3 * Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
4 * Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
30 * Effort sponsored in part by the Defense Advanced Research Projects
31 * Agency (DARPA) and Air Force Research Laboratory, Air Force
32 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 #undef UBSEC_VERBOSE_DEBUG
38 #ifdef UBSEC_VERBOSE_DEBUG
43 * uBsec BCM5365 hardware crypto accelerator
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/proc_fs.h>
50 #include <linux/types.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/interrupt.h>
55 #include <linux/random.h>
56 #include <linux/skbuff.h>
57 #include <linux/stat.h>
60 #include <linux/ssb/ssb.h>
65 //#include "bsdqueue.h"
70 #include <cryptodev.h>
77 #include <safe/hmachack.h>
80 #include <safe/sha1.h>
81 #include <safe/sha1.c>
88 #define DRV_MODULE_NAME "ubsec_ssb"
89 #define PFX DRV_MODULE_NAME ": "
90 #define DRV_MODULE_VERSION "0.02"
91 #define DRV_MODULE_RELDATE "Feb 21, 2009"
94 #define DPRINTF(a...) \
97 printk(DRV_MODULE_NAME ": " a); \
100 #define DPRINTF(a...)
106 static irqreturn_t
ubsec_ssb_isr(int, void *, struct pt_regs
*);
107 static int __devinit
ubsec_ssb_probe(struct ssb_device
*sdev
,
108 const struct ssb_device_id
*ent
);
109 static void __devexit
ubsec_ssb_remove(struct ssb_device
*sdev
);
110 int ubsec_attach(struct ssb_device
*sdev
, const struct ssb_device_id
*ent
,
111 struct device
*self
);
112 static void ubsec_setup_mackey(struct ubsec_session
*ses
, int algo
,
113 caddr_t key
, int klen
);
114 static int dma_map_skb(struct ubsec_softc
*sc
,
115 struct ubsec_dma_alloc
* q_map
, struct sk_buff
*skb
, int *mlen
);
116 static int dma_map_uio(struct ubsec_softc
*sc
,
117 struct ubsec_dma_alloc
*q_map
, struct uio
*uio
, int *mlen
);
118 static void dma_unmap(struct ubsec_softc
*sc
,
119 struct ubsec_dma_alloc
*q_map
, int mlen
);
120 static int ubsec_dmamap_aligned(struct ubsec_softc
*sc
,
121 const struct ubsec_dma_alloc
*q_map
, int mlen
);
124 static int proc_read(char *buf
, char **start
, off_t offset
,
125 int size
, int *peof
, void *data
);
128 void ubsec_reset_board(struct ubsec_softc
*);
129 void ubsec_init_board(struct ubsec_softc
*);
130 void ubsec_cleanchip(struct ubsec_softc
*);
131 void ubsec_totalreset(struct ubsec_softc
*);
132 int ubsec_free_q(struct ubsec_softc
*, struct ubsec_q
*);
134 static int ubsec_newsession(device_t
, u_int32_t
*, struct cryptoini
*);
135 static int ubsec_freesession(device_t
, u_int64_t
);
136 static int ubsec_process(device_t
, struct cryptop
*, int);
138 void ubsec_callback(struct ubsec_softc
*, struct ubsec_q
*);
139 void ubsec_feed(struct ubsec_softc
*);
140 void ubsec_mcopy(struct sk_buff
*, struct sk_buff
*, int, int);
141 void ubsec_dma_free(struct ubsec_softc
*, struct ubsec_dma_alloc
*);
142 int ubsec_dma_malloc(struct ubsec_softc
*, struct ubsec_dma_alloc
*,
146 void ubsec_dump_pb(struct ubsec_pktbuf
*);
147 void ubsec_dump_mcr(struct ubsec_mcr
*);
149 #define READ_REG(sc,r) \
150 ssb_read32((sc)->sdev, (r));
151 #define WRITE_REG(sc,r,val) \
152 ssb_write32((sc)->sdev, (r), (val));
153 #define READ_REG_SDEV(sdev,r) \
154 ssb_read32((sdev), (r));
155 #define WRITE_REG_SDEV(sdev,r,val) \
156 ssb_write32((sdev), (r), (val));
158 #define SWAP32(x) (x) = htole32(ntohl((x)))
159 #define HTOLE32(x) (x) = htole32(x)
161 #ifdef __LITTLE_ENDIAN
162 #define letoh16(x) (x)
163 #define letoh32(x) (x)
167 module_param(debug
, int, 0644);
168 MODULE_PARM_DESC(debug
, "Enable debug output");
170 #define UBSEC_SSB_MAX_CHIPS 1
171 static struct ubsec_softc
*ubsec_chip_idx
[UBSEC_SSB_MAX_CHIPS
];
172 static struct ubsec_stats ubsecstats
;
175 static struct proc_dir_entry
*procdebug
;
178 static struct ssb_device_id ubsec_ssb_tbl
[] = {
179 /* Broadcom BCM5365P IPSec Core */
180 SSB_DEVICE(SSB_VENDOR_BROADCOM
, SSB_DEV_IPSEC
, SSB_ANY_REV
),
184 static struct ssb_driver ubsec_ssb_driver
= {
185 .name
= DRV_MODULE_NAME
,
186 .id_table
= ubsec_ssb_tbl
,
187 .probe
= ubsec_ssb_probe
,
188 .remove
= __devexit_p(ubsec_ssb_remove
),
190 .suspend = ubsec_ssb_suspend,
191 .resume = ubsec_ssb_resume
195 static device_method_t ubsec_ssb_methods
= {
196 /* crypto device methods */
197 DEVMETHOD(cryptodev_newsession
, ubsec_newsession
),
198 DEVMETHOD(cryptodev_freesession
,ubsec_freesession
),
199 DEVMETHOD(cryptodev_process
, ubsec_process
),
204 proc_read(char *buf
, char **start
, off_t offset
,
205 int size
, int *peof
, void *data
)
207 int i
= 0, byteswritten
= 0, ret
;
208 unsigned int stat
, ctrl
;
209 #ifdef UBSEC_VERBOSE_DEBUG
211 struct ubsec_dma
*dmap
;
214 while ((i
< UBSEC_SSB_MAX_CHIPS
) && (ubsec_chip_idx
[i
] != NULL
))
216 struct ubsec_softc
*sc
= ubsec_chip_idx
[i
];
218 stat
= READ_REG(sc
, BS_STAT
);
219 ctrl
= READ_REG(sc
, BS_CTRL
);
220 ret
= snprintf((buf
+ byteswritten
),
221 (size
- byteswritten
) ,
222 "DEV %d, DMASTAT %08x, DMACTRL %08x\n", i
, stat
, ctrl
);
226 #ifdef UBSEC_VERBOSE_DEBUG
227 printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i
, stat
, ctrl
);
229 /* Dump all queues MCRs */
230 if (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
231 BSD_SIMPLEQ_FOREACH(q
, &sc
->sc_qchip
, q_next
)
234 ubsec_dump_mcr(&dmap
->d_dma
->d_mcr
);
249 * map in a given sk_buff
252 dma_map_skb(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
* q_map
, struct sk_buff
*skb
, int *mlen
)
258 DPRINTF("%s()\n", __FUNCTION__
);
262 * We support only a limited number of fragments.
264 if (unlikely((skb_shinfo(skb
)->nr_frags
+ 1) >= UBS_MAX_SCATTER
))
266 printk(KERN_ERR
"Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER
);
270 #ifdef UBSEC_VERBOSE_DEBUG
271 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, 0, (unsigned int)skb
->data
, skb_headlen(skb
));
274 /* first data package */
275 tmp
= dma_map_single(sc
->sc_dv
,
280 q_map
[i
].dma_paddr
= tmp
;
281 q_map
[i
].dma_vaddr
= skb
->data
;
282 q_map
[i
].dma_size
= skb_headlen(skb
);
284 if (unlikely(tmp
== 0))
286 printk(KERN_ERR
"Could not map memory region for dma.\n");
290 #ifdef UBSEC_VERBOSE_DEBUG
291 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, 0, (unsigned int)tmp
);
295 /* all other data packages */
296 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
298 #ifdef UBSEC_VERBOSE_DEBUG
299 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, i
+ 1,
300 (unsigned int)page_address(skb_frag_page(&skb_shinfo(skb
)->frags
[i
])) +
301 skb_shinfo(skb
)->frags
[i
].page_offset
, skb_shinfo(skb
)->frags
[i
].size
);
304 tmp
= dma_map_single(sc
->sc_dv
,
305 page_address(skb_frag_page(&skb_shinfo(skb
)->frags
[i
])) +
306 skb_shinfo(skb
)->frags
[i
].page_offset
,
307 skb_shinfo(skb
)->frags
[i
].size
,
310 q_map
[i
+ 1].dma_paddr
= tmp
;
311 q_map
[i
+ 1].dma_vaddr
= (void*)(page_address(skb_frag_page(&skb_shinfo(skb
)->frags
[i
])) +
312 skb_shinfo(skb
)->frags
[i
].page_offset
);
313 q_map
[i
+ 1].dma_size
= skb_shinfo(skb
)->frags
[i
].size
;
315 if (unlikely(tmp
== 0))
317 printk(KERN_ERR
"Could not map memory region for dma.\n");
321 #ifdef UBSEC_VERBOSE_DEBUG
322 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, i
+ 1, (unsigned int)tmp
);
332 * map in a given uio buffer
336 dma_map_uio(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*q_map
, struct uio
*uio
, int *mlen
)
338 struct iovec
*iov
= uio
->uio_iov
;
343 DPRINTF("%s()\n", __FUNCTION__
);
347 * We support only a limited number of fragments.
349 if (unlikely(uio
->uio_iovcnt
>= UBS_MAX_SCATTER
))
351 printk(KERN_ERR
"Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER
);
355 for (n
= 0; n
< uio
->uio_iovcnt
; n
++) {
356 #ifdef UBSEC_VERBOSE_DEBUG
357 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__
, n
, (unsigned int)iov
->iov_base
, iov
->iov_len
);
359 tmp
= dma_map_single(sc
->sc_dv
,
364 q_map
[n
].dma_paddr
= tmp
;
365 q_map
[n
].dma_vaddr
= iov
->iov_base
;
366 q_map
[n
].dma_size
= iov
->iov_len
;
368 if (unlikely(tmp
== 0))
370 printk(KERN_ERR
"Could not map memory region for dma.\n");
374 #ifdef UBSEC_VERBOSE_DEBUG
375 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__
, n
, (unsigned int)tmp
);
386 dma_unmap(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*q_map
, int mlen
)
391 DPRINTF("%s()\n", __FUNCTION__
);
394 for(i
= 0; i
< mlen
; i
++)
396 #ifdef UBSEC_VERBOSE_DEBUG
397 DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__
, i
, (unsigned int)q_map
[i
].dma_paddr
, q_map
[i
].dma_size
);
399 dma_unmap_single(sc
->sc_dv
,
408 * Is the operand suitable aligned for direct DMA. Each
409 * segment must be aligned on a 32-bit boundary and all
410 * but the last segment must be a multiple of 4 bytes.
413 ubsec_dmamap_aligned(struct ubsec_softc
*sc
, const struct ubsec_dma_alloc
*q_map
, int mlen
)
418 DPRINTF("%s()\n", __FUNCTION__
);
421 for (i
= 0; i
< mlen
; i
++) {
422 if (q_map
[i
].dma_paddr
& 3)
424 if (i
!= (mlen
- 1) && (q_map
[i
].dma_size
& 3))
431 #define N(a) (sizeof(a) / sizeof (a[0]))
433 ubsec_setup_mackey(struct ubsec_session
*ses
, int algo
, caddr_t key
, int klen
)
441 DPRINTF("%s()\n", __FUNCTION__
);
444 for (i
= 0; i
< klen
; i
++)
445 key
[i
] ^= HMAC_IPAD_VAL
;
447 if (algo
== CRYPTO_MD5_HMAC
) {
449 MD5Update(&md5ctx
, key
, klen
);
450 MD5Update(&md5ctx
, hmac_ipad_buffer
, MD5_HMAC_BLOCK_LEN
- klen
);
451 bcopy(md5ctx
.md5_st8
, ses
->ses_hminner
, sizeof(md5ctx
.md5_st8
));
454 SHA1Update(&sha1ctx
, key
, klen
);
455 SHA1Update(&sha1ctx
, hmac_ipad_buffer
,
456 SHA1_HMAC_BLOCK_LEN
- klen
);
457 bcopy(sha1ctx
.h
.b32
, ses
->ses_hminner
, sizeof(sha1ctx
.h
.b32
));
460 for (i
= 0; i
< klen
; i
++)
461 key
[i
] ^= (HMAC_IPAD_VAL
^ HMAC_OPAD_VAL
);
463 if (algo
== CRYPTO_MD5_HMAC
) {
465 MD5Update(&md5ctx
, key
, klen
);
466 MD5Update(&md5ctx
, hmac_opad_buffer
, MD5_HMAC_BLOCK_LEN
- klen
);
467 bcopy(md5ctx
.md5_st8
, ses
->ses_hmouter
, sizeof(md5ctx
.md5_st8
));
470 SHA1Update(&sha1ctx
, key
, klen
);
471 SHA1Update(&sha1ctx
, hmac_opad_buffer
,
472 SHA1_HMAC_BLOCK_LEN
- klen
);
473 bcopy(sha1ctx
.h
.b32
, ses
->ses_hmouter
, sizeof(sha1ctx
.h
.b32
));
476 for (i
= 0; i
< klen
; i
++)
477 key
[i
] ^= HMAC_OPAD_VAL
;
479 #else /* HMAC_HACK */
480 DPRINTF("md5/sha not implemented\n");
481 #endif /* HMAC_HACK */
486 __devinit
ubsec_ssb_probe(struct ssb_device
*sdev
,
487 const struct ssb_device_id
*ent
)
492 DPRINTF("%s()\n", __FUNCTION__
);
495 err
= ssb_bus_powerup(sdev
->bus
, 0);
497 dev_err(sdev
->dev
, "Failed to powerup the bus\n");
501 err
= request_irq(sdev
->irq
, (irq_handler_t
)ubsec_ssb_isr
,
502 IRQF_DISABLED
| IRQF_SHARED
, DRV_MODULE_NAME
, sdev
);
504 dev_err(sdev
->dev
, "Could not request irq\n");
505 goto err_out_powerdown
;
508 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
509 err
= dma_set_mask(sdev
->dma_dev
, DMA_BIT_MASK(32)) ||
510 dma_set_coherent_mask(sdev
->dma_dev
, DMA_BIT_MASK(32));
512 err
= ssb_dma_set_mask(sdev
, DMA_32BIT_MASK
);
516 "Required 32BIT DMA mask unsupported by the system.\n");
517 goto err_out_free_irq
;
520 printk(KERN_INFO
"Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
523 DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
524 sdev
->id
.vendor
, sdev
->id
.coreid
, sdev
->id
.revision
);
526 ssb_device_enable(sdev
, 0);
528 if (ubsec_attach(sdev
, ent
, sdev
->dev
) != 0)
529 goto err_out_disable
;
532 procdebug
= create_proc_entry(DRV_MODULE_NAME
, S_IRUSR
, NULL
);
535 procdebug
->read_proc
= proc_read
;
536 procdebug
->data
= NULL
;
538 DPRINTF("Unable to create proc file.\n");
544 ssb_device_disable(sdev
, 0);
547 free_irq(sdev
->irq
, sdev
);
550 ssb_bus_may_powerdown(sdev
->bus
);
556 static void __devexit
ubsec_ssb_remove(struct ssb_device
*sdev
) {
558 struct ubsec_softc
*sc
;
559 unsigned int ctrlflgs
;
560 struct ubsec_dma
*dmap
;
564 DPRINTF("%s()\n", __FUNCTION__
);
567 ctrlflgs
= READ_REG_SDEV(sdev
, BS_CTRL
);
568 /* disable all IPSec Core interrupts globally */
569 ctrlflgs
^= (BS_CTRL_MCR1INT
| BS_CTRL_MCR2INT
|
571 WRITE_REG_SDEV(sdev
, BS_CTRL
, ctrlflgs
);
573 free_irq(sdev
->irq
, sdev
);
575 sc
= (struct ubsec_softc
*)ssb_get_drvdata(sdev
);
577 /* unregister all crypto algorithms */
578 crypto_unregister_all(sc
->sc_cid
);
580 /* Free queue / dma memory */
581 for (i
= 0; i
< UBS_MAX_NQUEUE
; i
++) {
584 q
= sc
->sc_queuea
[i
];
590 ubsec_dma_free(sc
, &dmap
->d_alloc
);
595 sc
->sc_queuea
[i
] = NULL
;
598 ssb_device_disable(sdev
, 0);
599 ssb_bus_may_powerdown(sdev
->bus
);
600 ssb_set_drvdata(sdev
, NULL
);
604 remove_proc_entry(DRV_MODULE_NAME
, NULL
);
611 ubsec_attach(struct ssb_device
*sdev
, const struct ssb_device_id
*ent
,
614 struct ubsec_softc
*sc
= NULL
;
615 struct ubsec_dma
*dmap
;
617 static int num_chips
= 0;
620 DPRINTF("%s()\n", __FUNCTION__
);
623 sc
= (struct ubsec_softc
*) kmalloc(sizeof(*sc
), GFP_KERNEL
);
626 memset(sc
, 0, sizeof(*sc
));
628 sc
->sc_dv
= sdev
->dev
;
631 spin_lock_init(&sc
->sc_ringmtx
);
633 softc_device_init(sc
, "ubsec_ssb", num_chips
, ubsec_ssb_methods
);
635 /* Maybe someday there are boards with more than one chip available */
636 if (num_chips
< UBSEC_SSB_MAX_CHIPS
) {
637 ubsec_chip_idx
[device_get_unit(sc
->sc_dev
)] = sc
;
641 ssb_set_drvdata(sdev
, sc
);
643 BSD_SIMPLEQ_INIT(&sc
->sc_queue
);
644 BSD_SIMPLEQ_INIT(&sc
->sc_qchip
);
645 BSD_SIMPLEQ_INIT(&sc
->sc_queue2
);
646 BSD_SIMPLEQ_INIT(&sc
->sc_qchip2
);
647 BSD_SIMPLEQ_INIT(&sc
->sc_q2free
);
649 sc
->sc_statmask
= BS_STAT_MCR1_DONE
| BS_STAT_DMAERR
;
651 sc
->sc_cid
= crypto_get_driverid(softc_get_device(sc
), CRYPTOCAP_F_HARDWARE
);
652 if (sc
->sc_cid
< 0) {
653 device_printf(sc
->sc_dev
, "could not get crypto driver id\n");
657 BSD_SIMPLEQ_INIT(&sc
->sc_freequeue
);
659 for (i
= 0; i
< UBS_MAX_NQUEUE
; i
++, dmap
++) {
662 q
= (struct ubsec_q
*)kmalloc(sizeof(struct ubsec_q
), GFP_KERNEL
);
664 printf(": can't allocate queue buffers\n");
668 if (ubsec_dma_malloc(sc
, &dmap
->d_alloc
, sizeof(struct ubsec_dmachunk
),0)) {
669 printf(": can't allocate dma buffers\n");
673 dmap
->d_dma
= (struct ubsec_dmachunk
*)dmap
->d_alloc
.dma_vaddr
;
676 sc
->sc_queuea
[i
] = q
;
678 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
682 * Reset Broadcom chip
684 ubsec_reset_board(sc
);
689 ubsec_init_board(sc
);
691 /* supported crypto algorithms */
692 crypto_register(sc
->sc_cid
, CRYPTO_3DES_CBC
, 0, 0);
693 crypto_register(sc
->sc_cid
, CRYPTO_DES_CBC
, 0, 0);
695 if (sc
->sc_flags
& UBS_FLAGS_AES
) {
696 crypto_register(sc
->sc_cid
, CRYPTO_AES_CBC
, 0, 0);
697 printf(KERN_INFO DRV_MODULE_NAME
": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
700 printf(KERN_INFO DRV_MODULE_NAME
": DES 3DES MD5_HMAC SHA1_HMAC\n");
702 crypto_register(sc
->sc_cid
, CRYPTO_MD5_HMAC
, 0, 0);
703 crypto_register(sc
->sc_cid
, CRYPTO_SHA1_HMAC
, 0, 0);
709 * UBSEC Interrupt routine
712 ubsec_ssb_isr(int irq
, void *arg
, struct pt_regs
*regs
)
714 struct ubsec_softc
*sc
= NULL
;
715 volatile u_int32_t stat
;
717 struct ubsec_dma
*dmap
;
720 #ifdef UBSEC_VERBOSE_DEBUG
721 DPRINTF("%s()\n", __FUNCTION__
);
724 sc
= (struct ubsec_softc
*)ssb_get_drvdata(arg
);
726 stat
= READ_REG(sc
, BS_STAT
);
728 stat
&= sc
->sc_statmask
;
732 WRITE_REG(sc
, BS_STAT
, stat
); /* IACK */
735 * Check to see if we have any packets waiting for us
737 if ((stat
& BS_STAT_MCR1_DONE
)) {
738 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
739 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_qchip
);
742 if ((dmap
->d_dma
->d_mcr
.mcr_flags
& htole16(UBS_MCR_DONE
)) == 0)
744 DPRINTF("error while processing MCR. Flags = %x\n", dmap
->d_dma
->d_mcr
.mcr_flags
);
748 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_qchip
, q_next
);
750 npkts
= q
->q_nstacked_mcrs
;
752 * search for further sc_qchip ubsec_q's that share
753 * the same MCR, and complete them too, they must be
756 for (i
= 0; i
< npkts
; i
++) {
757 if(q
->q_stacked_mcr
[i
])
758 ubsec_callback(sc
, q
->q_stacked_mcr
[i
]);
762 ubsec_callback(sc
, q
);
766 * Don't send any more packet to chip if there has been
769 if (likely(!(stat
& BS_STAT_DMAERR
)))
772 DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
776 * Check to see if we got any DMA Error
778 if (stat
& BS_STAT_DMAERR
) {
779 volatile u_int32_t a
= READ_REG(sc
, BS_ERR
);
781 printf(KERN_ERR
"%s: dmaerr %s@%08x\n", DRV_MODULE_NAME
,
782 (a
& BS_ERR_READ
) ? "read" : "write", a
& BS_ERR_ADDR
);
784 ubsecstats
.hst_dmaerr
++;
785 ubsec_totalreset(sc
);
793 * ubsec_feed() - aggregate and post requests to chip
794 * It is assumed that the caller set splnet()
797 ubsec_feed(struct ubsec_softc
*sc
)
799 #ifdef UBSEC_VERBOSE_DEBUG
802 struct ubsec_q
*q
, *q2
;
807 npkts
= sc
->sc_nqueue
;
808 if (npkts
> UBS_MAX_AGGR
)
809 npkts
= UBS_MAX_AGGR
;
813 stat
= READ_REG(sc
, BS_STAT
);
815 if (stat
& (BS_STAT_MCR1_FULL
| BS_STAT_DMAERR
)) {
816 if(stat
& BS_STAT_DMAERR
) {
817 ubsec_totalreset(sc
);
818 ubsecstats
.hst_dmaerr
++;
823 #ifdef UBSEC_VERBOSE_DEBUG
824 DPRINTF("merging %d records\n", npkts
);
826 /* XXX temporary aggregation statistics reporting code */
829 DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME
, max
);
831 #endif /* UBSEC_VERBOSE_DEBUG */
833 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
834 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
840 * We use dma_map_single() - no sync required!
843 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
844 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
845 if (q
->q_dst_map
!= NULL
)
846 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
847 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
850 q
->q_nstacked_mcrs
= npkts
- 1; /* Number of packets stacked */
852 for (i
= 0; i
< q
->q_nstacked_mcrs
; i
++) {
853 q2
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
856 bus_dmamap_sync(sc
->sc_dmat
, q2
->q_src_map
,
857 0, q2
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
858 if (q2
->q_dst_map
!= NULL
)
859 bus_dmamap_sync(sc
->sc_dmat
, q2
->q_dst_map
,
860 0, q2
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
862 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
865 v
= ((char *)&q2
->q_dma
->d_dma
->d_mcr
) + sizeof(struct ubsec_mcr
) -
866 sizeof(struct ubsec_mcr_add
);
867 bcopy(v
, &q
->q_dma
->d_dma
->d_mcradd
[i
], sizeof(struct ubsec_mcr_add
));
868 q
->q_stacked_mcr
[i
] = q2
;
870 q
->q_dma
->d_dma
->d_mcr
.mcr_pkts
= htole16(npkts
);
871 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_qchip
, q
, q_next
);
873 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dma
->d_alloc
.dma_map
,
874 0, q
->q_dma
->d_alloc
.dma_map
->dm_mapsize
,
875 BUS_DMASYNC_PREREAD
| BUS_DMASYNC_PREWRITE
);
877 WRITE_REG(sc
, BS_MCR1
, q
->q_dma
->d_alloc
.dma_paddr
+
878 offsetof(struct ubsec_dmachunk
, d_mcr
));
879 #ifdef UBSEC_VERBOSE_DEBUG
880 DPRINTF("feed (1): q->chip %p %08x %08x\n", q
,
881 (u_int32_t
)q
->q_dma
->d_alloc
.dma_paddr
,
882 (u_int32_t
)(q
->q_dma
->d_alloc
.dma_paddr
+
883 offsetof(struct ubsec_dmachunk
, d_mcr
)));
884 #endif /* UBSEC_DEBUG */
888 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_queue
)) {
889 stat
= READ_REG(sc
, BS_STAT
);
891 if (stat
& (BS_STAT_MCR1_FULL
| BS_STAT_DMAERR
)) {
892 if(stat
& BS_STAT_DMAERR
) {
893 ubsec_totalreset(sc
);
894 ubsecstats
.hst_dmaerr
++;
899 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_queue
);
902 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
903 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
904 if (q
->q_dst_map
!= NULL
)
905 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
906 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
907 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dma
->d_alloc
.dma_map
,
908 0, q
->q_dma
->d_alloc
.dma_map
->dm_mapsize
,
909 BUS_DMASYNC_PREREAD
| BUS_DMASYNC_PREWRITE
);
912 WRITE_REG(sc
, BS_MCR1
, q
->q_dma
->d_alloc
.dma_paddr
+
913 offsetof(struct ubsec_dmachunk
, d_mcr
));
914 #ifdef UBSEC_VERBOSE_DEBUG
915 DPRINTF("feed (2): q->chip %p %08x %08x\n", q
,
916 (u_int32_t
)q
->q_dma
->d_alloc
.dma_paddr
,
917 (u_int32_t
)(q
->q_dma
->d_alloc
.dma_paddr
+
918 offsetof(struct ubsec_dmachunk
, d_mcr
)));
919 #endif /* UBSEC_DEBUG */
920 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_queue
, q_next
);
922 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_qchip
, q
, q_next
);
927 * Allocate a new 'session' and return an encoded session id. 'sidp'
928 * contains our registration id, and should contain an encoded session
929 * id on successful allocation.
932 ubsec_newsession(device_t dev
, u_int32_t
*sidp
, struct cryptoini
*cri
)
934 struct cryptoini
*c
, *encini
= NULL
, *macini
= NULL
;
935 struct ubsec_softc
*sc
= NULL
;
936 struct ubsec_session
*ses
= NULL
;
940 DPRINTF("%s()\n", __FUNCTION__
);
943 if (sidp
== NULL
|| cri
== NULL
)
946 sc
= device_get_softc(dev
);
951 for (c
= cri
; c
!= NULL
; c
= c
->cri_next
) {
952 if (c
->cri_alg
== CRYPTO_MD5_HMAC
||
953 c
->cri_alg
== CRYPTO_SHA1_HMAC
) {
957 } else if (c
->cri_alg
== CRYPTO_DES_CBC
||
958 c
->cri_alg
== CRYPTO_3DES_CBC
||
959 c
->cri_alg
== CRYPTO_AES_CBC
) {
966 if (encini
== NULL
&& macini
== NULL
)
969 if (sc
->sc_sessions
== NULL
) {
970 ses
= sc
->sc_sessions
= (struct ubsec_session
*)kmalloc(
971 sizeof(struct ubsec_session
), SLAB_ATOMIC
);
974 memset(ses
, 0, sizeof(struct ubsec_session
));
976 sc
->sc_nsessions
= 1;
978 for (sesn
= 0; sesn
< sc
->sc_nsessions
; sesn
++) {
979 if (sc
->sc_sessions
[sesn
].ses_used
== 0) {
980 ses
= &sc
->sc_sessions
[sesn
];
986 sesn
= sc
->sc_nsessions
;
987 ses
= (struct ubsec_session
*)kmalloc((sesn
+ 1) *
988 sizeof(struct ubsec_session
), SLAB_ATOMIC
);
991 memset(ses
, 0, (sesn
+ 1) * sizeof(struct ubsec_session
));
992 bcopy(sc
->sc_sessions
, ses
, sesn
*
993 sizeof(struct ubsec_session
));
994 bzero(sc
->sc_sessions
, sesn
*
995 sizeof(struct ubsec_session
));
996 kfree(sc
->sc_sessions
);
997 sc
->sc_sessions
= ses
;
998 ses
= &sc
->sc_sessions
[sesn
];
1003 bzero(ses
, sizeof(struct ubsec_session
));
1007 /* XXX may read fewer than requested */
1008 read_random(ses
->ses_iv
, sizeof(ses
->ses_iv
));
1010 /* Go ahead and compute key in ubsec's byte order */
1011 if (encini
->cri_alg
== CRYPTO_DES_CBC
) {
1012 /* DES uses the same key three times:
1013 * 1st encrypt -> 2nd decrypt -> 3nd encrypt */
1014 bcopy(encini
->cri_key
, &ses
->ses_key
[0], 8);
1015 bcopy(encini
->cri_key
, &ses
->ses_key
[2], 8);
1016 bcopy(encini
->cri_key
, &ses
->ses_key
[4], 8);
1017 ses
->ses_keysize
= 192; /* Fake! Actually its only 64bits ..
1018 oh no it is even less: 54bits. */
1019 } else if(encini
->cri_alg
== CRYPTO_3DES_CBC
) {
1020 bcopy(encini
->cri_key
, ses
->ses_key
, 24);
1021 ses
->ses_keysize
= 192;
1022 } else if(encini
->cri_alg
== CRYPTO_AES_CBC
) {
1023 ses
->ses_keysize
= encini
->cri_klen
;
1025 if (ses
->ses_keysize
!= 128 &&
1026 ses
->ses_keysize
!= 192 &&
1027 ses
->ses_keysize
!= 256)
1029 DPRINTF("unsupported AES key size: %d\n", ses
->ses_keysize
);
1032 bcopy(encini
->cri_key
, ses
->ses_key
, (ses
->ses_keysize
/ 8));
1035 /* Hardware requires the keys in little endian byte order */
1036 for (i
=0; i
< (ses
->ses_keysize
/ 32); i
++)
1037 SWAP32(ses
->ses_key
[i
]);
1041 ses
->ses_mlen
= macini
->cri_mlen
;
1043 if (ses
->ses_mlen
== 0 ||
1044 ses
->ses_mlen
> SHA1_HASH_LEN
) {
1046 if (macini
->cri_alg
== CRYPTO_MD5_HMAC
||
1047 macini
->cri_alg
== CRYPTO_SHA1_HMAC
)
1049 ses
->ses_mlen
= DEFAULT_HMAC_LEN
;
1053 * Reserved for future usage. MD5/SHA1 calculations have
1054 * different hash sizes.
1056 printk(KERN_ERR DRV_MODULE_NAME
": unsupported hash operation with mac/hash len: %d\n", ses
->ses_mlen
);
1062 if (macini
->cri_key
!= NULL
) {
1063 ubsec_setup_mackey(ses
, macini
->cri_alg
, macini
->cri_key
,
1064 macini
->cri_klen
/ 8);
1068 *sidp
= UBSEC_SID(device_get_unit(sc
->sc_dev
), sesn
);
1073 * Deallocate a session.
1076 ubsec_freesession(device_t dev
, u_int64_t tid
)
1078 struct ubsec_softc
*sc
= device_get_softc(dev
);
1080 u_int32_t sid
= ((u_int32_t
)tid
) & 0xffffffff;
1083 DPRINTF("%s()\n", __FUNCTION__
);
1089 session
= UBSEC_SESSION(sid
);
1090 if (session
< sc
->sc_nsessions
) {
1091 bzero(&sc
->sc_sessions
[session
], sizeof(sc
->sc_sessions
[session
]));
1098 ubsec_process(device_t dev
, struct cryptop
*crp
, int hint
)
1100 struct ubsec_q
*q
= NULL
;
1101 int err
= 0, i
, j
, nicealign
;
1102 struct ubsec_softc
*sc
= device_get_softc(dev
);
1103 struct cryptodesc
*crd1
, *crd2
, *maccrd
, *enccrd
;
1104 int encoffset
= 0, macoffset
= 0, cpskip
, cpoffset
;
1105 int sskip
, dskip
, stheend
, dtheend
, ivsize
= 8;
1107 struct ubsec_session
*ses
;
1108 struct ubsec_generic_ctx ctx
;
1109 struct ubsec_dma
*dmap
= NULL
;
1110 unsigned long flags
;
1113 DPRINTF("%s()\n", __FUNCTION__
);
1116 if (unlikely(crp
== NULL
|| crp
->crp_callback
== NULL
)) {
1117 ubsecstats
.hst_invalid
++;
1121 if (unlikely(sc
== NULL
))
1124 #ifdef UBSEC_VERBOSE_DEBUG
1125 DPRINTF("spin_lock_irqsave\n");
1127 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1128 //spin_lock_irq(&sc->sc_ringmtx);
1130 if (BSD_SIMPLEQ_EMPTY(&sc
->sc_freequeue
)) {
1131 ubsecstats
.hst_queuefull
++;
1132 #ifdef UBSEC_VERBOSE_DEBUG
1133 DPRINTF("spin_unlock_irqrestore\n");
1135 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1136 //spin_unlock_irq(&sc->sc_ringmtx);
1141 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_freequeue
);
1142 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_freequeue
, q_next
);
1143 #ifdef UBSEC_VERBOSE_DEBUG
1144 DPRINTF("spin_unlock_irqrestore\n");
1146 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1147 //spin_unlock_irq(&sc->sc_ringmtx);
1149 dmap
= q
->q_dma
; /* Save dma pointer */
1150 bzero(q
, sizeof(struct ubsec_q
));
1151 bzero(&ctx
, sizeof(ctx
));
1153 q
->q_sesn
= UBSEC_SESSION(crp
->crp_sid
);
1155 ses
= &sc
->sc_sessions
[q
->q_sesn
];
1157 if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1158 q
->q_src_m
= (struct sk_buff
*)crp
->crp_buf
;
1159 q
->q_dst_m
= (struct sk_buff
*)crp
->crp_buf
;
1160 } else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1161 q
->q_src_io
= (struct uio
*)crp
->crp_buf
;
1162 q
->q_dst_io
= (struct uio
*)crp
->crp_buf
;
1165 goto errout
; /* XXX we don't handle contiguous blocks! */
1168 bzero(&dmap
->d_dma
->d_mcr
, sizeof(struct ubsec_mcr
));
1170 dmap
->d_dma
->d_mcr
.mcr_pkts
= htole16(1);
1171 dmap
->d_dma
->d_mcr
.mcr_flags
= 0;
1174 crd1
= crp
->crp_desc
;
1179 crd2
= crd1
->crd_next
;
1182 if (crd1
->crd_alg
== CRYPTO_MD5_HMAC
||
1183 crd1
->crd_alg
== CRYPTO_SHA1_HMAC
) {
1186 } else if (crd1
->crd_alg
== CRYPTO_DES_CBC
||
1187 crd1
->crd_alg
== CRYPTO_3DES_CBC
||
1188 crd1
->crd_alg
== CRYPTO_AES_CBC
) {
1196 if ((crd1
->crd_alg
== CRYPTO_MD5_HMAC
||
1197 crd1
->crd_alg
== CRYPTO_SHA1_HMAC
) &&
1198 (crd2
->crd_alg
== CRYPTO_DES_CBC
||
1199 crd2
->crd_alg
== CRYPTO_3DES_CBC
||
1200 crd2
->crd_alg
== CRYPTO_AES_CBC
) &&
1201 ((crd2
->crd_flags
& CRD_F_ENCRYPT
) == 0)) {
1204 } else if ((crd1
->crd_alg
== CRYPTO_DES_CBC
||
1205 crd1
->crd_alg
== CRYPTO_3DES_CBC
||
1206 crd1
->crd_alg
== CRYPTO_AES_CBC
) &&
1207 (crd2
->crd_alg
== CRYPTO_MD5_HMAC
||
1208 crd2
->crd_alg
== CRYPTO_SHA1_HMAC
) &&
1209 (crd1
->crd_flags
& CRD_F_ENCRYPT
)) {
1214 * We cannot order the ubsec as requested
1216 printk(KERN_ERR DRV_MODULE_NAME
": got wrong algorithm/signature order.\n");
1222 /* Encryption/Decryption requested */
1224 encoffset
= enccrd
->crd_skip
;
1226 if (enccrd
->crd_alg
== CRYPTO_DES_CBC
||
1227 enccrd
->crd_alg
== CRYPTO_3DES_CBC
)
1229 ctx
.pc_flags
|= htole16(UBS_PKTCTX_ENC_3DES
);
1230 ctx
.pc_type
= htole16(UBS_PKTCTX_TYPE_IPSEC_DES
);
1231 ivsize
= 8; /* [3]DES uses 64bit IVs */
1233 ctx
.pc_flags
|= htole16(UBS_PKTCTX_ENC_AES
);
1234 ctx
.pc_type
= htole16(UBS_PKTCTX_TYPE_IPSEC_AES
);
1235 ivsize
= 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
1237 switch(ses
->ses_keysize
)
1240 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES128
);
1243 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES192
);
1246 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AES256
);
1249 DPRINTF("invalid AES key size: %d\n", ses
->ses_keysize
);
1255 if (enccrd
->crd_flags
& CRD_F_ENCRYPT
) {
1256 /* Direction: Outbound */
1258 q
->q_flags
|= UBSEC_QFLAGS_COPYOUTIV
;
1260 if (enccrd
->crd_flags
& CRD_F_IV_EXPLICIT
) {
1261 bcopy(enccrd
->crd_iv
, ctx
.pc_iv
, ivsize
);
1263 for(i
=0; i
< (ivsize
/ 4); i
++)
1264 ctx
.pc_iv
[i
] = ses
->ses_iv
[i
];
1267 /* If there is no IV in the buffer -> copy it here */
1268 if ((enccrd
->crd_flags
& CRD_F_IV_PRESENT
) == 0) {
1269 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1271 m_copyback(q->q_src_m,
1275 crypto_copyback(crp
->crp_flags
, (caddr_t
)q
->q_src_m
,
1276 enccrd
->crd_inject
, ivsize
, (caddr_t
)ctx
.pc_iv
);
1277 else if (crp
->crp_flags
& CRYPTO_F_IOV
)
1279 cuio_copyback(q->q_src_io,
1283 crypto_copyback(crp
->crp_flags
, (caddr_t
)q
->q_src_io
,
1284 enccrd
->crd_inject
, ivsize
, (caddr_t
)ctx
.pc_iv
);
1287 /* Direction: Inbound */
1289 ctx
.pc_flags
|= htole16(UBS_PKTCTX_INBOUND
);
1291 if (enccrd
->crd_flags
& CRD_F_IV_EXPLICIT
)
1292 bcopy(enccrd
->crd_iv
, ctx
.pc_iv
, ivsize
);
1293 else if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1295 m_copydata(q->q_src_m, enccrd->crd_inject,
1296 8, (caddr_t)ctx.pc_iv);
1298 crypto_copydata(crp
->crp_flags
, (caddr_t
)q
->q_src_m
,
1299 enccrd
->crd_inject
, ivsize
,
1300 (caddr_t
)ctx
.pc_iv
);
1301 else if (crp
->crp_flags
& CRYPTO_F_IOV
)
1303 cuio_copydata(q->q_src_io,
1304 enccrd->crd_inject, 8,
1305 (caddr_t)ctx.pc_iv);
1307 crypto_copydata(crp
->crp_flags
, (caddr_t
)q
->q_src_io
,
1308 enccrd
->crd_inject
, ivsize
,
1309 (caddr_t
)ctx
.pc_iv
);
1313 /* Even though key & IV sizes differ from cipher to cipher
1314 * copy / swap the full array lengths. Let the compiler unroll
1315 * the loop to increase the cpu pipeline performance... */
1316 for(i
=0; i
< 8; i
++)
1317 ctx
.pc_key
[i
] = ses
->ses_key
[i
];
1318 for(i
=0; i
< 4; i
++)
1319 SWAP32(ctx
.pc_iv
[i
]);
1322 /* Authentication requested */
1324 macoffset
= maccrd
->crd_skip
;
1326 if (maccrd
->crd_alg
== CRYPTO_MD5_HMAC
)
1327 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AUTH_MD5
);
1329 ctx
.pc_flags
|= htole16(UBS_PKTCTX_AUTH_SHA1
);
1331 for (i
= 0; i
< 5; i
++) {
1332 ctx
.pc_hminner
[i
] = ses
->ses_hminner
[i
];
1333 ctx
.pc_hmouter
[i
] = ses
->ses_hmouter
[i
];
1335 HTOLE32(ctx
.pc_hminner
[i
]);
1336 HTOLE32(ctx
.pc_hmouter
[i
]);
1340 if (enccrd
&& maccrd
) {
1342 * ubsec cannot handle packets where the end of encryption
1343 * and authentication are not the same, or where the
1344 * encrypted part begins before the authenticated part.
1346 if (((encoffset
+ enccrd
->crd_len
) !=
1347 (macoffset
+ maccrd
->crd_len
)) ||
1348 (enccrd
->crd_skip
< maccrd
->crd_skip
)) {
1352 sskip
= maccrd
->crd_skip
;
1353 cpskip
= dskip
= enccrd
->crd_skip
;
1354 stheend
= maccrd
->crd_len
;
1355 dtheend
= enccrd
->crd_len
;
1356 coffset
= enccrd
->crd_skip
- maccrd
->crd_skip
;
1357 cpoffset
= cpskip
+ dtheend
;
1359 DPRINTF("mac: skip %d, len %d, inject %d\n",
1360 maccrd
->crd_skip
, maccrd
->crd_len
, maccrd
->crd_inject
);
1361 DPRINTF("enc: skip %d, len %d, inject %d\n",
1362 enccrd
->crd_skip
, enccrd
->crd_len
, enccrd
->crd_inject
);
1363 DPRINTF("src: skip %d, len %d\n", sskip
, stheend
);
1364 DPRINTF("dst: skip %d, len %d\n", dskip
, dtheend
);
1365 DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1366 coffset
, stheend
, cpskip
, cpoffset
);
1369 cpskip
= dskip
= sskip
= macoffset
+ encoffset
;
1370 dtheend
= stheend
= (enccrd
)?enccrd
->crd_len
:maccrd
->crd_len
;
1371 cpoffset
= cpskip
+ dtheend
;
1374 ctx
.pc_offset
= htole16(coffset
>> 2);
1377 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0, UBS_MAX_SCATTER
,
1378 0xfff0, 0, BUS_DMA_NOWAIT
, &q
->q_src_map
) != 0) {
1384 if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1386 if (bus_dmamap_load_mbuf(sc
->sc_dmat
, q
->q_src_map
,
1387 q
->q_src_m
, BUS_DMA_NOWAIT
) != 0) {
1388 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1389 q
->q_src_map
= NULL
;
1394 err
= dma_map_skb(sc
, q
->q_src_map
, q
->q_src_m
, &q
->q_src_len
);
1395 if (unlikely(err
!= 0))
1398 } else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1400 if (bus_dmamap_load_uio(sc
->sc_dmat
, q
->q_src_map
,
1401 q
->q_src_io
, BUS_DMA_NOWAIT
) != 0) {
1402 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1403 q
->q_src_map
= NULL
;
1408 err
= dma_map_uio(sc
, q
->q_src_map
, q
->q_src_io
, &q
->q_src_len
);
1409 if (unlikely(err
!= 0))
1416 nicealign
= ubsec_dmamap_aligned(sc
, q
->q_src_map
, q
->q_src_len
);
1418 dmap
->d_dma
->d_mcr
.mcr_pktlen
= htole16(stheend
);
1421 DPRINTF("src skip: %d\n", sskip
);
1423 for (i
= j
= 0; i
< q
->q_src_len
; i
++) {
1424 struct ubsec_pktbuf
*pb
;
1425 size_t packl
= q
->q_src_map
[i
].dma_size
;
1426 dma_addr_t packp
= q
->q_src_map
[i
].dma_paddr
;
1428 if (sskip
>= packl
) {
1437 /* maximum fragment size is 0xfffc */
1438 if (packl
> 0xfffc) {
1439 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1445 pb
= &dmap
->d_dma
->d_mcr
.mcr_ipktbuf
;
1447 pb
= &dmap
->d_dma
->d_sbuf
[j
- 1];
1449 pb
->pb_addr
= htole32(packp
);
1452 if (packl
> stheend
) {
1453 pb
->pb_len
= htole32(stheend
);
1456 pb
->pb_len
= htole32(packl
);
1460 pb
->pb_len
= htole32(packl
);
1462 if ((i
+ 1) == q
->q_src_len
)
1465 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1466 offsetof(struct ubsec_dmachunk
, d_sbuf
[j
]));
1470 if (enccrd
== NULL
&& maccrd
!= NULL
) {
1471 /* Authentication only */
1472 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_addr
= 0;
1473 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_len
= 0;
1474 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_next
=
1475 htole32(dmap
->d_alloc
.dma_paddr
+
1476 offsetof(struct ubsec_dmachunk
, d_macbuf
[0]));
1478 DPRINTF("opkt: %x %x %x\n",
1479 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_addr
,
1480 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_len
,
1481 dmap
->d_dma
->d_mcr
.mcr_opktbuf
.pb_next
);
1484 if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1490 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0,
1491 UBS_MAX_SCATTER
, 0xfff0, 0, BUS_DMA_NOWAIT
,
1492 &q
->q_dst_map
) != 0) {
1496 if (bus_dmamap_load_uio(sc
->sc_dmat
, q
->q_dst_map
,
1497 q
->q_dst_io
, BUS_DMA_NOWAIT
) != 0) {
1498 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1499 q
->q_dst_map
= NULL
;
1504 /* HW shall copy the result into the source memory */
1505 for(i
= 0; i
< q
->q_src_len
; i
++)
1506 q
->q_dst_map
[i
] = q
->q_src_map
[i
];
1508 q
->q_dst_len
= q
->q_src_len
;
1511 } else if (crp
->crp_flags
& CRYPTO_F_SKBUF
) {
1514 /* HW shall copy the result into the source memory */
1515 q
->q_dst_m
= q
->q_src_m
;
1516 for(i
= 0; i
< q
->q_src_len
; i
++)
1517 q
->q_dst_map
[i
] = q
->q_src_map
[i
];
1519 q
->q_dst_len
= q
->q_src_len
;
1525 struct sk_buff
*m
, *top
, **mp
;
1527 totlen
= q
->q_src_map
->dm_mapsize
;
1528 if (q
->q_src_m
->m_flags
& M_PKTHDR
) {
1530 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1533 MGET(m
, M_DONTWAIT
, MT_DATA
);
1540 M_DUP_PKTHDR(m
, q
->q_src_m
);
1541 if (totlen
>= MINCLSIZE
) {
1542 MCLGET(m
, M_DONTWAIT
);
1543 if (m
->m_flags
& M_EXT
)
1550 while (totlen
> 0) {
1552 MGET(m
, M_DONTWAIT
, MT_DATA
);
1560 if (top
&& totlen
>= MINCLSIZE
) {
1561 MCLGET(m
, M_DONTWAIT
);
1562 if (m
->m_flags
& M_EXT
)
1565 m
->m_len
= len
= min(totlen
, len
);
1571 ubsec_mcopy(q
->q_src_m
, q
->q_dst_m
,
1573 if (bus_dmamap_create(sc
->sc_dmat
, 0xfff0,
1574 UBS_MAX_SCATTER
, 0xfff0, 0, BUS_DMA_NOWAIT
,
1575 &q
->q_dst_map
) != 0) {
1579 if (bus_dmamap_load_mbuf(sc
->sc_dmat
,
1580 q
->q_dst_map
, q
->q_dst_m
,
1581 BUS_DMA_NOWAIT
) != 0) {
1582 bus_dmamap_destroy(sc
->sc_dmat
,
1584 q
->q_dst_map
= NULL
;
1589 device_printf(sc
->sc_dev
,
1590 "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
1591 __FILE__
, __LINE__
);
1602 DPRINTF("dst skip: %d\n", dskip
);
1604 for (i
= j
= 0; i
< q
->q_dst_len
; i
++) {
1605 struct ubsec_pktbuf
*pb
;
1606 size_t packl
= q
->q_dst_map
[i
].dma_size
;
1607 dma_addr_t packp
= q
->q_dst_map
[i
].dma_paddr
;
1609 if (dskip
>= packl
) {
1618 if (packl
> 0xfffc) {
1619 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1625 pb
= &dmap
->d_dma
->d_mcr
.mcr_opktbuf
;
1627 pb
= &dmap
->d_dma
->d_dbuf
[j
- 1];
1629 pb
->pb_addr
= htole32(packp
);
1632 if (packl
> dtheend
) {
1633 pb
->pb_len
= htole32(dtheend
);
1636 pb
->pb_len
= htole32(packl
);
1640 pb
->pb_len
= htole32(packl
);
1642 if ((i
+ 1) == q
->q_dst_len
) {
1645 * The last fragment of the output buffer
1646 * contains the HMAC. */
1647 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1648 offsetof(struct ubsec_dmachunk
, d_macbuf
[0]));
1652 pb
->pb_next
= htole32(dmap
->d_alloc
.dma_paddr
+
1653 offsetof(struct ubsec_dmachunk
, d_dbuf
[j
]));
1658 dmap
->d_dma
->d_mcr
.mcr_cmdctxp
= htole32(dmap
->d_alloc
.dma_paddr
+
1659 offsetof(struct ubsec_dmachunk
, d_ctx
));
1661 if (sc
->sc_flags
& UBS_FLAGS_LONGCTX
) {
1662 /* new Broadcom cards with dynamic long command context structure */
1664 if (enccrd
!= NULL
&&
1665 enccrd
->crd_alg
== CRYPTO_AES_CBC
)
1667 struct ubsec_pktctx_aes128
*ctxaes128
;
1668 struct ubsec_pktctx_aes192
*ctxaes192
;
1669 struct ubsec_pktctx_aes256
*ctxaes256
;
1671 switch(ses
->ses_keysize
)
1675 ctxaes128
= (struct ubsec_pktctx_aes128
*)
1676 (dmap
->d_alloc
.dma_vaddr
+
1677 offsetof(struct ubsec_dmachunk
, d_ctx
));
1679 ctxaes128
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes128
));
1680 ctxaes128
->pc_type
= ctx
.pc_type
;
1681 ctxaes128
->pc_flags
= ctx
.pc_flags
;
1682 ctxaes128
->pc_offset
= ctx
.pc_offset
;
1683 for (i
= 0; i
< 4; i
++)
1684 ctxaes128
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1685 for (i
= 0; i
< 5; i
++)
1686 ctxaes128
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1687 for (i
= 0; i
< 5; i
++)
1688 ctxaes128
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1689 for (i
= 0; i
< 4; i
++)
1690 ctxaes128
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1695 ctxaes192
= (struct ubsec_pktctx_aes192
*)
1696 (dmap
->d_alloc
.dma_vaddr
+
1697 offsetof(struct ubsec_dmachunk
, d_ctx
));
1699 ctxaes192
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes192
));
1700 ctxaes192
->pc_type
= ctx
.pc_type
;
1701 ctxaes192
->pc_flags
= ctx
.pc_flags
;
1702 ctxaes192
->pc_offset
= ctx
.pc_offset
;
1703 for (i
= 0; i
< 6; i
++)
1704 ctxaes192
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1705 for (i
= 0; i
< 5; i
++)
1706 ctxaes192
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1707 for (i
= 0; i
< 5; i
++)
1708 ctxaes192
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1709 for (i
= 0; i
< 4; i
++)
1710 ctxaes192
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1715 ctxaes256
= (struct ubsec_pktctx_aes256
*)
1716 (dmap
->d_alloc
.dma_vaddr
+
1717 offsetof(struct ubsec_dmachunk
, d_ctx
));
1719 ctxaes256
->pc_len
= htole16(sizeof(struct ubsec_pktctx_aes256
));
1720 ctxaes256
->pc_type
= ctx
.pc_type
;
1721 ctxaes256
->pc_flags
= ctx
.pc_flags
;
1722 ctxaes256
->pc_offset
= ctx
.pc_offset
;
1723 for (i
= 0; i
< 8; i
++)
1724 ctxaes256
->pc_aeskey
[i
] = ctx
.pc_key
[i
];
1725 for (i
= 0; i
< 5; i
++)
1726 ctxaes256
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1727 for (i
= 0; i
< 5; i
++)
1728 ctxaes256
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1729 for (i
= 0; i
< 4; i
++)
1730 ctxaes256
->pc_iv
[i
] = ctx
.pc_iv
[i
];
1736 * [3]DES / MD5_HMAC / SHA1_HMAC
1738 * MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
1741 struct ubsec_pktctx_des
*ctxdes
;
1743 ctxdes
= (struct ubsec_pktctx_des
*)(dmap
->d_alloc
.dma_vaddr
+
1744 offsetof(struct ubsec_dmachunk
, d_ctx
));
1746 ctxdes
->pc_len
= htole16(sizeof(struct ubsec_pktctx_des
));
1747 ctxdes
->pc_type
= ctx
.pc_type
;
1748 ctxdes
->pc_flags
= ctx
.pc_flags
;
1749 ctxdes
->pc_offset
= ctx
.pc_offset
;
1750 for (i
= 0; i
< 6; i
++)
1751 ctxdes
->pc_deskey
[i
] = ctx
.pc_key
[i
];
1752 for (i
= 0; i
< 5; i
++)
1753 ctxdes
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1754 for (i
= 0; i
< 5; i
++)
1755 ctxdes
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1756 ctxdes
->pc_iv
[0] = ctx
.pc_iv
[0];
1757 ctxdes
->pc_iv
[1] = ctx
.pc_iv
[1];
1761 /* old Broadcom card with fixed small command context structure */
1764 * [3]DES / MD5_HMAC / SHA1_HMAC
1766 struct ubsec_pktctx
*ctxs
;
1768 ctxs
= (struct ubsec_pktctx
*)(dmap
->d_alloc
.dma_vaddr
+
1769 offsetof(struct ubsec_dmachunk
, d_ctx
));
1771 /* transform generic context into small context */
1772 for (i
= 0; i
< 6; i
++)
1773 ctxs
->pc_deskey
[i
] = ctx
.pc_key
[i
];
1774 for (i
= 0; i
< 5; i
++)
1775 ctxs
->pc_hminner
[i
] = ctx
.pc_hminner
[i
];
1776 for (i
= 0; i
< 5; i
++)
1777 ctxs
->pc_hmouter
[i
] = ctx
.pc_hmouter
[i
];
1778 ctxs
->pc_iv
[0] = ctx
.pc_iv
[0];
1779 ctxs
->pc_iv
[1] = ctx
.pc_iv
[1];
1780 ctxs
->pc_flags
= ctx
.pc_flags
;
1781 ctxs
->pc_offset
= ctx
.pc_offset
;
1784 #ifdef UBSEC_VERBOSE_DEBUG
1785 DPRINTF("spin_lock_irqsave\n");
1787 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1788 //spin_lock_irq(&sc->sc_ringmtx);
1790 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_queue
, q
, q_next
);
1792 ubsecstats
.hst_ipackets
++;
1793 ubsecstats
.hst_ibytes
+= stheend
;
1796 #ifdef UBSEC_VERBOSE_DEBUG
1797 DPRINTF("spin_unlock_irqrestore\n");
1799 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1800 //spin_unlock_irq(&sc->sc_ringmtx);
1807 if ((q
->q_dst_m
!= NULL
) && (q
->q_src_m
!= q
->q_dst_m
))
1808 m_freem(q
->q_dst_m
);
1811 if ((q
->q_has_dst
== 1) && q
->q_dst_len
> 0) {
1813 bus_dmamap_unload(sc
->sc_dmat
, q
->q_dst_map
);
1814 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1816 dma_unmap(sc
, q
->q_dst_map
, q
->q_dst_len
);
1818 if (q
->q_src_len
> 0) {
1820 bus_dmamap_unload(sc
->sc_dmat
, q
->q_src_map
);
1821 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1823 dma_unmap(sc
, q
->q_src_map
, q
->q_src_len
);
1826 #ifdef UBSEC_VERBOSE_DEBUG
1827 DPRINTF("spin_lock_irqsave\n");
1829 spin_lock_irqsave(&sc
->sc_ringmtx
, flags
);
1830 //spin_lock_irq(&sc->sc_ringmtx);
1832 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
1834 #ifdef UBSEC_VERBOSE_DEBUG
1835 DPRINTF("spin_unlock_irqrestore\n");
1837 spin_unlock_irqrestore(&sc
->sc_ringmtx
, flags
);
1838 //spin_unlock_irq(&sc->sc_ringmtx);
1842 ubsecstats
.hst_invalid
++;
1844 ubsecstats
.hst_nomem
++;
1846 crp
->crp_etype
= err
;
1850 DPRINTF("%s() err = %x\n", __FUNCTION__
, err
);
1857 ubsec_callback(struct ubsec_softc
*sc
, struct ubsec_q
*q
)
1859 struct cryptop
*crp
= (struct cryptop
*)q
->q_crp
;
1860 struct cryptodesc
*crd
;
1861 struct ubsec_dma
*dmap
= q
->q_dma
;
1865 DPRINTF("%s()\n", __FUNCTION__
);
1868 ubsecstats
.hst_opackets
++;
1869 ubsecstats
.hst_obytes
+= dmap
->d_alloc
.dma_size
;
1872 bus_dmamap_sync(sc
->sc_dmat
, dmap
->d_alloc
.dma_map
, 0,
1873 dmap
->d_alloc
.dma_map
->dm_mapsize
,
1874 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1875 if (q
->q_dst_map
!= NULL
&& q
->q_dst_map
!= q
->q_src_map
) {
1876 bus_dmamap_sync(sc
->sc_dmat
, q
->q_dst_map
,
1877 0, q
->q_dst_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1878 bus_dmamap_unload(sc
->sc_dmat
, q
->q_dst_map
);
1879 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_dst_map
);
1881 bus_dmamap_sync(sc
->sc_dmat
, q
->q_src_map
,
1882 0, q
->q_src_map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1883 bus_dmamap_unload(sc
->sc_dmat
, q
->q_src_map
);
1884 bus_dmamap_destroy(sc
->sc_dmat
, q
->q_src_map
);
1887 if ((q
->q_has_dst
== 1) && q
->q_dst_len
> 0)
1888 dma_unmap(sc
, q
->q_dst_map
, q
->q_dst_len
);
1890 dma_unmap(sc
, q
->q_src_map
, q
->q_src_len
);
1893 if ((crp
->crp_flags
& CRYPTO_F_SKBUF
) && (q
->q_src_m
!= q
->q_dst_m
)) {
1894 m_freem(q
->q_src_m
);
1895 crp
->crp_buf
= (caddr_t
)q
->q_dst_m
;
1899 /* copy out IV for future use */
1900 if (q
->q_flags
& UBSEC_QFLAGS_COPYOUTIV
) {
1901 for (crd
= crp
->crp_desc
; crd
; crd
= crd
->crd_next
) {
1902 if (crd
->crd_alg
!= CRYPTO_DES_CBC
&&
1903 crd
->crd_alg
!= CRYPTO_3DES_CBC
&&
1904 crd
->crd_alg
!= CRYPTO_AES_CBC
)
1907 if (crd
->crd_alg
== CRYPTO_AES_CBC
)
1912 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1914 m_copydata((struct sk_buff
*)crp
->crp_buf
,
1915 crd
->crd_skip
+ crd
->crd_len
- 8, 8,
1916 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1918 crypto_copydata(crp
->crp_flags
, (caddr_t
)crp
->crp_buf
,
1919 crd
->crd_skip
+ crd
->crd_len
- ivsize
, ivsize
,
1920 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1922 else if (crp
->crp_flags
& CRYPTO_F_IOV
) {
1924 cuio_copydata((struct uio
*)crp
->crp_buf
,
1925 crd
->crd_skip
+ crd
->crd_len
- 8, 8,
1926 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1928 crypto_copydata(crp
->crp_flags
, (caddr_t
)crp
->crp_buf
,
1929 crd
->crd_skip
+ crd
->crd_len
- ivsize
, ivsize
,
1930 (caddr_t
)sc
->sc_sessions
[q
->q_sesn
].ses_iv
);
1937 for (crd
= crp
->crp_desc
; crd
; crd
= crd
->crd_next
) {
1938 if (crd
->crd_alg
!= CRYPTO_MD5_HMAC
&&
1939 crd
->crd_alg
!= CRYPTO_SHA1_HMAC
)
1942 if (crp
->crp_flags
& CRYPTO_F_SKBUF
)
1943 m_copyback((struct sk_buff
*)crp
->crp_buf
,
1944 crd
->crd_inject
, 12,
1945 dmap
->d_dma
->d_macbuf
);
1948 /* BUG? it does not honor the mac len.. */
1949 crypto_copyback(crp
->crp_flags
, crp
->crp_buf
,
1950 crd
->crd_inject
, 12,
1951 (caddr_t
)dmap
->d_dma
->d_macbuf
);
1953 crypto_copyback(crp
->crp_flags
, crp
->crp_buf
,
1955 sc
->sc_sessions
[q
->q_sesn
].ses_mlen
,
1956 (caddr_t
)dmap
->d_dma
->d_macbuf
);
1958 else if (crp
->crp_flags
& CRYPTO_F_IOV
&& crp
->crp_mac
)
1959 bcopy((caddr_t
)dmap
->d_dma
->d_macbuf
,
1964 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
1969 ubsec_mcopy(struct sk_buff
*srcm
, struct sk_buff
*dstm
, int hoffset
, int toffset
)
1971 int i
, j
, dlen
, slen
;
1981 for (i
= 0; i
< min(slen
, dlen
); i
++) {
1982 if (j
< hoffset
|| j
>= toffset
)
2006 ubsec_dma_malloc(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*dma
,
2007 size_t size
, int mapflags
)
2009 dma
->dma_vaddr
= dma_alloc_coherent(sc
->sc_dv
,
2010 size
, &dma
->dma_paddr
, GFP_KERNEL
);
2012 if (likely(dma
->dma_vaddr
))
2014 dma
->dma_size
= size
;
2018 DPRINTF("could not allocate %d bytes of coherent memory.\n", size
);
2024 ubsec_dma_free(struct ubsec_softc
*sc
, struct ubsec_dma_alloc
*dma
)
2026 dma_free_coherent(sc
->sc_dv
, dma
->dma_size
, dma
->dma_vaddr
,
2031 * Resets the board. Values in the regesters are left as is
2032 * from the reset (i.e. initial values are assigned elsewhere).
2035 ubsec_reset_board(struct ubsec_softc
*sc
)
2037 volatile u_int32_t ctrl
;
2040 DPRINTF("%s()\n", __FUNCTION__
);
2042 DPRINTF("Send reset signal to chip.\n");
2044 ctrl
= READ_REG(sc
, BS_CTRL
);
2045 ctrl
|= BS_CTRL_RESET
;
2046 WRITE_REG(sc
, BS_CTRL
, ctrl
);
2049 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2055 * Init Broadcom registers
2058 ubsec_init_board(struct ubsec_softc
*sc
)
2063 DPRINTF("%s()\n", __FUNCTION__
);
2065 DPRINTF("Initialize chip.\n");
2067 ctrl
= READ_REG(sc
, BS_CTRL
);
2068 ctrl
&= ~(BS_CTRL_BE32
| BS_CTRL_BE64
);
2069 ctrl
|= BS_CTRL_LITTLE_ENDIAN
| BS_CTRL_MCR1INT
| BS_CTRL_DMAERR
;
2071 WRITE_REG(sc
, BS_CTRL
, ctrl
);
2073 /* Set chip capabilities (BCM5365P) */
2074 sc
->sc_flags
|= UBS_FLAGS_LONGCTX
| UBS_FLAGS_AES
;
2078 * Clean up after a chip crash.
2079 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2082 ubsec_cleanchip(struct ubsec_softc
*sc
)
2087 DPRINTF("%s()\n", __FUNCTION__
);
2089 DPRINTF("Clean up queues after chip crash.\n");
2091 while (!BSD_SIMPLEQ_EMPTY(&sc
->sc_qchip
)) {
2092 q
= BSD_SIMPLEQ_FIRST(&sc
->sc_qchip
);
2093 BSD_SIMPLEQ_REMOVE_HEAD(&sc
->sc_qchip
, q_next
);
2094 ubsec_free_q(sc
, q
);
2100 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2103 ubsec_free_q(struct ubsec_softc
*sc
, struct ubsec_q
*q
)
2106 struct cryptop
*crp
;
2111 DPRINTF("%s()\n", __FUNCTION__
);
2114 npkts
= q
->q_nstacked_mcrs
;
2116 for (i
= 0; i
< npkts
; i
++) {
2117 if(q
->q_stacked_mcr
[i
]) {
2118 q2
= q
->q_stacked_mcr
[i
];
2120 if ((q2
->q_dst_m
!= NULL
) && (q2
->q_src_m
!= q2
->q_dst_m
))
2122 m_freem(q2
->q_dst_m
);
2124 printk(KERN_ERR
"%s,%d: SKB not supported\n", __FILE__
, __LINE__
);
2127 crp
= (struct cryptop
*)q2
->q_crp
;
2129 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q2
, q_next
);
2131 crp
->crp_etype
= EFAULT
;
2141 if ((q
->q_dst_m
!= NULL
) && (q
->q_src_m
!= q
->q_dst_m
))
2143 m_freem(q
->q_dst_m
);
2145 printk(KERN_ERR
"%s,%d: SKB not supported\n", __FILE__
, __LINE__
);
2148 crp
= (struct cryptop
*)q
->q_crp
;
2150 BSD_SIMPLEQ_INSERT_TAIL(&sc
->sc_freequeue
, q
, q_next
);
2152 crp
->crp_etype
= EFAULT
;
2158 * Routine to reset the chip and clean up.
2159 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2162 ubsec_totalreset(struct ubsec_softc
*sc
)
2166 DPRINTF("%s()\n", __FUNCTION__
);
2168 DPRINTF("initiate total chip reset.. \n");
2169 ubsec_reset_board(sc
);
2170 ubsec_init_board(sc
);
2171 ubsec_cleanchip(sc
);
2175 ubsec_dump_pb(struct ubsec_pktbuf
*pb
)
2177 printf("addr 0x%x (0x%x) next 0x%x\n",
2178 pb
->pb_addr
, pb
->pb_len
, pb
->pb_next
);
2182 ubsec_dump_mcr(struct ubsec_mcr
*mcr
)
2184 struct ubsec_mcr_add
*ma
;
2188 printf(" pkts: %u, flags 0x%x\n",
2189 letoh16(mcr
->mcr_pkts
), letoh16(mcr
->mcr_flags
));
2190 ma
= (struct ubsec_mcr_add
*)&mcr
->mcr_cmdctxp
;
2191 for (i
= 0; i
< letoh16(mcr
->mcr_pkts
); i
++) {
2192 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i
,
2193 letoh32(ma
->mcr_cmdctxp
), letoh16(ma
->mcr_pktlen
),
2194 letoh16(ma
->mcr_reserved
));
2195 printf(" %d: ipkt ", i
);
2196 ubsec_dump_pb(&ma
->mcr_ipktbuf
);
2197 printf(" %d: opkt ", i
);
2198 ubsec_dump_pb(&ma
->mcr_opktbuf
);
2201 printf("END MCR\n");
2204 static int __init
mod_init(void) {
2205 return ssb_driver_register(&ubsec_ssb_driver
);
2208 static void __exit
mod_exit(void) {
2209 ssb_driver_unregister(&ubsec_ssb_driver
);
2212 module_init(mod_init
);
2213 module_exit(mod_exit
);
2216 MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
2217 MODULE_LICENSE("BSD");
2218 MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
2219 MODULE_VERSION(DRV_MODULE_VERSION
);