**
9658 + * This function processes the currently active host channels and queues
9659 + * transactions for these channels to the DWC_otg controller. It is called
9660 + * from HCD interrupt handler functions.
9661 + *
9662 + * @param _hcd The HCD state structure.
9663 + * @param _tr_type The type(s) of transactions to queue (non-periodic,
9664 + * periodic, or both).
9665 + */
9666 +void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
9667 + dwc_otg_transaction_type_e _tr_type)
9668 +{
9669 +#ifdef DEBUG_SOF
9670 + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
9671 +#endif
9672 + /* Process host channels associated with periodic transfers. */
9673 + if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
9674 + _tr_type == DWC_OTG_TRANSACTION_ALL) &&
9675 + !list_empty(&_hcd->periodic_sched_assigned)) {
9676 +
9677 + process_periodic_channels(_hcd);
9678 + }
9679 +
9680 + /* Process host channels associated with non-periodic transfers. */
9681 + if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
9682 + _tr_type == DWC_OTG_TRANSACTION_ALL)) {
9683 + if (!list_empty(&_hcd->non_periodic_sched_active)) {
9684 + process_non_periodic_channels(_hcd);
9685 + } else {
9686 + /*
9687 + * Ensure NP Tx FIFO empty interrupt is disabled when
9688 + * there are no non-periodic transfers to process.
9689 + */
9690 + gintmsk_data_t gintmsk = {.d32 = 0};
9691 + gintmsk.b.nptxfempty = 1;
9692 + dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
9693 + }
9694 + }
9695 +}
9696 +
9697 +/**
9698 + * Sets the final status of an URB and returns it to the device driver. Any
9699 + * required cleanup of the URB is performed.
9700 + */
9701 +void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb,
9702 + int _status)
9703 + __releases(_hcd->lock)
9704 +__acquires(_hcd->lock)
9705 +{
9706 +#ifdef DEBUG
9707 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
9708 + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
9709 + __func__, _urb, usb_pipedevice(_urb->pipe),
9710 + usb_pipeendpoint(_urb->pipe),
9711 + usb_pipein(_urb->pipe) ? "IN" : "OUT", _status);
9712 + if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
9713 + int i;
9714 + for (i = 0; i < _urb->number_of_packets; i++) {
9715 + DWC_PRINT(" ISO Desc %d status: %d\n",
9716 + i, _urb->iso_frame_desc[i].status);
9717 + }
9718 + }
9719 + }
9720 +#endif
9721 +
9722 + _urb->status = _status;
9723 + _urb->hcpriv = NULL;
9724 + usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb);
9725 + spin_unlock(&_hcd->lock);
9726 + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status);
9727 + spin_lock(&_hcd->lock);
9728 +}
9729 +
9730 +/*
9731 + * Returns the Queue Head for an URB.
9732 + */
9733 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb)
9734 +{
9735 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb);
9736 + return (dwc_otg_qh_t *)ep->hcpriv;
9737 +}
9738 +
9739 +#ifdef DEBUG
9740 +void dwc_print_setup_data (uint8_t *setup)
9741 +{
9742 + int i;
9743 + if (CHK_DEBUG_LEVEL(DBG_HCD)){
9744 + DWC_PRINT("Setup Data = MSB ");
9745 + for (i=7; i>=0; i--) DWC_PRINT ("%02x ", setup[i]);
9746 + DWC_PRINT("\n");
9747 + DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0]&0x80) ? "Device-to-Host" : "Host-to-Device");
9748 + DWC_PRINT(" bmRequestType Type = ");
9749 + switch ((setup[0]&0x60) >> 5) {
9750 + case 0: DWC_PRINT("Standard\n"); break;
9751 + case 1: DWC_PRINT("Class\n"); break;
9752 + case 2: DWC_PRINT("Vendor\n"); break;
9753 + case 3: DWC_PRINT("Reserved\n"); break;
9754 + }
9755 + DWC_PRINT(" bmRequestType Recipient = ");
9756 + switch (setup[0]&0x1f) {
9757 + case 0: DWC_PRINT("Device\n"); break;
9758 + case 1: DWC_PRINT("Interface\n"); break;
9759 + case 2: DWC_PRINT("Endpoint\n"); break;
9760 + case 3: DWC_PRINT("Other\n"); break;
9761 + default: DWC_PRINT("Reserved\n"); break;
9762 + }
9763 + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
9764 + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
9765 + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
9766 + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
9767 + }
9768 +}
9769 +#endif
9770 +
9771 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd) {
9772 +#ifdef DEBUG
9773 +#if 0
9774 + DWC_PRINT("Frame remaining at SOF:\n");
9775 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9776 + _hcd->frrem_samples, _hcd->frrem_accum,
9777 + (_hcd->frrem_samples > 0) ?
9778 + _hcd->frrem_accum/_hcd->frrem_samples : 0);
9779 +
9780 + DWC_PRINT("\n");
9781 + DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
9782 + DWC_PRINT(" samples %u, accum %u, avg %u\n",
9783 + _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum,
9784 + (_hcd->core_if->hfnum_7_samples > 0) ?
9785 + _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0);
9786 + DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
9787 + DWC_PRINT(" samples %u, accum %u, avg %u\n",
9788 + _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum,
9789 + (_hcd->core_if->hfnum_0_samples > 0) ?
9790 + _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0);
9791 + DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
9792 + DWC_PRINT(" samples %u, accum %u, avg %u\n",
9793 + _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum,
9794 + (_hcd->core_if->hfnum_other_samples > 0) ?
9795 + _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0);
9796 +
9797 + DWC_PRINT("\n");
9798 + DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
9799 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9800 + _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a,
9801 + (_hcd->hfnum_7_samples_a > 0) ?
9802 + _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0);
9803 + DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
9804 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9805 + _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a,
9806 + (_hcd->hfnum_0_samples_a > 0) ?
9807 + _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0);
9808 + DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
9809 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9810 + _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a,
9811 + (_hcd->hfnum_other_samples_a > 0) ?
9812 + _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0);
9813 +
9814 + DWC_PRINT("\n");
9815 + DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
9816 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9817 + _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b,
9818 + (_hcd->hfnum_7_samples_b > 0) ?
9819 + _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0);
9820 + DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
9821 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9822 + _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b,
9823 + (_hcd->hfnum_0_samples_b > 0) ?
9824 + _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0);
9825 + DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
9826 + DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
9827 + _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b,
9828 + (_hcd->hfnum_other_samples_b > 0) ?
9829 + _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0);
9830 +#endif
9831 +#endif
9832 +}
9833 +
9834 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd)
9835 +{
9836 +#ifdef DEBUG
9837 + int num_channels;
9838 + int i;
9839 + gnptxsts_data_t np_tx_status;
9840 + hptxsts_data_t p_tx_status;
9841 +
9842 + num_channels = _hcd->core_if->core_params->host_channels;
9843 + DWC_PRINT("\n");
9844 + DWC_PRINT("************************************************************\n");
9845 + DWC_PRINT("HCD State:\n");
9846 + DWC_PRINT(" Num channels: %d\n", num_channels);
9847 + for (i = 0; i < num_channels; i++) {
9848 + dwc_hc_t *hc = _hcd->hc_ptr_array[i];
9849 + DWC_PRINT(" Channel %d:\n", i);
9850 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
9851 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
9852 + DWC_PRINT(" speed: %d\n", hc->speed);
9853 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
9854 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
9855 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
9856 + DWC_PRINT(" multi_count: %d\n", hc->multi_count);
9857 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
9858 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
9859 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
9860 + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
9861 + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
9862 + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
9863 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
9864 + DWC_PRINT(" do_split: %d\n", hc->do_split);
9865 + DWC_PRINT(" complete_split: %d\n", hc->complete_split);
9866 + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
9867 + DWC_PRINT(" port_addr: %d\n", hc->port_addr);
9868 + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
9869 + DWC_PRINT(" requests: %d\n", hc->requests);
9870 + DWC_PRINT(" qh: %p\n", hc->qh);
9871 + if (hc->xfer_started) {
9872 + hfnum_data_t hfnum;
9873 + hcchar_data_t hcchar;
9874 + hctsiz_data_t hctsiz;
9875 + hcint_data_t hcint;
9876 + hcintmsk_data_t hcintmsk;
9877 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
9878 + hcchar.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcchar);
9879 + hctsiz.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hctsiz);
9880 + hcint.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcint);
9881 + hcintmsk.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcintmsk);
9882 + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
9883 + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
9884 + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
9885 + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
9886 + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
9887 + }
9888 + if (hc->xfer_started && (hc->qh != NULL) && (hc->qh->qtd_in_process != NULL)) {
9889 + dwc_otg_qtd_t *qtd;
9890 + struct urb *urb;
9891 + qtd = hc->qh->qtd_in_process;
9892 + urb = qtd->urb;
9893 + DWC_PRINT(" URB Info:\n");
9894 + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
9895 + if (urb != NULL) {
9896 + DWC_PRINT(" Dev: %d, EP: %d %s\n",
9897 + usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
9898 + usb_pipein(urb->pipe) ? "IN" : "OUT");
9899 + DWC_PRINT(" Max packet size: %d\n",
9900 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
9901 + DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
9902 + DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
9903 + DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
9904 + DWC_PRINT(" actual_length: %d\n", urb->actual_length);
9905 + }
9906 + }
9907 + }
9908 + //DWC_PRINT(" non_periodic_channels: %d\n", _hcd->non_periodic_channels);
9909 + //DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels);
9910 + DWC_PRINT(" available_channels: %d\n", _hcd->available_host_channels);
9911 + DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs);
9912 + np_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts);
9913 + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
9914 + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
9915 + p_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts);
9916 + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
9917 + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
9918 + dwc_otg_hcd_dump_frrem(_hcd);
9919 + dwc_otg_dump_global_registers(_hcd->core_if);
9920 + dwc_otg_dump_host_registers(_hcd->core_if);
9921 + DWC_PRINT("************************************************************\n");
9922 + DWC_PRINT("\n");
9923 +#endif
9924 +}
9925 +#endif /* DWC_DEVICE_ONLY */
9926 --- /dev/null
9927 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h
9928 @@ -0,0 +1,676 @@
9929 +/* ==========================================================================
9930 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $
9931 + * $Revision: 1.1.1.1 $
9932 + * $Date: 2009-04-17 06:15:34 $
9933 + * $Change: 537387 $
9934 + *
9935 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
9936 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
9937 + * otherwise expressly agreed to in writing between Synopsys and you.
9938 + *
9939 + * The Software IS NOT an item of Licensed Software or Licensed Product under
9940 + * any End User Software License Agreement or Agreement for Licensed Product
9941 + * with Synopsys or any supplement thereto. You are permitted to use and
9942 + * redistribute this Software in source and binary forms, with or without
9943 + * modification, provided that redistributions of source code must retain this
9944 + * notice. You may not view, use, disclose, copy or distribute this file or
9945 + * any information contained herein except pursuant to this license grant from
9946 + * Synopsys. If you do not agree with this notice, including the disclaimer
9947 + * below, then you are not authorized to use the Software.
9948 + *
9949 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
9950 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
9951 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
9952 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
9953 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
9954 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
9955 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
9956 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
9957 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
9958 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
9959 + * DAMAGE.
9960 + * ========================================================================== */
9961 +#ifndef DWC_DEVICE_ONLY
9962 +#if !defined(__DWC_HCD_H__)
9963 +#define __DWC_HCD_H__
9964 +
9965 +#include <linux/list.h>
9966 +#include <linux/usb.h>
9967 +#include <linux/usb/hcd.h>
9968 +
9969 +struct lm_device;
9970 +struct dwc_otg_device;
9971 +
9972 +#include "dwc_otg_cil.h"
9973 +//#include "dwc_otg_ifx.h" // winder
9974 +
9975 +
9976 +/**
9977 + * @file
9978 + *
9979 + * This file contains the structures, constants, and interfaces for
9980 + * the Host Contoller Driver (HCD).
9981 + *
9982 + * The Host Controller Driver (HCD) is responsible for translating requests
9983 + * from the USB Driver into the appropriate actions on the DWC_otg controller.
9984 + * It isolates the USBD from the specifics of the controller by providing an
9985 + * API to the USBD.
9986 + */
9987 +
9988 +/**
9989 + * Phases for control transfers.
9990 + */
9991 +typedef enum dwc_otg_control_phase {
9992 + DWC_OTG_CONTROL_SETUP,
9993 + DWC_OTG_CONTROL_DATA,
9994 + DWC_OTG_CONTROL_STATUS
9995 +} dwc_otg_control_phase_e;
9996 +
9997 +/** Transaction types. */
9998 +typedef enum dwc_otg_transaction_type {
9999 + DWC_OTG_TRANSACTION_NONE,
10000 + DWC_OTG_TRANSACTION_PERIODIC,
10001 + DWC_OTG_TRANSACTION_NON_PERIODIC,
10002 + DWC_OTG_TRANSACTION_ALL
10003 +} dwc_otg_transaction_type_e;
10004 +
10005 +/**
10006 + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
10007 + * interrupt, or isochronous transfer. A single QTD is created for each URB
10008 + * (of one of these types) submitted to the HCD. The transfer associated with
10009 + * a QTD may require one or multiple transactions.
10010 + *
10011 + * A QTD is linked to a Queue Head, which is entered in either the
10012 + * non-periodic or periodic schedule for execution. When a QTD is chosen for
10013 + * execution, some or all of its transactions may be executed. After
10014 + * execution, the state of the QTD is updated. The QTD may be retired if all
10015 + * its transactions are complete or if an error occurred. Otherwise, it
10016 + * remains in the schedule so more transactions can be executed later.
10017 + */
10018 +struct dwc_otg_qh;
10019 +typedef struct dwc_otg_qtd {
10020 + /**
10021 + * Determines the PID of the next data packet for the data phase of
10022 + * control transfers. Ignored for other transfer types.<br>
10023 + * One of the following values:
10024 + * - DWC_OTG_HC_PID_DATA0
10025 + * - DWC_OTG_HC_PID_DATA1
10026 + */
10027 + uint8_t data_toggle;
10028 +
10029 + /** Current phase for control transfers (Setup, Data, or Status). */
10030 + dwc_otg_control_phase_e control_phase;
10031 +
10032 + /** Keep track of the current split type
10033 + * for FS/LS endpoints on a HS Hub */
10034 + uint8_t complete_split;
10035 +
10036 + /** How many bytes transferred during SSPLIT OUT */
10037 + uint32_t ssplit_out_xfer_count;
10038 +
10039 + /**
10040 + * Holds the number of bus errors that have occurred for a transaction
10041 + * within this transfer.
10042 + */
10043 + uint8_t error_count;
10044 +
10045 + /**
10046 + * Index of the next frame descriptor for an isochronous transfer. A
10047 + * frame descriptor describes the buffer position and length of the
10048 + * data to be transferred in the next scheduled (micro)frame of an
10049 + * isochronous transfer. It also holds status for that transaction.
10050 + * The frame index starts at 0.
10051 + */
10052 + int isoc_frame_index;
10053 +
10054 + /** Position of the ISOC split on full/low speed */
10055 + uint8_t isoc_split_pos;
10056 +
10057 + /** Position of the ISOC split in the buffer for the current frame */
10058 + uint16_t isoc_split_offset;
10059 +
10060 + /** URB for this transfer */
10061 + struct urb *urb;
10062 +
10063 + /** This list of QTDs */
10064 + struct list_head qtd_list_entry;
10065 +
10066 + /* Field to track the qh pointer */
10067 + struct dwc_otg_qh *qtd_qh_ptr;
10068 +} dwc_otg_qtd_t;
10069 +
10070 +/**
10071 + * A Queue Head (QH) holds the static characteristics of an endpoint and
10072 + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
10073 + * be entered in either the non-periodic or periodic schedule.
10074 + */
10075 +typedef struct dwc_otg_qh {
10076 + /**
10077 + * Endpoint type.
10078 + * One of the following values:
10079 + * - USB_ENDPOINT_XFER_CONTROL
10080 + * - USB_ENDPOINT_XFER_ISOC
10081 + * - USB_ENDPOINT_XFER_BULK
10082 + * - USB_ENDPOINT_XFER_INT
10083 + */
10084 + uint8_t ep_type;
10085 + uint8_t ep_is_in;
10086 +
10087 + /** wMaxPacketSize Field of Endpoint Descriptor. */
10088 + uint16_t maxp;
10089 +
10090 + /**
10091 + * Determines the PID of the next data packet for non-control
10092 + * transfers. Ignored for control transfers.<br>
10093 + * One of the following values:
10094 + * - DWC_OTG_HC_PID_DATA0
10095 + * - DWC_OTG_HC_PID_DATA1
10096 + */
10097 + uint8_t data_toggle;
10098 +
10099 + /** Ping state if 1. */
10100 + uint8_t ping_state;
10101 +
10102 + /**
10103 + * List of QTDs for this QH.
10104 + */
10105 + struct list_head qtd_list;
10106 +
10107 + /** Host channel currently processing transfers for this QH. */
10108 + dwc_hc_t *channel;
10109 +
10110 + /** QTD currently assigned to a host channel for this QH. */
10111 + dwc_otg_qtd_t *qtd_in_process;
10112 +
10113 + /** Full/low speed endpoint on high-speed hub requires split. */
10114 + uint8_t do_split;
10115 +
10116 + /** @name Periodic schedule information */
10117 + /** @{ */
10118 +
10119 + /** Bandwidth in microseconds per (micro)frame. */
10120 + uint8_t usecs;
10121 +
10122 + /** Interval between transfers in (micro)frames. */
10123 + uint16_t interval;
10124 +
10125 + /**
10126 + * (micro)frame to initialize a periodic transfer. The transfer
10127 + * executes in the following (micro)frame.
10128 + */
10129 + uint16_t sched_frame;
10130 +
10131 + /** (micro)frame at which last start split was initialized. */
10132 + uint16_t start_split_frame;
10133 +
10134 + /** @} */
10135 +
10136 + uint16_t speed;
10137 + uint16_t frame_usecs[8];
10138 + /** Entry for QH in either the periodic or non-periodic schedule. */
10139 + struct list_head qh_list_entry;
10140 +} dwc_otg_qh_t;
10141 +
10142 +/**
10143 + * This structure holds the state of the HCD, including the non-periodic and
10144 + * periodic schedules.
10145 + */
10146 +typedef struct dwc_otg_hcd {
10147 + spinlock_t lock;
10148 +
10149 + /** DWC OTG Core Interface Layer */
10150 + dwc_otg_core_if_t *core_if;
10151 +
10152 + /** Internal DWC HCD Flags */
10153 + volatile union dwc_otg_hcd_internal_flags {
10154 + uint32_t d32;
10155 + struct {
10156 + unsigned port_connect_status_change : 1;
10157 + unsigned port_connect_status : 1;
10158 + unsigned port_reset_change : 1;
10159 + unsigned port_enable_change : 1;
10160 + unsigned port_suspend_change : 1;
10161 + unsigned port_over_current_change : 1;
10162 + unsigned reserved : 27;
10163 + } b;
10164 + } flags;
10165 +
10166 + /**
10167 + * Inactive items in the non-periodic schedule. This is a list of
10168 + * Queue Heads. Transfers associated with these Queue Heads are not
10169 + * currently assigned to a host channel.
10170 + */
10171 + struct list_head non_periodic_sched_inactive;
10172 +
10173 + /**
10174 + * Deferred items in the non-periodic schedule. This is a list of
10175 + * Queue Heads. Transfers associated with these Queue Heads are not
10176 + * currently assigned to a host channel.
10177 + * When we get an NAK, the QH goes here.
10178 + */
10179 + struct list_head non_periodic_sched_deferred;
10180 +
10181 + /**
10182 + * Active items in the non-periodic schedule. This is a list of
10183 + * Queue Heads. Transfers associated with these Queue Heads are
10184 + * currently assigned to a host channel.
10185 + */
10186 + struct list_head non_periodic_sched_active;
10187 +
10188 + /**
10189 + * Pointer to the next Queue Head to process in the active
10190 + * non-periodic schedule.
10191 + */
10192 + struct list_head *non_periodic_qh_ptr;
10193 +
10194 + /**
10195 + * Inactive items in the periodic schedule. This is a list of QHs for
10196 + * periodic transfers that are _not_ scheduled for the next frame.
10197 + * Each QH in the list has an interval counter that determines when it
10198 + * needs to be scheduled for execution. This scheduling mechanism
10199 + * allows only a simple calculation for periodic bandwidth used (i.e.
10200 + * must assume that all periodic transfers may need to execute in the
10201 + * same frame). However, it greatly simplifies scheduling and should
10202 + * be sufficient for the vast majority of OTG hosts, which need to
10203 + * connect to a small number of peripherals at one time.
10204 + *
10205 + * Items move from this list to periodic_sched_ready when the QH
10206 + * interval counter is 0 at SOF.
10207 + */
10208 + struct list_head periodic_sched_inactive;
10209 +
10210 + /**
10211 + * List of periodic QHs that are ready for execution in the next
10212 + * frame, but have not yet been assigned to host channels.
10213 + *
10214 + * Items move from this list to periodic_sched_assigned as host
10215 + * channels become available during the current frame.
10216 + */
10217 + struct list_head periodic_sched_ready;
10218 +
10219 + /**
10220 + * List of periodic QHs to be executed in the next frame that are
10221 + * assigned to host channels.
10222 + *
10223 + * Items move from this list to periodic_sched_queued as the
10224 + * transactions for the QH are queued to the DWC_otg controller.
10225 + */
10226 + struct list_head periodic_sched_assigned;
10227 +
10228 + /**
10229 + * List of periodic QHs that have been queued for execution.
10230 + *
10231 + * Items move from this list to either periodic_sched_inactive or
10232 + * periodic_sched_ready when the channel associated with the transfer
10233 + * is released. If the interval for the QH is 1, the item moves to
10234 + * periodic_sched_ready because it must be rescheduled for the next
10235 + * frame. Otherwise, the item moves to periodic_sched_inactive.
10236 + */
10237 + struct list_head periodic_sched_queued;
10238 +
10239 + /**
10240 + * Total bandwidth claimed so far for periodic transfers. This value
10241 + * is in microseconds per (micro)frame. The assumption is that all
10242 + * periodic transfers may occur in the same (micro)frame.
10243 + */
10244 + uint16_t periodic_usecs;
10245 +
10246 + /**
10247 + * Total bandwidth claimed so far for all periodic transfers
10248 + * in a frame.
10249 + * This will include a mixture of HS and FS transfers.
10250 + * Units are microseconds per (micro)frame.
10251 + * We have a budget per frame and have to schedule
10252 + * transactions accordingly.
10253 + * Watch out for the fact that things are actually scheduled for the
10254 + * "next frame".
10255 + */
10256 + uint16_t frame_usecs[8];
10257 +
10258 + /**
10259 + * Frame number read from the core at SOF. The value ranges from 0 to
10260 + * DWC_HFNUM_MAX_FRNUM.
10261 + */
10262 + uint16_t frame_number;
10263 +
10264 + /**
10265 + * Free host channels in the controller. This is a list of
10266 + * dwc_hc_t items.
10267 + */
10268 + struct list_head free_hc_list;
10269 +
10270 + /**
10271 + * Number of available host channels.
10272 + */
10273 + int available_host_channels;
10274 +
10275 + /**
10276 + * Array of pointers to the host channel descriptors. Allows accessing
10277 + * a host channel descriptor given the host channel number. This is
10278 + * useful in interrupt handlers.
10279 + */
10280 + dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
10281 +
10282 + /**
10283 + * Buffer to use for any data received during the status phase of a
10284 + * control transfer. Normally no data is transferred during the status
10285 + * phase. This buffer is used as a bit bucket.
10286 + */
10287 + uint8_t *status_buf;
10288 +
10289 + /**
10290 + * DMA address for status_buf.
10291 + */
10292 + dma_addr_t status_buf_dma;
10293 +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
10294 +
10295 + /**
10296 + * Structure to allow starting the HCD in a non-interrupt context
10297 + * during an OTG role change.
10298 + */
10299 + struct work_struct start_work;
10300 + struct usb_hcd *_p;
10301 +
10302 + /**
10303 + * Connection timer. An OTG host must display a message if the device
10304 + * does not connect. Started when the VBus power is turned on via
10305 + * sysfs attribute "buspower".
10306 + */
10307 + struct timer_list conn_timer;
10308 +
10309 + /* Tasket to do a reset */
10310 + struct tasklet_struct *reset_tasklet;
10311 +
10312 +#ifdef DEBUG
10313 + uint32_t frrem_samples;
10314 + uint64_t frrem_accum;
10315 +
10316 + uint32_t hfnum_7_samples_a;
10317 + uint64_t hfnum_7_frrem_accum_a;
10318 + uint32_t hfnum_0_samples_a;
10319 + uint64_t hfnum_0_frrem_accum_a;
10320 + uint32_t hfnum_other_samples_a;
10321 + uint64_t hfnum_other_frrem_accum_a;
10322 +
10323 + uint32_t hfnum_7_samples_b;
10324 + uint64_t hfnum_7_frrem_accum_b;
10325 + uint32_t hfnum_0_samples_b;
10326 + uint64_t hfnum_0_frrem_accum_b;
10327 + uint32_t hfnum_other_samples_b;
10328 + uint64_t hfnum_other_frrem_accum_b;
10329 +#endif
10330 +
10331 +} dwc_otg_hcd_t;
10332 +
10333 +/** Gets the dwc_otg_hcd from a struct usb_hcd */
10334 +static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
10335 +{
10336 + return (dwc_otg_hcd_t *)(hcd->hcd_priv);
10337 +}
10338 +
10339 +/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
10340 +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
10341 +{
10342 + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
10343 +}
10344 +
10345 +/** @name HCD Create/Destroy Functions */
10346 +/** @{ */
10347 +extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device);
10348 +extern void dwc_otg_hcd_remove(struct device *_dev);
10349 +/** @} */
10350 +
10351 +/** @name Linux HC Driver API Functions */
10352 +/** @{ */
10353 +
10354 +extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
10355 +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
10356 +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
10357 +extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
10358 +
10359 +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
10360 + struct urb *urb,
10361 + gfp_t mem_flags);
10362 +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
10363 + struct urb *urb,
10364 + int status);
10365 +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
10366 +
10367 +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
10368 + struct usb_host_endpoint *ep);
10369 +
10370 +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
10371 + char *buf);
10372 +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
10373 + u16 typeReq,
10374 + u16 wValue,
10375 + u16 wIndex,
10376 + char *buf,
10377 + u16 wLength);
10378 +
10379 +/** @} */
10380 +
10381 +/** @name Transaction Execution Functions */
10382 +/** @{ */
10383 +extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd);
10384 +extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
10385 + dwc_otg_transaction_type_e _tr_type);
10386 +extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb,
10387 + int _status);
10388 +/** @} */
10389 +
10390 +/** @name Interrupt Handler Functions */
10391 +/** @{ */
10392 +extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10393 +extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10394 +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10395 +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10396 +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10397 +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd);
10398 +extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10399 +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10400 +extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10401 +extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10402 +extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num);
10403 +extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10404 +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
10405 +/** @} */
10406 +
10407 +
10408 +/** @name Schedule Queue Functions */
10409 +/** @{ */
10410 +
10411 +/* Implemented in dwc_otg_hcd_queue.c */
10412 +extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb);
10413 +extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb);
10414 +extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh);
10415 +extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
10416 +extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
10417 +extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit);
10418 +extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay);
10419 +
10420 +/** Remove and free a QH */
10421 +static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd,
10422 + dwc_otg_qh_t *_qh)
10423 +{
10424 + dwc_otg_hcd_qh_remove (_hcd, _qh);
10425 + dwc_otg_hcd_qh_free (_qh);
10426 +}
10427 +
10428 +/** Allocates memory for a QH structure.
10429 + * @return Returns the memory allocate or NULL on error. */
10430 +static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void)
10431 +{
10432 +#ifdef _SC_BUILD_
10433 + return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC);
10434 +#else
10435 + return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL);
10436 +#endif
10437 +}
10438 +
10439 +extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb);
10440 +extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb);
10441 +extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
10442 +
10443 +/** Allocates memory for a QTD structure.
10444 + * @return Returns the memory allocate or NULL on error. */
10445 +static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void)
10446 +{
10447 +#ifdef _SC_BUILD_
10448 + return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC);
10449 +#else
10450 + return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL);
10451 +#endif
10452 +}
10453 +
10454 +/** Frees the memory for a QTD structure. QTD should already be removed from
10455 + * list.
10456 + * @param[in] _qtd QTD to free.*/
10457 +static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd)
10458 +{
10459 + kfree (_qtd);
10460 +}
10461 +
10462 +/** Removes a QTD from list.
10463 + * @param[in] _qtd QTD to remove from list. */
10464 +static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd)
10465 +{
10466 + unsigned long flags;
10467 + local_irq_save (flags);
10468 + list_del (&_qtd->qtd_list_entry);
10469 + local_irq_restore (flags);
10470 +}
10471 +
10472 +/** Remove and free a QTD */
10473 +static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd)
10474 +{
10475 + dwc_otg_hcd_qtd_remove (_qtd);
10476 + dwc_otg_hcd_qtd_free (_qtd);
10477 +}
10478 +
10479 +/** @} */
10480 +
10481 +
10482 +/** @name Internal Functions */
10483 +/** @{ */
10484 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb);
10485 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd);
10486 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd);
10487 +/** @} */
10488 +
10489 +
10490 +/** Gets the usb_host_endpoint associated with an URB. */
10491 +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
10492 +{
10493 + struct usb_device *dev = _urb->dev;
10494 + int ep_num = usb_pipeendpoint(_urb->pipe);
10495 + if (usb_pipein(_urb->pipe))
10496 + return dev->ep_in[ep_num];
10497 + else
10498 + return dev->ep_out[ep_num];
10499 +}
10500 +
10501 +/**
10502 + * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
10503 + * qualified with its direction (possible 32 endpoints per device).
10504 + */
10505 +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
10506 + ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
10507 + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
10508 +
10509 +/** Gets the QH that contains the list_head */
10510 +#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry))
10511 +
10512 +/** Gets the QTD that contains the list_head */
10513 +#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry))
10514 +
10515 +/** Check if QH is non-periodic */
10516 +#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
10517 + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
10518 +
10519 +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
10520 +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
10521 +
10522 +/** Packet size for any kind of endpoint descriptor */
10523 +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
10524 +
10525 +/**
10526 + * Returns true if _frame1 is less than or equal to _frame2. The comparison is
10527 + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
10528 + * frame number when the max frame number is reached.
10529 + */
10530 +static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2)
10531 +{
10532 + return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
10533 + (DWC_HFNUM_MAX_FRNUM >> 1);
10534 +}
10535 +
10536 +/**
10537 + * Returns true if _frame1 is greater than _frame2. The comparison is done
10538 + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
10539 + * number when the max frame number is reached.
10540 + */
10541 +static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2)
10542 +{
10543 + return (_frame1 != _frame2) &&
10544 + (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) <
10545 + (DWC_HFNUM_MAX_FRNUM >> 1));
10546 +}
10547 +
10548 +/**
10549 + * Increments _frame by the amount specified by _inc. The addition is done
10550 + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
10551 + */
10552 +static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc)
10553 +{
10554 + return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
10555 +}
10556 +
10557 +static inline uint16_t dwc_full_frame_num (uint16_t _frame)
10558 +{
10559 + return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
10560 +}
10561 +
10562 +static inline uint16_t dwc_micro_frame_num (uint16_t _frame)
10563 +{
10564 + return (_frame) & 0x7;
10565 +}
10566 +
10567 +#ifdef DEBUG
10568 +/**
10569 + * Macro to sample the remaining PHY clocks left in the current frame. This
10570 + * may be used during debugging to determine the average time it takes to
10571 + * execute sections of code. There are two possible sample points, "a" and
10572 + * "b", so the _letter argument must be one of these values.
10573 + *
10574 + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
10575 + * example, "cat /sys/devices/lm0/hcd_frrem".
10576 + */
10577 +#define dwc_sample_frrem(_hcd, _qh, _letter) \
10578 +{ \
10579 + hfnum_data_t hfnum; \
10580 + dwc_otg_qtd_t *qtd; \
10581 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
10582 + if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
10583 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
10584 + switch (hfnum.b.frnum & 0x7) { \
10585 + case 7: \
10586 + _hcd->hfnum_7_samples_##_letter++; \
10587 + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
10588 + break; \
10589 + case 0: \
10590 + _hcd->hfnum_0_samples_##_letter++; \
10591 + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
10592 + break; \
10593 + default: \
10594 + _hcd->hfnum_other_samples_##_letter++; \
10595 + _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
10596 + break; \
10597 + } \
10598 + } \
10599 +}
10600 +#else // DEBUG
10601 +#define dwc_sample_frrem(_hcd, _qh, _letter)
10602 +#endif // DEBUG
10603 +#endif // __DWC_HCD_H__
10604 +#endif /* DWC_DEVICE_ONLY */
10605 --- /dev/null
10606 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
10607 @@ -0,0 +1,1841 @@
10608 +/* ==========================================================================
10609 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $
10610 + * $Revision: 1.1.1.1 $
10611 + * $Date: 2009-04-17 06:15:34 $
10612 + * $Change: 553126 $
10613 + *
10614 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10615 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10616 + * otherwise expressly agreed to in writing between Synopsys and you.
10617 + *
10618 + * The Software IS NOT an item of Licensed Software or Licensed Product under
10619 + * any End User Software License Agreement or Agreement for Licensed Product
10620 + * with Synopsys or any supplement thereto. You are permitted to use and
10621 + * redistribute this Software in source and binary forms, with or without
10622 + * modification, provided that redistributions of source code must retain this
10623 + * notice. You may not view, use, disclose, copy or distribute this file or
10624 + * any information contained herein except pursuant to this license grant from
10625 + * Synopsys. If you do not agree with this notice, including the disclaimer
10626 + * below, then you are not authorized to use the Software.
10627 + *
10628 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10629 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10630 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10631 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10632 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10633 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10634 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10635 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10636 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10637 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10638 + * DAMAGE.
10639 + * ========================================================================== */
10640 +#ifndef DWC_DEVICE_ONLY
10641 +
10642 +#include "dwc_otg_driver.h"
10643 +#include "dwc_otg_hcd.h"
10644 +#include "dwc_otg_regs.h"
10645 +
10646 +const int erratum_usb09_patched = 0;
10647 +const int deferral_on = 1;
10648 +const int nak_deferral_delay = 8;
10649 +const int nyet_deferral_delay = 1;
10650 +/** @file
10651 + * This file contains the implementation of the HCD Interrupt handlers.
10652 + */
10653 +
10654 +/** This function handles interrupts for the HCD. */
10655 +int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10656 +{
10657 + int retval = 0;
10658 +
10659 + dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if;
10660 + gintsts_data_t gintsts;
10661 +#ifdef DEBUG
10662 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
10663 +#endif
10664 +
10665 + /* Check if HOST Mode */
10666 + if (dwc_otg_is_host_mode(core_if)) {
10667 + gintsts.d32 = dwc_otg_read_core_intr(core_if);
10668 + if (!gintsts.d32) {
10669 + return 0;
10670 + }
10671 +
10672 +#ifdef DEBUG
10673 + /* Don't print debug message in the interrupt handler on SOF */
10674 +# ifndef DEBUG_SOF
10675 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
10676 +# endif
10677 + DWC_DEBUGPL (DBG_HCD, "\n");
10678 +#endif
10679 +
10680 +#ifdef DEBUG
10681 +# ifndef DEBUG_SOF
10682 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
10683 +# endif
10684 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
10685 +#endif
10686 +
10687 + if (gintsts.b.sofintr) {
10688 + retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd);
10689 + }
10690 + if (gintsts.b.rxstsqlvl) {
10691 + retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd);
10692 + }
10693 + if (gintsts.b.nptxfempty) {
10694 + retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd);
10695 + }
10696 + if (gintsts.b.i2cintr) {
10697 + /** @todo Implement i2cintr handler. */
10698 + }
10699 + if (gintsts.b.portintr) {
10700 + retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd);
10701 + }
10702 + if (gintsts.b.hcintr) {
10703 + retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd);
10704 + }
10705 + if (gintsts.b.ptxfempty) {
10706 + retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd);
10707 + }
10708 +#ifdef DEBUG
10709 +# ifndef DEBUG_SOF
10710 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
10711 +# endif
10712 + {
10713 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
10714 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
10715 + dwc_read_reg32(&global_regs->gintsts));
10716 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
10717 + dwc_read_reg32(&global_regs->gintmsk));
10718 + }
10719 +#endif
10720 +
10721 +#ifdef DEBUG
10722 +# ifndef DEBUG_SOF
10723 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
10724 +# endif
10725 + DWC_DEBUGPL (DBG_HCD, "\n");
10726 +#endif
10727 +
10728 + }
10729 +
10730 + return retval;
10731 +}
10732 +
10733 +#ifdef DWC_TRACK_MISSED_SOFS
10734 +#warning Compiling code to track missed SOFs
10735 +#define FRAME_NUM_ARRAY_SIZE 1000
10736 +/**
10737 + * This function is for debug only.
10738 + */
10739 +static inline void track_missed_sofs(uint16_t _curr_frame_number) {
10740 + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
10741 + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
10742 + static int frame_num_idx = 0;
10743 + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
10744 + static int dumped_frame_num_array = 0;
10745 +
10746 + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
10747 + if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) {
10748 + frame_num_array[frame_num_idx] = _curr_frame_number;
10749 + last_frame_num_array[frame_num_idx++] = last_frame_num;
10750 + }
10751 + } else if (!dumped_frame_num_array) {
10752 + int i;
10753 + printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
10754 + printk(KERN_EMERG USB_DWC "----- ----------\n");
10755 + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
10756 + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
10757 + frame_num_array[i], last_frame_num_array[i]);
10758 + }
10759 + dumped_frame_num_array = 1;
10760 + }
10761 + last_frame_num = _curr_frame_number;
10762 +}
10763 +#endif
10764 +
10765 +/**
10766 + * Handles the start-of-frame interrupt in host mode. Non-periodic
10767 + * transactions may be queued to the DWC_otg controller for the current
10768 + * (micro)frame. Periodic transactions may be queued to the controller for the
10769 + * next (micro)frame.
10770 + */
10771 +int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd)
10772 +{
10773 + hfnum_data_t hfnum;
10774 + struct list_head *qh_entry;
10775 + dwc_otg_qh_t *qh;
10776 + dwc_otg_transaction_type_e tr_type;
10777 + gintsts_data_t gintsts = {.d32 = 0};
10778 +
10779 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
10780 +
10781 +#ifdef DEBUG_SOF
10782 + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
10783 +#endif
10784 +
10785 + _hcd->frame_number = hfnum.b.frnum;
10786 +
10787 +#ifdef DEBUG
10788 + _hcd->frrem_accum += hfnum.b.frrem;
10789 + _hcd->frrem_samples++;
10790 +#endif
10791 +
10792 +#ifdef DWC_TRACK_MISSED_SOFS
10793 + track_missed_sofs(_hcd->frame_number);
10794 +#endif
10795 +
10796 + /* Determine whether any periodic QHs should be executed. */
10797 + qh_entry = _hcd->periodic_sched_inactive.next;
10798 + while (qh_entry != &_hcd->periodic_sched_inactive) {
10799 + qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
10800 + qh_entry = qh_entry->next;
10801 + if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) {
10802 + /*
10803 + * Move QH to the ready list to be executed next
10804 + * (micro)frame.
10805 + */
10806 + list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready);
10807 + }
10808 + }
10809 +
10810 + tr_type = dwc_otg_hcd_select_transactions(_hcd);
10811 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
10812 + dwc_otg_hcd_queue_transactions(_hcd, tr_type);
10813 + }
10814 +
10815 + /* Clear interrupt */
10816 + gintsts.b.sofintr = 1;
10817 + dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32);
10818 +
10819 + return 1;
10820 +}
10821 +
10822 +/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
10823 + * least one packet in the Rx FIFO. The packets are moved from the FIFO to
10824 + * memory if the DWC_otg controller is operating in Slave mode. */
10825 +int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10826 +{
10827 + host_grxsts_data_t grxsts;
10828 + dwc_hc_t *hc = NULL;
10829 +
10830 + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
10831 +
10832 + grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp);
10833 +
10834 + hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
10835 +
10836 + /* Packet Status */
10837 + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
10838 + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
10839 + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
10840 + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
10841 +
10842 + switch (grxsts.b.pktsts) {
10843 + case DWC_GRXSTS_PKTSTS_IN:
10844 + /* Read the data into the host buffer. */
10845 + if (grxsts.b.bcnt > 0) {
10846 + dwc_otg_read_packet(_dwc_otg_hcd->core_if,
10847 + hc->xfer_buff,
10848 + grxsts.b.bcnt);
10849 +
10850 + /* Update the HC fields for the next packet received. */
10851 + hc->xfer_count += grxsts.b.bcnt;
10852 + hc->xfer_buff += grxsts.b.bcnt;
10853 + }
10854 +
10855 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
10856 + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
10857 + case DWC_GRXSTS_PKTSTS_CH_HALTED:
10858 + /* Handled in interrupt, just ignore data */
10859 + break;
10860 + default:
10861 + DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
10862 + break;
10863 + }
10864 +
10865 + return 1;
10866 +}
10867 +
10868 +/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
10869 + * data packets may be written to the FIFO for OUT transfers. More requests
10870 + * may be written to the non-periodic request queue for IN transfers. This
10871 + * interrupt is enabled only in Slave mode. */
10872 +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10873 +{
10874 + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
10875 + dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
10876 + DWC_OTG_TRANSACTION_NON_PERIODIC);
10877 + return 1;
10878 +}
10879 +
10880 +/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
10881 + * packets may be written to the FIFO for OUT transfers. More requests may be
10882 + * written to the periodic request queue for IN transfers. This interrupt is
10883 + * enabled only in Slave mode. */
10884 +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10885 +{
10886 + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
10887 + dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
10888 + DWC_OTG_TRANSACTION_PERIODIC);
10889 + return 1;
10890 +}
10891 +
10892 +/** There are multiple conditions that can cause a port interrupt. This function
10893 + * determines which interrupt conditions have occurred and handles them
10894 + * appropriately. */
10895 +int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
10896 +{
10897 + int retval = 0;
10898 + hprt0_data_t hprt0;
10899 + hprt0_data_t hprt0_modify;
10900 +
10901 + hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
10902 + hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
10903 +
10904 + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
10905 + * GINTSTS */
10906 +
10907 + hprt0_modify.b.prtena = 0;
10908 + hprt0_modify.b.prtconndet = 0;
10909 + hprt0_modify.b.prtenchng = 0;
10910 + hprt0_modify.b.prtovrcurrchng = 0;
10911 +
10912 + /* Port Connect Detected
10913 + * Set flag and clear if detected */
10914 + if (hprt0.b.prtconndet) {
10915 + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
10916 + "Port Connect Detected--\n", hprt0.d32);
10917 + _dwc_otg_hcd->flags.b.port_connect_status_change = 1;
10918 + _dwc_otg_hcd->flags.b.port_connect_status = 1;
10919 + hprt0_modify.b.prtconndet = 1;
10920 +
10921 + /* B-Device has connected, Delete the connection timer. */
10922 + del_timer( &_dwc_otg_hcd->conn_timer );
10923 +
10924 + /* The Hub driver asserts a reset when it sees port connect
10925 + * status change flag */
10926 + retval |= 1;
10927 + }
10928 +
10929 + /* Port Enable Changed
10930 + * Clear if detected - Set internal flag if disabled */
10931 + if (hprt0.b.prtenchng) {
10932 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
10933 + "Port Enable Changed--\n", hprt0.d32);
10934 + hprt0_modify.b.prtenchng = 1;
10935 + if (hprt0.b.prtena == 1) {
10936 + int do_reset = 0;
10937 + dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params;
10938 + dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs;
10939 + dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if;
10940 +
10941 + /* Check if we need to adjust the PHY clock speed for
10942 + * low power and adjust it */
10943 + if (params->host_support_fs_ls_low_power)
10944 + {
10945 + gusbcfg_data_t usbcfg;
10946 +
10947 + usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg);
10948 +
10949 + if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ||
10950 + (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED))
10951 + {
10952 + /*
10953 + * Low power
10954 + */
10955 + hcfg_data_t hcfg;
10956 + if (usbcfg.b.phylpwrclksel == 0) {
10957 + /* Set PHY low power clock select for FS/LS devices */
10958 + usbcfg.b.phylpwrclksel = 1;
10959 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
10960 + do_reset = 1;
10961 + }
10962 +
10963 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
10964 +
10965 + if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) &&
10966 + (params->host_ls_low_power_phy_clk ==
10967 + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ))
10968 + {
10969 + /* 6 MHZ */
10970 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
10971 + if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
10972 + hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
10973 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
10974 + hcfg.d32);
10975 + do_reset = 1;
10976 + }
10977 + }
10978 + else {
10979 + /* 48 MHZ */
10980 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
10981 + if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
10982 + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
10983 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
10984 + hcfg.d32);
10985 + do_reset = 1;
10986 + }
10987 + }
10988 + }
10989 + else {
10990 + /*
10991 + * Not low power
10992 + */
10993 + if (usbcfg.b.phylpwrclksel == 1) {
10994 + usbcfg.b.phylpwrclksel = 0;
10995 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
10996 + do_reset = 1;
10997 + }
10998 + }
10999 +
11000 + if (do_reset) {
11001 + tasklet_schedule(_dwc_otg_hcd->reset_tasklet);
11002 + }
11003 + }
11004 +
11005 + if (!do_reset) {
11006 + /* Port has been enabled set the reset change flag */
11007 + _dwc_otg_hcd->flags.b.port_reset_change = 1;
11008 + }
11009 +
11010 + } else {
11011 + _dwc_otg_hcd->flags.b.port_enable_change = 1;
11012 + }
11013 + retval |= 1;
11014 + }
11015 +
11016 + /** Overcurrent Change Interrupt */
11017 + if (hprt0.b.prtovrcurrchng) {
11018 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11019 + "Port Overcurrent Changed--\n", hprt0.d32);
11020 + _dwc_otg_hcd->flags.b.port_over_current_change = 1;
11021 + hprt0_modify.b.prtovrcurrchng = 1;
11022 + retval |= 1;
11023 + }
11024 +
11025 + /* Clear Port Interrupts */
11026 + dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
11027 +
11028 + return retval;
11029 +}
11030 +
11031 +
11032 +/** This interrupt indicates that one or more host channels has a pending
11033 + * interrupt. There are multiple conditions that can cause each host channel
11034 + * interrupt. This function determines which conditions have occurred for each
11035 + * host channel interrupt and handles them appropriately. */
11036 +int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
11037 +{
11038 + int i;
11039 + int retval = 0;
11040 + haint_data_t haint;
11041 +
11042 + /* Clear appropriate bits in HCINTn to clear the interrupt bit in
11043 + * GINTSTS */
11044 +
11045 + haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if);
11046 +
11047 + for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) {
11048 + if (haint.b2.chint & (1 << i)) {
11049 + retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i);
11050 + }
11051 + }
11052 +
11053 + return retval;
11054 +}
11055 +
11056 +/* Macro used to clear one channel interrupt */
11057 +#define clear_hc_int(_hc_regs_,_intr_) \
11058 +do { \
11059 + hcint_data_t hcint_clear = {.d32 = 0}; \
11060 + hcint_clear.b._intr_ = 1; \
11061 + dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
11062 +} while (0)
11063 +
11064 +/*
11065 + * Macro used to disable one channel interrupt. Channel interrupts are
11066 + * disabled when the channel is halted or released by the interrupt handler.
11067 + * There is no need to handle further interrupts of that type until the
11068 + * channel is re-assigned. In fact, subsequent handling may cause crashes
11069 + * because the channel structures are cleaned up when the channel is released.
11070 + */
11071 +#define disable_hc_int(_hc_regs_,_intr_) \
11072 +do { \
11073 + hcintmsk_data_t hcintmsk = {.d32 = 0}; \
11074 + hcintmsk.b._intr_ = 1; \
11075 + dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
11076 +} while (0)
11077 +
11078 +/**
11079 + * Gets the actual length of a transfer after the transfer halts. _halt_status
11080 + * holds the reason for the halt.
11081 + *
11082 + * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
11083 + * *_short_read is set to 1 upon return if less than the requested
11084 + * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
11085 + * return. _short_read may also be NULL on entry, in which case it remains
11086 + * unchanged.
11087 + */
11088 +static uint32_t get_actual_xfer_length(dwc_hc_t *_hc,
11089 + dwc_otg_hc_regs_t *_hc_regs,
11090 + dwc_otg_qtd_t *_qtd,
11091 + dwc_otg_halt_status_e _halt_status,
11092 + int *_short_read)
11093 +{
11094 + hctsiz_data_t hctsiz;
11095 + uint32_t length;
11096 +
11097 + if (_short_read != NULL) {
11098 + *_short_read = 0;
11099 + }
11100 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11101 +
11102 + if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
11103 + if (_hc->ep_is_in) {
11104 + length = _hc->xfer_len - hctsiz.b.xfersize;
11105 + if (_short_read != NULL) {
11106 + *_short_read = (hctsiz.b.xfersize != 0);
11107 + }
11108 + } else if (_hc->qh->do_split) {
11109 + length = _qtd->ssplit_out_xfer_count;
11110 + } else {
11111 + length = _hc->xfer_len;
11112 + }
11113 + } else {
11114 + /*
11115 + * Must use the hctsiz.pktcnt field to determine how much data
11116 + * has been transferred. This field reflects the number of
11117 + * packets that have been transferred via the USB. This is
11118 + * always an integral number of packets if the transfer was
11119 + * halted before its normal completion. (Can't use the
11120 + * hctsiz.xfersize field because that reflects the number of
11121 + * bytes transferred via the AHB, not the USB).
11122 + */
11123 + length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet;
11124 + }
11125 +
11126 + return length;
11127 +}
11128 +
11129 +/**
11130 + * Updates the state of the URB after a Transfer Complete interrupt on the
11131 + * host channel. Updates the actual_length field of the URB based on the
11132 + * number of bytes transferred via the host channel. Sets the URB status
11133 + * if the data transfer is finished.
11134 + *
11135 + * @return 1 if the data transfer specified by the URB is completely finished,
11136 + * 0 otherwise.
11137 + */
11138 +static int update_urb_state_xfer_comp(dwc_hc_t *_hc,
11139 + dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb,
11140 + dwc_otg_qtd_t * _qtd, int *status)
11141 +{
11142 + int xfer_done = 0;
11143 + int short_read = 0;
11144 +
11145 + _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd,
11146 + DWC_OTG_HC_XFER_COMPLETE,
11147 + &short_read);
11148 +
11149 + if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) {
11150 + xfer_done = 1;
11151 + if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) {
11152 + *status = -EREMOTEIO;
11153 + } else {
11154 + *status = 0;
11155 + }
11156 + }
11157 +
11158 +#ifdef DEBUG
11159 + {
11160 + hctsiz_data_t hctsiz;
11161 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11162 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11163 + __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
11164 + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len);
11165 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
11166 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
11167 + _urb->transfer_buffer_length);
11168 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length);
11169 + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
11170 + short_read, xfer_done);
11171 + }
11172 +#endif
11173 +
11174 + return xfer_done;
11175 +}
11176 +
11177 +/*
11178 + * Save the starting data toggle for the next transfer. The data toggle is
11179 + * saved in the QH for non-control transfers and it's saved in the QTD for
11180 + * control transfers.
11181 + */
11182 +static void save_data_toggle(dwc_hc_t *_hc,
11183 + dwc_otg_hc_regs_t *_hc_regs,
11184 + dwc_otg_qtd_t *_qtd)
11185 +{
11186 + hctsiz_data_t hctsiz;
11187 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11188 +
11189 + if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
11190 + dwc_otg_qh_t *qh = _hc->qh;
11191 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11192 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
11193 + } else {
11194 + qh->data_toggle = DWC_OTG_HC_PID_DATA1;
11195 + }
11196 + } else {
11197 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11198 + _qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
11199 + } else {
11200 + _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
11201 + }
11202 + }
11203 +}
11204 +
11205 +/**
11206 + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
11207 + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
11208 + * still linked to the QH, the QH is added to the end of the inactive
11209 + * non-periodic schedule. For periodic QHs, removes the QH from the periodic
11210 + * schedule if no more QTDs are linked to the QH.
11211 + */
11212 +static void deactivate_qh(dwc_otg_hcd_t *_hcd,
11213 + dwc_otg_qh_t *_qh,
11214 + int free_qtd)
11215 +{
11216 + int continue_split = 0;
11217 + dwc_otg_qtd_t *qtd;
11218 +
11219 + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd);
11220 +
11221 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
11222 +
11223 + if (qtd->complete_split) {
11224 + continue_split = 1;
11225 + }
11226 + else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
11227 + (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END))
11228 + {
11229 + continue_split = 1;
11230 + }
11231 +
11232 + if (free_qtd) {
11233 + /*
11234 + * Note that this was previously a call to
11235 + * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd.
11236 + * However, that call frees the qtd memory, and we continue in the
11237 + * interrupt logic to access it many more times, including writing
11238 + * to it. With slub debugging on, it is clear that we were writing
11239 + * to memory we had freed.
11240 + * Call this instead, and now I have moved the freeing of the memory to
11241 + * the end of processing this interrupt.
11242 + */
11243 + //dwc_otg_hcd_qtd_remove_and_free(qtd);
11244 + dwc_otg_hcd_qtd_remove(qtd);
11245 +
11246 + continue_split = 0;
11247 + }
11248 +
11249 + _qh->channel = NULL;
11250 + _qh->qtd_in_process = NULL;
11251 + dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split);
11252 +}
11253 +
11254 +/**
11255 + * Updates the state of an Isochronous URB when the transfer is stopped for
11256 + * any reason. The fields of the current entry in the frame descriptor array
11257 + * are set based on the transfer state and the input _halt_status. Completes
11258 + * the Isochronous URB if all the URB frames have been completed.
11259 + *
11260 + * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
11261 + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
11262 + */
11263 +static dwc_otg_halt_status_e
11264 +update_isoc_urb_state(dwc_otg_hcd_t *_hcd,
11265 + dwc_hc_t *_hc,
11266 + dwc_otg_hc_regs_t *_hc_regs,
11267 + dwc_otg_qtd_t *_qtd,
11268 + dwc_otg_halt_status_e _halt_status)
11269 +{
11270 + struct urb *urb = _qtd->urb;
11271 + dwc_otg_halt_status_e ret_val = _halt_status;
11272 + struct usb_iso_packet_descriptor *frame_desc;
11273 +
11274 + frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index];
11275 + switch (_halt_status) {
11276 + case DWC_OTG_HC_XFER_COMPLETE:
11277 + frame_desc->status = 0;
11278 + frame_desc->actual_length =
11279 + get_actual_xfer_length(_hc, _hc_regs, _qtd,
11280 + _halt_status, NULL);
11281 + break;
11282 + case DWC_OTG_HC_XFER_FRAME_OVERRUN:
11283 + urb->error_count++;
11284 + if (_hc->ep_is_in) {
11285 + frame_desc->status = -ENOSR;
11286 + } else {
11287 + frame_desc->status = -ECOMM;
11288 + }
11289 + frame_desc->actual_length = 0;
11290 + break;
11291 + case DWC_OTG_HC_XFER_BABBLE_ERR:
11292 + urb->error_count++;
11293 + frame_desc->status = -EOVERFLOW;
11294 + /* Don't need to update actual_length in this case. */
11295 + break;
11296 + case DWC_OTG_HC_XFER_XACT_ERR:
11297 + urb->error_count++;
11298 + frame_desc->status = -EPROTO;
11299 + frame_desc->actual_length =
11300 + get_actual_xfer_length(_hc, _hc_regs, _qtd,
11301 + _halt_status, NULL);
11302 + default:
11303 + DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
11304 + _halt_status);
11305 + BUG();
11306 + break;
11307 + }
11308 +
11309 + if (++_qtd->isoc_frame_index == urb->number_of_packets) {
11310 + /*
11311 + * urb->status is not used for isoc transfers.
11312 + * The individual frame_desc statuses are used instead.
11313 + */
11314 + dwc_otg_hcd_complete_urb(_hcd, urb, 0);
11315 + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
11316 + } else {
11317 + ret_val = DWC_OTG_HC_XFER_COMPLETE;
11318 + }
11319 +
11320 + return ret_val;
11321 +}
11322 +
11323 +/**
11324 + * Releases a host channel for use by other transfers. Attempts to select and
11325 + * queue more transactions since at least one host channel is available.
11326 + *
11327 + * @param _hcd The HCD state structure.
11328 + * @param _hc The host channel to release.
11329 + * @param _qtd The QTD associated with the host channel. This QTD may be freed
11330 + * if the transfer is complete or an error has occurred.
11331 + * @param _halt_status Reason the channel is being released. This status
11332 + * determines the actions taken by this function.
11333 + */
11334 +static void release_channel(dwc_otg_hcd_t *_hcd,
11335 + dwc_hc_t *_hc,
11336 + dwc_otg_qtd_t *_qtd,
11337 + dwc_otg_halt_status_e _halt_status,
11338 + int *must_free)
11339 +{
11340 + dwc_otg_transaction_type_e tr_type;
11341 + int free_qtd;
11342 + dwc_otg_qh_t * _qh;
11343 + int deact = 1;
11344 + int retry_delay = 1;
11345 + unsigned long flags;
11346 +
11347 + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__,
11348 + _hc->hc_num, _halt_status);
11349 +
11350 + switch (_halt_status) {
11351 + case DWC_OTG_HC_XFER_NYET:
11352 + case DWC_OTG_HC_XFER_NAK:
11353 + if (_halt_status == DWC_OTG_HC_XFER_NYET) {
11354 + retry_delay = nyet_deferral_delay;
11355 + } else {
11356 + retry_delay = nak_deferral_delay;
11357 + }
11358 + free_qtd = 0;
11359 + if (deferral_on && _hc->do_split) {
11360 + _qh = _hc->qh;
11361 + if (_qh) {
11362 + deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay);
11363 + }
11364 + }
11365 + break;
11366 + case DWC_OTG_HC_XFER_URB_COMPLETE:
11367 + free_qtd = 1;
11368 + break;
11369 + case DWC_OTG_HC_XFER_AHB_ERR:
11370 + case DWC_OTG_HC_XFER_STALL:
11371 + case DWC_OTG_HC_XFER_BABBLE_ERR:
11372 + free_qtd = 1;
11373 + break;
11374 + case DWC_OTG_HC_XFER_XACT_ERR:
11375 + if (_qtd->error_count >= 3) {
11376 + DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
11377 + free_qtd = 1;
11378 + //_qtd->urb->status = -EPROTO;
11379 + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO);
11380 + } else {
11381 + free_qtd = 0;
11382 + }
11383 + break;
11384 + case DWC_OTG_HC_XFER_URB_DEQUEUE:
11385 + /*
11386 + * The QTD has already been removed and the QH has been
11387 + * deactivated. Don't want to do anything except release the
11388 + * host channel and try to queue more transfers.
11389 + */
11390 + goto cleanup;
11391 + case DWC_OTG_HC_XFER_NO_HALT_STATUS:
11392 + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num);
11393 + free_qtd = 0;
11394 + break;
11395 + default:
11396 + free_qtd = 0;
11397 + break;
11398 + }
11399 + if (free_qtd) {
11400 + /* Only change must_free to true (do not set to zero here -- it is
11401 + * pre-initialized to zero).
11402 + */
11403 + *must_free = 1;
11404 + }
11405 + if (deact) {
11406 + deactivate_qh(_hcd, _hc->qh, free_qtd);
11407 + }
11408 + cleanup:
11409 + /*
11410 + * Release the host channel for use by other transfers. The cleanup
11411 + * function clears the channel interrupt enables and conditions, so
11412 + * there's no need to clear the Channel Halted interrupt separately.
11413 + */
11414 + dwc_otg_hc_cleanup(_hcd->core_if, _hc);
11415 + list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list);
11416 +
11417 + local_irq_save(flags);
11418 + _hcd->available_host_channels++;
11419 + local_irq_restore(flags);
11420 + /* Try to queue more transfers now that there's a free channel, */
11421 + /* unless erratum_usb09_patched is set */
11422 + if (!erratum_usb09_patched) {
11423 + tr_type = dwc_otg_hcd_select_transactions(_hcd);
11424 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
11425 + dwc_otg_hcd_queue_transactions(_hcd, tr_type);
11426 + }
11427 + }
11428 +}
11429 +
11430 +/**
11431 + * Halts a host channel. If the channel cannot be halted immediately because
11432 + * the request queue is full, this function ensures that the FIFO empty
11433 + * interrupt for the appropriate queue is enabled so that the halt request can
11434 + * be queued when there is space in the request queue.
11435 + *
11436 + * This function may also be called in DMA mode. In that case, the channel is
11437 + * simply released since the core always halts the channel automatically in
11438 + * DMA mode.
11439 + */
11440 +static void halt_channel(dwc_otg_hcd_t *_hcd,
11441 + dwc_hc_t *_hc,
11442 + dwc_otg_qtd_t *_qtd,
11443 + dwc_otg_halt_status_e _halt_status, int *must_free)
11444 +{
11445 + if (_hcd->core_if->dma_enable) {
11446 + release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11447 + return;
11448 + }
11449 +
11450 + /* Slave mode processing... */
11451 + dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status);
11452 +
11453 + if (_hc->halt_on_queue) {
11454 + gintmsk_data_t gintmsk = {.d32 = 0};
11455 + dwc_otg_core_global_regs_t *global_regs;
11456 + global_regs = _hcd->core_if->core_global_regs;
11457 +
11458 + if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
11459 + _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
11460 + /*
11461 + * Make sure the Non-periodic Tx FIFO empty interrupt
11462 + * is enabled so that the non-periodic schedule will
11463 + * be processed.
11464 + */
11465 + gintmsk.b.nptxfempty = 1;
11466 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
11467 + } else {
11468 + /*
11469 + * Move the QH from the periodic queued schedule to
11470 + * the periodic assigned schedule. This allows the
11471 + * halt to be queued when the periodic schedule is
11472 + * processed.
11473 + */
11474 + list_move(&_hc->qh->qh_list_entry,
11475 + &_hcd->periodic_sched_assigned);
11476 +
11477 + /*
11478 + * Make sure the Periodic Tx FIFO Empty interrupt is
11479 + * enabled so that the periodic schedule will be
11480 + * processed.
11481 + */
11482 + gintmsk.b.ptxfempty = 1;
11483 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
11484 + }
11485 + }
11486 +}
11487 +
11488 +/**
11489 + * Performs common cleanup for non-periodic transfers after a Transfer
11490 + * Complete interrupt. This function should be called after any endpoint type
11491 + * specific handling is finished to release the host channel.
11492 + */
11493 +static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd,
11494 + dwc_hc_t *_hc,
11495 + dwc_otg_hc_regs_t *_hc_regs,
11496 + dwc_otg_qtd_t *_qtd,
11497 + dwc_otg_halt_status_e _halt_status, int *must_free)
11498 +{
11499 + hcint_data_t hcint;
11500 +
11501 + _qtd->error_count = 0;
11502 +
11503 + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
11504 + if (hcint.b.nyet) {
11505 + /*
11506 + * Got a NYET on the last transaction of the transfer. This
11507 + * means that the endpoint should be in the PING state at the
11508 + * beginning of the next transfer.
11509 + */
11510 + _hc->qh->ping_state = 1;
11511 + clear_hc_int(_hc_regs,nyet);
11512 + }
11513 +
11514 + /*
11515 + * Always halt and release the host channel to make it available for
11516 + * more transfers. There may still be more phases for a control
11517 + * transfer or more data packets for a bulk transfer at this point,
11518 + * but the host channel is still halted. A channel will be reassigned
11519 + * to the transfer when the non-periodic schedule is processed after
11520 + * the channel is released. This allows transactions to be queued
11521 + * properly via dwc_otg_hcd_queue_transactions, which also enables the
11522 + * Tx FIFO Empty interrupt if necessary.
11523 + */
11524 + if (_hc->ep_is_in) {
11525 + /*
11526 + * IN transfers in Slave mode require an explicit disable to
11527 + * halt the channel. (In DMA mode, this call simply releases
11528 + * the channel.)
11529 + */
11530 + halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11531 + } else {
11532 + /*
11533 + * The channel is automatically disabled by the core for OUT
11534 + * transfers in Slave mode.
11535 + */
11536 + release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11537 + }
11538 +}
11539 +
11540 +/**
11541 + * Performs common cleanup for periodic transfers after a Transfer Complete
11542 + * interrupt. This function should be called after any endpoint type specific
11543 + * handling is finished to release the host channel.
11544 + */
11545 +static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd,
11546 + dwc_hc_t *_hc,
11547 + dwc_otg_hc_regs_t *_hc_regs,
11548 + dwc_otg_qtd_t *_qtd,
11549 + dwc_otg_halt_status_e _halt_status, int *must_free)
11550 +{
11551 + hctsiz_data_t hctsiz;
11552 + _qtd->error_count = 0;
11553 +
11554 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11555 + if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) {
11556 + /* Core halts channel in these cases. */
11557 + release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11558 + } else {
11559 + /* Flush any outstanding requests from the Tx queue. */
11560 + halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
11561 + }
11562 +}
11563 +
11564 +/**
11565 + * Handles a host channel Transfer Complete interrupt. This handler may be
11566 + * called in either DMA mode or Slave mode.
11567 + */
11568 +static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd,
11569 + dwc_hc_t *_hc,
11570 + dwc_otg_hc_regs_t *_hc_regs,
11571 + dwc_otg_qtd_t *_qtd, int *must_free)
11572 +{
11573 + int urb_xfer_done;
11574 + dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
11575 + struct urb *urb = _qtd->urb;
11576 + int pipe_type = usb_pipetype(urb->pipe);
11577 + int status = -EINPROGRESS;
11578 +
11579 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11580 + "Transfer Complete--\n", _hc->hc_num);
11581 +
11582 + /*
11583 + * Handle xfer complete on CSPLIT.
11584 + */
11585 + if (_hc->qh->do_split) {
11586 + _qtd->complete_split = 0;
11587 + }
11588 +
11589 + /* Update the QTD and URB states. */
11590 + switch (pipe_type) {
11591 + case PIPE_CONTROL:
11592 + switch (_qtd->control_phase) {
11593 + case DWC_OTG_CONTROL_SETUP:
11594 + if (urb->transfer_buffer_length > 0) {
11595 + _qtd->control_phase = DWC_OTG_CONTROL_DATA;
11596 + } else {
11597 + _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
11598 + }
11599 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
11600 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
11601 + break;
11602 + case DWC_OTG_CONTROL_DATA: {
11603 + urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status);
11604 + if (urb_xfer_done) {
11605 + _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
11606 + DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
11607 + } else {
11608 + save_data_toggle(_hc, _hc_regs, _qtd);
11609 + }
11610 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
11611 + break;
11612 + }
11613 + case DWC_OTG_CONTROL_STATUS:
11614 + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
11615 + if (status == -EINPROGRESS) {
11616 + status = 0;
11617 + }
11618 + dwc_otg_hcd_complete_urb(_hcd, urb, status);
11619 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
11620 + break;
11621 + }
11622 +
11623 + complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
11624 + halt_status, must_free);
11625 + break;
11626 + case PIPE_BULK:
11627 + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
11628 + urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
11629 + if (urb_xfer_done) {
11630 + dwc_otg_hcd_complete_urb(_hcd, urb, status);
11631 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
11632 + } else {
11633 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
11634 + }
11635 +
11636 + save_data_toggle(_hc, _hc_regs, _qtd);
11637 + complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free);
11638 + break;
11639 + case PIPE_INTERRUPT:
11640 + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
11641 + update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
11642 +
11643 + /*
11644 + * Interrupt URB is done on the first transfer complete
11645 + * interrupt.
11646 + */
11647 + dwc_otg_hcd_complete_urb(_hcd, urb, status);
11648 + save_data_toggle(_hc, _hc_regs, _qtd);
11649 + complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
11650 + DWC_OTG_HC_XFER_URB_COMPLETE, must_free);
11651 + break;
11652 + case PIPE_ISOCHRONOUS:
11653 + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
11654 + if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL)
11655 + {
11656 + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
11657 + DWC_OTG_HC_XFER_COMPLETE);
11658 + }
11659 + complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free);
11660 + break;
11661 + }
11662 +
11663 + disable_hc_int(_hc_regs,xfercompl);
11664 +
11665 + return 1;
11666 +}
11667 +
11668 +/**
11669 + * Handles a host channel STALL interrupt. This handler may be called in
11670 + * either DMA mode or Slave mode.
11671 + */
11672 +static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd,
11673 + dwc_hc_t *_hc,
11674 + dwc_otg_hc_regs_t *_hc_regs,
11675 + dwc_otg_qtd_t *_qtd, int *must_free)
11676 +{
11677 + struct urb *urb = _qtd->urb;
11678 + int pipe_type = usb_pipetype(urb->pipe);
11679 +
11680 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11681 + "STALL Received--\n", _hc->hc_num);
11682 +
11683 + if (pipe_type == PIPE_CONTROL) {
11684 + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
11685 + }
11686 +
11687 + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
11688 + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
11689 + /*
11690 + * USB protocol requires resetting the data toggle for bulk
11691 + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
11692 + * setup command is issued to the endpoint. Anticipate the
11693 + * CLEAR_FEATURE command since a STALL has occurred and reset
11694 + * the data toggle now.
11695 + */
11696 + _hc->qh->data_toggle = 0;
11697 + }
11698 +
11699 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free);
11700 + disable_hc_int(_hc_regs,stall);
11701 +
11702 + return 1;
11703 +}
11704 +
11705 +/*
11706 + * Updates the state of the URB when a transfer has been stopped due to an
11707 + * abnormal condition before the transfer completes. Modifies the
11708 + * actual_length field of the URB to reflect the number of bytes that have
11709 + * actually been transferred via the host channel.
11710 + */
11711 +static void update_urb_state_xfer_intr(dwc_hc_t *_hc,
11712 + dwc_otg_hc_regs_t *_hc_regs,
11713 + struct urb *_urb,
11714 + dwc_otg_qtd_t *_qtd,
11715 + dwc_otg_halt_status_e _halt_status)
11716 +{
11717 + uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd,
11718 + _halt_status, NULL);
11719 + _urb->actual_length += bytes_transferred;
11720 +
11721 +#ifdef DEBUG
11722 + {
11723 + hctsiz_data_t hctsiz;
11724 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
11725 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11726 + __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
11727 + DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count);
11728 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
11729 + DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet);
11730 + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
11731 + DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length);
11732 + DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n",
11733 + _urb->transfer_buffer_length);
11734 + }
11735 +#endif
11736 +}
11737 +
11738 +/**
11739 + * Handles a host channel NAK interrupt. This handler may be called in either
11740 + * DMA mode or Slave mode.
11741 + */
11742 +static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd,
11743 + dwc_hc_t *_hc,
11744 + dwc_otg_hc_regs_t *_hc_regs,
11745 + dwc_otg_qtd_t *_qtd, int *must_free)
11746 +{
11747 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11748 + "NAK Received--\n", _hc->hc_num);
11749 +
11750 + /*
11751 + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
11752 + * interrupt. Re-start the SSPLIT transfer.
11753 + */
11754 + if (_hc->do_split) {
11755 + if (_hc->complete_split) {
11756 + _qtd->error_count = 0;
11757 + }
11758 + _qtd->complete_split = 0;
11759 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11760 + goto handle_nak_done;
11761 + }
11762 +
11763 + switch (usb_pipetype(_qtd->urb->pipe)) {
11764 + case PIPE_CONTROL:
11765 + case PIPE_BULK:
11766 + if (_hcd->core_if->dma_enable && _hc->ep_is_in) {
11767 + /*
11768 + * NAK interrupts are enabled on bulk/control IN
11769 + * transfers in DMA mode for the sole purpose of
11770 + * resetting the error count after a transaction error
11771 + * occurs. The core will continue transferring data.
11772 + */
11773 + _qtd->error_count = 0;
11774 + goto handle_nak_done;
11775 + }
11776 +
11777 + /*
11778 + * NAK interrupts normally occur during OUT transfers in DMA
11779 + * or Slave mode. For IN transfers, more requests will be
11780 + * queued as request queue space is available.
11781 + */
11782 + _qtd->error_count = 0;
11783 +
11784 + if (!_hc->qh->ping_state) {
11785 + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
11786 + _qtd, DWC_OTG_HC_XFER_NAK);
11787 + save_data_toggle(_hc, _hc_regs, _qtd);
11788 + if (_qtd->urb->dev->speed == USB_SPEED_HIGH) {
11789 + _hc->qh->ping_state = 1;
11790 + }
11791 + }
11792 +
11793 + /*
11794 + * Halt the channel so the transfer can be re-started from
11795 + * the appropriate point or the PING protocol will
11796 + * start/continue.
11797 + */
11798 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11799 + break;
11800 + case PIPE_INTERRUPT:
11801 + _qtd->error_count = 0;
11802 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
11803 + break;
11804 + case PIPE_ISOCHRONOUS:
11805 + /* Should never get called for isochronous transfers. */
11806 + BUG();
11807 + break;
11808 + }
11809 +
11810 + handle_nak_done:
11811 + disable_hc_int(_hc_regs,nak);
11812 +
11813 + return 1;
11814 +}
11815 +
11816 +/**
11817 + * Handles a host channel ACK interrupt. This interrupt is enabled when
11818 + * performing the PING protocol in Slave mode, when errors occur during
11819 + * either Slave mode or DMA mode, and during Start Split transactions.
11820 + */
11821 +static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd,
11822 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
11823 +{
11824 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11825 + "ACK Received--\n", _hc->hc_num);
11826 +
11827 + if (_hc->do_split) {
11828 + /*
11829 + * Handle ACK on SSPLIT.
11830 + * ACK should not occur in CSPLIT.
11831 + */
11832 + if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
11833 + _qtd->ssplit_out_xfer_count = _hc->xfer_len;
11834 + }
11835 + if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) {
11836 + /* Don't need complete for isochronous out transfers. */
11837 + _qtd->complete_split = 1;
11838 + }
11839 +
11840 + /* ISOC OUT */
11841 + if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) {
11842 + switch (_hc->xact_pos) {
11843 + case DWC_HCSPLIT_XACTPOS_ALL:
11844 + break;
11845 + case DWC_HCSPLIT_XACTPOS_END:
11846 + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
11847 + _qtd->isoc_split_offset = 0;
11848 + break;
11849 + case DWC_HCSPLIT_XACTPOS_BEGIN:
11850 + case DWC_HCSPLIT_XACTPOS_MID:
11851 + /*
11852 + * For BEGIN or MID, calculate the length for
11853 + * the next microframe to determine the correct
11854 + * SSPLIT token, either MID or END.
11855 + */
11856 + do {
11857 + struct usb_iso_packet_descriptor *frame_desc;
11858 +
11859 + frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index];
11860 + _qtd->isoc_split_offset += 188;
11861 +
11862 + if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) {
11863 + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
11864 + }
11865 + else {
11866 + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
11867 + }
11868 +
11869 + } while(0);
11870 + break;
11871 + }
11872 + } else {
11873 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
11874 + }
11875 + } else {
11876 + _qtd->error_count = 0;
11877 +
11878 + if (_hc->qh->ping_state) {
11879 + _hc->qh->ping_state = 0;
11880 + /*
11881 + * Halt the channel so the transfer can be re-started
11882 + * from the appropriate point. This only happens in
11883 + * Slave mode. In DMA mode, the ping_state is cleared
11884 + * when the transfer is started because the core
11885 + * automatically executes the PING, then the transfer.
11886 + */
11887 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
11888 + } else {
11889 + halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
11890 + }
11891 + }
11892 +
11893 + /*
11894 + * If the ACK occurred when _not_ in the PING state, let the channel
11895 + * continue transferring data after clearing the error count.
11896 + */
11897 +
11898 + disable_hc_int(_hc_regs,ack);
11899 +
11900 + return 1;
11901 +}
11902 +
11903 +/**
11904 + * Handles a host channel NYET interrupt. This interrupt should only occur on
11905 + * Bulk and Control OUT endpoints and for complete split transactions. If a
11906 + * NYET occurs at the same time as a Transfer Complete interrupt, it is
11907 + * handled in the xfercomp interrupt handler, not here. This handler may be
11908 + * called in either DMA mode or Slave mode.
11909 + */
11910 +static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd,
11911 + dwc_hc_t *_hc,
11912 + dwc_otg_hc_regs_t *_hc_regs,
11913 + dwc_otg_qtd_t *_qtd, int *must_free)
11914 +{
11915 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11916 + "NYET Received--\n", _hc->hc_num);
11917 +
11918 + /*
11919 + * NYET on CSPLIT
11920 + * re-do the CSPLIT immediately on non-periodic
11921 + */
11922 + if ((_hc->do_split) && (_hc->complete_split)) {
11923 + if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
11924 + (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
11925 + int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
11926 +
11927 + if (dwc_full_frame_num(frnum) !=
11928 + dwc_full_frame_num(_hc->qh->sched_frame)) {
11929 + /*
11930 + * No longer in the same full speed frame.
11931 + * Treat this as a transaction error.
11932 + */
11933 +#if 0
11934 + /** @todo Fix system performance so this can
11935 + * be treated as an error. Right now complete
11936 + * splits cannot be scheduled precisely enough
11937 + * due to other system activity, so this error
11938 + * occurs regularly in Slave mode.
11939 + */
11940 + _qtd->error_count++;
11941 +#endif
11942 + _qtd->complete_split = 0;
11943 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
11944 + /** @todo add support for isoc release */
11945 + goto handle_nyet_done;
11946 + }
11947 + }
11948 +
11949 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
11950 + goto handle_nyet_done;
11951 + }
11952 +
11953 + _hc->qh->ping_state = 1;
11954 + _qtd->error_count = 0;
11955 +
11956 + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd,
11957 + DWC_OTG_HC_XFER_NYET);
11958 + save_data_toggle(_hc, _hc_regs, _qtd);
11959 +
11960 + /*
11961 + * Halt the channel and re-start the transfer so the PING
11962 + * protocol will start.
11963 + */
11964 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
11965 +
11966 +handle_nyet_done:
11967 + disable_hc_int(_hc_regs,nyet);
11968 + clear_hc_int(_hc_regs, nyet);
11969 + return 1;
11970 +}
11971 +
11972 +/**
11973 + * Handles a host channel babble interrupt. This handler may be called in
11974 + * either DMA mode or Slave mode.
11975 + */
11976 +static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd,
11977 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
11978 +{
11979 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
11980 + "Babble Error--\n", _hc->hc_num);
11981 + if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
11982 + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW);
11983 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free);
11984 + } else {
11985 + dwc_otg_halt_status_e halt_status;
11986 + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
11987 + DWC_OTG_HC_XFER_BABBLE_ERR);
11988 + halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
11989 + }
11990 + disable_hc_int(_hc_regs,bblerr);
11991 + return 1;
11992 +}
11993 +
11994 +/**
11995 + * Handles a host channel AHB error interrupt. This handler is only called in
11996 + * DMA mode.
11997 + */
11998 +static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd,
11999 + dwc_hc_t *_hc,
12000 + dwc_otg_hc_regs_t *_hc_regs,
12001 + dwc_otg_qtd_t *_qtd)
12002 +{
12003 + hcchar_data_t hcchar;
12004 + hcsplt_data_t hcsplt;
12005 + hctsiz_data_t hctsiz;
12006 + uint32_t hcdma;
12007 + struct urb *urb = _qtd->urb;
12008 +
12009 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12010 + "AHB Error--\n", _hc->hc_num);
12011 +
12012 + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12013 + hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
12014 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
12015 + hcdma = dwc_read_reg32(&_hc_regs->hcdma);
12016 +
12017 + DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num);
12018 + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
12019 + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
12020 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
12021 + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
12022 + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
12023 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
12024 + DWC_ERROR(" Endpoint type: %s\n",
12025 + ({char *pipetype;
12026 + switch (usb_pipetype(urb->pipe)) {
12027 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
12028 + case PIPE_BULK: pipetype = "BULK"; break;
12029 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
12030 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
12031 + default: pipetype = "UNKNOWN"; break;
12032 + }; pipetype;}));
12033 + DWC_ERROR(" Speed: %s\n",
12034 + ({char *speed;
12035 + switch (urb->dev->speed) {
12036 + case USB_SPEED_HIGH: speed = "HIGH"; break;
12037 + case USB_SPEED_FULL: speed = "FULL"; break;
12038 + case USB_SPEED_LOW: speed = "LOW"; break;
12039 + default: speed = "UNKNOWN"; break;
12040 + }; speed;}));
12041 + DWC_ERROR(" Max packet size: %d\n",
12042 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12043 + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
12044 + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
12045 + urb->transfer_buffer, (void *)(u32)urb->transfer_dma);
12046 + DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
12047 + urb->setup_packet, (void *)(u32)urb->setup_dma);
12048 + DWC_ERROR(" Interval: %d\n", urb->interval);
12049 +
12050 + dwc_otg_hcd_complete_urb(_hcd, urb, -EIO);
12051 +
12052 + /*
12053 + * Force a channel halt. Don't call halt_channel because that won't
12054 + * write to the HCCHARn register in DMA mode to force the halt.
12055 + */
12056 + dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR);
12057 +
12058 + disable_hc_int(_hc_regs,ahberr);
12059 + return 1;
12060 +}
12061 +
12062 +/**
12063 + * Handles a host channel transaction error interrupt. This handler may be
12064 + * called in either DMA mode or Slave mode.
12065 + */
12066 +static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd,
12067 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12068 +{
12069 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12070 + "Transaction Error--\n", _hc->hc_num);
12071 +
12072 + switch (usb_pipetype(_qtd->urb->pipe)) {
12073 + case PIPE_CONTROL:
12074 + case PIPE_BULK:
12075 + _qtd->error_count++;
12076 + if (!_hc->qh->ping_state) {
12077 + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
12078 + _qtd, DWC_OTG_HC_XFER_XACT_ERR);
12079 + save_data_toggle(_hc, _hc_regs, _qtd);
12080 + if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) {
12081 + _hc->qh->ping_state = 1;
12082 + }
12083 + }
12084 +
12085 + /*
12086 + * Halt the channel so the transfer can be re-started from
12087 + * the appropriate point or the PING protocol will start.
12088 + */
12089 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
12090 + break;
12091 + case PIPE_INTERRUPT:
12092 + _qtd->error_count++;
12093 + if ((_hc->do_split) && (_hc->complete_split)) {
12094 + _qtd->complete_split = 0;
12095 + }
12096 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
12097 + break;
12098 + case PIPE_ISOCHRONOUS:
12099 + {
12100 + dwc_otg_halt_status_e halt_status;
12101 + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
12102 + DWC_OTG_HC_XFER_XACT_ERR);
12103 +
12104 + halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
12105 + }
12106 + break;
12107 + }
12108 +
12109 +
12110 + disable_hc_int(_hc_regs,xacterr);
12111 +
12112 + return 1;
12113 +}
12114 +
12115 +/**
12116 + * Handles a host channel frame overrun interrupt. This handler may be called
12117 + * in either DMA mode or Slave mode.
12118 + */
12119 +static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd,
12120 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12121 +{
12122 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12123 + "Frame Overrun--\n", _hc->hc_num);
12124 +
12125 + switch (usb_pipetype(_qtd->urb->pipe)) {
12126 + case PIPE_CONTROL:
12127 + case PIPE_BULK:
12128 + break;
12129 + case PIPE_INTERRUPT:
12130 + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free);
12131 + break;
12132 + case PIPE_ISOCHRONOUS:
12133 + {
12134 + dwc_otg_halt_status_e halt_status;
12135 + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
12136 + DWC_OTG_HC_XFER_FRAME_OVERRUN);
12137 +
12138 + halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
12139 + }
12140 + break;
12141 + }
12142 +
12143 + disable_hc_int(_hc_regs,frmovrun);
12144 +
12145 + return 1;
12146 +}
12147 +
12148 +/**
12149 + * Handles a host channel data toggle error interrupt. This handler may be
12150 + * called in either DMA mode or Slave mode.
12151 + */
12152 +static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd,
12153 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12154 +{
12155 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12156 + "Data Toggle Error--\n", _hc->hc_num);
12157 +
12158 + if (_hc->ep_is_in) {
12159 + _qtd->error_count = 0;
12160 + } else {
12161 + DWC_ERROR("Data Toggle Error on OUT transfer,"
12162 + "channel %d\n", _hc->hc_num);
12163 + }
12164 +
12165 + disable_hc_int(_hc_regs,datatglerr);
12166 +
12167 + return 1;
12168 +}
12169 +
12170 +#ifdef DEBUG
12171 +/**
12172 + * This function is for debug only. It checks that a valid halt status is set
12173 + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
12174 + * taken and a warning is issued.
12175 + * @return 1 if halt status is ok, 0 otherwise.
12176 + */
12177 +static inline int halt_status_ok(dwc_otg_hcd_t *_hcd,
12178 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12179 +{
12180 + hcchar_data_t hcchar;
12181 + hctsiz_data_t hctsiz;
12182 + hcint_data_t hcint;
12183 + hcintmsk_data_t hcintmsk;
12184 + hcsplt_data_t hcsplt;
12185 +
12186 + if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
12187 + /*
12188 + * This code is here only as a check. This condition should
12189 + * never happen. Ignore the halt if it does occur.
12190 + */
12191 + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12192 + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
12193 + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
12194 + hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
12195 + hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
12196 + DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
12197 + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
12198 + "hcint 0x%08x, hcintmsk 0x%08x, "
12199 + "hcsplt 0x%08x, qtd->complete_split %d\n",
12200 + __func__, _hc->hc_num, hcchar.d32, hctsiz.d32,
12201 + hcint.d32, hcintmsk.d32,
12202 + hcsplt.d32, _qtd->complete_split);
12203 +
12204 + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
12205 + __func__, _hc->hc_num);
12206 + DWC_WARN("\n");
12207 + clear_hc_int(_hc_regs,chhltd);
12208 + return 0;
12209 + }
12210 +
12211 + /*
12212 + * This code is here only as a check. hcchar.chdis should
12213 + * never be set when the halt interrupt occurs. Halt the
12214 + * channel again if it does occur.
12215 + */
12216 + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
12217 + if (hcchar.b.chdis) {
12218 + DWC_WARN("%s: hcchar.chdis set unexpectedly, "
12219 + "hcchar 0x%08x, trying to halt again\n",
12220 + __func__, hcchar.d32);
12221 + clear_hc_int(_hc_regs,chhltd);
12222 + _hc->halt_pending = 0;
12223 + halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12224 + return 0;
12225 + }
12226 +
12227 + return 1;
12228 +}
12229 +#endif
12230 +
12231 +/**
12232 + * Handles a host Channel Halted interrupt in DMA mode. This handler
12233 + * determines the reason the channel halted and proceeds accordingly.
12234 + */
12235 +static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd,
12236 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12237 +{
12238 + hcint_data_t hcint;
12239 + hcintmsk_data_t hcintmsk;
12240 +
12241 + if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
12242 + _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
12243 + /*
12244 + * Just release the channel. A dequeue can happen on a
12245 + * transfer timeout. In the case of an AHB Error, the channel
12246 + * was forced to halt because there's no way to gracefully
12247 + * recover.
12248 + */
12249 + release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12250 + return;
12251 + }
12252 +
12253 + /* Read the HCINTn register to determine the cause for the halt. */
12254 + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
12255 + hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
12256 +
12257 + if (hcint.b.xfercomp) {
12258 + /** @todo This is here because of a possible hardware bug. Spec
12259 + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
12260 + * interrupt w/ACK bit set should occur, but I only see the
12261 + * XFERCOMP bit, even with it masked out. This is a workaround
12262 + * for that behavior. Should fix this when hardware is fixed.
12263 + */
12264 + if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) {
12265 + handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12266 + }
12267 + handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12268 + } else if (hcint.b.stall) {
12269 + handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12270 + } else if (hcint.b.xacterr) {
12271 + /*
12272 + * Must handle xacterr before nak or ack. Could get a xacterr
12273 + * at the same time as either of these on a BULK/CONTROL OUT
12274 + * that started with a PING. The xacterr takes precedence.
12275 + */
12276 + handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12277 + } else if (hcint.b.nyet) {
12278 + /*
12279 + * Must handle nyet before nak or ack. Could get a nyet at the
12280 + * same time as either of those on a BULK/CONTROL OUT that
12281 + * started with a PING. The nyet takes precedence.
12282 + */
12283 + handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12284 + } else if (hcint.b.bblerr) {
12285 + handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12286 + } else if (hcint.b.frmovrun) {
12287 + handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12288 + } else if (hcint.b.datatglerr) {
12289 + handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12290 + _hc->qh->data_toggle = 0;
12291 + halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12292 + } else if (hcint.b.nak && !hcintmsk.b.nak) {
12293 + /*
12294 + * If nak is not masked, it's because a non-split IN transfer
12295 + * is in an error state. In that case, the nak is handled by
12296 + * the nak interrupt handler, not here. Handle nak here for
12297 + * BULK/CONTROL OUT transfers, which halt on a NAK to allow
12298 + * rewinding the buffer pointer.
12299 + */
12300 + handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12301 + } else if (hcint.b.ack && !hcintmsk.b.ack) {
12302 + /*
12303 + * If ack is not masked, it's because a non-split IN transfer
12304 + * is in an error state. In that case, the ack is handled by
12305 + * the ack interrupt handler, not here. Handle ack here for
12306 + * split transfers. Start splits halt on ACK.
12307 + */
12308 + handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
12309 + } else {
12310 + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12311 + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12312 + /*
12313 + * A periodic transfer halted with no other channel
12314 + * interrupts set. Assume it was halted by the core
12315 + * because it could not be completed in its scheduled
12316 + * (micro)frame.
12317 + */
12318 +#ifdef DEBUG
12319 + DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
12320 + __func__, _hc->hc_num);
12321 +#endif /* */
12322 + halt_channel(_hcd, _hc, _qtd,
12323 + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free);
12324 + } else {
12325 +#ifdef DEBUG
12326 + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
12327 + "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n",
12328 + __func__, _hc->hc_num, hcint.b.nyet, hcint.d32,
12329 + dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts));
12330 +#endif
12331 + halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12332 + }
12333 + }
12334 +}
12335 +
12336 +/**
12337 + * Handles a host channel Channel Halted interrupt.
12338 + *
12339 + * In slave mode, this handler is called only when the driver specifically
12340 + * requests a halt. This occurs during handling other host channel interrupts
12341 + * (e.g. nak, xacterr, stall, nyet, etc.).
12342 + *
12343 + * In DMA mode, this is the interrupt that occurs when the core has finished
12344 + * processing a transfer on a channel. Other host channel interrupts (except
12345 + * ahberr) are disabled in DMA mode.
12346 + */
12347 +static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd,
12348 + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
12349 +{
12350 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12351 + "Channel Halted--\n", _hc->hc_num);
12352 +
12353 + if (_hcd->core_if->dma_enable) {
12354 + handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free);
12355 + } else {
12356 +#ifdef DEBUG
12357 + if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) {
12358 + return 1;
12359 + }
12360 +#endif /* */
12361 + release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
12362 + }
12363 +
12364 + return 1;
12365 +}
12366 +
12367 +/** Handles interrupt for a specific Host Channel */
12368 +int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num)
12369 +{
12370 + int must_free = 0;
12371 + int retval = 0;
12372 + hcint_data_t hcint;
12373 + hcintmsk_data_t hcintmsk;
12374 + dwc_hc_t *hc;
12375 + dwc_otg_hc_regs_t *hc_regs;
12376 + dwc_otg_qtd_t *qtd;
12377 +
12378 + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
12379 +
12380 + hc = _dwc_otg_hcd->hc_ptr_array[_num];
12381 + hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num];
12382 + qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
12383 +
12384 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12385 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12386 + DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
12387 + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
12388 + hcint.d32 = hcint.d32 & hcintmsk.d32;
12389 +
12390 + if (!_dwc_otg_hcd->core_if->dma_enable) {
12391 + if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) {
12392 + hcint.b.chhltd = 0;
12393 + }
12394 + }
12395 +
12396 + if (hcint.b.xfercomp) {
12397 + retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12398 + /*
12399 + * If NYET occurred at same time as Xfer Complete, the NYET is
12400 + * handled by the Xfer Complete interrupt handler. Don't want
12401 + * to call the NYET interrupt handler in this case.
12402 + */
12403 + hcint.b.nyet = 0;
12404 + }
12405 + if (hcint.b.chhltd) {
12406 + retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12407 + }
12408 + if (hcint.b.ahberr) {
12409 + retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd);
12410 + }
12411 + if (hcint.b.stall) {
12412 + retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12413 + }
12414 + if (hcint.b.nak) {
12415 + retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12416 + }
12417 + if (hcint.b.ack) {
12418 + retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12419 + }
12420 + if (hcint.b.nyet) {
12421 + retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12422 + }
12423 + if (hcint.b.xacterr) {
12424 + retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12425 + }
12426 + if (hcint.b.bblerr) {
12427 + retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12428 + }
12429 + if (hcint.b.frmovrun) {
12430 + retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12431 + }
12432 + if (hcint.b.datatglerr) {
12433 + retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
12434 + }
12435 +
12436 + /*
12437 + * Logic to free the qtd here, at the end of the hc intr
12438 + * processing, if the handling of this interrupt determined
12439 + * that it needs to be freed.
12440 + */
12441 + if (must_free) {
12442 + /* Free the qtd here now that we are done using it. */
12443 + dwc_otg_hcd_qtd_free(qtd);
12444 + }
12445 + return retval;
12446 +}
12447 +
12448 +#endif /* DWC_DEVICE_ONLY */
12449 --- /dev/null
12450 +++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
12451 @@ -0,0 +1,794 @@
12452 +/* ==========================================================================
12453 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $
12454 + * $Revision: 1.1.1.1 $
12455 + * $Date: 2009-04-17 06:15:34 $
12456 + * $Change: 537387 $
12457 + *
12458 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
12459 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
12460 + * otherwise expressly agreed to in writing between Synopsys and you.
12461 + *
12462 + * The Software IS NOT an item of Licensed Software or Licensed Product under
12463 + * any End User Software License Agreement or Agreement for Licensed Product
12464 + * with Synopsys or any supplement thereto. You are permitted to use and
12465 + * redistribute this Software in source and binary forms, with or without
12466 + * modification, provided that redistributions of source code must retain this
12467 + * notice. You may not view, use, disclose, copy or distribute this file or
12468 + * any information contained herein except pursuant to this license grant from
12469 + * Synopsys. If you do not agree with this notice, including the disclaimer
12470 + * below, then you are not authorized to use the Software.
12471 + *
12472 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
12473 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12474 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
12475 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
12476 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
12477 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
12478 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
12479 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
12480 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
12481 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
12482 + * DAMAGE.
12483 + * ========================================================================== */
12484 +#ifndef DWC_DEVICE_ONLY
12485 +
12486 +/**
12487 + * @file
12488 + *
12489 + * This file contains the functions to manage Queue Heads and Queue
12490 + * Transfer Descriptors.
12491 + */
12492 +#include <linux/kernel.h>
12493 +#include <linux/module.h>
12494 +#include <linux/moduleparam.h>
12495 +#include <linux/init.h>
12496 +#include <linux/device.h>
12497 +#include <linux/errno.h>
12498 +#include <linux/list.h>
12499 +#include <linux/interrupt.h>
12500 +#include <linux/string.h>
12501 +
12502 +#include "dwc_otg_driver.h"
12503 +#include "dwc_otg_hcd.h"
12504 +#include "dwc_otg_regs.h"
12505 +
12506 +/**
12507 + * This function allocates and initializes a QH.
12508 + *
12509 + * @param _hcd The HCD state structure for the DWC OTG controller.
12510 + * @param[in] _urb Holds the information about the device/endpoint that we need
12511 + * to initialize the QH.
12512 + *
12513 + * @return Returns pointer to the newly allocated QH, or NULL on error. */
12514 +dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb)
12515 +{
12516 + dwc_otg_qh_t *qh;
12517 +
12518 + /* Allocate memory */
12519 + /** @todo add memflags argument */
12520 + qh = dwc_otg_hcd_qh_alloc ();
12521 + if (qh == NULL) {
12522 + return NULL;
12523 + }
12524 +
12525 + dwc_otg_hcd_qh_init (_hcd, qh, _urb);
12526 + return qh;
12527 +}
12528 +
12529 +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
12530 + * removed from a list. QTD list should already be empty if called from URB
12531 + * Dequeue.
12532 + *
12533 + * @param[in] _qh The QH to free.
12534 + */
12535 +void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh)
12536 +{
12537 + dwc_otg_qtd_t *qtd;
12538 + struct list_head *pos;
12539 + unsigned long flags;
12540 +
12541 + /* Free each QTD in the QTD list */
12542 + local_irq_save (flags);
12543 + for (pos = _qh->qtd_list.next;
12544 + pos != &_qh->qtd_list;
12545 + pos = _qh->qtd_list.next)
12546 + {
12547 + list_del (pos);
12548 + qtd = dwc_list_to_qtd (pos);
12549 + dwc_otg_hcd_qtd_free (qtd);
12550 + }
12551 + local_irq_restore (flags);
12552 +
12553 + kfree (_qh);
12554 + return;
12555 +}
12556 +
12557 +/** Initializes a QH structure.
12558 + *
12559 + * @param[in] _hcd The HCD state structure for the DWC OTG controller.
12560 + * @param[in] _qh The QH to init.
12561 + * @param[in] _urb Holds the information about the device/endpoint that we need
12562 + * to initialize the QH. */
12563 +#define SCHEDULE_SLOP 10
12564 +void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb)
12565 +{
12566 + memset (_qh, 0, sizeof (dwc_otg_qh_t));
12567 +
12568 + /* Initialize QH */
12569 + switch (usb_pipetype(_urb->pipe)) {
12570 + case PIPE_CONTROL:
12571 + _qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
12572 + break;
12573 + case PIPE_BULK:
12574 + _qh->ep_type = USB_ENDPOINT_XFER_BULK;
12575 + break;
12576 + case PIPE_ISOCHRONOUS:
12577 + _qh->ep_type = USB_ENDPOINT_XFER_ISOC;
12578 + break;
12579 + case PIPE_INTERRUPT:
12580 + _qh->ep_type = USB_ENDPOINT_XFER_INT;
12581 + break;
12582 + }
12583 +
12584 + _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0;
12585 +
12586 + _qh->data_toggle = DWC_OTG_HC_PID_DATA0;
12587 + _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe)));
12588 + INIT_LIST_HEAD(&_qh->qtd_list);
12589 + INIT_LIST_HEAD(&_qh->qh_list_entry);
12590 + _qh->channel = NULL;
12591 +
12592 + /* FS/LS Enpoint on HS Hub
12593 + * NOT virtual root hub */
12594 + _qh->do_split = 0;
12595 + _qh->speed = _urb->dev->speed;
12596 + if (((_urb->dev->speed == USB_SPEED_LOW) ||
12597 + (_urb->dev->speed == USB_SPEED_FULL)) &&
12598 + (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) {
12599 + DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
12600 + usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum,
12601 + _urb->dev->ttport);
12602 + _qh->do_split = 1;
12603 + }
12604 +
12605 + if (_qh->ep_type == USB_ENDPOINT_XFER_INT ||
12606 + _qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
12607 + /* Compute scheduling parameters once and save them. */
12608 + hprt0_data_t hprt;
12609 +
12610 + /** @todo Account for split transfers in the bus time. */
12611 + int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp);
12612 + _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed,
12613 + usb_pipein(_urb->pipe),
12614 + (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount));
12615 +
12616 + /* Start in a slightly future (micro)frame. */
12617 + _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP);
12618 + _qh->interval = _urb->interval;
12619 +#if 0
12620 + /* Increase interrupt polling rate for debugging. */
12621 + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12622 + _qh->interval = 8;
12623 + }
12624 +#endif
12625 + hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0);
12626 + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
12627 + ((_urb->dev->speed == USB_SPEED_LOW) ||
12628 + (_urb->dev->speed == USB_SPEED_FULL)))
12629 + {
12630 + _qh->interval *= 8;
12631 + _qh->sched_frame |= 0x7;
12632 + _qh->start_split_frame = _qh->sched_frame;
12633 + }
12634 + }
12635 +
12636 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
12637 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh);
12638 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
12639 + _urb->dev->devnum);
12640 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
12641 + usb_pipeendpoint(_urb->pipe),
12642 + usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
12643 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n",
12644 + ({ char *speed; switch (_urb->dev->speed) {
12645 + case USB_SPEED_LOW: speed = "low"; break;
12646 + case USB_SPEED_FULL: speed = "full"; break;
12647 + case USB_SPEED_HIGH: speed = "high"; break;
12648 + default: speed = "?"; break;
12649 + }; speed;}));
12650 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",
12651 + ({ char *type; switch (_qh->ep_type) {
12652 + case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break;
12653 + case USB_ENDPOINT_XFER_INT: type = "interrupt"; break;
12654 + case USB_ENDPOINT_XFER_CONTROL: type = "control"; break;
12655 + case USB_ENDPOINT_XFER_BULK: type = "bulk"; break;
12656 + default: type = "?"; break;
12657 + }; type;}));
12658 +#ifdef DEBUG
12659 + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12660 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
12661 + _qh->usecs);
12662 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
12663 + _qh->interval);
12664 + }
12665 +#endif
12666 +
12667 + return;
12668 +}
12669 +
12670 +/**
12671 + * Microframe scheduler
12672 + * track the total use in hcd->frame_usecs
12673 + * keep each qh use in qh->frame_usecs
12674 + * when surrendering the qh then donate the time back
12675 + */
12676 +const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 };
12677 +
12678 +/*
12679 + * called from dwc_otg_hcd.c:dwc_otg_hcd_init
12680 + */
12681 +int init_hcd_usecs(dwc_otg_hcd_t *_hcd)
12682 +{
12683 + int i;
12684 + for (i=0; i<8; i++) {
12685 + _hcd->frame_usecs[i] = max_uframe_usecs[i];
12686 + }
12687 + return 0;
12688 +}
12689 +
12690 +static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12691 +{
12692 + int i;
12693 + unsigned short utime;
12694 + int t_left;
12695 + int ret;
12696 + int done;
12697 +
12698 + ret = -1;
12699 + utime = _qh->usecs;
12700 + t_left = utime;
12701 + i = 0;
12702 + done = 0;
12703 + while (done == 0) {
12704 + /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */
12705 + if (utime <= _hcd->frame_usecs[i]) {
12706 + _hcd->frame_usecs[i] -= utime;
12707 + _qh->frame_usecs[i] += utime;
12708 + t_left -= utime;
12709 + ret = i;
12710 + done = 1;
12711 + return ret;
12712 + } else {
12713 + i++;
12714 + if (i == 8) {
12715 + done = 1;
12716 + ret = -1;
12717 + }
12718 + }
12719 + }
12720 + return ret;
12721 +}
12722 +
12723 +/*
12724 + * use this for FS apps that can span multiple uframes
12725 + */
12726 +static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12727 +{
12728 + int i;
12729 + int j;
12730 + unsigned short utime;
12731 + int t_left;
12732 + int ret;
12733 + int done;
12734 + unsigned short xtime;
12735 +
12736 + ret = -1;
12737 + utime = _qh->usecs;
12738 + t_left = utime;
12739 + i = 0;
12740 + done = 0;
12741 +loop:
12742 + while (done == 0) {
12743 + if(_hcd->frame_usecs[i] <= 0) {
12744 + i++;
12745 + if (i == 8) {
12746 + done = 1;
12747 + ret = -1;
12748 + }
12749 + goto loop;
12750 + }
12751 +
12752 + /*
12753 + * we need n consequtive slots
12754 + * so use j as a start slot j plus j+1 must be enough time (for now)
12755 + */
12756 + xtime= _hcd->frame_usecs[i];
12757 + for (j = i+1 ; j < 8 ; j++ ) {
12758 + /*
12759 + * if we add this frame remaining time to xtime we may
12760 + * be OK, if not we need to test j for a complete frame
12761 + */
12762 + if ((xtime+_hcd->frame_usecs[j]) < utime) {
12763 + if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) {
12764 + j = 8;
12765 + ret = -1;
12766 + continue;
12767 + }
12768 + }
12769 + if (xtime >= utime) {
12770 + ret = i;
12771 + j = 8; /* stop loop with a good value ret */
12772 + continue;
12773 + }
12774 + /* add the frame time to x time */
12775 + xtime += _hcd->frame_usecs[j];
12776 + /* we must have a fully available next frame or break */
12777 + if ((xtime < utime)
12778 + && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) {
12779 + ret = -1;
12780 + j = 8; /* stop loop with a bad value ret */
12781 + continue;
12782 + }
12783 + }
12784 + if (ret >= 0) {
12785 + t_left = utime;
12786 + for (j = i; (t_left>0) && (j < 8); j++ ) {
12787 + t_left -= _hcd->frame_usecs[j];
12788 + if ( t_left <= 0 ) {
12789 + _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left;
12790 + _hcd->frame_usecs[j]= -t_left;
12791 + ret = i;
12792 + done = 1;
12793 + } else {
12794 + _qh->frame_usecs[j] += _hcd->frame_usecs[j];
12795 + _hcd->frame_usecs[j] = 0;
12796 + }
12797 + }
12798 + } else {
12799 + i++;
12800 + if (i == 8) {
12801 + done = 1;
12802 + ret = -1;
12803 + }
12804 + }
12805 + }
12806 + return ret;
12807 +}
12808 +
12809 +static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12810 +{
12811 + int ret;
12812 + ret = -1;
12813 +
12814 + if (_qh->speed == USB_SPEED_HIGH) {
12815 + /* if this is a hs transaction we need a full frame */
12816 + ret = find_single_uframe(_hcd, _qh);
12817 + } else {
12818 + /* if this is a fs transaction we may need a sequence of frames */
12819 + ret = find_multi_uframe(_hcd, _qh);
12820 + }
12821 + return ret;
12822 +}
12823 +
12824 +/**
12825 + * Checks that the max transfer size allowed in a host channel is large enough
12826 + * to handle the maximum data transfer in a single (micro)frame for a periodic
12827 + * transfer.
12828 + *
12829 + * @param _hcd The HCD state structure for the DWC OTG controller.
12830 + * @param _qh QH for a periodic endpoint.
12831 + *
12832 + * @return 0 if successful, negative error code otherwise.
12833 + */
12834 +static int check_max_xfer_size(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12835 +{
12836 + int status;
12837 + uint32_t max_xfer_size;
12838 + uint32_t max_channel_xfer_size;
12839 +
12840 + status = 0;
12841 +
12842 + max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp);
12843 + max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size;
12844 +
12845 + if (max_xfer_size > max_channel_xfer_size) {
12846 + DWC_NOTICE("%s: Periodic xfer length %d > "
12847 + "max xfer length for channel %d\n",
12848 + __func__, max_xfer_size, max_channel_xfer_size);
12849 + status = -ENOSPC;
12850 + }
12851 +
12852 + return status;
12853 +}
12854 +
12855 +/**
12856 + * Schedules an interrupt or isochronous transfer in the periodic schedule.
12857 + *
12858 + * @param _hcd The HCD state structure for the DWC OTG controller.
12859 + * @param _qh QH for the periodic transfer. The QH should already contain the
12860 + * scheduling information.
12861 + *
12862 + * @return 0 if successful, negative error code otherwise.
12863 + */
12864 +static int schedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12865 +{
12866 + int status = 0;
12867 +
12868 + int frame;
12869 + status = find_uframe(_hcd, _qh);
12870 + frame = -1;
12871 + if (status == 0) {
12872 + frame = 7;
12873 + } else {
12874 + if (status > 0 )
12875 + frame = status-1;
12876 + }
12877 +
12878 + /* Set the new frame up */
12879 + if (frame > -1) {
12880 + _qh->sched_frame &= ~0x7;
12881 + _qh->sched_frame |= (frame & 7);
12882 + }
12883 +
12884 + if (status != -1 )
12885 + status = 0;
12886 + if (status) {
12887 + DWC_NOTICE("%s: Insufficient periodic bandwidth for "
12888 + "periodic transfer.\n", __func__);
12889 + return status;
12890 + }
12891 +
12892 + status = check_max_xfer_size(_hcd, _qh);
12893 + if (status) {
12894 + DWC_NOTICE("%s: Channel max transfer size too small "
12895 + "for periodic transfer.\n", __func__);
12896 + return status;
12897 + }
12898 +
12899 + /* Always start in the inactive schedule. */
12900 + list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive);
12901 +
12902 +
12903 + /* Update claimed usecs per (micro)frame. */
12904 + _hcd->periodic_usecs += _qh->usecs;
12905 +
12906 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
12907 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += _qh->usecs / _qh->interval;
12908 + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
12909 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++;
12910 + DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
12911 + _qh, _qh->usecs, _qh->interval);
12912 + } else {
12913 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++;
12914 + DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
12915 + _qh, _qh->usecs, _qh->interval);
12916 + }
12917 +
12918 + return status;
12919 +}
12920 +
12921 +/**
12922 + * This function adds a QH to either the non periodic or periodic schedule if
12923 + * it is not already in the schedule. If the QH is already in the schedule, no
12924 + * action is taken.
12925 + *
12926 + * @return 0 if successful, negative error code otherwise.
12927 + */
12928 +int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12929 +{
12930 + unsigned long flags;
12931 + int status = 0;
12932 +
12933 + local_irq_save(flags);
12934 +
12935 + if (!list_empty(&_qh->qh_list_entry)) {
12936 + /* QH already in a schedule. */
12937 + goto done;
12938 + }
12939 +
12940 + /* Add the new QH to the appropriate schedule */
12941 + if (dwc_qh_is_non_per(_qh)) {
12942 + /* Always start in the inactive schedule. */
12943 + list_add_tail(&_qh->qh_list_entry, &_hcd->non_periodic_sched_inactive);
12944 + } else {
12945 + status = schedule_periodic(_hcd, _qh);
12946 + }
12947 +
12948 + done:
12949 + local_irq_restore(flags);
12950 +
12951 + return status;
12952 +}
12953 +
12954 +/**
12955 + * This function adds a QH to the non periodic deferred schedule.
12956 + *
12957 + * @return 0 if successful, negative error code otherwise.
12958 + */
12959 +int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
12960 +{
12961 + unsigned long flags;
12962 + local_irq_save(flags);
12963 + if (!list_empty(&_qh->qh_list_entry)) {
12964 + /* QH already in a schedule. */
12965 + goto done;
12966 + }
12967 +
12968 + /* Add the new QH to the non periodic deferred schedule */
12969 + if (dwc_qh_is_non_per(_qh)) {
12970 + list_add_tail(&_qh->qh_list_entry,
12971 + &_hcd->non_periodic_sched_deferred);
12972 + }
12973 +done:
12974 + local_irq_restore(flags);
12975 + return 0;
12976 +}
12977 +
12978 +/**
12979 + * Removes an interrupt or isochronous transfer from the periodic schedule.
12980 + *
12981 + * @param _hcd The HCD state structure for the DWC OTG controller.
12982 + * @param _qh QH for the periodic transfer.
12983 + */
12984 +static void deschedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
12985 +{
12986 + int i;
12987 + list_del_init(&_qh->qh_list_entry);
12988 +
12989 +
12990 + /* Update claimed usecs per (micro)frame. */
12991 + _hcd->periodic_usecs -= _qh->usecs;
12992 +
12993 + for (i = 0; i < 8; i++) {
12994 + _hcd->frame_usecs[i] += _qh->frame_usecs[i];
12995 + _qh->frame_usecs[i] = 0;
12996 + }
12997 + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
12998 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= _qh->usecs / _qh->interval;
12999 +
13000 + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
13001 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--;
13002 + DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
13003 + _qh, _qh->usecs, _qh->interval);
13004 + } else {
13005 + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--;
13006 + DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
13007 + _qh, _qh->usecs, _qh->interval);
13008 + }
13009 +}
13010 +
13011 +/**
13012 + * Removes a QH from either the non-periodic or periodic schedule. Memory is
13013 + * not freed.
13014 + *
13015 + * @param[in] _hcd The HCD state structure.
13016 + * @param[in] _qh QH to remove from schedule. */
13017 +void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
13018 +{
13019 + unsigned long flags;
13020 +
13021 + local_irq_save(flags);
13022 +
13023 + if (list_empty(&_qh->qh_list_entry)) {
13024 + /* QH is not in a schedule. */
13025 + goto done;
13026 + }
13027 +
13028 + if (dwc_qh_is_non_per(_qh)) {
13029 + if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) {
13030 + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
13031 + }
13032 + list_del_init(&_qh->qh_list_entry);
13033 + } else {
13034 + deschedule_periodic(_hcd, _qh);
13035 + }
13036 +
13037 + done:
13038 + local_irq_restore(flags);
13039 +}
13040 +
13041 +/**
13042 + * Defers a QH. For non-periodic QHs, removes the QH from the active
13043 + * non-periodic schedule. The QH is added to the deferred non-periodic
13044 + * schedule if any QTDs are still attached to the QH.
13045 + */
13046 +int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay)
13047 +{
13048 + int deact = 1;
13049 + unsigned long flags;
13050 + local_irq_save(flags);
13051 + if (dwc_qh_is_non_per(_qh)) {
13052 + _qh->sched_frame =
13053 + dwc_frame_num_inc(_hcd->frame_number,
13054 + delay);
13055 + _qh->channel = NULL;
13056 + _qh->qtd_in_process = NULL;
13057 + deact = 0;
13058 + dwc_otg_hcd_qh_remove(_hcd, _qh);
13059 + if (!list_empty(&_qh->qtd_list)) {
13060 + /* Add back to deferred non-periodic schedule. */
13061 + dwc_otg_hcd_qh_add_deferred(_hcd, _qh);
13062 + }
13063 + }
13064 + local_irq_restore(flags);
13065 + return deact;
13066 +}
13067 +
13068 +/**
13069 + * Deactivates a QH. For non-periodic QHs, removes the QH from the active
13070 + * non-periodic schedule. The QH is added to the inactive non-periodic
13071 + * schedule if any QTDs are still attached to the QH.
13072 + *
13073 + * For periodic QHs, the QH is removed from the periodic queued schedule. If
13074 + * there are any QTDs still attached to the QH, the QH is added to either the
13075 + * periodic inactive schedule or the periodic ready schedule and its next
13076 + * scheduled frame is calculated. The QH is placed in the ready schedule if
13077 + * the scheduled frame has been reached already. Otherwise it's placed in the
13078 + * inactive schedule. If there are no QTDs attached to the QH, the QH is
13079 + * completely removed from the periodic schedule.
13080 + */
13081 +void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_next_periodic_split)
13082 +{
13083 + unsigned long flags;
13084 + local_irq_save(flags);
13085 +
13086 + if (dwc_qh_is_non_per(_qh)) {
13087 + dwc_otg_hcd_qh_remove(_hcd, _qh);
13088 + if (!list_empty(&_qh->qtd_list)) {
13089 + /* Add back to inactive non-periodic schedule. */
13090 + dwc_otg_hcd_qh_add(_hcd, _qh);
13091 + }
13092 + } else {
13093 + uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
13094 +
13095 + if (_qh->do_split) {
13096 + /* Schedule the next continuing periodic split transfer */
13097 + if (sched_next_periodic_split) {
13098 +
13099 + _qh->sched_frame = frame_number;
13100 + if (dwc_frame_num_le(frame_number,
13101 + dwc_frame_num_inc(_qh->start_split_frame, 1))) {
13102 + /*
13103 + * Allow one frame to elapse after start
13104 + * split microframe before scheduling
13105 + * complete split, but DONT if we are
13106 + * doing the next start split in the
13107 + * same frame for an ISOC out.
13108 + */
13109 + if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (_qh->ep_is_in != 0)) {
13110 + _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, 1);
13111 + }
13112 + }
13113 + } else {
13114 + _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame,
13115 + _qh->interval);
13116 + if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13117 + _qh->sched_frame = frame_number;
13118 + }
13119 + _qh->sched_frame |= 0x7;
13120 + _qh->start_split_frame = _qh->sched_frame;
13121 + }
13122 + } else {
13123 + _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, _qh->interval);
13124 + if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13125 + _qh->sched_frame = frame_number;
13126 + }
13127 + }
13128 +
13129 + if (list_empty(&_qh->qtd_list)) {
13130 + dwc_otg_hcd_qh_remove(_hcd, _qh);
13131 + } else {
13132 + /*
13133 + * Remove from periodic_sched_queued and move to
13134 + * appropriate queue.
13135 + */
13136 + if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
13137 + list_move(&_qh->qh_list_entry,
13138 + &_hcd->periodic_sched_ready);
13139 + } else {
13140 + list_move(&_qh->qh_list_entry,
13141 + &_hcd->periodic_sched_inactive);
13142 + }
13143 + }
13144 + }
13145 +
13146 + local_irq_restore(flags);
13147 +}
13148 +
13149 +/**
13150 + * This function allocates and initializes a QTD.
13151 + *
13152 + * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up
13153 + * pointing to each other so each pair should have a unique correlation.
13154 + *
13155 + * @return Returns pointer to the newly allocated QTD, or NULL on error. */
13156 +dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *_urb)
13157 +{
13158 + dwc_otg_qtd_t *qtd;
13159 +
13160 + qtd = dwc_otg_hcd_qtd_alloc ();
13161 + if (qtd == NULL) {
13162 + return NULL;
13163 + }
13164 +
13165 + dwc_otg_hcd_qtd_init (qtd, _urb);
13166 + return qtd;
13167 +}
13168 +
13169 +/**
13170 + * Initializes a QTD structure.
13171 + *
13172 + * @param[in] _qtd The QTD to initialize.
13173 + * @param[in] _urb The URB to use for initialization. */
13174 +void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *_qtd, struct urb *_urb)
13175 +{
13176 + memset (_qtd, 0, sizeof (dwc_otg_qtd_t));
13177 + _qtd->urb = _urb;
13178 + if (usb_pipecontrol(_urb->pipe)) {
13179 + /*
13180 + * The only time the QTD data toggle is used is on the data
13181 + * phase of control transfers. This phase always starts with
13182 + * DATA1.
13183 + */
13184 + _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13185 + _qtd->control_phase = DWC_OTG_CONTROL_SETUP;
13186 + }
13187 +
13188 + /* start split */
13189 + _qtd->complete_split = 0;
13190 + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
13191 + _qtd->isoc_split_offset = 0;
13192 +
13193 + /* Store the qtd ptr in the urb to reference what QTD. */
13194 + _urb->hcpriv = _qtd;
13195 + return;
13196 +}
13197 +
13198 +/**
13199 + * This function adds a QTD to the QTD-list of a QH. It will find the correct
13200 + * QH to place the QTD into. If it does not find a QH, then it will create a
13201 + * new QH. If the QH to which the QTD is added is not currently scheduled, it
13202 + * is placed into the proper schedule based on its EP type.
13203 + *
13204 + * @param[in] _qtd The QTD to add
13205 + * @param[in] _dwc_otg_hcd The DWC HCD structure
13206 + *
13207 + * @return 0 if successful, negative error code otherwise.
13208 + */
13209 +int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd)
13210 +{
13211 + struct usb_host_endpoint *ep;
13212 + dwc_otg_qh_t *qh;
13213 + unsigned long flags;
13214 + int retval = 0;
13215 + struct urb *urb = _qtd->urb;
13216 +
13217 + local_irq_save(flags);
13218 +
13219 + /*
13220 + * Get the QH which holds the QTD-list to insert to. Create QH if it
13221 + * doesn't exist.
13222 + */
13223 + ep = dwc_urb_to_endpoint(urb);
13224 + qh = (dwc_otg_qh_t *)ep->hcpriv;
13225 + if (qh == NULL) {
13226 + qh = dwc_otg_hcd_qh_create (_dwc_otg_hcd, urb);
13227 + if (qh == NULL) {
13228 + retval = -1;
13229 + goto done;
13230 + }
13231 + ep->hcpriv = qh;
13232 + }
13233 +
13234 + _qtd->qtd_qh_ptr = qh;
13235 + retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh);
13236 + if (retval == 0) {
13237 + list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list);
13238 + }
13239 +
13240 + done:
13241 + local_irq_restore(flags);
13242 + return retval;
13243 +}
13244 +
13245 +#endif /* DWC_DEVICE_ONLY */
13246 --- /dev/null
13247 +++ b/drivers/usb/dwc_otg/dwc_otg_ifx.c
13248 @@ -0,0 +1,105 @@
13249 +/******************************************************************************
13250 +**
13251 +** FILE NAME : dwc_otg_ifx.c
13252 +** PROJECT : Twinpass/Danube
13253 +** MODULES : DWC OTG USB
13254 +**
13255 +** DATE : 12 Auguest 2007
13256 +** AUTHOR : Sung Winder
13257 +** DESCRIPTION : Platform specific initialization.
13258 +** COPYRIGHT : Copyright (c) 2007
13259 +** Infineon Technologies AG
13260 +** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
13261 +** Hsin-chu City, 300 Taiwan.
13262 +**
13263 +** This program is free software; you can redistribute it and/or modify
13264 +** it under the terms of the GNU General Public License as published by
13265 +** the Free Software Foundation; either version 2 of the License, or
13266 +** (at your option) any later version.
13267 +**
13268 +** HISTORY
13269 +** $Date $Author $Comment
13270 +** 12 Auguest 2007 Sung Winder Initiate Version
13271 +*******************************************************************************/
13272 +#include "dwc_otg_ifx.h"
13273 +
13274 +#include <linux/platform_device.h>
13275 +#include <linux/kernel.h>
13276 +#include <linux/ioport.h>
13277 +#include <linux/gpio.h>
13278 +
13279 +#include <asm/io.h>
13280 +//#include <asm/mach-ifxmips/ifxmips.h>
13281 +#include <xway.h>
13282 +
13283 +#define IFXMIPS_GPIO_BASE_ADDR (0xBE100B00)
13284 +
13285 +#define IFXMIPS_GPIO_P0_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0010))
13286 +#define IFXMIPS_GPIO_P1_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0040))
13287 +#define IFXMIPS_GPIO_P0_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0014))
13288 +#define IFXMIPS_GPIO_P1_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0044))
13289 +#define IFXMIPS_GPIO_P0_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0018))
13290 +#define IFXMIPS_GPIO_P1_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0048))
13291 +#define IFXMIPS_GPIO_P0_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x001C))
13292 +#define IFXMIPS_GPIO_P1_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x004C))
13293 +#define IFXMIPS_GPIO_P0_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0020))
13294 +#define IFXMIPS_GPIO_P1_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0050))
13295 +#define IFXMIPS_GPIO_P0_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0024))
13296 +#define IFXMIPS_GPIO_P1_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0054))
13297 +#define IFXMIPS_GPIO_P0_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0028))
13298 +#define IFXMIPS_GPIO_P1_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0058))
13299 +#define IFXMIPS_GPIO_P0_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x002C))
13300 +#define IFXMIPS_GPIO_P1_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x005C))
13301 +#define IFXMIPS_GPIO_P0_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0030))
13302 +#define IFXMIPS_GPIO_P1_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0060))
13303 +
13304 +
13305 +extern void lq_enable_irq(unsigned int irq_nr);
13306 +#define writel lq_w32
13307 +#define readl lq_r32
13308 +void dwc_otg_power_on (void)
13309 +{
13310 + // clear power
13311 + writel(readl(DANUBE_PMU_PWDCR) | 0x41, DANUBE_PMU_PWDCR);
13312 + // set clock gating
13313 + writel(readl(DANUBE_CGU_IFCCR) | 0x30, DANUBE_CGU_IFCCR);
13314 + // set power
13315 + writel(readl(DANUBE_PMU_PWDCR) & ~0x1, DANUBE_PMU_PWDCR);
13316 + writel(readl(DANUBE_PMU_PWDCR) & ~0x40, DANUBE_PMU_PWDCR);
13317 + writel(readl(DANUBE_PMU_PWDCR) & ~0x8000, DANUBE_PMU_PWDCR);
13318 +
13319 +#if 1//defined (DWC_HOST_ONLY)
13320 + // make the hardware be a host controller (default)
13321 + //clear_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13322 + writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_HDSEL_BIT), DANUBE_RCU_UBSCFG);
13323 +
13324 + //#elif defined (DWC_DEVICE_ONLY)
13325 + /* set the controller to the device mode */
13326 + // set_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13327 +#else
13328 +#error "For Danube/Twinpass, it should be HOST or Device Only."
13329 +#endif
13330 +
13331 + // set the HC's byte-order to big-endian
13332 + //set_bit (DANUBE_USBCFG_HOST_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13333 + writel(readl(DANUBE_RCU_UBSCFG) | (1<<DANUBE_USBCFG_HOST_END_BIT), DANUBE_RCU_UBSCFG);
13334 + //clear_bit (DANUBE_USBCFG_SLV_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
13335 + writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_SLV_END_BIT), DANUBE_RCU_UBSCFG);
13336 + //writel(0x400, DANUBE_RCU_UBSCFG);
13337 +
13338 + // PHY configurations.
13339 + writel (0x14014, (volatile unsigned long *)0xbe10103c);
13340 +}
13341 +
13342 +static void release_platform_dev(struct device * dev)
13343 +{
13344 +}
13345 +
13346 +int ifx_usb_hc_init(unsigned long base_addr, int irq)
13347 +{
13348 + return 0;
13349 +}
13350 +
13351 +void ifx_usb_hc_remove(void)
13352 +{
13353 +}
13354 --- /dev/null
13355 +++ b/drivers/usb/dwc_otg/dwc_otg_ifx.h
13356 @@ -0,0 +1,79 @@
13357 +/******************************************************************************
13358 +**
13359 +** FILE NAME : dwc_otg_ifx.h
13360 +** PROJECT : Twinpass/Danube
13361 +** MODULES : DWC OTG USB
13362 +**
13363 +** DATE : 12 April 2007
13364 +** AUTHOR : Sung Winder
13365 +** DESCRIPTION : Platform specific initialization.
13366 +** COPYRIGHT : Copyright (c) 2007
13367 +** Infineon Technologies AG
13368 +** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
13369 +** Hsin-chu City, 300 Taiwan.
13370 +**
13371 +** This program is free software; you can redistribute it and/or modify
13372 +** it under the terms of the GNU General Public License as published by
13373 +** the Free Software Foundation; either version 2 of the License, or
13374 +** (at your option) any later version.
13375 +**
13376 +** HISTORY
13377 +** $Date $Author $Comment
13378 +** 12 April 2007 Sung Winder Initiate Version
13379 +*******************************************************************************/
13380 +#if !defined(__DWC_OTG_IFX_H__)
13381 +#define __DWC_OTG_IFX_H__
13382 +
13383 +#include <irq.h>
13384 +
13385 +// 20070316, winder added.
13386 +#ifndef SZ_256K
13387 +#define SZ_256K 0x00040000
13388 +#endif
13389 +
13390 +extern void dwc_otg_power_on (void);
13391 +
13392 +/* FIXME: The current Linux-2.6 do not have these header files, but anyway, we need these. */
13393 +// #include <asm/danube/danube.h>
13394 +// #include <asm/ifx/irq.h>
13395 +
13396 +/* winder, I used the Danube parameter as default. *
13397 + * We could change this through module param. */
13398 +#define IFX_USB_IOMEM_BASE 0x1e101000
13399 +#define IFX_USB_IOMEM_SIZE SZ_256K
13400 +#define IFX_USB_IRQ LQ_USB_INT
13401 +
13402 +/**
13403 + * This function is called to set correct clock gating and power.
13404 + * For Twinpass/Danube board.
13405 + */
13406 +#ifndef DANUBE_RCU_BASE_ADDR
13407 +#define DANUBE_RCU_BASE_ADDR (0xBF203000)
13408 +#endif
13409 +
13410 +#ifndef DANUBE_CGU
13411 +#define DANUBE_CGU (0xBF103000)
13412 +#endif
13413 +#ifndef DANUBE_CGU_IFCCR
13414 +/***CGU Interface Clock Control Register***/
13415 +#define DANUBE_CGU_IFCCR ((volatile u32*)(DANUBE_CGU+ 0x0018))
13416 +#endif
13417 +
13418 +#ifndef DANUBE_PMU
13419 +#define DANUBE_PMU (KSEG1+0x1F102000)
13420 +#endif
13421 +#ifndef DANUBE_PMU_PWDCR
13422 +/* PMU Power down Control Register */
13423 +#define DANUBE_PMU_PWDCR ((volatile u32*)(DANUBE_PMU+0x001C))
13424 +#endif
13425 +
13426 +
13427 +#define DANUBE_RCU_UBSCFG ((volatile u32*)(DANUBE_RCU_BASE_ADDR + 0x18))
13428 +#define DANUBE_USBCFG_HDSEL_BIT 11 // 0:host, 1:device
13429 +#define DANUBE_USBCFG_HOST_END_BIT 10 // 0:little_end, 1:big_end
13430 +#define DANUBE_USBCFG_SLV_END_BIT 9 // 0:little_end, 1:big_end
13431 +
13432 +extern void lq_mask_and_ack_irq (unsigned int irq_nr);
13433 +#define mask_and_ack_ifx_irq lq_mask_and_ack_irq
13434 +
13435 +#endif //__DWC_OTG_IFX_H__
13436 --- /dev/null
13437 +++ b/drivers/usb/dwc_otg/dwc_otg_plat.h
13438 @@ -0,0 +1,269 @@
13439 +/* ==========================================================================
13440 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $
13441 + * $Revision: 1.1.1.1 $
13442 + * $Date: 2009-04-17 06:15:34 $
13443 + * $Change: 510301 $
13444 + *
13445 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13446 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13447 + * otherwise expressly agreed to in writing between Synopsys and you.
13448 + *
13449 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13450 + * any End User Software License Agreement or Agreement for Licensed Product
13451 + * with Synopsys or any supplement thereto. You are permitted to use and
13452 + * redistribute this Software in source and binary forms, with or without
13453 + * modification, provided that redistributions of source code must retain this
13454 + * notice. You may not view, use, disclose, copy or distribute this file or
13455 + * any information contained herein except pursuant to this license grant from
13456 + * Synopsys. If you do not agree with this notice, including the disclaimer
13457 + * below, then you are not authorized to use the Software.
13458 + *
13459 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13460 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13461 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13462 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13463 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13464 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13465 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13466 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13467 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13468 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13469 + * DAMAGE.
13470 + * ========================================================================== */
13471 +
13472 +#if !defined(__DWC_OTG_PLAT_H__)
13473 +#define __DWC_OTG_PLAT_H__
13474 +
13475 +#include <linux/types.h>
13476 +#include <linux/slab.h>
13477 +#include <linux/list.h>
13478 +#include <linux/delay.h>
13479 +#include <asm/io.h>
13480 +
13481 +/**
13482 + * @file
13483 + *
13484 + * This file contains the Platform Specific constants, interfaces
13485 + * (functions and macros) for Linux.
13486 + *
13487 + */
13488 +/*#if !defined(__LINUX__)
13489 +#error "The contents of this file is Linux specific!!!"
13490 +#endif
13491 +*/
13492 +#include <xway.h>
13493 +#define writel lq_w32
13494 +#define readl lq_r32
13495 +
13496 +/**
13497 + * Reads the content of a register.
13498 + *
13499 + * @param _reg address of register to read.
13500 + * @return contents of the register.
13501 + *
13502 +
13503 + * Usage:<br>
13504 + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
13505 + */
13506 +static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg)
13507 +{
13508 + return readl(_reg);
13509 +};
13510 +
13511 +/**
13512 + * Writes a register with a 32 bit value.
13513 + *
13514 + * @param _reg address of register to read.
13515 + * @param _value to write to _reg.
13516 + *
13517 + * Usage:<br>
13518 + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
13519 + */
13520 +static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value)
13521 +{
13522 + writel( _value, _reg );
13523 +};
13524 +
13525 +/**
13526 + * This function modifies bit values in a register. Using the
13527 + * algorithm: (reg_contents & ~clear_mask) | set_mask.
13528 + *
13529 + * @param _reg address of register to read.
13530 + * @param _clear_mask bit mask to be cleared.
13531 + * @param _set_mask bit mask to be set.
13532 + *
13533 + * Usage:<br>
13534 + * <code> // Clear the SOF Interrupt Mask bit and <br>
13535 + * // set the OTG Interrupt mask bit, leaving all others as they were.
13536 + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
13537 + */
13538 +static __inline__
13539 + void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask)
13540 +{
13541 + writel( (readl(_reg) & ~_clear_mask) | _set_mask, _reg );
13542 +};
13543 +
13544 +
13545 +/**
13546 + * Wrapper for the OS micro-second delay function.
13547 + * @param[in] _usecs Microseconds of delay
13548 + */
13549 +static __inline__ void UDELAY( const uint32_t _usecs )
13550 +{
13551 + udelay( _usecs );
13552 +}
13553 +
13554 +/**
13555 + * Wrapper for the OS milli-second delay function.
13556 + * @param[in] _msecs milliseconds of delay
13557 + */
13558 +static __inline__ void MDELAY( const uint32_t _msecs )
13559 +{
13560 + mdelay( _msecs );
13561 +}
13562 +
13563 +/**
13564 + * Wrapper for the Linux spin_lock. On the ARM (Integrator)
13565 + * spin_lock() is a nop.
13566 + *
13567 + * @param _lock Pointer to the spinlock.
13568 + */
13569 +static __inline__ void SPIN_LOCK( spinlock_t *_lock )
13570 +{
13571 + spin_lock(_lock);
13572 +}
13573 +
13574 +/**
13575 + * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
13576 + * spin_lock() is a nop.
13577 + *
13578 + * @param _lock Pointer to the spinlock.
13579 + */
13580 +static __inline__ void SPIN_UNLOCK( spinlock_t *_lock )
13581 +{
13582 + spin_unlock(_lock);
13583 +}
13584 +
13585 +/**
13586 + * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
13587 + * (Integrator) spin_lock() is a nop.
13588 + *
13589 + * @param _l Pointer to the spinlock.
13590 + * @param _f unsigned long for irq flags storage.
13591 + */
13592 +#define SPIN_LOCK_IRQSAVE( _l, _f ) { \
13593 + spin_lock_irqsave(_l,_f); \
13594 + }
13595 +
13596 +/**
13597 + * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
13598 + * (Integrator) spin_lock() is a nop.
13599 + *
13600 + * @param _l Pointer to the spinlock.
13601 + * @param _f unsigned long for irq flags storage.
13602 + */
13603 +#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\
13604 + spin_unlock_irqrestore(_l,_f); \
13605 + }
13606 +
13607 +
13608 +/*
13609 + * Debugging support vanishes in non-debug builds.
13610 + */
13611 +
13612 +
13613 +/**
13614 + * The Debug Level bit-mask variable.
13615 + */
13616 +extern uint32_t g_dbg_lvl;
13617 +/**
13618 + * Set the Debug Level variable.
13619 + */
13620 +static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new )
13621 +{
13622 + uint32_t old = g_dbg_lvl;
13623 + g_dbg_lvl = _new;
13624 + return old;
13625 +}
13626 +
13627 +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
13628 +#define DBG_CIL (0x2)
13629 +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
13630 + * messages */
13631 +#define DBG_CILV (0x20)
13632 +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
13633 + * messages */
13634 +#define DBG_PCD (0x4)
13635 +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
13636 + * messages */
13637 +#define DBG_PCDV (0x40)
13638 +/** When debug level has the DBG_HCD bit set, display Host debug messages */
13639 +#define DBG_HCD (0x8)
13640 +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
13641 + * messages */
13642 +#define DBG_HCDV (0x80)
13643 +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
13644 + * mode. */
13645 +#define DBG_HCD_URB (0x800)
13646 +
13647 +/** When debug level has any bit set, display debug messages */
13648 +#define DBG_ANY (0xFF)
13649 +
13650 +/** All debug messages off */
13651 +#define DBG_OFF 0
13652 +
13653 +/** Prefix string for DWC_DEBUG print macros. */
13654 +#define USB_DWC "DWC_otg: "
13655 +
13656 +/**
13657 + * Print a debug message when the Global debug level variable contains
13658 + * the bit defined in <code>lvl</code>.
13659 + *
13660 + * @param[in] lvl - Debug level, use one of the DBG_ constants above.
13661 + * @param[in] x - like printf
13662 + *
13663 + * Example:<p>
13664 + * <code>
13665 + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
13666 + * </code>
13667 + * <br>
13668 + * results in:<br>
13669 + * <code>
13670 + * usb-DWC_otg: dwc_otg_cil_init(ca867000)
13671 + * </code>
13672 + */
13673 +#ifdef DEBUG
13674 +
13675 +# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
13676 +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
13677 +
13678 +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
13679 +
13680 +#else
13681 +
13682 +# define DWC_DEBUGPL(lvl, x...) do{}while(0)
13683 +# define DWC_DEBUGP(x...)
13684 +
13685 +# define CHK_DEBUG_LEVEL(level) (0)
13686 +
13687 +#endif /*DEBUG*/
13688 +
13689 +/**
13690 + * Print an Error message.
13691 + */
13692 +#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
13693 +/**
13694 + * Print a Warning message.
13695 + */
13696 +#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
13697 +/**
13698 + * Print a notice (normal but significant message).
13699 + */
13700 +#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
13701 +/**
13702 + * Basic message printing.
13703 + */
13704 +#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
13705 +
13706 +#endif
13707 +
13708 --- /dev/null
13709 +++ b/drivers/usb/dwc_otg/dwc_otg_regs.h
13710 @@ -0,0 +1,1797 @@
13711 +/* ==========================================================================
13712 + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $
13713 + * $Revision: 1.1.1.1 $
13714 + * $Date: 2009-04-17 06:15:34 $
13715 + * $Change: 631780 $
13716 + *
13717 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13718 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13719 + * otherwise expressly agreed to in writing between Synopsys and you.
13720 + *
13721 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13722 + * any End User Software License Agreement or Agreement for Licensed Product
13723 + * with Synopsys or any supplement thereto. You are permitted to use and
13724 + * redistribute this Software in source and binary forms, with or without
13725 + * modification, provided that redistributions of source code must retain this
13726 + * notice. You may not view, use, disclose, copy or distribute this file or
13727 + * any information contained herein except pursuant to this license grant from
13728 + * Synopsys. If you do not agree with this notice, including the disclaimer
13729 + * below, then you are not authorized to use the Software.
13730 + *
13731 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13732 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13733 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13734 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13735 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13736 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13737 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13738 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13739 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13740 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13741 + * DAMAGE.
13742 + * ========================================================================== */
13743 +
13744 +#ifndef __DWC_OTG_REGS_H__
13745 +#define __DWC_OTG_REGS_H__
13746 +
13747 +/**
13748 + * @file
13749 + *
13750 + * This file contains the data structures for accessing the DWC_otg core registers.
13751 + *
13752 + * The application interfaces with the HS OTG core by reading from and
13753 + * writing to the Control and Status Register (CSR) space through the
13754 + * AHB Slave interface. These registers are 32 bits wide, and the
13755 + * addresses are 32-bit-block aligned.
13756 + * CSRs are classified as follows:
13757 + * - Core Global Registers
13758 + * - Device Mode Registers
13759 + * - Device Global Registers
13760 + * - Device Endpoint Specific Registers
13761 + * - Host Mode Registers
13762 + * - Host Global Registers
13763 + * - Host Port CSRs
13764 + * - Host Channel Specific Registers
13765 + *
13766 + * Only the Core Global registers can be accessed in both Device and
13767 + * Host modes. When the HS OTG core is operating in one mode, either
13768 + * Device or Host, the application must not access registers from the
13769 + * other mode. When the core switches from one mode to another, the
13770 + * registers in the new mode of operation must be reprogrammed as they
13771 + * would be after a power-on reset.
13772 + */
13773 +
13774 +/****************************************************************************/
13775 +/** DWC_otg Core registers .
13776 + * The dwc_otg_core_global_regs structure defines the size
13777 + * and relative field offsets for the Core Global registers.
13778 + */
13779 +typedef struct dwc_otg_core_global_regs
13780 +{
13781 + /** OTG Control and Status Register. <i>Offset: 000h</i> */
13782 + volatile uint32_t gotgctl;
13783 + /** OTG Interrupt Register. <i>Offset: 004h</i> */
13784 + volatile uint32_t gotgint;
13785 + /**Core AHB Configuration Register. <i>Offset: 008h</i> */
13786 + volatile uint32_t gahbcfg;
13787 +#define DWC_GLBINTRMASK 0x0001
13788 +#define DWC_DMAENABLE 0x0020
13789 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
13790 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
13791 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100
13792 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
13793 +
13794 +
13795 + /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
13796 + volatile uint32_t gusbcfg;
13797 + /**Core Reset Register. <i>Offset: 010h</i> */
13798 + volatile uint32_t grstctl;
13799 + /**Core Interrupt Register. <i>Offset: 014h</i> */
13800 + volatile uint32_t gintsts;
13801 + /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
13802 + volatile uint32_t gintmsk;
13803 + /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
13804 + volatile uint32_t grxstsr;
13805 + /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
13806 + volatile uint32_t grxstsp;
13807 + /**Receive FIFO Size Register. <i>Offset: 024h</i> */
13808 + volatile uint32_t grxfsiz;
13809 + /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
13810 + volatile uint32_t gnptxfsiz;
13811 + /**Non Periodic Transmit FIFO/Queue Status Register (Read
13812 + * Only). <i>Offset: 02Ch</i> */
13813 + volatile uint32_t gnptxsts;
13814 + /**I2C Access Register. <i>Offset: 030h</i> */
13815 + volatile uint32_t gi2cctl;
13816 + /**PHY Vendor Control Register. <i>Offset: 034h</i> */
13817 + volatile uint32_t gpvndctl;
13818 + /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
13819 + volatile uint32_t ggpio;
13820 + /**User ID Register. <i>Offset: 03Ch</i> */
13821 + volatile uint32_t guid;
13822 + /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
13823 + volatile uint32_t gsnpsid;
13824 + /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
13825 + volatile uint32_t ghwcfg1;
13826 + /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
13827 + volatile uint32_t ghwcfg2;
13828 +#define DWC_SLAVE_ONLY_ARCH 0
13829 +#define DWC_EXT_DMA_ARCH 1
13830 +#define DWC_INT_DMA_ARCH 2
13831 +
13832 +#define DWC_MODE_HNP_SRP_CAPABLE 0
13833 +#define DWC_MODE_SRP_ONLY_CAPABLE 1
13834 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
13835 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3
13836 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
13837 +#define DWC_MODE_SRP_CAPABLE_HOST 5
13838 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
13839 +
13840 + /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
13841 + volatile uint32_t ghwcfg3;
13842 + /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
13843 + volatile uint32_t ghwcfg4;
13844 + /** Reserved <i>Offset: 054h-0FFh</i> */
13845 + uint32_t reserved[43];
13846 + /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
13847 + volatile uint32_t hptxfsiz;
13848 + /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
13849 + otherwise Device Transmit FIFO#n Register.
13850 + * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
13851 + //volatile uint32_t dptxfsiz[15];
13852 + volatile uint32_t dptxfsiz_dieptxf[15];
13853 +} dwc_otg_core_global_regs_t;
13854 +
13855 +/**
13856 + * This union represents the bit fields of the Core OTG Control
13857 + * and Status Register (GOTGCTL). Set the bits using the bit
13858 + * fields then write the <i>d32</i> value to the register.
13859 + */
13860 +typedef union gotgctl_data
13861 +{
13862 + /** raw register data */
13863 + uint32_t d32;
13864 + /** register bits */
13865 + struct
13866 + {
13867 + unsigned reserved31_21 : 11;
13868 + unsigned currmod : 1;
13869 + unsigned bsesvld : 1;
13870 + unsigned asesvld : 1;
13871 + unsigned reserved17 : 1;
13872 + unsigned conidsts : 1;
13873 + unsigned reserved15_12 : 4;
13874 + unsigned devhnpen : 1;
13875 + unsigned hstsethnpen : 1;
13876 + unsigned hnpreq : 1;
13877 + unsigned hstnegscs : 1;
13878 + unsigned reserved7_2 : 6;
13879 + unsigned sesreq : 1;
13880 + unsigned sesreqscs : 1;
13881 + } b;
13882 +} gotgctl_data_t;
13883 +
13884 +/**
13885 + * This union represents the bit fields of the Core OTG Interrupt Register
13886 + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
13887 + * value to the register.
13888 + */
13889 +typedef union gotgint_data
13890 +{
13891 + /** raw register data */
13892 + uint32_t d32;
13893 + /** register bits */
13894 + struct
13895 + {
13896 + /** Current Mode */
13897 + unsigned reserved31_20 : 12;
13898 + /** Debounce Done */
13899 + unsigned debdone : 1;
13900 + /** A-Device Timeout Change */
13901 + unsigned adevtoutchng : 1;
13902 + /** Host Negotiation Detected */
13903 + unsigned hstnegdet : 1;
13904 + unsigned reserver16_10 : 7;
13905 + /** Host Negotiation Success Status Change */
13906 + unsigned hstnegsucstschng : 1;
13907 + /** Session Request Success Status Change */
13908 + unsigned sesreqsucstschng : 1;
13909 + unsigned reserved3_7 : 5;
13910 + /** Session End Detected */
13911 + unsigned sesenddet : 1;
13912 + /** Current Mode */
13913 + unsigned reserved1_0 : 2;
13914 + } b;
13915 +} gotgint_data_t;
13916 +
13917 +
13918 +/**
13919 + * This union represents the bit fields of the Core AHB Configuration
13920 + * Register (GAHBCFG). Set/clear the bits using the bit fields then
13921 + * write the <i>d32</i> value to the register.
13922 + */
13923 +typedef union gahbcfg_data
13924 +{
13925 + /** raw register data */
13926 + uint32_t d32;
13927 + /** register bits */
13928 + struct
13929 + {
13930 +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
13931 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
13932 + unsigned reserved9_31 : 23;
13933 + unsigned ptxfemplvl : 1;
13934 + unsigned nptxfemplvl_txfemplvl : 1;
13935 +#define DWC_GAHBCFG_DMAENABLE 1
13936 + unsigned reserved : 1;
13937 + unsigned dmaenable : 1;
13938 +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
13939 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
13940 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
13941 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
13942 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
13943 + unsigned hburstlen : 4;
13944 + unsigned glblintrmsk : 1;
13945 +#define DWC_GAHBCFG_GLBINT_ENABLE 1
13946 +
13947 + } b;
13948 +} gahbcfg_data_t;
13949 +
13950 +/**
13951 + * This union represents the bit fields of the Core USB Configuration
13952 + * Register (GUSBCFG). Set the bits using the bit fields then write
13953 + * the <i>d32</i> value to the register.
13954 + */
13955 +typedef union gusbcfg_data
13956 +{
13957 + /** raw register data */
13958 + uint32_t d32;
13959 + /** register bits */
13960 + struct
13961 + {
13962 + unsigned corrupt_tx_packet: 1; /*fscz*/
13963 + unsigned force_device_mode: 1;
13964 + unsigned force_host_mode: 1;
13965 + unsigned reserved23_28 : 6;
13966 + unsigned term_sel_dl_pulse : 1;
13967 + unsigned ulpi_int_vbus_indicator : 1;
13968 + unsigned ulpi_ext_vbus_drv : 1;
13969 + unsigned ulpi_clk_sus_m : 1;
13970 + unsigned ulpi_auto_res : 1;
13971 + unsigned ulpi_fsls : 1;
13972 + unsigned otgutmifssel : 1;
13973 + unsigned phylpwrclksel : 1;
13974 + unsigned nptxfrwnden : 1;
13975 + unsigned usbtrdtim : 4;
13976 + unsigned hnpcap : 1;
13977 + unsigned srpcap : 1;
13978 + unsigned ddrsel : 1;
13979 + unsigned physel : 1;
13980 + unsigned fsintf : 1;
13981 + unsigned ulpi_utmi_sel : 1;
13982 + unsigned phyif : 1;
13983 + unsigned toutcal : 3;
13984 + } b;
13985 +} gusbcfg_data_t;
13986 +
13987 +/**
13988 + * This union represents the bit fields of the Core Reset Register
13989 + * (GRSTCTL). Set/clear the bits using the bit fields then write the
13990 + * <i>d32</i> value to the register.
13991 + */
13992 +typedef union grstctl_data
13993 +{
13994 + /** raw register data */
13995 + uint32_t d32;
13996 + /** register bits */
13997 + struct
13998 + {
13999 + /** AHB Master Idle. Indicates the AHB Master State
14000 + * Machine is in IDLE condition. */
14001 + unsigned ahbidle : 1;
14002 + /** DMA Request Signal. Indicated DMA request is in
14003 + * probress. Used for debug purpose. */
14004 + unsigned dmareq : 1;
14005 + /** Reserved */
14006 + unsigned reserved29_11 : 19;
14007 + /** TxFIFO Number (TxFNum) (Device and Host).
14008 + *
14009 + * This is the FIFO number which needs to be flushed,
14010 + * using the TxFIFO Flush bit. This field should not
14011 + * be changed until the TxFIFO Flush bit is cleared by
14012 + * the core.
14013 + * - 0x0 : Non Periodic TxFIFO Flush
14014 + * - 0x1 : Periodic TxFIFO #1 Flush in device mode
14015 + * or Periodic TxFIFO in host mode
14016 + * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
14017 + * - ...
14018 + * - 0xF : Periodic TxFIFO #15 Flush in device mode
14019 + * - 0x10: Flush all the Transmit NonPeriodic and
14020 + * Transmit Periodic FIFOs in the core
14021 + */
14022 + unsigned txfnum : 5;
14023 + /** TxFIFO Flush (TxFFlsh) (Device and Host).
14024 + *
14025 + * This bit is used to selectively flush a single or
14026 + * all transmit FIFOs. The application must first
14027 + * ensure that the core is not in the middle of a
14028 + * transaction. <p>The application should write into
14029 + * this bit, only after making sure that neither the
14030 + * DMA engine is writing into the TxFIFO nor the MAC
14031 + * is reading the data out of the FIFO. <p>The
14032 + * application should wait until the core clears this
14033 + * bit, before performing any operations. This bit
14034 + * will takes 8 clocks (slowest of PHY or AHB clock)
14035 + * to clear.
14036 + */
14037 + unsigned txfflsh : 1;
14038 + /** RxFIFO Flush (RxFFlsh) (Device and Host)
14039 + *
14040 + * The application can flush the entire Receive FIFO
14041 + * using this bit. <p>The application must first
14042 + * ensure that the core is not in the middle of a
14043 + * transaction. <p>The application should write into
14044 + * this bit, only after making sure that neither the
14045 + * DMA engine is reading from the RxFIFO nor the MAC
14046 + * is writing the data in to the FIFO. <p>The
14047 + * application should wait until the bit is cleared
14048 + * before performing any other operations. This bit
14049 + * will takes 8 clocks (slowest of PHY or AHB clock)
14050 + * to clear.
14051 + */
14052 + unsigned rxfflsh : 1;
14053 + /** In Token Sequence Learning Queue Flush
14054 + * (INTknQFlsh) (Device Only)
14055 + */
14056 + unsigned intknqflsh : 1;
14057 + /** Host Frame Counter Reset (Host Only)<br>
14058 + *
14059 + * The application can reset the (micro)frame number
14060 + * counter inside the core, using this bit. When the
14061 + * (micro)frame counter is reset, the subsequent SOF
14062 + * sent out by the core, will have a (micro)frame
14063 + * number of 0.
14064 + */
14065 + unsigned hstfrm : 1;
14066 + /** Hclk Soft Reset
14067 + *
14068 + * The application uses this bit to reset the control logic in
14069 + * the AHB clock domain. Only AHB clock domain pipelines are
14070 + * reset.
14071 + */
14072 + unsigned hsftrst : 1;
14073 + /** Core Soft Reset (CSftRst) (Device and Host)
14074 + *
14075 + * The application can flush the control logic in the
14076 + * entire core using this bit. This bit resets the
14077 + * pipelines in the AHB Clock domain as well as the
14078 + * PHY Clock domain.
14079 + *
14080 + * The state machines are reset to an IDLE state, the
14081 + * control bits in the CSRs are cleared, all the
14082 + * transmit FIFOs and the receive FIFO are flushed.
14083 + *
14084 + * The status mask bits that control the generation of
14085 + * the interrupt, are cleared, to clear the
14086 + * interrupt. The interrupt status bits are not
14087 + * cleared, so the application can get the status of
14088 + * any events that occurred in the core after it has
14089 + * set this bit.
14090 + *
14091 + * Any transactions on the AHB are terminated as soon
14092 + * as possible following the protocol. Any
14093 + * transactions on the USB are terminated immediately.
14094 + *
14095 + * The configuration settings in the CSRs are
14096 + * unchanged, so the software doesn't have to
14097 + * reprogram these registers (Device
14098 + * Configuration/Host Configuration/Core System
14099 + * Configuration/Core PHY Configuration).
14100 + *
14101 + * The application can write to this bit, any time it
14102 + * wants to reset the core. This is a self clearing
14103 + * bit and the core clears this bit after all the
14104 + * necessary logic is reset in the core, which may
14105 + * take several clocks, depending on the current state
14106 + * of the core.
14107 + */
14108 + unsigned csftrst : 1;
14109 + } b;
14110 +} grstctl_t;
14111 +
14112 +
14113 +/**
14114 + * This union represents the bit fields of the Core Interrupt Mask
14115 + * Register (GINTMSK). Set/clear the bits using the bit fields then
14116 + * write the <i>d32</i> value to the register.
14117 + */
14118 +typedef union gintmsk_data
14119 +{
14120 + /** raw register data */
14121 + uint32_t d32;
14122 + /** register bits */
14123 + struct
14124 + {
14125 + unsigned wkupintr : 1;
14126 + unsigned sessreqintr : 1;
14127 + unsigned disconnect : 1;
14128 + unsigned conidstschng : 1;
14129 + unsigned reserved27 : 1;
14130 + unsigned ptxfempty : 1;
14131 + unsigned hcintr : 1;
14132 + unsigned portintr : 1;
14133 + unsigned reserved22_23 : 2;
14134 + unsigned incomplisoout : 1;
14135 + unsigned incomplisoin : 1;
14136 + unsigned outepintr : 1;
14137 + unsigned inepintr : 1;
14138 + unsigned epmismatch : 1;
14139 + unsigned reserved16 : 1;
14140 + unsigned eopframe : 1;
14141 + unsigned isooutdrop : 1;
14142 + unsigned enumdone : 1;
14143 + unsigned usbreset : 1;
14144 + unsigned usbsuspend : 1;
14145 + unsigned erlysuspend : 1;
14146 + unsigned i2cintr : 1;
14147 + unsigned reserved8 : 1;
14148 + unsigned goutnakeff : 1;
14149 + unsigned ginnakeff : 1;
14150 + unsigned nptxfempty : 1;
14151 + unsigned rxstsqlvl : 1;
14152 + unsigned sofintr : 1;
14153 + unsigned otgintr : 1;
14154 + unsigned modemismatch : 1;
14155 + unsigned reserved0 : 1;
14156 + } b;
14157 +} gintmsk_data_t;
14158 +/**
14159 + * This union represents the bit fields of the Core Interrupt Register
14160 + * (GINTSTS). Set/clear the bits using the bit fields then write the
14161 + * <i>d32</i> value to the register.
14162 + */
14163 +typedef union gintsts_data
14164 +{
14165 + /** raw register data */
14166 + uint32_t d32;
14167 +#define DWC_SOF_INTR_MASK 0x0008
14168 + /** register bits */
14169 + struct
14170 + {
14171 +#define DWC_HOST_MODE 1
14172 + unsigned wkupintr : 1;
14173 + unsigned sessreqintr : 1;
14174 + unsigned disconnect : 1;
14175 + unsigned conidstschng : 1;
14176 + unsigned reserved27 : 1;
14177 + unsigned ptxfempty : 1;
14178 + unsigned hcintr : 1;
14179 + unsigned portintr : 1;
14180 + unsigned reserved22_23 : 2;
14181 + unsigned incomplisoout : 1;
14182 + unsigned incomplisoin : 1;
14183 + unsigned outepintr : 1;
14184 + unsigned inepint: 1;
14185 + unsigned epmismatch : 1;
14186 + unsigned intokenrx : 1;
14187 + unsigned eopframe : 1;
14188 + unsigned isooutdrop : 1;
14189 + unsigned enumdone : 1;
14190 + unsigned usbreset : 1;
14191 + unsigned usbsuspend : 1;
14192 + unsigned erlysuspend : 1;
14193 + unsigned i2cintr : 1;
14194 + unsigned reserved8 : 1;
14195 + unsigned goutnakeff : 1;
14196 + unsigned ginnakeff : 1;
14197 + unsigned nptxfempty : 1;
14198 + unsigned rxstsqlvl : 1;
14199 + unsigned sofintr : 1;
14200 + unsigned otgintr : 1;
14201 + unsigned modemismatch : 1;
14202 + unsigned curmode : 1;
14203 + } b;
14204 +} gintsts_data_t;
14205 +
14206 +
14207 +/**
14208 + * This union represents the bit fields in the Device Receive Status Read and
14209 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
14210 + * element then read out the bits using the <i>b</i>it elements.
14211 + */
14212 +typedef union device_grxsts_data {
14213 + /** raw register data */
14214 + uint32_t d32;
14215 + /** register bits */
14216 + struct {
14217 + unsigned reserved : 7;
14218 + unsigned fn : 4;
14219 +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
14220 +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
14221 +
14222 +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
14223 +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
14224 +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
14225 + unsigned pktsts : 4;
14226 + unsigned dpid : 2;
14227 + unsigned bcnt : 11;
14228 + unsigned epnum : 4;
14229 + } b;
14230 +} device_grxsts_data_t;
14231 +
14232 +/**
14233 + * This union represents the bit fields in the Host Receive Status Read and
14234 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
14235 + * element then read out the bits using the <i>b</i>it elements.
14236 + */
14237 +typedef union host_grxsts_data {
14238 + /** raw register data */
14239 + uint32_t d32;
14240 + /** register bits */
14241 + struct {
14242 + unsigned reserved31_21 : 11;
14243 +#define DWC_GRXSTS_PKTSTS_IN 0x2
14244 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
14245 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
14246 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
14247 + unsigned pktsts : 4;
14248 + unsigned dpid : 2;
14249 + unsigned bcnt : 11;
14250 + unsigned chnum : 4;
14251 + } b;
14252 +} host_grxsts_data_t;
14253 +
14254 +/**
14255 + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
14256 + * GNPTXFSIZ, DPTXFSIZn). Read the register into the <i>d32</i> element then
14257 + * read out the bits using the <i>b</i>it elements.
14258 + */
14259 +typedef union fifosize_data {
14260 + /** raw register data */
14261 + uint32_t d32;
14262 + /** register bits */
14263 + struct {
14264 + unsigned depth : 16;
14265 + unsigned startaddr : 16;
14266 + } b;
14267 +} fifosize_data_t;
14268 +
14269 +/**
14270 + * This union represents the bit fields in the Non-Periodic Transmit
14271 + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
14272 + * <i>d32</i> element then read out the bits using the <i>b</i>it
14273 + * elements.
14274 + */
14275 +typedef union gnptxsts_data {
14276 + /** raw register data */
14277 + uint32_t d32;
14278 + /** register bits */
14279 + struct {
14280 + unsigned reserved : 1;
14281 + /** Top of the Non-Periodic Transmit Request Queue
14282 + * - bits 30:27 - Channel/EP Number
14283 + * - bits 26:25 - Token Type
14284 + * - bit 24 - Terminate (Last entry for the selected
14285 + * channel/EP)
14286 + * - 2'b00 - IN/OUT
14287 + * - 2'b01 - Zero Length OUT
14288 + * - 2'b10 - PING/Complete Split
14289 + * - 2'b11 - Channel Halt
14290 +
14291 + */
14292 + unsigned nptxqtop_chnep : 4;
14293 + unsigned nptxqtop_token : 2;
14294 + unsigned nptxqtop_terminate : 1;
14295 + unsigned nptxqspcavail : 8;
14296 + unsigned nptxfspcavail : 16;
14297 + } b;
14298 +} gnptxsts_data_t;
14299 +
14300 +/**
14301 + * This union represents the bit fields in the Transmit
14302 + * FIFO Status Register (DTXFSTS). Read the register into the
14303 + * <i>d32</i> element then read out the bits using the <i>b</i>it
14304 + * elements.
14305 + */
14306 +typedef union dtxfsts_data /* fscz */ //*
14307 +{
14308 + /** raw register data */
14309 + uint32_t d32;
14310 + /** register bits */
14311 + struct {
14312 + unsigned reserved : 16;
14313 + unsigned txfspcavail : 16;
14314 + } b;
14315 +} dtxfsts_data_t;
14316 +
14317 +/**
14318 + * This union represents the bit fields in the I2C Control Register
14319 + * (I2CCTL). Read the register into the <i>d32</i> element then read out the
14320 + * bits using the <i>b</i>it elements.
14321 + */
14322 +typedef union gi2cctl_data {
14323 + /** raw register data */
14324 + uint32_t d32;
14325 + /** register bits */
14326 + struct {
14327 + unsigned bsydne : 1;
14328 + unsigned rw : 1;
14329 + unsigned reserved : 2;
14330 + unsigned i2cdevaddr : 2;
14331 + unsigned i2csuspctl : 1;
14332 + unsigned ack : 1;
14333 + unsigned i2cen : 1;
14334 + unsigned addr : 7;
14335 + unsigned regaddr : 8;
14336 + unsigned rwdata : 8;
14337 + } b;
14338 +} gi2cctl_data_t;
14339 +
14340 +/**
14341 + * This union represents the bit fields in the User HW Config1
14342 + * Register. Read the register into the <i>d32</i> element then read
14343 + * out the bits using the <i>b</i>it elements.
14344 + */
14345 +typedef union hwcfg1_data {
14346 + /** raw register data */
14347 + uint32_t d32;
14348 + /** register bits */
14349 + struct {
14350 + unsigned ep_dir15 : 2;
14351 + unsigned ep_dir14 : 2;
14352 + unsigned ep_dir13 : 2;
14353 + unsigned ep_dir12 : 2;
14354 + unsigned ep_dir11 : 2;
14355 + unsigned ep_dir10 : 2;
14356 + unsigned ep_dir9 : 2;
14357 + unsigned ep_dir8 : 2;
14358 + unsigned ep_dir7 : 2;
14359 + unsigned ep_dir6 : 2;
14360 + unsigned ep_dir5 : 2;
14361 + unsigned ep_dir4 : 2;
14362 + unsigned ep_dir3 : 2;
14363 + unsigned ep_dir2 : 2;
14364 + unsigned ep_dir1 : 2;
14365 + unsigned ep_dir0 : 2;
14366 + } b;
14367 +} hwcfg1_data_t;
14368 +
14369 +/**
14370 + * This union represents the bit fields in the User HW Config2
14371 + * Register. Read the register into the <i>d32</i> element then read
14372 + * out the bits using the <i>b</i>it elements.
14373 + */
14374 +typedef union hwcfg2_data
14375 +{
14376 + /** raw register data */
14377 + uint32_t d32;
14378 + /** register bits */
14379 + struct {
14380 + /* GHWCFG2 */
14381 + unsigned reserved31 : 1;
14382 + unsigned dev_token_q_depth : 5;
14383 + unsigned host_perio_tx_q_depth : 2;
14384 + unsigned nonperio_tx_q_depth : 2;
14385 + unsigned rx_status_q_depth : 2;
14386 + unsigned dynamic_fifo : 1;
14387 + unsigned perio_ep_supported : 1;
14388 + unsigned num_host_chan : 4;
14389 + unsigned num_dev_ep : 4;
14390 + unsigned fs_phy_type : 2;
14391 +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
14392 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
14393 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
14394 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
14395 + unsigned hs_phy_type : 2;
14396 + unsigned point2point : 1;
14397 + unsigned architecture : 2;
14398 +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
14399 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
14400 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
14401 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
14402 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
14403 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
14404 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
14405 + unsigned op_mode : 3;
14406 + } b;
14407 +} hwcfg2_data_t;
14408 +
14409 +/**
14410 + * This union represents the bit fields in the User HW Config3
14411 + * Register. Read the register into the <i>d32</i> element then read
14412 + * out the bits using the <i>b</i>it elements.
14413 + */
14414 +typedef union hwcfg3_data
14415 +{
14416 + /** raw register data */
14417 + uint32_t d32;
14418 + /** register bits */
14419 + struct {
14420 + /* GHWCFG3 */
14421 + unsigned dfifo_depth : 16;
14422 + unsigned reserved15_13 : 3;
14423 + unsigned ahb_phy_clock_synch : 1;
14424 + unsigned synch_reset_type : 1;
14425 + unsigned optional_features : 1;
14426 + unsigned vendor_ctrl_if : 1;
14427 + unsigned i2c : 1;
14428 + unsigned otg_func : 1;
14429 + unsigned packet_size_cntr_width : 3;
14430 + unsigned xfer_size_cntr_width : 4;
14431 + } b;
14432 +} hwcfg3_data_t;
14433 +
14434 +/**
14435 + * This union represents the bit fields in the User HW Config4
14436 + * Register. Read the register into the <i>d32</i> element then read
14437 + * out the bits using the <i>b</i>it elements.
14438 + */
14439 +typedef union hwcfg4_data
14440 +{
14441 + /** raw register data */
14442 + uint32_t d32;
14443 + /** register bits */
14444 + struct {
14445 +unsigned reserved31_30 : 2; /* fscz */
14446 + unsigned num_in_eps : 4;
14447 + unsigned ded_fifo_en : 1;
14448 +
14449 + unsigned session_end_filt_en : 1;
14450 + unsigned b_valid_filt_en : 1;
14451 + unsigned a_valid_filt_en : 1;
14452 + unsigned vbus_valid_filt_en : 1;
14453 + unsigned iddig_filt_en : 1;
14454 + unsigned num_dev_mode_ctrl_ep : 4;
14455 + unsigned utmi_phy_data_width : 2;
14456 + unsigned min_ahb_freq : 9;
14457 + unsigned power_optimiz : 1;
14458 + unsigned num_dev_perio_in_ep : 4;
14459 + } b;
14460 +} hwcfg4_data_t;
14461 +
14462 +////////////////////////////////////////////
14463 +// Device Registers
14464 +/**
14465 + * Device Global Registers. <i>Offsets 800h-BFFh</i>
14466 + *
14467 + * The following structures define the size and relative field offsets
14468 + * for the Device Mode Registers.
14469 + *
14470 + * <i>These registers are visible only in Device mode and must not be
14471 + * accessed in Host mode, as the results are unknown.</i>
14472 + */
14473 +typedef struct dwc_otg_dev_global_regs
14474 +{
14475 + /** Device Configuration Register. <i>Offset 800h</i> */
14476 + volatile uint32_t dcfg;
14477 + /** Device Control Register. <i>Offset: 804h</i> */
14478 + volatile uint32_t dctl;
14479 + /** Device Status Register (Read Only). <i>Offset: 808h</i> */
14480 + volatile uint32_t dsts;
14481 + /** Reserved. <i>Offset: 80Ch</i> */
14482 + uint32_t unused;
14483 + /** Device IN Endpoint Common Interrupt Mask
14484 + * Register. <i>Offset: 810h</i> */
14485 + volatile uint32_t diepmsk;
14486 + /** Device OUT Endpoint Common Interrupt Mask
14487 + * Register. <i>Offset: 814h</i> */
14488 + volatile uint32_t doepmsk;
14489 + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
14490 + volatile uint32_t daint;
14491 + /** Device All Endpoints Interrupt Mask Register. <i>Offset:
14492 + * 81Ch</i> */
14493 + volatile uint32_t daintmsk;
14494 + /** Device IN Token Queue Read Register-1 (Read Only).
14495 + * <i>Offset: 820h</i> */
14496 + volatile uint32_t dtknqr1;
14497 + /** Device IN Token Queue Read Register-2 (Read Only).
14498 + * <i>Offset: 824h</i> */
14499 + volatile uint32_t dtknqr2;
14500 + /** Device VBUS discharge Register. <i>Offset: 828h</i> */
14501 + volatile uint32_t dvbusdis;
14502 + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
14503 + volatile uint32_t dvbuspulse;
14504 + /** Device IN Token Queue Read Register-3 (Read Only).
14505 + * Device Thresholding control register (Read/Write)
14506 + * <i>Offset: 830h</i> */
14507 + volatile uint32_t dtknqr3_dthrctl;
14508 + /** Device IN Token Queue Read Register-4 (Read Only). /
14509 + * Device IN EPs empty Inr. Mask Register (Read/Write)
14510 + * <i>Offset: 834h</i> */
14511 + volatile uint32_t dtknqr4_fifoemptymsk;
14512 +} dwc_otg_device_global_regs_t;
14513 +
14514 +/**
14515 + * This union represents the bit fields in the Device Configuration
14516 + * Register. Read the register into the <i>d32</i> member then
14517 + * set/clear the bits using the <i>b</i>it elements. Write the
14518 + * <i>d32</i> member to the dcfg register.
14519 + */
14520 +typedef union dcfg_data
14521 +{
14522 + /** raw register data */
14523 + uint32_t d32;
14524 + /** register bits */
14525 + struct {
14526 + unsigned reserved31_23 : 9;
14527 + /** In Endpoint Mis-match count */
14528 + unsigned epmscnt : 5;
14529 + unsigned reserved13_17 : 5;
14530 + /** Periodic Frame Interval */
14531 +#define DWC_DCFG_FRAME_INTERVAL_80 0
14532 +#define DWC_DCFG_FRAME_INTERVAL_85 1
14533 +#define DWC_DCFG_FRAME_INTERVAL_90 2
14534 +#define DWC_DCFG_FRAME_INTERVAL_95 3
14535 + unsigned perfrint : 2;
14536 + /** Device Addresses */
14537 + unsigned devaddr : 7;
14538 + unsigned reserved3 : 1;
14539 + /** Non Zero Length Status OUT Handshake */
14540 +#define DWC_DCFG_SEND_STALL 1
14541 + unsigned nzstsouthshk : 1;
14542 + /** Device Speed */
14543 + unsigned devspd : 2;
14544 + } b;
14545 +} dcfg_data_t;
14546 +
14547 +/**
14548 + * This union represents the bit fields in the Device Control
14549 + * Register. Read the register into the <i>d32</i> member then
14550 + * set/clear the bits using the <i>b</i>it elements.
14551 + */
14552 +typedef union dctl_data
14553 +{
14554 + /** raw register data */
14555 + uint32_t d32;
14556 + /** register bits */
14557 + struct {
14558 + unsigned reserved : 20;
14559 + /** Power-On Programming Done */
14560 + unsigned pwronprgdone : 1;
14561 + /** Clear Global OUT NAK */
14562 + unsigned cgoutnak : 1;
14563 + /** Set Global OUT NAK */
14564 + unsigned sgoutnak : 1;
14565 + /** Clear Global Non-Periodic IN NAK */
14566 + unsigned cgnpinnak : 1;
14567 + /** Set Global Non-Periodic IN NAK */
14568 + unsigned sgnpinnak : 1;
14569 + /** Test Control */
14570 + unsigned tstctl : 3;
14571 + /** Global OUT NAK Status */
14572 + unsigned goutnaksts : 1;
14573 + /** Global Non-Periodic IN NAK Status */
14574 + unsigned gnpinnaksts : 1;
14575 + /** Soft Disconnect */
14576 + unsigned sftdiscon : 1;
14577 + /** Remote Wakeup */
14578 + unsigned rmtwkupsig : 1;
14579 + } b;
14580 +} dctl_data_t;
14581 +
14582 +/**
14583 + * This union represents the bit fields in the Device Status
14584 + * Register. Read the register into the <i>d32</i> member then
14585 + * set/clear the bits using the <i>b</i>it elements.
14586 + */
14587 +typedef union dsts_data
14588 +{
14589 + /** raw register data */
14590 + uint32_t d32;
14591 + /** register bits */
14592 + struct {
14593 + unsigned reserved22_31 : 10;
14594 + /** Frame or Microframe Number of the received SOF */
14595 + unsigned soffn : 14;
14596 + unsigned reserved4_7: 4;
14597 + /** Erratic Error */
14598 + unsigned errticerr : 1;
14599 + /** Enumerated Speed */
14600 +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
14601 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
14602 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
14603 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
14604 + unsigned enumspd : 2;
14605 + /** Suspend Status */
14606 + unsigned suspsts : 1;
14607 + } b;
14608 +} dsts_data_t;
14609 +
14610 +
14611 +/**
14612 + * This union represents the bit fields in the Device IN EP Interrupt
14613 + * Register and the Device IN EP Common Mask Register.
14614 + *
14615 + * - Read the register into the <i>d32</i> member then set/clear the
14616 + * bits using the <i>b</i>it elements.
14617 + */
14618 +typedef union diepint_data
14619 +{
14620 + /** raw register data */
14621 + uint32_t d32;
14622 + /** register bits */
14623 + struct {
14624 + unsigned reserved07_31 : 23;
14625 + unsigned txfifoundrn : 1;
14626 + /** IN Endpoint HAK Effective mask */
14627 + unsigned emptyintr : 1;
14628 + /** IN Endpoint NAK Effective mask */
14629 + unsigned inepnakeff : 1;
14630 + /** IN Token Received with EP mismatch mask */
14631 + unsigned intknepmis : 1;
14632 + /** IN Token received with TxF Empty mask */
14633 + unsigned intktxfemp : 1;
14634 + /** TimeOUT Handshake mask (non-ISOC EPs) */
14635 + unsigned timeout : 1;
14636 + /** AHB Error mask */
14637 + unsigned ahberr : 1;
14638 + /** Endpoint disable mask */
14639 + unsigned epdisabled : 1;
14640 + /** Transfer complete mask */
14641 + unsigned xfercompl : 1;
14642 + } b;
14643 +} diepint_data_t;
14644 +/**
14645 + * This union represents the bit fields in the Device IN EP Common
14646 + * Interrupt Mask Register.
14647 + */
14648 +typedef union diepint_data diepmsk_data_t;
14649 +
14650 +/**
14651 + * This union represents the bit fields in the Device OUT EP Interrupt
14652 + * Registerand Device OUT EP Common Interrupt Mask Register.
14653 + *
14654 + * - Read the register into the <i>d32</i> member then set/clear the
14655 + * bits using the <i>b</i>it elements.
14656 + */
14657 +typedef union doepint_data
14658 +{
14659 + /** raw register data */
14660 + uint32_t d32;
14661 + /** register bits */
14662 + struct {
14663 + unsigned reserved04_31 : 27;
14664 + /** OUT Token Received when Endpoint Disabled */
14665 + unsigned outtknepdis : 1;
14666 + /** Setup Phase Done (contorl EPs) */
14667 + unsigned setup : 1;
14668 + /** AHB Error */
14669 + unsigned ahberr : 1;
14670 + /** Endpoint disable */
14671 + unsigned epdisabled : 1;
14672 + /** Transfer complete */
14673 + unsigned xfercompl : 1;
14674 + } b;
14675 +} doepint_data_t;
14676 +/**
14677 + * This union represents the bit fields in the Device OUT EP Common
14678 + * Interrupt Mask Register.
14679 + */
14680 +typedef union doepint_data doepmsk_data_t;
14681 +
14682 +
14683 +/**
14684 + * This union represents the bit fields in the Device All EP Interrupt
14685 + * and Mask Registers.
14686 + * - Read the register into the <i>d32</i> member then set/clear the
14687 + * bits using the <i>b</i>it elements.
14688 + */
14689 +typedef union daint_data
14690 +{
14691 + /** raw register data */
14692 + uint32_t d32;
14693 + /** register bits */
14694 + struct {
14695 + /** OUT Endpoint bits */
14696 + unsigned out : 16;
14697 + /** IN Endpoint bits */
14698 + unsigned in : 16;
14699 + } ep;
14700 + struct {
14701 + /** OUT Endpoint bits */
14702 + unsigned outep15 : 1;
14703 + unsigned outep14 : 1;
14704 + unsigned outep13 : 1;
14705 + unsigned outep12 : 1;
14706 + unsigned outep11 : 1;
14707 + unsigned outep10 : 1;
14708 + unsigned outep9 : 1;
14709 + unsigned outep8 : 1;
14710 + unsigned outep7 : 1;
14711 + unsigned outep6 : 1;
14712 + unsigned outep5 : 1;
14713 + unsigned outep4 : 1;
14714 + unsigned outep3 : 1;
14715 + unsigned outep2 : 1;
14716 + unsigned outep1 : 1;
14717 + unsigned outep0 : 1;
14718 + /** IN Endpoint bits */
14719 + unsigned inep15 : 1;
14720 + unsigned inep14 : 1;
14721 + unsigned inep13 : 1;
14722 + unsigned inep12 : 1;
14723 + unsigned inep11 : 1;
14724 + unsigned inep10 : 1;
14725 + unsigned inep9 : 1;
14726 + unsigned inep8 : 1;
14727 + unsigned inep7 : 1;
14728 + unsigned inep6 : 1;
14729 + unsigned inep5 : 1;
14730 + unsigned inep4 : 1;
14731 + unsigned inep3 : 1;
14732 + unsigned inep2 : 1;
14733 + unsigned inep1 : 1;
14734 + unsigned inep0 : 1;
14735 + } b;
14736 +} daint_data_t;
14737 +
14738 +/**
14739 + * This union represents the bit fields in the Device IN Token Queue
14740 + * Read Registers.
14741 + * - Read the register into the <i>d32</i> member.
14742 + * - READ-ONLY Register
14743 + */
14744 +typedef union dtknq1_data
14745 +{
14746 + /** raw register data */
14747 + uint32_t d32;
14748 + /** register bits */
14749 + struct {
14750 + /** EP Numbers of IN Tokens 0 ... 4 */
14751 + unsigned epnums0_5 : 24;
14752 + /** write pointer has wrapped. */
14753 + unsigned wrap_bit : 1;
14754 + /** Reserved */
14755 + unsigned reserved05_06 : 2;
14756 + /** In Token Queue Write Pointer */
14757 + unsigned intknwptr : 5;
14758 + }b;
14759 +} dtknq1_data_t;
14760 +
14761 +/**
14762 + * This union represents Threshold control Register
14763 + * - Read and write the register into the <i>d32</i> member.
14764 + * - READ-WRITABLE Register
14765 + */
14766 +typedef union dthrctl_data //* /*fscz */
14767 +{
14768 + /** raw register data */
14769 + uint32_t d32;
14770 + /** register bits */
14771 + struct {
14772 + /** Reserved */
14773 + unsigned reserved26_31 : 6;
14774 + /** Rx Thr. Length */
14775 + unsigned rx_thr_len : 9;
14776 + /** Rx Thr. Enable */
14777 + unsigned rx_thr_en : 1;
14778 + /** Reserved */
14779 + unsigned reserved11_15 : 5;
14780 + /** Tx Thr. Length */
14781 + unsigned tx_thr_len : 9;
14782 + /** ISO Tx Thr. Enable */
14783 + unsigned iso_thr_en : 1;
14784 + /** non ISO Tx Thr. Enable */
14785 + unsigned non_iso_thr_en : 1;
14786 +
14787 + }b;
14788 +} dthrctl_data_t;
14789 +
14790 +/**
14791 + * Device Logical IN Endpoint-Specific Registers. <i>Offsets
14792 + * 900h-AFCh</i>
14793 + *
14794 + * There will be one set of endpoint registers per logical endpoint
14795 + * implemented.
14796 + *
14797 + * <i>These registers are visible only in Device mode and must not be
14798 + * accessed in Host mode, as the results are unknown.</i>
14799 + */
14800 +typedef struct dwc_otg_dev_in_ep_regs
14801 +{
14802 + /** Device IN Endpoint Control Register. <i>Offset:900h +
14803 + * (ep_num * 20h) + 00h</i> */
14804 + volatile uint32_t diepctl;
14805 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
14806 + uint32_t reserved04;
14807 + /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
14808 + * (ep_num * 20h) + 08h</i> */
14809 + volatile uint32_t diepint;
14810 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
14811 + uint32_t reserved0C;
14812 + /** Device IN Endpoint Transfer Size
14813 + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
14814 + volatile uint32_t dieptsiz;
14815 + /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
14816 + * (ep_num * 20h) + 14h</i> */
14817 + volatile uint32_t diepdma;
14818 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 18h - 900h +
14819 + * (ep_num * 20h) + 1Ch</i>*/
14820 + volatile uint32_t dtxfsts;
14821 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h +
14822 + * (ep_num * 20h) + 1Ch</i>*/
14823 + uint32_t reserved18;
14824 +} dwc_otg_dev_in_ep_regs_t;
14825 +
14826 +/**
14827 + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
14828 + * B00h-CFCh</i>
14829 + *
14830 + * There will be one set of endpoint registers per logical endpoint
14831 + * implemented.
14832 + *
14833 + * <i>These registers are visible only in Device mode and must not be
14834 + * accessed in Host mode, as the results are unknown.</i>
14835 + */
14836 +typedef struct dwc_otg_dev_out_ep_regs
14837 +{
14838 + /** Device OUT Endpoint Control Register. <i>Offset:B00h +
14839 + * (ep_num * 20h) + 00h</i> */
14840 + volatile uint32_t doepctl;
14841 + /** Device OUT Endpoint Frame number Register. <i>Offset:
14842 + * B00h + (ep_num * 20h) + 04h</i> */
14843 + volatile uint32_t doepfn;
14844 + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
14845 + * (ep_num * 20h) + 08h</i> */
14846 + volatile uint32_t doepint;
14847 + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
14848 + uint32_t reserved0C;
14849 + /** Device OUT Endpoint Transfer Size Register. <i>Offset:
14850 + * B00h + (ep_num * 20h) + 10h</i> */
14851 + volatile uint32_t doeptsiz;
14852 + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
14853 + * + (ep_num * 20h) + 14h</i> */
14854 + volatile uint32_t doepdma;
14855 + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h +
14856 + * (ep_num * 20h) + 1Ch</i> */
14857 + uint32_t unused[2];
14858 +} dwc_otg_dev_out_ep_regs_t;
14859 +
14860 +/**
14861 + * This union represents the bit fields in the Device EP Control
14862 + * Register. Read the register into the <i>d32</i> member then
14863 + * set/clear the bits using the <i>b</i>it elements.
14864 + */
14865 +typedef union depctl_data
14866 +{
14867 + /** raw register data */
14868 + uint32_t d32;
14869 + /** register bits */
14870 + struct {
14871 + /** Endpoint Enable */
14872 + unsigned epena : 1;
14873 + /** Endpoint Disable */
14874 + unsigned epdis : 1;
14875 + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
14876 + * Writing to this field sets the Endpoint DPID (DPID)
14877 + * field in this register to DATA1 Set Odd
14878 + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
14879 + * Writing to this field sets the Even/Odd
14880 + * (micro)frame (EO_FrNum) field to odd (micro) frame.
14881 + */
14882 + unsigned setd1pid : 1;
14883 + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
14884 + * Writing to this field sets the Endpoint DPID (DPID)
14885 + * field in this register to DATA0. Set Even
14886 + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
14887 + * Writing to this field sets the Even/Odd
14888 + * (micro)frame (EO_FrNum) field to even (micro)
14889 + * frame.
14890 + */
14891 + unsigned setd0pid : 1;
14892 + /** Set NAK */
14893 + unsigned snak : 1;
14894 + /** Clear NAK */
14895 + unsigned cnak : 1;
14896 + /** Tx Fifo Number
14897 + * IN EPn/IN EP0
14898 + * OUT EPn/OUT EP0 - reserved */
14899 + unsigned txfnum : 4;
14900 + /** Stall Handshake */
14901 + unsigned stall : 1;
14902 + /** Snoop Mode
14903 + * OUT EPn/OUT EP0
14904 + * IN EPn/IN EP0 - reserved */
14905 + unsigned snp : 1;
14906 + /** Endpoint Type
14907 + * 2'b00: Control
14908 + * 2'b01: Isochronous
14909 + * 2'b10: Bulk
14910 + * 2'b11: Interrupt */
14911 + unsigned eptype : 2;
14912 + /** NAK Status */
14913 + unsigned naksts : 1;
14914 + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
14915 + * This field contains the PID of the packet going to
14916 + * be received or transmitted on this endpoint. The
14917 + * application should program the PID of the first
14918 + * packet going to be received or transmitted on this
14919 + * endpoint , after the endpoint is
14920 + * activated. Application use the SetD1PID and
14921 + * SetD0PID fields of this register to program either
14922 + * D0 or D1 PID.
14923 + *
14924 + * The encoding for this field is
14925 + * - 0: D0
14926 + * - 1: D1
14927 + */
14928 + unsigned dpid : 1;
14929 + /** USB Active Endpoint */
14930 + unsigned usbactep : 1;
14931 + /** Next Endpoint
14932 + * IN EPn/IN EP0
14933 + * OUT EPn/OUT EP0 - reserved */
14934 + unsigned nextep : 4;
14935 + /** Maximum Packet Size
14936 + * IN/OUT EPn
14937 + * IN/OUT EP0 - 2 bits
14938 + * 2'b00: 64 Bytes
14939 + * 2'b01: 32
14940 + * 2'b10: 16
14941 + * 2'b11: 8 */
14942 +#define DWC_DEP0CTL_MPS_64 0
14943 +#define DWC_DEP0CTL_MPS_32 1
14944 +#define DWC_DEP0CTL_MPS_16 2
14945 +#define DWC_DEP0CTL_MPS_8 3
14946 + unsigned mps : 11;
14947 + } b;
14948 +} depctl_data_t;
14949 +
14950 +/**
14951 + * This union represents the bit fields in the Device EP Transfer
14952 + * Size Register. Read the register into the <i>d32</i> member then
14953 + * set/clear the bits using the <i>b</i>it elements.
14954 + */
14955 +typedef union deptsiz_data
14956 +{
14957 + /** raw register data */
14958 + uint32_t d32;
14959 + /** register bits */
14960 + struct {
14961 + unsigned reserved : 1;
14962 + /** Multi Count - Periodic IN endpoints */
14963 + unsigned mc : 2;
14964 + /** Packet Count */
14965 + unsigned pktcnt : 10;
14966 + /** Transfer size */
14967 + unsigned xfersize : 19;
14968 + } b;
14969 +} deptsiz_data_t;
14970 +
14971 +/**
14972 + * This union represents the bit fields in the Device EP 0 Transfer
14973 + * Size Register. Read the register into the <i>d32</i> member then
14974 + * set/clear the bits using the <i>b</i>it elements.
14975 + */
14976 +typedef union deptsiz0_data
14977 +{
14978 + /** raw register data */
14979 + uint32_t d32;
14980 + /** register bits */
14981 + struct {
14982 + unsigned reserved31 : 1;
14983 + /**Setup Packet Count (DOEPTSIZ0 Only) */
14984 + unsigned supcnt : 2;
14985 + /** Reserved */
14986 + unsigned reserved28_20 : 9;
14987 + /** Packet Count */
14988 + unsigned pktcnt : 1;
14989 + /** Reserved */
14990 + unsigned reserved18_7 : 12;
14991 + /** Transfer size */
14992 + unsigned xfersize : 7;
14993 + } b;
14994 +} deptsiz0_data_t;
14995 +
14996 +
14997 +/** Maximum number of Periodic FIFOs */
14998 +#define MAX_PERIO_FIFOS 15
14999 +/** Maximum number of TX FIFOs */
15000 +#define MAX_TX_FIFOS 15
15001 +/** Maximum number of Endpoints/HostChannels */
15002 +#define MAX_EPS_CHANNELS 16
15003 +//#define MAX_EPS_CHANNELS 4
15004 +
15005 +/**
15006 + * The dwc_otg_dev_if structure contains information needed to manage
15007 + * the DWC_otg controller acting in device mode. It represents the
15008 + * programming view of the device-specific aspects of the controller.
15009 + */
15010 +typedef struct dwc_otg_dev_if {
15011 + /** Pointer to device Global registers.
15012 + * Device Global Registers starting at offset 800h
15013 + */
15014 + dwc_otg_device_global_regs_t *dev_global_regs;
15015 +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
15016 +
15017 + /**
15018 + * Device Logical IN Endpoint-Specific Registers 900h-AFCh
15019 + */
15020 + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
15021 +#define DWC_DEV_IN_EP_REG_OFFSET 0x900
15022 +#define DWC_EP_REG_OFFSET 0x20
15023 +
15024 + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
15025 + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
15026 +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
15027 +
15028 + /* Device configuration information*/
15029 + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
15030 + //uint8_t num_eps; /**< Number of EPs range: 0-16 (includes EP0) */
15031 + //uint8_t num_perio_eps; /**< # of Periodic EP range: 0-15 */
15032 + /*fscz */
15033 + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
15034 + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
15035 +
15036 + /** Size of periodic FIFOs (Bytes) */
15037 + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
15038 +
15039 + /** Size of Tx FIFOs (Bytes) */
15040 + uint16_t tx_fifo_size[MAX_TX_FIFOS];
15041 +
15042 + /** Thresholding enable flags and length varaiables **/
15043 + uint16_t rx_thr_en;
15044 + uint16_t iso_tx_thr_en;
15045 + uint16_t non_iso_tx_thr_en;
15046 +
15047 + uint16_t rx_thr_length;
15048 + uint16_t tx_thr_length;
15049 +} dwc_otg_dev_if_t;
15050 +
15051 +/**
15052 + * This union represents the bit fields in the Power and Clock Gating Control
15053 + * Register. Read the register into the <i>d32</i> member then set/clear the
15054 + * bits using the <i>b</i>it elements.
15055 + */
15056 +typedef union pcgcctl_data
15057 +{
15058 + /** raw register data */
15059 + uint32_t d32;
15060 +
15061 + /** register bits */
15062 + struct {
15063 + unsigned reserved31_05 : 27;
15064 + /** PHY Suspended */
15065 + unsigned physuspended : 1;
15066 + /** Reset Power Down Modules */
15067 + unsigned rstpdwnmodule : 1;
15068 + /** Power Clamp */
15069 + unsigned pwrclmp : 1;
15070 + /** Gate Hclk */
15071 + unsigned gatehclk : 1;
15072 + /** Stop Pclk */
15073 + unsigned stoppclk : 1;
15074 + } b;
15075 +} pcgcctl_data_t;
15076 +
15077 +/////////////////////////////////////////////////
15078 +// Host Mode Register Structures
15079 +//
15080 +/**
15081 + * The Host Global Registers structure defines the size and relative
15082 + * field offsets for the Host Mode Global Registers. Host Global
15083 + * Registers offsets 400h-7FFh.
15084 +*/
15085 +typedef struct dwc_otg_host_global_regs
15086 +{
15087 + /** Host Configuration Register. <i>Offset: 400h</i> */
15088 + volatile uint32_t hcfg;
15089 + /** Host Frame Interval Register. <i>Offset: 404h</i> */
15090 + volatile uint32_t hfir;
15091 + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
15092 + volatile uint32_t hfnum;
15093 + /** Reserved. <i>Offset: 40Ch</i> */
15094 + uint32_t reserved40C;
15095 + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
15096 + volatile uint32_t hptxsts;
15097 + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
15098 + volatile uint32_t haint;
15099 + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
15100 + volatile uint32_t haintmsk;
15101 +} dwc_otg_host_global_regs_t;
15102 +
15103 +/**
15104 + * This union represents the bit fields in the Host Configuration Register.
15105 + * Read the register into the <i>d32</i> member then set/clear the bits using
15106 + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
15107 + */
15108 +typedef union hcfg_data
15109 +{
15110 + /** raw register data */
15111 + uint32_t d32;
15112 +
15113 + /** register bits */
15114 + struct {
15115 + /** Reserved */
15116 + //unsigned reserved31_03 : 29;
15117 + /** FS/LS Only Support */
15118 + unsigned fslssupp : 1;
15119 + /** FS/LS Phy Clock Select */
15120 +#define DWC_HCFG_30_60_MHZ 0
15121 +#define DWC_HCFG_48_MHZ 1
15122 +#define DWC_HCFG_6_MHZ 2
15123 + unsigned fslspclksel : 2;
15124 + } b;
15125 +} hcfg_data_t;
15126 +
15127 +/**
15128 + * This union represents the bit fields in the Host Frame Remaing/Number
15129 + * Register.
15130 + */
15131 +typedef union hfir_data
15132 +{
15133 + /** raw register data */
15134 + uint32_t d32;
15135 +
15136 + /** register bits */
15137 + struct {
15138 + unsigned reserved : 16;
15139 + unsigned frint : 16;
15140 + } b;
15141 +} hfir_data_t;
15142 +
15143 +/**
15144 + * This union represents the bit fields in the Host Frame Remaing/Number
15145 + * Register.
15146 + */
15147 +typedef union hfnum_data
15148 +{
15149 + /** raw register data */
15150 + uint32_t d32;
15151 +
15152 + /** register bits */
15153 + struct {
15154 + unsigned frrem : 16;
15155 +#define DWC_HFNUM_MAX_FRNUM 0x3FFF
15156 + unsigned frnum : 16;
15157 + } b;
15158 +} hfnum_data_t;
15159 +
15160 +typedef union hptxsts_data
15161 +{
15162 + /** raw register data */
15163 + uint32_t d32;
15164 +
15165 + /** register bits */
15166 + struct {
15167 + /** Top of the Periodic Transmit Request Queue
15168 + * - bit 24 - Terminate (last entry for the selected channel)
15169 + * - bits 26:25 - Token Type
15170 + * - 2'b00 - Zero length
15171 + * - 2'b01 - Ping
15172 + * - 2'b10 - Disable
15173 + * - bits 30:27 - Channel Number
15174 + * - bit 31 - Odd/even microframe
15175 + */
15176 + unsigned ptxqtop_odd : 1;
15177 + unsigned ptxqtop_chnum : 4;
15178 + unsigned ptxqtop_token : 2;
15179 + unsigned ptxqtop_terminate : 1;
15180 + unsigned ptxqspcavail : 8;
15181 + unsigned ptxfspcavail : 16;
15182 + } b;
15183 +} hptxsts_data_t;
15184 +
15185 +/**
15186 + * This union represents the bit fields in the Host Port Control and Status
15187 + * Register. Read the register into the <i>d32</i> member then set/clear the
15188 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15189 + * hprt0 register.
15190 + */
15191 +typedef union hprt0_data
15192 +{
15193 + /** raw register data */
15194 + uint32_t d32;
15195 + /** register bits */
15196 + struct {
15197 + unsigned reserved19_31 : 13;
15198 +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
15199 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
15200 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
15201 + unsigned prtspd : 2;
15202 + unsigned prttstctl : 4;
15203 + unsigned prtpwr : 1;
15204 + unsigned prtlnsts : 2;
15205 + unsigned reserved9 : 1;
15206 + unsigned prtrst : 1;
15207 + unsigned prtsusp : 1;
15208 + unsigned prtres : 1;
15209 + unsigned prtovrcurrchng : 1;
15210 + unsigned prtovrcurract : 1;
15211 + unsigned prtenchng : 1;
15212 + unsigned prtena : 1;
15213 + unsigned prtconndet : 1;
15214 + unsigned prtconnsts : 1;
15215 + } b;
15216 +} hprt0_data_t;
15217 +
15218 +/**
15219 + * This union represents the bit fields in the Host All Interrupt
15220 + * Register.
15221 + */
15222 +typedef union haint_data
15223 +{
15224 + /** raw register data */
15225 + uint32_t d32;
15226 + /** register bits */
15227 + struct {
15228 + unsigned reserved : 16;
15229 + unsigned ch15 : 1;
15230 + unsigned ch14 : 1;
15231 + unsigned ch13 : 1;
15232 + unsigned ch12 : 1;
15233 + unsigned ch11 : 1;
15234 + unsigned ch10 : 1;
15235 + unsigned ch9 : 1;
15236 + unsigned ch8 : 1;
15237 + unsigned ch7 : 1;
15238 + unsigned ch6 : 1;
15239 + unsigned ch5 : 1;
15240 + unsigned ch4 : 1;
15241 + unsigned ch3 : 1;
15242 + unsigned ch2 : 1;
15243 + unsigned ch1 : 1;
15244 + unsigned ch0 : 1;
15245 + } b;
15246 + struct {
15247 + unsigned reserved : 16;
15248 + unsigned chint : 16;
15249 + } b2;
15250 +} haint_data_t;
15251 +
15252 +/**
15253 + * This union represents the bit fields in the Host All Interrupt
15254 + * Register.
15255 + */
15256 +typedef union haintmsk_data
15257 +{
15258 + /** raw register data */
15259 + uint32_t d32;
15260 + /** register bits */
15261 + struct {
15262 + unsigned reserved : 16;
15263 + unsigned ch15 : 1;
15264 + unsigned ch14 : 1;
15265 + unsigned ch13 : 1;
15266 + unsigned ch12 : 1;
15267 + unsigned ch11 : 1;
15268 + unsigned ch10 : 1;
15269 + unsigned ch9 : 1;
15270 + unsigned ch8 : 1;
15271 + unsigned ch7 : 1;
15272 + unsigned ch6 : 1;
15273 + unsigned ch5 : 1;
15274 + unsigned ch4 : 1;
15275 + unsigned ch3 : 1;
15276 + unsigned ch2 : 1;
15277 + unsigned ch1 : 1;
15278 + unsigned ch0 : 1;
15279 + } b;
15280 + struct {
15281 + unsigned reserved : 16;
15282 + unsigned chint : 16;
15283 + } b2;
15284 +} haintmsk_data_t;
15285 +
15286 +/**
15287 + * Host Channel Specific Registers. <i>500h-5FCh</i>
15288 + */
15289 +typedef struct dwc_otg_hc_regs
15290 +{
15291 + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
15292 + volatile uint32_t hcchar;
15293 + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
15294 + volatile uint32_t hcsplt;
15295 + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
15296 + volatile uint32_t hcint;
15297 + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
15298 + volatile uint32_t hcintmsk;
15299 + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
15300 + volatile uint32_t hctsiz;
15301 + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
15302 + volatile uint32_t hcdma;
15303 + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
15304 + uint32_t reserved[2];
15305 +} dwc_otg_hc_regs_t;
15306 +
15307 +/**
15308 + * This union represents the bit fields in the Host Channel Characteristics
15309 + * Register. Read the register into the <i>d32</i> member then set/clear the
15310 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15311 + * hcchar register.
15312 + */
15313 +typedef union hcchar_data
15314 +{
15315 + /** raw register data */
15316 + uint32_t d32;
15317 +
15318 + /** register bits */
15319 + struct {
15320 + /** Channel enable */
15321 + unsigned chen : 1;
15322 + /** Channel disable */
15323 + unsigned chdis : 1;
15324 + /**
15325 + * Frame to transmit periodic transaction.
15326 + * 0: even, 1: odd
15327 + */
15328 + unsigned oddfrm : 1;
15329 + /** Device address */
15330 + unsigned devaddr : 7;
15331 + /** Packets per frame for periodic transfers. 0 is reserved. */
15332 + unsigned multicnt : 2;
15333 + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
15334 + unsigned eptype : 2;
15335 + /** 0: Full/high speed device, 1: Low speed device */
15336 + unsigned lspddev : 1;
15337 + unsigned reserved : 1;
15338 + /** 0: OUT, 1: IN */
15339 + unsigned epdir : 1;
15340 + /** Endpoint number */
15341 + unsigned epnum : 4;
15342 + /** Maximum packet size in bytes */
15343 + unsigned mps : 11;
15344 + } b;
15345 +} hcchar_data_t;
15346 +
15347 +typedef union hcsplt_data
15348 +{
15349 + /** raw register data */
15350 + uint32_t d32;
15351 +
15352 + /** register bits */
15353 + struct {
15354 + /** Split Enble */
15355 + unsigned spltena : 1;
15356 + /** Reserved */
15357 + unsigned reserved : 14;
15358 + /** Do Complete Split */
15359 + unsigned compsplt : 1;
15360 + /** Transaction Position */
15361 +#define DWC_HCSPLIT_XACTPOS_MID 0
15362 +#define DWC_HCSPLIT_XACTPOS_END 1
15363 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2
15364 +#define DWC_HCSPLIT_XACTPOS_ALL 3
15365 + unsigned xactpos : 2;
15366 + /** Hub Address */
15367 + unsigned hubaddr : 7;
15368 + /** Port Address */
15369 + unsigned prtaddr : 7;
15370 + } b;
15371 +} hcsplt_data_t;
15372 +
15373 +
15374 +/**
15375 + * This union represents the bit fields in the Host All Interrupt
15376 + * Register.
15377 + */
15378 +typedef union hcint_data
15379 +{
15380 + /** raw register data */
15381 + uint32_t d32;
15382 + /** register bits */
15383 + struct {
15384 + /** Reserved */
15385 + unsigned reserved : 21;
15386 + /** Data Toggle Error */
15387 + unsigned datatglerr : 1;
15388 + /** Frame Overrun */
15389 + unsigned frmovrun : 1;
15390 + /** Babble Error */
15391 + unsigned bblerr : 1;
15392 + /** Transaction Err */
15393 + unsigned xacterr : 1;
15394 + /** NYET Response Received */
15395 + unsigned nyet : 1;
15396 + /** ACK Response Received */
15397 + unsigned ack : 1;
15398 + /** NAK Response Received */
15399 + unsigned nak : 1;
15400 + /** STALL Response Received */
15401 + unsigned stall : 1;
15402 + /** AHB Error */
15403 + unsigned ahberr : 1;
15404 + /** Channel Halted */
15405 + unsigned chhltd : 1;
15406 + /** Transfer Complete */
15407 + unsigned xfercomp : 1;
15408 + } b;
15409 +} hcint_data_t;
15410 +
15411 +/**
15412 + * This union represents the bit fields in the Host Channel Transfer Size
15413 + * Register. Read the register into the <i>d32</i> member then set/clear the
15414 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15415 + * hcchar register.
15416 + */
15417 +typedef union hctsiz_data
15418 +{
15419 + /** raw register data */
15420 + uint32_t d32;
15421 +
15422 + /** register bits */
15423 + struct {
15424 + /** Do PING protocol when 1 */
15425 + unsigned dopng : 1;
15426 + /**
15427 + * Packet ID for next data packet
15428 + * 0: DATA0
15429 + * 1: DATA2
15430 + * 2: DATA1
15431 + * 3: MDATA (non-Control), SETUP (Control)
15432 + */
15433 +#define DWC_HCTSIZ_DATA0 0
15434 +#define DWC_HCTSIZ_DATA1 2
15435 +#define DWC_HCTSIZ_DATA2 1
15436 +#define DWC_HCTSIZ_MDATA 3
15437 +#define DWC_HCTSIZ_SETUP 3
15438 + unsigned pid : 2;
15439 + /** Data packets to transfer */
15440 + unsigned pktcnt : 10;
15441 + /** Total transfer size in bytes */
15442 + unsigned xfersize : 19;
15443 + } b;
15444 +} hctsiz_data_t;
15445 +
15446 +/**
15447 + * This union represents the bit fields in the Host Channel Interrupt Mask
15448 + * Register. Read the register into the <i>d32</i> member then set/clear the
15449 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
15450 + * hcintmsk register.
15451 + */
15452 +typedef union hcintmsk_data
15453 +{
15454 + /** raw register data */
15455 + uint32_t d32;
15456 +
15457 + /** register bits */
15458 + struct {
15459 + unsigned reserved : 21;
15460 + unsigned datatglerr : 1;
15461 + unsigned frmovrun : 1;
15462 + unsigned bblerr : 1;
15463 + unsigned xacterr : 1;
15464 + unsigned nyet : 1;
15465 + unsigned ack : 1;
15466 + unsigned nak : 1;
15467 + unsigned stall : 1;
15468 + unsigned ahberr : 1;
15469 + unsigned chhltd : 1;
15470 + unsigned xfercompl : 1;
15471 + } b;
15472 +} hcintmsk_data_t;
15473 +
15474 +/** OTG Host Interface Structure.
15475 + *
15476 + * The OTG Host Interface Structure structure contains information
15477 + * needed to manage the DWC_otg controller acting in host mode. It
15478 + * represents the programming view of the host-specific aspects of the
15479 + * controller.
15480 + */
15481 +typedef struct dwc_otg_host_if {
15482 + /** Host Global Registers starting at offset 400h.*/
15483 + dwc_otg_host_global_regs_t *host_global_regs;
15484 +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
15485 +
15486 + /** Host Port 0 Control and Status Register */
15487 + volatile uint32_t *hprt0;
15488 +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
15489 +
15490 +
15491 + /** Host Channel Specific Registers at offsets 500h-5FCh. */
15492 + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
15493 +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
15494 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20
15495 +
15496 +
15497 + /* Host configuration information */
15498 + /** Number of Host Channels (range: 1-16) */
15499 + uint8_t num_host_channels;
15500 + /** Periodic EPs supported (0: no, 1: yes) */
15501 + uint8_t perio_eps_supported;
15502 + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
15503 + uint16_t perio_tx_fifo_size;
15504 +
15505 +} dwc_otg_host_if_t;
15506 +
15507 +#endif
15508 --- a/arch/mips/lantiq/xway/Makefile
15509 +++ b/arch/mips/lantiq/xway/Makefile
15510 @@ -4,3 +4,4 @@
15511 obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o
15512 obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o
15513 obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o
15514 +obj-y += dev-dwc_otg.o
15515 --- /dev/null
15516 +++ b/arch/mips/lantiq/xway/dev-dwc_otg.c
15517 @@ -0,0 +1,68 @@
15518 +/*
15519 + * This program is free software; you can redistribute it and/or modify
15520 + * it under the terms of the GNU General Public License as published by
15521 + * the Free Software Foundation; either version 2 of the License, or
15522 + * (at your option) any later version.
15523 + *
15524 + * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
15525 + */
15526 +
15527 +#include <linux/init.h>
15528 +#include <linux/module.h>
15529 +#include <linux/types.h>
15530 +#include <linux/string.h>
15531 +#include <linux/mtd/physmap.h>
15532 +#include <linux/kernel.h>
15533 +#include <linux/reboot.h>
15534 +#include <linux/platform_device.h>
15535 +#include <linux/leds.h>
15536 +#include <linux/etherdevice.h>
15537 +#include <linux/reboot.h>
15538 +#include <linux/time.h>
15539 +#include <linux/io.h>
15540 +#include <linux/gpio.h>
15541 +#include <linux/leds.h>
15542 +
15543 +#include <asm/bootinfo.h>
15544 +#include <asm/irq.h>
15545 +
15546 +#include <xway.h>
15547 +#include <xway_irq.h>
15548 +#include <lantiq_platform.h>
15549 +
15550 +#define LQ_USB_IOMEM_BASE 0x1e101000
15551 +#define LQ_USB_IOMEM_SIZE 0x00040000
15552 +
15553 +static struct resource resources[] =
15554 +{
15555 + [0] = {
15556 + .name = "dwc_otg_membase",
15557 + .start = LQ_USB_IOMEM_BASE,
15558 + .end = LQ_USB_IOMEM_BASE + LQ_USB_IOMEM_SIZE - 1,
15559 + .flags = IORESOURCE_MEM,
15560 + },
15561 + [1] = {
15562 + .name = "dwc_otg_irq",
15563 + .start = LQ_USB_INT,
15564 + .flags = IORESOURCE_IRQ,
15565 + },
15566 +};
15567 +
15568 +static u64 dwc_dmamask = (u32)0x1fffffff;
15569 +
15570 +static struct platform_device platform_dev = {
15571 + .name = "dwc_otg",
15572 + .dev = {
15573 + .dma_mask = &dwc_dmamask,
15574 + },
15575 + .resource = resources,
15576 + .num_resources = ARRAY_SIZE(resources),
15577 +};
15578 +
15579 +int __init
15580 +xway_register_dwc(int pin)
15581 +{
15582 + lq_enable_irq(resources[1].start);
15583 + platform_dev.dev.platform_data = (void*) pin;
15584 + return platform_device_register(&platform_dev);
15585 +}
15586 --- /dev/null
15587 +++ b/arch/mips/lantiq/xway/dev-dwc_otg.h
15588 @@ -0,0 +1,17 @@
15589 +/*
15590 + * This program is free software; you can redistribute it and/or modify
15591 + * it under the terms of the GNU General Public License as published by
15592 + * the Free Software Foundation; either version 2 of the License, or
15593 + * (at your option) any later version.
15594 + *
15595 + * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
15596 + */
15597 +
15598 +#ifndef _LQ_DEV_DWC_H__
15599 +#define _LQ_DEV_DWC_H__
15600 +
15601 +#include <lantiq_platform.h>
15602 +
15603 +extern void __init xway_register_dwc(int pin);
15604 +
15605 +#endif
This page took 0.840969 seconds and 5 git commands to generate.