2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
28 * Set enviroment defines for rt2x00.h
30 #define DRV_NAME "rt61pci"
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
41 #include "rt2x00pci.h"
46 * BBP and RF register require indirect register access,
47 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
48 * These indirect registers work with busy bits,
49 * and we will try maximal REGISTER_BUSY_COUNT times to access
50 * the register while taking a REGISTER_BUSY_DELAY us delay
51 * between each attampt. When the busy bit is still set at that time,
52 * the access attempt is considered to have failed,
53 * and we will print an error.
55 static u32
rt61pci_bbp_check(const struct rt2x00_dev
*rt2x00dev
)
60 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
61 rt2x00pci_register_read(rt2x00dev
, PHY_CSR3
, ®
);
62 if (!rt2x00_get_field32(reg
, PHY_CSR3_BUSY
))
64 udelay(REGISTER_BUSY_DELAY
);
70 static void rt61pci_bbp_write(const struct rt2x00_dev
*rt2x00dev
,
71 const unsigned int word
, const u8 value
)
76 * Wait until the BBP becomes ready.
78 reg
= rt61pci_bbp_check(rt2x00dev
);
79 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
80 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Write failed.\n");
85 * Write the data into the BBP.
88 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
89 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
90 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
91 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
93 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
96 static void rt61pci_bbp_read(const struct rt2x00_dev
*rt2x00dev
,
97 const unsigned int word
, u8
*value
)
102 * Wait until the BBP becomes ready.
104 reg
= rt61pci_bbp_check(rt2x00dev
);
105 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
106 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
111 * Write the request into the BBP.
114 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
115 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
116 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
118 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
121 * Wait until the BBP becomes ready.
123 reg
= rt61pci_bbp_check(rt2x00dev
);
124 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
125 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
130 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
133 static void rt61pci_rf_write(const struct rt2x00_dev
*rt2x00dev
,
134 const unsigned int word
, const u32 value
)
142 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
143 rt2x00pci_register_read(rt2x00dev
, PHY_CSR4
, ®
);
144 if (!rt2x00_get_field32(reg
, PHY_CSR4_BUSY
))
146 udelay(REGISTER_BUSY_DELAY
);
149 ERROR(rt2x00dev
, "PHY_CSR4 register busy. Write failed.\n");
154 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
155 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
156 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
157 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
159 rt2x00pci_register_write(rt2x00dev
, PHY_CSR4
, reg
);
160 rt2x00_rf_write(rt2x00dev
, word
, value
);
163 static void rt61pci_mcu_request(const struct rt2x00_dev
*rt2x00dev
,
164 const u8 command
, const u8 token
,
165 const u8 arg0
, const u8 arg1
)
169 rt2x00pci_register_read(rt2x00dev
, H2M_MAILBOX_CSR
, ®
);
171 if (rt2x00_get_field32(reg
, H2M_MAILBOX_CSR_OWNER
)) {
172 ERROR(rt2x00dev
, "mcu request error. "
173 "Request 0x%02x failed for token 0x%02x.\n",
178 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
179 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
180 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
181 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
182 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
184 rt2x00pci_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
185 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
186 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
187 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
190 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
192 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
195 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
197 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
198 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
199 eeprom
->reg_data_clock
=
200 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
201 eeprom
->reg_chip_select
=
202 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
205 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
207 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
210 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
211 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
212 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
213 !!eeprom
->reg_data_clock
);
214 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
215 !!eeprom
->reg_chip_select
);
217 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
220 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
221 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
223 static void rt61pci_read_csr(const struct rt2x00_dev
*rt2x00dev
,
224 const unsigned int word
, u32
*data
)
226 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
229 static void rt61pci_write_csr(const struct rt2x00_dev
*rt2x00dev
,
230 const unsigned int word
, u32 data
)
232 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
235 static const struct rt2x00debug rt61pci_rt2x00debug
= {
236 .owner
= THIS_MODULE
,
238 .read
= rt61pci_read_csr
,
239 .write
= rt61pci_write_csr
,
240 .word_size
= sizeof(u32
),
241 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
244 .read
= rt2x00_eeprom_read
,
245 .write
= rt2x00_eeprom_write
,
246 .word_size
= sizeof(u16
),
247 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
250 .read
= rt61pci_bbp_read
,
251 .write
= rt61pci_bbp_write
,
252 .word_size
= sizeof(u8
),
253 .word_count
= BBP_SIZE
/ sizeof(u8
),
256 .read
= rt2x00_rf_read
,
257 .write
= rt61pci_rf_write
,
258 .word_size
= sizeof(u32
),
259 .word_count
= RF_SIZE
/ sizeof(u32
),
262 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
264 #ifdef CONFIG_RT61PCI_RFKILL
265 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
269 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
270 return rt2x00_get_field32(reg
, MAC_CSR13_BIT5
);;
273 #define rt61pci_rfkill_poll NULL
274 #endif /* CONFIG_RT61PCI_RFKILL */
277 * Configuration handlers.
279 static void rt61pci_config_mac_addr(struct rt2x00_dev
*rt2x00dev
, __le32
*mac
)
283 tmp
= le32_to_cpu(mac
[1]);
284 rt2x00_set_field32(&tmp
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
285 mac
[1] = cpu_to_le32(tmp
);
287 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR2
, mac
,
288 (2 * sizeof(__le32
)));
291 static void rt61pci_config_bssid(struct rt2x00_dev
*rt2x00dev
, __le32
*bssid
)
295 tmp
= le32_to_cpu(bssid
[1]);
296 rt2x00_set_field32(&tmp
, MAC_CSR5_BSS_ID_MASK
, 3);
297 bssid
[1] = cpu_to_le32(tmp
);
299 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR4
, bssid
,
300 (2 * sizeof(__le32
)));
303 static void rt61pci_config_type(struct rt2x00_dev
*rt2x00dev
, const int type
,
309 * Clear current synchronisation setup.
310 * For the Beacon base registers we only need to clear
311 * the first byte since that byte contains the VALID and OWNER
312 * bits which (when set to 0) will invalidate the entire beacon.
314 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
315 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
316 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
317 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
318 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
321 * Enable synchronisation.
323 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
324 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
325 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
326 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
327 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, tsf_sync
);
328 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
331 static void rt61pci_config_preamble(struct rt2x00_dev
*rt2x00dev
,
332 const int short_preamble
,
333 const int ack_timeout
,
334 const int ack_consume_time
)
338 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
339 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, ack_timeout
);
340 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
342 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
343 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
345 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
348 static void rt61pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
349 const int basic_rate_mask
)
351 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR5
, basic_rate_mask
);
354 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
355 struct rf_channel
*rf
, const int txpower
)
361 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
362 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
364 smart
= !(rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
365 rt2x00_rf(&rt2x00dev
->chip
, RF2527
));
367 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
368 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
369 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
372 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
373 r94
+= txpower
- MAX_TXPOWER
;
374 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
376 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
378 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
379 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
380 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
381 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
385 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
386 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
387 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
388 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
392 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
393 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
394 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
395 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
400 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
403 struct rf_channel rf
;
405 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
406 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
407 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
408 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
410 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
413 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
414 const int antenna_tx
,
415 const int antenna_rx
)
421 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
422 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
423 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
425 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
426 !rt2x00_rf(&rt2x00dev
->chip
, RF5225
));
428 switch (antenna_rx
) {
429 case ANTENNA_SW_DIVERSITY
:
430 case ANTENNA_HW_DIVERSITY
:
431 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
432 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
433 !!(rt2x00dev
->curr_hwmode
!= HWMODE_A
));
436 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
437 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
439 if (rt2x00dev
->curr_hwmode
== HWMODE_A
)
440 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 0);
442 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
445 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
446 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
448 if (rt2x00dev
->curr_hwmode
== HWMODE_A
)
449 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
451 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 0);
455 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
456 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
457 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
460 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
461 const int antenna_tx
,
462 const int antenna_rx
)
468 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
469 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
470 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
472 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
473 !rt2x00_rf(&rt2x00dev
->chip
, RF2527
));
474 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
475 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
477 switch (antenna_rx
) {
478 case ANTENNA_SW_DIVERSITY
:
479 case ANTENNA_HW_DIVERSITY
:
480 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
483 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
484 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
487 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
488 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 0);
492 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
493 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
494 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
497 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
498 const int p1
, const int p2
)
502 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
505 rt2x00_set_field32(®
, MAC_CSR13_BIT4
, !!p1
);
506 rt2x00_set_field32(®
, MAC_CSR13_BIT12
, 0);
507 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
510 rt2x00_set_field32(®
, MAC_CSR13_BIT3
, !p2
);
511 rt2x00_set_field32(®
, MAC_CSR13_BIT11
, 0);
512 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
516 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
517 const int antenna_tx
,
518 const int antenna_rx
)
525 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
526 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
527 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
528 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
530 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
532 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
) &&
533 rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
)) {
534 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
535 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 1);
536 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 1);
537 } else if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
)) {
538 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
) >= 2) {
539 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
540 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
542 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
543 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
544 } else if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
) &&
545 rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
)) {
546 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
547 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
549 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
)) {
551 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 1);
554 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 0);
557 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
560 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
563 } else if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
) &&
564 !rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
)) {
565 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
566 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
568 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
)) {
570 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 0);
571 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
572 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 1);
575 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 0);
576 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
577 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 0);
580 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
581 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
582 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
585 rt2x00_set_field8(&r77
, BBP_R77_PAIR
, 3);
586 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
587 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
592 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
593 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
599 * value[0] -> non-LNA
605 static const struct antenna_sel antenna_sel_a
[] = {
606 { 96, { 0x58, 0x78 } },
607 { 104, { 0x38, 0x48 } },
608 { 75, { 0xfe, 0x80 } },
609 { 86, { 0xfe, 0x80 } },
610 { 88, { 0xfe, 0x80 } },
611 { 35, { 0x60, 0x60 } },
612 { 97, { 0x58, 0x58 } },
613 { 98, { 0x58, 0x58 } },
616 static const struct antenna_sel antenna_sel_bg
[] = {
617 { 96, { 0x48, 0x68 } },
618 { 104, { 0x2c, 0x3c } },
619 { 75, { 0xfe, 0x80 } },
620 { 86, { 0xfe, 0x80 } },
621 { 88, { 0xfe, 0x80 } },
622 { 35, { 0x50, 0x50 } },
623 { 97, { 0x48, 0x48 } },
624 { 98, { 0x48, 0x48 } },
627 static void rt61pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
628 const int antenna_tx
, const int antenna_rx
)
630 const struct antenna_sel
*sel
;
635 rt2x00pci_register_read(rt2x00dev
, PHY_CSR0
, ®
);
637 if (rt2x00dev
->curr_hwmode
== HWMODE_A
) {
639 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
641 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
, 0);
642 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
, 1);
644 sel
= antenna_sel_bg
;
645 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
647 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
, 1);
648 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
, 0);
651 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
652 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
654 rt2x00pci_register_write(rt2x00dev
, PHY_CSR0
, reg
);
656 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
657 rt2x00_rf(&rt2x00dev
->chip
, RF5325
))
658 rt61pci_config_antenna_5x(rt2x00dev
, antenna_tx
, antenna_rx
);
659 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2527
))
660 rt61pci_config_antenna_2x(rt2x00dev
, antenna_tx
, antenna_rx
);
661 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
662 if (test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
))
663 rt61pci_config_antenna_2x(rt2x00dev
, antenna_tx
,
666 rt61pci_config_antenna_2529(rt2x00dev
, antenna_tx
,
671 static void rt61pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
672 struct rt2x00lib_conf
*libconf
)
676 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
677 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, libconf
->slot_time
);
678 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
680 rt2x00pci_register_read(rt2x00dev
, MAC_CSR8
, ®
);
681 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, libconf
->sifs
);
682 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
683 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, libconf
->eifs
);
684 rt2x00pci_register_write(rt2x00dev
, MAC_CSR8
, reg
);
686 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
687 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
688 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
690 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
691 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
692 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
694 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
695 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
696 libconf
->conf
->beacon_int
* 16);
697 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
700 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
701 const unsigned int flags
,
702 struct rt2x00lib_conf
*libconf
)
704 if (flags
& CONFIG_UPDATE_PHYMODE
)
705 rt61pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
706 if (flags
& CONFIG_UPDATE_CHANNEL
)
707 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
708 libconf
->conf
->power_level
);
709 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
710 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
711 if (flags
& CONFIG_UPDATE_ANTENNA
)
712 rt61pci_config_antenna(rt2x00dev
, libconf
->conf
->antenna_sel_tx
,
713 libconf
->conf
->antenna_sel_rx
);
714 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
715 rt61pci_config_duration(rt2x00dev
, libconf
);
721 static void rt61pci_enable_led(struct rt2x00_dev
*rt2x00dev
)
728 rt2x00pci_register_read(rt2x00dev
, MAC_CSR14
, ®
);
729 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, 70);
730 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, 30);
731 rt2x00pci_register_write(rt2x00dev
, MAC_CSR14
, reg
);
733 led_reg
= rt2x00dev
->led_reg
;
734 rt2x00_set_field16(&led_reg
, MCU_LEDCS_RADIO_STATUS
, 1);
735 if (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
)
736 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_A_STATUS
, 1);
738 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_BG_STATUS
, 1);
740 arg0
= led_reg
& 0xff;
741 arg1
= (led_reg
>> 8) & 0xff;
743 rt61pci_mcu_request(rt2x00dev
, MCU_LED
, 0xff, arg0
, arg1
);
746 static void rt61pci_disable_led(struct rt2x00_dev
*rt2x00dev
)
752 led_reg
= rt2x00dev
->led_reg
;
753 rt2x00_set_field16(&led_reg
, MCU_LEDCS_RADIO_STATUS
, 0);
754 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_BG_STATUS
, 0);
755 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_A_STATUS
, 0);
757 arg0
= led_reg
& 0xff;
758 arg1
= (led_reg
>> 8) & 0xff;
760 rt61pci_mcu_request(rt2x00dev
, MCU_LED
, 0xff, arg0
, arg1
);
763 static void rt61pci_activity_led(struct rt2x00_dev
*rt2x00dev
, int rssi
)
767 if (rt2x00dev
->led_mode
!= LED_MODE_SIGNAL_STRENGTH
)
771 * Led handling requires a positive value for the rssi,
772 * to do that correctly we need to add the correction.
774 rssi
+= rt2x00dev
->rssi_offset
;
789 rt61pci_mcu_request(rt2x00dev
, MCU_LED_STRENGTH
, 0xff, led
, 0);
795 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
)
800 * Update FCS error count from register.
802 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
803 rt2x00dev
->link
.rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
806 * Update False CCA count from register.
808 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
809 rt2x00dev
->link
.false_cca
=
810 rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
813 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
815 rt61pci_bbp_write(rt2x00dev
, 17, 0x20);
816 rt2x00dev
->link
.vgc_level
= 0x20;
819 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
821 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
827 * Update Led strength
829 rt61pci_activity_led(rt2x00dev
, rssi
);
831 rt61pci_bbp_read(rt2x00dev
, 17, &r17
);
834 * Determine r17 bounds.
836 if (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
) {
839 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
846 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
853 * Special big-R17 for very short distance
857 rt61pci_bbp_write(rt2x00dev
, 17, 0x60);
862 * Special big-R17 for short distance
866 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
871 * Special big-R17 for middle-short distance
875 if (r17
!= low_bound
)
876 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
881 * Special mid-R17 for middle distance
885 if (r17
!= low_bound
)
886 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
891 * Special case: Change up_bound based on the rssi.
892 * Lower up_bound when rssi is weaker then -74 dBm.
894 up_bound
-= 2 * (-74 - rssi
);
895 if (low_bound
> up_bound
)
896 up_bound
= low_bound
;
898 if (r17
> up_bound
) {
899 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
904 * r17 does not yet exceed upper limit, continue and base
905 * the r17 tuning on the false CCA count.
907 if (rt2x00dev
->link
.false_cca
> 512 && r17
< up_bound
) {
908 if (++r17
> up_bound
)
910 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
911 } else if (rt2x00dev
->link
.false_cca
< 100 && r17
> low_bound
) {
912 if (--r17
< low_bound
)
914 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
919 * Firmware name function.
921 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
925 switch (rt2x00dev
->chip
.rt
) {
927 fw_name
= FIRMWARE_RT2561
;
930 fw_name
= FIRMWARE_RT2561s
;
933 fw_name
= FIRMWARE_RT2661
;
944 * Initialization functions.
946 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
, void *data
,
953 * Wait for stable hardware.
955 for (i
= 0; i
< 100; i
++) {
956 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
963 ERROR(rt2x00dev
, "Unstable hardware.\n");
968 * Prepare MCU and mailbox for firmware loading.
971 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
972 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
973 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
974 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
975 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
978 * Write firmware to device.
981 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
982 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
983 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
985 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
988 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
989 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
991 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
992 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
994 for (i
= 0; i
< 100; i
++) {
995 rt2x00pci_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
996 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1002 ERROR(rt2x00dev
, "MCU Control register not ready.\n");
1007 * Reset MAC and BBP registers.
1010 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1011 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1012 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1014 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1015 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1016 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1017 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1019 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1020 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1021 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1026 static void rt61pci_init_rxring(struct rt2x00_dev
*rt2x00dev
)
1028 struct data_ring
*ring
= rt2x00dev
->rx
;
1029 struct data_desc
*rxd
;
1033 memset(ring
->data_addr
, 0x00, rt2x00_get_ring_size(ring
));
1035 for (i
= 0; i
< ring
->stats
.limit
; i
++) {
1036 rxd
= ring
->entry
[i
].priv
;
1038 rt2x00_desc_read(rxd
, 5, &word
);
1039 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1040 ring
->entry
[i
].data_dma
);
1041 rt2x00_desc_write(rxd
, 5, word
);
1043 rt2x00_desc_read(rxd
, 0, &word
);
1044 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1045 rt2x00_desc_write(rxd
, 0, word
);
1048 rt2x00_ring_index_clear(rt2x00dev
->rx
);
1051 static void rt61pci_init_txring(struct rt2x00_dev
*rt2x00dev
, const int queue
)
1053 struct data_ring
*ring
= rt2x00lib_get_ring(rt2x00dev
, queue
);
1054 struct data_desc
*txd
;
1058 memset(ring
->data_addr
, 0x00, rt2x00_get_ring_size(ring
));
1060 for (i
= 0; i
< ring
->stats
.limit
; i
++) {
1061 txd
= ring
->entry
[i
].priv
;
1063 rt2x00_desc_read(txd
, 1, &word
);
1064 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1065 rt2x00_desc_write(txd
, 1, word
);
1067 rt2x00_desc_read(txd
, 5, &word
);
1068 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, queue
);
1069 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
, i
);
1070 rt2x00_desc_write(txd
, 5, word
);
1072 rt2x00_desc_read(txd
, 6, &word
);
1073 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1074 ring
->entry
[i
].data_dma
);
1075 rt2x00_desc_write(txd
, 6, word
);
1077 rt2x00_desc_read(txd
, 0, &word
);
1078 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1079 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1080 rt2x00_desc_write(txd
, 0, word
);
1083 rt2x00_ring_index_clear(ring
);
1086 static int rt61pci_init_rings(struct rt2x00_dev
*rt2x00dev
)
1093 rt61pci_init_rxring(rt2x00dev
);
1094 rt61pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA0
);
1095 rt61pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA1
);
1096 rt61pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA2
);
1097 rt61pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA3
);
1098 rt61pci_init_txring(rt2x00dev
, IEEE80211_TX_QUEUE_DATA4
);
1101 * Initialize registers.
1103 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1104 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1105 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].stats
.limit
);
1106 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1107 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].stats
.limit
);
1108 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1109 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA2
].stats
.limit
);
1110 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1111 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA3
].stats
.limit
);
1112 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1114 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1115 rt2x00_set_field32(®
, TX_RING_CSR1_MGMT_RING_SIZE
,
1116 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA4
].stats
.limit
);
1117 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1118 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].desc_size
/
1120 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1122 rt2x00pci_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1123 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1124 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].data_dma
);
1125 rt2x00pci_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1127 rt2x00pci_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1128 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1129 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].data_dma
);
1130 rt2x00pci_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1132 rt2x00pci_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1133 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1134 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA2
].data_dma
);
1135 rt2x00pci_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1137 rt2x00pci_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1138 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1139 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA3
].data_dma
);
1140 rt2x00pci_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1142 rt2x00pci_register_read(rt2x00dev
, MGMT_BASE_CSR
, ®
);
1143 rt2x00_set_field32(®
, MGMT_BASE_CSR_RING_REGISTER
,
1144 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA4
].data_dma
);
1145 rt2x00pci_register_write(rt2x00dev
, MGMT_BASE_CSR
, reg
);
1147 rt2x00pci_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1148 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
,
1149 rt2x00dev
->rx
->stats
.limit
);
1150 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1151 rt2x00dev
->rx
->desc_size
/ 4);
1152 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1153 rt2x00pci_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1155 rt2x00pci_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1156 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1157 rt2x00dev
->rx
->data_dma
);
1158 rt2x00pci_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1160 rt2x00pci_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1161 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1162 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1163 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1164 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1165 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_MGMT
, 0);
1166 rt2x00pci_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1168 rt2x00pci_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1169 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1170 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1171 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1172 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1173 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_MGMT
, 1);
1174 rt2x00pci_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1176 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1177 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1178 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1183 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1187 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1188 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1189 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1190 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1191 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1193 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1194 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1195 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1196 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1197 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1198 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1199 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1200 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1201 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1202 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1205 * CCK TXD BBP registers
1207 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1208 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1209 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1210 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1211 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1212 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1213 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1214 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1215 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1216 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1219 * OFDM TXD BBP registers
1221 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1222 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1223 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1224 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1225 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1226 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1227 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1228 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1230 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1231 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1232 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1233 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1234 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1235 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1237 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1238 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1239 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1240 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1241 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1242 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1244 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1246 rt2x00pci_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1248 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1249 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1250 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1252 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1254 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1257 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1260 * Invalidate all Shared Keys (SEC_CSR0),
1261 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1263 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1264 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1265 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1267 rt2x00pci_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1268 rt2x00pci_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1269 rt2x00pci_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1270 rt2x00pci_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1272 rt2x00pci_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1274 rt2x00pci_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1276 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1278 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR0
, ®
);
1279 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC0_TX_OP
, 0);
1280 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC1_TX_OP
, 0);
1281 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR0
, reg
);
1283 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR1
, ®
);
1284 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC2_TX_OP
, 192);
1285 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC3_TX_OP
, 48);
1286 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR1
, reg
);
1289 * We must clear the error counters.
1290 * These registers are cleared on read,
1291 * so we may pass a useless variable to store the value.
1293 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1294 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1295 rt2x00pci_register_read(rt2x00dev
, STA_CSR2
, ®
);
1298 * Reset MAC and BBP registers.
1300 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1301 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1302 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1303 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1305 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1306 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1307 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1308 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1310 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1311 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1312 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1317 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1324 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1325 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1326 if ((value
!= 0xff) && (value
!= 0x00))
1327 goto continue_csr_init
;
1328 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
1329 udelay(REGISTER_BUSY_DELAY
);
1332 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1336 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1337 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1338 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1339 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1340 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1341 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1342 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1343 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1344 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1345 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1346 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1347 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1348 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1349 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1350 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1351 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1352 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1353 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1354 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1355 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1356 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1357 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1358 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1359 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1361 DEBUG(rt2x00dev
, "Start initialization from EEPROM...\n");
1362 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1363 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1365 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1366 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1367 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1368 DEBUG(rt2x00dev
, "BBP: 0x%02x, value: 0x%02x.\n",
1370 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1373 DEBUG(rt2x00dev
, "...End initialization from EEPROM.\n");
1379 * Device state switch handlers.
1381 static void rt61pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1382 enum dev_state state
)
1386 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1387 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
,
1388 state
== STATE_RADIO_RX_OFF
);
1389 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1392 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1393 enum dev_state state
)
1395 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1399 * When interrupts are being enabled, the interrupt registers
1400 * should clear the register to assure a clean state.
1402 if (state
== STATE_RADIO_IRQ_ON
) {
1403 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1404 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1406 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1407 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1411 * Only toggle the interrupts bits we are going to use.
1412 * Non-checked interrupt bits are disabled by default.
1414 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1415 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1416 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1417 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1418 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1419 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1421 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1422 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1423 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1424 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1425 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1426 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1427 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1428 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1429 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1430 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1433 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1438 * Initialize all registers.
1440 if (rt61pci_init_rings(rt2x00dev
) ||
1441 rt61pci_init_registers(rt2x00dev
) ||
1442 rt61pci_init_bbp(rt2x00dev
)) {
1443 ERROR(rt2x00dev
, "Register initialization failed.\n");
1448 * Enable interrupts.
1450 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_ON
);
1455 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1456 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1457 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1462 rt61pci_enable_led(rt2x00dev
);
1467 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1474 rt61pci_disable_led(rt2x00dev
);
1476 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1479 * Disable synchronisation.
1481 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1486 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1487 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1488 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1489 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1490 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1491 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_MGMT
, 1);
1492 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1495 * Disable interrupts.
1497 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
1500 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1507 put_to_sleep
= (state
!= STATE_AWAKE
);
1509 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1510 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1511 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1512 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1515 * Device is not guaranteed to be in the requested state yet.
1516 * We must wait until the register indicates that the
1517 * device has entered the correct state.
1519 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1520 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1522 rt2x00_get_field32(reg
, MAC_CSR12_BBP_CURRENT_STATE
);
1523 if (current_state
== !put_to_sleep
)
1528 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
1529 "current device state %d.\n", !put_to_sleep
, current_state
);
1534 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1535 enum dev_state state
)
1540 case STATE_RADIO_ON
:
1541 retval
= rt61pci_enable_radio(rt2x00dev
);
1543 case STATE_RADIO_OFF
:
1544 rt61pci_disable_radio(rt2x00dev
);
1546 case STATE_RADIO_RX_ON
:
1547 case STATE_RADIO_RX_OFF
:
1548 rt61pci_toggle_rx(rt2x00dev
, state
);
1550 case STATE_DEEP_SLEEP
:
1554 retval
= rt61pci_set_state(rt2x00dev
, state
);
1565 * TX descriptor initialization
1567 static void rt61pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1568 struct data_desc
*txd
,
1569 struct txdata_entry_desc
*desc
,
1570 struct ieee80211_hdr
*ieee80211hdr
,
1571 unsigned int length
,
1572 struct ieee80211_tx_control
*control
)
1577 * Start writing the descriptor words.
1579 rt2x00_desc_read(txd
, 1, &word
);
1580 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, desc
->queue
);
1581 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, desc
->aifs
);
1582 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, desc
->cw_min
);
1583 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, desc
->cw_max
);
1584 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, IEEE80211_HEADER
);
1585 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
, 1);
1586 rt2x00_desc_write(txd
, 1, word
);
1588 rt2x00_desc_read(txd
, 2, &word
);
1589 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, desc
->signal
);
1590 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, desc
->service
);
1591 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, desc
->length_low
);
1592 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, desc
->length_high
);
1593 rt2x00_desc_write(txd
, 2, word
);
1595 rt2x00_desc_read(txd
, 5, &word
);
1596 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1597 TXPOWER_TO_DEV(control
->power_level
));
1598 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1599 rt2x00_desc_write(txd
, 5, word
);
1601 rt2x00_desc_read(txd
, 11, &word
);
1602 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
, length
);
1603 rt2x00_desc_write(txd
, 11, word
);
1605 rt2x00_desc_read(txd
, 0, &word
);
1606 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1607 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1608 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1609 test_bit(ENTRY_TXD_MORE_FRAG
, &desc
->flags
));
1610 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1611 !(control
->flags
& IEEE80211_TXCTL_NO_ACK
));
1612 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1613 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &desc
->flags
));
1614 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1615 test_bit(ENTRY_TXD_OFDM_RATE
, &desc
->flags
));
1616 rt2x00_set_field32(&word
, TXD_W0_IFS
, desc
->ifs
);
1617 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1619 IEEE80211_TXCTL_LONG_RETRY_LIMIT
));
1620 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
, 0);
1621 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, length
);
1622 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1623 test_bit(ENTRY_TXD_BURST
, &desc
->flags
));
1624 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1625 rt2x00_desc_write(txd
, 0, word
);
1629 * TX data initialization
1631 static void rt61pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1636 if (queue
== IEEE80211_TX_QUEUE_BEACON
) {
1638 * For Wi-Fi faily generated beacons between participating
1639 * stations. Set TBTT phase adaptive adjustment step to 8us.
1641 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1643 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1644 if (!rt2x00_get_field32(reg
, TXRX_CSR9_BEACON_GEN
)) {
1645 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1646 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1651 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1652 if (queue
== IEEE80211_TX_QUEUE_DATA0
)
1653 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, 1);
1654 else if (queue
== IEEE80211_TX_QUEUE_DATA1
)
1655 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, 1);
1656 else if (queue
== IEEE80211_TX_QUEUE_DATA2
)
1657 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, 1);
1658 else if (queue
== IEEE80211_TX_QUEUE_DATA3
)
1659 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, 1);
1660 else if (queue
== IEEE80211_TX_QUEUE_DATA4
)
1661 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_MGMT
, 1);
1662 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1666 * RX control handlers
1668 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1674 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1689 if (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
) {
1690 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
1693 if (lna
== 3 || lna
== 2)
1696 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
1697 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
1699 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
1702 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
1703 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
1706 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1709 static void rt61pci_fill_rxdone(struct data_entry
*entry
,
1710 struct rxdata_entry_desc
*desc
)
1712 struct data_desc
*rxd
= entry
->priv
;
1716 rt2x00_desc_read(rxd
, 0, &word0
);
1717 rt2x00_desc_read(rxd
, 1, &word1
);
1720 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1721 desc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1724 * Obtain the status about this packet.
1726 desc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1727 desc
->rssi
= rt61pci_agc_to_rssi(entry
->ring
->rt2x00dev
, word1
);
1728 desc
->ofdm
= rt2x00_get_field32(word0
, RXD_W0_OFDM
);
1729 desc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1735 * Interrupt functions.
1737 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
1739 struct data_ring
*ring
;
1740 struct data_entry
*entry
;
1741 struct data_entry
*entry_done
;
1742 struct data_desc
*txd
;
1752 * During each loop we will compare the freshly read
1753 * STA_CSR4 register value with the value read from
1754 * the previous loop. If the 2 values are equal then
1755 * we should stop processing because the chance it
1756 * quite big that the device has been unplugged and
1757 * we risk going into an endless loop.
1762 rt2x00pci_register_read(rt2x00dev
, STA_CSR4
, ®
);
1763 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
1771 * Skip this entry when it contains an invalid
1772 * ring identication number.
1774 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
1775 ring
= rt2x00lib_get_ring(rt2x00dev
, type
);
1776 if (unlikely(!ring
))
1780 * Skip this entry when it contains an invalid
1783 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
1784 if (unlikely(index
>= ring
->stats
.limit
))
1787 entry
= &ring
->entry
[index
];
1789 rt2x00_desc_read(txd
, 0, &word
);
1791 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1792 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1795 entry_done
= rt2x00_get_data_entry_done(ring
);
1796 while (entry
!= entry_done
) {
1797 /* Catch up. Just report any entries we missed as
1800 "TX status report missed for entry %p\n",
1802 rt2x00lib_txdone(entry_done
, TX_FAIL_OTHER
, 0);
1803 entry_done
= rt2x00_get_data_entry_done(ring
);
1807 * Obtain the status about this packet.
1809 tx_status
= rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
);
1810 retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
1812 rt2x00lib_txdone(entry
, tx_status
, retry
);
1815 * Make this entry available for reuse.
1818 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1819 rt2x00_desc_write(txd
, 0, word
);
1820 rt2x00_ring_index_done_inc(entry
->ring
);
1823 * If the data ring was full before the txdone handler
1824 * we must make sure the packet queue in the mac80211 stack
1825 * is reenabled when the txdone handler has finished.
1827 if (!rt2x00_ring_full(ring
))
1828 ieee80211_wake_queue(rt2x00dev
->hw
,
1829 entry
->tx_status
.control
.queue
);
1833 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
1835 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1840 * Get the interrupt sources & saved to local variable.
1841 * Write register value back to clear pending interrupts.
1843 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
1844 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
1846 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1847 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1849 if (!reg
&& !reg_mcu
)
1852 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1856 * Handle interrupts, walk through all bits
1857 * and run the tasks, the bits are checked in order of
1862 * 1 - Rx ring done interrupt.
1864 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
1865 rt2x00pci_rxdone(rt2x00dev
);
1868 * 2 - Tx ring done interrupt.
1870 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
1871 rt61pci_txdone(rt2x00dev
);
1874 * 3 - Handle MCU command done.
1877 rt2x00pci_register_write(rt2x00dev
,
1878 M2H_CMD_DONE_CSR
, 0xffffffff);
1884 * Device probe functions.
1886 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1888 struct eeprom_93cx6 eeprom
;
1894 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
1896 eeprom
.data
= rt2x00dev
;
1897 eeprom
.register_read
= rt61pci_eepromregister_read
;
1898 eeprom
.register_write
= rt61pci_eepromregister_write
;
1899 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
1900 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1901 eeprom
.reg_data_in
= 0;
1902 eeprom
.reg_data_out
= 0;
1903 eeprom
.reg_data_clock
= 0;
1904 eeprom
.reg_chip_select
= 0;
1906 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1907 EEPROM_SIZE
/ sizeof(u16
));
1910 * Start validation of the data that has been read.
1912 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1913 if (!is_valid_ether_addr(mac
)) {
1914 DECLARE_MAC_BUF(macbuf
);
1916 random_ether_addr(mac
);
1917 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1920 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1921 if (word
== 0xffff) {
1922 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1923 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
, 2);
1924 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
, 2);
1925 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1926 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1927 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1928 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
1929 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1930 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1933 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1934 if (word
== 0xffff) {
1935 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
1936 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
1937 rt2x00_set_field16(&word
, EEPROM_NIC_TX_RX_FIXED
, 0);
1938 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
1939 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1940 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
1941 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1942 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1945 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1946 if (word
== 0xffff) {
1947 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1949 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1950 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
1953 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1954 if (word
== 0xffff) {
1955 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1956 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1957 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1958 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
1961 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1962 if (word
== 0xffff) {
1963 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1964 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1965 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1966 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1968 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1969 if (value
< -10 || value
> 10)
1970 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1971 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1972 if (value
< -10 || value
> 10)
1973 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1974 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1977 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1978 if (word
== 0xffff) {
1979 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1980 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1981 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1982 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1984 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1985 if (value
< -10 || value
> 10)
1986 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1987 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1988 if (value
< -10 || value
> 10)
1989 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1990 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1996 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2004 * Read EEPROM word for configuration.
2006 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
2009 * Identify RF chipset.
2010 * To determine the RT chip we have to read the
2011 * PCI header of the device.
2013 pci_read_config_word(rt2x00dev_pci(rt2x00dev
),
2014 PCI_CONFIG_HEADER_DEVICE
, &device
);
2015 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2016 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
2017 rt2x00_set_chip(rt2x00dev
, device
, value
, reg
);
2019 if (!rt2x00_rf(&rt2x00dev
->chip
, RF5225
) &&
2020 !rt2x00_rf(&rt2x00dev
->chip
, RF5325
) &&
2021 !rt2x00_rf(&rt2x00dev
->chip
, RF2527
) &&
2022 !rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
2023 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
2028 * Identify default antenna configuration.
2030 rt2x00dev
->hw
->conf
.antenna_sel_tx
=
2031 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2032 rt2x00dev
->hw
->conf
.antenna_sel_rx
=
2033 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2036 * Read the Frame type.
2038 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2039 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
2042 * Determine number of antenna's.
2044 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2045 __set_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
);
2048 * Detect if this device has an hardware controlled radio.
2050 #ifdef CONFIG_RT61PCI_RFKILL
2051 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2052 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
2053 #endif /* CONFIG_RT61PCI_RFKILL */
2056 * Read frequency offset and RF programming sequence.
2058 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
2059 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2060 __set_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
);
2062 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2065 * Read external LNA informations.
2067 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
2069 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2070 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
2071 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2072 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
2075 * Store led settings, for correct led behaviour.
2076 * If the eeprom value is invalid,
2077 * switch to default led mode.
2079 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2081 rt2x00dev
->led_mode
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2083 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_LED_MODE
,
2084 rt2x00dev
->led_mode
);
2085 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2086 rt2x00_get_field16(eeprom
,
2087 EEPROM_LED_POLARITY_GPIO_0
));
2088 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2089 rt2x00_get_field16(eeprom
,
2090 EEPROM_LED_POLARITY_GPIO_1
));
2091 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2092 rt2x00_get_field16(eeprom
,
2093 EEPROM_LED_POLARITY_GPIO_2
));
2094 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2095 rt2x00_get_field16(eeprom
,
2096 EEPROM_LED_POLARITY_GPIO_3
));
2097 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2098 rt2x00_get_field16(eeprom
,
2099 EEPROM_LED_POLARITY_GPIO_4
));
2100 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_ACT
,
2101 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2102 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2103 rt2x00_get_field16(eeprom
,
2104 EEPROM_LED_POLARITY_RDY_G
));
2105 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_READY_A
,
2106 rt2x00_get_field16(eeprom
,
2107 EEPROM_LED_POLARITY_RDY_A
));
2113 * RF value list for RF5225 & RF5325
2114 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2116 static const struct rf_channel rf_vals_noseq
[] = {
2117 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2118 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2119 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2120 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2121 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2122 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2123 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2124 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2125 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2126 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2127 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2128 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2129 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2130 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2132 /* 802.11 UNI / HyperLan 2 */
2133 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2134 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2135 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2136 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2137 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2138 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2139 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2140 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2142 /* 802.11 HyperLan 2 */
2143 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2144 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2145 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2146 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2147 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2148 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2149 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2150 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2151 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2152 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2155 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2156 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2157 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2158 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2159 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2160 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2162 /* MMAC(Japan)J52 ch 34,38,42,46 */
2163 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2164 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2165 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2166 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2170 * RF value list for RF5225 & RF5325
2171 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2173 static const struct rf_channel rf_vals_seq
[] = {
2174 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2175 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2176 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2177 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2178 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2179 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2180 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2181 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2182 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2183 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2184 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2185 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2186 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2187 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2189 /* 802.11 UNI / HyperLan 2 */
2190 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2191 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2192 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2193 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2194 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2195 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2196 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2197 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2199 /* 802.11 HyperLan 2 */
2200 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2201 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2202 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2203 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2204 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2205 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2206 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2207 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2208 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2209 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2212 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2213 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2214 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2215 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2216 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2217 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2219 /* MMAC(Japan)J52 ch 34,38,42,46 */
2220 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2221 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2222 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2223 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2226 static void rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2228 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2233 * Initialize all hw fields.
2235 rt2x00dev
->hw
->flags
=
2236 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE
|
2237 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
2238 rt2x00dev
->hw
->extra_tx_headroom
= 0;
2239 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
2240 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
2241 rt2x00dev
->hw
->queues
= 5;
2243 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_pci(rt2x00dev
)->dev
);
2244 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2245 rt2x00_eeprom_addr(rt2x00dev
,
2246 EEPROM_MAC_ADDR_0
));
2249 * Convert tx_power array in eeprom.
2251 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2252 for (i
= 0; i
< 14; i
++)
2253 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2256 * Initialize hw_mode information.
2258 spec
->num_modes
= 2;
2259 spec
->num_rates
= 12;
2260 spec
->tx_power_a
= NULL
;
2261 spec
->tx_power_bg
= txpower
;
2262 spec
->tx_power_default
= DEFAULT_TXPOWER
;
2264 if (!test_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
)) {
2265 spec
->num_channels
= 14;
2266 spec
->channels
= rf_vals_noseq
;
2268 spec
->num_channels
= 14;
2269 spec
->channels
= rf_vals_seq
;
2272 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
2273 rt2x00_rf(&rt2x00dev
->chip
, RF5325
)) {
2274 spec
->num_modes
= 3;
2275 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2277 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2278 for (i
= 0; i
< 14; i
++)
2279 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2281 spec
->tx_power_a
= txpower
;
2285 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2290 * Allocate eeprom data.
2292 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2296 retval
= rt61pci_init_eeprom(rt2x00dev
);
2301 * Initialize hw specifications.
2303 rt61pci_probe_hw_mode(rt2x00dev
);
2306 * This device requires firmware
2308 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2311 * Set the rssi offset.
2313 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2319 * IEEE80211 stack callback functions.
2321 static void rt61pci_configure_filter(struct ieee80211_hw
*hw
,
2322 unsigned int changed_flags
,
2323 unsigned int *total_flags
,
2325 struct dev_addr_list
*mc_list
)
2327 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2328 struct interface
*intf
= &rt2x00dev
->interface
;
2332 * Mask off any flags we are going to ignore from
2333 * the total_flags field.
2344 * Apply some rules to the filters:
2345 * - Some filters imply different filters to be set.
2346 * - Some things we can't filter out at all.
2347 * - Some filters are set based on interface type.
2350 *total_flags
|= FIF_ALLMULTI
;
2351 if (*total_flags
& FIF_OTHER_BSS
||
2352 *total_flags
& FIF_PROMISC_IN_BSS
)
2353 *total_flags
|= FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
;
2354 if (is_interface_type(intf
, IEEE80211_IF_TYPE_AP
))
2355 *total_flags
|= FIF_PROMISC_IN_BSS
;
2358 * Check if there is any work left for us.
2360 if (intf
->filter
== *total_flags
)
2362 intf
->filter
= *total_flags
;
2365 * Start configuration steps.
2366 * Note that the version error will always be dropped
2367 * and broadcast frames will always be accepted since
2368 * there is no filter for it at this time.
2370 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
2371 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
2372 !(*total_flags
& FIF_FCSFAIL
));
2373 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
2374 !(*total_flags
& FIF_PLCPFAIL
));
2375 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
2376 !(*total_flags
& FIF_CONTROL
));
2377 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
2378 !(*total_flags
& FIF_PROMISC_IN_BSS
));
2379 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
2380 !(*total_flags
& FIF_PROMISC_IN_BSS
));
2381 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
2382 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
2383 !(*total_flags
& FIF_ALLMULTI
));
2384 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BORADCAST
, 0);
2385 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
, 1);
2386 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
2389 static int rt61pci_set_retry_limit(struct ieee80211_hw
*hw
,
2390 u32 short_retry
, u32 long_retry
)
2392 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2395 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
2396 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
, long_retry
);
2397 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
, short_retry
);
2398 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
2403 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
)
2405 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2409 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2410 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2411 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2412 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2417 static void rt61pci_reset_tsf(struct ieee80211_hw
*hw
)
2419 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2421 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR12
, 0);
2422 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR13
, 0);
2425 static int rt61pci_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2426 struct ieee80211_tx_control
*control
)
2428 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2431 * Just in case the ieee80211 doesn't set this,
2432 * but we need this queue set for the descriptor
2435 control
->queue
= IEEE80211_TX_QUEUE_BEACON
;
2438 * We need to append the descriptor in front of the
2441 if (skb_headroom(skb
) < TXD_DESC_SIZE
) {
2442 if (pskb_expand_head(skb
, TXD_DESC_SIZE
, 0, GFP_ATOMIC
)) {
2449 * First we create the beacon.
2451 skb_push(skb
, TXD_DESC_SIZE
);
2452 memset(skb
->data
, 0, TXD_DESC_SIZE
);
2454 rt2x00lib_write_tx_desc(rt2x00dev
, (struct data_desc
*)skb
->data
,
2455 (struct ieee80211_hdr
*)(skb
->data
+
2457 skb
->len
- TXD_DESC_SIZE
, control
);
2460 * Write entire beacon with descriptor to register,
2461 * and kick the beacon generator.
2463 rt2x00pci_register_multiwrite(rt2x00dev
, HW_BEACON_BASE0
,
2464 skb
->data
, skb
->len
);
2465 rt61pci_kick_tx_queue(rt2x00dev
, IEEE80211_TX_QUEUE_BEACON
);
2470 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2472 .start
= rt2x00mac_start
,
2473 .stop
= rt2x00mac_stop
,
2474 .add_interface
= rt2x00mac_add_interface
,
2475 .remove_interface
= rt2x00mac_remove_interface
,
2476 .config
= rt2x00mac_config
,
2477 .config_interface
= rt2x00mac_config_interface
,
2478 .configure_filter
= rt61pci_configure_filter
,
2479 .get_stats
= rt2x00mac_get_stats
,
2480 .set_retry_limit
= rt61pci_set_retry_limit
,
2481 .erp_ie_changed
= rt2x00mac_erp_ie_changed
,
2482 .conf_tx
= rt2x00mac_conf_tx
,
2483 .get_tx_stats
= rt2x00mac_get_tx_stats
,
2484 .get_tsf
= rt61pci_get_tsf
,
2485 .reset_tsf
= rt61pci_reset_tsf
,
2486 .beacon_update
= rt61pci_beacon_update
,
2489 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2490 .irq_handler
= rt61pci_interrupt
,
2491 .probe_hw
= rt61pci_probe_hw
,
2492 .get_firmware_name
= rt61pci_get_firmware_name
,
2493 .load_firmware
= rt61pci_load_firmware
,
2494 .initialize
= rt2x00pci_initialize
,
2495 .uninitialize
= rt2x00pci_uninitialize
,
2496 .set_device_state
= rt61pci_set_device_state
,
2497 .rfkill_poll
= rt61pci_rfkill_poll
,
2498 .link_stats
= rt61pci_link_stats
,
2499 .reset_tuner
= rt61pci_reset_tuner
,
2500 .link_tuner
= rt61pci_link_tuner
,
2501 .write_tx_desc
= rt61pci_write_tx_desc
,
2502 .write_tx_data
= rt2x00pci_write_tx_data
,
2503 .kick_tx_queue
= rt61pci_kick_tx_queue
,
2504 .fill_rxdone
= rt61pci_fill_rxdone
,
2505 .config_mac_addr
= rt61pci_config_mac_addr
,
2506 .config_bssid
= rt61pci_config_bssid
,
2507 .config_type
= rt61pci_config_type
,
2508 .config_preamble
= rt61pci_config_preamble
,
2509 .config
= rt61pci_config
,
2512 static const struct rt2x00_ops rt61pci_ops
= {
2514 .rxd_size
= RXD_DESC_SIZE
,
2515 .txd_size
= TXD_DESC_SIZE
,
2516 .eeprom_size
= EEPROM_SIZE
,
2518 .lib
= &rt61pci_rt2x00_ops
,
2519 .hw
= &rt61pci_mac80211_ops
,
2520 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2521 .debugfs
= &rt61pci_rt2x00debug
,
2522 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2526 * RT61pci module information.
2528 static struct pci_device_id rt61pci_device_table
[] = {
2530 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops
) },
2532 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops
) },
2534 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops
) },
2538 MODULE_AUTHOR(DRV_PROJECT
);
2539 MODULE_VERSION(DRV_VERSION
);
2540 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2541 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2542 "PCI & PCMCIA chipset based cards");
2543 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
2544 MODULE_FIRMWARE(FIRMWARE_RT2561
);
2545 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
2546 MODULE_FIRMWARE(FIRMWARE_RT2661
);
2547 MODULE_LICENSE("GPL");
2549 static struct pci_driver rt61pci_driver
= {
2551 .id_table
= rt61pci_device_table
,
2552 .probe
= rt2x00pci_probe
,
2553 .remove
= __devexit_p(rt2x00pci_remove
),
2554 .suspend
= rt2x00pci_suspend
,
2555 .resume
= rt2x00pci_resume
,
2558 static int __init
rt61pci_init(void)
2560 return pci_register_driver(&rt61pci_driver
);
2563 static void __exit
rt61pci_exit(void)
2565 pci_unregister_driver(&rt61pci_driver
);
2568 module_init(rt61pci_init
);
2569 module_exit(rt61pci_exit
);