[brcm63xx] rename 96348GW-1{0,1}-gen to 96348GW-1{0,1}-generic
[openwrt.git] / target / linux / generic / patches-2.6.32 / 008-jffs2_make_lzma_available.patch
1 --- a/fs/jffs2/Kconfig
2 +++ b/fs/jffs2/Kconfig
3 @@ -139,6 +139,15 @@ config JFFS2_LZO
4 This feature was added in July, 2007. Say 'N' if you need
5 compatibility with older bootloaders or kernels.
6
7 +config JFFS2_LZMA
8 + bool "JFFS2 LZMA compression support" if JFFS2_COMPRESSION_OPTIONS
9 + select LZMA_COMPRESS
10 + select LZMA_DECOMPRESS
11 + depends on JFFS2_FS
12 + default n
13 + help
14 + JFFS2 wrapper to the LZMA C SDK
15 +
16 config JFFS2_RTIME
17 bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS
18 depends on JFFS2_FS
19 --- a/fs/jffs2/Makefile
20 +++ b/fs/jffs2/Makefile
21 @@ -18,4 +18,7 @@ jffs2-$(CONFIG_JFFS2_RUBIN) += compr_rub
22 jffs2-$(CONFIG_JFFS2_RTIME) += compr_rtime.o
23 jffs2-$(CONFIG_JFFS2_ZLIB) += compr_zlib.o
24 jffs2-$(CONFIG_JFFS2_LZO) += compr_lzo.o
25 +jffs2-$(CONFIG_JFFS2_LZMA) += compr_lzma.o
26 jffs2-$(CONFIG_JFFS2_SUMMARY) += summary.o
27 +
28 +CFLAGS_compr_lzma.o += -Iinclude/linux -Ilib/lzma
29 --- a/fs/jffs2/compr.c
30 +++ b/fs/jffs2/compr.c
31 @@ -319,6 +319,9 @@ int __init jffs2_compressors_init(void)
32 #ifdef CONFIG_JFFS2_LZO
33 jffs2_lzo_init();
34 #endif
35 +#ifdef CONFIG_JFFS2_LZMA
36 + jffs2_lzma_init();
37 +#endif
38 /* Setting default compression mode */
39 #ifdef CONFIG_JFFS2_CMODE_NONE
40 jffs2_compression_mode = JFFS2_COMPR_MODE_NONE;
41 @@ -342,6 +345,9 @@ int __init jffs2_compressors_init(void)
42 int jffs2_compressors_exit(void)
43 {
44 /* Unregistering compressors */
45 +#ifdef CONFIG_JFFS2_LZMA
46 + jffs2_lzma_exit();
47 +#endif
48 #ifdef CONFIG_JFFS2_LZO
49 jffs2_lzo_exit();
50 #endif
51 --- a/fs/jffs2/compr.h
52 +++ b/fs/jffs2/compr.h
53 @@ -28,9 +28,9 @@
54 #define JFFS2_DYNRUBIN_PRIORITY 20
55 #define JFFS2_LZARI_PRIORITY 30
56 #define JFFS2_RTIME_PRIORITY 50
57 -#define JFFS2_ZLIB_PRIORITY 60
58 -#define JFFS2_LZO_PRIORITY 80
59 -
60 +#define JFFS2_LZMA_PRIORITY 70
61 +#define JFFS2_ZLIB_PRIORITY 80
62 +#define JFFS2_LZO_PRIORITY 90
63
64 #define JFFS2_RUBINMIPS_DISABLED /* RUBINs will be used only */
65 #define JFFS2_DYNRUBIN_DISABLED /* for decompression */
66 @@ -98,5 +98,9 @@ void jffs2_zlib_exit(void);
67 int jffs2_lzo_init(void);
68 void jffs2_lzo_exit(void);
69 #endif
70 +#ifdef CONFIG_JFFS2_LZMA
71 +int jffs2_lzma_init(void);
72 +void jffs2_lzma_exit(void);
73 +#endif
74
75 #endif /* __JFFS2_COMPR_H__ */
76 --- /dev/null
77 +++ b/fs/jffs2/compr_lzma.c
78 @@ -0,0 +1,128 @@
79 +/*
80 + * JFFS2 -- Journalling Flash File System, Version 2.
81 + *
82 + * For licensing information, see the file 'LICENCE' in this directory.
83 + *
84 + * JFFS2 wrapper to the LZMA C SDK
85 + *
86 + */
87 +
88 +#include <linux/lzma.h>
89 +#include "compr.h"
90 +
91 +#ifdef __KERNEL__
92 + static DEFINE_MUTEX(deflate_mutex);
93 +#endif
94 +
95 +CLzmaEncHandle *p;
96 +Byte propsEncoded[LZMA_PROPS_SIZE];
97 +SizeT propsSize = sizeof(propsEncoded);
98 +
99 +STATIC void lzma_free_workspace(void)
100 +{
101 + LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
102 +}
103 +
104 +STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
105 +{
106 + if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
107 + {
108 + PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
109 + return -ENOMEM;
110 + }
111 +
112 + if (LzmaEnc_SetProps(p, props) != SZ_OK)
113 + {
114 + lzma_free_workspace();
115 + return -1;
116 + }
117 +
118 + if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
119 + {
120 + lzma_free_workspace();
121 + return -1;
122 + }
123 +
124 + return 0;
125 +}
126 +
127 +STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
128 + uint32_t *sourcelen, uint32_t *dstlen, void *model)
129 +{
130 + SizeT compress_size = (SizeT)(*dstlen);
131 + int ret;
132 +
133 + #ifdef __KERNEL__
134 + mutex_lock(&deflate_mutex);
135 + #endif
136 +
137 + ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
138 + 0, NULL, &lzma_alloc, &lzma_alloc);
139 +
140 + #ifdef __KERNEL__
141 + mutex_unlock(&deflate_mutex);
142 + #endif
143 +
144 + if (ret != SZ_OK)
145 + return -1;
146 +
147 + *dstlen = (uint32_t)compress_size;
148 +
149 + return 0;
150 +}
151 +
152 +STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
153 + uint32_t srclen, uint32_t destlen, void *model)
154 +{
155 + int ret;
156 + SizeT dl = (SizeT)destlen;
157 + SizeT sl = (SizeT)srclen;
158 + ELzmaStatus status;
159 +
160 + ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
161 + propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
162 +
163 + if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
164 + return -1;
165 +
166 + return 0;
167 +}
168 +
169 +static struct jffs2_compressor jffs2_lzma_comp = {
170 + .priority = JFFS2_LZMA_PRIORITY,
171 + .name = "lzma",
172 + .compr = JFFS2_COMPR_LZMA,
173 + .compress = &jffs2_lzma_compress,
174 + .decompress = &jffs2_lzma_decompress,
175 + .disabled = 0,
176 +};
177 +
178 +int INIT jffs2_lzma_init(void)
179 +{
180 + int ret;
181 + CLzmaEncProps props;
182 + LzmaEncProps_Init(&props);
183 +
184 + props.dictSize = LZMA_BEST_DICT(0x2000);
185 + props.level = LZMA_BEST_LEVEL;
186 + props.lc = LZMA_BEST_LC;
187 + props.lp = LZMA_BEST_LP;
188 + props.pb = LZMA_BEST_PB;
189 + props.fb = LZMA_BEST_FB;
190 +
191 + ret = lzma_alloc_workspace(&props);
192 + if (ret < 0)
193 + return ret;
194 +
195 + ret = jffs2_register_compressor(&jffs2_lzma_comp);
196 + if (ret)
197 + lzma_free_workspace();
198 +
199 + return ret;
200 +}
201 +
202 +void jffs2_lzma_exit(void)
203 +{
204 + jffs2_unregister_compressor(&jffs2_lzma_comp);
205 + lzma_free_workspace();
206 +}
207 --- a/fs/jffs2/super.c
208 +++ b/fs/jffs2/super.c
209 @@ -254,14 +254,41 @@ static int __init init_jffs2_fs(void)
210 BUILD_BUG_ON(sizeof(struct jffs2_raw_inode) != 68);
211 BUILD_BUG_ON(sizeof(struct jffs2_raw_summary) != 32);
212
213 - printk(KERN_INFO "JFFS2 version 2.2."
214 + printk(KERN_INFO "JFFS2 version 2.2"
215 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
216 " (NAND)"
217 #endif
218 #ifdef CONFIG_JFFS2_SUMMARY
219 - " (SUMMARY) "
220 + " (SUMMARY)"
221 #endif
222 - " © 2001-2006 Red Hat, Inc.\n");
223 +#ifdef CONFIG_JFFS2_ZLIB
224 + " (ZLIB)"
225 +#endif
226 +#ifdef CONFIG_JFFS2_LZO
227 + " (LZO)"
228 +#endif
229 +#ifdef CONFIG_JFFS2_LZMA
230 + " (LZMA)"
231 +#endif
232 +#ifdef CONFIG_JFFS2_RTIME
233 + " (RTIME)"
234 +#endif
235 +#ifdef CONFIG_JFFS2_RUBIN
236 + " (RUBIN)"
237 +#endif
238 +#ifdef CONFIG_JFFS2_CMODE_NONE
239 + " (CMODE_NONE)"
240 +#endif
241 +#ifdef CONFIG_JFFS2_CMODE_PRIORITY
242 + " (CMODE_PRIORITY)"
243 +#endif
244 +#ifdef CONFIG_JFFS2_CMODE_SIZE
245 + " (CMODE_SIZE)"
246 +#endif
247 +#ifdef CONFIG_JFFS2_CMODE_FAVOURLZO
248 + " (CMODE_FAVOURLZO)"
249 +#endif
250 + " (c) 2001-2006 Red Hat, Inc.\n");
251
252 jffs2_inode_cachep = kmem_cache_create("jffs2_i",
253 sizeof(struct jffs2_inode_info),
254 --- a/include/linux/jffs2.h
255 +++ b/include/linux/jffs2.h
256 @@ -45,6 +45,7 @@
257 #define JFFS2_COMPR_DYNRUBIN 0x05
258 #define JFFS2_COMPR_ZLIB 0x06
259 #define JFFS2_COMPR_LZO 0x07
260 +#define JFFS2_COMPR_LZMA 0x08
261 /* Compatibility flags. */
262 #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
263 #define JFFS2_NODE_ACCURATE 0x2000
264 --- /dev/null
265 +++ b/include/linux/lzma.h
266 @@ -0,0 +1,62 @@
267 +#ifndef __LZMA_H__
268 +#define __LZMA_H__
269 +
270 +#ifdef __KERNEL__
271 + #include <linux/kernel.h>
272 + #include <linux/sched.h>
273 + #include <linux/slab.h>
274 + #include <linux/vmalloc.h>
275 + #include <linux/init.h>
276 + #define LZMA_MALLOC vmalloc
277 + #define LZMA_FREE vfree
278 + #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
279 + #define INIT __init
280 + #define STATIC static
281 +#else
282 + #include <stdint.h>
283 + #include <stdlib.h>
284 + #include <stdio.h>
285 + #include <unistd.h>
286 + #include <string.h>
287 + #include <asm/types.h>
288 + #include <errno.h>
289 + #include <linux/jffs2.h>
290 + #ifndef PAGE_SIZE
291 + extern int page_size;
292 + #define PAGE_SIZE page_size
293 + #endif
294 + #define LZMA_MALLOC malloc
295 + #define LZMA_FREE free
296 + #define PRINT_ERROR(msg) fprintf(stderr, msg)
297 + #define INIT
298 + #define STATIC
299 +#endif
300 +
301 +#include "lzma/LzmaDec.h"
302 +#include "lzma/LzmaEnc.h"
303 +
304 +#define LZMA_BEST_LEVEL (9)
305 +#define LZMA_BEST_LC (0)
306 +#define LZMA_BEST_LP (0)
307 +#define LZMA_BEST_PB (0)
308 +#define LZMA_BEST_FB (273)
309 +
310 +#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
311 +
312 +static void *p_lzma_malloc(void *p, size_t size)
313 +{
314 + if (size == 0)
315 + return NULL;
316 +
317 + return LZMA_MALLOC(size);
318 +}
319 +
320 +static void p_lzma_free(void *p, void *address)
321 +{
322 + if (address != NULL)
323 + LZMA_FREE(address);
324 +}
325 +
326 +static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
327 +
328 +#endif
329 --- /dev/null
330 +++ b/include/linux/lzma/LzFind.h
331 @@ -0,0 +1,115 @@
332 +/* LzFind.h -- Match finder for LZ algorithms
333 +2009-04-22 : Igor Pavlov : Public domain */
334 +
335 +#ifndef __LZ_FIND_H
336 +#define __LZ_FIND_H
337 +
338 +#include "Types.h"
339 +
340 +#ifdef __cplusplus
341 +extern "C" {
342 +#endif
343 +
344 +typedef UInt32 CLzRef;
345 +
346 +typedef struct _CMatchFinder
347 +{
348 + Byte *buffer;
349 + UInt32 pos;
350 + UInt32 posLimit;
351 + UInt32 streamPos;
352 + UInt32 lenLimit;
353 +
354 + UInt32 cyclicBufferPos;
355 + UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
356 +
357 + UInt32 matchMaxLen;
358 + CLzRef *hash;
359 + CLzRef *son;
360 + UInt32 hashMask;
361 + UInt32 cutValue;
362 +
363 + Byte *bufferBase;
364 + ISeqInStream *stream;
365 + int streamEndWasReached;
366 +
367 + UInt32 blockSize;
368 + UInt32 keepSizeBefore;
369 + UInt32 keepSizeAfter;
370 +
371 + UInt32 numHashBytes;
372 + int directInput;
373 + size_t directInputRem;
374 + int btMode;
375 + int bigHash;
376 + UInt32 historySize;
377 + UInt32 fixedHashSize;
378 + UInt32 hashSizeSum;
379 + UInt32 numSons;
380 + SRes result;
381 + UInt32 crc[256];
382 +} CMatchFinder;
383 +
384 +#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
385 +#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
386 +
387 +#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
388 +
389 +int MatchFinder_NeedMove(CMatchFinder *p);
390 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
391 +void MatchFinder_MoveBlock(CMatchFinder *p);
392 +void MatchFinder_ReadIfRequired(CMatchFinder *p);
393 +
394 +void MatchFinder_Construct(CMatchFinder *p);
395 +
396 +/* Conditions:
397 + historySize <= 3 GB
398 + keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
399 +*/
400 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
401 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
402 + ISzAlloc *alloc);
403 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
404 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
405 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
406 +
407 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
408 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
409 + UInt32 *distances, UInt32 maxLen);
410 +
411 +/*
412 +Conditions:
413 + Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
414 + Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
415 +*/
416 +
417 +typedef void (*Mf_Init_Func)(void *object);
418 +typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
419 +typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
420 +typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
421 +typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
422 +typedef void (*Mf_Skip_Func)(void *object, UInt32);
423 +
424 +typedef struct _IMatchFinder
425 +{
426 + Mf_Init_Func Init;
427 + Mf_GetIndexByte_Func GetIndexByte;
428 + Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
429 + Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
430 + Mf_GetMatches_Func GetMatches;
431 + Mf_Skip_Func Skip;
432 +} IMatchFinder;
433 +
434 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
435 +
436 +void MatchFinder_Init(CMatchFinder *p);
437 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
438 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
439 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
440 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
441 +
442 +#ifdef __cplusplus
443 +}
444 +#endif
445 +
446 +#endif
447 --- /dev/null
448 +++ b/include/linux/lzma/LzHash.h
449 @@ -0,0 +1,54 @@
450 +/* LzHash.h -- HASH functions for LZ algorithms
451 +2009-02-07 : Igor Pavlov : Public domain */
452 +
453 +#ifndef __LZ_HASH_H
454 +#define __LZ_HASH_H
455 +
456 +#define kHash2Size (1 << 10)
457 +#define kHash3Size (1 << 16)
458 +#define kHash4Size (1 << 20)
459 +
460 +#define kFix3HashSize (kHash2Size)
461 +#define kFix4HashSize (kHash2Size + kHash3Size)
462 +#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
463 +
464 +#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
465 +
466 +#define HASH3_CALC { \
467 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
468 + hash2Value = temp & (kHash2Size - 1); \
469 + hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
470 +
471 +#define HASH4_CALC { \
472 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
473 + hash2Value = temp & (kHash2Size - 1); \
474 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
475 + hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
476 +
477 +#define HASH5_CALC { \
478 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
479 + hash2Value = temp & (kHash2Size - 1); \
480 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
481 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
482 + hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
483 + hash4Value &= (kHash4Size - 1); }
484 +
485 +/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
486 +#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
487 +
488 +
489 +#define MT_HASH2_CALC \
490 + hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
491 +
492 +#define MT_HASH3_CALC { \
493 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
494 + hash2Value = temp & (kHash2Size - 1); \
495 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
496 +
497 +#define MT_HASH4_CALC { \
498 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
499 + hash2Value = temp & (kHash2Size - 1); \
500 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
501 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
502 +
503 +#endif
504 --- /dev/null
505 +++ b/include/linux/lzma/LzmaDec.h
506 @@ -0,0 +1,231 @@
507 +/* LzmaDec.h -- LZMA Decoder
508 +2009-02-07 : Igor Pavlov : Public domain */
509 +
510 +#ifndef __LZMA_DEC_H
511 +#define __LZMA_DEC_H
512 +
513 +#include "Types.h"
514 +
515 +#ifdef __cplusplus
516 +extern "C" {
517 +#endif
518 +
519 +/* #define _LZMA_PROB32 */
520 +/* _LZMA_PROB32 can increase the speed on some CPUs,
521 + but memory usage for CLzmaDec::probs will be doubled in that case */
522 +
523 +#ifdef _LZMA_PROB32
524 +#define CLzmaProb UInt32
525 +#else
526 +#define CLzmaProb UInt16
527 +#endif
528 +
529 +
530 +/* ---------- LZMA Properties ---------- */
531 +
532 +#define LZMA_PROPS_SIZE 5
533 +
534 +typedef struct _CLzmaProps
535 +{
536 + unsigned lc, lp, pb;
537 + UInt32 dicSize;
538 +} CLzmaProps;
539 +
540 +/* LzmaProps_Decode - decodes properties
541 +Returns:
542 + SZ_OK
543 + SZ_ERROR_UNSUPPORTED - Unsupported properties
544 +*/
545 +
546 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
547 +
548 +
549 +/* ---------- LZMA Decoder state ---------- */
550 +
551 +/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
552 + Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
553 +
554 +#define LZMA_REQUIRED_INPUT_MAX 20
555 +
556 +typedef struct
557 +{
558 + CLzmaProps prop;
559 + CLzmaProb *probs;
560 + Byte *dic;
561 + const Byte *buf;
562 + UInt32 range, code;
563 + SizeT dicPos;
564 + SizeT dicBufSize;
565 + UInt32 processedPos;
566 + UInt32 checkDicSize;
567 + unsigned state;
568 + UInt32 reps[4];
569 + unsigned remainLen;
570 + int needFlush;
571 + int needInitState;
572 + UInt32 numProbs;
573 + unsigned tempBufSize;
574 + Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
575 +} CLzmaDec;
576 +
577 +#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
578 +
579 +void LzmaDec_Init(CLzmaDec *p);
580 +
581 +/* There are two types of LZMA streams:
582 + 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
583 + 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
584 +
585 +typedef enum
586 +{
587 + LZMA_FINISH_ANY, /* finish at any point */
588 + LZMA_FINISH_END /* block must be finished at the end */
589 +} ELzmaFinishMode;
590 +
591 +/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
592 +
593 + You must use LZMA_FINISH_END, when you know that current output buffer
594 + covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
595 +
596 + If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
597 + and output value of destLen will be less than output buffer size limit.
598 + You can check status result also.
599 +
600 + You can use multiple checks to test data integrity after full decompression:
601 + 1) Check Result and "status" variable.
602 + 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
603 + 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
604 + You must use correct finish mode in that case. */
605 +
606 +typedef enum
607 +{
608 + LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
609 + LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
610 + LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
611 + LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
612 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
613 +} ELzmaStatus;
614 +
615 +/* ELzmaStatus is used only as output value for function call */
616 +
617 +
618 +/* ---------- Interfaces ---------- */
619 +
620 +/* There are 3 levels of interfaces:
621 + 1) Dictionary Interface
622 + 2) Buffer Interface
623 + 3) One Call Interface
624 + You can select any of these interfaces, but don't mix functions from different
625 + groups for same object. */
626 +
627 +
628 +/* There are two variants to allocate state for Dictionary Interface:
629 + 1) LzmaDec_Allocate / LzmaDec_Free
630 + 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
631 + You can use variant 2, if you set dictionary buffer manually.
632 + For Buffer Interface you must always use variant 1.
633 +
634 +LzmaDec_Allocate* can return:
635 + SZ_OK
636 + SZ_ERROR_MEM - Memory allocation error
637 + SZ_ERROR_UNSUPPORTED - Unsupported properties
638 +*/
639 +
640 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
641 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
642 +
643 +SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
644 +void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
645 +
646 +/* ---------- Dictionary Interface ---------- */
647 +
648 +/* You can use it, if you want to eliminate the overhead for data copying from
649 + dictionary to some other external buffer.
650 + You must work with CLzmaDec variables directly in this interface.
651 +
652 + STEPS:
653 + LzmaDec_Constr()
654 + LzmaDec_Allocate()
655 + for (each new stream)
656 + {
657 + LzmaDec_Init()
658 + while (it needs more decompression)
659 + {
660 + LzmaDec_DecodeToDic()
661 + use data from CLzmaDec::dic and update CLzmaDec::dicPos
662 + }
663 + }
664 + LzmaDec_Free()
665 +*/
666 +
667 +/* LzmaDec_DecodeToDic
668 +
669 + The decoding to internal dictionary buffer (CLzmaDec::dic).
670 + You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
671 +
672 +finishMode:
673 + It has meaning only if the decoding reaches output limit (dicLimit).
674 + LZMA_FINISH_ANY - Decode just dicLimit bytes.
675 + LZMA_FINISH_END - Stream must be finished after dicLimit.
676 +
677 +Returns:
678 + SZ_OK
679 + status:
680 + LZMA_STATUS_FINISHED_WITH_MARK
681 + LZMA_STATUS_NOT_FINISHED
682 + LZMA_STATUS_NEEDS_MORE_INPUT
683 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
684 + SZ_ERROR_DATA - Data error
685 +*/
686 +
687 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
688 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
689 +
690 +
691 +/* ---------- Buffer Interface ---------- */
692 +
693 +/* It's zlib-like interface.
694 + See LzmaDec_DecodeToDic description for information about STEPS and return results,
695 + but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
696 + to work with CLzmaDec variables manually.
697 +
698 +finishMode:
699 + It has meaning only if the decoding reaches output limit (*destLen).
700 + LZMA_FINISH_ANY - Decode just destLen bytes.
701 + LZMA_FINISH_END - Stream must be finished after (*destLen).
702 +*/
703 +
704 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
705 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
706 +
707 +
708 +/* ---------- One Call Interface ---------- */
709 +
710 +/* LzmaDecode
711 +
712 +finishMode:
713 + It has meaning only if the decoding reaches output limit (*destLen).
714 + LZMA_FINISH_ANY - Decode just destLen bytes.
715 + LZMA_FINISH_END - Stream must be finished after (*destLen).
716 +
717 +Returns:
718 + SZ_OK
719 + status:
720 + LZMA_STATUS_FINISHED_WITH_MARK
721 + LZMA_STATUS_NOT_FINISHED
722 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
723 + SZ_ERROR_DATA - Data error
724 + SZ_ERROR_MEM - Memory allocation error
725 + SZ_ERROR_UNSUPPORTED - Unsupported properties
726 + SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
727 +*/
728 +
729 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
730 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
731 + ELzmaStatus *status, ISzAlloc *alloc);
732 +
733 +#ifdef __cplusplus
734 +}
735 +#endif
736 +
737 +#endif
738 --- /dev/null
739 +++ b/include/linux/lzma/LzmaEnc.h
740 @@ -0,0 +1,80 @@
741 +/* LzmaEnc.h -- LZMA Encoder
742 +2009-02-07 : Igor Pavlov : Public domain */
743 +
744 +#ifndef __LZMA_ENC_H
745 +#define __LZMA_ENC_H
746 +
747 +#include "Types.h"
748 +
749 +#ifdef __cplusplus
750 +extern "C" {
751 +#endif
752 +
753 +#define LZMA_PROPS_SIZE 5
754 +
755 +typedef struct _CLzmaEncProps
756 +{
757 + int level; /* 0 <= level <= 9 */
758 + UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
759 + (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
760 + default = (1 << 24) */
761 + int lc; /* 0 <= lc <= 8, default = 3 */
762 + int lp; /* 0 <= lp <= 4, default = 0 */
763 + int pb; /* 0 <= pb <= 4, default = 2 */
764 + int algo; /* 0 - fast, 1 - normal, default = 1 */
765 + int fb; /* 5 <= fb <= 273, default = 32 */
766 + int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
767 + int numHashBytes; /* 2, 3 or 4, default = 4 */
768 + UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
769 + unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
770 + int numThreads; /* 1 or 2, default = 2 */
771 +} CLzmaEncProps;
772 +
773 +void LzmaEncProps_Init(CLzmaEncProps *p);
774 +void LzmaEncProps_Normalize(CLzmaEncProps *p);
775 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
776 +
777 +
778 +/* ---------- CLzmaEncHandle Interface ---------- */
779 +
780 +/* LzmaEnc_* functions can return the following exit codes:
781 +Returns:
782 + SZ_OK - OK
783 + SZ_ERROR_MEM - Memory allocation error
784 + SZ_ERROR_PARAM - Incorrect paramater in props
785 + SZ_ERROR_WRITE - Write callback error.
786 + SZ_ERROR_PROGRESS - some break from progress callback
787 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
788 +*/
789 +
790 +typedef void * CLzmaEncHandle;
791 +
792 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
793 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
794 +SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
795 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
796 +SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
797 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
798 +SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
799 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
800 +
801 +/* ---------- One Call Interface ---------- */
802 +
803 +/* LzmaEncode
804 +Return code:
805 + SZ_OK - OK
806 + SZ_ERROR_MEM - Memory allocation error
807 + SZ_ERROR_PARAM - Incorrect paramater
808 + SZ_ERROR_OUTPUT_EOF - output buffer overflow
809 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
810 +*/
811 +
812 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
813 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
814 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
815 +
816 +#ifdef __cplusplus
817 +}
818 +#endif
819 +
820 +#endif
821 --- /dev/null
822 +++ b/include/linux/lzma/Types.h
823 @@ -0,0 +1,226 @@
824 +/* Types.h -- Basic types
825 +2009-11-23 : Igor Pavlov : Public domain */
826 +
827 +#ifndef __7Z_TYPES_H
828 +#define __7Z_TYPES_H
829 +
830 +#include <stddef.h>
831 +
832 +#ifdef _WIN32
833 +#include <windows.h>
834 +#endif
835 +
836 +#ifndef EXTERN_C_BEGIN
837 +#ifdef __cplusplus
838 +#define EXTERN_C_BEGIN extern "C" {
839 +#define EXTERN_C_END }
840 +#else
841 +#define EXTERN_C_BEGIN
842 +#define EXTERN_C_END
843 +#endif
844 +#endif
845 +
846 +EXTERN_C_BEGIN
847 +
848 +#define SZ_OK 0
849 +
850 +#define SZ_ERROR_DATA 1
851 +#define SZ_ERROR_MEM 2
852 +#define SZ_ERROR_CRC 3
853 +#define SZ_ERROR_UNSUPPORTED 4
854 +#define SZ_ERROR_PARAM 5
855 +#define SZ_ERROR_INPUT_EOF 6
856 +#define SZ_ERROR_OUTPUT_EOF 7
857 +#define SZ_ERROR_READ 8
858 +#define SZ_ERROR_WRITE 9
859 +#define SZ_ERROR_PROGRESS 10
860 +#define SZ_ERROR_FAIL 11
861 +#define SZ_ERROR_THREAD 12
862 +
863 +#define SZ_ERROR_ARCHIVE 16
864 +#define SZ_ERROR_NO_ARCHIVE 17
865 +
866 +typedef int SRes;
867 +
868 +#ifdef _WIN32
869 +typedef DWORD WRes;
870 +#else
871 +typedef int WRes;
872 +#endif
873 +
874 +#ifndef RINOK
875 +#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
876 +#endif
877 +
878 +typedef unsigned char Byte;
879 +typedef short Int16;
880 +typedef unsigned short UInt16;
881 +
882 +#ifdef _LZMA_UINT32_IS_ULONG
883 +typedef long Int32;
884 +typedef unsigned long UInt32;
885 +#else
886 +typedef int Int32;
887 +typedef unsigned int UInt32;
888 +#endif
889 +
890 +#ifdef _SZ_NO_INT_64
891 +
892 +/* define _SZ_NO_INT_64, if your compiler doesn't support 64-bit integers.
893 + NOTES: Some code will work incorrectly in that case! */
894 +
895 +typedef long Int64;
896 +typedef unsigned long UInt64;
897 +
898 +#else
899 +
900 +#if defined(_MSC_VER) || defined(__BORLANDC__)
901 +typedef __int64 Int64;
902 +typedef unsigned __int64 UInt64;
903 +#else
904 +typedef long long int Int64;
905 +typedef unsigned long long int UInt64;
906 +#endif
907 +
908 +#endif
909 +
910 +#ifdef _LZMA_NO_SYSTEM_SIZE_T
911 +typedef UInt32 SizeT;
912 +#else
913 +typedef size_t SizeT;
914 +#endif
915 +
916 +typedef int Bool;
917 +#define True 1
918 +#define False 0
919 +
920 +
921 +#ifdef _WIN32
922 +#define MY_STD_CALL __stdcall
923 +#else
924 +#define MY_STD_CALL
925 +#endif
926 +
927 +#ifdef _MSC_VER
928 +
929 +#if _MSC_VER >= 1300
930 +#define MY_NO_INLINE __declspec(noinline)
931 +#else
932 +#define MY_NO_INLINE
933 +#endif
934 +
935 +#define MY_CDECL __cdecl
936 +#define MY_FAST_CALL __fastcall
937 +
938 +#else
939 +
940 +#define MY_CDECL
941 +#define MY_FAST_CALL
942 +
943 +#endif
944 +
945 +
946 +/* The following interfaces use first parameter as pointer to structure */
947 +
948 +typedef struct
949 +{
950 + SRes (*Read)(void *p, void *buf, size_t *size);
951 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
952 + (output(*size) < input(*size)) is allowed */
953 +} ISeqInStream;
954 +
955 +/* it can return SZ_ERROR_INPUT_EOF */
956 +SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size);
957 +SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType);
958 +SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf);
959 +
960 +typedef struct
961 +{
962 + size_t (*Write)(void *p, const void *buf, size_t size);
963 + /* Returns: result - the number of actually written bytes.
964 + (result < size) means error */
965 +} ISeqOutStream;
966 +
967 +typedef enum
968 +{
969 + SZ_SEEK_SET = 0,
970 + SZ_SEEK_CUR = 1,
971 + SZ_SEEK_END = 2
972 +} ESzSeek;
973 +
974 +typedef struct
975 +{
976 + SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
977 + SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
978 +} ISeekInStream;
979 +
980 +typedef struct
981 +{
982 + SRes (*Look)(void *p, void **buf, size_t *size);
983 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
984 + (output(*size) > input(*size)) is not allowed
985 + (output(*size) < input(*size)) is allowed */
986 + SRes (*Skip)(void *p, size_t offset);
987 + /* offset must be <= output(*size) of Look */
988 +
989 + SRes (*Read)(void *p, void *buf, size_t *size);
990 + /* reads directly (without buffer). It's same as ISeqInStream::Read */
991 + SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
992 +} ILookInStream;
993 +
994 +SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size);
995 +SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset);
996 +
997 +/* reads via ILookInStream::Read */
998 +SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType);
999 +SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size);
1000 +
1001 +#define LookToRead_BUF_SIZE (1 << 14)
1002 +
1003 +typedef struct
1004 +{
1005 + ILookInStream s;
1006 + ISeekInStream *realStream;
1007 + size_t pos;
1008 + size_t size;
1009 + Byte buf[LookToRead_BUF_SIZE];
1010 +} CLookToRead;
1011 +
1012 +void LookToRead_CreateVTable(CLookToRead *p, int lookahead);
1013 +void LookToRead_Init(CLookToRead *p);
1014 +
1015 +typedef struct
1016 +{
1017 + ISeqInStream s;
1018 + ILookInStream *realStream;
1019 +} CSecToLook;
1020 +
1021 +void SecToLook_CreateVTable(CSecToLook *p);
1022 +
1023 +typedef struct
1024 +{
1025 + ISeqInStream s;
1026 + ILookInStream *realStream;
1027 +} CSecToRead;
1028 +
1029 +void SecToRead_CreateVTable(CSecToRead *p);
1030 +
1031 +typedef struct
1032 +{
1033 + SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
1034 + /* Returns: result. (result != SZ_OK) means break.
1035 + Value (UInt64)(Int64)-1 for size means unknown value. */
1036 +} ICompressProgress;
1037 +
1038 +typedef struct
1039 +{
1040 + void *(*Alloc)(void *p, size_t size);
1041 + void (*Free)(void *p, void *address); /* address can be 0 */
1042 +} ISzAlloc;
1043 +
1044 +#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
1045 +#define IAlloc_Free(p, a) (p)->Free((p), a)
1046 +
1047 +EXTERN_C_END
1048 +
1049 +#endif
1050 --- a/lib/Kconfig
1051 +++ b/lib/Kconfig
1052 @@ -103,6 +103,12 @@ config LZO_COMPRESS
1053 config LZO_DECOMPRESS
1054 tristate
1055
1056 +config LZMA_COMPRESS
1057 + tristate
1058 +
1059 +config LZMA_DECOMPRESS
1060 + tristate
1061 +
1062 #
1063 # These all provide a common interface (hence the apparent duplication with
1064 # ZLIB_INFLATE; DECOMPRESS_GZIP is just a wrapper.)
1065 --- a/lib/Makefile
1066 +++ b/lib/Makefile
1067 @@ -2,6 +2,16 @@
1068 # Makefile for some libs needed in the kernel.
1069 #
1070
1071 +ifdef CONFIG_JFFS2_ZLIB
1072 + CONFIG_ZLIB_INFLATE:=y
1073 + CONFIG_ZLIB_DEFLATE:=y
1074 +endif
1075 +
1076 +ifdef CONFIG_JFFS2_LZMA
1077 + CONFIG_LZMA_DECOMPRESS:=y
1078 + CONFIG_LZMA_COMPRESS:=y
1079 +endif
1080 +
1081 ifdef CONFIG_FUNCTION_TRACER
1082 ORIG_CFLAGS := $(KBUILD_CFLAGS)
1083 KBUILD_CFLAGS = $(subst -pg,,$(ORIG_CFLAGS))
1084 @@ -65,6 +75,8 @@ obj-$(CONFIG_ZLIB_DEFLATE) += zlib_defla
1085 obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
1086 obj-$(CONFIG_LZO_COMPRESS) += lzo/
1087 obj-$(CONFIG_LZO_DECOMPRESS) += lzo/
1088 +obj-$(CONFIG_LZMA_COMPRESS) += lzma/
1089 +obj-$(CONFIG_LZMA_DECOMPRESS) += lzma/
1090
1091 lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
1092 lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
1093 --- /dev/null
1094 +++ b/lib/lzma/LzFind.c
1095 @@ -0,0 +1,761 @@
1096 +/* LzFind.c -- Match finder for LZ algorithms
1097 +2009-04-22 : Igor Pavlov : Public domain */
1098 +
1099 +#include <string.h>
1100 +
1101 +#include "LzFind.h"
1102 +#include "LzHash.h"
1103 +
1104 +#define kEmptyHashValue 0
1105 +#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
1106 +#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
1107 +#define kNormalizeMask (~(kNormalizeStepMin - 1))
1108 +#define kMaxHistorySize ((UInt32)3 << 30)
1109 +
1110 +#define kStartMaxLen 3
1111 +
1112 +static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
1113 +{
1114 + if (!p->directInput)
1115 + {
1116 + alloc->Free(alloc, p->bufferBase);
1117 + p->bufferBase = 0;
1118 + }
1119 +}
1120 +
1121 +/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
1122 +
1123 +static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
1124 +{
1125 + UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
1126 + if (p->directInput)
1127 + {
1128 + p->blockSize = blockSize;
1129 + return 1;
1130 + }
1131 + if (p->bufferBase == 0 || p->blockSize != blockSize)
1132 + {
1133 + LzInWindow_Free(p, alloc);
1134 + p->blockSize = blockSize;
1135 + p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
1136 + }
1137 + return (p->bufferBase != 0);
1138 +}
1139 +
1140 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
1141 +Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
1142 +
1143 +UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
1144 +
1145 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
1146 +{
1147 + p->posLimit -= subValue;
1148 + p->pos -= subValue;
1149 + p->streamPos -= subValue;
1150 +}
1151 +
1152 +static void MatchFinder_ReadBlock(CMatchFinder *p)
1153 +{
1154 + if (p->streamEndWasReached || p->result != SZ_OK)
1155 + return;
1156 + if (p->directInput)
1157 + {
1158 + UInt32 curSize = 0xFFFFFFFF - p->streamPos;
1159 + if (curSize > p->directInputRem)
1160 + curSize = (UInt32)p->directInputRem;
1161 + p->directInputRem -= curSize;
1162 + p->streamPos += curSize;
1163 + if (p->directInputRem == 0)
1164 + p->streamEndWasReached = 1;
1165 + return;
1166 + }
1167 + for (;;)
1168 + {
1169 + Byte *dest = p->buffer + (p->streamPos - p->pos);
1170 + size_t size = (p->bufferBase + p->blockSize - dest);
1171 + if (size == 0)
1172 + return;
1173 + p->result = p->stream->Read(p->stream, dest, &size);
1174 + if (p->result != SZ_OK)
1175 + return;
1176 + if (size == 0)
1177 + {
1178 + p->streamEndWasReached = 1;
1179 + return;
1180 + }
1181 + p->streamPos += (UInt32)size;
1182 + if (p->streamPos - p->pos > p->keepSizeAfter)
1183 + return;
1184 + }
1185 +}
1186 +
1187 +void MatchFinder_MoveBlock(CMatchFinder *p)
1188 +{
1189 + memmove(p->bufferBase,
1190 + p->buffer - p->keepSizeBefore,
1191 + (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
1192 + p->buffer = p->bufferBase + p->keepSizeBefore;
1193 +}
1194 +
1195 +int MatchFinder_NeedMove(CMatchFinder *p)
1196 +{
1197 + if (p->directInput)
1198 + return 0;
1199 + /* if (p->streamEndWasReached) return 0; */
1200 + return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
1201 +}
1202 +
1203 +void MatchFinder_ReadIfRequired(CMatchFinder *p)
1204 +{
1205 + if (p->streamEndWasReached)
1206 + return;
1207 + if (p->keepSizeAfter >= p->streamPos - p->pos)
1208 + MatchFinder_ReadBlock(p);
1209 +}
1210 +
1211 +static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
1212 +{
1213 + if (MatchFinder_NeedMove(p))
1214 + MatchFinder_MoveBlock(p);
1215 + MatchFinder_ReadBlock(p);
1216 +}
1217 +
1218 +static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
1219 +{
1220 + p->cutValue = 32;
1221 + p->btMode = 1;
1222 + p->numHashBytes = 4;
1223 + p->bigHash = 0;
1224 +}
1225 +
1226 +#define kCrcPoly 0xEDB88320
1227 +
1228 +void MatchFinder_Construct(CMatchFinder *p)
1229 +{
1230 + UInt32 i;
1231 + p->bufferBase = 0;
1232 + p->directInput = 0;
1233 + p->hash = 0;
1234 + MatchFinder_SetDefaultSettings(p);
1235 +
1236 + for (i = 0; i < 256; i++)
1237 + {
1238 + UInt32 r = i;
1239 + int j;
1240 + for (j = 0; j < 8; j++)
1241 + r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
1242 + p->crc[i] = r;
1243 + }
1244 +}
1245 +
1246 +static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
1247 +{
1248 + alloc->Free(alloc, p->hash);
1249 + p->hash = 0;
1250 +}
1251 +
1252 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
1253 +{
1254 + MatchFinder_FreeThisClassMemory(p, alloc);
1255 + LzInWindow_Free(p, alloc);
1256 +}
1257 +
1258 +static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
1259 +{
1260 + size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
1261 + if (sizeInBytes / sizeof(CLzRef) != num)
1262 + return 0;
1263 + return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
1264 +}
1265 +
1266 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
1267 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
1268 + ISzAlloc *alloc)
1269 +{
1270 + UInt32 sizeReserv;
1271 + if (historySize > kMaxHistorySize)
1272 + {
1273 + MatchFinder_Free(p, alloc);
1274 + return 0;
1275 + }
1276 + sizeReserv = historySize >> 1;
1277 + if (historySize > ((UInt32)2 << 30))
1278 + sizeReserv = historySize >> 2;
1279 + sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
1280 +
1281 + p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
1282 + p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
1283 + /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
1284 + if (LzInWindow_Create(p, sizeReserv, alloc))
1285 + {
1286 + UInt32 newCyclicBufferSize = historySize + 1;
1287 + UInt32 hs;
1288 + p->matchMaxLen = matchMaxLen;
1289 + {
1290 + p->fixedHashSize = 0;
1291 + if (p->numHashBytes == 2)
1292 + hs = (1 << 16) - 1;
1293 + else
1294 + {
1295 + hs = historySize - 1;
1296 + hs |= (hs >> 1);
1297 + hs |= (hs >> 2);
1298 + hs |= (hs >> 4);
1299 + hs |= (hs >> 8);
1300 + hs >>= 1;
1301 + hs |= 0xFFFF; /* don't change it! It's required for Deflate */
1302 + if (hs > (1 << 24))
1303 + {
1304 + if (p->numHashBytes == 3)
1305 + hs = (1 << 24) - 1;
1306 + else
1307 + hs >>= 1;
1308 + }
1309 + }
1310 + p->hashMask = hs;
1311 + hs++;
1312 + if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
1313 + if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
1314 + if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
1315 + hs += p->fixedHashSize;
1316 + }
1317 +
1318 + {
1319 + UInt32 prevSize = p->hashSizeSum + p->numSons;
1320 + UInt32 newSize;
1321 + p->historySize = historySize;
1322 + p->hashSizeSum = hs;
1323 + p->cyclicBufferSize = newCyclicBufferSize;
1324 + p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
1325 + newSize = p->hashSizeSum + p->numSons;
1326 + if (p->hash != 0 && prevSize == newSize)
1327 + return 1;
1328 + MatchFinder_FreeThisClassMemory(p, alloc);
1329 + p->hash = AllocRefs(newSize, alloc);
1330 + if (p->hash != 0)
1331 + {
1332 + p->son = p->hash + p->hashSizeSum;
1333 + return 1;
1334 + }
1335 + }
1336 + }
1337 + MatchFinder_Free(p, alloc);
1338 + return 0;
1339 +}
1340 +
1341 +static void MatchFinder_SetLimits(CMatchFinder *p)
1342 +{
1343 + UInt32 limit = kMaxValForNormalize - p->pos;
1344 + UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
1345 + if (limit2 < limit)
1346 + limit = limit2;
1347 + limit2 = p->streamPos - p->pos;
1348 + if (limit2 <= p->keepSizeAfter)
1349 + {
1350 + if (limit2 > 0)
1351 + limit2 = 1;
1352 + }
1353 + else
1354 + limit2 -= p->keepSizeAfter;
1355 + if (limit2 < limit)
1356 + limit = limit2;
1357 + {
1358 + UInt32 lenLimit = p->streamPos - p->pos;
1359 + if (lenLimit > p->matchMaxLen)
1360 + lenLimit = p->matchMaxLen;
1361 + p->lenLimit = lenLimit;
1362 + }
1363 + p->posLimit = p->pos + limit;
1364 +}
1365 +
1366 +void MatchFinder_Init(CMatchFinder *p)
1367 +{
1368 + UInt32 i;
1369 + for (i = 0; i < p->hashSizeSum; i++)
1370 + p->hash[i] = kEmptyHashValue;
1371 + p->cyclicBufferPos = 0;
1372 + p->buffer = p->bufferBase;
1373 + p->pos = p->streamPos = p->cyclicBufferSize;
1374 + p->result = SZ_OK;
1375 + p->streamEndWasReached = 0;
1376 + MatchFinder_ReadBlock(p);
1377 + MatchFinder_SetLimits(p);
1378 +}
1379 +
1380 +static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
1381 +{
1382 + return (p->pos - p->historySize - 1) & kNormalizeMask;
1383 +}
1384 +
1385 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
1386 +{
1387 + UInt32 i;
1388 + for (i = 0; i < numItems; i++)
1389 + {
1390 + UInt32 value = items[i];
1391 + if (value <= subValue)
1392 + value = kEmptyHashValue;
1393 + else
1394 + value -= subValue;
1395 + items[i] = value;
1396 + }
1397 +}
1398 +
1399 +static void MatchFinder_Normalize(CMatchFinder *p)
1400 +{
1401 + UInt32 subValue = MatchFinder_GetSubValue(p);
1402 + MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
1403 + MatchFinder_ReduceOffsets(p, subValue);
1404 +}
1405 +
1406 +static void MatchFinder_CheckLimits(CMatchFinder *p)
1407 +{
1408 + if (p->pos == kMaxValForNormalize)
1409 + MatchFinder_Normalize(p);
1410 + if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
1411 + MatchFinder_CheckAndMoveAndRead(p);
1412 + if (p->cyclicBufferPos == p->cyclicBufferSize)
1413 + p->cyclicBufferPos = 0;
1414 + MatchFinder_SetLimits(p);
1415 +}
1416 +
1417 +static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1418 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1419 + UInt32 *distances, UInt32 maxLen)
1420 +{
1421 + son[_cyclicBufferPos] = curMatch;
1422 + for (;;)
1423 + {
1424 + UInt32 delta = pos - curMatch;
1425 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1426 + return distances;
1427 + {
1428 + const Byte *pb = cur - delta;
1429 + curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
1430 + if (pb[maxLen] == cur[maxLen] && *pb == *cur)
1431 + {
1432 + UInt32 len = 0;
1433 + while (++len != lenLimit)
1434 + if (pb[len] != cur[len])
1435 + break;
1436 + if (maxLen < len)
1437 + {
1438 + *distances++ = maxLen = len;
1439 + *distances++ = delta - 1;
1440 + if (len == lenLimit)
1441 + return distances;
1442 + }
1443 + }
1444 + }
1445 + }
1446 +}
1447 +
1448 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1449 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1450 + UInt32 *distances, UInt32 maxLen)
1451 +{
1452 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1453 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1454 + UInt32 len0 = 0, len1 = 0;
1455 + for (;;)
1456 + {
1457 + UInt32 delta = pos - curMatch;
1458 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1459 + {
1460 + *ptr0 = *ptr1 = kEmptyHashValue;
1461 + return distances;
1462 + }
1463 + {
1464 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1465 + const Byte *pb = cur - delta;
1466 + UInt32 len = (len0 < len1 ? len0 : len1);
1467 + if (pb[len] == cur[len])
1468 + {
1469 + if (++len != lenLimit && pb[len] == cur[len])
1470 + while (++len != lenLimit)
1471 + if (pb[len] != cur[len])
1472 + break;
1473 + if (maxLen < len)
1474 + {
1475 + *distances++ = maxLen = len;
1476 + *distances++ = delta - 1;
1477 + if (len == lenLimit)
1478 + {
1479 + *ptr1 = pair[0];
1480 + *ptr0 = pair[1];
1481 + return distances;
1482 + }
1483 + }
1484 + }
1485 + if (pb[len] < cur[len])
1486 + {
1487 + *ptr1 = curMatch;
1488 + ptr1 = pair + 1;
1489 + curMatch = *ptr1;
1490 + len1 = len;
1491 + }
1492 + else
1493 + {
1494 + *ptr0 = curMatch;
1495 + ptr0 = pair;
1496 + curMatch = *ptr0;
1497 + len0 = len;
1498 + }
1499 + }
1500 + }
1501 +}
1502 +
1503 +static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1504 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
1505 +{
1506 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1507 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1508 + UInt32 len0 = 0, len1 = 0;
1509 + for (;;)
1510 + {
1511 + UInt32 delta = pos - curMatch;
1512 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1513 + {
1514 + *ptr0 = *ptr1 = kEmptyHashValue;
1515 + return;
1516 + }
1517 + {
1518 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1519 + const Byte *pb = cur - delta;
1520 + UInt32 len = (len0 < len1 ? len0 : len1);
1521 + if (pb[len] == cur[len])
1522 + {
1523 + while (++len != lenLimit)
1524 + if (pb[len] != cur[len])
1525 + break;
1526 + {
1527 + if (len == lenLimit)
1528 + {
1529 + *ptr1 = pair[0];
1530 + *ptr0 = pair[1];
1531 + return;
1532 + }
1533 + }
1534 + }
1535 + if (pb[len] < cur[len])
1536 + {
1537 + *ptr1 = curMatch;
1538 + ptr1 = pair + 1;
1539 + curMatch = *ptr1;
1540 + len1 = len;
1541 + }
1542 + else
1543 + {
1544 + *ptr0 = curMatch;
1545 + ptr0 = pair;
1546 + curMatch = *ptr0;
1547 + len0 = len;
1548 + }
1549 + }
1550 + }
1551 +}
1552 +
1553 +#define MOVE_POS \
1554 + ++p->cyclicBufferPos; \
1555 + p->buffer++; \
1556 + if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
1557 +
1558 +#define MOVE_POS_RET MOVE_POS return offset;
1559 +
1560 +static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
1561 +
1562 +#define GET_MATCHES_HEADER2(minLen, ret_op) \
1563 + UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
1564 + lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
1565 + cur = p->buffer;
1566 +
1567 +#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
1568 +#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
1569 +
1570 +#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
1571 +
1572 +#define GET_MATCHES_FOOTER(offset, maxLen) \
1573 + offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
1574 + distances + offset, maxLen) - distances); MOVE_POS_RET;
1575 +
1576 +#define SKIP_FOOTER \
1577 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
1578 +
1579 +static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1580 +{
1581 + UInt32 offset;
1582 + GET_MATCHES_HEADER(2)
1583 + HASH2_CALC;
1584 + curMatch = p->hash[hashValue];
1585 + p->hash[hashValue] = p->pos;
1586 + offset = 0;
1587 + GET_MATCHES_FOOTER(offset, 1)
1588 +}
1589 +
1590 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1591 +{
1592 + UInt32 offset;
1593 + GET_MATCHES_HEADER(3)
1594 + HASH_ZIP_CALC;
1595 + curMatch = p->hash[hashValue];
1596 + p->hash[hashValue] = p->pos;
1597 + offset = 0;
1598 + GET_MATCHES_FOOTER(offset, 2)
1599 +}
1600 +
1601 +static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1602 +{
1603 + UInt32 hash2Value, delta2, maxLen, offset;
1604 + GET_MATCHES_HEADER(3)
1605 +
1606 + HASH3_CALC;
1607 +
1608 + delta2 = p->pos - p->hash[hash2Value];
1609 + curMatch = p->hash[kFix3HashSize + hashValue];
1610 +
1611 + p->hash[hash2Value] =
1612 + p->hash[kFix3HashSize + hashValue] = p->pos;
1613 +
1614 +
1615 + maxLen = 2;
1616 + offset = 0;
1617 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1618 + {
1619 + for (; maxLen != lenLimit; maxLen++)
1620 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1621 + break;
1622 + distances[0] = maxLen;
1623 + distances[1] = delta2 - 1;
1624 + offset = 2;
1625 + if (maxLen == lenLimit)
1626 + {
1627 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1628 + MOVE_POS_RET;
1629 + }
1630 + }
1631 + GET_MATCHES_FOOTER(offset, maxLen)
1632 +}
1633 +
1634 +static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1635 +{
1636 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1637 + GET_MATCHES_HEADER(4)
1638 +
1639 + HASH4_CALC;
1640 +
1641 + delta2 = p->pos - p->hash[ hash2Value];
1642 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1643 + curMatch = p->hash[kFix4HashSize + hashValue];
1644 +
1645 + p->hash[ hash2Value] =
1646 + p->hash[kFix3HashSize + hash3Value] =
1647 + p->hash[kFix4HashSize + hashValue] = p->pos;
1648 +
1649 + maxLen = 1;
1650 + offset = 0;
1651 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1652 + {
1653 + distances[0] = maxLen = 2;
1654 + distances[1] = delta2 - 1;
1655 + offset = 2;
1656 + }
1657 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1658 + {
1659 + maxLen = 3;
1660 + distances[offset + 1] = delta3 - 1;
1661 + offset += 2;
1662 + delta2 = delta3;
1663 + }
1664 + if (offset != 0)
1665 + {
1666 + for (; maxLen != lenLimit; maxLen++)
1667 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1668 + break;
1669 + distances[offset - 2] = maxLen;
1670 + if (maxLen == lenLimit)
1671 + {
1672 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1673 + MOVE_POS_RET;
1674 + }
1675 + }
1676 + if (maxLen < 3)
1677 + maxLen = 3;
1678 + GET_MATCHES_FOOTER(offset, maxLen)
1679 +}
1680 +
1681 +static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1682 +{
1683 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1684 + GET_MATCHES_HEADER(4)
1685 +
1686 + HASH4_CALC;
1687 +
1688 + delta2 = p->pos - p->hash[ hash2Value];
1689 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1690 + curMatch = p->hash[kFix4HashSize + hashValue];
1691 +
1692 + p->hash[ hash2Value] =
1693 + p->hash[kFix3HashSize + hash3Value] =
1694 + p->hash[kFix4HashSize + hashValue] = p->pos;
1695 +
1696 + maxLen = 1;
1697 + offset = 0;
1698 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1699 + {
1700 + distances[0] = maxLen = 2;
1701 + distances[1] = delta2 - 1;
1702 + offset = 2;
1703 + }
1704 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1705 + {
1706 + maxLen = 3;
1707 + distances[offset + 1] = delta3 - 1;
1708 + offset += 2;
1709 + delta2 = delta3;
1710 + }
1711 + if (offset != 0)
1712 + {
1713 + for (; maxLen != lenLimit; maxLen++)
1714 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1715 + break;
1716 + distances[offset - 2] = maxLen;
1717 + if (maxLen == lenLimit)
1718 + {
1719 + p->son[p->cyclicBufferPos] = curMatch;
1720 + MOVE_POS_RET;
1721 + }
1722 + }
1723 + if (maxLen < 3)
1724 + maxLen = 3;
1725 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1726 + distances + offset, maxLen) - (distances));
1727 + MOVE_POS_RET
1728 +}
1729 +
1730 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1731 +{
1732 + UInt32 offset;
1733 + GET_MATCHES_HEADER(3)
1734 + HASH_ZIP_CALC;
1735 + curMatch = p->hash[hashValue];
1736 + p->hash[hashValue] = p->pos;
1737 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1738 + distances, 2) - (distances));
1739 + MOVE_POS_RET
1740 +}
1741 +
1742 +static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1743 +{
1744 + do
1745 + {
1746 + SKIP_HEADER(2)
1747 + HASH2_CALC;
1748 + curMatch = p->hash[hashValue];
1749 + p->hash[hashValue] = p->pos;
1750 + SKIP_FOOTER
1751 + }
1752 + while (--num != 0);
1753 +}
1754 +
1755 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1756 +{
1757 + do
1758 + {
1759 + SKIP_HEADER(3)
1760 + HASH_ZIP_CALC;
1761 + curMatch = p->hash[hashValue];
1762 + p->hash[hashValue] = p->pos;
1763 + SKIP_FOOTER
1764 + }
1765 + while (--num != 0);
1766 +}
1767 +
1768 +static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1769 +{
1770 + do
1771 + {
1772 + UInt32 hash2Value;
1773 + SKIP_HEADER(3)
1774 + HASH3_CALC;
1775 + curMatch = p->hash[kFix3HashSize + hashValue];
1776 + p->hash[hash2Value] =
1777 + p->hash[kFix3HashSize + hashValue] = p->pos;
1778 + SKIP_FOOTER
1779 + }
1780 + while (--num != 0);
1781 +}
1782 +
1783 +static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1784 +{
1785 + do
1786 + {
1787 + UInt32 hash2Value, hash3Value;
1788 + SKIP_HEADER(4)
1789 + HASH4_CALC;
1790 + curMatch = p->hash[kFix4HashSize + hashValue];
1791 + p->hash[ hash2Value] =
1792 + p->hash[kFix3HashSize + hash3Value] = p->pos;
1793 + p->hash[kFix4HashSize + hashValue] = p->pos;
1794 + SKIP_FOOTER
1795 + }
1796 + while (--num != 0);
1797 +}
1798 +
1799 +static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1800 +{
1801 + do
1802 + {
1803 + UInt32 hash2Value, hash3Value;
1804 + SKIP_HEADER(4)
1805 + HASH4_CALC;
1806 + curMatch = p->hash[kFix4HashSize + hashValue];
1807 + p->hash[ hash2Value] =
1808 + p->hash[kFix3HashSize + hash3Value] =
1809 + p->hash[kFix4HashSize + hashValue] = p->pos;
1810 + p->son[p->cyclicBufferPos] = curMatch;
1811 + MOVE_POS
1812 + }
1813 + while (--num != 0);
1814 +}
1815 +
1816 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1817 +{
1818 + do
1819 + {
1820 + SKIP_HEADER(3)
1821 + HASH_ZIP_CALC;
1822 + curMatch = p->hash[hashValue];
1823 + p->hash[hashValue] = p->pos;
1824 + p->son[p->cyclicBufferPos] = curMatch;
1825 + MOVE_POS
1826 + }
1827 + while (--num != 0);
1828 +}
1829 +
1830 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
1831 +{
1832 + vTable->Init = (Mf_Init_Func)MatchFinder_Init;
1833 + vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
1834 + vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
1835 + vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
1836 + if (!p->btMode)
1837 + {
1838 + vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
1839 + vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
1840 + }
1841 + else if (p->numHashBytes == 2)
1842 + {
1843 + vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
1844 + vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
1845 + }
1846 + else if (p->numHashBytes == 3)
1847 + {
1848 + vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
1849 + vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
1850 + }
1851 + else
1852 + {
1853 + vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
1854 + vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
1855 + }
1856 +}
1857 --- /dev/null
1858 +++ b/lib/lzma/LzmaDec.c
1859 @@ -0,0 +1,999 @@
1860 +/* LzmaDec.c -- LZMA Decoder
1861 +2009-09-20 : Igor Pavlov : Public domain */
1862 +
1863 +#include "LzmaDec.h"
1864 +
1865 +#include <string.h>
1866 +
1867 +#define kNumTopBits 24
1868 +#define kTopValue ((UInt32)1 << kNumTopBits)
1869 +
1870 +#define kNumBitModelTotalBits 11
1871 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
1872 +#define kNumMoveBits 5
1873 +
1874 +#define RC_INIT_SIZE 5
1875 +
1876 +#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
1877 +
1878 +#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1879 +#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
1880 +#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
1881 +#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
1882 + { UPDATE_0(p); i = (i + i); A0; } else \
1883 + { UPDATE_1(p); i = (i + i) + 1; A1; }
1884 +#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
1885 +
1886 +#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
1887 +#define TREE_DECODE(probs, limit, i) \
1888 + { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
1889 +
1890 +/* #define _LZMA_SIZE_OPT */
1891 +
1892 +#ifdef _LZMA_SIZE_OPT
1893 +#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
1894 +#else
1895 +#define TREE_6_DECODE(probs, i) \
1896 + { i = 1; \
1897 + TREE_GET_BIT(probs, i); \
1898 + TREE_GET_BIT(probs, i); \
1899 + TREE_GET_BIT(probs, i); \
1900 + TREE_GET_BIT(probs, i); \
1901 + TREE_GET_BIT(probs, i); \
1902 + TREE_GET_BIT(probs, i); \
1903 + i -= 0x40; }
1904 +#endif
1905 +
1906 +#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
1907 +
1908 +#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1909 +#define UPDATE_0_CHECK range = bound;
1910 +#define UPDATE_1_CHECK range -= bound; code -= bound;
1911 +#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
1912 + { UPDATE_0_CHECK; i = (i + i); A0; } else \
1913 + { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
1914 +#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
1915 +#define TREE_DECODE_CHECK(probs, limit, i) \
1916 + { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
1917 +
1918 +
1919 +#define kNumPosBitsMax 4
1920 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
1921 +
1922 +#define kLenNumLowBits 3
1923 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
1924 +#define kLenNumMidBits 3
1925 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
1926 +#define kLenNumHighBits 8
1927 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
1928 +
1929 +#define LenChoice 0
1930 +#define LenChoice2 (LenChoice + 1)
1931 +#define LenLow (LenChoice2 + 1)
1932 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
1933 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
1934 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
1935 +
1936 +
1937 +#define kNumStates 12
1938 +#define kNumLitStates 7
1939 +
1940 +#define kStartPosModelIndex 4
1941 +#define kEndPosModelIndex 14
1942 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
1943 +
1944 +#define kNumPosSlotBits 6
1945 +#define kNumLenToPosStates 4
1946 +
1947 +#define kNumAlignBits 4
1948 +#define kAlignTableSize (1 << kNumAlignBits)
1949 +
1950 +#define kMatchMinLen 2
1951 +#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
1952 +
1953 +#define IsMatch 0
1954 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
1955 +#define IsRepG0 (IsRep + kNumStates)
1956 +#define IsRepG1 (IsRepG0 + kNumStates)
1957 +#define IsRepG2 (IsRepG1 + kNumStates)
1958 +#define IsRep0Long (IsRepG2 + kNumStates)
1959 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
1960 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
1961 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
1962 +#define LenCoder (Align + kAlignTableSize)
1963 +#define RepLenCoder (LenCoder + kNumLenProbs)
1964 +#define Literal (RepLenCoder + kNumLenProbs)
1965 +
1966 +#define LZMA_BASE_SIZE 1846
1967 +#define LZMA_LIT_SIZE 768
1968 +
1969 +#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
1970 +
1971 +#if Literal != LZMA_BASE_SIZE
1972 +StopCompilingDueBUG
1973 +#endif
1974 +
1975 +#define LZMA_DIC_MIN (1 << 12)
1976 +
1977 +/* First LZMA-symbol is always decoded.
1978 +And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
1979 +Out:
1980 + Result:
1981 + SZ_OK - OK
1982 + SZ_ERROR_DATA - Error
1983 + p->remainLen:
1984 + < kMatchSpecLenStart : normal remain
1985 + = kMatchSpecLenStart : finished
1986 + = kMatchSpecLenStart + 1 : Flush marker
1987 + = kMatchSpecLenStart + 2 : State Init Marker
1988 +*/
1989 +
1990 +static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
1991 +{
1992 + CLzmaProb *probs = p->probs;
1993 +
1994 + unsigned state = p->state;
1995 + UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
1996 + unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
1997 + unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
1998 + unsigned lc = p->prop.lc;
1999 +
2000 + Byte *dic = p->dic;
2001 + SizeT dicBufSize = p->dicBufSize;
2002 + SizeT dicPos = p->dicPos;
2003 +
2004 + UInt32 processedPos = p->processedPos;
2005 + UInt32 checkDicSize = p->checkDicSize;
2006 + unsigned len = 0;
2007 +
2008 + const Byte *buf = p->buf;
2009 + UInt32 range = p->range;
2010 + UInt32 code = p->code;
2011 +
2012 + do
2013 + {
2014 + CLzmaProb *prob;
2015 + UInt32 bound;
2016 + unsigned ttt;
2017 + unsigned posState = processedPos & pbMask;
2018 +
2019 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2020 + IF_BIT_0(prob)
2021 + {
2022 + unsigned symbol;
2023 + UPDATE_0(prob);
2024 + prob = probs + Literal;
2025 + if (checkDicSize != 0 || processedPos != 0)
2026 + prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
2027 + (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
2028 +
2029 + if (state < kNumLitStates)
2030 + {
2031 + state -= (state < 4) ? state : 3;
2032 + symbol = 1;
2033 + do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
2034 + }
2035 + else
2036 + {
2037 + unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2038 + unsigned offs = 0x100;
2039 + state -= (state < 10) ? 3 : 6;
2040 + symbol = 1;
2041 + do
2042 + {
2043 + unsigned bit;
2044 + CLzmaProb *probLit;
2045 + matchByte <<= 1;
2046 + bit = (matchByte & offs);
2047 + probLit = prob + offs + bit + symbol;
2048 + GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
2049 + }
2050 + while (symbol < 0x100);
2051 + }
2052 + dic[dicPos++] = (Byte)symbol;
2053 + processedPos++;
2054 + continue;
2055 + }
2056 + else
2057 + {
2058 + UPDATE_1(prob);
2059 + prob = probs + IsRep + state;
2060 + IF_BIT_0(prob)
2061 + {
2062 + UPDATE_0(prob);
2063 + state += kNumStates;
2064 + prob = probs + LenCoder;
2065 + }
2066 + else
2067 + {
2068 + UPDATE_1(prob);
2069 + if (checkDicSize == 0 && processedPos == 0)
2070 + return SZ_ERROR_DATA;
2071 + prob = probs + IsRepG0 + state;
2072 + IF_BIT_0(prob)
2073 + {
2074 + UPDATE_0(prob);
2075 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2076 + IF_BIT_0(prob)
2077 + {
2078 + UPDATE_0(prob);
2079 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2080 + dicPos++;
2081 + processedPos++;
2082 + state = state < kNumLitStates ? 9 : 11;
2083 + continue;
2084 + }
2085 + UPDATE_1(prob);
2086 + }
2087 + else
2088 + {
2089 + UInt32 distance;
2090 + UPDATE_1(prob);
2091 + prob = probs + IsRepG1 + state;
2092 + IF_BIT_0(prob)
2093 + {
2094 + UPDATE_0(prob);
2095 + distance = rep1;
2096 + }
2097 + else
2098 + {
2099 + UPDATE_1(prob);
2100 + prob = probs + IsRepG2 + state;
2101 + IF_BIT_0(prob)
2102 + {
2103 + UPDATE_0(prob);
2104 + distance = rep2;
2105 + }
2106 + else
2107 + {
2108 + UPDATE_1(prob);
2109 + distance = rep3;
2110 + rep3 = rep2;
2111 + }
2112 + rep2 = rep1;
2113 + }
2114 + rep1 = rep0;
2115 + rep0 = distance;
2116 + }
2117 + state = state < kNumLitStates ? 8 : 11;
2118 + prob = probs + RepLenCoder;
2119 + }
2120 + {
2121 + unsigned limit, offset;
2122 + CLzmaProb *probLen = prob + LenChoice;
2123 + IF_BIT_0(probLen)
2124 + {
2125 + UPDATE_0(probLen);
2126 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2127 + offset = 0;
2128 + limit = (1 << kLenNumLowBits);
2129 + }
2130 + else
2131 + {
2132 + UPDATE_1(probLen);
2133 + probLen = prob + LenChoice2;
2134 + IF_BIT_0(probLen)
2135 + {
2136 + UPDATE_0(probLen);
2137 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2138 + offset = kLenNumLowSymbols;
2139 + limit = (1 << kLenNumMidBits);
2140 + }
2141 + else
2142 + {
2143 + UPDATE_1(probLen);
2144 + probLen = prob + LenHigh;
2145 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2146 + limit = (1 << kLenNumHighBits);
2147 + }
2148 + }
2149 + TREE_DECODE(probLen, limit, len);
2150 + len += offset;
2151 + }
2152 +
2153 + if (state >= kNumStates)
2154 + {
2155 + UInt32 distance;
2156 + prob = probs + PosSlot +
2157 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
2158 + TREE_6_DECODE(prob, distance);
2159 + if (distance >= kStartPosModelIndex)
2160 + {
2161 + unsigned posSlot = (unsigned)distance;
2162 + int numDirectBits = (int)(((distance >> 1) - 1));
2163 + distance = (2 | (distance & 1));
2164 + if (posSlot < kEndPosModelIndex)
2165 + {
2166 + distance <<= numDirectBits;
2167 + prob = probs + SpecPos + distance - posSlot - 1;
2168 + {
2169 + UInt32 mask = 1;
2170 + unsigned i = 1;
2171 + do
2172 + {
2173 + GET_BIT2(prob + i, i, ; , distance |= mask);
2174 + mask <<= 1;
2175 + }
2176 + while (--numDirectBits != 0);
2177 + }
2178 + }
2179 + else
2180 + {
2181 + numDirectBits -= kNumAlignBits;
2182 + do
2183 + {
2184 + NORMALIZE
2185 + range >>= 1;
2186 +
2187 + {
2188 + UInt32 t;
2189 + code -= range;
2190 + t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
2191 + distance = (distance << 1) + (t + 1);
2192 + code += range & t;
2193 + }
2194 + /*
2195 + distance <<= 1;
2196 + if (code >= range)
2197 + {
2198 + code -= range;
2199 + distance |= 1;
2200 + }
2201 + */
2202 + }
2203 + while (--numDirectBits != 0);
2204 + prob = probs + Align;
2205 + distance <<= kNumAlignBits;
2206 + {
2207 + unsigned i = 1;
2208 + GET_BIT2(prob + i, i, ; , distance |= 1);
2209 + GET_BIT2(prob + i, i, ; , distance |= 2);
2210 + GET_BIT2(prob + i, i, ; , distance |= 4);
2211 + GET_BIT2(prob + i, i, ; , distance |= 8);
2212 + }
2213 + if (distance == (UInt32)0xFFFFFFFF)
2214 + {
2215 + len += kMatchSpecLenStart;
2216 + state -= kNumStates;
2217 + break;
2218 + }
2219 + }
2220 + }
2221 + rep3 = rep2;
2222 + rep2 = rep1;
2223 + rep1 = rep0;
2224 + rep0 = distance + 1;
2225 + if (checkDicSize == 0)
2226 + {
2227 + if (distance >= processedPos)
2228 + return SZ_ERROR_DATA;
2229 + }
2230 + else if (distance >= checkDicSize)
2231 + return SZ_ERROR_DATA;
2232 + state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
2233 + }
2234 +
2235 + len += kMatchMinLen;
2236 +
2237 + if (limit == dicPos)
2238 + return SZ_ERROR_DATA;
2239 + {
2240 + SizeT rem = limit - dicPos;
2241 + unsigned curLen = ((rem < len) ? (unsigned)rem : len);
2242 + SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
2243 +
2244 + processedPos += curLen;
2245 +
2246 + len -= curLen;
2247 + if (pos + curLen <= dicBufSize)
2248 + {
2249 + Byte *dest = dic + dicPos;
2250 + ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
2251 + const Byte *lim = dest + curLen;
2252 + dicPos += curLen;
2253 + do
2254 + *(dest) = (Byte)*(dest + src);
2255 + while (++dest != lim);
2256 + }
2257 + else
2258 + {
2259 + do
2260 + {
2261 + dic[dicPos++] = dic[pos];
2262 + if (++pos == dicBufSize)
2263 + pos = 0;
2264 + }
2265 + while (--curLen != 0);
2266 + }
2267 + }
2268 + }
2269 + }
2270 + while (dicPos < limit && buf < bufLimit);
2271 + NORMALIZE;
2272 + p->buf = buf;
2273 + p->range = range;
2274 + p->code = code;
2275 + p->remainLen = len;
2276 + p->dicPos = dicPos;
2277 + p->processedPos = processedPos;
2278 + p->reps[0] = rep0;
2279 + p->reps[1] = rep1;
2280 + p->reps[2] = rep2;
2281 + p->reps[3] = rep3;
2282 + p->state = state;
2283 +
2284 + return SZ_OK;
2285 +}
2286 +
2287 +static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
2288 +{
2289 + if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
2290 + {
2291 + Byte *dic = p->dic;
2292 + SizeT dicPos = p->dicPos;
2293 + SizeT dicBufSize = p->dicBufSize;
2294 + unsigned len = p->remainLen;
2295 + UInt32 rep0 = p->reps[0];
2296 + if (limit - dicPos < len)
2297 + len = (unsigned)(limit - dicPos);
2298 +
2299 + if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
2300 + p->checkDicSize = p->prop.dicSize;
2301 +
2302 + p->processedPos += len;
2303 + p->remainLen -= len;
2304 + while (len-- != 0)
2305 + {
2306 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2307 + dicPos++;
2308 + }
2309 + p->dicPos = dicPos;
2310 + }
2311 +}
2312 +
2313 +static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2314 +{
2315 + do
2316 + {
2317 + SizeT limit2 = limit;
2318 + if (p->checkDicSize == 0)
2319 + {
2320 + UInt32 rem = p->prop.dicSize - p->processedPos;
2321 + if (limit - p->dicPos > rem)
2322 + limit2 = p->dicPos + rem;
2323 + }
2324 + RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
2325 + if (p->processedPos >= p->prop.dicSize)
2326 + p->checkDicSize = p->prop.dicSize;
2327 + LzmaDec_WriteRem(p, limit);
2328 + }
2329 + while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
2330 +
2331 + if (p->remainLen > kMatchSpecLenStart)
2332 + {
2333 + p->remainLen = kMatchSpecLenStart;
2334 + }
2335 + return 0;
2336 +}
2337 +
2338 +typedef enum
2339 +{
2340 + DUMMY_ERROR, /* unexpected end of input stream */
2341 + DUMMY_LIT,
2342 + DUMMY_MATCH,
2343 + DUMMY_REP
2344 +} ELzmaDummy;
2345 +
2346 +static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
2347 +{
2348 + UInt32 range = p->range;
2349 + UInt32 code = p->code;
2350 + const Byte *bufLimit = buf + inSize;
2351 + CLzmaProb *probs = p->probs;
2352 + unsigned state = p->state;
2353 + ELzmaDummy res;
2354 +
2355 + {
2356 + CLzmaProb *prob;
2357 + UInt32 bound;
2358 + unsigned ttt;
2359 + unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
2360 +
2361 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2362 + IF_BIT_0_CHECK(prob)
2363 + {
2364 + UPDATE_0_CHECK
2365 +
2366 + /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
2367 +
2368 + prob = probs + Literal;
2369 + if (p->checkDicSize != 0 || p->processedPos != 0)
2370 + prob += (LZMA_LIT_SIZE *
2371 + ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
2372 + (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
2373 +
2374 + if (state < kNumLitStates)
2375 + {
2376 + unsigned symbol = 1;
2377 + do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
2378 + }
2379 + else
2380 + {
2381 + unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
2382 + ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
2383 + unsigned offs = 0x100;
2384 + unsigned symbol = 1;
2385 + do
2386 + {
2387 + unsigned bit;
2388 + CLzmaProb *probLit;
2389 + matchByte <<= 1;
2390 + bit = (matchByte & offs);
2391 + probLit = prob + offs + bit + symbol;
2392 + GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
2393 + }
2394 + while (symbol < 0x100);
2395 + }
2396 + res = DUMMY_LIT;
2397 + }
2398 + else
2399 + {
2400 + unsigned len;
2401 + UPDATE_1_CHECK;
2402 +
2403 + prob = probs + IsRep + state;
2404 + IF_BIT_0_CHECK(prob)
2405 + {
2406 + UPDATE_0_CHECK;
2407 + state = 0;
2408 + prob = probs + LenCoder;
2409 + res = DUMMY_MATCH;
2410 + }
2411 + else
2412 + {
2413 + UPDATE_1_CHECK;
2414 + res = DUMMY_REP;
2415 + prob = probs + IsRepG0 + state;
2416 + IF_BIT_0_CHECK(prob)
2417 + {
2418 + UPDATE_0_CHECK;
2419 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2420 + IF_BIT_0_CHECK(prob)
2421 + {
2422 + UPDATE_0_CHECK;
2423 + NORMALIZE_CHECK;
2424 + return DUMMY_REP;
2425 + }
2426 + else
2427 + {
2428 + UPDATE_1_CHECK;
2429 + }
2430 + }
2431 + else
2432 + {
2433 + UPDATE_1_CHECK;
2434 + prob = probs + IsRepG1 + state;
2435 + IF_BIT_0_CHECK(prob)
2436 + {
2437 + UPDATE_0_CHECK;
2438 + }
2439 + else
2440 + {
2441 + UPDATE_1_CHECK;
2442 + prob = probs + IsRepG2 + state;
2443 + IF_BIT_0_CHECK(prob)
2444 + {
2445 + UPDATE_0_CHECK;
2446 + }
2447 + else
2448 + {
2449 + UPDATE_1_CHECK;
2450 + }
2451 + }
2452 + }
2453 + state = kNumStates;
2454 + prob = probs + RepLenCoder;
2455 + }
2456 + {
2457 + unsigned limit, offset;
2458 + CLzmaProb *probLen = prob + LenChoice;
2459 + IF_BIT_0_CHECK(probLen)
2460 + {
2461 + UPDATE_0_CHECK;
2462 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2463 + offset = 0;
2464 + limit = 1 << kLenNumLowBits;
2465 + }
2466 + else
2467 + {
2468 + UPDATE_1_CHECK;
2469 + probLen = prob + LenChoice2;
2470 + IF_BIT_0_CHECK(probLen)
2471 + {
2472 + UPDATE_0_CHECK;
2473 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2474 + offset = kLenNumLowSymbols;
2475 + limit = 1 << kLenNumMidBits;
2476 + }
2477 + else
2478 + {
2479 + UPDATE_1_CHECK;
2480 + probLen = prob + LenHigh;
2481 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2482 + limit = 1 << kLenNumHighBits;
2483 + }
2484 + }
2485 + TREE_DECODE_CHECK(probLen, limit, len);
2486 + len += offset;
2487 + }
2488 +
2489 + if (state < 4)
2490 + {
2491 + unsigned posSlot;
2492 + prob = probs + PosSlot +
2493 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
2494 + kNumPosSlotBits);
2495 + TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
2496 + if (posSlot >= kStartPosModelIndex)
2497 + {
2498 + int numDirectBits = ((posSlot >> 1) - 1);
2499 +
2500 + /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
2501 +
2502 + if (posSlot < kEndPosModelIndex)
2503 + {
2504 + prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
2505 + }
2506 + else
2507 + {
2508 + numDirectBits -= kNumAlignBits;
2509 + do
2510 + {
2511 + NORMALIZE_CHECK
2512 + range >>= 1;
2513 + code -= range & (((code - range) >> 31) - 1);
2514 + /* if (code >= range) code -= range; */
2515 + }
2516 + while (--numDirectBits != 0);
2517 + prob = probs + Align;
2518 + numDirectBits = kNumAlignBits;
2519 + }
2520 + {
2521 + unsigned i = 1;
2522 + do
2523 + {
2524 + GET_BIT_CHECK(prob + i, i);
2525 + }
2526 + while (--numDirectBits != 0);
2527 + }
2528 + }
2529 + }
2530 + }
2531 + }
2532 + NORMALIZE_CHECK;
2533 + return res;
2534 +}
2535 +
2536 +
2537 +static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
2538 +{
2539 + p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
2540 + p->range = 0xFFFFFFFF;
2541 + p->needFlush = 0;
2542 +}
2543 +
2544 +void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
2545 +{
2546 + p->needFlush = 1;
2547 + p->remainLen = 0;
2548 + p->tempBufSize = 0;
2549 +
2550 + if (initDic)
2551 + {
2552 + p->processedPos = 0;
2553 + p->checkDicSize = 0;
2554 + p->needInitState = 1;
2555 + }
2556 + if (initState)
2557 + p->needInitState = 1;
2558 +}
2559 +
2560 +void LzmaDec_Init(CLzmaDec *p)
2561 +{
2562 + p->dicPos = 0;
2563 + LzmaDec_InitDicAndState(p, True, True);
2564 +}
2565 +
2566 +static void LzmaDec_InitStateReal(CLzmaDec *p)
2567 +{
2568 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
2569 + UInt32 i;
2570 + CLzmaProb *probs = p->probs;
2571 + for (i = 0; i < numProbs; i++)
2572 + probs[i] = kBitModelTotal >> 1;
2573 + p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
2574 + p->state = 0;
2575 + p->needInitState = 0;
2576 +}
2577 +
2578 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
2579 + ELzmaFinishMode finishMode, ELzmaStatus *status)
2580 +{
2581 + SizeT inSize = *srcLen;
2582 + (*srcLen) = 0;
2583 + LzmaDec_WriteRem(p, dicLimit);
2584 +
2585 + *status = LZMA_STATUS_NOT_SPECIFIED;
2586 +
2587 + while (p->remainLen != kMatchSpecLenStart)
2588 + {
2589 + int checkEndMarkNow;
2590 +
2591 + if (p->needFlush != 0)
2592 + {
2593 + for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
2594 + p->tempBuf[p->tempBufSize++] = *src++;
2595 + if (p->tempBufSize < RC_INIT_SIZE)
2596 + {
2597 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2598 + return SZ_OK;
2599 + }
2600 + if (p->tempBuf[0] != 0)
2601 + return SZ_ERROR_DATA;
2602 +
2603 + LzmaDec_InitRc(p, p->tempBuf);
2604 + p->tempBufSize = 0;
2605 + }
2606 +
2607 + checkEndMarkNow = 0;
2608 + if (p->dicPos >= dicLimit)
2609 + {
2610 + if (p->remainLen == 0 && p->code == 0)
2611 + {
2612 + *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
2613 + return SZ_OK;
2614 + }
2615 + if (finishMode == LZMA_FINISH_ANY)
2616 + {
2617 + *status = LZMA_STATUS_NOT_FINISHED;
2618 + return SZ_OK;
2619 + }
2620 + if (p->remainLen != 0)
2621 + {
2622 + *status = LZMA_STATUS_NOT_FINISHED;
2623 + return SZ_ERROR_DATA;
2624 + }
2625 + checkEndMarkNow = 1;
2626 + }
2627 +
2628 + if (p->needInitState)
2629 + LzmaDec_InitStateReal(p);
2630 +
2631 + if (p->tempBufSize == 0)
2632 + {
2633 + SizeT processed;
2634 + const Byte *bufLimit;
2635 + if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2636 + {
2637 + int dummyRes = LzmaDec_TryDummy(p, src, inSize);
2638 + if (dummyRes == DUMMY_ERROR)
2639 + {
2640 + memcpy(p->tempBuf, src, inSize);
2641 + p->tempBufSize = (unsigned)inSize;
2642 + (*srcLen) += inSize;
2643 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2644 + return SZ_OK;
2645 + }
2646 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2647 + {
2648 + *status = LZMA_STATUS_NOT_FINISHED;
2649 + return SZ_ERROR_DATA;
2650 + }
2651 + bufLimit = src;
2652 + }
2653 + else
2654 + bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
2655 + p->buf = src;
2656 + if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
2657 + return SZ_ERROR_DATA;
2658 + processed = (SizeT)(p->buf - src);
2659 + (*srcLen) += processed;
2660 + src += processed;
2661 + inSize -= processed;
2662 + }
2663 + else
2664 + {
2665 + unsigned rem = p->tempBufSize, lookAhead = 0;
2666 + while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
2667 + p->tempBuf[rem++] = src[lookAhead++];
2668 + p->tempBufSize = rem;
2669 + if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2670 + {
2671 + int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
2672 + if (dummyRes == DUMMY_ERROR)
2673 + {
2674 + (*srcLen) += lookAhead;
2675 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2676 + return SZ_OK;
2677 + }
2678 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2679 + {
2680 + *status = LZMA_STATUS_NOT_FINISHED;
2681 + return SZ_ERROR_DATA;
2682 + }
2683 + }
2684 + p->buf = p->tempBuf;
2685 + if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
2686 + return SZ_ERROR_DATA;
2687 + lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
2688 + (*srcLen) += lookAhead;
2689 + src += lookAhead;
2690 + inSize -= lookAhead;
2691 + p->tempBufSize = 0;
2692 + }
2693 + }
2694 + if (p->code == 0)
2695 + *status = LZMA_STATUS_FINISHED_WITH_MARK;
2696 + return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
2697 +}
2698 +
2699 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
2700 +{
2701 + SizeT outSize = *destLen;
2702 + SizeT inSize = *srcLen;
2703 + *srcLen = *destLen = 0;
2704 + for (;;)
2705 + {
2706 + SizeT inSizeCur = inSize, outSizeCur, dicPos;
2707 + ELzmaFinishMode curFinishMode;
2708 + SRes res;
2709 + if (p->dicPos == p->dicBufSize)
2710 + p->dicPos = 0;
2711 + dicPos = p->dicPos;
2712 + if (outSize > p->dicBufSize - dicPos)
2713 + {
2714 + outSizeCur = p->dicBufSize;
2715 + curFinishMode = LZMA_FINISH_ANY;
2716 + }
2717 + else
2718 + {
2719 + outSizeCur = dicPos + outSize;
2720 + curFinishMode = finishMode;
2721 + }
2722 +
2723 + res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
2724 + src += inSizeCur;
2725 + inSize -= inSizeCur;
2726 + *srcLen += inSizeCur;
2727 + outSizeCur = p->dicPos - dicPos;
2728 + memcpy(dest, p->dic + dicPos, outSizeCur);
2729 + dest += outSizeCur;
2730 + outSize -= outSizeCur;
2731 + *destLen += outSizeCur;
2732 + if (res != 0)
2733 + return res;
2734 + if (outSizeCur == 0 || outSize == 0)
2735 + return SZ_OK;
2736 + }
2737 +}
2738 +
2739 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
2740 +{
2741 + alloc->Free(alloc, p->probs);
2742 + p->probs = 0;
2743 +}
2744 +
2745 +static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
2746 +{
2747 + alloc->Free(alloc, p->dic);
2748 + p->dic = 0;
2749 +}
2750 +
2751 +void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
2752 +{
2753 + LzmaDec_FreeProbs(p, alloc);
2754 + LzmaDec_FreeDict(p, alloc);
2755 +}
2756 +
2757 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
2758 +{
2759 + UInt32 dicSize;
2760 + Byte d;
2761 +
2762 + if (size < LZMA_PROPS_SIZE)
2763 + return SZ_ERROR_UNSUPPORTED;
2764 + else
2765 + dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
2766 +
2767 + if (dicSize < LZMA_DIC_MIN)
2768 + dicSize = LZMA_DIC_MIN;
2769 + p->dicSize = dicSize;
2770 +
2771 + d = data[0];
2772 + if (d >= (9 * 5 * 5))
2773 + return SZ_ERROR_UNSUPPORTED;
2774 +
2775 + p->lc = d % 9;
2776 + d /= 9;
2777 + p->pb = d / 5;
2778 + p->lp = d % 5;
2779 +
2780 + return SZ_OK;
2781 +}
2782 +
2783 +static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
2784 +{
2785 + UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
2786 + if (p->probs == 0 || numProbs != p->numProbs)
2787 + {
2788 + LzmaDec_FreeProbs(p, alloc);
2789 + p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
2790 + p->numProbs = numProbs;
2791 + if (p->probs == 0)
2792 + return SZ_ERROR_MEM;
2793 + }
2794 + return SZ_OK;
2795 +}
2796 +
2797 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2798 +{
2799 + CLzmaProps propNew;
2800 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2801 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2802 + p->prop = propNew;
2803 + return SZ_OK;
2804 +}
2805 +
2806 +SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2807 +{
2808 + CLzmaProps propNew;
2809 + SizeT dicBufSize;
2810 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2811 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2812 + dicBufSize = propNew.dicSize;
2813 + if (p->dic == 0 || dicBufSize != p->dicBufSize)
2814 + {
2815 + LzmaDec_FreeDict(p, alloc);
2816 + p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
2817 + if (p->dic == 0)
2818 + {
2819 + LzmaDec_FreeProbs(p, alloc);
2820 + return SZ_ERROR_MEM;
2821 + }
2822 + }
2823 + p->dicBufSize = dicBufSize;
2824 + p->prop = propNew;
2825 + return SZ_OK;
2826 +}
2827 +
2828 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
2829 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
2830 + ELzmaStatus *status, ISzAlloc *alloc)
2831 +{
2832 + CLzmaDec p;
2833 + SRes res;
2834 + SizeT inSize = *srcLen;
2835 + SizeT outSize = *destLen;
2836 + *srcLen = *destLen = 0;
2837 + if (inSize < RC_INIT_SIZE)
2838 + return SZ_ERROR_INPUT_EOF;
2839 +
2840 + LzmaDec_Construct(&p);
2841 + res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
2842 + if (res != 0)
2843 + return res;
2844 + p.dic = dest;
2845 + p.dicBufSize = outSize;
2846 +
2847 + LzmaDec_Init(&p);
2848 +
2849 + *srcLen = inSize;
2850 + res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
2851 +
2852 + if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
2853 + res = SZ_ERROR_INPUT_EOF;
2854 +
2855 + (*destLen) = p.dicPos;
2856 + LzmaDec_FreeProbs(&p, alloc);
2857 + return res;
2858 +}
2859 --- /dev/null
2860 +++ b/lib/lzma/LzmaEnc.c
2861 @@ -0,0 +1,2271 @@
2862 +/* LzmaEnc.c -- LZMA Encoder
2863 +2009-11-24 : Igor Pavlov : Public domain */
2864 +
2865 +#include <string.h>
2866 +
2867 +/* #define SHOW_STAT */
2868 +/* #define SHOW_STAT2 */
2869 +
2870 +#if defined(SHOW_STAT) || defined(SHOW_STAT2)
2871 +#include <stdio.h>
2872 +#endif
2873 +
2874 +#include "LzmaEnc.h"
2875 +
2876 +/* disable MT */
2877 +#define _7ZIP_ST
2878 +
2879 +#include "LzFind.h"
2880 +#ifndef _7ZIP_ST
2881 +#include "LzFindMt.h"
2882 +#endif
2883 +
2884 +#ifdef SHOW_STAT
2885 +static int ttt = 0;
2886 +#endif
2887 +
2888 +#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
2889 +
2890 +#define kBlockSize (9 << 10)
2891 +#define kUnpackBlockSize (1 << 18)
2892 +#define kMatchArraySize (1 << 21)
2893 +#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
2894 +
2895 +#define kNumMaxDirectBits (31)
2896 +
2897 +#define kNumTopBits 24
2898 +#define kTopValue ((UInt32)1 << kNumTopBits)
2899 +
2900 +#define kNumBitModelTotalBits 11
2901 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
2902 +#define kNumMoveBits 5
2903 +#define kProbInitValue (kBitModelTotal >> 1)
2904 +
2905 +#define kNumMoveReducingBits 4
2906 +#define kNumBitPriceShiftBits 4
2907 +#define kBitPrice (1 << kNumBitPriceShiftBits)
2908 +
2909 +void LzmaEncProps_Init(CLzmaEncProps *p)
2910 +{
2911 + p->level = 5;
2912 + p->dictSize = p->mc = 0;
2913 + p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
2914 + p->writeEndMark = 0;
2915 +}
2916 +
2917 +void LzmaEncProps_Normalize(CLzmaEncProps *p)
2918 +{
2919 + int level = p->level;
2920 + if (level < 0) level = 5;
2921 + p->level = level;
2922 + if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
2923 + if (p->lc < 0) p->lc = 3;
2924 + if (p->lp < 0) p->lp = 0;
2925 + if (p->pb < 0) p->pb = 2;
2926 + if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
2927 + if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
2928 + if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
2929 + if (p->numHashBytes < 0) p->numHashBytes = 4;
2930 + if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
2931 + if (p->numThreads < 0)
2932 + p->numThreads =
2933 + #ifndef _7ZIP_ST
2934 + ((p->btMode && p->algo) ? 2 : 1);
2935 + #else
2936 + 1;
2937 + #endif
2938 +}
2939 +
2940 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
2941 +{
2942 + CLzmaEncProps props = *props2;
2943 + LzmaEncProps_Normalize(&props);
2944 + return props.dictSize;
2945 +}
2946 +
2947 +/* #define LZMA_LOG_BSR */
2948 +/* Define it for Intel's CPU */
2949 +
2950 +
2951 +#ifdef LZMA_LOG_BSR
2952 +
2953 +#define kDicLogSizeMaxCompress 30
2954 +
2955 +#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
2956 +
2957 +UInt32 GetPosSlot1(UInt32 pos)
2958 +{
2959 + UInt32 res;
2960 + BSR2_RET(pos, res);
2961 + return res;
2962 +}
2963 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2964 +#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
2965 +
2966 +#else
2967 +
2968 +#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
2969 +#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
2970 +
2971 +void LzmaEnc_FastPosInit(Byte *g_FastPos)
2972 +{
2973 + int c = 2, slotFast;
2974 + g_FastPos[0] = 0;
2975 + g_FastPos[1] = 1;
2976 +
2977 + for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
2978 + {
2979 + UInt32 k = (1 << ((slotFast >> 1) - 1));
2980 + UInt32 j;
2981 + for (j = 0; j < k; j++, c++)
2982 + g_FastPos[c] = (Byte)slotFast;
2983 + }
2984 +}
2985 +
2986 +#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
2987 + (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
2988 + res = p->g_FastPos[pos >> i] + (i * 2); }
2989 +/*
2990 +#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
2991 + p->g_FastPos[pos >> 6] + 12 : \
2992 + p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
2993 +*/
2994 +
2995 +#define GetPosSlot1(pos) p->g_FastPos[pos]
2996 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2997 +#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
2998 +
2999 +#endif
3000 +
3001 +
3002 +#define LZMA_NUM_REPS 4
3003 +
3004 +typedef unsigned CState;
3005 +
3006 +typedef struct
3007 +{
3008 + UInt32 price;
3009 +
3010 + CState state;
3011 + int prev1IsChar;
3012 + int prev2;
3013 +
3014 + UInt32 posPrev2;
3015 + UInt32 backPrev2;
3016 +
3017 + UInt32 posPrev;
3018 + UInt32 backPrev;
3019 + UInt32 backs[LZMA_NUM_REPS];
3020 +} COptimal;
3021 +
3022 +#define kNumOpts (1 << 12)
3023 +
3024 +#define kNumLenToPosStates 4
3025 +#define kNumPosSlotBits 6
3026 +#define kDicLogSizeMin 0
3027 +#define kDicLogSizeMax 32
3028 +#define kDistTableSizeMax (kDicLogSizeMax * 2)
3029 +
3030 +
3031 +#define kNumAlignBits 4
3032 +#define kAlignTableSize (1 << kNumAlignBits)
3033 +#define kAlignMask (kAlignTableSize - 1)
3034 +
3035 +#define kStartPosModelIndex 4
3036 +#define kEndPosModelIndex 14
3037 +#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
3038 +
3039 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
3040 +
3041 +#ifdef _LZMA_PROB32
3042 +#define CLzmaProb UInt32
3043 +#else
3044 +#define CLzmaProb UInt16
3045 +#endif
3046 +
3047 +#define LZMA_PB_MAX 4
3048 +#define LZMA_LC_MAX 8
3049 +#define LZMA_LP_MAX 4
3050 +
3051 +#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
3052 +
3053 +
3054 +#define kLenNumLowBits 3
3055 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
3056 +#define kLenNumMidBits 3
3057 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
3058 +#define kLenNumHighBits 8
3059 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
3060 +
3061 +#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
3062 +
3063 +#define LZMA_MATCH_LEN_MIN 2
3064 +#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
3065 +
3066 +#define kNumStates 12
3067 +
3068 +typedef struct
3069 +{
3070 + CLzmaProb choice;
3071 + CLzmaProb choice2;
3072 + CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
3073 + CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
3074 + CLzmaProb high[kLenNumHighSymbols];
3075 +} CLenEnc;
3076 +
3077 +typedef struct
3078 +{
3079 + CLenEnc p;
3080 + UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
3081 + UInt32 tableSize;
3082 + UInt32 counters[LZMA_NUM_PB_STATES_MAX];
3083 +} CLenPriceEnc;
3084 +
3085 +typedef struct
3086 +{
3087 + UInt32 range;
3088 + Byte cache;
3089 + UInt64 low;
3090 + UInt64 cacheSize;
3091 + Byte *buf;
3092 + Byte *bufLim;
3093 + Byte *bufBase;
3094 + ISeqOutStream *outStream;
3095 + UInt64 processed;
3096 + SRes res;
3097 +} CRangeEnc;
3098 +
3099 +typedef struct
3100 +{
3101 + CLzmaProb *litProbs;
3102 +
3103 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3104 + CLzmaProb isRep[kNumStates];
3105 + CLzmaProb isRepG0[kNumStates];
3106 + CLzmaProb isRepG1[kNumStates];
3107 + CLzmaProb isRepG2[kNumStates];
3108 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3109 +
3110 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3111 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3112 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3113 +
3114 + CLenPriceEnc lenEnc;
3115 + CLenPriceEnc repLenEnc;
3116 +
3117 + UInt32 reps[LZMA_NUM_REPS];
3118 + UInt32 state;
3119 +} CSaveState;
3120 +
3121 +typedef struct
3122 +{
3123 + IMatchFinder matchFinder;
3124 + void *matchFinderObj;
3125 +
3126 + #ifndef _7ZIP_ST
3127 + Bool mtMode;
3128 + CMatchFinderMt matchFinderMt;
3129 + #endif
3130 +
3131 + CMatchFinder matchFinderBase;
3132 +
3133 + #ifndef _7ZIP_ST
3134 + Byte pad[128];
3135 + #endif
3136 +
3137 + UInt32 optimumEndIndex;
3138 + UInt32 optimumCurrentIndex;
3139 +
3140 + UInt32 longestMatchLength;
3141 + UInt32 numPairs;
3142 + UInt32 numAvail;
3143 + COptimal opt[kNumOpts];
3144 +
3145 + #ifndef LZMA_LOG_BSR
3146 + Byte g_FastPos[1 << kNumLogBits];
3147 + #endif
3148 +
3149 + UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
3150 + UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
3151 + UInt32 numFastBytes;
3152 + UInt32 additionalOffset;
3153 + UInt32 reps[LZMA_NUM_REPS];
3154 + UInt32 state;
3155 +
3156 + UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
3157 + UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
3158 + UInt32 alignPrices[kAlignTableSize];
3159 + UInt32 alignPriceCount;
3160 +
3161 + UInt32 distTableSize;
3162 +
3163 + unsigned lc, lp, pb;
3164 + unsigned lpMask, pbMask;
3165 +
3166 + CLzmaProb *litProbs;
3167 +
3168 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3169 + CLzmaProb isRep[kNumStates];
3170 + CLzmaProb isRepG0[kNumStates];
3171 + CLzmaProb isRepG1[kNumStates];
3172 + CLzmaProb isRepG2[kNumStates];
3173 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3174 +
3175 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3176 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3177 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3178 +
3179 + CLenPriceEnc lenEnc;
3180 + CLenPriceEnc repLenEnc;
3181 +
3182 + unsigned lclp;
3183 +
3184 + Bool fastMode;
3185 +
3186 + CRangeEnc rc;
3187 +
3188 + Bool writeEndMark;
3189 + UInt64 nowPos64;
3190 + UInt32 matchPriceCount;
3191 + Bool finished;
3192 + Bool multiThread;
3193 +
3194 + SRes result;
3195 + UInt32 dictSize;
3196 + UInt32 matchFinderCycles;
3197 +
3198 + int needInit;
3199 +
3200 + CSaveState saveState;
3201 +} CLzmaEnc;
3202 +
3203 +void LzmaEnc_SaveState(CLzmaEncHandle pp)
3204 +{
3205 + CLzmaEnc *p = (CLzmaEnc *)pp;
3206 + CSaveState *dest = &p->saveState;
3207 + int i;
3208 + dest->lenEnc = p->lenEnc;
3209 + dest->repLenEnc = p->repLenEnc;
3210 + dest->state = p->state;
3211 +
3212 + for (i = 0; i < kNumStates; i++)
3213 + {
3214 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3215 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3216 + }
3217 + for (i = 0; i < kNumLenToPosStates; i++)
3218 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3219 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3220 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3221 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3222 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3223 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3224 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3225 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3226 + memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
3227 +}
3228 +
3229 +void LzmaEnc_RestoreState(CLzmaEncHandle pp)
3230 +{
3231 + CLzmaEnc *dest = (CLzmaEnc *)pp;
3232 + const CSaveState *p = &dest->saveState;
3233 + int i;
3234 + dest->lenEnc = p->lenEnc;
3235 + dest->repLenEnc = p->repLenEnc;
3236 + dest->state = p->state;
3237 +
3238 + for (i = 0; i < kNumStates; i++)
3239 + {
3240 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3241 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3242 + }
3243 + for (i = 0; i < kNumLenToPosStates; i++)
3244 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3245 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3246 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3247 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3248 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3249 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3250 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3251 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3252 + memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
3253 +}
3254 +
3255 +SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
3256 +{
3257 + CLzmaEnc *p = (CLzmaEnc *)pp;
3258 + CLzmaEncProps props = *props2;
3259 + LzmaEncProps_Normalize(&props);
3260 +
3261 + if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
3262 + props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
3263 + return SZ_ERROR_PARAM;
3264 + p->dictSize = props.dictSize;
3265 + p->matchFinderCycles = props.mc;
3266 + {
3267 + unsigned fb = props.fb;
3268 + if (fb < 5)
3269 + fb = 5;
3270 + if (fb > LZMA_MATCH_LEN_MAX)
3271 + fb = LZMA_MATCH_LEN_MAX;
3272 + p->numFastBytes = fb;
3273 + }
3274 + p->lc = props.lc;
3275 + p->lp = props.lp;
3276 + p->pb = props.pb;
3277 + p->fastMode = (props.algo == 0);
3278 + p->matchFinderBase.btMode = props.btMode;
3279 + {
3280 + UInt32 numHashBytes = 4;
3281 + if (props.btMode)
3282 + {
3283 + if (props.numHashBytes < 2)
3284 + numHashBytes = 2;
3285 + else if (props.numHashBytes < 4)
3286 + numHashBytes = props.numHashBytes;
3287 + }
3288 + p->matchFinderBase.numHashBytes = numHashBytes;
3289 + }
3290 +
3291 + p->matchFinderBase.cutValue = props.mc;
3292 +
3293 + p->writeEndMark = props.writeEndMark;
3294 +
3295 + #ifndef _7ZIP_ST
3296 + /*
3297 + if (newMultiThread != _multiThread)
3298 + {
3299 + ReleaseMatchFinder();
3300 + _multiThread = newMultiThread;
3301 + }
3302 + */
3303 + p->multiThread = (props.numThreads > 1);
3304 + #endif
3305 +
3306 + return SZ_OK;
3307 +}
3308 +
3309 +static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
3310 +static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
3311 +static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
3312 +static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
3313 +
3314 +#define IsCharState(s) ((s) < 7)
3315 +
3316 +#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
3317 +
3318 +#define kInfinityPrice (1 << 30)
3319 +
3320 +static void RangeEnc_Construct(CRangeEnc *p)
3321 +{
3322 + p->outStream = 0;
3323 + p->bufBase = 0;
3324 +}
3325 +
3326 +#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
3327 +
3328 +#define RC_BUF_SIZE (1 << 16)
3329 +static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
3330 +{
3331 + if (p->bufBase == 0)
3332 + {
3333 + p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
3334 + if (p->bufBase == 0)
3335 + return 0;
3336 + p->bufLim = p->bufBase + RC_BUF_SIZE;
3337 + }
3338 + return 1;
3339 +}
3340 +
3341 +static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
3342 +{
3343 + alloc->Free(alloc, p->bufBase);
3344 + p->bufBase = 0;
3345 +}
3346 +
3347 +static void RangeEnc_Init(CRangeEnc *p)
3348 +{
3349 + /* Stream.Init(); */
3350 + p->low = 0;
3351 + p->range = 0xFFFFFFFF;
3352 + p->cacheSize = 1;
3353 + p->cache = 0;
3354 +
3355 + p->buf = p->bufBase;
3356 +
3357 + p->processed = 0;
3358 + p->res = SZ_OK;
3359 +}
3360 +
3361 +static void RangeEnc_FlushStream(CRangeEnc *p)
3362 +{
3363 + size_t num;
3364 + if (p->res != SZ_OK)
3365 + return;
3366 + num = p->buf - p->bufBase;
3367 + if (num != p->outStream->Write(p->outStream, p->bufBase, num))
3368 + p->res = SZ_ERROR_WRITE;
3369 + p->processed += num;
3370 + p->buf = p->bufBase;
3371 +}
3372 +
3373 +static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
3374 +{
3375 + if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
3376 + {
3377 + Byte temp = p->cache;
3378 + do
3379 + {
3380 + Byte *buf = p->buf;
3381 + *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
3382 + p->buf = buf;
3383 + if (buf == p->bufLim)
3384 + RangeEnc_FlushStream(p);
3385 + temp = 0xFF;
3386 + }
3387 + while (--p->cacheSize != 0);
3388 + p->cache = (Byte)((UInt32)p->low >> 24);
3389 + }
3390 + p->cacheSize++;
3391 + p->low = (UInt32)p->low << 8;
3392 +}
3393 +
3394 +static void RangeEnc_FlushData(CRangeEnc *p)
3395 +{
3396 + int i;
3397 + for (i = 0; i < 5; i++)
3398 + RangeEnc_ShiftLow(p);
3399 +}
3400 +
3401 +static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
3402 +{
3403 + do
3404 + {
3405 + p->range >>= 1;
3406 + p->low += p->range & (0 - ((value >> --numBits) & 1));
3407 + if (p->range < kTopValue)
3408 + {
3409 + p->range <<= 8;
3410 + RangeEnc_ShiftLow(p);
3411 + }
3412 + }
3413 + while (numBits != 0);
3414 +}
3415 +
3416 +static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
3417 +{
3418 + UInt32 ttt = *prob;
3419 + UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
3420 + if (symbol == 0)
3421 + {
3422 + p->range = newBound;
3423 + ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
3424 + }
3425 + else
3426 + {
3427 + p->low += newBound;
3428 + p->range -= newBound;
3429 + ttt -= ttt >> kNumMoveBits;
3430 + }
3431 + *prob = (CLzmaProb)ttt;
3432 + if (p->range < kTopValue)
3433 + {
3434 + p->range <<= 8;
3435 + RangeEnc_ShiftLow(p);
3436 + }
3437 +}
3438 +
3439 +static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
3440 +{
3441 + symbol |= 0x100;
3442 + do
3443 + {
3444 + RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
3445 + symbol <<= 1;
3446 + }
3447 + while (symbol < 0x10000);
3448 +}
3449 +
3450 +static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
3451 +{
3452 + UInt32 offs = 0x100;
3453 + symbol |= 0x100;
3454 + do
3455 + {
3456 + matchByte <<= 1;
3457 + RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
3458 + symbol <<= 1;
3459 + offs &= ~(matchByte ^ symbol);
3460 + }
3461 + while (symbol < 0x10000);
3462 +}
3463 +
3464 +void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
3465 +{
3466 + UInt32 i;
3467 + for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
3468 + {
3469 + const int kCyclesBits = kNumBitPriceShiftBits;
3470 + UInt32 w = i;
3471 + UInt32 bitCount = 0;
3472 + int j;
3473 + for (j = 0; j < kCyclesBits; j++)
3474 + {
3475 + w = w * w;
3476 + bitCount <<= 1;
3477 + while (w >= ((UInt32)1 << 16))
3478 + {
3479 + w >>= 1;
3480 + bitCount++;
3481 + }
3482 + }
3483 + ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
3484 + }
3485 +}
3486 +
3487 +
3488 +#define GET_PRICE(prob, symbol) \
3489 + p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3490 +
3491 +#define GET_PRICEa(prob, symbol) \
3492 + ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3493 +
3494 +#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
3495 +#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3496 +
3497 +#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
3498 +#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3499 +
3500 +static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
3501 +{
3502 + UInt32 price = 0;
3503 + symbol |= 0x100;
3504 + do
3505 + {
3506 + price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
3507 + symbol <<= 1;
3508 + }
3509 + while (symbol < 0x10000);
3510 + return price;
3511 +}
3512 +
3513 +static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
3514 +{
3515 + UInt32 price = 0;
3516 + UInt32 offs = 0x100;
3517 + symbol |= 0x100;
3518 + do
3519 + {
3520 + matchByte <<= 1;
3521 + price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
3522 + symbol <<= 1;
3523 + offs &= ~(matchByte ^ symbol);
3524 + }
3525 + while (symbol < 0x10000);
3526 + return price;
3527 +}
3528 +
3529 +
3530 +static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3531 +{
3532 + UInt32 m = 1;
3533 + int i;
3534 + for (i = numBitLevels; i != 0;)
3535 + {
3536 + UInt32 bit;
3537 + i--;
3538 + bit = (symbol >> i) & 1;
3539 + RangeEnc_EncodeBit(rc, probs + m, bit);
3540 + m = (m << 1) | bit;
3541 + }
3542 +}
3543 +
3544 +static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3545 +{
3546 + UInt32 m = 1;
3547 + int i;
3548 + for (i = 0; i < numBitLevels; i++)
3549 + {
3550 + UInt32 bit = symbol & 1;
3551 + RangeEnc_EncodeBit(rc, probs + m, bit);
3552 + m = (m << 1) | bit;
3553 + symbol >>= 1;
3554 + }
3555 +}
3556 +
3557 +static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3558 +{
3559 + UInt32 price = 0;
3560 + symbol |= (1 << numBitLevels);
3561 + while (symbol != 1)
3562 + {
3563 + price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
3564 + symbol >>= 1;
3565 + }
3566 + return price;
3567 +}
3568 +
3569 +static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3570 +{
3571 + UInt32 price = 0;
3572 + UInt32 m = 1;
3573 + int i;
3574 + for (i = numBitLevels; i != 0; i--)
3575 + {
3576 + UInt32 bit = symbol & 1;
3577 + symbol >>= 1;
3578 + price += GET_PRICEa(probs[m], bit);
3579 + m = (m << 1) | bit;
3580 + }
3581 + return price;
3582 +}
3583 +
3584 +
3585 +static void LenEnc_Init(CLenEnc *p)
3586 +{
3587 + unsigned i;
3588 + p->choice = p->choice2 = kProbInitValue;
3589 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
3590 + p->low[i] = kProbInitValue;
3591 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
3592 + p->mid[i] = kProbInitValue;
3593 + for (i = 0; i < kLenNumHighSymbols; i++)
3594 + p->high[i] = kProbInitValue;
3595 +}
3596 +
3597 +static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
3598 +{
3599 + if (symbol < kLenNumLowSymbols)
3600 + {
3601 + RangeEnc_EncodeBit(rc, &p->choice, 0);
3602 + RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
3603 + }
3604 + else
3605 + {
3606 + RangeEnc_EncodeBit(rc, &p->choice, 1);
3607 + if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
3608 + {
3609 + RangeEnc_EncodeBit(rc, &p->choice2, 0);
3610 + RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
3611 + }
3612 + else
3613 + {
3614 + RangeEnc_EncodeBit(rc, &p->choice2, 1);
3615 + RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
3616 + }
3617 + }
3618 +}
3619 +
3620 +static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
3621 +{
3622 + UInt32 a0 = GET_PRICE_0a(p->choice);
3623 + UInt32 a1 = GET_PRICE_1a(p->choice);
3624 + UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
3625 + UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
3626 + UInt32 i = 0;
3627 + for (i = 0; i < kLenNumLowSymbols; i++)
3628 + {
3629 + if (i >= numSymbols)
3630 + return;
3631 + prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
3632 + }
3633 + for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
3634 + {
3635 + if (i >= numSymbols)
3636 + return;
3637 + prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
3638 + }
3639 + for (; i < numSymbols; i++)
3640 + prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
3641 +}
3642 +
3643 +static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
3644 +{
3645 + LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
3646 + p->counters[posState] = p->tableSize;
3647 +}
3648 +
3649 +static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
3650 +{
3651 + UInt32 posState;
3652 + for (posState = 0; posState < numPosStates; posState++)
3653 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3654 +}
3655 +
3656 +static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
3657 +{
3658 + LenEnc_Encode(&p->p, rc, symbol, posState);
3659 + if (updatePrice)
3660 + if (--p->counters[posState] == 0)
3661 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3662 +}
3663 +
3664 +
3665 +
3666 +
3667 +static void MovePos(CLzmaEnc *p, UInt32 num)
3668 +{
3669 + #ifdef SHOW_STAT
3670 + ttt += num;
3671 + printf("\n MovePos %d", num);
3672 + #endif
3673 + if (num != 0)
3674 + {
3675 + p->additionalOffset += num;
3676 + p->matchFinder.Skip(p->matchFinderObj, num);
3677 + }
3678 +}
3679 +
3680 +static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
3681 +{
3682 + UInt32 lenRes = 0, numPairs;
3683 + p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3684 + numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
3685 + #ifdef SHOW_STAT
3686 + printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
3687 + ttt++;
3688 + {
3689 + UInt32 i;
3690 + for (i = 0; i < numPairs; i += 2)
3691 + printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
3692 + }
3693 + #endif
3694 + if (numPairs > 0)
3695 + {
3696 + lenRes = p->matches[numPairs - 2];
3697 + if (lenRes == p->numFastBytes)
3698 + {
3699 + const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3700 + UInt32 distance = p->matches[numPairs - 1] + 1;
3701 + UInt32 numAvail = p->numAvail;
3702 + if (numAvail > LZMA_MATCH_LEN_MAX)
3703 + numAvail = LZMA_MATCH_LEN_MAX;
3704 + {
3705 + const Byte *pby2 = pby - distance;
3706 + for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
3707 + }
3708 + }
3709 + }
3710 + p->additionalOffset++;
3711 + *numDistancePairsRes = numPairs;
3712 + return lenRes;
3713 +}
3714 +
3715 +
3716 +#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
3717 +#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
3718 +#define IsShortRep(p) ((p)->backPrev == 0)
3719 +
3720 +static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
3721 +{
3722 + return
3723 + GET_PRICE_0(p->isRepG0[state]) +
3724 + GET_PRICE_0(p->isRep0Long[state][posState]);
3725 +}
3726 +
3727 +static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
3728 +{
3729 + UInt32 price;
3730 + if (repIndex == 0)
3731 + {
3732 + price = GET_PRICE_0(p->isRepG0[state]);
3733 + price += GET_PRICE_1(p->isRep0Long[state][posState]);
3734 + }
3735 + else
3736 + {
3737 + price = GET_PRICE_1(p->isRepG0[state]);
3738 + if (repIndex == 1)
3739 + price += GET_PRICE_0(p->isRepG1[state]);
3740 + else
3741 + {
3742 + price += GET_PRICE_1(p->isRepG1[state]);
3743 + price += GET_PRICE(p->isRepG2[state], repIndex - 2);
3744 + }
3745 + }
3746 + return price;
3747 +}
3748 +
3749 +static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
3750 +{
3751 + return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
3752 + GetPureRepPrice(p, repIndex, state, posState);
3753 +}
3754 +
3755 +static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
3756 +{
3757 + UInt32 posMem = p->opt[cur].posPrev;
3758 + UInt32 backMem = p->opt[cur].backPrev;
3759 + p->optimumEndIndex = cur;
3760 + do
3761 + {
3762 + if (p->opt[cur].prev1IsChar)
3763 + {
3764 + MakeAsChar(&p->opt[posMem])
3765 + p->opt[posMem].posPrev = posMem - 1;
3766 + if (p->opt[cur].prev2)
3767 + {
3768 + p->opt[posMem - 1].prev1IsChar = False;
3769 + p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
3770 + p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
3771 + }
3772 + }
3773 + {
3774 + UInt32 posPrev = posMem;
3775 + UInt32 backCur = backMem;
3776 +
3777 + backMem = p->opt[posPrev].backPrev;
3778 + posMem = p->opt[posPrev].posPrev;
3779 +
3780 + p->opt[posPrev].backPrev = backCur;
3781 + p->opt[posPrev].posPrev = cur;
3782 + cur = posPrev;
3783 + }
3784 + }
3785 + while (cur != 0);
3786 + *backRes = p->opt[0].backPrev;
3787 + p->optimumCurrentIndex = p->opt[0].posPrev;
3788 + return p->optimumCurrentIndex;
3789 +}
3790 +
3791 +#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
3792 +
3793 +static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
3794 +{
3795 + UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
3796 + UInt32 matchPrice, repMatchPrice, normalMatchPrice;
3797 + UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
3798 + UInt32 *matches;
3799 + const Byte *data;
3800 + Byte curByte, matchByte;
3801 + if (p->optimumEndIndex != p->optimumCurrentIndex)
3802 + {
3803 + const COptimal *opt = &p->opt[p->optimumCurrentIndex];
3804 + UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
3805 + *backRes = opt->backPrev;
3806 + p->optimumCurrentIndex = opt->posPrev;
3807 + return lenRes;
3808 + }
3809 + p->optimumCurrentIndex = p->optimumEndIndex = 0;
3810 +
3811 + if (p->additionalOffset == 0)
3812 + mainLen = ReadMatchDistances(p, &numPairs);
3813 + else
3814 + {
3815 + mainLen = p->longestMatchLength;
3816 + numPairs = p->numPairs;
3817 + }
3818 +
3819 + numAvail = p->numAvail;
3820 + if (numAvail < 2)
3821 + {
3822 + *backRes = (UInt32)(-1);
3823 + return 1;
3824 + }
3825 + if (numAvail > LZMA_MATCH_LEN_MAX)
3826 + numAvail = LZMA_MATCH_LEN_MAX;
3827 +
3828 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3829 + repMaxIndex = 0;
3830 + for (i = 0; i < LZMA_NUM_REPS; i++)
3831 + {
3832 + UInt32 lenTest;
3833 + const Byte *data2;
3834 + reps[i] = p->reps[i];
3835 + data2 = data - (reps[i] + 1);
3836 + if (data[0] != data2[0] || data[1] != data2[1])
3837 + {
3838 + repLens[i] = 0;
3839 + continue;
3840 + }
3841 + for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
3842 + repLens[i] = lenTest;
3843 + if (lenTest > repLens[repMaxIndex])
3844 + repMaxIndex = i;
3845 + }
3846 + if (repLens[repMaxIndex] >= p->numFastBytes)
3847 + {
3848 + UInt32 lenRes;
3849 + *backRes = repMaxIndex;
3850 + lenRes = repLens[repMaxIndex];
3851 + MovePos(p, lenRes - 1);
3852 + return lenRes;
3853 + }
3854 +
3855 + matches = p->matches;
3856 + if (mainLen >= p->numFastBytes)
3857 + {
3858 + *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
3859 + MovePos(p, mainLen - 1);
3860 + return mainLen;
3861 + }
3862 + curByte = *data;
3863 + matchByte = *(data - (reps[0] + 1));
3864 +
3865 + if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
3866 + {
3867 + *backRes = (UInt32)-1;
3868 + return 1;
3869 + }
3870 +
3871 + p->opt[0].state = (CState)p->state;
3872 +
3873 + posState = (position & p->pbMask);
3874 +
3875 + {
3876 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3877 + p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
3878 + (!IsCharState(p->state) ?
3879 + LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
3880 + LitEnc_GetPrice(probs, curByte, p->ProbPrices));
3881 + }
3882 +
3883 + MakeAsChar(&p->opt[1]);
3884 +
3885 + matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
3886 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
3887 +
3888 + if (matchByte == curByte)
3889 + {
3890 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
3891 + if (shortRepPrice < p->opt[1].price)
3892 + {
3893 + p->opt[1].price = shortRepPrice;
3894 + MakeAsShortRep(&p->opt[1]);
3895 + }
3896 + }
3897 + lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
3898 +
3899 + if (lenEnd < 2)
3900 + {
3901 + *backRes = p->opt[1].backPrev;
3902 + return 1;
3903 + }
3904 +
3905 + p->opt[1].posPrev = 0;
3906 + for (i = 0; i < LZMA_NUM_REPS; i++)
3907 + p->opt[0].backs[i] = reps[i];
3908 +
3909 + len = lenEnd;
3910 + do
3911 + p->opt[len--].price = kInfinityPrice;
3912 + while (len >= 2);
3913 +
3914 + for (i = 0; i < LZMA_NUM_REPS; i++)
3915 + {
3916 + UInt32 repLen = repLens[i];
3917 + UInt32 price;
3918 + if (repLen < 2)
3919 + continue;
3920 + price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
3921 + do
3922 + {
3923 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
3924 + COptimal *opt = &p->opt[repLen];
3925 + if (curAndLenPrice < opt->price)
3926 + {
3927 + opt->price = curAndLenPrice;
3928 + opt->posPrev = 0;
3929 + opt->backPrev = i;
3930 + opt->prev1IsChar = False;
3931 + }
3932 + }
3933 + while (--repLen >= 2);
3934 + }
3935 +
3936 + normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
3937 +
3938 + len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
3939 + if (len <= mainLen)
3940 + {
3941 + UInt32 offs = 0;
3942 + while (len > matches[offs])
3943 + offs += 2;
3944 + for (; ; len++)
3945 + {
3946 + COptimal *opt;
3947 + UInt32 distance = matches[offs + 1];
3948 +
3949 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
3950 + UInt32 lenToPosState = GetLenToPosState(len);
3951 + if (distance < kNumFullDistances)
3952 + curAndLenPrice += p->distancesPrices[lenToPosState][distance];
3953 + else
3954 + {
3955 + UInt32 slot;
3956 + GetPosSlot2(distance, slot);
3957 + curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
3958 + }
3959 + opt = &p->opt[len];
3960 + if (curAndLenPrice < opt->price)
3961 + {
3962 + opt->price = curAndLenPrice;
3963 + opt->posPrev = 0;
3964 + opt->backPrev = distance + LZMA_NUM_REPS;
3965 + opt->prev1IsChar = False;
3966 + }
3967 + if (len == matches[offs])
3968 + {
3969 + offs += 2;
3970 + if (offs == numPairs)
3971 + break;
3972 + }
3973 + }
3974 + }
3975 +
3976 + cur = 0;
3977 +
3978 + #ifdef SHOW_STAT2
3979 + if (position >= 0)
3980 + {
3981 + unsigned i;
3982 + printf("\n pos = %4X", position);
3983 + for (i = cur; i <= lenEnd; i++)
3984 + printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
3985 + }
3986 + #endif
3987 +
3988 + for (;;)
3989 + {
3990 + UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
3991 + UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
3992 + Bool nextIsChar;
3993 + Byte curByte, matchByte;
3994 + const Byte *data;
3995 + COptimal *curOpt;
3996 + COptimal *nextOpt;
3997 +
3998 + cur++;
3999 + if (cur == lenEnd)
4000 + return Backward(p, backRes, cur);
4001 +
4002 + newLen = ReadMatchDistances(p, &numPairs);
4003 + if (newLen >= p->numFastBytes)
4004 + {
4005 + p->numPairs = numPairs;
4006 + p->longestMatchLength = newLen;
4007 + return Backward(p, backRes, cur);
4008 + }
4009 + position++;
4010 + curOpt = &p->opt[cur];
4011 + posPrev = curOpt->posPrev;
4012 + if (curOpt->prev1IsChar)
4013 + {
4014 + posPrev--;
4015 + if (curOpt->prev2)
4016 + {
4017 + state = p->opt[curOpt->posPrev2].state;
4018 + if (curOpt->backPrev2 < LZMA_NUM_REPS)
4019 + state = kRepNextStates[state];
4020 + else
4021 + state = kMatchNextStates[state];
4022 + }
4023 + else
4024 + state = p->opt[posPrev].state;
4025 + state = kLiteralNextStates[state];
4026 + }
4027 + else
4028 + state = p->opt[posPrev].state;
4029 + if (posPrev == cur - 1)
4030 + {
4031 + if (IsShortRep(curOpt))
4032 + state = kShortRepNextStates[state];
4033 + else
4034 + state = kLiteralNextStates[state];
4035 + }
4036 + else
4037 + {
4038 + UInt32 pos;
4039 + const COptimal *prevOpt;
4040 + if (curOpt->prev1IsChar && curOpt->prev2)
4041 + {
4042 + posPrev = curOpt->posPrev2;
4043 + pos = curOpt->backPrev2;
4044 + state = kRepNextStates[state];
4045 + }
4046 + else
4047 + {
4048 + pos = curOpt->backPrev;
4049 + if (pos < LZMA_NUM_REPS)
4050 + state = kRepNextStates[state];
4051 + else
4052 + state = kMatchNextStates[state];
4053 + }
4054 + prevOpt = &p->opt[posPrev];
4055 + if (pos < LZMA_NUM_REPS)
4056 + {
4057 + UInt32 i;
4058 + reps[0] = prevOpt->backs[pos];
4059 + for (i = 1; i <= pos; i++)
4060 + reps[i] = prevOpt->backs[i - 1];
4061 + for (; i < LZMA_NUM_REPS; i++)
4062 + reps[i] = prevOpt->backs[i];
4063 + }
4064 + else
4065 + {
4066 + UInt32 i;
4067 + reps[0] = (pos - LZMA_NUM_REPS);
4068 + for (i = 1; i < LZMA_NUM_REPS; i++)
4069 + reps[i] = prevOpt->backs[i - 1];
4070 + }
4071 + }
4072 + curOpt->state = (CState)state;
4073 +
4074 + curOpt->backs[0] = reps[0];
4075 + curOpt->backs[1] = reps[1];
4076 + curOpt->backs[2] = reps[2];
4077 + curOpt->backs[3] = reps[3];
4078 +
4079 + curPrice = curOpt->price;
4080 + nextIsChar = False;
4081 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4082 + curByte = *data;
4083 + matchByte = *(data - (reps[0] + 1));
4084 +
4085 + posState = (position & p->pbMask);
4086 +
4087 + curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
4088 + {
4089 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
4090 + curAnd1Price +=
4091 + (!IsCharState(state) ?
4092 + LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
4093 + LitEnc_GetPrice(probs, curByte, p->ProbPrices));
4094 + }
4095 +
4096 + nextOpt = &p->opt[cur + 1];
4097 +
4098 + if (curAnd1Price < nextOpt->price)
4099 + {
4100 + nextOpt->price = curAnd1Price;
4101 + nextOpt->posPrev = cur;
4102 + MakeAsChar(nextOpt);
4103 + nextIsChar = True;
4104 + }
4105 +
4106 + matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
4107 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
4108 +
4109 + if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
4110 + {
4111 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
4112 + if (shortRepPrice <= nextOpt->price)
4113 + {
4114 + nextOpt->price = shortRepPrice;
4115 + nextOpt->posPrev = cur;
4116 + MakeAsShortRep(nextOpt);
4117 + nextIsChar = True;
4118 + }
4119 + }
4120 + numAvailFull = p->numAvail;
4121 + {
4122 + UInt32 temp = kNumOpts - 1 - cur;
4123 + if (temp < numAvailFull)
4124 + numAvailFull = temp;
4125 + }
4126 +
4127 + if (numAvailFull < 2)
4128 + continue;
4129 + numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
4130 +
4131 + if (!nextIsChar && matchByte != curByte) /* speed optimization */
4132 + {
4133 + /* try Literal + rep0 */
4134 + UInt32 temp;
4135 + UInt32 lenTest2;
4136 + const Byte *data2 = data - (reps[0] + 1);
4137 + UInt32 limit = p->numFastBytes + 1;
4138 + if (limit > numAvailFull)
4139 + limit = numAvailFull;
4140 +
4141 + for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
4142 + lenTest2 = temp - 1;
4143 + if (lenTest2 >= 2)
4144 + {
4145 + UInt32 state2 = kLiteralNextStates[state];
4146 + UInt32 posStateNext = (position + 1) & p->pbMask;
4147 + UInt32 nextRepMatchPrice = curAnd1Price +
4148 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4149 + GET_PRICE_1(p->isRep[state2]);
4150 + /* for (; lenTest2 >= 2; lenTest2--) */
4151 + {
4152 + UInt32 curAndLenPrice;
4153 + COptimal *opt;
4154 + UInt32 offset = cur + 1 + lenTest2;
4155 + while (lenEnd < offset)
4156 + p->opt[++lenEnd].price = kInfinityPrice;
4157 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4158 + opt = &p->opt[offset];
4159 + if (curAndLenPrice < opt->price)
4160 + {
4161 + opt->price = curAndLenPrice;
4162 + opt->posPrev = cur + 1;
4163 + opt->backPrev = 0;
4164 + opt->prev1IsChar = True;
4165 + opt->prev2 = False;
4166 + }
4167 + }
4168 + }
4169 + }
4170 +
4171 + startLen = 2; /* speed optimization */
4172 + {
4173 + UInt32 repIndex;
4174 + for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
4175 + {
4176 + UInt32 lenTest;
4177 + UInt32 lenTestTemp;
4178 + UInt32 price;
4179 + const Byte *data2 = data - (reps[repIndex] + 1);
4180 + if (data[0] != data2[0] || data[1] != data2[1])
4181 + continue;
4182 + for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
4183 + while (lenEnd < cur + lenTest)
4184 + p->opt[++lenEnd].price = kInfinityPrice;
4185 + lenTestTemp = lenTest;
4186 + price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
4187 + do
4188 + {
4189 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
4190 + COptimal *opt = &p->opt[cur + lenTest];
4191 + if (curAndLenPrice < opt->price)
4192 + {
4193 + opt->price = curAndLenPrice;
4194 + opt->posPrev = cur;
4195 + opt->backPrev = repIndex;
4196 + opt->prev1IsChar = False;
4197 + }
4198 + }
4199 + while (--lenTest >= 2);
4200 + lenTest = lenTestTemp;
4201 +
4202 + if (repIndex == 0)
4203 + startLen = lenTest + 1;
4204 +
4205 + /* if (_maxMode) */
4206 + {
4207 + UInt32 lenTest2 = lenTest + 1;
4208 + UInt32 limit = lenTest2 + p->numFastBytes;
4209 + UInt32 nextRepMatchPrice;
4210 + if (limit > numAvailFull)
4211 + limit = numAvailFull;
4212 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4213 + lenTest2 -= lenTest + 1;
4214 + if (lenTest2 >= 2)
4215 + {
4216 + UInt32 state2 = kRepNextStates[state];
4217 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4218 + UInt32 curAndLenCharPrice =
4219 + price + p->repLenEnc.prices[posState][lenTest - 2] +
4220 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4221 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4222 + data[lenTest], data2[lenTest], p->ProbPrices);
4223 + state2 = kLiteralNextStates[state2];
4224 + posStateNext = (position + lenTest + 1) & p->pbMask;
4225 + nextRepMatchPrice = curAndLenCharPrice +
4226 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4227 + GET_PRICE_1(p->isRep[state2]);
4228 +
4229 + /* for (; lenTest2 >= 2; lenTest2--) */
4230 + {
4231 + UInt32 curAndLenPrice;
4232 + COptimal *opt;
4233 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4234 + while (lenEnd < offset)
4235 + p->opt[++lenEnd].price = kInfinityPrice;
4236 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4237 + opt = &p->opt[offset];
4238 + if (curAndLenPrice < opt->price)
4239 + {
4240 + opt->price = curAndLenPrice;
4241 + opt->posPrev = cur + lenTest + 1;
4242 + opt->backPrev = 0;
4243 + opt->prev1IsChar = True;
4244 + opt->prev2 = True;
4245 + opt->posPrev2 = cur;
4246 + opt->backPrev2 = repIndex;
4247 + }
4248 + }
4249 + }
4250 + }
4251 + }
4252 + }
4253 + /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
4254 + if (newLen > numAvail)
4255 + {
4256 + newLen = numAvail;
4257 + for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
4258 + matches[numPairs] = newLen;
4259 + numPairs += 2;
4260 + }
4261 + if (newLen >= startLen)
4262 + {
4263 + UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
4264 + UInt32 offs, curBack, posSlot;
4265 + UInt32 lenTest;
4266 + while (lenEnd < cur + newLen)
4267 + p->opt[++lenEnd].price = kInfinityPrice;
4268 +
4269 + offs = 0;
4270 + while (startLen > matches[offs])
4271 + offs += 2;
4272 + curBack = matches[offs + 1];
4273 + GetPosSlot2(curBack, posSlot);
4274 + for (lenTest = /*2*/ startLen; ; lenTest++)
4275 + {
4276 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
4277 + UInt32 lenToPosState = GetLenToPosState(lenTest);
4278 + COptimal *opt;
4279 + if (curBack < kNumFullDistances)
4280 + curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
4281 + else
4282 + curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
4283 +
4284 + opt = &p->opt[cur + lenTest];
4285 + if (curAndLenPrice < opt->price)
4286 + {
4287 + opt->price = curAndLenPrice;
4288 + opt->posPrev = cur;
4289 + opt->backPrev = curBack + LZMA_NUM_REPS;
4290 + opt->prev1IsChar = False;
4291 + }
4292 +
4293 + if (/*_maxMode && */lenTest == matches[offs])
4294 + {
4295 + /* Try Match + Literal + Rep0 */
4296 + const Byte *data2 = data - (curBack + 1);
4297 + UInt32 lenTest2 = lenTest + 1;
4298 + UInt32 limit = lenTest2 + p->numFastBytes;
4299 + UInt32 nextRepMatchPrice;
4300 + if (limit > numAvailFull)
4301 + limit = numAvailFull;
4302 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4303 + lenTest2 -= lenTest + 1;
4304 + if (lenTest2 >= 2)
4305 + {
4306 + UInt32 state2 = kMatchNextStates[state];
4307 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4308 + UInt32 curAndLenCharPrice = curAndLenPrice +
4309 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4310 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4311 + data[lenTest], data2[lenTest], p->ProbPrices);
4312 + state2 = kLiteralNextStates[state2];
4313 + posStateNext = (posStateNext + 1) & p->pbMask;
4314 + nextRepMatchPrice = curAndLenCharPrice +
4315 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4316 + GET_PRICE_1(p->isRep[state2]);
4317 +
4318 + /* for (; lenTest2 >= 2; lenTest2--) */
4319 + {
4320 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4321 + UInt32 curAndLenPrice;
4322 + COptimal *opt;
4323 + while (lenEnd < offset)
4324 + p->opt[++lenEnd].price = kInfinityPrice;
4325 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4326 + opt = &p->opt[offset];
4327 + if (curAndLenPrice < opt->price)
4328 + {
4329 + opt->price = curAndLenPrice;
4330 + opt->posPrev = cur + lenTest + 1;
4331 + opt->backPrev = 0;
4332 + opt->prev1IsChar = True;
4333 + opt->prev2 = True;
4334 + opt->posPrev2 = cur;
4335 + opt->backPrev2 = curBack + LZMA_NUM_REPS;
4336 + }
4337 + }
4338 + }
4339 + offs += 2;
4340 + if (offs == numPairs)
4341 + break;
4342 + curBack = matches[offs + 1];
4343 + if (curBack >= kNumFullDistances)
4344 + GetPosSlot2(curBack, posSlot);
4345 + }
4346 + }
4347 + }
4348 + }
4349 +}
4350 +
4351 +#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
4352 +
4353 +static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
4354 +{
4355 + UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
4356 + const Byte *data;
4357 + const UInt32 *matches;
4358 +
4359 + if (p->additionalOffset == 0)
4360 + mainLen = ReadMatchDistances(p, &numPairs);
4361 + else
4362 + {
4363 + mainLen = p->longestMatchLength;
4364 + numPairs = p->numPairs;
4365 + }
4366 +
4367 + numAvail = p->numAvail;
4368 + *backRes = (UInt32)-1;
4369 + if (numAvail < 2)
4370 + return 1;
4371 + if (numAvail > LZMA_MATCH_LEN_MAX)
4372 + numAvail = LZMA_MATCH_LEN_MAX;
4373 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4374 +
4375 + repLen = repIndex = 0;
4376 + for (i = 0; i < LZMA_NUM_REPS; i++)
4377 + {
4378 + UInt32 len;
4379 + const Byte *data2 = data - (p->reps[i] + 1);
4380 + if (data[0] != data2[0] || data[1] != data2[1])
4381 + continue;
4382 + for (len = 2; len < numAvail && data[len] == data2[len]; len++);
4383 + if (len >= p->numFastBytes)
4384 + {
4385 + *backRes = i;
4386 + MovePos(p, len - 1);
4387 + return len;
4388 + }
4389 + if (len > repLen)
4390 + {
4391 + repIndex = i;
4392 + repLen = len;
4393 + }
4394 + }
4395 +
4396 + matches = p->matches;
4397 + if (mainLen >= p->numFastBytes)
4398 + {
4399 + *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
4400 + MovePos(p, mainLen - 1);
4401 + return mainLen;
4402 + }
4403 +
4404 + mainDist = 0; /* for GCC */
4405 + if (mainLen >= 2)
4406 + {
4407 + mainDist = matches[numPairs - 1];
4408 + while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
4409 + {
4410 + if (!ChangePair(matches[numPairs - 3], mainDist))
4411 + break;
4412 + numPairs -= 2;
4413 + mainLen = matches[numPairs - 2];
4414 + mainDist = matches[numPairs - 1];
4415 + }
4416 + if (mainLen == 2 && mainDist >= 0x80)
4417 + mainLen = 1;
4418 + }
4419 +
4420 + if (repLen >= 2 && (
4421 + (repLen + 1 >= mainLen) ||
4422 + (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
4423 + (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
4424 + {
4425 + *backRes = repIndex;
4426 + MovePos(p, repLen - 1);
4427 + return repLen;
4428 + }
4429 +
4430 + if (mainLen < 2 || numAvail <= 2)
4431 + return 1;
4432 +
4433 + p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
4434 + if (p->longestMatchLength >= 2)
4435 + {
4436 + UInt32 newDistance = matches[p->numPairs - 1];
4437 + if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
4438 + (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
4439 + (p->longestMatchLength > mainLen + 1) ||
4440 + (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
4441 + return 1;
4442 + }
4443 +
4444 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4445 + for (i = 0; i < LZMA_NUM_REPS; i++)
4446 + {
4447 + UInt32 len, limit;
4448 + const Byte *data2 = data - (p->reps[i] + 1);
4449 + if (data[0] != data2[0] || data[1] != data2[1])
4450 + continue;
4451 + limit = mainLen - 1;
4452 + for (len = 2; len < limit && data[len] == data2[len]; len++);
4453 + if (len >= limit)
4454 + return 1;
4455 + }
4456 + *backRes = mainDist + LZMA_NUM_REPS;
4457 + MovePos(p, mainLen - 2);
4458 + return mainLen;
4459 +}
4460 +
4461 +static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
4462 +{
4463 + UInt32 len;
4464 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4465 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4466 + p->state = kMatchNextStates[p->state];
4467 + len = LZMA_MATCH_LEN_MIN;
4468 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4469 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
4470 + RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
4471 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
4472 +}
4473 +
4474 +static SRes CheckErrors(CLzmaEnc *p)
4475 +{
4476 + if (p->result != SZ_OK)
4477 + return p->result;
4478 + if (p->rc.res != SZ_OK)
4479 + p->result = SZ_ERROR_WRITE;
4480 + if (p->matchFinderBase.result != SZ_OK)
4481 + p->result = SZ_ERROR_READ;
4482 + if (p->result != SZ_OK)
4483 + p->finished = True;
4484 + return p->result;
4485 +}
4486 +
4487 +static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
4488 +{
4489 + /* ReleaseMFStream(); */
4490 + p->finished = True;
4491 + if (p->writeEndMark)
4492 + WriteEndMarker(p, nowPos & p->pbMask);
4493 + RangeEnc_FlushData(&p->rc);
4494 + RangeEnc_FlushStream(&p->rc);
4495 + return CheckErrors(p);
4496 +}
4497 +
4498 +static void FillAlignPrices(CLzmaEnc *p)
4499 +{
4500 + UInt32 i;
4501 + for (i = 0; i < kAlignTableSize; i++)
4502 + p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
4503 + p->alignPriceCount = 0;
4504 +}
4505 +
4506 +static void FillDistancesPrices(CLzmaEnc *p)
4507 +{
4508 + UInt32 tempPrices[kNumFullDistances];
4509 + UInt32 i, lenToPosState;
4510 + for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
4511 + {
4512 + UInt32 posSlot = GetPosSlot1(i);
4513 + UInt32 footerBits = ((posSlot >> 1) - 1);
4514 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4515 + tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
4516 + }
4517 +
4518 + for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
4519 + {
4520 + UInt32 posSlot;
4521 + const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
4522 + UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
4523 + for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
4524 + posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
4525 + for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
4526 + posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
4527 +
4528 + {
4529 + UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
4530 + UInt32 i;
4531 + for (i = 0; i < kStartPosModelIndex; i++)
4532 + distancesPrices[i] = posSlotPrices[i];
4533 + for (; i < kNumFullDistances; i++)
4534 + distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
4535 + }
4536 + }
4537 + p->matchPriceCount = 0;
4538 +}
4539 +
4540 +void LzmaEnc_Construct(CLzmaEnc *p)
4541 +{
4542 + RangeEnc_Construct(&p->rc);
4543 + MatchFinder_Construct(&p->matchFinderBase);
4544 + #ifndef _7ZIP_ST
4545 + MatchFinderMt_Construct(&p->matchFinderMt);
4546 + p->matchFinderMt.MatchFinder = &p->matchFinderBase;
4547 + #endif
4548 +
4549 + {
4550 + CLzmaEncProps props;
4551 + LzmaEncProps_Init(&props);
4552 + LzmaEnc_SetProps(p, &props);
4553 + }
4554 +
4555 + #ifndef LZMA_LOG_BSR
4556 + LzmaEnc_FastPosInit(p->g_FastPos);
4557 + #endif
4558 +
4559 + LzmaEnc_InitPriceTables(p->ProbPrices);
4560 + p->litProbs = 0;
4561 + p->saveState.litProbs = 0;
4562 +}
4563 +
4564 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
4565 +{
4566 + void *p;
4567 + p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
4568 + if (p != 0)
4569 + LzmaEnc_Construct((CLzmaEnc *)p);
4570 + return p;
4571 +}
4572 +
4573 +void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
4574 +{
4575 + alloc->Free(alloc, p->litProbs);
4576 + alloc->Free(alloc, p->saveState.litProbs);
4577 + p->litProbs = 0;
4578 + p->saveState.litProbs = 0;
4579 +}
4580 +
4581 +void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
4582 +{
4583 + #ifndef _7ZIP_ST
4584 + MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
4585 + #endif
4586 + MatchFinder_Free(&p->matchFinderBase, allocBig);
4587 + LzmaEnc_FreeLits(p, alloc);
4588 + RangeEnc_Free(&p->rc, alloc);
4589 +}
4590 +
4591 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
4592 +{
4593 + LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
4594 + alloc->Free(alloc, p);
4595 +}
4596 +
4597 +static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
4598 +{
4599 + UInt32 nowPos32, startPos32;
4600 + if (p->needInit)
4601 + {
4602 + p->matchFinder.Init(p->matchFinderObj);
4603 + p->needInit = 0;
4604 + }
4605 +
4606 + if (p->finished)
4607 + return p->result;
4608 + RINOK(CheckErrors(p));
4609 +
4610 + nowPos32 = (UInt32)p->nowPos64;
4611 + startPos32 = nowPos32;
4612 +
4613 + if (p->nowPos64 == 0)
4614 + {
4615 + UInt32 numPairs;
4616 + Byte curByte;
4617 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4618 + return Flush(p, nowPos32);
4619 + ReadMatchDistances(p, &numPairs);
4620 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
4621 + p->state = kLiteralNextStates[p->state];
4622 + curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
4623 + LitEnc_Encode(&p->rc, p->litProbs, curByte);
4624 + p->additionalOffset--;
4625 + nowPos32++;
4626 + }
4627 +
4628 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
4629 + for (;;)
4630 + {
4631 + UInt32 pos, len, posState;
4632 +
4633 + if (p->fastMode)
4634 + len = GetOptimumFast(p, &pos);
4635 + else
4636 + len = GetOptimum(p, nowPos32, &pos);
4637 +
4638 + #ifdef SHOW_STAT2
4639 + printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
4640 + #endif
4641 +
4642 + posState = nowPos32 & p->pbMask;
4643 + if (len == 1 && pos == (UInt32)-1)
4644 + {
4645 + Byte curByte;
4646 + CLzmaProb *probs;
4647 + const Byte *data;
4648 +
4649 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
4650 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4651 + curByte = *data;
4652 + probs = LIT_PROBS(nowPos32, *(data - 1));
4653 + if (IsCharState(p->state))
4654 + LitEnc_Encode(&p->rc, probs, curByte);
4655 + else
4656 + LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
4657 + p->state = kLiteralNextStates[p->state];
4658 + }
4659 + else
4660 + {
4661 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4662 + if (pos < LZMA_NUM_REPS)
4663 + {
4664 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
4665 + if (pos == 0)
4666 + {
4667 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
4668 + RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
4669 + }
4670 + else
4671 + {
4672 + UInt32 distance = p->reps[pos];
4673 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
4674 + if (pos == 1)
4675 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
4676 + else
4677 + {
4678 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
4679 + RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
4680 + if (pos == 3)
4681 + p->reps[3] = p->reps[2];
4682 + p->reps[2] = p->reps[1];
4683 + }
4684 + p->reps[1] = p->reps[0];
4685 + p->reps[0] = distance;
4686 + }
4687 + if (len == 1)
4688 + p->state = kShortRepNextStates[p->state];
4689 + else
4690 + {
4691 + LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4692 + p->state = kRepNextStates[p->state];
4693 + }
4694 + }
4695 + else
4696 + {
4697 + UInt32 posSlot;
4698 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4699 + p->state = kMatchNextStates[p->state];
4700 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4701 + pos -= LZMA_NUM_REPS;
4702 + GetPosSlot(pos, posSlot);
4703 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
4704 +
4705 + if (posSlot >= kStartPosModelIndex)
4706 + {
4707 + UInt32 footerBits = ((posSlot >> 1) - 1);
4708 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4709 + UInt32 posReduced = pos - base;
4710 +
4711 + if (posSlot < kEndPosModelIndex)
4712 + RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
4713 + else
4714 + {
4715 + RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
4716 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
4717 + p->alignPriceCount++;
4718 + }
4719 + }
4720 + p->reps[3] = p->reps[2];
4721 + p->reps[2] = p->reps[1];
4722 + p->reps[1] = p->reps[0];
4723 + p->reps[0] = pos;
4724 + p->matchPriceCount++;
4725 + }
4726 + }
4727 + p->additionalOffset -= len;
4728 + nowPos32 += len;
4729 + if (p->additionalOffset == 0)
4730 + {
4731 + UInt32 processed;
4732 + if (!p->fastMode)
4733 + {
4734 + if (p->matchPriceCount >= (1 << 7))
4735 + FillDistancesPrices(p);
4736 + if (p->alignPriceCount >= kAlignTableSize)
4737 + FillAlignPrices(p);
4738 + }
4739 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4740 + break;
4741 + processed = nowPos32 - startPos32;
4742 + if (useLimits)
4743 + {
4744 + if (processed + kNumOpts + 300 >= maxUnpackSize ||
4745 + RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
4746 + break;
4747 + }
4748 + else if (processed >= (1 << 15))
4749 + {
4750 + p->nowPos64 += nowPos32 - startPos32;
4751 + return CheckErrors(p);
4752 + }
4753 + }
4754 + }
4755 + p->nowPos64 += nowPos32 - startPos32;
4756 + return Flush(p, nowPos32);
4757 +}
4758 +
4759 +#define kBigHashDicLimit ((UInt32)1 << 24)
4760 +
4761 +static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4762 +{
4763 + UInt32 beforeSize = kNumOpts;
4764 + Bool btMode;
4765 + if (!RangeEnc_Alloc(&p->rc, alloc))
4766 + return SZ_ERROR_MEM;
4767 + btMode = (p->matchFinderBase.btMode != 0);
4768 + #ifndef _7ZIP_ST
4769 + p->mtMode = (p->multiThread && !p->fastMode && btMode);
4770 + #endif
4771 +
4772 + {
4773 + unsigned lclp = p->lc + p->lp;
4774 + if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
4775 + {
4776 + LzmaEnc_FreeLits(p, alloc);
4777 + p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4778 + p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4779 + if (p->litProbs == 0 || p->saveState.litProbs == 0)
4780 + {
4781 + LzmaEnc_FreeLits(p, alloc);
4782 + return SZ_ERROR_MEM;
4783 + }
4784 + p->lclp = lclp;
4785 + }
4786 + }
4787 +
4788 + p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
4789 +
4790 + if (beforeSize + p->dictSize < keepWindowSize)
4791 + beforeSize = keepWindowSize - p->dictSize;
4792 +
4793 + #ifndef _7ZIP_ST
4794 + if (p->mtMode)
4795 + {
4796 + RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
4797 + p->matchFinderObj = &p->matchFinderMt;
4798 + MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
4799 + }
4800 + else
4801 + #endif
4802 + {
4803 + if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
4804 + return SZ_ERROR_MEM;
4805 + p->matchFinderObj = &p->matchFinderBase;
4806 + MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
4807 + }
4808 + return SZ_OK;
4809 +}
4810 +
4811 +void LzmaEnc_Init(CLzmaEnc *p)
4812 +{
4813 + UInt32 i;
4814 + p->state = 0;
4815 + for (i = 0 ; i < LZMA_NUM_REPS; i++)
4816 + p->reps[i] = 0;
4817 +
4818 + RangeEnc_Init(&p->rc);
4819 +
4820 +
4821 + for (i = 0; i < kNumStates; i++)
4822 + {
4823 + UInt32 j;
4824 + for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
4825 + {
4826 + p->isMatch[i][j] = kProbInitValue;
4827 + p->isRep0Long[i][j] = kProbInitValue;
4828 + }
4829 + p->isRep[i] = kProbInitValue;
4830 + p->isRepG0[i] = kProbInitValue;
4831 + p->isRepG1[i] = kProbInitValue;
4832 + p->isRepG2[i] = kProbInitValue;
4833 + }
4834 +
4835 + {
4836 + UInt32 num = 0x300 << (p->lp + p->lc);
4837 + for (i = 0; i < num; i++)
4838 + p->litProbs[i] = kProbInitValue;
4839 + }
4840 +
4841 + {
4842 + for (i = 0; i < kNumLenToPosStates; i++)
4843 + {
4844 + CLzmaProb *probs = p->posSlotEncoder[i];
4845 + UInt32 j;
4846 + for (j = 0; j < (1 << kNumPosSlotBits); j++)
4847 + probs[j] = kProbInitValue;
4848 + }
4849 + }
4850 + {
4851 + for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
4852 + p->posEncoders[i] = kProbInitValue;
4853 + }
4854 +
4855 + LenEnc_Init(&p->lenEnc.p);
4856 + LenEnc_Init(&p->repLenEnc.p);
4857 +
4858 + for (i = 0; i < (1 << kNumAlignBits); i++)
4859 + p->posAlignEncoder[i] = kProbInitValue;
4860 +
4861 + p->optimumEndIndex = 0;
4862 + p->optimumCurrentIndex = 0;
4863 + p->additionalOffset = 0;
4864 +
4865 + p->pbMask = (1 << p->pb) - 1;
4866 + p->lpMask = (1 << p->lp) - 1;
4867 +}
4868 +
4869 +void LzmaEnc_InitPrices(CLzmaEnc *p)
4870 +{
4871 + if (!p->fastMode)
4872 + {
4873 + FillDistancesPrices(p);
4874 + FillAlignPrices(p);
4875 + }
4876 +
4877 + p->lenEnc.tableSize =
4878 + p->repLenEnc.tableSize =
4879 + p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
4880 + LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
4881 + LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
4882 +}
4883 +
4884 +static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4885 +{
4886 + UInt32 i;
4887 + for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
4888 + if (p->dictSize <= ((UInt32)1 << i))
4889 + break;
4890 + p->distTableSize = i * 2;
4891 +
4892 + p->finished = False;
4893 + p->result = SZ_OK;
4894 + RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
4895 + LzmaEnc_Init(p);
4896 + LzmaEnc_InitPrices(p);
4897 + p->nowPos64 = 0;
4898 + return SZ_OK;
4899 +}
4900 +
4901 +static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
4902 + ISzAlloc *alloc, ISzAlloc *allocBig)
4903 +{
4904 + CLzmaEnc *p = (CLzmaEnc *)pp;
4905 + p->matchFinderBase.stream = inStream;
4906 + p->needInit = 1;
4907 + p->rc.outStream = outStream;
4908 + return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
4909 +}
4910 +
4911 +SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
4912 + ISeqInStream *inStream, UInt32 keepWindowSize,
4913 + ISzAlloc *alloc, ISzAlloc *allocBig)
4914 +{
4915 + CLzmaEnc *p = (CLzmaEnc *)pp;
4916 + p->matchFinderBase.stream = inStream;
4917 + p->needInit = 1;
4918 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4919 +}
4920 +
4921 +static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
4922 +{
4923 + p->matchFinderBase.directInput = 1;
4924 + p->matchFinderBase.bufferBase = (Byte *)src;
4925 + p->matchFinderBase.directInputRem = srcLen;
4926 +}
4927 +
4928 +SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
4929 + UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4930 +{
4931 + CLzmaEnc *p = (CLzmaEnc *)pp;
4932 + LzmaEnc_SetInputBuf(p, src, srcLen);
4933 + p->needInit = 1;
4934 +
4935 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4936 +}
4937 +
4938 +void LzmaEnc_Finish(CLzmaEncHandle pp)
4939 +{
4940 + #ifndef _7ZIP_ST
4941 + CLzmaEnc *p = (CLzmaEnc *)pp;
4942 + if (p->mtMode)
4943 + MatchFinderMt_ReleaseStream(&p->matchFinderMt);
4944 + #else
4945 + pp = pp;
4946 + #endif
4947 +}
4948 +
4949 +typedef struct
4950 +{
4951 + ISeqOutStream funcTable;
4952 + Byte *data;
4953 + SizeT rem;
4954 + Bool overflow;
4955 +} CSeqOutStreamBuf;
4956 +
4957 +static size_t MyWrite(void *pp, const void *data, size_t size)
4958 +{
4959 + CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
4960 + if (p->rem < size)
4961 + {
4962 + size = p->rem;
4963 + p->overflow = True;
4964 + }
4965 + memcpy(p->data, data, size);
4966 + p->rem -= size;
4967 + p->data += size;
4968 + return size;
4969 +}
4970 +
4971 +
4972 +UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
4973 +{
4974 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4975 + return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4976 +}
4977 +
4978 +const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
4979 +{
4980 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4981 + return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4982 +}
4983 +
4984 +SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
4985 + Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
4986 +{
4987 + CLzmaEnc *p = (CLzmaEnc *)pp;
4988 + UInt64 nowPos64;
4989 + SRes res;
4990 + CSeqOutStreamBuf outStream;
4991 +
4992 + outStream.funcTable.Write = MyWrite;
4993 + outStream.data = dest;
4994 + outStream.rem = *destLen;
4995 + outStream.overflow = False;
4996 +
4997 + p->writeEndMark = False;
4998 + p->finished = False;
4999 + p->result = SZ_OK;
5000 +
5001 + if (reInit)
5002 + LzmaEnc_Init(p);
5003 + LzmaEnc_InitPrices(p);
5004 + nowPos64 = p->nowPos64;
5005 + RangeEnc_Init(&p->rc);
5006 + p->rc.outStream = &outStream.funcTable;
5007 +
5008 + res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
5009 +
5010 + *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
5011 + *destLen -= outStream.rem;
5012 + if (outStream.overflow)
5013 + return SZ_ERROR_OUTPUT_EOF;
5014 +
5015 + return res;
5016 +}
5017 +
5018 +static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
5019 +{
5020 + SRes res = SZ_OK;
5021 +
5022 + #ifndef _7ZIP_ST
5023 + Byte allocaDummy[0x300];
5024 + int i = 0;
5025 + for (i = 0; i < 16; i++)
5026 + allocaDummy[i] = (Byte)i;
5027 + #endif
5028 +
5029 + for (;;)
5030 + {
5031 + res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
5032 + if (res != SZ_OK || p->finished != 0)
5033 + break;
5034 + if (progress != 0)
5035 + {
5036 + res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
5037 + if (res != SZ_OK)
5038 + {
5039 + res = SZ_ERROR_PROGRESS;
5040 + break;
5041 + }
5042 + }
5043 + }
5044 + LzmaEnc_Finish(p);
5045 + return res;
5046 +}
5047 +
5048 +SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
5049 + ISzAlloc *alloc, ISzAlloc *allocBig)
5050 +{
5051 + RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
5052 + return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
5053 +}
5054 +
5055 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
5056 +{
5057 + CLzmaEnc *p = (CLzmaEnc *)pp;
5058 + int i;
5059 + UInt32 dictSize = p->dictSize;
5060 + if (*size < LZMA_PROPS_SIZE)
5061 + return SZ_ERROR_PARAM;
5062 + *size = LZMA_PROPS_SIZE;
5063 + props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
5064 +
5065 + for (i = 11; i <= 30; i++)
5066 + {
5067 + if (dictSize <= ((UInt32)2 << i))
5068 + {
5069 + dictSize = (2 << i);
5070 + break;
5071 + }
5072 + if (dictSize <= ((UInt32)3 << i))
5073 + {
5074 + dictSize = (3 << i);
5075 + break;
5076 + }
5077 + }
5078 +
5079 + for (i = 0; i < 4; i++)
5080 + props[1 + i] = (Byte)(dictSize >> (8 * i));
5081 + return SZ_OK;
5082 +}
5083 +
5084 +SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
5085 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
5086 +{
5087 + SRes res;
5088 + CLzmaEnc *p = (CLzmaEnc *)pp;
5089 +
5090 + CSeqOutStreamBuf outStream;
5091 +
5092 + LzmaEnc_SetInputBuf(p, src, srcLen);
5093 +
5094 + outStream.funcTable.Write = MyWrite;
5095 + outStream.data = dest;
5096 + outStream.rem = *destLen;
5097 + outStream.overflow = False;
5098 +
5099 + p->writeEndMark = writeEndMark;
5100 +
5101 + p->rc.outStream = &outStream.funcTable;
5102 + res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
5103 + if (res == SZ_OK)
5104 + res = LzmaEnc_Encode2(p, progress);
5105 +
5106 + *destLen -= outStream.rem;
5107 + if (outStream.overflow)
5108 + return SZ_ERROR_OUTPUT_EOF;
5109 + return res;
5110 +}
5111 +
5112 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
5113 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
5114 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
5115 +{
5116 + CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
5117 + SRes res;
5118 + if (p == 0)
5119 + return SZ_ERROR_MEM;
5120 +
5121 + res = LzmaEnc_SetProps(p, props);
5122 + if (res == SZ_OK)
5123 + {
5124 + res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
5125 + if (res == SZ_OK)
5126 + res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
5127 + writeEndMark, progress, alloc, allocBig);
5128 + }
5129 +
5130 + LzmaEnc_Destroy(p, alloc, allocBig);
5131 + return res;
5132 +}
5133 --- /dev/null
5134 +++ b/lib/lzma/Makefile
5135 @@ -0,0 +1,7 @@
5136 +lzma_compress-objs := LzFind.o LzmaEnc.o
5137 +lzma_decompress-objs := LzmaDec.o
5138 +
5139 +obj-$(CONFIG_LZMA_COMPRESS) += lzma_compress.o
5140 +obj-$(CONFIG_LZMA_DECOMPRESS) += lzma_decompress.o
5141 +
5142 +EXTRA_CFLAGS += -Iinclude/linux -Iinclude/linux/lzma -include types.h
This page took 0.265509 seconds and 5 git commands to generate.