1 /* vi: set sw=4 ts=4: */
2 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
9 This code is licensed under the LGPLv2:
10 LGPL (http://www.gnu.org/copyleft/lgpl.html
14 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
16 More efficient reading of huffman codes, a streamlined read_bunzip()
17 function, and various other tweaks. In (limited) tests, approximately
18 20% faster than bzcat on x86 and about 10% faster on arm.
20 Note that about 2/3 of the time is spent in read_unzip() reversing
21 the Burrows-Wheeler transformation. Much of that time is delay
22 resulting from cache misses.
24 I would ask that anyone benefiting from this work, especially those
25 using it in commercial products, consider making a donation to my local
26 non-profit hospice organization in the name of the woman I loved, who
27 passed away Feb. 12, 2003.
29 In memory of Toni W. Hagan
31 Hospice of Acadiana, Inc.
32 2600 Johnston St., Suite 200
33 Lafayette, LA 70503-3240
35 Phone (337) 232-1234 or 1-800-738-2226
38 http://www.hospiceacadiana.com/
43 /* May 21, 2004 Manuel Novoa III
44 * Modified to load a bzip'd kernel on the linksys wrt54g.
47 * Further size reduction via inlining and disabling len check code.
50 /**********************************************************************/
52 /* Note... the LED code is specific to the v2.0 (and GS?) unit. */
54 /* #define ENABLE_LEDS 1 */
56 /* Do we want to bother with checking the bzip'd data for errors? */
57 #undef ENABLE_BUNZIP_CHECKING
58 /* #define ENABLE_BUNZIP_CHECKING 1 */
60 /**********************************************************************/
61 /* #include <bcm4710.h> */
62 #define BCM4710_FLASH 0x1fc00000 /* Flash */
64 #define KSEG0 0x80000000
65 #define KSEG1 0xa0000000
67 #define KSEG1ADDR(a) ((((unsigned)(a)) & 0x1fffffffU) | KSEG1)
69 /* The following cache code was taken from the file bcm4710_cache.h
70 * which was necessarily GPL as it was used to build the linksys
71 * kernel for the wrt54g. */
73 #warning icache [l]size hardcoded
75 #define icache_size 8192
78 #define Index_Invalidate_I 0x00
80 #define cache_unroll(base,op) \
81 __asm__ __volatile__( \
91 static __inline__
void blast_icache(void)
93 unsigned long start
= KSEG0
;
94 unsigned long end
= (start
+ icache_size
);
97 cache_unroll(start
,Index_Invalidate_I
);
102 /**********************************************************************/
104 #define INT_MAX (((1 << 30)-1)*2 + 1)
106 /**********************************************************************/
107 #ifdef ENABLE_BUNZIP_CHECKING
109 #define REBOOT do {} while (1)
113 #define REBOOT ((void) 0)
116 /**********************************************************************/
119 #define LED_POWER_ON 0x02 /* OFF == flashing */
120 #define LED_DMZ_OFF 0x80
121 #define LED_WLAN_OFF 0x01
123 #define LED_CODE_0 (LED_POWER_ON | LED_DMZ_OFF | LED_WLAN_OFF)
124 #define LED_CODE_1 (LED_POWER_ON | LED_DMZ_OFF)
125 #define LED_CODE_2 (LED_POWER_ON | LED_WLAN_OFF)
126 #define LED_CODE_3 (LED_POWER_ON)
128 #define SET_LED_ERROR(X) \
130 *(volatile u8*)(KSEG1ADDR(0x18000064))=(X & ~LED_POWER_ON); \
131 *(volatile u8*)(KSEG1ADDR(0x18000068))=0; /* Disable changes */ \
135 #define SET_LED(X) *(volatile u8*)(KSEG1ADDR(0x18000064))=X;
138 typedef unsigned char u8
;
142 #define SET_LED_ERROR(X) REBOOT
143 #define SET_LED(X) ((void)0)
147 /**********************************************************************/
149 /* Constants for huffman coding */
151 #define GROUP_SIZE 50 /* 64 would have been more efficient */
152 #define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */
153 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
154 #define SYMBOL_RUNA 0
155 #define SYMBOL_RUNB 1
157 /* Status return values */
159 #define RETVAL_LAST_BLOCK (-1)
160 #define RETVAL_NOT_BZIP_DATA (-2)
161 #define RETVAL_UNEXPECTED_INPUT_EOF (-3)
162 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
163 #define RETVAL_DATA_ERROR (-5)
164 #define RETVAL_OUT_OF_MEMORY (-6)
165 #define RETVAL_OBSOLETE_INPUT (-7)
167 /* Other housekeeping constants */
168 #define IOBUF_SIZE 4096
170 /* This is what we know about each huffman coding group */
172 /* We have an extra slot at the end of limit[] for a sentinal value. */
173 int limit
[MAX_HUFCODE_BITS
+1],base
[MAX_HUFCODE_BITS
],permute
[MAX_SYMBOLS
];
177 /* Structure holding all the housekeeping data, including IO buffers and
178 memory that persists between calls to bunzip */
180 /* State for interrupting output loop */
181 int writeCopies
,writePos
,writeRunCountdown
,writeCount
,writeCurrent
;
182 /* I/O tracking data (file handles, buffers, positions, etc.) */
183 #if defined(ENABLE_BUNZIP_CHECKING)
184 int /*in_fd,out_fd,*/ inbufCount
,inbufPos
/*,outbufPos*/;
186 int /*in_fd,out_fd,inbufCount,*/ inbufPos
/*,outbufPos*/;
188 unsigned char *inbuf
/*,*outbuf*/;
189 unsigned int inbufBitCount
, inbufBits
;
190 /* The CRC values stored in the block header and calculated from the data */
191 #ifdef ENABLE_BUNZIP_CHECKING
192 unsigned int crc32Table
[256],headerCRC
, totalCRC
, writeCRC
;
193 /* Intermediate buffer and its size (in bytes) */
194 unsigned int *dbuf
, dbufSize
;
198 /* These things are a bit too big to go on the stack */
199 unsigned char selectors
[32768]; /* nSelectors=15 bits */
200 struct group_data groups
[MAX_GROUPS
]; /* huffman coding tables */
203 static int get_next_block(bunzip_data
*bd
);
205 /**********************************************************************/
206 /* Undo burrows-wheeler transform on intermediate buffer to produce output.
207 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
208 data are written to outbuf. Return value is number of bytes written or
209 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
210 are ignored, data is written to out_fd and return is RETVAL_OK or error.
213 static __inline__
int read_bunzip(bunzip_data
*bd
, char *outbuf
, int len
)
215 const unsigned int *dbuf
;
216 int pos
,current
,previous
,gotcount
;
218 int led_state
= LED_CODE_2
;
221 /* If last read was short due to end of file, return last block now */
222 if(bd
->writeCount
<0) return bd
->writeCount
;
227 current
=bd
->writeCurrent
;
229 /* We will always have pending decoded data to write into the output
230 buffer unless this is the very first call (in which case we haven't
231 huffman-decoded a block into the intermediate buffer yet). */
233 if (bd
->writeCopies
) {
234 /* Inside the loop, writeCopies means extra copies (beyond 1) */
236 /* Loop outputting bytes */
238 #if 0 /* Might want to enable this if passing a limiting size. */
239 /* #ifdef ENABLE_BUNZIP_CHECKING */
240 /* If the output buffer is full, snapshot state and return */
241 if(gotcount
>= len
) {
243 bd
->writeCurrent
=current
;
248 /* Write next byte into output buffer, updating CRC */
249 outbuf
[gotcount
++] = current
;
250 #ifdef ENABLE_BUNZIP_CHECKING
251 bd
->writeCRC
=(((bd
->writeCRC
)<<8)
252 ^bd
->crc32Table
[((bd
->writeCRC
)>>24)^current
]);
254 /* Loop now if we're outputting multiple copies of this byte */
255 if (bd
->writeCopies
) {
260 if (!bd
->writeCount
--) break;
261 /* Follow sequence vector to undo Burrows-Wheeler transform */
266 /* After 3 consecutive copies of the same byte, the 4th is a repeat
267 count. We count down from 4 instead
268 * of counting up because testing for non-zero is faster */
269 if(--bd
->writeRunCountdown
) {
270 if(current
!=previous
) bd
->writeRunCountdown
=4;
272 /* We have a repeated run, this byte indicates the count */
273 bd
->writeCopies
=current
;
275 bd
->writeRunCountdown
=5;
276 /* Sometimes there are just 3 bytes (run length 0) */
277 if(!bd
->writeCopies
) goto decode_next_byte
;
278 /* Subtract the 1 copy we'd output anyway to get extras */
282 #ifdef ENABLE_BUNZIP_CHECKING
283 /* Decompression of this block completed successfully */
284 bd
->writeCRC
=~bd
->writeCRC
;
285 bd
->totalCRC
=((bd
->totalCRC
<<1) | (bd
->totalCRC
>>31)) ^ bd
->writeCRC
;
286 /* If this block had a CRC error, force file level CRC error. */
287 if(bd
->writeCRC
!=bd
->headerCRC
) {
288 bd
->totalCRC
=bd
->headerCRC
+1;
289 return RETVAL_LAST_BLOCK
;
295 if (led_state
== LED_CODE_2
) {
296 led_state
= LED_CODE_1
;
298 led_state
= LED_CODE_2
;
303 /* Refill the intermediate buffer by huffman-decoding next block of input */
304 /* (previous is just a convenient unused temp variable here) */
305 previous
=get_next_block(bd
);
306 #ifdef ENABLE_BUNZIP_CHECKING
308 bd
->writeCount
=previous
;
309 return (previous
!=RETVAL_LAST_BLOCK
) ? previous
: gotcount
;
311 bd
->writeCRC
=0xffffffffUL
;
313 if (previous
) return gotcount
;
316 current
=bd
->writeCurrent
;
317 goto decode_next_byte
;
320 /**********************************************************************/
321 /* WARNING!!! Must be the first function!!! */
323 void load_and_run(unsigned long ra
)
325 int dbuf
[900000]; /* Maximum requred */
329 #ifdef ENABLE_BUNZIP_CHECKING
336 *(volatile u8
*)(KSEG1ADDR(0x18000068))=0x83; /* Allow all bits to change */
340 /* memset(&bd,0,sizeof(bunzip_data)); */
342 for (i
= 0 ; i
< sizeof(bunzip_data
) ; i
++) {
346 /* Find start of flash and adjust for pmon partition. */
347 p
= ((char *) KSEG1ADDR(BCM4710_FLASH
)) + 0x10000;
350 /* Find the start of the bzip'd data. */
351 while ((p
[0]!='B') || (p
[1]!='Z') || (p
[2]!='h') /*|| (p[3]!='9')*/) ++p
;
354 /* Setup input buffer */
355 bd
.inbuf
=p
+4; /* Skip the "BZh9" header. */
356 #ifdef ENABLE_BUNZIP_CHECKING
357 bd
.inbufCount
=INT_MAX
;
358 /* Init the CRC32 table (big endian) */
362 c
=c
&0x80000000 ? (c
<<1)^0x04c11db7 : (c
<<1);
370 /* Actually do the bunzip */
371 #ifdef ENABLE_BUNZIP_CHECKING
372 r
= read_bunzip(&bd
, ((char *) LOADADDR
), INT_MAX
);
374 if (bd
.headerCRC
==bd
.totalCRC
) {
377 int code
= LED_WLAN_OFF
;
379 for (j
=0 ; j
< 4 ; j
++) {
380 for (i
=0; i
<(1<<27) ; i
++) {}
382 code
^= LED_WLAN_OFF
;
386 /* Jump to load address */
387 ((void (*)(void)) LOADADDR
)();
389 SET_LED_ERROR(LED_CODE_3
);
392 SET_LED_ERROR(LED_CODE_2
);
395 read_bunzip(&bd
, ((char *) LOADADDR
), INT_MAX
);
397 /* Jump to load address */
398 ((void (*)(void)) LOADADDR
)();
402 /**********************************************************************/
403 /* Return the next nnn bits of input. All reads from the compressed input
404 are done through this function. All reads are big endian */
405 static unsigned int get_bits(bunzip_data
*bd
, char bits_wanted
)
409 /* If we need to get more data from the byte buffer, do so. (Loop getting
410 one byte at a time to enforce endianness and avoid unaligned access.) */
411 while (bd
->inbufBitCount
<bits_wanted
) {
412 /* If we need to read more data from file into byte buffer, do so */
413 #ifdef ENABLE_BUNZIP_CHECKING
414 if(bd
->inbufPos
==bd
->inbufCount
) {
415 SET_LED_ERROR(LED_CODE_0
);
418 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
419 if(bd
->inbufBitCount
>=24) {
420 bits
=bd
->inbufBits
&((1<<bd
->inbufBitCount
)-1);
421 bits_wanted
-=bd
->inbufBitCount
;
425 /* Grab next 8 bits of input from buffer. */
426 bd
->inbufBits
=(bd
->inbufBits
<<8)|bd
->inbuf
[bd
->inbufPos
++];
427 bd
->inbufBitCount
+=8;
429 /* Calculate result */
430 bd
->inbufBitCount
-=bits_wanted
;
431 bits
|=(bd
->inbufBits
>>bd
->inbufBitCount
)&((1<<bits_wanted
)-1);
436 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
438 static int get_next_block(bunzip_data
*bd
)
440 struct group_data
*hufGroup
;
441 #ifdef ENABLE_BUNZIP_CHECKING
442 int dbufCount
,nextSym
,dbufSize
,groupCount
,*base
,*limit
,selector
,
443 i
,j
,k
,t
,runPos
,symCount
,symTotal
,nSelectors
,byteCount
[256];
445 int dbufCount
,nextSym
,/*dbufSize,*/groupCount
,*base
,*limit
,selector
,
446 i
,j
,k
,t
,runPos
,symCount
,symTotal
,nSelectors
,byteCount
[256];
448 unsigned char uc
, symToByte
[256], mtfSymbol
[256], *selectors
;
449 unsigned int *dbuf
,origPtr
;
452 #ifdef ENABLE_BUNZIP_CHECKING
453 dbufSize
=bd
->dbufSize
;
455 selectors
=bd
->selectors
;
456 /* Read in header signature and CRC, then validate signature.
457 (last block signature means CRC is for whole file, return now) */
460 #ifdef ENABLE_BUNZIP_CHECKING
461 bd
->headerCRC
=get_bits(bd
,32);
462 if ((i
== 0x177245) && (j
== 0x385090)) return RETVAL_LAST_BLOCK
;
463 if ((i
!= 0x314159) || (j
!= 0x265359)) return RETVAL_NOT_BZIP_DATA
;
464 /* We can add support for blockRandomised if anybody complains. There was
465 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
466 it didn't actually work. */
467 if(get_bits(bd
,1)) return RETVAL_OBSOLETE_INPUT
;
468 if((origPtr
=get_bits(bd
,24)) > dbufSize
) return RETVAL_DATA_ERROR
;
471 if ((i
== 0x177245) && (j
== 0x385090)) return RETVAL_LAST_BLOCK
;
473 origPtr
=get_bits(bd
,24);
475 /* mapping table: if some byte values are never used (encoding things
476 like ascii text), the compression code removes the gaps to have fewer
477 symbols to deal with, and writes a sparse bitfield indicating which
478 values were present. We make a translation table to convert the symbols
479 back to the corresponding bytes. */
486 if(k
&(1<<(15-j
))) symToByte
[symTotal
++]=(16*i
)+j
;
489 /* How many different huffman coding groups does this block use? */
490 groupCount
=get_bits(bd
,3);
491 #ifdef ENABLE_BUNZIP_CHECKING
492 if (groupCount
<2 || groupCount
>MAX_GROUPS
) return RETVAL_DATA_ERROR
;
494 /* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
495 group. Read in the group selector list, which is stored as MTF encoded
496 bit runs. (MTF=Move To Front, as each value is used it's moved to the
497 start of the list.) */
498 #ifdef ENABLE_BUNZIP_CHECKING
499 if(!(nSelectors
=get_bits(bd
, 15))) return RETVAL_DATA_ERROR
;
501 nSelectors
=get_bits(bd
, 15);
503 for(i
=0; i
<groupCount
; i
++) mtfSymbol
[i
] = i
;
504 for(i
=0; i
<nSelectors
; i
++) {
506 #ifdef ENABLE_BUNZIP_CHECKING
507 for(j
=0;get_bits(bd
,1);j
++) if (j
>=groupCount
) return RETVAL_DATA_ERROR
;
509 for(j
=0;get_bits(bd
,1);j
++) ;
511 /* Decode MTF to get the next selector */
513 for(;j
;j
--) mtfSymbol
[j
] = mtfSymbol
[j
-1];
514 mtfSymbol
[0]=selectors
[i
]=uc
;
516 /* Read the huffman coding tables for each group, which code for symTotal
517 literal symbols, plus two run symbols (RUNA, RUNB) */
519 for (j
=0; j
<groupCount
; j
++) {
520 unsigned char length
[MAX_SYMBOLS
],temp
[MAX_HUFCODE_BITS
+1];
521 int minLen
, maxLen
, pp
;
522 /* Read huffman code lengths for each symbol. They're stored in
523 a way similar to mtf; record a starting value for the first symbol,
524 and an offset from the previous value for everys symbol after that.
525 (Subtracting 1 before the loop and then adding it back at the end is
526 an optimization that makes the test inside the loop simpler: symbol
527 length 0 becomes negative, so an unsigned inequality catches it.) */
529 for (i
= 0; i
< symCount
; i
++) {
531 #ifdef ENABLE_BUNZIP_CHECKING
532 if (((unsigned)t
) > (MAX_HUFCODE_BITS
-1))
533 return RETVAL_DATA_ERROR
;
535 /* If first bit is 0, stop. Else second bit indicates whether
536 to increment or decrement the value. Optimization: grab 2
537 bits and unget the second if the first was 0. */
543 /* Add one if second bit 1, else subtract 1. Avoids if/else */
546 /* Correct for the initial -1, to get the final symbol length */
549 /* Find largest and smallest lengths in this group */
550 minLen
=maxLen
=length
[0];
551 for(i
= 1; i
< symCount
; i
++) {
552 if(length
[i
] > maxLen
) maxLen
= length
[i
];
553 else if(length
[i
] < minLen
) minLen
= length
[i
];
555 /* Calculate permute[], base[], and limit[] tables from length[].
557 * permute[] is the lookup table for converting huffman coded symbols
558 * into decoded symbols. base[] is the amount to subtract from the
559 * value of a huffman symbol of a given length when using permute[].
561 * limit[] indicates the largest numerical value a symbol with a given
562 * number of bits can have. This is how the huffman codes can vary in
563 * length: each code with a value>limit[length] needs another bit.
565 hufGroup
=bd
->groups
+j
;
566 hufGroup
->minLen
= minLen
;
567 hufGroup
->maxLen
= maxLen
;
568 /* Note that minLen can't be smaller than 1, so we adjust the base
569 and limit array pointers so we're not always wasting the first
570 entry. We do this again when using them (during symbol decoding).*/
571 base
=hufGroup
->base
-1;
572 limit
=hufGroup
->limit
-1;
573 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
575 for(i
=minLen
;i
<=maxLen
;i
++) {
577 for(t
=0;t
<symCount
;t
++)
578 if(length
[t
]==i
) hufGroup
->permute
[pp
++] = t
;
580 /* Count symbols coded for at each bit length */
581 for (i
=0;i
<symCount
;i
++) temp
[length
[i
]]++;
582 /* Calculate limit[] (the largest symbol-coding value at each bit
583 * length, which is (previous limit<<1)+symbols at this level), and
584 * base[] (number of symbols to ignore at each bit length, which is
585 * limit minus the cumulative count of symbols coded for already). */
587 for (i
=minLen
; i
<maxLen
; i
++) {
589 /* We read the largest possible symbol size and then unget bits
590 after determining how many we need, and those extra bits could
591 be set to anything. (They're noise from future symbols.) At
592 each level we're really only interested in the first few bits,
593 so here we set all the trailing to-be-ignored bits to 1 so they
594 don't affect the value>limit[length] comparison. */
595 limit
[i
]= (pp
<< (maxLen
- i
)) - 1;
597 base
[i
+1]=pp
-(t
+=temp
[i
]);
599 limit
[maxLen
+1] = INT_MAX
; /* Sentinal value for reading next sym. */
600 limit
[maxLen
]=pp
+temp
[maxLen
]-1;
603 /* We've finished reading and digesting the block header. Now read this
604 block's huffman coded symbols from the file and undo the huffman coding
605 and run length encoding, saving the result into dbuf[dbufCount++]=uc */
607 /* Initialize symbol occurrence counters and symbol Move To Front table */
610 mtfSymbol
[i
]=(unsigned char)i
;
612 /* Loop through compressed symbols. */
613 runPos
=dbufCount
=symCount
=selector
=0;
615 /* Determine which huffman coding group to use. */
617 symCount
=GROUP_SIZE
-1;
618 #ifdef ENABLE_BUNZIP_CHECKING
619 if(selector
>=nSelectors
) return RETVAL_DATA_ERROR
;
621 hufGroup
=bd
->groups
+selectors
[selector
++];
622 base
=hufGroup
->base
-1;
623 limit
=hufGroup
->limit
-1;
625 /* Read next huffman-coded symbol. */
626 /* Note: It is far cheaper to read maxLen bits and back up than it is
627 to read minLen bits and then an additional bit at a time, testing
628 as we go. Because there is a trailing last block (with file CRC),
629 there is no danger of the overread causing an unexpected EOF for a
630 valid compressed file. As a further optimization, we do the read
631 inline (falling back to a call to get_bits if the buffer runs
632 dry). The following (up to got_huff_bits:) is equivalent to
633 j=get_bits(bd,hufGroup->maxLen);
635 while (bd
->inbufBitCount
<hufGroup
->maxLen
) {
636 #ifdef ENABLE_BUNZIP_CHECKING
637 if(bd
->inbufPos
==bd
->inbufCount
) {
638 j
= get_bits(bd
,hufGroup
->maxLen
);
642 bd
->inbufBits
=(bd
->inbufBits
<<8)|bd
->inbuf
[bd
->inbufPos
++];
643 bd
->inbufBitCount
+=8;
645 bd
->inbufBitCount
-=hufGroup
->maxLen
;
646 j
= (bd
->inbufBits
>>bd
->inbufBitCount
)&((1<<hufGroup
->maxLen
)-1);
648 /* Figure how how many bits are in next symbol and unget extras */
650 while(j
>limit
[i
]) ++i
;
651 bd
->inbufBitCount
+= (hufGroup
->maxLen
- i
);
652 /* Huffman decode value to get nextSym (with bounds checking) */
653 #ifdef ENABLE_BUNZIP_CHECKING
654 if ((i
> hufGroup
->maxLen
)
655 || (((unsigned)(j
=(j
>>(hufGroup
->maxLen
-i
))-base
[i
]))
657 return RETVAL_DATA_ERROR
;
659 j
=(j
>>(hufGroup
->maxLen
-i
))-base
[i
];
661 nextSym
= hufGroup
->permute
[j
];
662 /* We have now decoded the symbol, which indicates either a new literal
663 byte, or a repeated run of the most recent literal byte. First,
664 check if nextSym indicates a repeated run, and if so loop collecting
665 how many times to repeat the last literal. */
666 if (((unsigned)nextSym
) <= SYMBOL_RUNB
) { /* RUNA or RUNB */
667 /* If this is the start of a new run, zero out counter */
672 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
673 each bit position, add 1 or 2 instead. For example,
674 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
675 You can make any bit pattern that way using 1 less symbol than
676 the basic or 0/1 method (except all bits 0, which would use no
677 symbols, but a run of length 0 doesn't mean anything in this
678 context). Thus space is saved. */
679 t
+= (runPos
<< nextSym
); /* +runPos if RUNA; +2*runPos if RUNB */
683 /* When we hit the first non-run symbol after a run, we now know
684 how many times to repeat the last literal, so append that many
685 copies to our buffer of decoded symbols (dbuf) now. (The last
686 literal used is the one at the head of the mtfSymbol array.) */
689 #ifdef ENABLE_BUNZIP_CHECKING
690 if(dbufCount
+t
>=dbufSize
) return RETVAL_DATA_ERROR
;
693 uc
= symToByte
[mtfSymbol
[0]];
695 while(t
--) dbuf
[dbufCount
++]=uc
;
697 /* Is this the terminating symbol? */
698 if(nextSym
>symTotal
) break;
699 /* At this point, nextSym indicates a new literal character. Subtract
700 one to get the position in the MTF array at which this literal is
701 currently to be found. (Note that the result can't be -1 or 0,
702 because 0 and 1 are RUNA and RUNB. But another instance of the
703 first symbol in the mtf array, position 0, would have been handled
704 as part of a run above. Therefore 1 unused mtf position minus
705 2 non-literal nextSym values equals -1.) */
706 #ifdef ENABLE_BUNZIP_CHECKING
707 if(dbufCount
>=dbufSize
) return RETVAL_DATA_ERROR
;
711 /* Adjust the MTF array. Since we typically expect to move only a
712 * small number of symbols, and are bound by 256 in any case, using
713 * memmove here would typically be bigger and slower due to function
714 * call overhead and other assorted setup costs. */
716 mtfSymbol
[i
] = mtfSymbol
[i
-1];
720 /* We have our literal byte. Save it into dbuf. */
722 dbuf
[dbufCount
++] = (unsigned int)uc
;
724 /* At this point, we've read all the huffman-coded symbols (and repeated
725 runs) for this block from the input stream, and decoded them into the
726 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
727 Now undo the Burrows-Wheeler transform on dbuf.
728 See http://dogma.net/markn/articles/bwt/bwt.htm
730 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
737 /* Figure out what order dbuf would be in if we sorted it. */
738 for (i
=0;i
<dbufCount
;i
++) {
739 uc
=(unsigned char)(dbuf
[i
] & 0xff);
740 dbuf
[byteCount
[uc
]] |= (i
<< 8);
743 /* Decode first byte by hand to initialize "previous" byte. Note that it
744 doesn't get output, and if the first three characters are identical
745 it doesn't qualify as a run (hence writeRunCountdown=5). */
747 #ifdef ENABLE_BUNZIP_CHECKING
748 if(origPtr
>=dbufCount
) return RETVAL_DATA_ERROR
;
750 bd
->writePos
=dbuf
[origPtr
];
751 bd
->writeCurrent
=(unsigned char)(bd
->writePos
&0xff);
753 bd
->writeRunCountdown
=5;
755 bd
->writeCount
=dbufCount
;
This page took 0.108262 seconds and 5 git commands to generate.