[lantiq]
[openwrt.git] / package / ltq-dsl / src / ifxmips_atm_core.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 *******************************************************************************/
23
24
25
26 /*
27 * ####################################
28 * Version No.
29 * ####################################
30 */
31
32 #define IFX_ATM_VER_MAJOR 1
33 #define IFX_ATM_VER_MID 0
34 #define IFX_ATM_VER_MINOR 8
35
36
37
38 /*
39 * ####################################
40 * Head File
41 * ####################################
42 */
43
44 /*
45 * Common Head File
46 */
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/version.h>
50 #include <linux/types.h>
51 #include <linux/errno.h>
52 #include <linux/proc_fs.h>
53 #include <linux/init.h>
54 #include <linux/ioctl.h>
55 #include <linux/atmdev.h>
56 #include <linux/atm.h>
57 #include <linux/clk.h>
58
59 /*
60 * Chip Specific Head File
61 */
62 #include <lantiq.h>
63 #include <lantiq_regs.h>
64 #include "ifxmips_atm_core.h"
65
66
67
68 /*
69 * ####################################
70 * Kernel Version Adaption
71 * ####################################
72 */
73 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
74 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
75 #define MODULE_PARM(a, b) module_param(a, int, 0)
76 #else
77 #define MODULE_PARM_ARRAY(a, b) MODULE_PARM(a, b)
78 #endif
79
80
81
82 /*!
83 \addtogroup IFXMIPS_ATM_MODULE_PARAMS
84 */
85 /*@{*/
86 /*
87 * ####################################
88 * Parameters to Configure PPE
89 * ####################################
90 */
91 /*!
92 \brief QSB cell delay variation due to concurrency
93 */
94 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
95 /*!
96 \brief QSB scheduler burst length
97 */
98 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
99 /*!
100 \brief QSB time step, all legal values are 1, 2, 4
101 */
102 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
103
104 /*!
105 \brief Write descriptor delay
106 */
107 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
108
109 /*!
110 \brief AAL5 padding byte ('~')
111 */
112 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
113 /*!
114 \brief Max frame size for RX
115 */
116 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
117 /*!
118 \brief Min frame size for RX
119 */
120 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
121 /*!
122 \brief Max frame size for TX
123 */
124 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
125 /*!
126 \brief Min frame size for TX
127 */
128 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
129 /*!
130 \brief Drop error packet in RX path
131 */
132 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
133
134 /*!
135 \brief Number of descriptors per DMA RX channel
136 */
137 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
138 /*!
139 \brief Number of descriptors per DMA TX channel
140 */
141 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
142 /*!
143 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
144 */
145 static int dma_rx_clp1_descriptor_threshold = 38;
146 /*@}*/
147
148 MODULE_PARM(qsb_tau, "i");
149 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
150 MODULE_PARM(qsb_srvm, "i");
151 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
152 MODULE_PARM(qsb_tstep, "i");
153 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
154
155 MODULE_PARM(write_descriptor_delay, "i");
156 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
157
158 MODULE_PARM(aal5_fill_pattern, "i");
159 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
160 MODULE_PARM(aal5r_max_packet_size, "i");
161 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
162 MODULE_PARM(aal5r_min_packet_size, "i");
163 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
164 MODULE_PARM(aal5s_max_packet_size, "i");
165 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
166 MODULE_PARM(aal5s_min_packet_size, "i");
167 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
168 MODULE_PARM(aal5r_drop_error_packet, "i");
169 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
170
171 MODULE_PARM(dma_rx_descriptor_length, "i");
172 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
173 MODULE_PARM(dma_tx_descriptor_length, "i");
174 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
175 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
176 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
177
178
179
180 /*
181 * ####################################
182 * Definition
183 * ####################################
184 */
185
186 #define DUMP_SKB_LEN ~0
187
188
189
190 /*
191 * ####################################
192 * Declaration
193 * ####################################
194 */
195
196 /*
197 * Network Operations
198 */
199 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
200 static int ppe_open(struct atm_vcc *);
201 static void ppe_close(struct atm_vcc *);
202 static int ppe_send(struct atm_vcc *, struct sk_buff *);
203 static int ppe_send_oam(struct atm_vcc *, void *, int);
204 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
205
206 /*
207 * ADSL LED
208 */
209 static INLINE int adsl_led_flash(void);
210
211 /*
212 * 64-bit operation used by MIB calculation
213 */
214 static INLINE void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
215
216 /*
217 * buffer manage functions
218 */
219 static INLINE struct sk_buff* alloc_skb_rx(void);
220 static INLINE struct sk_buff* alloc_skb_tx(unsigned int);
221 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
222 static INLINE void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
223 static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int);
224 static INLINE int get_tx_desc(unsigned int);
225
226 /*
227 * mailbox handler and signal function
228 */
229 static INLINE void mailbox_oam_rx_handler(void);
230 static INLINE void mailbox_aal_rx_handler(void);
231 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
232 static void do_ppe_tasklet(unsigned long);
233 #endif
234 static irqreturn_t mailbox_irq_handler(int, void *);
235 static INLINE void mailbox_signal(unsigned int, int);
236
237 /*
238 * QSB & HTU setting functions
239 */
240 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
241 static void qsb_global_set(void);
242 static INLINE void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
243 static INLINE void clear_htu_entry(unsigned int);
244 static void validate_oam_htu_entry(void);
245 static void invalidate_oam_htu_entry(void);
246
247 /*
248 * look up for connection ID
249 */
250 static INLINE int find_vpi(unsigned int);
251 static INLINE int find_vpivci(unsigned int, unsigned int);
252 static INLINE int find_vcc(struct atm_vcc *);
253
254 /*
255 * Debug Functions
256 */
257 #if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
258 static void dump_skb(struct sk_buff *, u32, char *, int, int, int);
259 #else
260 #define dump_skb(skb, len, title, port, ch, is_tx) do {} while (0)
261 #endif
262
263 /*
264 * Proc File Functions
265 */
266 static INLINE void proc_file_create(void);
267 static INLINE void proc_file_delete(void);
268 static int proc_read_version(char *, char **, off_t, int, int *, void *);
269 static int proc_read_mib(char *, char **, off_t, int, int *, void *);
270 static int proc_write_mib(struct file *, const char *, unsigned long, void *);
271 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
272 static int proc_read_dbg(char *, char **, off_t, int, int *, void *);
273 static int proc_write_dbg(struct file *, const char *, unsigned long, void *);
274 #endif
275 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
276 static int proc_read_htu(char *, char **, off_t, int, int *, void *);
277 static int proc_read_txq(char *, char **, off_t, int, int *, void *);
278 #endif
279
280 /*
281 * Proc Help Functions
282 */
283 static int stricmp(const char *, const char *);
284 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
285 static int strincmp(const char *, const char *, int);
286 #endif
287 static INLINE int ifx_atm_version(char *);
288 //static INLINE int print_reset_domain(char *, int);
289 //static INLINE int print_reset_handler(char *, int, ifx_rcu_handler_t *);
290
291 /*
292 * Init & clean-up functions
293 */
294 #ifdef MODULE
295 static INLINE void reset_ppe(void);
296 #endif
297 static INLINE void check_parameters(void);
298 static INLINE int init_priv_data(void);
299 static INLINE void clear_priv_data(void);
300 static INLINE void init_rx_tables(void);
301 static INLINE void init_tx_tables(void);
302
303 /*
304 * Exteranl Function
305 */
306 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
307 extern void ifx_push_oam(unsigned char *);
308 #else
309 static inline void ifx_push_oam(unsigned char *dummy) {}
310 #endif
311 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
312 extern int ifx_mei_atm_led_blink(void);
313 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
314 #else
315 static inline int ifx_mei_atm_led_blink(void) { return IFX_SUCCESS; }
316 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
317 {
318 if ( is_showtime != NULL )
319 *is_showtime = 0;
320 return IFX_SUCCESS;
321 }
322 #endif
323
324 /*
325 * External variable
326 */
327 extern struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int);
328 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
329 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
330 extern int (*ifx_mei_atm_showtime_exit)(void);
331 #else
332 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
333 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
334 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
335 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
336 #endif
337
338
339
340 /*
341 * ####################################
342 * Local Variable
343 * ####################################
344 */
345
346 static struct atm_priv_data g_atm_priv_data;
347
348 static struct atmdev_ops g_ifx_atm_ops = {
349 .open = ppe_open,
350 .close = ppe_close,
351 .ioctl = ppe_ioctl,
352 .send = ppe_send,
353 .send_oam = ppe_send_oam,
354 .change_qos = ppe_change_qos,
355 .owner = THIS_MODULE,
356 };
357
358 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
359 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
360 #endif
361
362 static int g_showtime = 0;
363 static void *g_xdata_addr = NULL;
364
365 unsigned int ifx_atm_dbg_enable = 0;
366
367 static struct proc_dir_entry* g_atm_dir = NULL;
368
369
370
371 /*
372 * ####################################
373 * Local Function
374 * ####################################
375 */
376
377 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
378 {
379 int ret = 0;
380 atm_cell_ifEntry_t mib_cell;
381 atm_aal5_ifEntry_t mib_aal5;
382 atm_aal5_vcc_x_t mib_vcc;
383 unsigned int value;
384 int conn;
385
386 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
387 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
388 return -ENOTTY;
389
390 if ( _IOC_DIR(cmd) & _IOC_READ )
391 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
392 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
393 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
394 if ( ret )
395 return -EFAULT;
396
397 switch ( cmd )
398 {
399 case PPE_ATM_MIB_CELL: /* cell level MIB */
400 /* These MIB should be read at ARC side, now put zero only. */
401 mib_cell.ifHCInOctets_h = 0;
402 mib_cell.ifHCInOctets_l = 0;
403 mib_cell.ifHCOutOctets_h = 0;
404 mib_cell.ifHCOutOctets_l = 0;
405 mib_cell.ifInErrors = 0;
406 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
407 mib_cell.ifOutErrors = 0;
408
409 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
410 break;
411
412 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
413 value = WAN_MIB_TABLE->wrx_total_byte;
414 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
415 g_atm_priv_data.prev_wrx_total_byte = value;
416 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
417 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
418
419 value = WAN_MIB_TABLE->wtx_total_byte;
420 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
421 g_atm_priv_data.prev_wtx_total_byte = value;
422 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
423 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
424
425 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
426 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
427 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
428 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
429 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
430 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
431
432 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
433 break;
434
435 case PPE_ATM_MIB_VCC: /* VCC related MIB */
436 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
437 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
438 if ( conn >= 0 )
439 {
440 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
441 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
442 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
443 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
444 }
445 else
446 ret = -EINVAL;
447 break;
448
449 default:
450 ret = -ENOIOCTLCMD;
451 }
452
453 return ret;
454 }
455
456 static int ppe_open(struct atm_vcc *vcc)
457 {
458 int ret;
459 short vpi = vcc->vpi;
460 int vci = vcc->vci;
461 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
462 int conn;
463 int f_enable_irq = 0;
464 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
465 int sys_flag;
466 #endif
467
468 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
469 return -EPROTONOSUPPORT;
470
471 /* check bandwidth */
472 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
473 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
474 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
475 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
476 {
477 ret = -EINVAL;
478 goto PPE_OPEN_EXIT;
479 }
480
481 /* check existing vpi,vci */
482 conn = find_vpivci(vpi, vci);
483 if ( conn >= 0 ) {
484 ret = -EADDRINUSE;
485 goto PPE_OPEN_EXIT;
486 }
487
488 /* check whether it need to enable irq */
489 if ( g_atm_priv_data.conn_table == 0 )
490 f_enable_irq = 1;
491
492 /* allocate connection */
493 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
494 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
495 g_atm_priv_data.conn[conn].vcc = vcc;
496 break;
497 }
498 }
499 if ( conn == MAX_PVC_NUMBER )
500 {
501 ret = -EINVAL;
502 goto PPE_OPEN_EXIT;
503 }
504
505 /* reserve bandwidth */
506 switch ( vcc->qos.txtp.traffic_class ) {
507 case ATM_CBR:
508 case ATM_VBR_RT:
509 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
510 break;
511 case ATM_VBR_NRT:
512 port->tx_current_cell_rate += vcc->qos.txtp.scr;
513 break;
514 case ATM_UBR_PLUS:
515 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
516 break;
517 }
518
519 /* set qsb */
520 set_qsb(vcc, &vcc->qos, conn);
521
522 /* update atm_vcc structure */
523 vcc->itf = (int)vcc->dev->dev_data;
524 vcc->vpi = vpi;
525 vcc->vci = vci;
526 set_bit(ATM_VF_READY, &vcc->flags);
527
528 /* enable irq */
529 if (f_enable_irq ) {
530 ifx_atm_alloc_tx = atm_alloc_tx;
531
532 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
533 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
534
535 enable_irq(PPE_MAILBOX_IGU1_INT);
536 }
537
538 /* set port */
539 WTX_QUEUE_CONFIG(conn)->sbid = (int)vcc->dev->dev_data;
540
541 /* set htu entry */
542 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
543
544 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
545 // ReTX: occupy second QID
546 local_irq_save(sys_flag);
547 if ( g_retx_htu && vcc->qos.aal == ATM_AAL5 )
548 {
549 int retx_conn = (conn + 8) % 16; // ReTX queue
550
551 if ( retx_conn < MAX_PVC_NUMBER && test_and_set_bit(retx_conn, &g_atm_priv_data.conn_table) == 0 ) {
552 g_atm_priv_data.conn[retx_conn].vcc = vcc;
553 set_htu_entry(vpi, vci, retx_conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 1);
554 }
555 }
556 local_irq_restore(sys_flag);
557 #endif
558
559 ret = 0;
560
561 PPE_OPEN_EXIT:
562 return ret;
563 }
564
565 static void ppe_close(struct atm_vcc *vcc)
566 {
567 int conn;
568 struct port *port;
569 struct connection *connection;
570
571 if ( vcc == NULL )
572 return;
573
574 /* get connection id */
575 conn = find_vcc(vcc);
576 if ( conn < 0 ) {
577 err("can't find vcc");
578 goto PPE_CLOSE_EXIT;
579 }
580 connection = &g_atm_priv_data.conn[conn];
581 port = &g_atm_priv_data.port[connection->port];
582
583 /* clear htu */
584 clear_htu_entry(conn);
585
586 /* release connection */
587 clear_bit(conn, &g_atm_priv_data.conn_table);
588 connection->vcc = NULL;
589 connection->aal5_vcc_crc_err = 0;
590 connection->aal5_vcc_oversize_sdu = 0;
591
592 /* disable irq */
593 if ( g_atm_priv_data.conn_table == 0 ) {
594 disable_irq(PPE_MAILBOX_IGU1_INT);
595 ifx_atm_alloc_tx = NULL;
596 }
597
598 /* release bandwidth */
599 switch ( vcc->qos.txtp.traffic_class )
600 {
601 case ATM_CBR:
602 case ATM_VBR_RT:
603 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
604 break;
605 case ATM_VBR_NRT:
606 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
607 break;
608 case ATM_UBR_PLUS:
609 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
610 break;
611 }
612
613 PPE_CLOSE_EXIT:
614 return;
615 }
616
617 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
618 {
619 int ret;
620 int conn;
621 int desc_base;
622 struct tx_descriptor reg_desc = {0};
623
624 if ( vcc == NULL || skb == NULL )
625 return -EINVAL;
626
627 skb_get(skb);
628 atm_free_tx_skb_vcc(skb, vcc);
629
630 conn = find_vcc(vcc);
631 if ( conn < 0 ) {
632 ret = -EINVAL;
633 goto FIND_VCC_FAIL;
634 }
635
636 if ( !g_showtime ) {
637 err("not in showtime");
638 ret = -EIO;
639 goto PPE_SEND_FAIL;
640 }
641
642 if ( vcc->qos.aal == ATM_AAL5 ) {
643 int byteoff;
644 int datalen;
645 struct tx_inband_header *header;
646
647 datalen = skb->len;
648 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
649
650 if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH ) {
651 struct sk_buff *new_skb;
652
653 new_skb = alloc_skb_tx(datalen);
654 if ( new_skb == NULL ) {
655 err("ALLOC_SKB_TX_FAIL");
656 ret = -ENOMEM;
657 goto PPE_SEND_FAIL;
658 }
659 skb_put(new_skb, datalen);
660 memcpy(new_skb->data, skb->data, datalen);
661 dev_kfree_skb_any(skb);
662 skb = new_skb;
663 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
664 }
665
666 skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
667
668 header = (struct tx_inband_header *)skb->data;
669
670 /* setup inband trailer */
671 header->uu = 0;
672 header->cpi = 0;
673 header->pad = aal5_fill_pattern;
674 header->res1 = 0;
675
676 /* setup cell header */
677 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
678 header->pti = ATM_PTI_US0;
679 header->vci = vcc->vci;
680 header->vpi = vcc->vpi;
681 header->gfc = 0;
682
683 /* setup descriptor */
684 reg_desc.dataptr = (unsigned int)skb->data >> 2;
685 reg_desc.datalen = datalen;
686 reg_desc.byteoff = byteoff;
687 reg_desc.iscell = 0;
688 }
689 else {
690 /* if data pointer is not aligned, allocate new sk_buff */
691 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
692 struct sk_buff *new_skb;
693
694 err("skb->data not aligned");
695
696 new_skb = alloc_skb_tx(skb->len);
697 if ( new_skb == NULL ) {
698 err("ALLOC_SKB_TX_FAIL");
699 ret = -ENOMEM;
700 goto PPE_SEND_FAIL;
701 }
702 skb_put(new_skb, skb->len);
703 memcpy(new_skb->data, skb->data, skb->len);
704 dev_kfree_skb_any(skb);
705 skb = new_skb;
706 }
707
708 reg_desc.dataptr = (unsigned int)skb->data >> 2;
709 reg_desc.datalen = skb->len;
710 reg_desc.byteoff = 0;
711 reg_desc.iscell = 1;
712 }
713
714 reg_desc.own = 1;
715 reg_desc.c = 1;
716 reg_desc.sop = reg_desc.eop = 1;
717
718 desc_base = get_tx_desc(conn);
719 if ( desc_base < 0 ) {
720 err("ALLOC_TX_CONNECTION_FAIL");
721 ret = -EIO;
722 goto PPE_SEND_FAIL;
723 }
724
725 if ( vcc->stats )
726 atomic_inc(&vcc->stats->tx);
727 if ( vcc->qos.aal == ATM_AAL5 )
728 g_atm_priv_data.wtx_pdu++;
729
730 /* update descriptor send pointer */
731 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
732 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
733 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
734
735 /* write discriptor to memory and write back cache */
736 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
737 dma_cache_wback((unsigned long)skb->data, skb->len);
738
739 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
740
741 mailbox_signal(conn, 1);
742
743 adsl_led_flash();
744
745 return 0;
746
747 FIND_VCC_FAIL:
748 err("FIND_VCC_FAIL");
749 g_atm_priv_data.wtx_err_pdu++;
750 dev_kfree_skb_any(skb);
751 return ret;
752
753 PPE_SEND_FAIL:
754 if ( vcc->qos.aal == ATM_AAL5 )
755 g_atm_priv_data.wtx_drop_pdu++;
756 if ( vcc->stats )
757 atomic_inc(&vcc->stats->tx_err);
758 dev_kfree_skb_any(skb);
759 return ret;
760 }
761
762 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
763 {
764 int conn;
765 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
766 int desc_base;
767 struct sk_buff *skb;
768 struct tx_descriptor reg_desc = {0};
769
770 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
771 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
772 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
773 && find_vpi(uni_cell_header->vpi) < 0) )
774 return -EINVAL;
775
776 if ( !g_showtime ) {
777 err("not in showtime");
778 return -EIO;
779 }
780
781 conn = find_vcc(vcc);
782 if ( conn < 0 ) {
783 err("FIND_VCC_FAIL");
784 return -EINVAL;
785 }
786
787 skb = alloc_skb_tx(CELL_SIZE);
788 if ( skb == NULL ) {
789 err("ALLOC_SKB_TX_FAIL");
790 return -ENOMEM;
791 }
792 memcpy(skb->data, cell, CELL_SIZE);
793
794 reg_desc.dataptr = (unsigned int)skb->data >> 2;
795 reg_desc.datalen = CELL_SIZE;
796 reg_desc.byteoff = 0;
797 reg_desc.iscell = 1;
798
799 reg_desc.own = 1;
800 reg_desc.c = 1;
801 reg_desc.sop = reg_desc.eop = 1;
802
803 desc_base = get_tx_desc(conn);
804 if ( desc_base < 0 ) {
805 dev_kfree_skb_any(skb);
806 err("ALLOC_TX_CONNECTION_FAIL");
807 return -EIO;
808 }
809
810 if ( vcc->stats )
811 atomic_inc(&vcc->stats->tx);
812
813 /* update descriptor send pointer */
814 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
815 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
816 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
817
818 /* write discriptor to memory and write back cache */
819 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
820 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
821
822 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
823
824 mailbox_signal(conn, 1);
825
826 adsl_led_flash();
827
828 return 0;
829 }
830
831 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
832 {
833 int conn;
834
835 if ( vcc == NULL || qos == NULL )
836 return -EINVAL;
837
838 conn = find_vcc(vcc);
839 if ( conn < 0 )
840 return -EINVAL;
841
842 set_qsb(vcc, qos, conn);
843
844 return 0;
845 }
846
847 static INLINE int adsl_led_flash(void)
848 {
849 return ifx_mei_atm_led_blink();
850 }
851
852 /*
853 * Description:
854 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
855 * Input:
856 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
857 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
858 * ret --- ppe_u64_t, pointer to a variable to hold result
859 * Output:
860 * none
861 */
862 static INLINE void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
863 {
864 ret->l = opt1.l + opt2;
865 if ( ret->l < opt1.l || ret->l < opt2 )
866 ret->h++;
867 }
868
869 static INLINE struct sk_buff* alloc_skb_rx(void)
870 {
871 struct sk_buff *skb;
872
873 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
874 if ( skb != NULL ) {
875 /* must be burst length alignment */
876 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
877 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
878 /* pub skb in reserved area "skb->data - 4" */
879 *((struct sk_buff **)skb->data - 1) = skb;
880 /* write back and invalidate cache */
881 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
882 /* invalidate cache */
883 dma_cache_inv((unsigned long)skb->data, (unsigned int)skb->end - (unsigned int)skb->data);
884 }
885
886 return skb;
887 }
888
889 static INLINE struct sk_buff* alloc_skb_tx(unsigned int size)
890 {
891 struct sk_buff *skb;
892
893 /* allocate memory including header and padding */
894 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
895 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
896 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
897 /* must be burst length alignment */
898 if ( skb != NULL )
899 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
900 return skb;
901 }
902
903 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
904 {
905 int conn;
906 struct sk_buff *skb;
907
908 /* oversize packet */
909 if ( size > aal5s_max_packet_size ) {
910 err("atm_alloc_tx: oversize packet");
911 return NULL;
912 }
913 /* send buffer overflow */
914 if ( atomic_read(&sk_atm(vcc)->sk_wmem_alloc) && !atm_may_send(vcc, size) ) {
915 err("atm_alloc_tx: send buffer overflow");
916 return NULL;
917 }
918 conn = find_vcc(vcc);
919 if ( conn < 0 ) {
920 err("atm_alloc_tx: unknown VCC");
921 return NULL;
922 }
923
924 skb = dev_alloc_skb(size);
925 if ( skb == NULL ) {
926 err("atm_alloc_tx: sk buffer is used up");
927 return NULL;
928 }
929
930 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
931
932 return skb;
933 }
934
935 static INLINE void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
936 {
937 if ( vcc->pop != NULL )
938 vcc->pop(vcc, skb);
939 else
940 dev_kfree_skb_any(skb);
941 }
942
943 static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
944 {
945 unsigned int skb_dataptr;
946 struct sk_buff *skb;
947
948 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
949 skb = *(struct sk_buff **)skb_dataptr;
950
951 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
952 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
953
954 return skb;
955 }
956
957 static INLINE int get_tx_desc(unsigned int conn)
958 {
959 int desc_base = -1;
960 struct connection *p_conn = &g_atm_priv_data.conn[conn];
961
962 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
963 desc_base = p_conn->tx_desc_pos;
964 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
965 p_conn->tx_desc_pos = 0;
966 }
967
968 return desc_base;
969 }
970
971 static INLINE void mailbox_oam_rx_handler(void)
972 {
973 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
974 struct rx_descriptor reg_desc;
975 struct uni_cell_header *header;
976 int conn;
977 struct atm_vcc *vcc;
978 unsigned int i;
979
980 for ( i = 0; i < vlddes; i++ ) {
981 do {
982 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
983 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
984
985 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
986
987 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
988 conn = find_vpivci(header->vpi, header->vci);
989 else if ( header->vci == 0x03 || header->vci == 0x04 )
990 conn = find_vpi(header->vpi);
991 else
992 conn = -1;
993
994 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
995 vcc = g_atm_priv_data.conn[conn].vcc;
996
997 if ( vcc->push_oam != NULL )
998 vcc->push_oam(vcc, header);
999 else
1000 ifx_push_oam((unsigned char *)header);
1001
1002 adsl_led_flash();
1003 }
1004
1005 reg_desc.byteoff = 0;
1006 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1007 reg_desc.own = 1;
1008 reg_desc.c = 0;
1009
1010 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
1011 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
1012 g_atm_priv_data.oam_desc_pos = 0;
1013
1014 mailbox_signal(RX_DMA_CH_OAM, 0);
1015 }
1016 }
1017
1018 static INLINE void mailbox_aal_rx_handler(void)
1019 {
1020 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
1021 struct rx_descriptor reg_desc;
1022 int conn;
1023 struct atm_vcc *vcc;
1024 struct sk_buff *skb, *new_skb;
1025 struct rx_inband_trailer *trailer;
1026 unsigned int i;
1027
1028 for ( i = 0; i < vlddes; i++ ) {
1029 do {
1030 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
1031 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
1032
1033 conn = reg_desc.id;
1034
1035 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
1036 vcc = g_atm_priv_data.conn[conn].vcc;
1037
1038 skb = get_skb_rx_pointer(reg_desc.dataptr);
1039
1040 if ( reg_desc.err ) {
1041 if ( vcc->qos.aal == ATM_AAL5 ) {
1042 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
1043 if ( trailer->stw_crc )
1044 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
1045 if ( trailer->stw_ovz )
1046 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
1047 g_atm_priv_data.wrx_drop_pdu++;
1048 }
1049 if ( vcc->stats ) {
1050 atomic_inc(&vcc->stats->rx_drop);
1051 atomic_inc(&vcc->stats->rx_err);
1052 }
1053 }
1054 else if ( atm_charge(vcc, skb->truesize) ) {
1055 new_skb = alloc_skb_rx();
1056 if ( new_skb != NULL ) {
1057 skb_reserve(skb, reg_desc.byteoff);
1058 skb_put(skb, reg_desc.datalen);
1059 ATM_SKB(skb)->vcc = vcc;
1060
1061 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 0);
1062
1063 vcc->push(vcc, skb);
1064
1065 if ( vcc->qos.aal == ATM_AAL5 )
1066 g_atm_priv_data.wrx_pdu++;
1067 if ( vcc->stats )
1068 atomic_inc(&vcc->stats->rx);
1069 adsl_led_flash();
1070
1071 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1072 }
1073 else {
1074 atm_return(vcc, skb->truesize);
1075 if ( vcc->qos.aal == ATM_AAL5 )
1076 g_atm_priv_data.wrx_drop_pdu++;
1077 if ( vcc->stats )
1078 atomic_inc(&vcc->stats->rx_drop);
1079 }
1080 }
1081 else {
1082 if ( vcc->qos.aal == ATM_AAL5 )
1083 g_atm_priv_data.wrx_drop_pdu++;
1084 if ( vcc->stats )
1085 atomic_inc(&vcc->stats->rx_drop);
1086 }
1087 }
1088 else {
1089 g_atm_priv_data.wrx_drop_pdu++;
1090 }
1091
1092 reg_desc.byteoff = 0;
1093 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1094 reg_desc.own = 1;
1095 reg_desc.c = 0;
1096
1097 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1098 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1099 g_atm_priv_data.aal_desc_pos = 0;
1100
1101 mailbox_signal(RX_DMA_CH_AAL, 0);
1102 }
1103 }
1104
1105 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
1106 static void do_ppe_tasklet(unsigned long arg)
1107 {
1108 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1109 mailbox_oam_rx_handler();
1110 mailbox_aal_rx_handler();
1111 if ( (*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0 )
1112 tasklet_schedule(&g_dma_tasklet);
1113 else
1114 enable_irq(PPE_MAILBOX_IGU1_INT);
1115 }
1116 #endif
1117
1118 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1119 {
1120 if ( !*MBOX_IGU1_ISR )
1121 return IRQ_HANDLED;
1122
1123 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
1124 disable_irq(PPE_MAILBOX_IGU1_INT);
1125 tasklet_schedule(&g_dma_tasklet);
1126 #else
1127 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1128 mailbox_oam_rx_handler();
1129 mailbox_aal_rx_handler();
1130 #endif
1131
1132 return IRQ_HANDLED;
1133 }
1134
1135 static INLINE void mailbox_signal(unsigned int queue, int is_tx)
1136 {
1137 if ( is_tx ) {
1138 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) );
1139 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1140 }
1141 else {
1142 while ( MBOX_IGU3_ISR_ISR(queue) );
1143 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1144 }
1145 }
1146
1147 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1148 {
1149 struct clk *clk = clk_get(0, "fpi");
1150 unsigned int qsb_clk = clk_get_rate(clk);
1151 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1152 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1153 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1154 unsigned int tmp;
1155
1156 #if defined(DEBUG_QOS) && DEBUG_QOS
1157 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1158 static char *str_traffic_class[9] = {
1159 "ATM_NONE",
1160 "ATM_UBR",
1161 "ATM_CBR",
1162 "ATM_VBR",
1163 "ATM_ABR",
1164 "ATM_ANYCLASS",
1165 "ATM_VBR_RT",
1166 "ATM_UBR_PLUS",
1167 "ATM_MAX_PCR"
1168 };
1169 printk(KERN_INFO "QoS Parameters:\n");
1170 printk(KERN_INFO "\tAAL : %d\n", qos->aal);
1171 printk(KERN_INFO "\tTX Traffic Class: %s\n", str_traffic_class[qos->txtp.traffic_class]);
1172 printk(KERN_INFO "\tTX Max PCR : %d\n", qos->txtp.max_pcr);
1173 printk(KERN_INFO "\tTX Min PCR : %d\n", qos->txtp.min_pcr);
1174 printk(KERN_INFO "\tTX PCR : %d\n", qos->txtp.pcr);
1175 printk(KERN_INFO "\tTX Max CDV : %d\n", qos->txtp.max_cdv);
1176 printk(KERN_INFO "\tTX Max SDU : %d\n", qos->txtp.max_sdu);
1177 printk(KERN_INFO "\tTX SCR : %d\n", qos->txtp.scr);
1178 printk(KERN_INFO "\tTX MBS : %d\n", qos->txtp.mbs);
1179 printk(KERN_INFO "\tTX CDV : %d\n", qos->txtp.cdv);
1180 printk(KERN_INFO "\tRX Traffic Class: %s\n", str_traffic_class[qos->rxtp.traffic_class]);
1181 printk(KERN_INFO "\tRX Max PCR : %d\n", qos->rxtp.max_pcr);
1182 printk(KERN_INFO "\tRX Min PCR : %d\n", qos->rxtp.min_pcr);
1183 printk(KERN_INFO "\tRX PCR : %d\n", qos->rxtp.pcr);
1184 printk(KERN_INFO "\tRX Max CDV : %d\n", qos->rxtp.max_cdv);
1185 printk(KERN_INFO "\tRX Max SDU : %d\n", qos->rxtp.max_sdu);
1186 printk(KERN_INFO "\tRX SCR : %d\n", qos->rxtp.scr);
1187 printk(KERN_INFO "\tRX MBS : %d\n", qos->rxtp.mbs);
1188 printk(KERN_INFO "\tRX CDV : %d\n", qos->rxtp.cdv);
1189 }
1190 #endif // defined(DEBUG_QOS) && DEBUG_QOS
1191
1192 /*
1193 * Peak Cell Rate (PCR) Limiter
1194 */
1195 if ( qos->txtp.max_pcr == 0 )
1196 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1197 else {
1198 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1199 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1200 /* check if overflow takes place */
1201 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1202 }
1203
1204 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1205 // Send packets to these two PVCs at same time, it trigger strange behavior.
1206 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1207 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1208 // To work around, create UBR always with max_pcr.
1209 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1210 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1211 int port = g_atm_priv_data.conn[queue].port;
1212 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1213
1214 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1215 if ( tmp > QSB_TP_TS_MAX )
1216 tmp = QSB_TP_TS_MAX;
1217 else if ( tmp < 1 )
1218 tmp = 1;
1219 qsb_queue_parameter_table.bit.tp = tmp;
1220 }
1221
1222 /*
1223 * Weighted Fair Queueing Factor (WFQF)
1224 */
1225 switch ( qos->txtp.traffic_class ) {
1226 case ATM_CBR:
1227 case ATM_VBR_RT:
1228 /* real time queue gets weighted fair queueing bypass */
1229 qsb_queue_parameter_table.bit.wfqf = 0;
1230 break;
1231 case ATM_VBR_NRT:
1232 case ATM_UBR_PLUS:
1233 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1234 /* WFQF is maximum cell rate / garenteed cell rate */
1235 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1236 if ( qos->txtp.min_pcr == 0 )
1237 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1238 else
1239 {
1240 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1241 if ( tmp == 0 )
1242 qsb_queue_parameter_table.bit.wfqf = 1;
1243 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1244 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1245 else
1246 qsb_queue_parameter_table.bit.wfqf = tmp;
1247 }
1248 break;
1249 default:
1250 case ATM_UBR:
1251 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1252 }
1253
1254 /*
1255 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1256 */
1257 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1258 if ( qos->txtp.scr == 0 ) {
1259 /* disable shaper */
1260 qsb_queue_vbr_parameter_table.bit.taus = 0;
1261 qsb_queue_vbr_parameter_table.bit.ts = 0;
1262 }
1263 else {
1264 /* Cell Loss Priority (CLP) */
1265 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1266 /* CLP1 */
1267 qsb_queue_parameter_table.bit.vbr = 1;
1268 else
1269 /* CLP0 */
1270 qsb_queue_parameter_table.bit.vbr = 0;
1271 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1272 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1273 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1274 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1275 if ( tmp == 0 )
1276 qsb_queue_vbr_parameter_table.bit.taus = 1;
1277 else if ( tmp > QSB_TAUS_MAX )
1278 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1279 else
1280 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1281 }
1282 }
1283 else {
1284 qsb_queue_vbr_parameter_table.bit.taus = 0;
1285 qsb_queue_vbr_parameter_table.bit.ts = 0;
1286 }
1287
1288 /* Queue Parameter Table (QPT) */
1289 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1290 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1291 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1292 #if defined(DEBUG_QOS) && DEBUG_QOS
1293 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1294 printk("QPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1295 #endif
1296 /* Queue VBR Paramter Table (QVPT) */
1297 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1298 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1299 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1300 #if defined(DEBUG_QOS) && DEBUG_QOS
1301 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1302 printk("QVPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1303 #endif
1304
1305 #if defined(DEBUG_QOS) && DEBUG_QOS
1306 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1307 printk("set_qsb\n");
1308 printk(" qsb_clk = %lu\n", (unsigned long)qsb_clk);
1309 printk(" qsb_queue_parameter_table.bit.tp = %d\n", (int)qsb_queue_parameter_table.bit.tp);
1310 printk(" qsb_queue_parameter_table.bit.wfqf = %d (0x%08X)\n", (int)qsb_queue_parameter_table.bit.wfqf, (int)qsb_queue_parameter_table.bit.wfqf);
1311 printk(" qsb_queue_parameter_table.bit.vbr = %d\n", (int)qsb_queue_parameter_table.bit.vbr);
1312 printk(" qsb_queue_parameter_table.dword = 0x%08X\n", (int)qsb_queue_parameter_table.dword);
1313 printk(" qsb_queue_vbr_parameter_table.bit.ts = %d\n", (int)qsb_queue_vbr_parameter_table.bit.ts);
1314 printk(" qsb_queue_vbr_parameter_table.bit.taus = %d\n", (int)qsb_queue_vbr_parameter_table.bit.taus);
1315 printk(" qsb_queue_vbr_parameter_table.dword = 0x%08X\n", (int)qsb_queue_vbr_parameter_table.dword);
1316 }
1317 #endif
1318 }
1319
1320 static void qsb_global_set(void)
1321 {
1322 struct clk *clk = clk_get(0, "fpi");
1323 unsigned int qsb_clk = clk_get_rate(clk);
1324 int i;
1325 unsigned int tmp1, tmp2, tmp3;
1326
1327 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1328 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1329 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1330 #if defined(DEBUG_QOS) && DEBUG_QOS
1331 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1332 printk("qsb_clk = %u\n", qsb_clk);
1333 printk("QSB_ICDV (%08X) = %d (%d), QSB_SBL (%08X) = %d (%d), QSB_CFG (%08X) = %d (%d)\n", (unsigned int)QSB_ICDV, *QSB_ICDV, QSB_ICDV_TAU_SET(qsb_tau), (unsigned int)QSB_SBL, *QSB_SBL, QSB_SBL_SBL_SET(qsb_srvm), (unsigned int)QSB_CFG, *QSB_CFG, QSB_CFG_TSTEPC_SET(qsb_tstep >> 1));
1334 }
1335 #endif
1336
1337 /*
1338 * set SCT and SPT per port
1339 */
1340 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1341 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1342 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1343 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1344 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1345 /* carry over to integer part (?) */
1346 if ( tmp3 == (1 << 6) )
1347 {
1348 tmp3 = 0;
1349 tmp2++;
1350 }
1351 if ( tmp2 == 0 )
1352 tmp2 = tmp3 = 1;
1353 /* 1. set mask */
1354 /* 2. write value to data transfer register */
1355 /* 3. start the tranfer */
1356 /* SCT (FracRate) */
1357 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1358 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1359 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
1360 #if defined(DEBUG_QOS) && DEBUG_QOS
1361 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1362 printk("SCT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1363 #endif
1364 /* SPT (SBV + PN + IntRage) */
1365 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1366 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1367 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
1368 #if defined(DEBUG_QOS) && DEBUG_QOS
1369 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1370 printk("SPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1371 #endif
1372 }
1373 }
1374 }
1375
1376 static INLINE void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1377 {
1378 struct htu_entry htu_entry = { res1: 0x00,
1379 clp: is_retx ? 0x01 : 0x00,
1380 pid: g_atm_priv_data.conn[queue].port & 0x01,
1381 vpi: vpi,
1382 vci: vci,
1383 pti: 0x00,
1384 vld: 0x01};
1385
1386 struct htu_mask htu_mask = { set: 0x01,
1387 #if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
1388 clp: 0x01,
1389 pid_mask: 0x02,
1390 #else
1391 clp: g_retx_htu ? 0x00 : 0x01,
1392 pid_mask: RETX_MODE_CFG->retx_en ? 0x03 : 0x02,
1393 #endif
1394 vpi_mask: 0x00,
1395 #if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
1396 vci_mask: 0x0000,
1397 #else
1398 vci_mask: RETX_MODE_CFG->retx_en ? 0xFF00 : 0x0000,
1399 #endif
1400 pti_mask: 0x03, // 0xx, user data
1401 clear: 0x00};
1402
1403 struct htu_result htu_result = {res1: 0x00,
1404 cellid: queue,
1405 res2: 0x00,
1406 type: aal5 ? 0x00 : 0x01,
1407 ven: 0x01,
1408 res3: 0x00,
1409 qid: queue};
1410
1411 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1412 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1413 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1414 }
1415
1416 static INLINE void clear_htu_entry(unsigned int queue)
1417 {
1418 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1419 }
1420
1421 static void validate_oam_htu_entry(void)
1422 {
1423 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1424 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1425 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1426 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
1427 HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 1;
1428 #endif
1429 }
1430
1431 static void invalidate_oam_htu_entry(void)
1432 {
1433 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1434 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1435 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1436 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
1437 HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 0;
1438 #endif
1439 }
1440
1441 static INLINE int find_vpi(unsigned int vpi)
1442 {
1443 int i;
1444 unsigned int bit;
1445
1446 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1447 if ( (g_atm_priv_data.conn_table & bit) != 0
1448 && g_atm_priv_data.conn[i].vcc != NULL
1449 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1450 return i;
1451 }
1452
1453 return -1;
1454 }
1455
1456 static INLINE int find_vpivci(unsigned int vpi, unsigned int vci)
1457 {
1458 int i;
1459 unsigned int bit;
1460
1461 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1462 if ( (g_atm_priv_data.conn_table & bit) != 0
1463 && g_atm_priv_data.conn[i].vcc != NULL
1464 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1465 && vci == g_atm_priv_data.conn[i].vcc->vci )
1466 return i;
1467 }
1468
1469 return -1;
1470 }
1471
1472 static INLINE int find_vcc(struct atm_vcc *vcc)
1473 {
1474 int i;
1475 unsigned int bit;
1476
1477 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1478 if ( (g_atm_priv_data.conn_table & bit) != 0
1479 && g_atm_priv_data.conn[i].vcc == vcc )
1480 return i;
1481 }
1482
1483 return -1;
1484 }
1485
1486 #if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
1487 static void dump_skb(struct sk_buff *skb, u32 len, char *title, int port, int ch, int is_tx)
1488 {
1489 int i;
1490
1491 if ( !(ifx_atm_dbg_enable & (is_tx ? DBG_ENABLE_MASK_DUMP_SKB_TX : DBG_ENABLE_MASK_DUMP_SKB_RX)) )
1492 return;
1493
1494 if ( skb->len < len )
1495 len = skb->len;
1496
1497 if ( len > RX_DMA_CH_AAL_BUF_SIZE ) {
1498 printk("too big data length: skb = %08x, skb->data = %08x, skb->len = %d\n", (u32)skb, (u32)skb->data, skb->len);
1499 return;
1500 }
1501
1502 if ( ch >= 0 )
1503 printk("%s (port %d, ch %d)\n", title, port, ch);
1504 else
1505 printk("%s\n", title);
1506 printk(" skb->data = %08X, skb->tail = %08X, skb->len = %d\n", (u32)skb->data, (u32)skb->tail, (int)skb->len);
1507 for ( i = 1; i <= len; i++ ) {
1508 if ( i % 16 == 1 )
1509 printk(" %4d:", i - 1);
1510 printk(" %02X", (int)(*((char*)skb->data + i - 1) & 0xFF));
1511 if ( i % 16 == 0 )
1512 printk("\n");
1513 }
1514 if ( (i - 1) % 16 != 0 )
1515 printk("\n");
1516 }
1517 #endif
1518
1519 static INLINE void proc_file_create(void)
1520 {
1521 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1522 struct proc_dir_entry *res;
1523 #endif
1524
1525 g_atm_dir = proc_mkdir("driver/ifx_atm", NULL);
1526
1527 create_proc_read_entry("version",
1528 0,
1529 g_atm_dir,
1530 proc_read_version,
1531 NULL);
1532
1533 res = create_proc_entry("mib",
1534 0,
1535 g_atm_dir);
1536 if ( res != NULL ) {
1537 res->read_proc = proc_read_mib;
1538 res->write_proc = proc_write_mib;
1539 }
1540
1541 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1542 res = create_proc_entry("dbg",
1543 0,
1544 g_atm_dir);
1545 if ( res != NULL ) {
1546 res->read_proc = proc_read_dbg;
1547 res->write_proc = proc_write_dbg;
1548 }
1549 #endif
1550
1551 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1552 create_proc_read_entry("htu",
1553 0,
1554 g_atm_dir,
1555 proc_read_htu,
1556 NULL);
1557
1558 create_proc_read_entry("txq",
1559 0,
1560 g_atm_dir,
1561 proc_read_txq,
1562 NULL);
1563 #endif
1564 }
1565
1566 static INLINE void proc_file_delete(void)
1567 {
1568 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1569 remove_proc_entry("txq", g_atm_dir);
1570
1571 remove_proc_entry("htu", g_atm_dir);
1572 #endif
1573
1574 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1575 remove_proc_entry("dbg", g_atm_dir);
1576 #endif
1577
1578 remove_proc_entry("version", g_atm_dir);
1579
1580 remove_proc_entry("driver/ifx_atm", NULL);
1581 }
1582
1583 static int proc_read_version(char *buf, char **start, off_t offset, int count, int *eof, void *data)
1584 {
1585 int len = 0;
1586
1587 len += ifx_atm_version(buf + len);
1588
1589 if ( offset >= len ) {
1590 *start = buf;
1591 *eof = 1;
1592 return 0;
1593 }
1594 *start = buf + offset;
1595 if ( (len -= offset) > count )
1596 return count;
1597 *eof = 1;
1598 return len;
1599 }
1600
1601 static int proc_read_mib(char *page, char **start, off_t off, int count, int *eof, void *data)
1602 {
1603 int len = 0;
1604
1605 len += sprintf(page + off + len, "Firmware\n");
1606 len += sprintf(page + off + len, " wrx_drophtu_cell = %u\n", WAN_MIB_TABLE->wrx_drophtu_cell);
1607 len += sprintf(page + off + len, " wrx_dropdes_pdu = %u\n", WAN_MIB_TABLE->wrx_dropdes_pdu);
1608 len += sprintf(page + off + len, " wrx_correct_pdu = %u\n", WAN_MIB_TABLE->wrx_correct_pdu);
1609 len += sprintf(page + off + len, " wrx_err_pdu = %u\n", WAN_MIB_TABLE->wrx_err_pdu);
1610 len += sprintf(page + off + len, " wrx_dropdes_cell = %u\n", WAN_MIB_TABLE->wrx_dropdes_cell);
1611 len += sprintf(page + off + len, " wrx_correct_cell = %u\n", WAN_MIB_TABLE->wrx_correct_cell);
1612 len += sprintf(page + off + len, " wrx_err_cell = %u\n", WAN_MIB_TABLE->wrx_err_cell);
1613 len += sprintf(page + off + len, " wrx_total_byte = %u\n", WAN_MIB_TABLE->wrx_total_byte);
1614 len += sprintf(page + off + len, " wtx_total_pdu = %u\n", WAN_MIB_TABLE->wtx_total_pdu);
1615 len += sprintf(page + off + len, " wtx_total_cell = %u\n", WAN_MIB_TABLE->wtx_total_cell);
1616 len += sprintf(page + off + len, " wtx_total_byte = %u\n", WAN_MIB_TABLE->wtx_total_byte);
1617 len += sprintf(page + off + len, "Driver\n");
1618 len += sprintf(page + off + len, " wrx_pdu = %u\n", g_atm_priv_data.wrx_pdu);
1619 len += sprintf(page + off + len, " wrx_drop_pdu = %u\n", g_atm_priv_data.wrx_drop_pdu);
1620 len += sprintf(page + off + len, " wtx_pdu = %u\n", g_atm_priv_data.wtx_pdu);
1621 len += sprintf(page + off + len, " wtx_err_pdu = %u\n", g_atm_priv_data.wtx_err_pdu);
1622 len += sprintf(page + off + len, " wtx_drop_pdu = %u\n", g_atm_priv_data.wtx_drop_pdu);
1623
1624 *eof = 1;
1625
1626 return len;
1627 }
1628
1629 static int proc_write_mib(struct file *file, const char *buf, unsigned long count, void *data)
1630 {
1631 char str[2048];
1632 char *p;
1633 int len, rlen;
1634
1635 len = count < sizeof(str) ? count : sizeof(str) - 1;
1636 rlen = len - copy_from_user(str, buf, len);
1637 while ( rlen && str[rlen - 1] <= ' ' )
1638 rlen--;
1639 str[rlen] = 0;
1640 for ( p = str; *p && *p <= ' '; p++, rlen-- );
1641 if ( !*p )
1642 return 0;
1643
1644 if ( stricmp(p, "clear") == 0 || stricmp(p, "clear all") == 0
1645 || stricmp(p, "clean") == 0 || stricmp(p, "clean all") == 0 ) {
1646 memset(WAN_MIB_TABLE, 0, sizeof(*WAN_MIB_TABLE));
1647 g_atm_priv_data.wrx_pdu = 0;
1648 g_atm_priv_data.wrx_drop_pdu = 0;
1649 g_atm_priv_data.wtx_pdu = 0;
1650 g_atm_priv_data.wtx_err_pdu = 0;
1651 g_atm_priv_data.wtx_drop_pdu = 0;
1652 }
1653
1654 return count;
1655 }
1656
1657 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1658
1659 static int proc_read_dbg(char *page, char **start, off_t off, int count, int *eof, void *data)
1660 {
1661 int len = 0;
1662
1663 len += sprintf(page + off + len, "error print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ERR) ? "enabled" : "disabled");
1664 len += sprintf(page + off + len, "debug print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DEBUG_PRINT) ? "enabled" : "disabled");
1665 len += sprintf(page + off + len, "assert - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ASSERT) ? "enabled" : "disabled");
1666 len += sprintf(page + off + len, "dump rx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_RX) ? "enabled" : "disabled");
1667 len += sprintf(page + off + len, "dump tx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_TX) ? "enabled" : "disabled");
1668 len += sprintf(page + off + len, "qos - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ? "enabled" : "disabled");
1669 len += sprintf(page + off + len, "dump init - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_INIT) ? "enabled" : "disabled");
1670
1671 *eof = 1;
1672
1673 return len;
1674 }
1675
1676 static int proc_write_dbg(struct file *file, const char *buf, unsigned long count, void *data)
1677 {
1678 static const char *dbg_enable_mask_str[] = {
1679 " error print",
1680 " err",
1681 " debug print",
1682 " dbg",
1683 " assert",
1684 " assert",
1685 " dump rx skb",
1686 " rx",
1687 " dump tx skb",
1688 " tx",
1689 " dump qos",
1690 " qos",
1691 " dump init",
1692 " init",
1693 " all"
1694 };
1695 static const int dbg_enable_mask_str_len[] = {
1696 12, 4,
1697 12, 4,
1698 7, 7,
1699 12, 3,
1700 12, 3,
1701 9, 4,
1702 10, 5,
1703 4
1704 };
1705 u32 dbg_enable_mask[] = {
1706 DBG_ENABLE_MASK_ERR,
1707 DBG_ENABLE_MASK_DEBUG_PRINT,
1708 DBG_ENABLE_MASK_ASSERT,
1709 DBG_ENABLE_MASK_DUMP_SKB_RX,
1710 DBG_ENABLE_MASK_DUMP_SKB_TX,
1711 DBG_ENABLE_MASK_DUMP_QOS,
1712 DBG_ENABLE_MASK_DUMP_INIT,
1713 DBG_ENABLE_MASK_ALL
1714 };
1715
1716 char str[2048];
1717 char *p;
1718
1719 int len, rlen;
1720
1721 int f_enable = 0;
1722 int i;
1723
1724 len = count < sizeof(str) ? count : sizeof(str) - 1;
1725 rlen = len - copy_from_user(str, buf, len);
1726 while ( rlen && str[rlen - 1] <= ' ' )
1727 rlen--;
1728 str[rlen] = 0;
1729 for ( p = str; *p && *p <= ' '; p++, rlen-- );
1730 if ( !*p )
1731 return 0;
1732
1733 if ( strincmp(p, "enable", 6) == 0 ) {
1734 p += 6;
1735 f_enable = 1;
1736 }
1737 else if ( strincmp(p, "disable", 7) == 0 ) {
1738 p += 7;
1739 f_enable = -1;
1740 }
1741 else if ( strincmp(p, "help", 4) == 0 || *p == '?' ) {
1742 printk("echo <enable/disable> [err/dbg/assert/rx/tx/init/all] > /proc/eth/dbg\n");
1743 }
1744
1745 if ( f_enable ) {
1746 if ( *p == 0 ) {
1747 if ( f_enable > 0 )
1748 ifx_atm_dbg_enable |= DBG_ENABLE_MASK_ALL;
1749 else
1750 ifx_atm_dbg_enable &= ~DBG_ENABLE_MASK_ALL;
1751 }
1752 else {
1753 do {
1754 for ( i = 0; i < NUM_ENTITY(dbg_enable_mask_str); i++ )
1755 if ( strincmp(p, dbg_enable_mask_str[i], dbg_enable_mask_str_len[i]) == 0 ) {
1756 if ( f_enable > 0 )
1757 ifx_atm_dbg_enable |= dbg_enable_mask[i >> 1];
1758 else
1759 ifx_atm_dbg_enable &= ~dbg_enable_mask[i >> 1];
1760 p += dbg_enable_mask_str_len[i];
1761 break;
1762 }
1763 } while ( i < NUM_ENTITY(dbg_enable_mask_str) );
1764 }
1765 }
1766
1767 return count;
1768 }
1769
1770 #endif
1771
1772 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1773
1774 static INLINE int print_htu(char *buf, int i)
1775 {
1776 int len = 0;
1777
1778 if ( HTU_ENTRY(i)->vld ) {
1779 len += sprintf(buf + len, "%2d. valid\n", i);
1780 len += sprintf(buf + len, " entry 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_ENTRY(i), HTU_ENTRY(i)->pid, HTU_ENTRY(i)->vpi, HTU_ENTRY(i)->vci, HTU_ENTRY(i)->pti);
1781 len += sprintf(buf + len, " mask 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_MASK(i), HTU_MASK(i)->pid_mask, HTU_MASK(i)->vpi_mask, HTU_MASK(i)->vci_mask, HTU_MASK(i)->pti_mask);
1782 len += sprintf(buf + len, " result 0x%08x - type: %s, qid: %d", *(u32*)HTU_RESULT(i), HTU_RESULT(i)->type ? "cell" : "AAL5", HTU_RESULT(i)->qid);
1783 if ( HTU_RESULT(i)->type )
1784 len += sprintf(buf + len, ", cell id: %d, verification: %s", HTU_RESULT(i)->cellid, HTU_RESULT(i)->ven ? "on" : "off");
1785 len += sprintf(buf + len, "\n");
1786 }
1787 else
1788 len += sprintf(buf + len, "%2d. invalid\n", i);
1789
1790 return len;
1791 }
1792
1793 static int proc_read_htu(char *page, char **start, off_t off, int count, int *eof, void *data)
1794 {
1795 int len = 0;
1796 int len_max = off + count;
1797 char *pstr;
1798 char str[1024];
1799 int llen;
1800
1801 int htuts = *CFG_WRX_HTUTS;
1802 int i;
1803
1804 pstr = *start = page;
1805
1806 llen = sprintf(pstr, "HTU Table (Max %d):\n", htuts);
1807 pstr += llen;
1808 len += llen;
1809
1810 for ( i = 0; i < htuts; i++ ) {
1811 llen = print_htu(str, i);
1812 if ( len <= off && len + llen > off ) {
1813 memcpy(pstr, str + off - len, len + llen - off);
1814 pstr += len + llen - off;
1815 }
1816 else if ( len > off ) {
1817 memcpy(pstr, str, llen);
1818 pstr += llen;
1819 }
1820 len += llen;
1821 if ( len >= len_max )
1822 goto PROC_READ_HTU_OVERRUN_END;
1823 }
1824
1825 *eof = 1;
1826
1827 return len - off;
1828
1829 PROC_READ_HTU_OVERRUN_END:
1830
1831 return len - llen - off;
1832 }
1833
1834 static INLINE int print_tx_queue(char *buf, int i)
1835 {
1836 int len = 0;
1837
1838 if ( (*WTX_DMACH_ON & (1 << i)) ) {
1839 len += sprintf(buf + len, "%2d. valid\n", i);
1840 len += sprintf(buf + len, " queue 0x%08x - sbid %u, qsb %s\n", *(u32*)WTX_QUEUE_CONFIG(i), (unsigned int)WTX_QUEUE_CONFIG(i)->sbid, WTX_QUEUE_CONFIG(i)->qsben ? "enable" : "disable");
1841 len += sprintf(buf + len, " dma 0x%08x - base %08x, len %u, vlddes %u\n", *(u32*)WTX_DMA_CHANNEL_CONFIG(i), WTX_DMA_CHANNEL_CONFIG(i)->desba, WTX_DMA_CHANNEL_CONFIG(i)->deslen, WTX_DMA_CHANNEL_CONFIG(i)->vlddes);
1842 }
1843 else
1844 len += sprintf(buf + len, "%2d. invalid\n", i);
1845
1846 return len;
1847 }
1848
1849 static int proc_read_txq(char *page, char **start, off_t off, int count, int *eof, void *data)
1850 {
1851 int len = 0;
1852 int len_max = off + count;
1853 char *pstr;
1854 char str[1024];
1855 int llen;
1856
1857 int i;
1858
1859 pstr = *start = page;
1860
1861 llen = sprintf(pstr, "TX Queue Config (Max %d):\n", *CFG_WTX_DCHNUM);
1862 pstr += llen;
1863 len += llen;
1864
1865 for ( i = 0; i < 16; i++ ) {
1866 llen = print_tx_queue(str, i);
1867 if ( len <= off && len + llen > off ) {
1868 memcpy(pstr, str + off - len, len + llen - off);
1869 pstr += len + llen - off;
1870 }
1871 else if ( len > off ) {
1872 memcpy(pstr, str, llen);
1873 pstr += llen;
1874 }
1875 len += llen;
1876 if ( len >= len_max )
1877 goto PROC_READ_HTU_OVERRUN_END;
1878 }
1879
1880 *eof = 1;
1881
1882 return len - off;
1883
1884 PROC_READ_HTU_OVERRUN_END:
1885
1886 return len - llen - off;
1887 }
1888
1889 #endif
1890
1891 static int stricmp(const char *p1, const char *p2)
1892 {
1893 int c1, c2;
1894
1895 while ( *p1 && *p2 )
1896 {
1897 c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
1898 c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
1899 if ( (c1 -= c2) )
1900 return c1;
1901 p1++;
1902 p2++;
1903 }
1904
1905 return *p1 - *p2;
1906 }
1907
1908 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1909 static int strincmp(const char *p1, const char *p2, int n)
1910 {
1911 int c1 = 0, c2;
1912
1913 while ( n && *p1 && *p2 )
1914 {
1915 c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
1916 c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
1917 if ( (c1 -= c2) )
1918 return c1;
1919 p1++;
1920 p2++;
1921 n--;
1922 }
1923
1924 return n ? *p1 - *p2 : c1;
1925 }
1926 #endif
1927
1928 static INLINE int ifx_atm_version(char *buf)
1929 {
1930 int len = 0;
1931 unsigned int major, minor;
1932
1933 ifx_atm_get_fw_ver(&major, &minor);
1934
1935 len += sprintf(buf + len, "Infineon Technologies ATM driver version %d.%d.%d\n", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1936 len += sprintf(buf + len, "Infineon Technologies ATM (A1) firmware version %d.%d\n", major, minor);
1937
1938 return len;
1939 }
1940
1941 #ifdef MODULE
1942 static INLINE void reset_ppe(void)
1943 {
1944 // TODO:
1945 }
1946 #endif
1947
1948 static INLINE void check_parameters(void)
1949 {
1950 /* Please refer to Amazon spec 15.4 for setting these values. */
1951 if ( qsb_tau < 1 )
1952 qsb_tau = 1;
1953 if ( qsb_tstep < 1 )
1954 qsb_tstep = 1;
1955 else if ( qsb_tstep > 4 )
1956 qsb_tstep = 4;
1957 else if ( qsb_tstep == 3 )
1958 qsb_tstep = 2;
1959
1960 /* There is a delay between PPE write descriptor and descriptor is */
1961 /* really stored in memory. Host also has this delay when writing */
1962 /* descriptor. So PPE will use this value to determine if the write */
1963 /* operation makes effect. */
1964 if ( write_descriptor_delay < 0 )
1965 write_descriptor_delay = 0;
1966
1967 if ( aal5_fill_pattern < 0 )
1968 aal5_fill_pattern = 0;
1969 else
1970 aal5_fill_pattern &= 0xFF;
1971
1972 /* Because of the limitation of length field in descriptors, the packet */
1973 /* size could not be larger than 64K minus overhead size. */
1974 if ( aal5r_max_packet_size < 0 )
1975 aal5r_max_packet_size = 0;
1976 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1977 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1978 if ( aal5r_min_packet_size < 0 )
1979 aal5r_min_packet_size = 0;
1980 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1981 aal5r_min_packet_size = aal5r_max_packet_size;
1982 if ( aal5s_max_packet_size < 0 )
1983 aal5s_max_packet_size = 0;
1984 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1985 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1986 if ( aal5s_min_packet_size < 0 )
1987 aal5s_min_packet_size = 0;
1988 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1989 aal5s_min_packet_size = aal5s_max_packet_size;
1990
1991 if ( dma_rx_descriptor_length < 2 )
1992 dma_rx_descriptor_length = 2;
1993 if ( dma_tx_descriptor_length < 2 )
1994 dma_tx_descriptor_length = 2;
1995 if ( dma_rx_clp1_descriptor_threshold < 0 )
1996 dma_rx_clp1_descriptor_threshold = 0;
1997 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1998 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1999
2000 if ( dma_tx_descriptor_length < 2 )
2001 dma_tx_descriptor_length = 2;
2002 }
2003
2004 static INLINE int init_priv_data(void)
2005 {
2006 void *p;
2007 int i;
2008 struct rx_descriptor rx_desc = {0};
2009 struct sk_buff *skb;
2010 volatile struct tx_descriptor *p_tx_desc;
2011 struct sk_buff **ppskb;
2012
2013 // clear atm private data structure
2014 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
2015
2016 // allocate memory for RX (AAL) descriptors
2017 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2018 if ( p == NULL )
2019 return IFX_ERROR;
2020 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
2021 g_atm_priv_data.aal_desc_base = p;
2022 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2023 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
2024
2025 // allocate memory for RX (OAM) descriptors
2026 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2027 if ( p == NULL )
2028 return IFX_ERROR;
2029 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
2030 g_atm_priv_data.oam_desc_base = p;
2031 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2032 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
2033
2034 // allocate memory for RX (OAM) buffer
2035 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
2036 if ( p == NULL )
2037 return IFX_ERROR;
2038 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
2039 g_atm_priv_data.oam_buf_base = p;
2040 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
2041 g_atm_priv_data.oam_buf = p;
2042
2043 // allocate memory for TX descriptors
2044 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2045 if ( p == NULL )
2046 return IFX_ERROR;
2047 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
2048 g_atm_priv_data.tx_desc_base = p;
2049
2050 // allocate memory for TX skb pointers
2051 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
2052 if ( p == NULL )
2053 return IFX_ERROR;
2054 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
2055 g_atm_priv_data.tx_skb_base = p;
2056
2057 // setup RX (AAL) descriptors
2058 rx_desc.own = 1;
2059 rx_desc.c = 0;
2060 rx_desc.sop = 1;
2061 rx_desc.eop = 1;
2062 rx_desc.byteoff = 0;
2063 rx_desc.id = 0;
2064 rx_desc.err = 0;
2065 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
2066 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
2067 skb = alloc_skb_rx();
2068 if ( skb == NULL )
2069 return IFX_ERROR;
2070 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
2071 g_atm_priv_data.aal_desc[i] = rx_desc;
2072 }
2073
2074 // setup RX (OAM) descriptors
2075 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
2076 rx_desc.own = 1;
2077 rx_desc.c = 0;
2078 rx_desc.sop = 1;
2079 rx_desc.eop = 1;
2080 rx_desc.byteoff = 0;
2081 rx_desc.id = 0;
2082 rx_desc.err = 0;
2083 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
2084 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
2085 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
2086 g_atm_priv_data.oam_desc[i] = rx_desc;
2087 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
2088 }
2089
2090 // setup TX descriptors and skb pointers
2091 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2092 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
2093 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
2094 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
2095 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
2096 }
2097
2098 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2099 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
2100
2101 return IFX_SUCCESS;
2102 }
2103
2104 static INLINE void clear_priv_data(void)
2105 {
2106 int i, j;
2107 struct sk_buff *skb;
2108
2109 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
2110 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
2111 for ( j = 0; j < dma_tx_descriptor_length; j++ )
2112 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
2113 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
2114 }
2115 }
2116
2117 if ( g_atm_priv_data.tx_skb_base != NULL )
2118 kfree(g_atm_priv_data.tx_skb_base);
2119
2120 if ( g_atm_priv_data.tx_desc_base != NULL )
2121 kfree(g_atm_priv_data.tx_desc_base);
2122
2123 if ( g_atm_priv_data.oam_buf_base != NULL )
2124 kfree(g_atm_priv_data.oam_buf_base);
2125
2126 if ( g_atm_priv_data.oam_desc_base != NULL )
2127 kfree(g_atm_priv_data.oam_desc_base);
2128
2129 if ( g_atm_priv_data.aal_desc_base != NULL ) {
2130 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
2131 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
2132 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
2133 dev_kfree_skb_any(skb);
2134 }
2135 }
2136 kfree(g_atm_priv_data.aal_desc_base);
2137 }
2138 }
2139
2140 static INLINE void init_rx_tables(void)
2141 {
2142 int i;
2143 struct wrx_queue_config wrx_queue_config = {0};
2144 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
2145 struct htu_entry htu_entry = {0};
2146 struct htu_result htu_result = {0};
2147 struct htu_mask htu_mask = { set: 0x01,
2148 clp: 0x01,
2149 pid_mask: 0x00,
2150 vpi_mask: 0x00,
2151 vci_mask: 0x00,
2152 pti_mask: 0x00,
2153 clear: 0x00};
2154
2155 /*
2156 * General Registers
2157 */
2158 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
2159 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
2160 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
2161 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
2162 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
2163
2164 /*
2165 * WRX Queue Configuration Table
2166 */
2167 wrx_queue_config.uumask = 0;
2168 wrx_queue_config.cpimask = 0;
2169 wrx_queue_config.uuexp = 0;
2170 wrx_queue_config.cpiexp = 0;
2171 wrx_queue_config.mfs = aal5r_max_packet_size;
2172 wrx_queue_config.oversize = aal5r_max_packet_size;
2173 wrx_queue_config.undersize = aal5r_min_packet_size;
2174 wrx_queue_config.errdp = aal5r_drop_error_packet;
2175 wrx_queue_config.dmach = RX_DMA_CH_AAL;
2176 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
2177 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
2178 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
2179
2180 /*
2181 * WRX DMA Channel Configuration Table
2182 */
2183 wrx_dma_channel_config.chrl = 0;
2184 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
2185 wrx_dma_channel_config.mode = 0;
2186 wrx_dma_channel_config.rlcfg = 0;
2187
2188 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
2189 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
2190 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
2191
2192 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
2193 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
2194 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
2195
2196 /*
2197 * HTU Tables
2198 */
2199 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
2200 {
2201 htu_result.qid = (unsigned int)i;
2202
2203 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
2204 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
2205 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
2206 }
2207 /* OAM HTU Entry */
2208 htu_entry.vci = 0x03;
2209 htu_mask.pid_mask = 0x03;
2210 htu_mask.vpi_mask = 0xFF;
2211 htu_mask.vci_mask = 0x0000;
2212 htu_mask.pti_mask = 0x07;
2213 htu_result.cellid = OAM_RX_QUEUE;
2214 htu_result.type = 1;
2215 htu_result.ven = 1;
2216 htu_result.qid = OAM_RX_QUEUE;
2217 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
2218 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
2219 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
2220 htu_entry.vci = 0x04;
2221 htu_result.cellid = OAM_RX_QUEUE;
2222 htu_result.type = 1;
2223 htu_result.ven = 1;
2224 htu_result.qid = OAM_RX_QUEUE;
2225 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
2226 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
2227 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
2228 htu_entry.vci = 0x00;
2229 htu_entry.pti = 0x04;
2230 htu_mask.vci_mask = 0xFFFF;
2231 htu_mask.pti_mask = 0x01;
2232 htu_result.cellid = OAM_RX_QUEUE;
2233 htu_result.type = 1;
2234 htu_result.ven = 1;
2235 htu_result.qid = OAM_RX_QUEUE;
2236 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
2237 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
2238 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
2239 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
2240 htu_entry.pid = 0x0;
2241 htu_entry.vpi = 0x01;
2242 htu_entry.vci = 0x0001;
2243 htu_entry.pti = 0x00;
2244 htu_mask.pid_mask = 0x0;
2245 htu_mask.vpi_mask = 0x00;
2246 htu_mask.vci_mask = 0x0000;
2247 htu_mask.pti_mask = 0x3;
2248 htu_result.cellid = OAM_RX_QUEUE;
2249 htu_result.type = 1;
2250 htu_result.ven = 1;
2251 htu_result.qid = OAM_RX_QUEUE;
2252 *HTU_RESULT(OAM_ARQ_HTU_ENTRY) = htu_result;
2253 *HTU_MASK(OAM_ARQ_HTU_ENTRY) = htu_mask;
2254 *HTU_ENTRY(OAM_ARQ_HTU_ENTRY) = htu_entry;
2255 #endif
2256 }
2257
2258 static INLINE void init_tx_tables(void)
2259 {
2260 int i;
2261 struct wtx_queue_config wtx_queue_config = {0};
2262 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
2263 struct wtx_port_config wtx_port_config = { res1: 0,
2264 qid: 0,
2265 qsben: 1};
2266
2267 /*
2268 * General Registers
2269 */
2270 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
2271 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
2272 *CFG_WRDES_DELAY = write_descriptor_delay;
2273
2274 /*
2275 * WTX Port Configuration Table
2276 */
2277 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2278 *WTX_PORT_CONFIG(i) = wtx_port_config;
2279
2280 /*
2281 * WTX Queue Configuration Table
2282 */
2283 wtx_queue_config.type = 0x0;
2284 wtx_queue_config.qsben = 1;
2285 wtx_queue_config.sbid = 0;
2286 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ )
2287 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
2288
2289 /*
2290 * WTX DMA Channel Configuration Table
2291 */
2292 wtx_dma_channel_config.mode = 0;
2293 wtx_dma_channel_config.deslen = 0;
2294 wtx_dma_channel_config.desba = 0;
2295 for ( i = 0; i < FIRST_QSB_QID; i++ )
2296 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
2297 /* normal connection */
2298 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
2299 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
2300 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
2301 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
2302 }
2303 }
2304
2305
2306
2307 /*
2308 * ####################################
2309 * Global Function
2310 * ####################################
2311 */
2312
2313 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
2314 {
2315 int i, j;
2316
2317 ASSERT(port_cell != NULL, "port_cell is NULL");
2318 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
2319
2320 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
2321 if ( port_cell->tx_link_rate[j] > 0 )
2322 break;
2323 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
2324 g_atm_priv_data.port[i].tx_max_cell_rate = port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
2325
2326 qsb_global_set();
2327
2328 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
2329 if ( g_atm_priv_data.conn[i].vcc != NULL )
2330 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
2331
2332 // TODO: ReTX set xdata_addr
2333 g_xdata_addr = xdata_addr;
2334
2335 g_showtime = 1;
2336
2337 #if defined(CONFIG_VR9)
2338 IFX_REG_W32(0x0F, UTP_CFG);
2339 #endif
2340
2341 pr_debug("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n", g_atm_priv_data.port[0].tx_max_cell_rate, g_atm_priv_data.port[1].tx_max_cell_rate, (unsigned int)g_xdata_addr);
2342
2343 return IFX_SUCCESS;
2344 }
2345
2346 static int atm_showtime_exit(void)
2347 {
2348 #if defined(CONFIG_VR9)
2349 IFX_REG_W32(0x00, UTP_CFG);
2350 #endif
2351
2352 g_showtime = 0;
2353
2354 // TODO: ReTX clean state
2355 g_xdata_addr = NULL;
2356
2357 pr_debug("leave showtime\n");
2358
2359 return IFX_SUCCESS;
2360 }
2361
2362
2363
2364 /*
2365 * ####################################
2366 * Init/Cleanup API
2367 * ####################################
2368 */
2369
2370 /*
2371 * Description:
2372 * Initialize global variables, PP32, comunication structures, register IRQ
2373 * and register device.
2374 * Input:
2375 * none
2376 * Output:
2377 * 0 --- successful
2378 * else --- failure, usually it is negative value of error code
2379 */
2380 static int __devinit ifx_atm_init(void)
2381 {
2382 int ret;
2383 int port_num;
2384 struct port_cell_info port_cell = {0};
2385 int i, j;
2386 char ver_str[256];
2387
2388 #ifdef MODULE
2389 reset_ppe();
2390 #endif
2391
2392 check_parameters();
2393
2394 ret = init_priv_data();
2395 if ( ret != IFX_SUCCESS ) {
2396 err("INIT_PRIV_DATA_FAIL");
2397 goto INIT_PRIV_DATA_FAIL;
2398 }
2399
2400 ifx_atm_init_chip();
2401 init_rx_tables();
2402 init_tx_tables();
2403
2404 /* create devices */
2405 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
2406 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
2407 if ( !g_atm_priv_data.port[port_num].dev ) {
2408 err("failed to register atm device %d!", port_num);
2409 ret = -EIO;
2410 goto ATM_DEV_REGISTER_FAIL;
2411 }
2412 else {
2413 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
2414 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
2415 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
2416 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
2417 }
2418 }
2419
2420 /* register interrupt handler */
2421 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
2422 if ( ret ) {
2423 if ( ret == -EBUSY ) {
2424 err("IRQ may be occupied by other driver, please reconfig to disable it.");
2425 }
2426 else {
2427 err("request_irq fail");
2428 }
2429 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
2430 }
2431 disable_irq(PPE_MAILBOX_IGU1_INT);
2432
2433 ret = ifx_pp32_start(0);
2434 if ( ret ) {
2435 err("ifx_pp32_start fail!");
2436 goto PP32_START_FAIL;
2437 }
2438
2439 port_cell.port_num = ATM_PORT_NUMBER;
2440 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
2441 if ( g_showtime ) {
2442 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2443 if ( port_cell.tx_link_rate[i] != 0 )
2444 break;
2445 for ( j = 0; j < ATM_PORT_NUMBER; j++ )
2446 g_atm_priv_data.port[j].tx_max_cell_rate = port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
2447 }
2448
2449 qsb_global_set();
2450 validate_oam_htu_entry();
2451
2452 /* create proc file */
2453 proc_file_create();
2454
2455 ifx_mei_atm_showtime_enter = atm_showtime_enter;
2456 ifx_mei_atm_showtime_exit = atm_showtime_exit;
2457
2458 ifx_atm_version(ver_str);
2459 printk(KERN_INFO "%s", ver_str);
2460
2461 printk("ifxmips_atm: ATM init succeed\n");
2462
2463 return IFX_SUCCESS;
2464
2465 PP32_START_FAIL:
2466 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
2467 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
2468 ATM_DEV_REGISTER_FAIL:
2469 while ( port_num-- > 0 )
2470 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
2471 INIT_PRIV_DATA_FAIL:
2472 clear_priv_data();
2473 printk("ifxmips_atm: ATM init failed\n");
2474 return ret;
2475 }
2476
2477 /*
2478 * Description:
2479 * Release memory, free IRQ, and deregister device.
2480 * Input:
2481 * none
2482 * Output:
2483 * none
2484 */
2485 static void __exit ifx_atm_exit(void)
2486 {
2487 int port_num;
2488
2489 ifx_mei_atm_showtime_enter = NULL;
2490 ifx_mei_atm_showtime_exit = NULL;
2491
2492 proc_file_delete();
2493
2494 invalidate_oam_htu_entry();
2495
2496 ifx_pp32_stop(0);
2497
2498 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
2499
2500 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
2501 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
2502
2503 ifx_atm_uninit_chip();
2504
2505 clear_priv_data();
2506 }
2507
2508 module_init(ifx_atm_init);
2509 module_exit(ifx_atm_exit);
2510 MODULE_LICENSE("Dual BSD/GPL");
This page took 0.163362 seconds and 5 git commands to generate.