pjsip-ltq-tap is for all lantiq targets
[openwrt.git] / package / ubsec_ssb / src / ubsec_ssb.c
1
2 /*
3 * Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
4 * Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Effort sponsored in part by the Defense Advanced Research Projects
31 * Agency (DARPA) and Air Force Research Laboratory, Air Force
32 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
33 *
34 */
35 #undef UBSEC_DEBUG
36 #undef UBSEC_VERBOSE_DEBUG
37
38 #ifdef UBSEC_VERBOSE_DEBUG
39 #define UBSEC_DEBUG
40 #endif
41
42 /*
43 * uBsec BCM5365 hardware crypto accelerator
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/proc_fs.h>
50 #include <linux/types.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/interrupt.h>
54 #include <linux/fs.h>
55 #include <linux/random.h>
56 #include <linux/skbuff.h>
57 #include <linux/stat.h>
58 #include <asm/io.h>
59
60 #include <linux/ssb/ssb.h>
61
62 /*
63 * BSD queue
64 */
65 #include "bsdqueue.h"
66
67 /*
68 * OCF
69 */
70 #include "cryptodev.h"
71 #include "uio.h"
72
73 #define HMAC_HACK 1
74
75 #ifdef HMAC_HACK
76 #include "hmachack.h"
77 #include "md5.h"
78 #include "md5.c"
79 #include "sha1.h"
80 #include "sha1.c"
81 #endif
82
83 #include "ubsecreg.h"
84 #include "ubsecvar.h"
85
86 #define DRV_MODULE_NAME "ubsec_ssb"
87 #define PFX DRV_MODULE_NAME ": "
88 #define DRV_MODULE_VERSION "0.02"
89 #define DRV_MODULE_RELDATE "Feb 21, 2009"
90
91 #if 1
92 #define DPRINTF(a...) \
93 if (debug) \
94 { \
95 printk(DRV_MODULE_NAME ": " a); \
96 }
97 #else
98 #define DPRINTF(a...)
99 #endif
100
101 /*
102 * Prototypes
103 */
104 static irqreturn_t ubsec_ssb_isr(int, void *, struct pt_regs *);
105 static int __devinit ubsec_ssb_probe(struct ssb_device *sdev,
106 const struct ssb_device_id *ent);
107 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev);
108 int ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
109 struct device *self);
110 static void ubsec_setup_mackey(struct ubsec_session *ses, int algo,
111 caddr_t key, int klen);
112 static int dma_map_skb(struct ubsec_softc *sc,
113 struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen);
114 static int dma_map_uio(struct ubsec_softc *sc,
115 struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen);
116 static void dma_unmap(struct ubsec_softc *sc,
117 struct ubsec_dma_alloc *q_map, int mlen);
118 static int ubsec_dmamap_aligned(struct ubsec_softc *sc,
119 const struct ubsec_dma_alloc *q_map, int mlen);
120
121 #ifdef UBSEC_DEBUG
122 static int proc_read(char *buf, char **start, off_t offset,
123 int size, int *peof, void *data);
124 #endif
125
126 void ubsec_reset_board(struct ubsec_softc *);
127 void ubsec_init_board(struct ubsec_softc *);
128 void ubsec_cleanchip(struct ubsec_softc *);
129 void ubsec_totalreset(struct ubsec_softc *);
130 int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
131
132 static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
133 static int ubsec_freesession(device_t, u_int64_t);
134 static int ubsec_process(device_t, struct cryptop *, int);
135
136 void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
137 void ubsec_feed(struct ubsec_softc *);
138 void ubsec_mcopy(struct sk_buff *, struct sk_buff *, int, int);
139 void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
140 int ubsec_dma_malloc(struct ubsec_softc *, struct ubsec_dma_alloc *,
141 size_t, int);
142
143 /* DEBUG crap... */
144 void ubsec_dump_pb(struct ubsec_pktbuf *);
145 void ubsec_dump_mcr(struct ubsec_mcr *);
146
147 #define READ_REG(sc,r) \
148 ssb_read32((sc)->sdev, (r));
149 #define WRITE_REG(sc,r,val) \
150 ssb_write32((sc)->sdev, (r), (val));
151 #define READ_REG_SDEV(sdev,r) \
152 ssb_read32((sdev), (r));
153 #define WRITE_REG_SDEV(sdev,r,val) \
154 ssb_write32((sdev), (r), (val));
155
156 #define SWAP32(x) (x) = htole32(ntohl((x)))
157 #define HTOLE32(x) (x) = htole32(x)
158
159 #ifdef __LITTLE_ENDIAN
160 #define letoh16(x) (x)
161 #define letoh32(x) (x)
162 #endif
163
164 static int debug;
165 module_param(debug, int, 0644);
166 MODULE_PARM_DESC(debug, "Enable debug output");
167
168 #define UBSEC_SSB_MAX_CHIPS 1
169 static struct ubsec_softc *ubsec_chip_idx[UBSEC_SSB_MAX_CHIPS];
170 static struct ubsec_stats ubsecstats;
171
172 #ifdef UBSEC_DEBUG
173 static struct proc_dir_entry *procdebug;
174 #endif
175
176 static struct ssb_device_id ubsec_ssb_tbl[] = {
177 /* Broadcom BCM5365P IPSec Core */
178 SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_IPSEC, SSB_ANY_REV),
179 SSB_DEVTABLE_END
180 };
181
182 static struct ssb_driver ubsec_ssb_driver = {
183 .name = DRV_MODULE_NAME,
184 .id_table = ubsec_ssb_tbl,
185 .probe = ubsec_ssb_probe,
186 .remove = __devexit_p(ubsec_ssb_remove),
187 /*
188 .suspend = ubsec_ssb_suspend,
189 .resume = ubsec_ssb_resume
190 */
191 };
192
193 static device_method_t ubsec_ssb_methods = {
194 /* crypto device methods */
195 DEVMETHOD(cryptodev_newsession, ubsec_newsession),
196 DEVMETHOD(cryptodev_freesession,ubsec_freesession),
197 DEVMETHOD(cryptodev_process, ubsec_process),
198 };
199
200 #ifdef UBSEC_DEBUG
201 static int
202 proc_read(char *buf, char **start, off_t offset,
203 int size, int *peof, void *data)
204 {
205 int i = 0, byteswritten = 0, ret;
206 unsigned int stat, ctrl;
207 #ifdef UBSEC_VERBOSE_DEBUG
208 struct ubsec_q *q;
209 struct ubsec_dma *dmap;
210 #endif
211
212 while ((i < UBSEC_SSB_MAX_CHIPS) && (ubsec_chip_idx[i] != NULL))
213 {
214 struct ubsec_softc *sc = ubsec_chip_idx[i];
215
216 stat = READ_REG(sc, BS_STAT);
217 ctrl = READ_REG(sc, BS_CTRL);
218 ret = snprintf((buf + byteswritten),
219 (size - byteswritten) ,
220 "DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
221
222 byteswritten += ret;
223
224 #ifdef UBSEC_VERBOSE_DEBUG
225 printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
226
227 /* Dump all queues MCRs */
228 if (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
229 BSD_SIMPLEQ_FOREACH(q, &sc->sc_qchip, q_next)
230 {
231 dmap = q->q_dma;
232 ubsec_dump_mcr(&dmap->d_dma->d_mcr);
233 }
234 }
235 #endif
236
237 i++;
238 }
239
240 *peof = 1;
241
242 return byteswritten;
243 }
244 #endif
245
246 /*
247 * map in a given sk_buff
248 */
249 static int
250 dma_map_skb(struct ubsec_softc *sc, struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen)
251 {
252 int i = 0;
253 dma_addr_t tmp;
254
255 #ifdef UBSEC_DEBUG
256 DPRINTF("%s()\n", __FUNCTION__);
257 #endif
258
259 /*
260 * We support only a limited number of fragments.
261 */
262 if (unlikely((skb_shinfo(skb)->nr_frags + 1) >= UBS_MAX_SCATTER))
263 {
264 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
265 return (-ENOMEM);
266 }
267
268 #ifdef UBSEC_VERBOSE_DEBUG
269 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, 0, (unsigned int)skb->data, skb_headlen(skb));
270 #endif
271
272 /* first data package */
273 tmp = dma_map_single(sc->sc_dv,
274 skb->data,
275 skb_headlen(skb),
276 DMA_BIDIRECTIONAL);
277
278 q_map[i].dma_paddr = tmp;
279 q_map[i].dma_vaddr = skb->data;
280 q_map[i].dma_size = skb_headlen(skb);
281
282 if (unlikely(tmp == 0))
283 {
284 printk(KERN_ERR "Could not map memory region for dma.\n");
285 return (-EINVAL);
286 }
287
288 #ifdef UBSEC_VERBOSE_DEBUG
289 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, 0, (unsigned int)tmp);
290 #endif
291
292
293 /* all other data packages */
294 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
295
296 #ifdef UBSEC_VERBOSE_DEBUG
297 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, i + 1,
298 (unsigned int)page_address(skb_shinfo(skb)->frags[i].page) +
299 skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size);
300 #endif
301
302 tmp = dma_map_single(sc->sc_dv,
303 page_address(skb_shinfo(skb)->frags[i].page) +
304 skb_shinfo(skb)->frags[i].page_offset,
305 skb_shinfo(skb)->frags[i].size,
306 DMA_BIDIRECTIONAL);
307
308 q_map[i + 1].dma_paddr = tmp;
309 q_map[i + 1].dma_vaddr = (void*)(page_address(skb_shinfo(skb)->frags[i].page) +
310 skb_shinfo(skb)->frags[i].page_offset);
311 q_map[i + 1].dma_size = skb_shinfo(skb)->frags[i].size;
312
313 if (unlikely(tmp == 0))
314 {
315 printk(KERN_ERR "Could not map memory region for dma.\n");
316 return (-EINVAL);
317 }
318
319 #ifdef UBSEC_VERBOSE_DEBUG
320 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, i + 1, (unsigned int)tmp);
321 #endif
322
323 }
324 *mlen = i + 1;
325
326 return(0);
327 }
328
329 /*
330 * map in a given uio buffer
331 */
332
333 static int
334 dma_map_uio(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen)
335 {
336 struct iovec *iov = uio->uio_iov;
337 int n;
338 dma_addr_t tmp;
339
340 #ifdef UBSEC_DEBUG
341 DPRINTF("%s()\n", __FUNCTION__);
342 #endif
343
344 /*
345 * We support only a limited number of fragments.
346 */
347 if (unlikely(uio->uio_iovcnt >= UBS_MAX_SCATTER))
348 {
349 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
350 return (-ENOMEM);
351 }
352
353 for (n = 0; n < uio->uio_iovcnt; n++) {
354 #ifdef UBSEC_VERBOSE_DEBUG
355 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, n, (unsigned int)iov->iov_base, iov->iov_len);
356 #endif
357 tmp = dma_map_single(sc->sc_dv,
358 iov->iov_base,
359 iov->iov_len,
360 DMA_BIDIRECTIONAL);
361
362 q_map[n].dma_paddr = tmp;
363 q_map[n].dma_vaddr = iov->iov_base;
364 q_map[n].dma_size = iov->iov_len;
365
366 if (unlikely(tmp == 0))
367 {
368 printk(KERN_ERR "Could not map memory region for dma.\n");
369 return (-EINVAL);
370 }
371
372 #ifdef UBSEC_VERBOSE_DEBUG
373 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, n, (unsigned int)tmp);
374 #endif
375
376 iov++;
377 }
378 *mlen = n;
379
380 return(0);
381 }
382
383 static void
384 dma_unmap(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, int mlen)
385 {
386 int i;
387
388 #ifdef UBSEC_DEBUG
389 DPRINTF("%s()\n", __FUNCTION__);
390 #endif
391
392 for(i = 0; i < mlen; i++)
393 {
394 #ifdef UBSEC_VERBOSE_DEBUG
395 DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, (unsigned int)q_map[i].dma_paddr, q_map[i].dma_size);
396 #endif
397 dma_unmap_single(sc->sc_dv,
398 q_map[i].dma_paddr,
399 q_map[i].dma_size,
400 DMA_BIDIRECTIONAL);
401 }
402 return;
403 }
404
405 /*
406 * Is the operand suitable aligned for direct DMA. Each
407 * segment must be aligned on a 32-bit boundary and all
408 * but the last segment must be a multiple of 4 bytes.
409 */
410 static int
411 ubsec_dmamap_aligned(struct ubsec_softc *sc, const struct ubsec_dma_alloc *q_map, int mlen)
412 {
413 int i;
414
415 #ifdef UBSEC_DEBUG
416 DPRINTF("%s()\n", __FUNCTION__);
417 #endif
418
419 for (i = 0; i < mlen; i++) {
420 if (q_map[i].dma_paddr & 3)
421 return (0);
422 if (i != (mlen - 1) && (q_map[i].dma_size & 3))
423 return (0);
424 }
425 return (1);
426 }
427
428
429 #define N(a) (sizeof(a) / sizeof (a[0]))
430 static void
431 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
432 {
433 #ifdef HMAC_HACK
434 MD5_CTX md5ctx;
435 SHA1_CTX sha1ctx;
436 int i;
437
438 #ifdef UBSEC_DEBUG
439 DPRINTF("%s()\n", __FUNCTION__);
440 #endif
441
442 for (i = 0; i < klen; i++)
443 key[i] ^= HMAC_IPAD_VAL;
444
445 if (algo == CRYPTO_MD5_HMAC) {
446 MD5Init(&md5ctx);
447 MD5Update(&md5ctx, key, klen);
448 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
449 bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
450 } else {
451 SHA1Init(&sha1ctx);
452 SHA1Update(&sha1ctx, key, klen);
453 SHA1Update(&sha1ctx, hmac_ipad_buffer,
454 SHA1_HMAC_BLOCK_LEN - klen);
455 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
456 }
457
458 for (i = 0; i < klen; i++)
459 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
460
461 if (algo == CRYPTO_MD5_HMAC) {
462 MD5Init(&md5ctx);
463 MD5Update(&md5ctx, key, klen);
464 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
465 bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
466 } else {
467 SHA1Init(&sha1ctx);
468 SHA1Update(&sha1ctx, key, klen);
469 SHA1Update(&sha1ctx, hmac_opad_buffer,
470 SHA1_HMAC_BLOCK_LEN - klen);
471 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
472 }
473
474 for (i = 0; i < klen; i++)
475 key[i] ^= HMAC_OPAD_VAL;
476
477 #else /* HMAC_HACK */
478 DPRINTF("md5/sha not implemented\n");
479 #endif /* HMAC_HACK */
480 }
481 #undef N
482
483 static int
484 __devinit ubsec_ssb_probe(struct ssb_device *sdev,
485 const struct ssb_device_id *ent)
486 {
487 int err;
488
489 #ifdef UBSEC_DEBUG
490 DPRINTF("%s()\n", __FUNCTION__);
491 #endif
492
493 err = ssb_bus_powerup(sdev->bus, 0);
494 if (err) {
495 dev_err(sdev->dev, "Failed to powerup the bus\n");
496 goto err_out;
497 }
498
499 err = request_irq(sdev->irq, (irq_handler_t)ubsec_ssb_isr,
500 IRQF_DISABLED | IRQF_SHARED, DRV_MODULE_NAME, sdev);
501 if (err) {
502 dev_err(sdev->dev, "Could not request irq\n");
503 goto err_out_powerdown;
504 }
505
506 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,34))
507 err = dma_set_mask(sdev->dma_dev, DMA_BIT_MASK(32)) ||
508 dma_set_coherent_mask(sdev->dma_dev, DMA_BIT_MASK(32));
509 #else
510 err = ssb_dma_set_mask(sdev, DMA_32BIT_MASK);
511 #endif
512 if (err) {
513 dev_err(sdev->dev,
514 "Required 32BIT DMA mask unsupported by the system.\n");
515 goto err_out_free_irq;
516 }
517
518 printk(KERN_INFO "Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
519 sdev->irq);
520
521 DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
522 sdev->id.vendor, sdev->id.coreid, sdev->id.revision);
523
524 ssb_device_enable(sdev, 0);
525
526 if (ubsec_attach(sdev, ent, sdev->dev) != 0)
527 goto err_out_disable;
528
529 #ifdef UBSEC_DEBUG
530 procdebug = create_proc_entry(DRV_MODULE_NAME, S_IRUSR, NULL);
531 if (procdebug)
532 {
533 procdebug->read_proc = proc_read;
534 procdebug->data = NULL;
535 } else
536 DPRINTF("Unable to create proc file.\n");
537 #endif
538
539 return 0;
540
541 err_out_disable:
542 ssb_device_disable(sdev, 0);
543
544 err_out_free_irq:
545 free_irq(sdev->irq, sdev);
546
547 err_out_powerdown:
548 ssb_bus_may_powerdown(sdev->bus);
549
550 err_out:
551 return err;
552 }
553
554 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev) {
555
556 struct ubsec_softc *sc;
557 unsigned int ctrlflgs;
558 struct ubsec_dma *dmap;
559 u_int32_t i;
560
561 #ifdef UBSEC_DEBUG
562 DPRINTF("%s()\n", __FUNCTION__);
563 #endif
564
565 ctrlflgs = READ_REG_SDEV(sdev, BS_CTRL);
566 /* disable all IPSec Core interrupts globally */
567 ctrlflgs ^= (BS_CTRL_MCR1INT | BS_CTRL_MCR2INT |
568 BS_CTRL_DMAERR);
569 WRITE_REG_SDEV(sdev, BS_CTRL, ctrlflgs);
570
571 free_irq(sdev->irq, sdev);
572
573 sc = (struct ubsec_softc *)ssb_get_drvdata(sdev);
574
575 /* unregister all crypto algorithms */
576 crypto_unregister_all(sc->sc_cid);
577
578 /* Free queue / dma memory */
579 for (i = 0; i < UBS_MAX_NQUEUE; i++) {
580 struct ubsec_q *q;
581
582 q = sc->sc_queuea[i];
583 if (q != NULL)
584 {
585 dmap = q->q_dma;
586 if (dmap != NULL)
587 {
588 ubsec_dma_free(sc, &dmap->d_alloc);
589 q->q_dma = NULL;
590 }
591 kfree(q);
592 }
593 sc->sc_queuea[i] = NULL;
594 }
595
596 ssb_device_disable(sdev, 0);
597 ssb_bus_may_powerdown(sdev->bus);
598 ssb_set_drvdata(sdev, NULL);
599
600 #ifdef UBSEC_DEBUG
601 if (procdebug)
602 remove_proc_entry(DRV_MODULE_NAME, NULL);
603 #endif
604
605 }
606
607
608 int
609 ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
610 struct device *self)
611 {
612 struct ubsec_softc *sc = NULL;
613 struct ubsec_dma *dmap;
614 u_int32_t i;
615 static int num_chips = 0;
616
617 #ifdef UBSEC_DEBUG
618 DPRINTF("%s()\n", __FUNCTION__);
619 #endif
620
621 sc = (struct ubsec_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
622 if (!sc)
623 return(-ENOMEM);
624 memset(sc, 0, sizeof(*sc));
625
626 sc->sc_dv = sdev->dev;
627 sc->sdev = sdev;
628
629 spin_lock_init(&sc->sc_ringmtx);
630
631 softc_device_init(sc, "ubsec_ssb", num_chips, ubsec_ssb_methods);
632
633 /* Maybe someday there are boards with more than one chip available */
634 if (num_chips < UBSEC_SSB_MAX_CHIPS) {
635 ubsec_chip_idx[device_get_unit(sc->sc_dev)] = sc;
636 num_chips++;
637 }
638
639 ssb_set_drvdata(sdev, sc);
640
641 BSD_SIMPLEQ_INIT(&sc->sc_queue);
642 BSD_SIMPLEQ_INIT(&sc->sc_qchip);
643 BSD_SIMPLEQ_INIT(&sc->sc_queue2);
644 BSD_SIMPLEQ_INIT(&sc->sc_qchip2);
645 BSD_SIMPLEQ_INIT(&sc->sc_q2free);
646
647 sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
648
649 sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
650 if (sc->sc_cid < 0) {
651 device_printf(sc->sc_dev, "could not get crypto driver id\n");
652 return -1;
653 }
654
655 BSD_SIMPLEQ_INIT(&sc->sc_freequeue);
656 dmap = sc->sc_dmaa;
657 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
658 struct ubsec_q *q;
659
660 q = (struct ubsec_q *)kmalloc(sizeof(struct ubsec_q), GFP_KERNEL);
661 if (q == NULL) {
662 printf(": can't allocate queue buffers\n");
663 break;
664 }
665
666 if (ubsec_dma_malloc(sc, &dmap->d_alloc, sizeof(struct ubsec_dmachunk),0)) {
667 printf(": can't allocate dma buffers\n");
668 kfree(q);
669 break;
670 }
671 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
672
673 q->q_dma = dmap;
674 sc->sc_queuea[i] = q;
675
676 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
677 }
678
679 /*
680 * Reset Broadcom chip
681 */
682 ubsec_reset_board(sc);
683
684 /*
685 * Init Broadcom chip
686 */
687 ubsec_init_board(sc);
688
689 /* supported crypto algorithms */
690 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
691 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
692
693 if (sc->sc_flags & UBS_FLAGS_AES) {
694 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
695 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
696 }
697 else
698 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES MD5_HMAC SHA1_HMAC\n");
699
700 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
701 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
702
703 return 0;
704 }
705
706 /*
707 * UBSEC Interrupt routine
708 */
709 static irqreturn_t
710 ubsec_ssb_isr(int irq, void *arg, struct pt_regs *regs)
711 {
712 struct ubsec_softc *sc = NULL;
713 volatile u_int32_t stat;
714 struct ubsec_q *q;
715 struct ubsec_dma *dmap;
716 int npkts = 0, i;
717
718 #ifdef UBSEC_VERBOSE_DEBUG
719 DPRINTF("%s()\n", __FUNCTION__);
720 #endif
721
722 sc = (struct ubsec_softc *)ssb_get_drvdata(arg);
723
724 stat = READ_REG(sc, BS_STAT);
725
726 stat &= sc->sc_statmask;
727 if (stat == 0)
728 return IRQ_NONE;
729
730 WRITE_REG(sc, BS_STAT, stat); /* IACK */
731
732 /*
733 * Check to see if we have any packets waiting for us
734 */
735 if ((stat & BS_STAT_MCR1_DONE)) {
736 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
737 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
738 dmap = q->q_dma;
739
740 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
741 {
742 DPRINTF("error while processing MCR. Flags = %x\n", dmap->d_dma->d_mcr.mcr_flags);
743 break;
744 }
745
746 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
747
748 npkts = q->q_nstacked_mcrs;
749 /*
750 * search for further sc_qchip ubsec_q's that share
751 * the same MCR, and complete them too, they must be
752 * at the top.
753 */
754 for (i = 0; i < npkts; i++) {
755 if(q->q_stacked_mcr[i])
756 ubsec_callback(sc, q->q_stacked_mcr[i]);
757 else
758 break;
759 }
760 ubsec_callback(sc, q);
761 }
762
763 /*
764 * Don't send any more packet to chip if there has been
765 * a DMAERR.
766 */
767 if (likely(!(stat & BS_STAT_DMAERR)))
768 ubsec_feed(sc);
769 else
770 DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
771 }
772
773 /*
774 * Check to see if we got any DMA Error
775 */
776 if (stat & BS_STAT_DMAERR) {
777 volatile u_int32_t a = READ_REG(sc, BS_ERR);
778
779 printf(KERN_ERR "%s: dmaerr %s@%08x\n", DRV_MODULE_NAME,
780 (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
781
782 ubsecstats.hst_dmaerr++;
783 ubsec_totalreset(sc);
784 ubsec_feed(sc);
785 }
786
787 return IRQ_HANDLED;
788 }
789
790 /*
791 * ubsec_feed() - aggregate and post requests to chip
792 * It is assumed that the caller set splnet()
793 */
794 void
795 ubsec_feed(struct ubsec_softc *sc)
796 {
797 #ifdef UBSEC_VERBOSE_DEBUG
798 static int max;
799 #endif
800 struct ubsec_q *q, *q2;
801 int npkts, i;
802 void *v;
803 u_int32_t stat;
804
805 npkts = sc->sc_nqueue;
806 if (npkts > UBS_MAX_AGGR)
807 npkts = UBS_MAX_AGGR;
808 if (npkts < 2)
809 goto feed1;
810
811 stat = READ_REG(sc, BS_STAT);
812
813 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
814 if(stat & BS_STAT_DMAERR) {
815 ubsec_totalreset(sc);
816 ubsecstats.hst_dmaerr++;
817 }
818 return;
819 }
820
821 #ifdef UBSEC_VERBOSE_DEBUG
822 DPRINTF("merging %d records\n", npkts);
823
824 /* XXX temporary aggregation statistics reporting code */
825 if (max < npkts) {
826 max = npkts;
827 DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME, max);
828 }
829 #endif /* UBSEC_VERBOSE_DEBUG */
830
831 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
832 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
833 --sc->sc_nqueue;
834
835 #if 0
836 /*
837 * XXX
838 * We use dma_map_single() - no sync required!
839 */
840
841 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
842 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
843 if (q->q_dst_map != NULL)
844 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
845 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
846 #endif
847
848 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
849
850 for (i = 0; i < q->q_nstacked_mcrs; i++) {
851 q2 = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
852
853 #if 0
854 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
855 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
856 if (q2->q_dst_map != NULL)
857 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
858 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
859 #endif
860 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
861 --sc->sc_nqueue;
862
863 v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
864 sizeof(struct ubsec_mcr_add);
865 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
866 q->q_stacked_mcr[i] = q2;
867 }
868 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
869 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
870 #if 0
871 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
872 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
873 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
874 #endif
875 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
876 offsetof(struct ubsec_dmachunk, d_mcr));
877 #ifdef UBSEC_VERBOSE_DEBUG
878 DPRINTF("feed (1): q->chip %p %08x %08x\n", q,
879 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
880 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
881 offsetof(struct ubsec_dmachunk, d_mcr)));
882 #endif /* UBSEC_DEBUG */
883 return;
884
885 feed1:
886 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_queue)) {
887 stat = READ_REG(sc, BS_STAT);
888
889 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
890 if(stat & BS_STAT_DMAERR) {
891 ubsec_totalreset(sc);
892 ubsecstats.hst_dmaerr++;
893 }
894 break;
895 }
896
897 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
898
899 #if 0
900 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
901 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
902 if (q->q_dst_map != NULL)
903 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
904 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
905 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
906 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
907 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
908 #endif
909
910 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
911 offsetof(struct ubsec_dmachunk, d_mcr));
912 #ifdef UBSEC_VERBOSE_DEBUG
913 DPRINTF("feed (2): q->chip %p %08x %08x\n", q,
914 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
915 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
916 offsetof(struct ubsec_dmachunk, d_mcr)));
917 #endif /* UBSEC_DEBUG */
918 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
919 --sc->sc_nqueue;
920 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
921 }
922 }
923
924 /*
925 * Allocate a new 'session' and return an encoded session id. 'sidp'
926 * contains our registration id, and should contain an encoded session
927 * id on successful allocation.
928 */
929 static int
930 ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
931 {
932 struct cryptoini *c, *encini = NULL, *macini = NULL;
933 struct ubsec_softc *sc = NULL;
934 struct ubsec_session *ses = NULL;
935 int sesn, i;
936
937 #ifdef UBSEC_DEBUG
938 DPRINTF("%s()\n", __FUNCTION__);
939 #endif
940
941 if (sidp == NULL || cri == NULL)
942 return (EINVAL);
943
944 sc = device_get_softc(dev);
945
946 if (sc == NULL)
947 return (EINVAL);
948
949 for (c = cri; c != NULL; c = c->cri_next) {
950 if (c->cri_alg == CRYPTO_MD5_HMAC ||
951 c->cri_alg == CRYPTO_SHA1_HMAC) {
952 if (macini)
953 return (EINVAL);
954 macini = c;
955 } else if (c->cri_alg == CRYPTO_DES_CBC ||
956 c->cri_alg == CRYPTO_3DES_CBC ||
957 c->cri_alg == CRYPTO_AES_CBC) {
958 if (encini)
959 return (EINVAL);
960 encini = c;
961 } else
962 return (EINVAL);
963 }
964 if (encini == NULL && macini == NULL)
965 return (EINVAL);
966
967 if (sc->sc_sessions == NULL) {
968 ses = sc->sc_sessions = (struct ubsec_session *)kmalloc(
969 sizeof(struct ubsec_session), SLAB_ATOMIC);
970 if (ses == NULL)
971 return (ENOMEM);
972 memset(ses, 0, sizeof(struct ubsec_session));
973 sesn = 0;
974 sc->sc_nsessions = 1;
975 } else {
976 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
977 if (sc->sc_sessions[sesn].ses_used == 0) {
978 ses = &sc->sc_sessions[sesn];
979 break;
980 }
981 }
982
983 if (ses == NULL) {
984 sesn = sc->sc_nsessions;
985 ses = (struct ubsec_session *)kmalloc((sesn + 1) *
986 sizeof(struct ubsec_session), SLAB_ATOMIC);
987 if (ses == NULL)
988 return (ENOMEM);
989 memset(ses, 0, (sesn + 1) * sizeof(struct ubsec_session));
990 bcopy(sc->sc_sessions, ses, sesn *
991 sizeof(struct ubsec_session));
992 bzero(sc->sc_sessions, sesn *
993 sizeof(struct ubsec_session));
994 kfree(sc->sc_sessions);
995 sc->sc_sessions = ses;
996 ses = &sc->sc_sessions[sesn];
997 sc->sc_nsessions++;
998 }
999 }
1000
1001 bzero(ses, sizeof(struct ubsec_session));
1002 ses->ses_used = 1;
1003 if (encini) {
1004 /* get an IV */
1005 /* XXX may read fewer than requested */
1006 read_random(ses->ses_iv, sizeof(ses->ses_iv));
1007
1008 /* Go ahead and compute key in ubsec's byte order */
1009 if (encini->cri_alg == CRYPTO_DES_CBC) {
1010 /* DES uses the same key three times:
1011 * 1st encrypt -> 2nd decrypt -> 3nd encrypt */
1012 bcopy(encini->cri_key, &ses->ses_key[0], 8);
1013 bcopy(encini->cri_key, &ses->ses_key[2], 8);
1014 bcopy(encini->cri_key, &ses->ses_key[4], 8);
1015 ses->ses_keysize = 192; /* Fake! Actually its only 64bits ..
1016 oh no it is even less: 54bits. */
1017 } else if(encini->cri_alg == CRYPTO_3DES_CBC) {
1018 bcopy(encini->cri_key, ses->ses_key, 24);
1019 ses->ses_keysize = 192;
1020 } else if(encini->cri_alg == CRYPTO_AES_CBC) {
1021 ses->ses_keysize = encini->cri_klen;
1022
1023 if (ses->ses_keysize != 128 &&
1024 ses->ses_keysize != 192 &&
1025 ses->ses_keysize != 256)
1026 {
1027 DPRINTF("unsupported AES key size: %d\n", ses->ses_keysize);
1028 return (EINVAL);
1029 }
1030 bcopy(encini->cri_key, ses->ses_key, (ses->ses_keysize / 8));
1031 }
1032
1033 /* Hardware requires the keys in little endian byte order */
1034 for (i=0; i < (ses->ses_keysize / 32); i++)
1035 SWAP32(ses->ses_key[i]);
1036 }
1037
1038 if (macini) {
1039 ses->ses_mlen = macini->cri_mlen;
1040
1041 if (ses->ses_mlen == 0 ||
1042 ses->ses_mlen > SHA1_HASH_LEN) {
1043
1044 if (macini->cri_alg == CRYPTO_MD5_HMAC ||
1045 macini->cri_alg == CRYPTO_SHA1_HMAC)
1046 {
1047 ses->ses_mlen = DEFAULT_HMAC_LEN;
1048 } else
1049 {
1050 /*
1051 * Reserved for future usage. MD5/SHA1 calculations have
1052 * different hash sizes.
1053 */
1054 printk(KERN_ERR DRV_MODULE_NAME ": unsupported hash operation with mac/hash len: %d\n", ses->ses_mlen);
1055 return (EINVAL);
1056 }
1057
1058 }
1059
1060 if (macini->cri_key != NULL) {
1061 ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key,
1062 macini->cri_klen / 8);
1063 }
1064 }
1065
1066 *sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1067 return (0);
1068 }
1069
1070 /*
1071 * Deallocate a session.
1072 */
1073 static int
1074 ubsec_freesession(device_t dev, u_int64_t tid)
1075 {
1076 struct ubsec_softc *sc = device_get_softc(dev);
1077 int session;
1078 u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
1079
1080 #ifdef UBSEC_DEBUG
1081 DPRINTF("%s()\n", __FUNCTION__);
1082 #endif
1083
1084 if (sc == NULL)
1085 return (EINVAL);
1086
1087 session = UBSEC_SESSION(sid);
1088 if (session < sc->sc_nsessions) {
1089 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1090 return (0);
1091 } else
1092 return (EINVAL);
1093 }
1094
1095 static int
1096 ubsec_process(device_t dev, struct cryptop *crp, int hint)
1097 {
1098 struct ubsec_q *q = NULL;
1099 int err = 0, i, j, nicealign;
1100 struct ubsec_softc *sc = device_get_softc(dev);
1101 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1102 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1103 int sskip, dskip, stheend, dtheend, ivsize = 8;
1104 int16_t coffset;
1105 struct ubsec_session *ses;
1106 struct ubsec_generic_ctx ctx;
1107 struct ubsec_dma *dmap = NULL;
1108 unsigned long flags;
1109
1110 #ifdef UBSEC_DEBUG
1111 DPRINTF("%s()\n", __FUNCTION__);
1112 #endif
1113
1114 if (unlikely(crp == NULL || crp->crp_callback == NULL)) {
1115 ubsecstats.hst_invalid++;
1116 return (EINVAL);
1117 }
1118
1119 if (unlikely(sc == NULL))
1120 return (EINVAL);
1121
1122 #ifdef UBSEC_VERBOSE_DEBUG
1123 DPRINTF("spin_lock_irqsave\n");
1124 #endif
1125 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1126 //spin_lock_irq(&sc->sc_ringmtx);
1127
1128 if (BSD_SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1129 ubsecstats.hst_queuefull++;
1130 #ifdef UBSEC_VERBOSE_DEBUG
1131 DPRINTF("spin_unlock_irqrestore\n");
1132 #endif
1133 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1134 //spin_unlock_irq(&sc->sc_ringmtx);
1135 err = ENOMEM;
1136 goto errout2;
1137 }
1138
1139 q = BSD_SIMPLEQ_FIRST(&sc->sc_freequeue);
1140 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1141 #ifdef UBSEC_VERBOSE_DEBUG
1142 DPRINTF("spin_unlock_irqrestore\n");
1143 #endif
1144 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1145 //spin_unlock_irq(&sc->sc_ringmtx);
1146
1147 dmap = q->q_dma; /* Save dma pointer */
1148 bzero(q, sizeof(struct ubsec_q));
1149 bzero(&ctx, sizeof(ctx));
1150
1151 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1152 q->q_dma = dmap;
1153 ses = &sc->sc_sessions[q->q_sesn];
1154
1155 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1156 q->q_src_m = (struct sk_buff *)crp->crp_buf;
1157 q->q_dst_m = (struct sk_buff *)crp->crp_buf;
1158 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1159 q->q_src_io = (struct uio *)crp->crp_buf;
1160 q->q_dst_io = (struct uio *)crp->crp_buf;
1161 } else {
1162 err = EINVAL;
1163 goto errout; /* XXX we don't handle contiguous blocks! */
1164 }
1165
1166 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1167
1168 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1169 dmap->d_dma->d_mcr.mcr_flags = 0;
1170 q->q_crp = crp;
1171
1172 crd1 = crp->crp_desc;
1173 if (crd1 == NULL) {
1174 err = EINVAL;
1175 goto errout;
1176 }
1177 crd2 = crd1->crd_next;
1178
1179 if (crd2 == NULL) {
1180 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1181 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1182 maccrd = crd1;
1183 enccrd = NULL;
1184 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1185 crd1->crd_alg == CRYPTO_3DES_CBC ||
1186 crd1->crd_alg == CRYPTO_AES_CBC) {
1187 maccrd = NULL;
1188 enccrd = crd1;
1189 } else {
1190 err = EINVAL;
1191 goto errout;
1192 }
1193 } else {
1194 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1195 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1196 (crd2->crd_alg == CRYPTO_DES_CBC ||
1197 crd2->crd_alg == CRYPTO_3DES_CBC ||
1198 crd2->crd_alg == CRYPTO_AES_CBC) &&
1199 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1200 maccrd = crd1;
1201 enccrd = crd2;
1202 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1203 crd1->crd_alg == CRYPTO_3DES_CBC ||
1204 crd1->crd_alg == CRYPTO_AES_CBC) &&
1205 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1206 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1207 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1208 enccrd = crd1;
1209 maccrd = crd2;
1210 } else {
1211 /*
1212 * We cannot order the ubsec as requested
1213 */
1214 printk(KERN_ERR DRV_MODULE_NAME ": got wrong algorithm/signature order.\n");
1215 err = EINVAL;
1216 goto errout;
1217 }
1218 }
1219
1220 /* Encryption/Decryption requested */
1221 if (enccrd) {
1222 encoffset = enccrd->crd_skip;
1223
1224 if (enccrd->crd_alg == CRYPTO_DES_CBC ||
1225 enccrd->crd_alg == CRYPTO_3DES_CBC)
1226 {
1227 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1228 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_DES);
1229 ivsize = 8; /* [3]DES uses 64bit IVs */
1230 } else {
1231 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_AES);
1232 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1233 ivsize = 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
1234
1235 switch(ses->ses_keysize)
1236 {
1237 case 128:
1238 ctx.pc_flags |= htole16(UBS_PKTCTX_AES128);
1239 break;
1240 case 192:
1241 ctx.pc_flags |= htole16(UBS_PKTCTX_AES192);
1242 break;
1243 case 256:
1244 ctx.pc_flags |= htole16(UBS_PKTCTX_AES256);
1245 break;
1246 default:
1247 DPRINTF("invalid AES key size: %d\n", ses->ses_keysize);
1248 err = EINVAL;
1249 goto errout;
1250 }
1251 }
1252
1253 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1254 /* Direction: Outbound */
1255
1256 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1257
1258 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1259 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1260 } else {
1261 for(i=0; i < (ivsize / 4); i++)
1262 ctx.pc_iv[i] = ses->ses_iv[i];
1263 }
1264
1265 /* If there is no IV in the buffer -> copy it here */
1266 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1267 if (crp->crp_flags & CRYPTO_F_SKBUF)
1268 /*
1269 m_copyback(q->q_src_m,
1270 enccrd->crd_inject,
1271 8, ctx.pc_iv);
1272 */
1273 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_m,
1274 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1275 else if (crp->crp_flags & CRYPTO_F_IOV)
1276 /*
1277 cuio_copyback(q->q_src_io,
1278 enccrd->crd_inject,
1279 8, ctx.pc_iv);
1280 */
1281 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_io,
1282 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1283 }
1284 } else {
1285 /* Direction: Inbound */
1286
1287 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1288
1289 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1290 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1291 else if (crp->crp_flags & CRYPTO_F_SKBUF)
1292 /*
1293 m_copydata(q->q_src_m, enccrd->crd_inject,
1294 8, (caddr_t)ctx.pc_iv);
1295 */
1296 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_m,
1297 enccrd->crd_inject, ivsize,
1298 (caddr_t)ctx.pc_iv);
1299 else if (crp->crp_flags & CRYPTO_F_IOV)
1300 /*
1301 cuio_copydata(q->q_src_io,
1302 enccrd->crd_inject, 8,
1303 (caddr_t)ctx.pc_iv);
1304 */
1305 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_io,
1306 enccrd->crd_inject, ivsize,
1307 (caddr_t)ctx.pc_iv);
1308
1309 }
1310
1311 /* Even though key & IV sizes differ from cipher to cipher
1312 * copy / swap the full array lengths. Let the compiler unroll
1313 * the loop to increase the cpu pipeline performance... */
1314 for(i=0; i < 8; i++)
1315 ctx.pc_key[i] = ses->ses_key[i];
1316 for(i=0; i < 4; i++)
1317 SWAP32(ctx.pc_iv[i]);
1318 }
1319
1320 /* Authentication requested */
1321 if (maccrd) {
1322 macoffset = maccrd->crd_skip;
1323
1324 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1325 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1326 else
1327 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1328
1329 for (i = 0; i < 5; i++) {
1330 ctx.pc_hminner[i] = ses->ses_hminner[i];
1331 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1332
1333 HTOLE32(ctx.pc_hminner[i]);
1334 HTOLE32(ctx.pc_hmouter[i]);
1335 }
1336 }
1337
1338 if (enccrd && maccrd) {
1339 /*
1340 * ubsec cannot handle packets where the end of encryption
1341 * and authentication are not the same, or where the
1342 * encrypted part begins before the authenticated part.
1343 */
1344 if (((encoffset + enccrd->crd_len) !=
1345 (macoffset + maccrd->crd_len)) ||
1346 (enccrd->crd_skip < maccrd->crd_skip)) {
1347 err = EINVAL;
1348 goto errout;
1349 }
1350 sskip = maccrd->crd_skip;
1351 cpskip = dskip = enccrd->crd_skip;
1352 stheend = maccrd->crd_len;
1353 dtheend = enccrd->crd_len;
1354 coffset = enccrd->crd_skip - maccrd->crd_skip;
1355 cpoffset = cpskip + dtheend;
1356 #ifdef UBSEC_DEBUG
1357 DPRINTF("mac: skip %d, len %d, inject %d\n",
1358 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1359 DPRINTF("enc: skip %d, len %d, inject %d\n",
1360 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1361 DPRINTF("src: skip %d, len %d\n", sskip, stheend);
1362 DPRINTF("dst: skip %d, len %d\n", dskip, dtheend);
1363 DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1364 coffset, stheend, cpskip, cpoffset);
1365 #endif
1366 } else {
1367 cpskip = dskip = sskip = macoffset + encoffset;
1368 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1369 cpoffset = cpskip + dtheend;
1370 coffset = 0;
1371 }
1372 ctx.pc_offset = htole16(coffset >> 2);
1373
1374 #if 0
1375 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1376 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1377 err = ENOMEM;
1378 goto errout;
1379 }
1380 #endif
1381
1382 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1383 #if 0
1384 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1385 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1386 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1387 q->q_src_map = NULL;
1388 err = ENOMEM;
1389 goto errout;
1390 }
1391 #endif
1392 err = dma_map_skb(sc, q->q_src_map, q->q_src_m, &q->q_src_len);
1393 if (unlikely(err != 0))
1394 goto errout;
1395
1396 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1397 #if 0
1398 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1399 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1400 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1401 q->q_src_map = NULL;
1402 err = ENOMEM;
1403 goto errout;
1404 }
1405 #endif
1406 err = dma_map_uio(sc, q->q_src_map, q->q_src_io, &q->q_src_len);
1407 if (unlikely(err != 0))
1408 goto errout;
1409 }
1410
1411 /*
1412 * Check alignment
1413 */
1414 nicealign = ubsec_dmamap_aligned(sc, q->q_src_map, q->q_src_len);
1415
1416 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1417
1418 #ifdef UBSEC_DEBUG
1419 DPRINTF("src skip: %d\n", sskip);
1420 #endif
1421 for (i = j = 0; i < q->q_src_len; i++) {
1422 struct ubsec_pktbuf *pb;
1423 size_t packl = q->q_src_map[i].dma_size;
1424 dma_addr_t packp = q->q_src_map[i].dma_paddr;
1425
1426 if (sskip >= packl) {
1427 sskip -= packl;
1428 continue;
1429 }
1430
1431 packl -= sskip;
1432 packp += sskip;
1433 sskip = 0;
1434
1435 /* maximum fragment size is 0xfffc */
1436 if (packl > 0xfffc) {
1437 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1438 err = EIO;
1439 goto errout;
1440 }
1441
1442 if (j == 0)
1443 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1444 else
1445 pb = &dmap->d_dma->d_sbuf[j - 1];
1446
1447 pb->pb_addr = htole32(packp);
1448
1449 if (stheend) {
1450 if (packl > stheend) {
1451 pb->pb_len = htole32(stheend);
1452 stheend = 0;
1453 } else {
1454 pb->pb_len = htole32(packl);
1455 stheend -= packl;
1456 }
1457 } else
1458 pb->pb_len = htole32(packl);
1459
1460 if ((i + 1) == q->q_src_len)
1461 pb->pb_next = 0;
1462 else
1463 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1464 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1465 j++;
1466 }
1467
1468 if (enccrd == NULL && maccrd != NULL) {
1469 /* Authentication only */
1470 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1471 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1472 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
1473 htole32(dmap->d_alloc.dma_paddr +
1474 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1475 #ifdef UBSEC_DEBUG
1476 DPRINTF("opkt: %x %x %x\n",
1477 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1478 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1479 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1480 #endif
1481 } else {
1482 if (crp->crp_flags & CRYPTO_F_IOV) {
1483 if (!nicealign) {
1484 err = EINVAL;
1485 goto errout;
1486 }
1487 #if 0
1488 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1489 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1490 &q->q_dst_map) != 0) {
1491 err = ENOMEM;
1492 goto errout;
1493 }
1494 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1495 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1496 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1497 q->q_dst_map = NULL;
1498 goto errout;
1499 }
1500 #endif
1501
1502 /* HW shall copy the result into the source memory */
1503 for(i = 0; i < q->q_src_len; i++)
1504 q->q_dst_map[i] = q->q_src_map[i];
1505
1506 q->q_dst_len = q->q_src_len;
1507 q->q_has_dst = 0;
1508
1509 } else if (crp->crp_flags & CRYPTO_F_SKBUF) {
1510 if (nicealign) {
1511
1512 /* HW shall copy the result into the source memory */
1513 q->q_dst_m = q->q_src_m;
1514 for(i = 0; i < q->q_src_len; i++)
1515 q->q_dst_map[i] = q->q_src_map[i];
1516
1517 q->q_dst_len = q->q_src_len;
1518 q->q_has_dst = 0;
1519
1520 } else {
1521 #ifdef NOTYET
1522 int totlen, len;
1523 struct sk_buff *m, *top, **mp;
1524
1525 totlen = q->q_src_map->dm_mapsize;
1526 if (q->q_src_m->m_flags & M_PKTHDR) {
1527 len = MHLEN;
1528 MGETHDR(m, M_DONTWAIT, MT_DATA);
1529 } else {
1530 len = MLEN;
1531 MGET(m, M_DONTWAIT, MT_DATA);
1532 }
1533 if (m == NULL) {
1534 err = ENOMEM;
1535 goto errout;
1536 }
1537 if (len == MHLEN)
1538 M_DUP_PKTHDR(m, q->q_src_m);
1539 if (totlen >= MINCLSIZE) {
1540 MCLGET(m, M_DONTWAIT);
1541 if (m->m_flags & M_EXT)
1542 len = MCLBYTES;
1543 }
1544 m->m_len = len;
1545 top = NULL;
1546 mp = &top;
1547
1548 while (totlen > 0) {
1549 if (top) {
1550 MGET(m, M_DONTWAIT, MT_DATA);
1551 if (m == NULL) {
1552 m_freem(top);
1553 err = ENOMEM;
1554 goto errout;
1555 }
1556 len = MLEN;
1557 }
1558 if (top && totlen >= MINCLSIZE) {
1559 MCLGET(m, M_DONTWAIT);
1560 if (m->m_flags & M_EXT)
1561 len = MCLBYTES;
1562 }
1563 m->m_len = len = min(totlen, len);
1564 totlen -= len;
1565 *mp = m;
1566 mp = &m->m_next;
1567 }
1568 q->q_dst_m = top;
1569 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1570 cpskip, cpoffset);
1571 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1572 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1573 &q->q_dst_map) != 0) {
1574 err = ENOMEM;
1575 goto errout;
1576 }
1577 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1578 q->q_dst_map, q->q_dst_m,
1579 BUS_DMA_NOWAIT) != 0) {
1580 bus_dmamap_destroy(sc->sc_dmat,
1581 q->q_dst_map);
1582 q->q_dst_map = NULL;
1583 err = ENOMEM;
1584 goto errout;
1585 }
1586 #else
1587 device_printf(sc->sc_dev,
1588 "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
1589 __FILE__, __LINE__);
1590 err = EINVAL;
1591 goto errout;
1592 #endif
1593 }
1594 } else {
1595 err = EINVAL;
1596 goto errout;
1597 }
1598
1599 #ifdef UBSEC_DEBUG
1600 DPRINTF("dst skip: %d\n", dskip);
1601 #endif
1602 for (i = j = 0; i < q->q_dst_len; i++) {
1603 struct ubsec_pktbuf *pb;
1604 size_t packl = q->q_dst_map[i].dma_size;
1605 dma_addr_t packp = q->q_dst_map[i].dma_paddr;
1606
1607 if (dskip >= packl) {
1608 dskip -= packl;
1609 continue;
1610 }
1611
1612 packl -= dskip;
1613 packp += dskip;
1614 dskip = 0;
1615
1616 if (packl > 0xfffc) {
1617 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1618 err = EIO;
1619 goto errout;
1620 }
1621
1622 if (j == 0)
1623 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1624 else
1625 pb = &dmap->d_dma->d_dbuf[j - 1];
1626
1627 pb->pb_addr = htole32(packp);
1628
1629 if (dtheend) {
1630 if (packl > dtheend) {
1631 pb->pb_len = htole32(dtheend);
1632 dtheend = 0;
1633 } else {
1634 pb->pb_len = htole32(packl);
1635 dtheend -= packl;
1636 }
1637 } else
1638 pb->pb_len = htole32(packl);
1639
1640 if ((i + 1) == q->q_dst_len) {
1641 if (maccrd)
1642 /* Authentication:
1643 * The last fragment of the output buffer
1644 * contains the HMAC. */
1645 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1646 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1647 else
1648 pb->pb_next = 0;
1649 } else
1650 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1651 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1652 j++;
1653 }
1654 }
1655
1656 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1657 offsetof(struct ubsec_dmachunk, d_ctx));
1658
1659 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1660 /* new Broadcom cards with dynamic long command context structure */
1661
1662 if (enccrd != NULL &&
1663 enccrd->crd_alg == CRYPTO_AES_CBC)
1664 {
1665 struct ubsec_pktctx_aes128 *ctxaes128;
1666 struct ubsec_pktctx_aes192 *ctxaes192;
1667 struct ubsec_pktctx_aes256 *ctxaes256;
1668
1669 switch(ses->ses_keysize)
1670 {
1671 /* AES 128bit */
1672 case 128:
1673 ctxaes128 = (struct ubsec_pktctx_aes128 *)
1674 (dmap->d_alloc.dma_vaddr +
1675 offsetof(struct ubsec_dmachunk, d_ctx));
1676
1677 ctxaes128->pc_len = htole16(sizeof(struct ubsec_pktctx_aes128));
1678 ctxaes128->pc_type = ctx.pc_type;
1679 ctxaes128->pc_flags = ctx.pc_flags;
1680 ctxaes128->pc_offset = ctx.pc_offset;
1681 for (i = 0; i < 4; i++)
1682 ctxaes128->pc_aeskey[i] = ctx.pc_key[i];
1683 for (i = 0; i < 5; i++)
1684 ctxaes128->pc_hminner[i] = ctx.pc_hminner[i];
1685 for (i = 0; i < 5; i++)
1686 ctxaes128->pc_hmouter[i] = ctx.pc_hmouter[i];
1687 for (i = 0; i < 4; i++)
1688 ctxaes128->pc_iv[i] = ctx.pc_iv[i];
1689 break;
1690
1691 /* AES 192bit */
1692 case 192:
1693 ctxaes192 = (struct ubsec_pktctx_aes192 *)
1694 (dmap->d_alloc.dma_vaddr +
1695 offsetof(struct ubsec_dmachunk, d_ctx));
1696
1697 ctxaes192->pc_len = htole16(sizeof(struct ubsec_pktctx_aes192));
1698 ctxaes192->pc_type = ctx.pc_type;
1699 ctxaes192->pc_flags = ctx.pc_flags;
1700 ctxaes192->pc_offset = ctx.pc_offset;
1701 for (i = 0; i < 6; i++)
1702 ctxaes192->pc_aeskey[i] = ctx.pc_key[i];
1703 for (i = 0; i < 5; i++)
1704 ctxaes192->pc_hminner[i] = ctx.pc_hminner[i];
1705 for (i = 0; i < 5; i++)
1706 ctxaes192->pc_hmouter[i] = ctx.pc_hmouter[i];
1707 for (i = 0; i < 4; i++)
1708 ctxaes192->pc_iv[i] = ctx.pc_iv[i];
1709 break;
1710
1711 /* AES 256bit */
1712 case 256:
1713 ctxaes256 = (struct ubsec_pktctx_aes256 *)
1714 (dmap->d_alloc.dma_vaddr +
1715 offsetof(struct ubsec_dmachunk, d_ctx));
1716
1717 ctxaes256->pc_len = htole16(sizeof(struct ubsec_pktctx_aes256));
1718 ctxaes256->pc_type = ctx.pc_type;
1719 ctxaes256->pc_flags = ctx.pc_flags;
1720 ctxaes256->pc_offset = ctx.pc_offset;
1721 for (i = 0; i < 8; i++)
1722 ctxaes256->pc_aeskey[i] = ctx.pc_key[i];
1723 for (i = 0; i < 5; i++)
1724 ctxaes256->pc_hminner[i] = ctx.pc_hminner[i];
1725 for (i = 0; i < 5; i++)
1726 ctxaes256->pc_hmouter[i] = ctx.pc_hmouter[i];
1727 for (i = 0; i < 4; i++)
1728 ctxaes256->pc_iv[i] = ctx.pc_iv[i];
1729 break;
1730
1731 }
1732 } else {
1733 /*
1734 * [3]DES / MD5_HMAC / SHA1_HMAC
1735 *
1736 * MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
1737 * encryption.
1738 */
1739 struct ubsec_pktctx_des *ctxdes;
1740
1741 ctxdes = (struct ubsec_pktctx_des *)(dmap->d_alloc.dma_vaddr +
1742 offsetof(struct ubsec_dmachunk, d_ctx));
1743
1744 ctxdes->pc_len = htole16(sizeof(struct ubsec_pktctx_des));
1745 ctxdes->pc_type = ctx.pc_type;
1746 ctxdes->pc_flags = ctx.pc_flags;
1747 ctxdes->pc_offset = ctx.pc_offset;
1748 for (i = 0; i < 6; i++)
1749 ctxdes->pc_deskey[i] = ctx.pc_key[i];
1750 for (i = 0; i < 5; i++)
1751 ctxdes->pc_hminner[i] = ctx.pc_hminner[i];
1752 for (i = 0; i < 5; i++)
1753 ctxdes->pc_hmouter[i] = ctx.pc_hmouter[i];
1754 ctxdes->pc_iv[0] = ctx.pc_iv[0];
1755 ctxdes->pc_iv[1] = ctx.pc_iv[1];
1756 }
1757 } else
1758 {
1759 /* old Broadcom card with fixed small command context structure */
1760
1761 /*
1762 * [3]DES / MD5_HMAC / SHA1_HMAC
1763 */
1764 struct ubsec_pktctx *ctxs;
1765
1766 ctxs = (struct ubsec_pktctx *)(dmap->d_alloc.dma_vaddr +
1767 offsetof(struct ubsec_dmachunk, d_ctx));
1768
1769 /* transform generic context into small context */
1770 for (i = 0; i < 6; i++)
1771 ctxs->pc_deskey[i] = ctx.pc_key[i];
1772 for (i = 0; i < 5; i++)
1773 ctxs->pc_hminner[i] = ctx.pc_hminner[i];
1774 for (i = 0; i < 5; i++)
1775 ctxs->pc_hmouter[i] = ctx.pc_hmouter[i];
1776 ctxs->pc_iv[0] = ctx.pc_iv[0];
1777 ctxs->pc_iv[1] = ctx.pc_iv[1];
1778 ctxs->pc_flags = ctx.pc_flags;
1779 ctxs->pc_offset = ctx.pc_offset;
1780 }
1781
1782 #ifdef UBSEC_VERBOSE_DEBUG
1783 DPRINTF("spin_lock_irqsave\n");
1784 #endif
1785 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1786 //spin_lock_irq(&sc->sc_ringmtx);
1787
1788 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1789 sc->sc_nqueue++;
1790 ubsecstats.hst_ipackets++;
1791 ubsecstats.hst_ibytes += stheend;
1792 ubsec_feed(sc);
1793
1794 #ifdef UBSEC_VERBOSE_DEBUG
1795 DPRINTF("spin_unlock_irqrestore\n");
1796 #endif
1797 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1798 //spin_unlock_irq(&sc->sc_ringmtx);
1799
1800 return (0);
1801
1802 errout:
1803 if (q != NULL) {
1804 #ifdef NOTYET
1805 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1806 m_freem(q->q_dst_m);
1807 #endif
1808
1809 if ((q->q_has_dst == 1) && q->q_dst_len > 0) {
1810 #if 0
1811 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1812 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1813 #endif
1814 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1815 }
1816 if (q->q_src_len > 0) {
1817 #if 0
1818 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1819 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1820 #endif
1821 dma_unmap(sc, q->q_src_map, q->q_src_len);
1822 }
1823
1824 #ifdef UBSEC_VERBOSE_DEBUG
1825 DPRINTF("spin_lock_irqsave\n");
1826 #endif
1827 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1828 //spin_lock_irq(&sc->sc_ringmtx);
1829
1830 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1831
1832 #ifdef UBSEC_VERBOSE_DEBUG
1833 DPRINTF("spin_unlock_irqrestore\n");
1834 #endif
1835 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1836 //spin_unlock_irq(&sc->sc_ringmtx);
1837
1838 }
1839 if (err == EINVAL)
1840 ubsecstats.hst_invalid++;
1841 else
1842 ubsecstats.hst_nomem++;
1843 errout2:
1844 crp->crp_etype = err;
1845 crypto_done(crp);
1846
1847 #ifdef UBSEC_DEBUG
1848 DPRINTF("%s() err = %x\n", __FUNCTION__, err);
1849 #endif
1850
1851 return (0);
1852 }
1853
1854 void
1855 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1856 {
1857 struct cryptop *crp = (struct cryptop *)q->q_crp;
1858 struct cryptodesc *crd;
1859 struct ubsec_dma *dmap = q->q_dma;
1860 int ivsize = 8;
1861
1862 #ifdef UBSEC_DEBUG
1863 DPRINTF("%s()\n", __FUNCTION__);
1864 #endif
1865
1866 ubsecstats.hst_opackets++;
1867 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1868
1869 #if 0
1870 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1871 dmap->d_alloc.dma_map->dm_mapsize,
1872 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1873 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1874 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1875 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1876 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1877 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1878 }
1879 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1880 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1881 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1882 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1883 #endif
1884
1885 if ((q->q_has_dst == 1) && q->q_dst_len > 0)
1886 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1887
1888 dma_unmap(sc, q->q_src_map, q->q_src_len);
1889
1890 #ifdef NOTYET
1891 if ((crp->crp_flags & CRYPTO_F_SKBUF) && (q->q_src_m != q->q_dst_m)) {
1892 m_freem(q->q_src_m);
1893 crp->crp_buf = (caddr_t)q->q_dst_m;
1894 }
1895 #endif
1896
1897 /* copy out IV for future use */
1898 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1899 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1900 if (crd->crd_alg != CRYPTO_DES_CBC &&
1901 crd->crd_alg != CRYPTO_3DES_CBC &&
1902 crd->crd_alg != CRYPTO_AES_CBC)
1903 continue;
1904
1905 if (crd->crd_alg == CRYPTO_AES_CBC)
1906 ivsize = 16;
1907 else
1908 ivsize = 8;
1909
1910 if (crp->crp_flags & CRYPTO_F_SKBUF)
1911 #if 0
1912 m_copydata((struct sk_buff *)crp->crp_buf,
1913 crd->crd_skip + crd->crd_len - 8, 8,
1914 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1915 #endif
1916 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1917 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1918 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1919
1920 else if (crp->crp_flags & CRYPTO_F_IOV) {
1921 #if 0
1922 cuio_copydata((struct uio *)crp->crp_buf,
1923 crd->crd_skip + crd->crd_len - 8, 8,
1924 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1925 #endif
1926 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1927 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1928 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1929
1930 }
1931 break;
1932 }
1933 }
1934
1935 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1936 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1937 crd->crd_alg != CRYPTO_SHA1_HMAC)
1938 continue;
1939 #if 0
1940 if (crp->crp_flags & CRYPTO_F_SKBUF)
1941 m_copyback((struct sk_buff *)crp->crp_buf,
1942 crd->crd_inject, 12,
1943 dmap->d_dma->d_macbuf);
1944 #endif
1945 #if 0
1946 /* BUG? it does not honor the mac len.. */
1947 crypto_copyback(crp->crp_flags, crp->crp_buf,
1948 crd->crd_inject, 12,
1949 (caddr_t)dmap->d_dma->d_macbuf);
1950 #endif
1951 crypto_copyback(crp->crp_flags, crp->crp_buf,
1952 crd->crd_inject,
1953 sc->sc_sessions[q->q_sesn].ses_mlen,
1954 (caddr_t)dmap->d_dma->d_macbuf);
1955 #if 0
1956 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1957 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1958 crp->crp_mac, 12);
1959 #endif
1960 break;
1961 }
1962 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1963 crypto_done(crp);
1964 }
1965
1966 void
1967 ubsec_mcopy(struct sk_buff *srcm, struct sk_buff *dstm, int hoffset, int toffset)
1968 {
1969 int i, j, dlen, slen;
1970 caddr_t dptr, sptr;
1971
1972 j = 0;
1973 sptr = srcm->data;
1974 slen = srcm->len;
1975 dptr = dstm->data;
1976 dlen = dstm->len;
1977
1978 while (1) {
1979 for (i = 0; i < min(slen, dlen); i++) {
1980 if (j < hoffset || j >= toffset)
1981 *dptr++ = *sptr++;
1982 slen--;
1983 dlen--;
1984 j++;
1985 }
1986 if (slen == 0) {
1987 srcm = srcm->next;
1988 if (srcm == NULL)
1989 return;
1990 sptr = srcm->data;
1991 slen = srcm->len;
1992 }
1993 if (dlen == 0) {
1994 dstm = dstm->next;
1995 if (dstm == NULL)
1996 return;
1997 dptr = dstm->data;
1998 dlen = dstm->len;
1999 }
2000 }
2001 }
2002
2003 int
2004 ubsec_dma_malloc(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma,
2005 size_t size, int mapflags)
2006 {
2007 dma->dma_vaddr = dma_alloc_coherent(sc->sc_dv,
2008 size, &dma->dma_paddr, GFP_KERNEL);
2009
2010 if (likely(dma->dma_vaddr))
2011 {
2012 dma->dma_size = size;
2013 return (0);
2014 }
2015
2016 DPRINTF("could not allocate %d bytes of coherent memory.\n", size);
2017
2018 return (1);
2019 }
2020
2021 void
2022 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2023 {
2024 dma_free_coherent(sc->sc_dv, dma->dma_size, dma->dma_vaddr,
2025 dma->dma_paddr);
2026 }
2027
2028 /*
2029 * Resets the board. Values in the regesters are left as is
2030 * from the reset (i.e. initial values are assigned elsewhere).
2031 */
2032 void
2033 ubsec_reset_board(struct ubsec_softc *sc)
2034 {
2035 volatile u_int32_t ctrl;
2036
2037 #ifdef UBSEC_DEBUG
2038 DPRINTF("%s()\n", __FUNCTION__);
2039 #endif
2040 DPRINTF("Send reset signal to chip.\n");
2041
2042 ctrl = READ_REG(sc, BS_CTRL);
2043 ctrl |= BS_CTRL_RESET;
2044 WRITE_REG(sc, BS_CTRL, ctrl);
2045
2046 /*
2047 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2048 */
2049 DELAY(10);
2050 }
2051
2052 /*
2053 * Init Broadcom registers
2054 */
2055 void
2056 ubsec_init_board(struct ubsec_softc *sc)
2057 {
2058 u_int32_t ctrl;
2059
2060 #ifdef UBSEC_DEBUG
2061 DPRINTF("%s()\n", __FUNCTION__);
2062 #endif
2063 DPRINTF("Initialize chip.\n");
2064
2065 ctrl = READ_REG(sc, BS_CTRL);
2066 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2067 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT | BS_CTRL_DMAERR;
2068
2069 WRITE_REG(sc, BS_CTRL, ctrl);
2070
2071 /* Set chip capabilities (BCM5365P) */
2072 sc->sc_flags |= UBS_FLAGS_LONGCTX | UBS_FLAGS_AES;
2073 }
2074
2075 /*
2076 * Clean up after a chip crash.
2077 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2078 */
2079 void
2080 ubsec_cleanchip(struct ubsec_softc *sc)
2081 {
2082 struct ubsec_q *q;
2083
2084 #ifdef UBSEC_DEBUG
2085 DPRINTF("%s()\n", __FUNCTION__);
2086 #endif
2087 DPRINTF("Clean up queues after chip crash.\n");
2088
2089 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2090 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
2091 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2092 ubsec_free_q(sc, q);
2093 }
2094 }
2095
2096 /*
2097 * free a ubsec_q
2098 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2099 */
2100 int
2101 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2102 {
2103 struct ubsec_q *q2;
2104 struct cryptop *crp;
2105 int npkts;
2106 int i;
2107
2108 #ifdef UBSEC_DEBUG
2109 DPRINTF("%s()\n", __FUNCTION__);
2110 #endif
2111
2112 npkts = q->q_nstacked_mcrs;
2113
2114 for (i = 0; i < npkts; i++) {
2115 if(q->q_stacked_mcr[i]) {
2116 q2 = q->q_stacked_mcr[i];
2117
2118 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2119 #ifdef NOTYET
2120 m_freem(q2->q_dst_m);
2121 #else
2122 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2123 #endif
2124
2125 crp = (struct cryptop *)q2->q_crp;
2126
2127 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2128
2129 crp->crp_etype = EFAULT;
2130 crypto_done(crp);
2131 } else {
2132 break;
2133 }
2134 }
2135
2136 /*
2137 * Free header MCR
2138 */
2139 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2140 #ifdef NOTYET
2141 m_freem(q->q_dst_m);
2142 #else
2143 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2144 #endif
2145
2146 crp = (struct cryptop *)q->q_crp;
2147
2148 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2149
2150 crp->crp_etype = EFAULT;
2151 crypto_done(crp);
2152 return(0);
2153 }
2154
2155 /*
2156 * Routine to reset the chip and clean up.
2157 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2158 */
2159 void
2160 ubsec_totalreset(struct ubsec_softc *sc)
2161 {
2162
2163 #ifdef UBSEC_DEBUG
2164 DPRINTF("%s()\n", __FUNCTION__);
2165 #endif
2166 DPRINTF("initiate total chip reset.. \n");
2167 ubsec_reset_board(sc);
2168 ubsec_init_board(sc);
2169 ubsec_cleanchip(sc);
2170 }
2171
2172 void
2173 ubsec_dump_pb(struct ubsec_pktbuf *pb)
2174 {
2175 printf("addr 0x%x (0x%x) next 0x%x\n",
2176 pb->pb_addr, pb->pb_len, pb->pb_next);
2177 }
2178
2179 void
2180 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2181 {
2182 struct ubsec_mcr_add *ma;
2183 int i;
2184
2185 printf("MCR:\n");
2186 printf(" pkts: %u, flags 0x%x\n",
2187 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2188 ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2189 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2190 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2191 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2192 letoh16(ma->mcr_reserved));
2193 printf(" %d: ipkt ", i);
2194 ubsec_dump_pb(&ma->mcr_ipktbuf);
2195 printf(" %d: opkt ", i);
2196 ubsec_dump_pb(&ma->mcr_opktbuf);
2197 ma++;
2198 }
2199 printf("END MCR\n");
2200 }
2201
2202 static int __init mod_init(void) {
2203 return ssb_driver_register(&ubsec_ssb_driver);
2204 }
2205
2206 static void __exit mod_exit(void) {
2207 ssb_driver_unregister(&ubsec_ssb_driver);
2208 }
2209
2210 module_init(mod_init);
2211 module_exit(mod_exit);
2212
2213 // Meta information
2214 MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
2215 MODULE_LICENSE("BSD");
2216 MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
2217 MODULE_VERSION(DRV_MODULE_VERSION);
2218
This page took 0.148111 seconds and 5 git commands to generate.