[brcm63xx] add support for HW553 bcm6358-based boards (#8844)
[openwrt.git] / package / uboot-xburst / files / cpu / mips / jz4740.c
1 /*
2 * Jz4740 common routines
3 *
4 * Copyright (c) 2006
5 * Ingenic Semiconductor, <jlwei@ingenic.cn>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
21 */
22
23 #include <config.h>
24
25 #ifdef CONFIG_JZ4740
26 #include <common.h>
27 #include <command.h>
28 #include <asm/jz4740.h>
29
30 extern void board_early_init(void);
31
32 /* PLL output clock = EXTAL * NF / (NR * NO)
33 *
34 * NF = FD + 2, NR = RD + 2
35 * NO = 1 (if OD = 0), NO = 2 (if OD = 1 or 2), NO = 4 (if OD = 3)
36 */
37 void pll_init(void)
38 {
39 register unsigned int cfcr, plcr1;
40 int n2FR[33] = {
41 0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
42 7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
43 9
44 };
45 int div[5] = {1, 3, 3, 3, 3}; /* divisors of I:S:P:L:M */
46 int nf, pllout2;
47
48 cfcr = CPM_CPCCR_CLKOEN |
49 CPM_CPCCR_PCS |
50 (n2FR[div[0]] << CPM_CPCCR_CDIV_BIT) |
51 (n2FR[div[1]] << CPM_CPCCR_HDIV_BIT) |
52 (n2FR[div[2]] << CPM_CPCCR_PDIV_BIT) |
53 (n2FR[div[3]] << CPM_CPCCR_MDIV_BIT) |
54 (n2FR[div[4]] << CPM_CPCCR_LDIV_BIT);
55
56 pllout2 = (cfcr & CPM_CPCCR_PCS) ? CONFIG_SYS_CPU_SPEED : (CONFIG_SYS_CPU_SPEED / 2);
57
58 /* Init USB Host clock, pllout2 must be n*48MHz */
59 REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
60
61 nf = CONFIG_SYS_CPU_SPEED * 2 / CONFIG_SYS_EXTAL;
62 plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
63 (0 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
64 (0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
65 (0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
66 CPM_CPPCR_PLLEN; /* enable PLL */
67
68 /* init PLL */
69 REG_CPM_CPCCR = cfcr;
70 REG_CPM_CPPCR = plcr1;
71 }
72
73 void pll_add_test(int new_freq)
74 {
75 register unsigned int cfcr, plcr1;
76 int n2FR[33] = {
77 0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
78 7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
79 9
80 };
81 int div[5] = {1, 4, 4, 4, 4}; /* divisors of I:S:P:M:L */
82 int nf, pllout2;
83
84 cfcr = CPM_CPCCR_CLKOEN |
85 (n2FR[div[0]] << CPM_CPCCR_CDIV_BIT) |
86 (n2FR[div[1]] << CPM_CPCCR_HDIV_BIT) |
87 (n2FR[div[2]] << CPM_CPCCR_PDIV_BIT) |
88 (n2FR[div[3]] << CPM_CPCCR_MDIV_BIT) |
89 (n2FR[div[4]] << CPM_CPCCR_LDIV_BIT);
90
91 pllout2 = (cfcr & CPM_CPCCR_PCS) ? new_freq : (new_freq / 2);
92
93 /* Init UHC clock */
94 REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
95
96 /* nf = new_freq * 2 / CONFIG_SYS_EXTAL; */
97 nf = new_freq / 1000000; /* step length is 1M */
98 plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
99 (10 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
100 (0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
101 (0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
102 CPM_CPPCR_PLLEN; /* enable PLL */
103
104 /* init PLL */
105 REG_CPM_CPCCR = cfcr;
106 REG_CPM_CPPCR = plcr1;
107 }
108
109 void calc_clocks_add_test(void)
110 {
111 DECLARE_GLOBAL_DATA_PTR;
112
113 unsigned int pllout;
114 unsigned int div[10] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
115
116 pllout = __cpm_get_pllout();
117
118 gd->cpu_clk = pllout / div[__cpm_get_cdiv()];
119 gd->sys_clk = pllout / div[__cpm_get_hdiv()];
120 gd->per_clk = pllout / div[__cpm_get_pdiv()];
121 gd->mem_clk = pllout / div[__cpm_get_mdiv()];
122 gd->dev_clk = CONFIG_SYS_EXTAL;
123 }
124
125 void sdram_add_test(int new_freq)
126 {
127 register unsigned int dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
128
129 unsigned int cas_latency_sdmr[2] = {
130 EMC_SDMR_CAS_2,
131 EMC_SDMR_CAS_3,
132 };
133
134 unsigned int cas_latency_dmcr[2] = {
135 1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
136 2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
137 };
138
139 int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
140
141 cpu_clk = new_freq;
142 mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
143
144 REG_EMC_RTCSR = EMC_RTCSR_CKS_DISABLE;
145 REG_EMC_RTCOR = 0;
146 REG_EMC_RTCNT = 0;
147
148 /* Basic DMCR register value. */
149 dmcr = ((SDRAM_ROW-11)<<EMC_DMCR_RA_BIT) |
150 ((SDRAM_COL-8)<<EMC_DMCR_CA_BIT) |
151 (SDRAM_BANK4<<EMC_DMCR_BA_BIT) |
152 (SDRAM_BW16<<EMC_DMCR_BW_BIT) |
153 EMC_DMCR_EPIN |
154 cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
155
156 /* SDRAM timimg parameters */
157 ns = 1000000000 / mem_clk;
158
159 #if 0
160 tmp = SDRAM_TRAS/ns;
161 if (tmp < 4) tmp = 4;
162 if (tmp > 11) tmp = 11;
163 dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
164
165 tmp = SDRAM_RCD/ns;
166 if (tmp > 3) tmp = 3;
167 dmcr |= (tmp << EMC_DMCR_RCD_BIT);
168
169 tmp = SDRAM_TPC/ns;
170 if (tmp > 7) tmp = 7;
171 dmcr |= (tmp << EMC_DMCR_TPC_BIT);
172
173 tmp = SDRAM_TRWL/ns;
174 if (tmp > 3) tmp = 3;
175 dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
176
177 tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
178 if (tmp > 14) tmp = 14;
179 dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
180 #else
181 dmcr |= 0xfffc;
182 #endif
183
184 /* First, precharge phase */
185 REG_EMC_DMCR = dmcr;
186
187 /* Set refresh registers */
188 tmp = SDRAM_TREF/ns;
189 tmp = tmp/64 + 1;
190 if (tmp > 0xff) tmp = 0xff;
191
192 REG_EMC_RTCOR = tmp;
193 REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
194
195 /* SDRAM mode values */
196 sdmode = EMC_SDMR_BT_SEQ |
197 EMC_SDMR_OM_NORMAL |
198 EMC_SDMR_BL_4 |
199 cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
200
201 /* precharge all chip-selects */
202 REG8(EMC_SDMR0|sdmode) = 0;
203
204 /* wait for precharge, > 200us */
205 tmp = (cpu_clk / 1000000) * 200;
206 while (tmp--);
207
208 /* enable refresh and set SDRAM mode */
209 REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
210
211 /* write sdram mode register for each chip-select */
212 REG8(EMC_SDMR0|sdmode) = 0;
213
214 /* everything is ok now */
215 }
216
217 void sdram_init(void)
218 {
219 register unsigned int dmcr0, dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
220
221 unsigned int cas_latency_sdmr[2] = {
222 EMC_SDMR_CAS_2,
223 EMC_SDMR_CAS_3,
224 };
225
226 unsigned int cas_latency_dmcr[2] = {
227 1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
228 2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
229 };
230
231 int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
232
233 cpu_clk = CONFIG_SYS_CPU_SPEED;
234 mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
235
236 REG_EMC_BCR = 0; /* Disable bus release */
237 REG_EMC_RTCSR = 0; /* Disable clock for counting */
238
239 /* Fault DMCR value for mode register setting*/
240 #define SDRAM_ROW0 11
241 #define SDRAM_COL0 8
242 #define SDRAM_BANK40 0
243
244 dmcr0 = ((SDRAM_ROW0-11)<<EMC_DMCR_RA_BIT) |
245 ((SDRAM_COL0-8)<<EMC_DMCR_CA_BIT) |
246 (SDRAM_BANK40<<EMC_DMCR_BA_BIT) |
247 (SDRAM_BW16<<EMC_DMCR_BW_BIT) |
248 EMC_DMCR_EPIN |
249 cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
250
251 /* Basic DMCR value */
252 dmcr = ((SDRAM_ROW-11)<<EMC_DMCR_RA_BIT) |
253 ((SDRAM_COL-8)<<EMC_DMCR_CA_BIT) |
254 (SDRAM_BANK4<<EMC_DMCR_BA_BIT) |
255 (SDRAM_BW16<<EMC_DMCR_BW_BIT) |
256 EMC_DMCR_EPIN |
257 cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
258
259 /* SDRAM timimg */
260 ns = 1000000000 / mem_clk;
261 tmp = SDRAM_TRAS/ns;
262 if (tmp < 4) tmp = 4;
263 if (tmp > 11) tmp = 11;
264 dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
265 tmp = SDRAM_RCD/ns;
266 if (tmp > 3) tmp = 3;
267 dmcr |= (tmp << EMC_DMCR_RCD_BIT);
268 tmp = SDRAM_TPC/ns;
269 if (tmp > 7) tmp = 7;
270 dmcr |= (tmp << EMC_DMCR_TPC_BIT);
271 tmp = SDRAM_TRWL/ns;
272 if (tmp > 3) tmp = 3;
273 dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
274 tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
275 if (tmp > 14) tmp = 14;
276 dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
277
278 /* SDRAM mode value */
279 sdmode = EMC_SDMR_BT_SEQ |
280 EMC_SDMR_OM_NORMAL |
281 EMC_SDMR_BL_4 |
282 cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
283
284 /* Stage 1. Precharge all banks by writing SDMR with DMCR.MRSET=0 */
285 REG_EMC_DMCR = dmcr;
286 REG8(EMC_SDMR0|sdmode) = 0;
287
288 /* Wait for precharge, > 200us */
289 tmp = (cpu_clk / 1000000) * 1000;
290 while (tmp--);
291
292 /* Stage 2. Enable auto-refresh */
293 REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH;
294
295 tmp = SDRAM_TREF/ns;
296 tmp = tmp/64 + 1;
297 if (tmp > 0xff) tmp = 0xff;
298 REG_EMC_RTCOR = tmp;
299 REG_EMC_RTCNT = 0;
300 REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
301
302 /* Wait for number of auto-refresh cycles */
303 tmp = (cpu_clk / 1000000) * 1000;
304 while (tmp--);
305
306 /* Stage 3. Mode Register Set */
307 REG_EMC_DMCR = dmcr0 | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
308 REG8(EMC_SDMR0|sdmode) = 0;
309
310 /* Set back to basic DMCR value */
311 REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
312
313 /* everything is ok now */
314 }
315
316 #ifndef CONFIG_NAND_SPL
317
318 static void calc_clocks(void)
319 {
320 DECLARE_GLOBAL_DATA_PTR;
321
322 unsigned int pllout;
323 unsigned int div[10] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
324
325 pllout = __cpm_get_pllout();
326
327 gd->cpu_clk = pllout / div[__cpm_get_cdiv()];
328 gd->sys_clk = pllout / div[__cpm_get_hdiv()];
329 gd->per_clk = pllout / div[__cpm_get_pdiv()];
330 gd->mem_clk = pllout / div[__cpm_get_mdiv()];
331 gd->dev_clk = CONFIG_SYS_EXTAL;
332 }
333
334 static void rtc_init(void)
335 {
336 unsigned long rtcsta;
337
338 while ( !__rtc_write_ready()) ;
339 __rtc_enable_alarm(); /* enable alarm */
340
341 while ( !__rtc_write_ready())
342 ;
343 REG_RTC_RGR = 0x00007fff; /* type value */
344
345 while ( !__rtc_write_ready())
346 ;
347 REG_RTC_HWFCR = 0x0000ffe0; /* Power on delay 2s */
348
349 while ( !__rtc_write_ready())
350 ;
351 REG_RTC_HRCR = 0x00000fe0; /* reset delay 125ms */
352 #if 0
353 while ( !__rtc_write_ready())
354 ;
355 rtcsta = REG_RTC_HWRSR;
356 while ( !__rtc_write_ready())
357 ;
358 if (rtcsta & 0x33) {
359 if (rtcsta & 0x10) {
360 while ( !__rtc_write_ready())
361 ;
362 REG_RTC_RSR = 0x0;
363 }
364 while ( !__rtc_write_ready())
365 ;
366 REG_RTC_HWRSR = 0x0;
367 }
368 #endif
369 }
370
371 /*
372 * jz4740 board init routine
373 */
374 int jz_board_init(void)
375 {
376 board_early_init(); /* init gpio, pll etc. */
377 #ifndef CONFIG_NAND_U_BOOT
378 pll_init(); /* init PLL */
379 sdram_init(); /* init sdram memory */
380 #endif
381 calc_clocks(); /* calc the clocks */
382 rtc_init(); /* init rtc on any reset: */
383 return 0;
384 }
385
386 /* U-Boot common routines */
387 phys_size_t initdram(int board_type)
388 {
389 u32 dmcr;
390 u32 rows, cols, dw, banks;
391 ulong size;
392
393 dmcr = REG_EMC_DMCR;
394 rows = 11 + ((dmcr & EMC_DMCR_RA_MASK) >> EMC_DMCR_RA_BIT);
395 cols = 8 + ((dmcr & EMC_DMCR_CA_MASK) >> EMC_DMCR_CA_BIT);
396 dw = (dmcr & EMC_DMCR_BW) ? 2 : 4;
397 banks = (dmcr & EMC_DMCR_BA) ? 4 : 2;
398
399 size = (1 << (rows + cols)) * dw * banks;
400
401 return size;
402 }
403
404 /*
405 * Timer routines
406 */
407
408 #define TIMER_CHAN 0
409 #define TIMER_FDATA 0xffff /* Timer full data value */
410 #define TIMER_HZ CONFIG_SYS_HZ
411
412 #define READ_TIMER REG_TCU_TCNT(TIMER_CHAN) /* macro to read the 16 bit timer */
413
414 static ulong timestamp;
415 static ulong lastdec;
416
417 void reset_timer_masked (void);
418 ulong get_timer_masked (void);
419 void udelay_masked (unsigned long usec);
420
421 /*
422 * timer without interrupts
423 */
424
425 int timer_init(void)
426 {
427 REG_TCU_TCSR(TIMER_CHAN) = TCU_TCSR_PRESCALE256 | TCU_TCSR_EXT_EN;
428 REG_TCU_TCNT(TIMER_CHAN) = 0;
429 REG_TCU_TDHR(TIMER_CHAN) = 0;
430 REG_TCU_TDFR(TIMER_CHAN) = TIMER_FDATA;
431
432 REG_TCU_TMSR = (1 << TIMER_CHAN) | (1 << (TIMER_CHAN + 16)); /* mask irqs */
433 REG_TCU_TSCR = (1 << TIMER_CHAN); /* enable timer clock */
434 REG_TCU_TESR = (1 << TIMER_CHAN); /* start counting up */
435
436 lastdec = 0;
437 timestamp = 0;
438
439 return 0;
440 }
441
442 void reset_timer(void)
443 {
444 reset_timer_masked ();
445 }
446
447 ulong get_timer(ulong base)
448 {
449 return get_timer_masked () - base;
450 }
451
452 void set_timer(ulong t)
453 {
454 timestamp = t;
455 }
456
457 void udelay (unsigned long usec)
458 {
459 ulong tmo,tmp;
460
461 /* normalize */
462 if (usec >= 1000) {
463 tmo = usec / 1000;
464 tmo *= TIMER_HZ;
465 tmo /= 1000;
466 }
467 else {
468 if (usec >= 1) {
469 tmo = usec * TIMER_HZ;
470 tmo /= (1000*1000);
471 }
472 else
473 tmo = 1;
474 }
475
476 /* check for rollover during this delay */
477 tmp = get_timer (0);
478 if ((tmp + tmo) < tmp )
479 reset_timer_masked(); /* timer would roll over */
480 else
481 tmo += tmp;
482
483 while (get_timer_masked () < tmo);
484 }
485
486 void reset_timer_masked (void)
487 {
488 /* reset time */
489 lastdec = READ_TIMER;
490 timestamp = 0;
491 }
492
493 ulong get_timer_masked (void)
494 {
495 ulong now = READ_TIMER;
496
497 if (lastdec <= now) {
498 /* normal mode */
499 timestamp += (now - lastdec);
500 } else {
501 /* we have an overflow ... */
502 timestamp += TIMER_FDATA + now - lastdec;
503 }
504 lastdec = now;
505
506 return timestamp;
507 }
508
509 void udelay_masked (unsigned long usec)
510 {
511 ulong tmo;
512 ulong endtime;
513 signed long diff;
514
515 /* normalize */
516 if (usec >= 1000) {
517 tmo = usec / 1000;
518 tmo *= TIMER_HZ;
519 tmo /= 1000;
520 } else {
521 if (usec > 1) {
522 tmo = usec * TIMER_HZ;
523 tmo /= (1000*1000);
524 } else {
525 tmo = 1;
526 }
527 }
528
529 endtime = get_timer_masked () + tmo;
530
531 do {
532 ulong now = get_timer_masked ();
533 diff = endtime - now;
534 } while (diff >= 0);
535 }
536
537 /*
538 * This function is derived from PowerPC code (read timebase as long long).
539 * On MIPS it just returns the timer value.
540 */
541 unsigned long long get_ticks(void)
542 {
543 return get_timer(0);
544 }
545
546 /*
547 * This function is derived from PowerPC code (timebase clock frequency).
548 * On MIPS it returns the number of timer ticks per second.
549 */
550 ulong get_tbclk (void)
551 {
552 return TIMER_HZ;
553 }
554
555 #endif /* CONFIG_NAND_SPL */
556
557 /* End of timer routine. */
558
559 #endif
This page took 0.059197 seconds and 5 git commands to generate.