update brcm-2.4 to 2.4.35.4, integrate new broadcom system code, update broadcom...
[openwrt.git] / target / linux / brcm-2.4 / files / arch / mips / bcm947xx / sbutils.c
1 /*
2 * Misc utility routines for accessing chip-specific features
3 * of the SiliconBackplane-based Broadcom chips.
4 *
5 * Copyright 2007, Broadcom Corporation
6 * All Rights Reserved.
7 *
8 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
9 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
10 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
11 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
12 * $Id$
13 */
14
15 #include <typedefs.h>
16 #include <bcmdefs.h>
17 #include <osl.h>
18 #include <sbutils.h>
19 #include <bcmdevs.h>
20 #include <sbconfig.h>
21 #include <sbchipc.h>
22 #include <sbextif.h>
23 #include <sbpci.h>
24 #include <sbpcie.h>
25 #include <pcicfg.h>
26 #include <sbpcmcia.h>
27 #include <sbsocram.h>
28 #include <bcmnvram.h>
29 #include <bcmsrom.h>
30 #include <hndpmu.h>
31
32 /* debug/trace */
33 #define SB_ERROR(args)
34
35 #ifdef BCMDBG
36 #define SB_MSG(args) printf args
37 #else
38 #define SB_MSG(args)
39 #endif /* BCMDBG */
40
41 typedef uint32(*sb_intrsoff_t) (void *intr_arg);
42 typedef void (*sb_intrsrestore_t) (void *intr_arg, uint32 arg);
43 typedef bool(*sb_intrsenabled_t) (void *intr_arg);
44
45 typedef struct gpioh_item {
46 void *arg;
47 bool level;
48 gpio_handler_t handler;
49 uint32 event;
50 struct gpioh_item *next;
51 } gpioh_item_t;
52
53 /* misc sb info needed by some of the routines */
54 typedef struct sb_info {
55
56 struct sb_pub sb; /* back plane public state (must be first field) */
57
58 void *osh; /* osl os handle */
59 void *sdh; /* bcmsdh handle */
60
61 void *curmap; /* current regs va */
62 void *regs[SB_MAXCORES]; /* other regs va */
63
64 uint curidx; /* current core index */
65 uint dev_coreid; /* the core provides driver functions */
66
67 bool memseg; /* flag to toggle MEM_SEG register */
68
69 uint gpioidx; /* gpio control core index */
70 uint gpioid; /* gpio control coretype */
71
72 uint numcores; /* # discovered cores */
73 uint coreid[SB_MAXCORES]; /* id of each core */
74
75 void *intr_arg; /* interrupt callback function arg */
76 sb_intrsoff_t intrsoff_fn; /* turns chip interrupts off */
77 sb_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */
78 sb_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */
79
80 uint8 pciecap_lcreg_offset; /* PCIE capability LCreg offset in the config space */
81 bool pr42767_war;
82 uint8 pcie_polarity;
83 bool pcie_war_ovr; /* Override ASPM/Clkreq settings */
84
85 uint8 pmecap_offset; /* PM Capability offset in the config space */
86 bool pmecap; /* Capable of generating PME */
87
88 gpioh_item_t *gpioh_head; /* GPIO event handlers list */
89
90 char *vars;
91 uint varsz;
92 } sb_info_t;
93
94 /* local prototypes */
95 static sb_info_t *sb_doattach(sb_info_t * si, uint devid, osl_t * osh,
96 void *regs, uint bustype, void *sdh,
97 char **vars, uint * varsz);
98 static void sb_scan(sb_info_t * si);
99 static uint _sb_coreidx(sb_info_t * si);
100 static uint sb_pcidev2chip(uint pcidev);
101 static uint sb_chip2numcores(uint chip);
102 static bool sb_ispcie(sb_info_t * si);
103 static uint8 sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id,
104 uchar * buf, uint32 * buflen);
105 static int sb_pci_fixcfg(sb_info_t * si);
106 /* routines to access mdio slave device registers */
107 static int sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint readdr,
108 uint val);
109 static int sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint readdr,
110 uint * ret_val);
111
112 /* dev path concatenation util */
113 static char *sb_devpathvar(sb_t * sbh, char *var, int len, const char *name);
114
115 /* WARs */
116 static void sb_war43448(sb_t * sbh);
117 static void sb_war43448_aspm(sb_t * sbh);
118 static void sb_war32414_forceHT(sb_t * sbh, bool forceHT);
119 static void sb_war30841(sb_info_t * si);
120 static void sb_war42767(sb_t * sbh);
121 static void sb_war42767_clkreq(sb_t * sbh);
122
123 /* delay needed between the mdio control/ mdiodata register data access */
124 #define PR28829_DELAY() OSL_DELAY(10)
125
126 /* size that can take bitfielddump */
127 #define BITFIELD_DUMP_SIZE 32
128
129 /* global variable to indicate reservation/release of gpio's */
130 static uint32 sb_gpioreservation = 0;
131
132 /* global flag to prevent shared resources from being initialized multiple times in sb_attach() */
133 static bool sb_onetimeinit = FALSE;
134
135 #define SB_INFO(sbh) (sb_info_t*)(uintptr)sbh
136 #define SET_SBREG(si, r, mask, val) \
137 W_SBREG((si), (r), ((R_SBREG((si), (r)) & ~(mask)) | (val)))
138 #define GOODCOREADDR(x) (((x) >= SB_ENUM_BASE) && ((x) <= SB_ENUM_LIM) && \
139 ISALIGNED((x), SB_CORE_SIZE))
140 #define GOODREGS(regs) ((regs) && ISALIGNED((uintptr)(regs), SB_CORE_SIZE))
141 #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)
142 #define BADCOREADDR 0
143 #define GOODIDX(idx) (((uint)idx) < SB_MAXCORES)
144 #define BADIDX (SB_MAXCORES+1)
145 #define NOREV -1 /* Invalid rev */
146
147 #define PCI(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCI))
148 #define PCIE(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCIE))
149 #define PCMCIA(si) ((BUSTYPE(si->sb.bustype) == PCMCIA_BUS) && (si->memseg == TRUE))
150
151 /* sonicsrev */
152 #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
153 #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)
154
155 #define R_SBREG(si, sbr) sb_read_sbreg((si), (sbr))
156 #define W_SBREG(si, sbr, v) sb_write_sbreg((si), (sbr), (v))
157 #define AND_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) & (v)))
158 #define OR_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) | (v)))
159
160 /*
161 * Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts before/
162 * after core switching to avoid invalid register accesss inside ISR.
163 */
164 #define INTR_OFF(si, intr_val) \
165 if ((si)->intrsoff_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
166 intr_val = (*(si)->intrsoff_fn)((si)->intr_arg); }
167 #define INTR_RESTORE(si, intr_val) \
168 if ((si)->intrsrestore_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
169 (*(si)->intrsrestore_fn)((si)->intr_arg, intr_val); }
170
171 /* dynamic clock control defines */
172 #define LPOMINFREQ 25000 /* low power oscillator min */
173 #define LPOMAXFREQ 43000 /* low power oscillator max */
174 #define XTALMINFREQ 19800000 /* 20 MHz - 1% */
175 #define XTALMAXFREQ 20200000 /* 20 MHz + 1% */
176 #define PCIMINFREQ 25000000 /* 25 MHz */
177 #define PCIMAXFREQ 34000000 /* 33 MHz + fudge */
178
179 #define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */
180 #define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */
181
182 /* force HT war check */
183 #define FORCEHT_WAR32414(si) \
184 (((PCIE(si)) && (si->sb.chip == BCM4311_CHIP_ID) && ((si->sb.chiprev <= 1))) || \
185 ((PCI(si) || PCIE(si)) && (si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev <= 3)))
186
187 #define PCIE_ASPMWARS(si) \
188 ((PCIE(si)) && ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5)))
189
190 /* GPIO Based LED powersave defines */
191 #define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
192 #define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
193
194 #define DEFAULT_GPIOTIMERVAL ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
195
196 static uint32 sb_read_sbreg(sb_info_t * si, volatile uint32 * sbr)
197 {
198 uint8 tmp;
199 uint32 val, intr_val = 0;
200
201 /*
202 * compact flash only has 11 bits address, while we needs 12 bits address.
203 * MEM_SEG will be OR'd with other 11 bits address in hardware,
204 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
205 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
206 */
207 if (PCMCIA(si)) {
208 INTR_OFF(si, intr_val);
209 tmp = 1;
210 OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
211 sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */
212 }
213
214 val = R_REG(si->osh, sbr);
215
216 if (PCMCIA(si)) {
217 tmp = 0;
218 OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
219 INTR_RESTORE(si, intr_val);
220 }
221
222 return (val);
223 }
224
225 static void sb_write_sbreg(sb_info_t * si, volatile uint32 * sbr, uint32 v)
226 {
227 uint8 tmp;
228 volatile uint32 dummy;
229 uint32 intr_val = 0;
230
231 /*
232 * compact flash only has 11 bits address, while we needs 12 bits address.
233 * MEM_SEG will be OR'd with other 11 bits address in hardware,
234 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
235 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
236 */
237 if (PCMCIA(si)) {
238 INTR_OFF(si, intr_val);
239 tmp = 1;
240 OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
241 sbr = (volatile uint32 *)((uintptr) sbr & ~(1 << 11)); /* mask out bit 11 */
242 }
243
244 if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
245 #ifdef IL_BIGENDIAN
246 dummy = R_REG(si->osh, sbr);
247 W_REG(si->osh, ((volatile uint16 *)sbr + 1),
248 (uint16) ((v >> 16) & 0xffff));
249 dummy = R_REG(si->osh, sbr);
250 W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff));
251 #else
252 dummy = R_REG(si->osh, sbr);
253 W_REG(si->osh, (volatile uint16 *)sbr, (uint16) (v & 0xffff));
254 dummy = R_REG(si->osh, sbr);
255 W_REG(si->osh, ((volatile uint16 *)sbr + 1),
256 (uint16) ((v >> 16) & 0xffff));
257 #endif /* IL_BIGENDIAN */
258 } else
259 W_REG(si->osh, sbr, v);
260
261 if (PCMCIA(si)) {
262 tmp = 0;
263 OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
264 INTR_RESTORE(si, intr_val);
265 }
266 }
267
268 /*
269 * Allocate a sb handle.
270 * devid - pci device id (used to determine chip#)
271 * osh - opaque OS handle
272 * regs - virtual address of initial core registers
273 * bustype - pci/pcmcia/sb/sdio/etc
274 * vars - pointer to a pointer area for "environment" variables
275 * varsz - pointer to int to return the size of the vars
276 */
277 sb_t *sb_attach(uint devid, osl_t * osh, void *regs,
278 uint bustype, void *sdh, char **vars,
279 uint * varsz) {
280 sb_info_t *si;
281
282 /* alloc sb_info_t */
283 if ((si = MALLOC(osh, sizeof(sb_info_t))) == NULL) {
284 SB_ERROR(("sb_attach: malloc failed! malloced %d bytes\n",
285 MALLOCED(osh)));
286 return (NULL);
287 }
288
289 if (sb_doattach(si, devid, osh, regs, bustype, sdh, vars, varsz) ==
290 NULL) {
291 MFREE(osh, si, sizeof(sb_info_t));
292 return (NULL);
293 }
294 si->vars = vars ? *vars : NULL;
295 si->varsz = varsz ? *varsz : 0;
296
297 return (sb_t *) si;
298 }
299
300 /* Using sb_kattach depends on SB_BUS support, either implicit */
301 /* no limiting BCMBUSTYPE value) or explicit (value is SB_BUS). */
302 #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
303
304 /* global kernel resource */
305 static sb_info_t ksi;
306
307 /* generic kernel variant of sb_attach() */
308 sb_t *BCMINITFN(sb_kattach) (osl_t * osh) {
309 static bool ksi_attached = FALSE;
310 uint32 *regs;
311
312 if (!ksi_attached) {
313 uint32 cid;
314
315 regs = (uint32 *) REG_MAP(SB_ENUM_BASE, SB_CORE_SIZE);
316 cid = R_REG(osh, (uint32 *) regs);
317 if (((cid & CID_ID_MASK) == BCM4712_CHIP_ID) &&
318 ((cid & CID_PKG_MASK) != BCM4712LARGE_PKG_ID) &&
319 ((cid & CID_REV_MASK) <= (3 << CID_REV_SHIFT))) {
320 uint32 *scc, val;
321
322 scc =
323 (uint32 *) ((uchar *) regs +
324 OFFSETOF(chipcregs_t, slow_clk_ctl));
325 val = R_REG(osh, scc);
326 SB_ERROR((" initial scc = 0x%x\n", val));
327 val |= SCC_SS_XTAL;
328 W_REG(osh, scc, val);
329 }
330
331 if (sb_doattach(&ksi, BCM4710_DEVICE_ID, osh, (void *)regs, SB_BUS, NULL,
332 osh != SB_OSH ? &ksi.vars : NULL,
333 osh != SB_OSH ? &ksi.varsz : NULL) == NULL)
334 return NULL;
335 ksi_attached = TRUE;
336 }
337
338 return &ksi.sb;
339 }
340 #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
341
342 static sb_info_t *BCMINITFN(sb_doattach) (sb_info_t * si, uint devid,
343 osl_t * osh, void *regs,
344 uint bustype, void *sdh,
345 char **vars, uint * varsz) {
346 uint origidx;
347 chipcregs_t *cc;
348 sbconfig_t *sb;
349 uint32 w;
350 char *pvars;
351
352 ASSERT(GOODREGS(regs));
353
354 bzero((uchar *) si, sizeof(sb_info_t));
355 si->sb.buscoreidx = si->gpioidx = BADIDX;
356
357 si->curmap = regs;
358 si->sdh = sdh;
359 si->osh = osh;
360
361 /* check to see if we are a sb core mimic'ing a pci core */
362 if (bustype == PCI_BUS) {
363 if (OSL_PCI_READ_CONFIG
364 (si->osh, PCI_SPROM_CONTROL,
365 sizeof(uint32)) == 0xffffffff) {
366 SB_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SB " "devid:0x%x\n", __FUNCTION__, devid));
367 bustype = SB_BUS;
368 }
369 }
370 si->sb.bustype = bustype;
371 if (si->sb.bustype != BUSTYPE(si->sb.bustype)) {
372 SB_ERROR(("sb_doattach: bus type %d does not match configured bus type %d\n", si->sb.bustype, BUSTYPE(si->sb.bustype)));
373 return NULL;
374 }
375
376 /* need to set memseg flag for CF card first before any sb registers access */
377 if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS)
378 si->memseg = TRUE;
379
380 /* kludge to enable the clock on the 4306 which lacks a slowclock */
381 if (BUSTYPE(si->sb.bustype) == PCI_BUS && !sb_ispcie(si))
382 sb_clkctl_xtal(&si->sb, XTAL | PLL, ON);
383
384 if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
385 w = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
386 if (!GOODCOREADDR(w))
387 OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN,
388 sizeof(uint32), SB_ENUM_BASE);
389 }
390
391 /* initialize current core index value */
392 si->curidx = _sb_coreidx(si);
393
394 if (si->curidx == BADIDX) {
395 SB_ERROR(("sb_doattach: bad core index\n"));
396 return NULL;
397 }
398
399 /* get sonics backplane revision */
400 sb = REGS2SB(regs);
401 si->sb.sonicsrev =
402 (R_SBREG(si, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT;
403 /* keep and reuse the initial register mapping */
404 origidx = si->curidx;
405 if (BUSTYPE(si->sb.bustype) == SB_BUS)
406 si->regs[origidx] = regs;
407
408 /* is core-0 a chipcommon core? */
409 si->numcores = 1;
410 cc = (chipcregs_t *) sb_setcoreidx(&si->sb, 0);
411 if (sb_coreid(&si->sb) != SB_CC)
412 cc = NULL;
413
414 /* determine chip id and rev */
415 if (cc) {
416 /* chip common core found! */
417 si->sb.chip = R_REG(si->osh, &cc->chipid) & CID_ID_MASK;
418 si->sb.chiprev =
419 (R_REG(si->osh, &cc->chipid) & CID_REV_MASK) >>
420 CID_REV_SHIFT;
421 si->sb.chippkg =
422 (R_REG(si->osh, &cc->chipid) & CID_PKG_MASK) >>
423 CID_PKG_SHIFT;
424 } else {
425 /* no chip common core -- must convert device id to chip id */
426 if ((si->sb.chip = sb_pcidev2chip(devid)) == 0) {
427 SB_ERROR(("sb_doattach: unrecognized device id 0x%04x\n", devid));
428 sb_setcoreidx(&si->sb, origidx);
429 return NULL;
430 }
431 }
432
433 /* get chipcommon rev */
434 si->sb.ccrev = cc ? (int)sb_corerev(&si->sb) : NOREV;
435
436 /* get chipcommon capabilites */
437 si->sb.cccaps = cc ? R_REG(si->osh, &cc->capabilities) : 0;
438
439 /* determine numcores */
440 if (cc && ((si->sb.ccrev == 4) || (si->sb.ccrev >= 6)))
441 si->numcores =
442 (R_REG(si->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT;
443 else
444 si->numcores = sb_chip2numcores(si->sb.chip);
445
446 /* return to original core */
447 sb_setcoreidx(&si->sb, origidx);
448
449 /* sanity checks */
450 ASSERT(si->sb.chip);
451
452 /* scan for cores */
453 sb_scan(si);
454
455 /* fixup necessary chip/core configurations */
456 if (BUSTYPE(si->sb.bustype) == PCI_BUS && sb_pci_fixcfg(si)) {
457 SB_ERROR(("sb_doattach: sb_pci_fixcfg failed\n"));
458 return NULL;
459 }
460
461 /* Init nvram from sprom/otp if they exist */
462 if (srom_var_init
463 (&si->sb, BUSTYPE(si->sb.bustype), regs, si->osh, vars, varsz)) {
464 SB_ERROR(("sb_doattach: srom_var_init failed: bad srom\n"));
465 return (NULL);
466 }
467 pvars = vars ? *vars : NULL;
468
469 /* PMU specific initializations */
470 if ((si->sb.cccaps & CC_CAP_PMU) && !sb_onetimeinit) {
471 sb_pmu_init(&si->sb, si->osh);
472 /* Find out Crystal frequency and init PLL */
473 sb_pmu_pll_init(&si->sb, si->osh, getintvar(pvars, "xtalfreq"));
474 /* Initialize PMU resources (up/dn timers, dep masks, etc.) */
475 sb_pmu_res_init(&si->sb, si->osh);
476 }
477 if (cc == NULL) {
478 /*
479 * The chip revision number is hardwired into all
480 * of the pci function config rev fields and is
481 * independent from the individual core revision numbers.
482 * For example, the "A0" silicon of each chip is chip rev 0.
483 * For PCMCIA we get it from the CIS instead.
484 */
485 if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
486 ASSERT(vars);
487 si->sb.chiprev = getintvar(*vars, "chiprev");
488 } else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
489 w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_REV,
490 sizeof(uint32));
491 si->sb.chiprev = w & 0xff;
492 } else
493 si->sb.chiprev = 0;
494 }
495
496 if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
497 w = getintvar(pvars, "regwindowsz");
498 si->memseg = (w <= CFTABLE_REGWIN_2K) ? TRUE : FALSE;
499 }
500 /* gpio control core is required */
501 if (!GOODIDX(si->gpioidx)) {
502 SB_ERROR(("sb_doattach: gpio control core not found\n"));
503 return NULL;
504 }
505
506 /* get boardtype and boardrev */
507 switch (BUSTYPE(si->sb.bustype)) {
508 case PCI_BUS:
509 /* do a pci config read to get subsystem id and subvendor id */
510 w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_SVID, sizeof(uint32));
511 /* Let nvram variables override subsystem Vend/ID */
512 if ((si->sb.boardvendor =
513 (uint16) sb_getdevpathintvar(&si->sb, "boardvendor")) == 0)
514 si->sb.boardvendor = w & 0xffff;
515 else
516 SB_ERROR(("Overriding boardvendor: 0x%x instead of 0x%x\n", si->sb.boardvendor, w & 0xffff));
517 if ((si->sb.boardtype =
518 (uint16) sb_getdevpathintvar(&si->sb, "boardtype")) == 0)
519 si->sb.boardtype = (w >> 16) & 0xffff;
520 else
521 SB_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n", si->sb.boardtype, (w >> 16) & 0xffff));
522 break;
523
524 case PCMCIA_BUS:
525 si->sb.boardvendor = getintvar(pvars, "manfid");
526 si->sb.boardtype = getintvar(pvars, "prodid");
527 break;
528
529 case SB_BUS:
530 case JTAG_BUS:
531 si->sb.boardvendor = VENDOR_BROADCOM;
532 if (pvars == NULL
533 || ((si->sb.boardtype = getintvar(pvars, "prodid")) == 0))
534 if ((si->sb.boardtype =
535 getintvar(NULL, "boardtype")) == 0)
536 si->sb.boardtype = 0xffff;
537 break;
538 }
539
540 if (si->sb.boardtype == 0) {
541 SB_ERROR(("sb_doattach: unknown board type\n"));
542 ASSERT(si->sb.boardtype);
543 }
544
545 si->sb.boardflags = getintvar(pvars, "boardflags");
546
547 /* setup the GPIO based LED powersave register */
548 if (si->sb.ccrev >= 16) {
549 if ((pvars == NULL) || ((w = getintvar(pvars, "leddc")) == 0))
550 w = DEFAULT_GPIOTIMERVAL;
551 sb_corereg(&si->sb, SB_CC_IDX,
552 OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
553 }
554
555 /* Determine if this board needs override */
556 if (PCIE(si) && (si->sb.chip == BCM4321_CHIP_ID))
557 si->pcie_war_ovr = ((si->sb.boardvendor == VENDOR_APPLE) &&
558 ((uint8) getintvar(pvars, "sromrev") == 4)
559 && ((uint8) getintvar(pvars, "boardrev") <=
560 0x71))
561 || ((uint32) getintvar(pvars, "boardflags2") &
562 BFL2_PCIEWAR_OVR);
563
564 if (PCIE_ASPMWARS(si)) {
565 sb_war43448_aspm((void *)si);
566 sb_war42767_clkreq((void *)si);
567 }
568
569 if (FORCEHT_WAR32414(si)) {
570 si->sb.pr32414 = TRUE;
571 sb_clkctl_init(&si->sb);
572 sb_war32414_forceHT(&si->sb, 1);
573 }
574
575 if (PCIE(si) && ((si->sb.buscorerev == 6) || (si->sb.buscorerev == 7)))
576 si->sb.pr42780 = TRUE;
577
578 if (PCIE_ASPMWARS(si))
579 sb_pcieclkreq(&si->sb, 1, 0);
580
581 if (PCIE(si) &&
582 (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) ||
583 ((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0))))
584 sb_set_initiator_to(&si->sb, 0x3,
585 sb_findcoreidx(&si->sb, SB_D11, 0));
586
587 /* Disable gpiopullup and gpiopulldown */
588 if (!sb_onetimeinit && si->sb.ccrev >= 20) {
589 cc = (chipcregs_t *) sb_setcore(&si->sb, SB_CC, 0);
590 W_REG(osh, &cc->gpiopullup, 0);
591 W_REG(osh, &cc->gpiopulldown, 0);
592 sb_setcoreidx(&si->sb, origidx);
593 }
594 #ifdef BCMDBG
595 /* clear any previous epidiag-induced target abort */
596 sb_taclear(&si->sb);
597 #endif /* BCMDBG */
598
599 #ifdef HNDRTE
600 sb_onetimeinit = TRUE;
601 #endif
602
603 return (si);
604 }
605
606 /* Enable/Disable clkreq for PCIE (4311B0/4321B1) */
607 void sb_war42780_clkreq(sb_t * sbh, bool clkreq) {
608 sb_info_t *si;
609
610 si = SB_INFO(sbh);
611
612 /* Don't change clkreq value if serdespll war has not yet been applied */
613 if (!si->pr42767_war && PCIE_ASPMWARS(si))
614 return;
615
616 sb_pcieclkreq(sbh, 1, (int32) clkreq);
617 }
618
619 static void BCMINITFN(sb_war43448) (sb_t * sbh) {
620 sb_info_t *si;
621
622 si = SB_INFO(sbh);
623
624 /* if not pcie bus, we're done */
625 if (!PCIE(si) || !PCIE_ASPMWARS(si))
626 return;
627
628 /* Restore the polarity */
629 if (si->pcie_polarity != 0)
630 sb_pcie_mdiowrite((void *)(uintptr) & si->sb, MDIODATA_DEV_RX,
631 SERDES_RX_CTRL, si->pcie_polarity);
632 }
633
634 static void BCMINITFN(sb_war43448_aspm) (sb_t * sbh) {
635 uint32 w;
636 uint16 val16, *reg16;
637 sbpcieregs_t *pcieregs;
638 sb_info_t *si;
639
640 si = SB_INFO(sbh);
641
642 /* if not pcie bus, we're done */
643 if (!PCIE(si) || !PCIE_ASPMWARS(si))
644 return;
645
646 /* no ASPM stuff on QT or VSIM */
647 if (si->sb.chippkg == HDLSIM_PKG_ID || si->sb.chippkg == HWSIM_PKG_ID)
648 return;
649
650 pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
651
652 /* Enable ASPM in the shadow SROM and Link control */
653 reg16 = &pcieregs->sprom[SRSH_ASPM_OFFSET];
654 val16 = R_REG(si->osh, reg16);
655 if (!si->pcie_war_ovr)
656 val16 |= SRSH_ASPM_ENB;
657 else
658 val16 &= ~SRSH_ASPM_ENB;
659 W_REG(si->osh, reg16, val16);
660
661 w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
662 sizeof(uint32));
663 if (!si->pcie_war_ovr)
664 w |= PCIE_ASPM_ENAB;
665 else
666 w &= ~PCIE_ASPM_ENAB;
667 OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32),
668 w);
669 }
670
671 static void BCMINITFN(sb_war32414_forceHT) (sb_t * sbh, bool forceHT) {
672 sb_info_t *si;
673 uint32 val = 0;
674
675 si = SB_INFO(sbh);
676
677 ASSERT(FORCEHT_WAR32414(si));
678
679 if (forceHT)
680 val = SYCC_HR;
681 sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, system_clk_ctl),
682 SYCC_HR, val);
683 }
684
685 uint sb_coreid(sb_t * sbh)
686 {
687 sb_info_t *si;
688 sbconfig_t *sb;
689
690 si = SB_INFO(sbh);
691 sb = REGS2SB(si->curmap);
692
693 return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
694 }
695
696 uint sb_flag(sb_t * sbh)
697 {
698 sb_info_t *si;
699 sbconfig_t *sb;
700
701 si = SB_INFO(sbh);
702 sb = REGS2SB(si->curmap);
703
704 return R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
705 }
706
707 uint sb_coreidx(sb_t * sbh)
708 {
709 sb_info_t *si;
710
711 si = SB_INFO(sbh);
712 return (si->curidx);
713 }
714
715 static uint _sb_coreidx(sb_info_t * si)
716 {
717
718 sbconfig_t *sb;
719 uint32 sbaddr = 0;
720
721 ASSERT(si);
722
723 switch (BUSTYPE(si->sb.bustype)) {
724 case SB_BUS:
725 sb = REGS2SB(si->curmap);
726 sbaddr = sb_base(R_SBREG(si, &sb->sbadmatch0));
727 break;
728
729 case PCI_BUS:
730 sbaddr =
731 OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
732 break;
733
734 case PCMCIA_BUS:{
735 uint8 tmp = 0;
736
737 OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
738 sbaddr = (uint) tmp << 12;
739 OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
740 sbaddr |= (uint) tmp << 16;
741 OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
742 sbaddr |= (uint) tmp << 24;
743 break;
744 }
745
746 #ifdef BCMJTAG
747 case JTAG_BUS:
748 sbaddr = (uint32) si->curmap;
749 break;
750 #endif /* BCMJTAG */
751
752 default:
753 ASSERT(0);
754 }
755
756 if (!GOODCOREADDR(sbaddr))
757 return BADIDX;
758
759 return ((sbaddr - SB_ENUM_BASE) / SB_CORE_SIZE);
760 }
761
762 uint sb_corevendor(sb_t * sbh)
763 {
764 sb_info_t *si;
765 sbconfig_t *sb;
766
767 si = SB_INFO(sbh);
768 sb = REGS2SB(si->curmap);
769
770 return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
771 }
772
773 uint sb_corerev(sb_t * sbh)
774 {
775 sb_info_t *si;
776 sbconfig_t *sb;
777 uint sbidh;
778
779 si = SB_INFO(sbh);
780 sb = REGS2SB(si->curmap);
781 sbidh = R_SBREG(si, &sb->sbidhigh);
782
783 return (SBCOREREV(sbidh));
784 }
785
786 void *sb_osh(sb_t * sbh)
787 {
788 sb_info_t *si;
789
790 si = SB_INFO(sbh);
791 return si->osh;
792 }
793
794 void sb_setosh(sb_t * sbh, osl_t * osh)
795 {
796 sb_info_t *si;
797
798 si = SB_INFO(sbh);
799 if (si->osh != NULL) {
800 SB_ERROR(("osh is already set....\n"));
801 ASSERT(!si->osh);
802 }
803 si->osh = osh;
804 }
805
806 /* set sbtmstatelow core-specific flags */
807 void sb_coreflags_wo(sb_t * sbh, uint32 mask, uint32 val)
808 {
809 sb_info_t *si;
810 sbconfig_t *sb;
811 uint32 w;
812
813 si = SB_INFO(sbh);
814 sb = REGS2SB(si->curmap);
815
816 ASSERT((val & ~mask) == 0);
817
818 /* mask and set */
819 w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
820 W_SBREG(si, &sb->sbtmstatelow, w);
821 }
822
823 /* set/clear sbtmstatelow core-specific flags */
824 uint32 sb_coreflags(sb_t * sbh, uint32 mask, uint32 val)
825 {
826 sb_info_t *si;
827 sbconfig_t *sb;
828 uint32 w;
829
830 si = SB_INFO(sbh);
831 sb = REGS2SB(si->curmap);
832
833 ASSERT((val & ~mask) == 0);
834
835 /* mask and set */
836 if (mask || val) {
837 w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
838 W_SBREG(si, &sb->sbtmstatelow, w);
839 }
840
841 /* return the new value
842 * for write operation, the following readback ensures the completion of write opration.
843 */
844 return (R_SBREG(si, &sb->sbtmstatelow));
845 }
846
847 /* set/clear sbtmstatehigh core-specific flags */
848 uint32 sb_coreflagshi(sb_t * sbh, uint32 mask, uint32 val)
849 {
850 sb_info_t *si;
851 sbconfig_t *sb;
852 uint32 w;
853
854 si = SB_INFO(sbh);
855 sb = REGS2SB(si->curmap);
856
857 ASSERT((val & ~mask) == 0);
858 ASSERT((mask & ~SBTMH_FL_MASK) == 0);
859
860 /* mask and set */
861 if (mask || val) {
862 w = (R_SBREG(si, &sb->sbtmstatehigh) & ~mask) | val;
863 W_SBREG(si, &sb->sbtmstatehigh, w);
864 }
865
866 /* return the new value */
867 return (R_SBREG(si, &sb->sbtmstatehigh));
868 }
869
870 /* Run bist on current core. Caller needs to take care of core-specific bist hazards */
871 int sb_corebist(sb_t * sbh)
872 {
873 uint32 sblo;
874 sb_info_t *si;
875 sbconfig_t *sb;
876 int result = 0;
877
878 si = SB_INFO(sbh);
879 sb = REGS2SB(si->curmap);
880
881 sblo = R_SBREG(si, &sb->sbtmstatelow);
882 W_SBREG(si, &sb->sbtmstatelow, (sblo | SBTML_FGC | SBTML_BE));
883
884 SPINWAIT(((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTD) == 0),
885 100000);
886
887 if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTF)
888 result = -1;
889
890 W_SBREG(si, &sb->sbtmstatelow, sblo);
891
892 return result;
893 }
894
895 bool sb_iscoreup(sb_t * sbh)
896 {
897 sb_info_t *si;
898 sbconfig_t *sb;
899
900 si = SB_INFO(sbh);
901 sb = REGS2SB(si->curmap);
902
903 return ((R_SBREG(si, &sb->sbtmstatelow) &
904 (SBTML_RESET | SBTML_REJ_MASK | SBTML_CLK)) == SBTML_CLK);
905 }
906
907 /*
908 * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
909 * switch back to the original core, and return the new value.
910 *
911 * When using the silicon backplane, no fidleing with interrupts or core switches are needed.
912 *
913 * Also, when using pci/pcie, we can optimize away the core switching for pci registers
914 * and (on newer pci cores) chipcommon registers.
915 */
916 uint sb_corereg(sb_t * sbh, uint coreidx, uint regoff, uint mask, uint val)
917 {
918 uint origidx = 0;
919 uint32 *r = NULL;
920 uint w;
921 uint intr_val = 0;
922 bool fast = FALSE;
923 sb_info_t *si;
924
925 si = SB_INFO(sbh);
926
927 ASSERT(GOODIDX(coreidx));
928 ASSERT(regoff < SB_CORE_SIZE);
929 ASSERT((val & ~mask) == 0);
930
931 #if 0
932 if (BUSTYPE(si->sb.bustype) == SB_BUS) {
933 /* If internal bus, we can always get at everything */
934 fast = TRUE;
935 /* map if does not exist */
936 if (!si->regs[coreidx]) {
937 si->regs[coreidx] =
938 (void *)REG_MAP(si->coresba[coreidx], SB_CORE_SIZE);
939 ASSERT(GOODREGS(si->regs[coreidx]));
940 }
941 r = (uint32 *) ((uchar *) si->regs[coreidx] + regoff);
942 } else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
943 /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
944
945 if ((si->coreid[coreidx] == SB_CC) &&
946 ((si->sb.buscoretype == SB_PCIE)
947 || (si->sb.buscorerev >= 13))) {
948 /* Chipc registers are mapped at 12KB */
949
950 fast = TRUE;
951 r = (uint32 *) ((char *)si->curmap +
952 PCI_16KB0_CCREGS_OFFSET + regoff);
953 } else if (si->sb.buscoreidx == coreidx) {
954 /* pci registers are at either in the last 2KB of an 8KB window
955 * or, in pcie and pci rev 13 at 8KB
956 */
957 fast = TRUE;
958 if ((si->sb.buscoretype == SB_PCIE)
959 || (si->sb.buscorerev >= 13))
960 r = (uint32 *) ((char *)si->curmap +
961 PCI_16KB0_PCIREGS_OFFSET +
962 regoff);
963 else
964 r = (uint32 *) ((char *)si->curmap +
965 ((regoff >= SBCONFIGOFF) ?
966 PCI_BAR0_PCISBR_OFFSET :
967 PCI_BAR0_PCIREGS_OFFSET)
968 + regoff);
969 }
970 }
971 #endif
972
973 if (!fast) {
974 INTR_OFF(si, intr_val);
975
976 /* save current core index */
977 origidx = sb_coreidx(&si->sb);
978
979 /* switch core */
980 r = (uint32 *) ((uchar *) sb_setcoreidx(&si->sb, coreidx) +
981 regoff);
982 }
983 ASSERT(r);
984
985 /* mask and set */
986 if (mask || val) {
987 if (regoff >= SBCONFIGOFF) {
988 w = (R_SBREG(si, r) & ~mask) | val;
989 W_SBREG(si, r, w);
990 } else {
991 w = (R_REG(si->osh, r) & ~mask) | val;
992 W_REG(si->osh, r, w);
993 }
994 }
995
996 /* readback */
997 if (regoff >= SBCONFIGOFF)
998 w = R_SBREG(si, r);
999 else {
1000 if ((si->sb.chip == BCM5354_CHIP_ID) &&
1001 (coreidx == SB_CC_IDX) &&
1002 (regoff == OFFSETOF(chipcregs_t, watchdog))) {
1003 w = val;
1004 } else
1005 w = R_REG(si->osh, r);
1006 }
1007
1008 if (!fast) {
1009 /* restore core index */
1010 if (origidx != coreidx)
1011 sb_setcoreidx(&si->sb, origidx);
1012
1013 INTR_RESTORE(si, intr_val);
1014 }
1015
1016 return (w);
1017 }
1018
1019 #define DWORD_ALIGN(x) (x & ~(0x03))
1020 #define BYTE_POS(x) (x & 0x3)
1021 #define WORD_POS(x) (x & 0x1)
1022
1023 #define BYTE_SHIFT(x) (8 * BYTE_POS(x))
1024 #define WORD_SHIFT(x) (16 * WORD_POS(x))
1025
1026 #define BYTE_VAL(a, x) ((a >> BYTE_SHIFT(x)) & 0xFF)
1027 #define WORD_VAL(a, x) ((a >> WORD_SHIFT(x)) & 0xFFFF)
1028
1029 #define read_pci_cfg_byte(a) \
1030 (BYTE_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xff)
1031
1032 #define read_pci_cfg_word(a) \
1033 (WORD_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xffff)
1034
1035 /* return cap_offset if requested capability exists in the PCI config space */
1036 static uint8
1037 sb_find_pci_capability(sb_info_t * si, uint8 req_cap_id, uchar * buf,
1038 uint32 * buflen)
1039 {
1040 uint8 cap_id;
1041 uint8 cap_ptr = 0;
1042 uint32 bufsize;
1043 uint8 byte_val;
1044
1045 if (BUSTYPE(si->sb.bustype) != PCI_BUS)
1046 goto end;
1047
1048 /* check for Header type 0 */
1049 byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
1050 if ((byte_val & 0x7f) != PCI_HEADER_NORMAL)
1051 goto end;
1052
1053 /* check if the capability pointer field exists */
1054 byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
1055 if (!(byte_val & PCI_CAPPTR_PRESENT))
1056 goto end;
1057
1058 cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
1059 /* check if the capability pointer is 0x00 */
1060 if (cap_ptr == 0x00)
1061 goto end;
1062
1063 /* loop thr'u the capability list and see if the pcie capabilty exists */
1064
1065 cap_id = read_pci_cfg_byte(cap_ptr);
1066
1067 while (cap_id != req_cap_id) {
1068 cap_ptr = read_pci_cfg_byte((cap_ptr + 1));
1069 if (cap_ptr == 0x00)
1070 break;
1071 cap_id = read_pci_cfg_byte(cap_ptr);
1072 }
1073 if (cap_id != req_cap_id) {
1074 goto end;
1075 }
1076 /* found the caller requested capability */
1077 if ((buf != NULL) && (buflen != NULL)) {
1078 uint8 cap_data;
1079
1080 bufsize = *buflen;
1081 if (!bufsize)
1082 goto end;
1083 *buflen = 0;
1084 /* copy the cpability data excluding cap ID and next ptr */
1085 cap_data = cap_ptr + 2;
1086 if ((bufsize + cap_data) > SZPCR)
1087 bufsize = SZPCR - cap_data;
1088 *buflen = bufsize;
1089 while (bufsize--) {
1090 *buf = read_pci_cfg_byte(cap_data);
1091 cap_data++;
1092 buf++;
1093 }
1094 }
1095 end:
1096 return cap_ptr;
1097 }
1098
1099 uint8 sb_pcieclkreq(sb_t * sbh, uint32 mask, uint32 val)
1100 {
1101 sb_info_t *si;
1102 uint32 reg_val;
1103 uint8 offset;
1104
1105 si = SB_INFO(sbh);
1106
1107 offset = si->pciecap_lcreg_offset;
1108 if (!offset)
1109 return 0;
1110
1111 reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
1112 /* set operation */
1113 if (mask) {
1114 if (val)
1115 reg_val |= PCIE_CLKREQ_ENAB;
1116 else
1117 reg_val &= ~PCIE_CLKREQ_ENAB;
1118 OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), reg_val);
1119 reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
1120 }
1121 if (reg_val & PCIE_CLKREQ_ENAB)
1122 return 1;
1123 else
1124 return 0;
1125 }
1126
1127 #ifdef BCMDBG
1128
1129 uint32 sb_pcielcreg(sb_t * sbh, uint32 mask, uint32 val)
1130 {
1131 sb_info_t *si;
1132 uint32 reg_val;
1133 uint8 offset;
1134
1135 si = SB_INFO(sbh);
1136
1137 if (!PCIE(si))
1138 return 0;
1139
1140 offset = si->pciecap_lcreg_offset;
1141 if (!offset)
1142 return 0;
1143
1144 /* set operation */
1145 if (mask)
1146 OSL_PCI_WRITE_CONFIG(si->osh, offset, sizeof(uint32), val);
1147
1148 reg_val = OSL_PCI_READ_CONFIG(si->osh, offset, sizeof(uint32));
1149
1150 return reg_val;
1151 }
1152
1153 uint8 sb_pcieL1plldown(sb_t * sbh)
1154 {
1155 sb_info_t *si;
1156 uint intr_val = 0;
1157 uint origidx;
1158 uint32 reg_val;
1159
1160 si = SB_INFO(sbh);
1161
1162 if (!PCIE(si))
1163 return 0;
1164 if (!((si->sb.buscorerev == 3) || (si->sb.buscorerev == 4)))
1165 return 0;
1166
1167 if (!sb_pcieclkreq((void *)(uintptr) sbh, 0, 0)) {
1168 SB_ERROR(("PCIEL1PLLDOWN requires Clkreq be enabled, so enable it\n"));
1169 sb_pcieclkreq((void *)(uintptr) sbh, 1, 1);
1170 }
1171 reg_val = sb_pcielcreg((void *)(uintptr) sbh, 0, 0);
1172 if (reg_val & PCIE_CAP_LCREG_ASPML0s) {
1173 SB_ERROR(("PCIEL1PLLDOWN requires L0s to be disabled\n"));
1174 reg_val &= ~PCIE_CAP_LCREG_ASPML0s;
1175 sb_pcielcreg((void *)(uintptr) sbh, 1, reg_val);
1176 } else
1177 SB_ERROR(("PCIEL1PLLDOWN: L0s is already disabled\n"));
1178
1179 /* turnoff intrs, change core, set original back, turn on intrs back on */
1180 origidx = si->curidx;
1181 INTR_OFF(si, intr_val);
1182 sb_setcore(sbh, SB_PCIE, 0);
1183
1184 sb_pcie_writereg((void *)(uintptr) sbh, (void *)PCIE_PCIEREGS,
1185 PCIE_DLLP_PCIE11, 0);
1186
1187 sb_setcoreidx(sbh, origidx);
1188 INTR_RESTORE(si, intr_val);
1189 return 1;
1190 }
1191 #endif /* BCMDBG */
1192
1193 /* return TRUE if PCIE capability exists in the pci config space */
1194 static bool sb_ispcie(sb_info_t * si)
1195 {
1196 uint8 cap_ptr;
1197
1198 cap_ptr = sb_find_pci_capability(si, PCI_CAP_PCIECAP_ID, NULL, NULL);
1199 if (!cap_ptr)
1200 return FALSE;
1201
1202 si->pciecap_lcreg_offset = cap_ptr + PCIE_CAP_LINKCTRL_OFFSET;
1203
1204 return TRUE;
1205 }
1206
1207 /* Wake-on-wireless-LAN (WOWL) support functions */
1208 /* return TRUE if PM capability exists in the pci config space */
1209 bool sb_pci_pmecap(sb_t * sbh)
1210 {
1211 uint8 cap_ptr;
1212 uint32 pmecap;
1213 sb_info_t *si;
1214
1215 si = SB_INFO(sbh);
1216
1217 if (si == NULL || !(PCI(si) || PCIE(si)))
1218 return FALSE;
1219
1220 if (!si->pmecap_offset) {
1221 cap_ptr =
1222 sb_find_pci_capability(si, PCI_CAP_POWERMGMTCAP_ID, NULL,
1223 NULL);
1224 if (!cap_ptr)
1225 return FALSE;
1226
1227 si->pmecap_offset = cap_ptr;
1228
1229 pmecap =
1230 OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset,
1231 sizeof(uint32));
1232
1233 /* At least one state can generate PME */
1234 si->pmecap = (pmecap & PME_CAP_PM_STATES) != 0;
1235 }
1236
1237 return (si->pmecap);
1238 }
1239
1240 /* Enable PME generation and disable clkreq */
1241 void sb_pci_pmeen(sb_t * sbh)
1242 {
1243 sb_info_t *si;
1244 uint32 w;
1245 si = SB_INFO(sbh);
1246
1247 /* if not pmecapable return */
1248 if (!sb_pci_pmecap(sbh))
1249 return;
1250
1251 w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
1252 sizeof(uint32));
1253 w |= (PME_CSR_PME_EN);
1254 OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
1255 sizeof(uint32), w);
1256
1257 /* Disable clkreq */
1258 if (si->pr42767_war) {
1259 sb_pcieclkreq(sbh, 1, 0);
1260 si->pr42767_war = FALSE;
1261 } else if (si->sb.pr42780) {
1262 sb_pcieclkreq(sbh, 1, 1);
1263 }
1264 }
1265
1266 /* Disable PME generation, clear the PME status bit if set and
1267 * return TRUE if PME status set
1268 */
1269 bool sb_pci_pmeclr(sb_t * sbh)
1270 {
1271 sb_info_t *si;
1272 uint32 w;
1273 bool ret = FALSE;
1274
1275 si = SB_INFO(sbh);
1276
1277 if (!sb_pci_pmecap(sbh))
1278 return ret;
1279
1280 w = OSL_PCI_READ_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
1281 sizeof(uint32));
1282
1283 SB_ERROR(("sb_pci_pmeclr PMECSR : 0x%x\n", w));
1284 ret = (w & PME_CSR_PME_STAT) == PME_CSR_PME_STAT;
1285
1286 /* PMESTAT is cleared by writing 1 to it */
1287 w &= ~(PME_CSR_PME_EN);
1288
1289 OSL_PCI_WRITE_CONFIG(si->osh, si->pmecap_offset + PME_CSR_OFFSET,
1290 sizeof(uint32), w);
1291
1292 return ret;
1293 }
1294
1295 /* use pci dev id to determine chip id for chips not having a chipcommon core */
1296 static uint BCMINITFN(sb_pcidev2chip) (uint pcidev) {
1297 if ((pcidev >= BCM4710_DEVICE_ID) && (pcidev <= BCM47XX_USB_ID))
1298 return (BCM4710_CHIP_ID);
1299 if ((pcidev >= BCM4402_ENET_ID) && (pcidev <= BCM4402_V90_ID))
1300 return (BCM4402_CHIP_ID);
1301 if (pcidev == BCM4401_ENET_ID)
1302 return (BCM4402_CHIP_ID);
1303 if (pcidev == SDIOH_FPGA_ID)
1304 return (SDIOH_FPGA_ID);
1305
1306 return (0);
1307 }
1308
1309 /* Scan the enumeration space to find all cores starting from the given
1310 * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba'
1311 * is the default core address at chip POR time and 'regs' is the virtual
1312 * address that the default core is mapped at. 'ncores' is the number of
1313 * cores expected on bus 'sbba'. It returns the total number of cores
1314 * starting from bus 'sbba', inclusive.
1315 */
1316
1317 static void BCMINITFN(sb_scan) (sb_info_t * si) {
1318 sb_t *sbh;
1319 uint origidx;
1320 uint i;
1321 bool pci;
1322 bool pcie;
1323 uint pciidx;
1324 uint pcieidx;
1325 uint pcirev;
1326 uint pcierev;
1327
1328 sbh = (sb_t *) si;
1329
1330 /* numcores should already be set */
1331 ASSERT((si->numcores > 0) && (si->numcores <= SB_MAXCORES));
1332
1333 /* save current core index */
1334 origidx = sb_coreidx(&si->sb);
1335
1336 si->sb.buscorerev = NOREV;
1337 si->sb.buscoreidx = BADIDX;
1338
1339 si->gpioidx = BADIDX;
1340
1341 pci = pcie = FALSE;
1342 pcirev = pcierev = NOREV;
1343 pciidx = pcieidx = BADIDX;
1344
1345 for (i = 0; i < si->numcores; i++) {
1346 sb_setcoreidx(&si->sb, i);
1347 si->coreid[i] = sb_coreid(&si->sb);
1348
1349 if (si->coreid[i] == SB_PCI) {
1350 pciidx = i;
1351 pcirev = sb_corerev(&si->sb);
1352 pci = TRUE;
1353 } else if (si->coreid[i] == SB_PCIE) {
1354 pcieidx = i;
1355 pcierev = sb_corerev(&si->sb);
1356 pcie = TRUE;
1357 } else if (si->coreid[i] == SB_PCMCIA) {
1358 si->sb.buscorerev = sb_corerev(&si->sb);
1359 si->sb.buscoretype = si->coreid[i];
1360 si->sb.buscoreidx = i;
1361 }
1362 }
1363 if (pci && pcie) {
1364 if (sb_ispcie(si))
1365 pci = FALSE;
1366 else
1367 pcie = FALSE;
1368 }
1369 if (pci) {
1370 si->sb.buscoretype = SB_PCI;
1371 si->sb.buscorerev = pcirev;
1372 si->sb.buscoreidx = pciidx;
1373 } else if (pcie) {
1374 si->sb.buscoretype = SB_PCIE;
1375 si->sb.buscorerev = pcierev;
1376 si->sb.buscoreidx = pcieidx;
1377 }
1378
1379 /*
1380 * Find the gpio "controlling core" type and index.
1381 * Precedence:
1382 * - if there's a chip common core - use that
1383 * - else if there's a pci core (rev >= 2) - use that
1384 * - else there had better be an extif core (4710 only)
1385 */
1386 if (GOODIDX(sb_findcoreidx(sbh, SB_CC, 0))) {
1387 si->gpioidx = sb_findcoreidx(sbh, SB_CC, 0);
1388 si->gpioid = SB_CC;
1389 } else if (PCI(si) && (si->sb.buscorerev >= 2)) {
1390 si->gpioidx = si->sb.buscoreidx;
1391 si->gpioid = SB_PCI;
1392 } else if (sb_findcoreidx(sbh, SB_EXTIF, 0)) {
1393 si->gpioidx = sb_findcoreidx(sbh, SB_EXTIF, 0);
1394 si->gpioid = SB_EXTIF;
1395 } else
1396 ASSERT(si->gpioidx != BADIDX);
1397
1398 /* return to original core index */
1399 sb_setcoreidx(&si->sb, origidx);
1400 }
1401
1402 /* may be called with core in reset */
1403 void sb_detach(sb_t * sbh)
1404 {
1405 sb_info_t *si;
1406 uint idx;
1407
1408 si = SB_INFO(sbh);
1409
1410 if (si == NULL)
1411 return;
1412
1413 if (BUSTYPE(si->sb.bustype) == SB_BUS)
1414 for (idx = 0; idx < SB_MAXCORES; idx++)
1415 if (si->regs[idx]) {
1416 REG_UNMAP(si->regs[idx]);
1417 si->regs[idx] = NULL;
1418 }
1419 #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
1420 if (si != &ksi)
1421 #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
1422 MFREE(si->osh, si, sizeof(sb_info_t));
1423 }
1424
1425
1426 /* convert chip number to number of i/o cores */
1427 static uint BCMINITFN(sb_chip2numcores) (uint chip) {
1428 if (chip == BCM4710_CHIP_ID)
1429 return (9);
1430 if (chip == BCM4402_CHIP_ID)
1431 return (3);
1432 if (chip == BCM4306_CHIP_ID) /* < 4306c0 */
1433 return (6);
1434 if (chip == BCM4704_CHIP_ID)
1435 return (9);
1436 if (chip == BCM5365_CHIP_ID)
1437 return (7);
1438 if (chip == SDIOH_FPGA_ID)
1439 return (2);
1440
1441 SB_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip));
1442 ASSERT(0);
1443 return (1);
1444 }
1445
1446 /* return index of coreid or BADIDX if not found */
1447 uint sb_findcoreidx(sb_t * sbh, uint coreid, uint coreunit)
1448 {
1449 sb_info_t *si;
1450 uint found;
1451 uint i;
1452
1453 si = SB_INFO(sbh);
1454
1455 found = 0;
1456
1457 for (i = 0; i < si->numcores; i++)
1458 if (si->coreid[i] == coreid) {
1459 if (found == coreunit)
1460 return (i);
1461 found++;
1462 }
1463
1464 return (BADIDX);
1465 }
1466
1467 /*
1468 * this function changes logical "focus" to the indiciated core,
1469 * must be called with interrupt off.
1470 * Moreover, callers should keep interrupts off during switching out of and back to d11 core
1471 */
1472 void *sb_setcoreidx(sb_t * sbh, uint coreidx)
1473 {
1474 sb_info_t *si;
1475 uint32 sbaddr;
1476 uint8 tmp;
1477
1478 si = SB_INFO(sbh);
1479
1480 if (coreidx >= si->numcores)
1481 return (NULL);
1482
1483 /*
1484 * If the user has provided an interrupt mask enabled function,
1485 * then assert interrupts are disabled before switching the core.
1486 */
1487 ASSERT((si->intrsenabled_fn == NULL)
1488 || !(*(si)->intrsenabled_fn) ((si)->intr_arg));
1489
1490 sbaddr = SB_ENUM_BASE + (coreidx * SB_CORE_SIZE);
1491
1492 switch (BUSTYPE(si->sb.bustype)) {
1493 case SB_BUS:
1494 /* map new one */
1495 if (!si->regs[coreidx]) {
1496 si->regs[coreidx] =
1497 (void *)REG_MAP(sbaddr, SB_CORE_SIZE);
1498 ASSERT(GOODREGS(si->regs[coreidx]));
1499 }
1500 si->curmap = si->regs[coreidx];
1501 break;
1502
1503 case PCI_BUS:
1504 /* point bar0 window */
1505 OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, 4, sbaddr);
1506 break;
1507
1508 case PCMCIA_BUS:
1509 tmp = (sbaddr >> 12) & 0x0f;
1510 OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
1511 tmp = (sbaddr >> 16) & 0xff;
1512 OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
1513 tmp = (sbaddr >> 24) & 0xff;
1514 OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
1515 break;
1516 #ifdef BCMJTAG
1517 case JTAG_BUS:
1518 /* map new one */
1519 if (!si->regs[coreidx]) {
1520 si->regs[coreidx] = (void *)sbaddr;
1521 ASSERT(GOODREGS(si->regs[coreidx]));
1522 }
1523 si->curmap = si->regs[coreidx];
1524 break;
1525 #endif /* BCMJTAG */
1526 }
1527
1528 si->curidx = coreidx;
1529
1530 return (si->curmap);
1531 }
1532
1533 /*
1534 * this function changes logical "focus" to the indiciated core,
1535 * must be called with interrupt off.
1536 * Moreover, callers should keep interrupts off during switching out of and back to d11 core
1537 */
1538 void *sb_setcore(sb_t * sbh, uint coreid, uint coreunit)
1539 {
1540 uint idx;
1541
1542 idx = sb_findcoreidx(sbh, coreid, coreunit);
1543 if (!GOODIDX(idx))
1544 return (NULL);
1545
1546 return (sb_setcoreidx(sbh, idx));
1547 }
1548
1549 /* return chip number */
1550 uint BCMINITFN(sb_chip) (sb_t * sbh) {
1551 sb_info_t *si;
1552
1553 si = SB_INFO(sbh);
1554 return (si->sb.chip);
1555 }
1556
1557 /* return chip revision number */
1558 uint BCMINITFN(sb_chiprev) (sb_t * sbh) {
1559 sb_info_t *si;
1560
1561 si = SB_INFO(sbh);
1562 return (si->sb.chiprev);
1563 }
1564
1565 /* return chip common revision number */
1566 uint BCMINITFN(sb_chipcrev) (sb_t * sbh) {
1567 sb_info_t *si;
1568
1569 si = SB_INFO(sbh);
1570 return (si->sb.ccrev);
1571 }
1572
1573 /* return chip package option */
1574 uint BCMINITFN(sb_chippkg) (sb_t * sbh) {
1575 sb_info_t *si;
1576
1577 si = SB_INFO(sbh);
1578 return (si->sb.chippkg);
1579 }
1580
1581 /* return PCI core rev. */
1582 uint BCMINITFN(sb_pcirev) (sb_t * sbh) {
1583 sb_info_t *si;
1584
1585 si = SB_INFO(sbh);
1586 return (si->sb.buscorerev);
1587 }
1588
1589 bool BCMINITFN(sb_war16165) (sb_t * sbh) {
1590 sb_info_t *si;
1591
1592 si = SB_INFO(sbh);
1593
1594 return (PCI(si) && (si->sb.buscorerev <= 10));
1595 }
1596
1597 static void BCMINITFN(sb_war30841) (sb_info_t * si) {
1598 sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128);
1599 sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100);
1600 sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466);
1601 }
1602
1603 /* return PCMCIA core rev. */
1604 uint BCMINITFN(sb_pcmciarev) (sb_t * sbh) {
1605 sb_info_t *si;
1606
1607 si = SB_INFO(sbh);
1608 return (si->sb.buscorerev);
1609 }
1610
1611 /* return board vendor id */
1612 uint BCMINITFN(sb_boardvendor) (sb_t * sbh) {
1613 sb_info_t *si;
1614
1615 si = SB_INFO(sbh);
1616 return (si->sb.boardvendor);
1617 }
1618
1619 /* return boardtype */
1620 uint BCMINITFN(sb_boardtype) (sb_t * sbh) {
1621 sb_info_t *si;
1622 char *var;
1623
1624 si = SB_INFO(sbh);
1625
1626 if (BUSTYPE(si->sb.bustype) == SB_BUS && si->sb.boardtype == 0xffff) {
1627 /* boardtype format is a hex string */
1628 si->sb.boardtype = getintvar(NULL, "boardtype");
1629
1630 /* backward compatibility for older boardtype string format */
1631 if ((si->sb.boardtype == 0)
1632 && (var = getvar(NULL, "boardtype"))) {
1633 if (!strcmp(var, "bcm94710dev"))
1634 si->sb.boardtype = BCM94710D_BOARD;
1635 else if (!strcmp(var, "bcm94710ap"))
1636 si->sb.boardtype = BCM94710AP_BOARD;
1637 else if (!strcmp(var, "bu4710"))
1638 si->sb.boardtype = BU4710_BOARD;
1639 else if (!strcmp(var, "bcm94702mn"))
1640 si->sb.boardtype = BCM94702MN_BOARD;
1641 else if (!strcmp(var, "bcm94710r1"))
1642 si->sb.boardtype = BCM94710R1_BOARD;
1643 else if (!strcmp(var, "bcm94710r4"))
1644 si->sb.boardtype = BCM94710R4_BOARD;
1645 else if (!strcmp(var, "bcm94702cpci"))
1646 si->sb.boardtype = BCM94702CPCI_BOARD;
1647 else if (!strcmp(var, "bcm95380_rr"))
1648 si->sb.boardtype = BCM95380RR_BOARD;
1649 }
1650 }
1651
1652 return (si->sb.boardtype);
1653 }
1654
1655 /* return bus type of sbh device */
1656 uint sb_bus(sb_t * sbh)
1657 {
1658 sb_info_t *si;
1659
1660 si = SB_INFO(sbh);
1661 return (si->sb.bustype);
1662 }
1663
1664 /* return bus core type */
1665 uint sb_buscoretype(sb_t * sbh)
1666 {
1667 sb_info_t *si;
1668
1669 si = SB_INFO(sbh);
1670
1671 return (si->sb.buscoretype);
1672 }
1673
1674 /* return bus core revision */
1675 uint sb_buscorerev(sb_t * sbh)
1676 {
1677 sb_info_t *si;
1678 si = SB_INFO(sbh);
1679
1680 return (si->sb.buscorerev);
1681 }
1682
1683 /* return list of found cores */
1684 uint sb_corelist(sb_t * sbh, uint coreid[])
1685 {
1686 sb_info_t *si;
1687
1688 si = SB_INFO(sbh);
1689
1690 bcopy((uchar *) si->coreid, (uchar *) coreid,
1691 (si->numcores * sizeof(uint)));
1692 return (si->numcores);
1693 }
1694
1695 /* return current register mapping */
1696 void *sb_coreregs(sb_t * sbh)
1697 {
1698 sb_info_t *si;
1699
1700 si = SB_INFO(sbh);
1701 ASSERT(GOODREGS(si->curmap));
1702
1703 return (si->curmap);
1704 }
1705
1706 #if defined(BCMDBG_ASSERT)
1707 /* traverse all cores to find and clear source of serror */
1708 static void sb_serr_clear(sb_info_t * si)
1709 {
1710 sbconfig_t *sb;
1711 uint origidx;
1712 uint i, intr_val = 0;
1713 void *corereg = NULL;
1714
1715 INTR_OFF(si, intr_val);
1716 origidx = sb_coreidx(&si->sb);
1717
1718 for (i = 0; i < si->numcores; i++) {
1719 corereg = sb_setcoreidx(&si->sb, i);
1720 if (NULL != corereg) {
1721 sb = REGS2SB(corereg);
1722 if ((R_SBREG(si, &sb->sbtmstatehigh)) & SBTMH_SERR) {
1723 AND_SBREG(si, &sb->sbtmstatehigh, ~SBTMH_SERR);
1724 SB_ERROR(("sb_serr_clear: SError at core 0x%x\n", sb_coreid(&si->sb)));
1725 }
1726 }
1727 }
1728
1729 sb_setcoreidx(&si->sb, origidx);
1730 INTR_RESTORE(si, intr_val);
1731 }
1732
1733 /*
1734 * Check if any inband, outband or timeout errors has happened and clear them.
1735 * Must be called with chip clk on !
1736 */
1737 bool sb_taclear(sb_t * sbh)
1738 {
1739 sb_info_t *si;
1740 sbconfig_t *sb;
1741 uint origidx;
1742 uint intr_val = 0;
1743 bool rc = FALSE;
1744 uint32 inband = 0, serror = 0, timeout = 0;
1745 void *corereg = NULL;
1746 volatile uint32 imstate, tmstate;
1747
1748 si = SB_INFO(sbh);
1749
1750 if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
1751 volatile uint32 stcmd;
1752
1753 /* inband error is Target abort for PCI */
1754 stcmd =
1755 OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_CMD, sizeof(uint32));
1756 inband = stcmd & PCI_CFG_CMD_STAT_TA;
1757 if (inband) {
1758 #ifdef BCMDBG
1759 SB_ERROR(("inband:\n"));
1760 sb_viewall((void *)si);
1761 #endif
1762 OSL_PCI_WRITE_CONFIG(si->osh, PCI_CFG_CMD,
1763 sizeof(uint32), stcmd);
1764 }
1765
1766 /* serror */
1767 stcmd =
1768 OSL_PCI_READ_CONFIG(si->osh, PCI_INT_STATUS,
1769 sizeof(uint32));
1770 serror = stcmd & PCI_SBIM_STATUS_SERR;
1771 if (serror) {
1772 #ifdef BCMDBG
1773 SB_ERROR(("serror:\n"));
1774 sb_viewall((void *)si);
1775 #endif
1776 sb_serr_clear(si);
1777 OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_STATUS,
1778 sizeof(uint32), stcmd);
1779 }
1780
1781 /* timeout */
1782 imstate = sb_corereg(sbh, si->sb.buscoreidx,
1783 SBCONFIGOFF + OFFSETOF(sbconfig_t,
1784 sbimstate), 0, 0);
1785 if ((imstate != 0xffffffff) && (imstate & (SBIM_IBE | SBIM_TO))) {
1786 sb_corereg(sbh, si->sb.buscoreidx,
1787 SBCONFIGOFF + OFFSETOF(sbconfig_t,
1788 sbimstate), ~0,
1789 (imstate & ~(SBIM_IBE | SBIM_TO)));
1790 /* inband = imstate & SBIM_IBE; same as TA above */
1791 timeout = imstate & SBIM_TO;
1792 if (timeout) {
1793 #ifdef BCMDBG
1794 SB_ERROR(("timeout:\n"));
1795 sb_viewall((void *)si);
1796 #endif
1797 }
1798 }
1799
1800 if (inband) {
1801 /* dump errlog for sonics >= 2.3 */
1802 if (si->sb.sonicsrev == SONICS_2_2) ;
1803 else {
1804 uint32 imerrlog, imerrloga;
1805 imerrlog =
1806 sb_corereg(sbh, si->sb.buscoreidx,
1807 SBIMERRLOG, 0, 0);
1808 if (imerrlog & SBTMEL_EC) {
1809 imerrloga =
1810 sb_corereg(sbh, si->sb.buscoreidx,
1811 SBIMERRLOGA, 0, 0);
1812 /* clear errlog */
1813 sb_corereg(sbh, si->sb.buscoreidx,
1814 SBIMERRLOG, ~0, 0);
1815 SB_ERROR(("sb_taclear: ImErrLog 0x%x, ImErrLogA 0x%x\n", imerrlog, imerrloga));
1816 }
1817 }
1818 }
1819
1820 } else if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
1821
1822 INTR_OFF(si, intr_val);
1823 origidx = sb_coreidx(sbh);
1824
1825 corereg = sb_setcore(sbh, SB_PCMCIA, 0);
1826 if (NULL != corereg) {
1827 sb = REGS2SB(corereg);
1828
1829 imstate = R_SBREG(si, &sb->sbimstate);
1830 /* handle surprise removal */
1831 if ((imstate != 0xffffffff)
1832 && (imstate & (SBIM_IBE | SBIM_TO))) {
1833 AND_SBREG(si, &sb->sbimstate,
1834 ~(SBIM_IBE | SBIM_TO));
1835 inband = imstate & SBIM_IBE;
1836 timeout = imstate & SBIM_TO;
1837 }
1838 tmstate = R_SBREG(si, &sb->sbtmstatehigh);
1839 if ((tmstate != 0xffffffff)
1840 && (tmstate & SBTMH_INT_STATUS)) {
1841 if (!inband) {
1842 serror = 1;
1843 sb_serr_clear(si);
1844 }
1845 OR_SBREG(si, &sb->sbtmstatelow, SBTML_INT_ACK);
1846 AND_SBREG(si, &sb->sbtmstatelow,
1847 ~SBTML_INT_ACK);
1848 }
1849 }
1850 sb_setcoreidx(sbh, origidx);
1851 INTR_RESTORE(si, intr_val);
1852
1853 }
1854
1855 if (inband | timeout | serror) {
1856 rc = TRUE;
1857 SB_ERROR(("sb_taclear: inband 0x%x, serror 0x%x, timeout 0x%x!\n", inband, serror, timeout));
1858 }
1859
1860 return (rc);
1861 }
1862 #endif /* BCMDBG */
1863
1864 /* do buffered registers update */
1865 void sb_commit(sb_t * sbh)
1866 {
1867 sb_info_t *si;
1868 uint origidx;
1869 uint intr_val = 0;
1870
1871 si = SB_INFO(sbh);
1872
1873 origidx = si->curidx;
1874 ASSERT(GOODIDX(origidx));
1875
1876 INTR_OFF(si, intr_val);
1877
1878 /* switch over to chipcommon core if there is one, else use pci */
1879 if (si->sb.ccrev != NOREV) {
1880 chipcregs_t *ccregs = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
1881
1882 /* do the buffer registers update */
1883 W_REG(si->osh, &ccregs->broadcastaddress, SB_COMMIT);
1884 W_REG(si->osh, &ccregs->broadcastdata, 0x0);
1885 } else if (PCI(si)) {
1886 sbpciregs_t *pciregs =
1887 (sbpciregs_t *) sb_setcore(sbh, SB_PCI, 0);
1888
1889 /* do the buffer registers update */
1890 W_REG(si->osh, &pciregs->bcastaddr, SB_COMMIT);
1891 W_REG(si->osh, &pciregs->bcastdata, 0x0);
1892 } else
1893 ASSERT(0);
1894
1895 /* restore core index */
1896 sb_setcoreidx(sbh, origidx);
1897 INTR_RESTORE(si, intr_val);
1898 }
1899
1900 /* reset and re-enable a core
1901 * inputs:
1902 * bits - core specific bits that are set during and after reset sequence
1903 * resetbits - core specific bits that are set only during reset sequence
1904 */
1905 void sb_core_reset(sb_t * sbh, uint32 bits, uint32 resetbits)
1906 {
1907 sb_info_t *si;
1908 sbconfig_t *sb;
1909 volatile uint32 dummy;
1910
1911 si = SB_INFO(sbh);
1912 ASSERT(GOODREGS(si->curmap));
1913 sb = REGS2SB(si->curmap);
1914
1915 /*
1916 * Must do the disable sequence first to work for arbitrary current core state.
1917 */
1918 sb_core_disable(sbh, (bits | resetbits));
1919
1920 /*
1921 * Now do the initialization sequence.
1922 */
1923
1924 /* set reset while enabling the clock and forcing them on throughout the core */
1925 W_SBREG(si, &sb->sbtmstatelow,
1926 (SBTML_FGC | SBTML_CLK | SBTML_RESET | bits | resetbits));
1927 dummy = R_SBREG(si, &sb->sbtmstatelow);
1928 OSL_DELAY(1);
1929
1930 if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_SERR) {
1931 W_SBREG(si, &sb->sbtmstatehigh, 0);
1932 }
1933 if ((dummy = R_SBREG(si, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
1934 AND_SBREG(si, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
1935 }
1936
1937 /* clear reset and allow it to propagate throughout the core */
1938 W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | bits));
1939 dummy = R_SBREG(si, &sb->sbtmstatelow);
1940 OSL_DELAY(1);
1941
1942 /* leave clock enabled */
1943 W_SBREG(si, &sb->sbtmstatelow, (SBTML_CLK | bits));
1944 dummy = R_SBREG(si, &sb->sbtmstatelow);
1945 OSL_DELAY(1);
1946 }
1947
1948 void sb_core_tofixup(sb_t * sbh)
1949 {
1950 sb_info_t *si;
1951 sbconfig_t *sb;
1952
1953 si = SB_INFO(sbh);
1954
1955 if ((BUSTYPE(si->sb.bustype) != PCI_BUS) || PCIE(si) ||
1956 (PCI(si) && (si->sb.buscorerev >= 5)))
1957 return;
1958
1959 ASSERT(GOODREGS(si->curmap));
1960 sb = REGS2SB(si->curmap);
1961
1962 if (BUSTYPE(si->sb.bustype) == SB_BUS) {
1963 SET_SBREG(si, &sb->sbimconfiglow,
1964 SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
1965 (0x5 << SBIMCL_RTO_SHIFT) | 0x3);
1966 } else {
1967 if (sb_coreid(sbh) == SB_PCI) {
1968 SET_SBREG(si, &sb->sbimconfiglow,
1969 SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
1970 (0x3 << SBIMCL_RTO_SHIFT) | 0x2);
1971 } else {
1972 SET_SBREG(si, &sb->sbimconfiglow,
1973 (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0);
1974 }
1975 }
1976
1977 sb_commit(sbh);
1978 }
1979
1980 /*
1981 * Set the initiator timeout for the "master core".
1982 * The master core is defined to be the core in control
1983 * of the chip and so it issues accesses to non-memory
1984 * locations (Because of dma *any* core can access memeory).
1985 *
1986 * The routine uses the bus to decide who is the master:
1987 * SB_BUS => mips
1988 * JTAG_BUS => chipc
1989 * PCI_BUS => pci or pcie
1990 * PCMCIA_BUS => pcmcia
1991 * SDIO_BUS => pcmcia
1992 *
1993 * This routine exists so callers can disable initiator
1994 * timeouts so accesses to very slow devices like otp
1995 * won't cause an abort. The routine allows arbitrary
1996 * settings of the service and request timeouts, though.
1997 *
1998 * Returns the timeout state before changing it or -1
1999 * on error.
2000 */
2001
2002 #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK)
2003
2004 uint32 sb_set_initiator_to(sb_t * sbh, uint32 to, uint idx)
2005 {
2006 sb_info_t *si;
2007 uint origidx;
2008 uint intr_val = 0;
2009 uint32 tmp, ret = 0xffffffff;
2010 sbconfig_t *sb;
2011
2012 si = SB_INFO(sbh);
2013
2014 if ((to & ~TO_MASK) != 0)
2015 return ret;
2016
2017 /* Figure out the master core */
2018 if (idx == BADIDX) {
2019 switch (BUSTYPE(si->sb.bustype)) {
2020 case PCI_BUS:
2021 idx = si->sb.buscoreidx;
2022 break;
2023 case JTAG_BUS:
2024 idx = SB_CC_IDX;
2025 break;
2026 case PCMCIA_BUS:
2027 case SDIO_BUS:
2028 idx = sb_findcoreidx(sbh, SB_PCMCIA, 0);
2029 break;
2030 case SB_BUS:
2031 if ((idx = sb_findcoreidx(sbh, SB_MIPS33, 0)) == BADIDX)
2032 idx = sb_findcoreidx(sbh, SB_MIPS, 0);
2033 break;
2034 default:
2035 ASSERT(0);
2036 }
2037 if (idx == BADIDX)
2038 return ret;
2039 }
2040
2041 INTR_OFF(si, intr_val);
2042 origidx = sb_coreidx(sbh);
2043
2044 sb = REGS2SB(sb_setcoreidx(sbh, idx));
2045
2046 tmp = R_SBREG(si, &sb->sbimconfiglow);
2047 ret = tmp & TO_MASK;
2048 W_SBREG(si, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);
2049
2050 sb_commit(sbh);
2051 sb_setcoreidx(sbh, origidx);
2052 INTR_RESTORE(si, intr_val);
2053 return ret;
2054 }
2055
2056 void sb_core_disable(sb_t * sbh, uint32 bits)
2057 {
2058 sb_info_t *si;
2059 volatile uint32 dummy;
2060 uint32 rej;
2061 sbconfig_t *sb;
2062
2063 si = SB_INFO(sbh);
2064
2065 ASSERT(GOODREGS(si->curmap));
2066 sb = REGS2SB(si->curmap);
2067
2068 /* if core is already in reset, just return */
2069 if (R_SBREG(si, &sb->sbtmstatelow) & SBTML_RESET)
2070 return;
2071
2072 /* reject value changed between sonics 2.2 and 2.3 */
2073 if (si->sb.sonicsrev == SONICS_2_2)
2074 rej = (1 << SBTML_REJ_SHIFT);
2075 else
2076 rej = (2 << SBTML_REJ_SHIFT);
2077
2078 /* if clocks are not enabled, put into reset and return */
2079 if ((R_SBREG(si, &sb->sbtmstatelow) & SBTML_CLK) == 0)
2080 goto disable;
2081
2082 /* set target reject and spin until busy is clear (preserve core-specific bits) */
2083 OR_SBREG(si, &sb->sbtmstatelow, rej);
2084 dummy = R_SBREG(si, &sb->sbtmstatelow);
2085 OSL_DELAY(1);
2086 SPINWAIT((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
2087 if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY)
2088 SB_ERROR(("%s: target state still busy\n", __FUNCTION__));
2089
2090 if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) {
2091 OR_SBREG(si, &sb->sbimstate, SBIM_RJ);
2092 dummy = R_SBREG(si, &sb->sbimstate);
2093 OSL_DELAY(1);
2094 SPINWAIT((R_SBREG(si, &sb->sbimstate) & SBIM_BY), 100000);
2095 }
2096
2097 /* set reset and reject while enabling the clocks */
2098 W_SBREG(si, &sb->sbtmstatelow,
2099 (bits | SBTML_FGC | SBTML_CLK | rej | SBTML_RESET));
2100 dummy = R_SBREG(si, &sb->sbtmstatelow);
2101 OSL_DELAY(10);
2102
2103 /* don't forget to clear the initiator reject bit */
2104 if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT)
2105 AND_SBREG(si, &sb->sbimstate, ~SBIM_RJ);
2106
2107 disable:
2108 /* leave reset and reject asserted */
2109 W_SBREG(si, &sb->sbtmstatelow, (bits | rej | SBTML_RESET));
2110 OSL_DELAY(1);
2111 }
2112
2113 /* set chip watchdog reset timer to fire in 'ticks' backplane cycles */
2114 void sb_watchdog(sb_t * sbh, uint ticks)
2115 {
2116 sb_info_t *si = SB_INFO(sbh);
2117
2118 /* make sure we come up in fast clock mode; or if clearing, clear clock */
2119 if (ticks)
2120 sb_clkctl_clk(sbh, CLK_FAST);
2121 else
2122 sb_clkctl_clk(sbh, CLK_DYNAMIC);
2123
2124 if (sbh->chip == BCM4328_CHIP_ID && ticks != 0)
2125 sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, min_res_mask),
2126 PMURES_BIT(RES4328_ROM_SWITCH),
2127 PMURES_BIT(RES4328_ROM_SWITCH));
2128
2129 /* instant NMI */
2130 switch (si->gpioid) {
2131 case SB_CC:
2132 sb_corereg(sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0,
2133 ticks);
2134 break;
2135 case SB_EXTIF:
2136 sb_corereg(sbh, si->gpioidx, OFFSETOF(extifregs_t, watchdog),
2137 ~0, ticks);
2138 break;
2139 }
2140 }
2141
2142 /* initialize the pcmcia core */
2143 void sb_pcmcia_init(sb_t * sbh)
2144 {
2145 sb_info_t *si;
2146 uint8 cor = 0;
2147
2148 si = SB_INFO(sbh);
2149
2150 /* enable d11 mac interrupts */
2151 OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
2152 cor |= COR_IRQEN | COR_FUNEN;
2153 OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
2154
2155 }
2156
2157 void BCMINITFN(sb_pci_up) (sb_t * sbh) {
2158 sb_info_t *si = SB_INFO(sbh);
2159 if (si->gpioid == SB_EXTIF)
2160 return;
2161
2162 /* if not pci bus, we're done */
2163 if (BUSTYPE(si->sb.bustype) != PCI_BUS)
2164 return;
2165
2166 if (FORCEHT_WAR32414(si))
2167 sb_war32414_forceHT(sbh, 1);
2168
2169 if (PCIE_ASPMWARS(si) || si->sb.pr42780)
2170 sb_pcieclkreq(sbh, 1, 0);
2171
2172 if (PCIE(si) &&
2173 (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 2)) ||
2174 ((si->sb.chip == BCM4312_CHIP_ID) && (si->sb.chiprev == 0))))
2175 sb_set_initiator_to((void *)si, 0x3,
2176 sb_findcoreidx((void *)si, SB_D11, 0));
2177 }
2178
2179 /* Unconfigure and/or apply various WARs when system is going to sleep mode */
2180 void BCMUNINITFN(sb_pci_sleep) (sb_t * sbh) {
2181 sb_info_t *si = SB_INFO(sbh);
2182 if (si->gpioid == SB_EXTIF)
2183 return;
2184 uint32 w;
2185
2186 /* if not pci bus, we're done */
2187 if (!PCIE(si) || !PCIE_ASPMWARS(si))
2188 return;
2189
2190 w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
2191 sizeof(uint32));
2192 w &= ~PCIE_CAP_LCREG_ASPML1;
2193 OSL_PCI_WRITE_CONFIG(si->osh, si->pciecap_lcreg_offset, sizeof(uint32),
2194 w);
2195 }
2196
2197 /* Unconfigure and/or apply various WARs when going down */
2198 void BCMINITFN(sb_pci_down) (sb_t * sbh) {
2199 sb_info_t *si = SB_INFO(sbh);
2200 if (si->gpioid == SB_EXTIF)
2201 return;
2202
2203 /* if not pci bus, we're done */
2204 if (BUSTYPE(si->sb.bustype) != PCI_BUS)
2205 return;
2206
2207 if (FORCEHT_WAR32414(si))
2208 sb_war32414_forceHT(sbh, 0);
2209
2210 if (si->pr42767_war) {
2211 sb_pcieclkreq(sbh, 1, 1);
2212 si->pr42767_war = FALSE;
2213 } else if (si->sb.pr42780) {
2214 sb_pcieclkreq(sbh, 1, 1);
2215 }
2216 }
2217
2218 static void BCMINITFN(sb_war42767_clkreq) (sb_t * sbh) {
2219 sbpcieregs_t *pcieregs;
2220 uint16 val16, *reg16;
2221 sb_info_t *si;
2222
2223 si = SB_INFO(sbh);
2224
2225 /* if not pcie bus, we're done */
2226 if (!PCIE(si) || !PCIE_ASPMWARS(si))
2227 return;
2228
2229 pcieregs = (sbpcieregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
2230 reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET];
2231 val16 = R_REG(si->osh, reg16);
2232 /* if clockreq is not advertized advertize it */
2233 if (!si->pcie_war_ovr) {
2234 val16 |= SRSH_CLKREQ_ENB;
2235 si->pr42767_war = TRUE;
2236
2237 si->sb.pr42780 = TRUE;
2238 } else
2239 val16 &= ~SRSH_CLKREQ_ENB;
2240 W_REG(si->osh, reg16, val16);
2241 }
2242
2243 static void BCMINITFN(sb_war42767) (sb_t * sbh) {
2244 uint32 w = 0;
2245 sb_info_t *si;
2246
2247 si = SB_INFO(sbh);
2248
2249 /* if not pcie bus, we're done */
2250 if (!PCIE(si) || !PCIE_ASPMWARS(si))
2251 return;
2252
2253 sb_pcie_mdioread(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, &w);
2254 if (w & PLL_CTRL_FREQDET_EN) {
2255 w &= ~PLL_CTRL_FREQDET_EN;
2256 sb_pcie_mdiowrite(si, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, w);
2257 }
2258 }
2259
2260 /*
2261 * Configure the pci core for pci client (NIC) action
2262 * coremask is the bitvec of cores by index to be enabled.
2263 */
2264 void BCMINITFN(sb_pci_setup) (sb_t * sbh, uint coremask) {
2265 sb_info_t *si;
2266 sbconfig_t *sb;
2267 sbpciregs_t *pciregs;
2268 uint32 sbflag;
2269 uint32 w;
2270 uint idx;
2271
2272 si = SB_INFO(sbh);
2273
2274 /* if not pci bus, we're done */
2275 if (BUSTYPE(si->sb.bustype) != PCI_BUS)
2276 return;
2277
2278 ASSERT(PCI(si) || PCIE(si));
2279 ASSERT(si->sb.buscoreidx != BADIDX);
2280
2281 /* get current core index */
2282 idx = si->curidx;
2283
2284 /* we interrupt on this backplane flag number */
2285 ASSERT(GOODREGS(si->curmap));
2286 sb = REGS2SB(si->curmap);
2287 sbflag = R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
2288
2289 /* switch over to pci core */
2290 pciregs = (sbpciregs_t *) sb_setcoreidx(sbh, si->sb.buscoreidx);
2291 sb = REGS2SB(pciregs);
2292
2293 /*
2294 * Enable sb->pci interrupts. Assume
2295 * PCI rev 2.3 support was added in pci core rev 6 and things changed..
2296 */
2297 if (PCIE(si) || (PCI(si) && ((si->sb.buscorerev) >= 6))) {
2298 /* pci config write to set this core bit in PCIIntMask */
2299 w = OSL_PCI_READ_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32));
2300 w |= (coremask << PCI_SBIM_SHIFT);
2301 OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32), w);
2302 } else {
2303 /* set sbintvec bit for our flag number */
2304 OR_SBREG(si, &sb->sbintvec, (1 << sbflag));
2305 }
2306
2307 if (PCI(si)) {
2308 OR_REG(si->osh, &pciregs->sbtopci2,
2309 (SBTOPCI_PREF | SBTOPCI_BURST));
2310 if (si->sb.buscorerev >= 11)
2311 OR_REG(si->osh, &pciregs->sbtopci2,
2312 SBTOPCI_RC_READMULTI);
2313 if (si->sb.buscorerev < 5) {
2314 SET_SBREG(si, &sb->sbimconfiglow,
2315 SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
2316 (0x3 << SBIMCL_RTO_SHIFT) | 0x2);
2317 sb_commit(sbh);
2318 }
2319 }
2320
2321 /* PCIE workarounds */
2322 if (PCIE(si)) {
2323 if ((si->sb.buscorerev == 0) || (si->sb.buscorerev == 1)) {
2324 w = sb_pcie_readreg((void *)(uintptr) sbh,
2325 (void *)(uintptr) PCIE_PCIEREGS,
2326 PCIE_TLP_WORKAROUNDSREG);
2327 w |= 0x8;
2328 sb_pcie_writereg((void *)(uintptr) sbh,
2329 (void *)(uintptr) PCIE_PCIEREGS,
2330 PCIE_TLP_WORKAROUNDSREG, w);
2331 }
2332
2333 if (si->sb.buscorerev == 1) {
2334 w = sb_pcie_readreg((void *)(uintptr) sbh,
2335 (void *)(uintptr) PCIE_PCIEREGS,
2336 PCIE_DLLP_LCREG);
2337 w |= (0x40);
2338 sb_pcie_writereg((void *)(uintptr) sbh,
2339 (void *)(uintptr) PCIE_PCIEREGS,
2340 PCIE_DLLP_LCREG, w);
2341 }
2342
2343 if (si->sb.buscorerev == 0)
2344 sb_war30841(si);
2345
2346 if ((si->sb.buscorerev >= 3) && (si->sb.buscorerev <= 5)) {
2347 w = sb_pcie_readreg((void *)(uintptr) sbh,
2348 (void *)(uintptr) PCIE_PCIEREGS,
2349 PCIE_DLLP_PMTHRESHREG);
2350 w &= ~(PCIE_L1THRESHOLDTIME_MASK);
2351 w |= (PCIE_L1THRESHOLD_WARVAL <<
2352 PCIE_L1THRESHOLDTIME_SHIFT);
2353 sb_pcie_writereg((void *)(uintptr) sbh,
2354 (void *)(uintptr) PCIE_PCIEREGS,
2355 PCIE_DLLP_PMTHRESHREG, w);
2356
2357 sb_war43448(sbh);
2358
2359 sb_war42767(sbh);
2360
2361 sb_war43448_aspm(sbh);
2362 sb_war42767_clkreq(sbh);
2363 }
2364 }
2365
2366 /* switch back to previous core */
2367 sb_setcoreidx(sbh, idx);
2368 }
2369
2370 uint32 sb_base(uint32 admatch)
2371 {
2372 uint32 base;
2373 uint type;
2374
2375 type = admatch & SBAM_TYPE_MASK;
2376 ASSERT(type < 3);
2377
2378 base = 0;
2379
2380 if (type == 0) {
2381 base = admatch & SBAM_BASE0_MASK;
2382 } else if (type == 1) {
2383 ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
2384 base = admatch & SBAM_BASE1_MASK;
2385 } else if (type == 2) {
2386 ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
2387 base = admatch & SBAM_BASE2_MASK;
2388 }
2389
2390 return (base);
2391 }
2392
2393 uint32 sb_size(uint32 admatch)
2394 {
2395 uint32 size;
2396 uint type;
2397
2398 type = admatch & SBAM_TYPE_MASK;
2399 ASSERT(type < 3);
2400
2401 size = 0;
2402
2403 if (type == 0) {
2404 size =
2405 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) +
2406 1);
2407 } else if (type == 1) {
2408 ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
2409 size =
2410 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) +
2411 1);
2412 } else if (type == 2) {
2413 ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
2414 size =
2415 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) +
2416 1);
2417 }
2418
2419 return (size);
2420 }
2421
2422 /* return the core-type instantiation # of the current core */
2423 uint sb_coreunit(sb_t * sbh)
2424 {
2425 sb_info_t *si;
2426 uint idx;
2427 uint coreid;
2428 uint coreunit;
2429 uint i;
2430
2431 si = SB_INFO(sbh);
2432 coreunit = 0;
2433
2434 idx = si->curidx;
2435
2436 ASSERT(GOODREGS(si->curmap));
2437 coreid = sb_coreid(sbh);
2438
2439 /* count the cores of our type */
2440 for (i = 0; i < idx; i++)
2441 if (si->coreid[i] == coreid)
2442 coreunit++;
2443
2444 return (coreunit);
2445 }
2446
2447 static uint32 BCMINITFN(factor6) (uint32 x) {
2448 switch (x) {
2449 case CC_F6_2:
2450 return 2;
2451 case CC_F6_3:
2452 return 3;
2453 case CC_F6_4:
2454 return 4;
2455 case CC_F6_5:
2456 return 5;
2457 case CC_F6_6:
2458 return 6;
2459 case CC_F6_7:
2460 return 7;
2461 default:
2462 return 0;
2463 }
2464 }
2465
2466 /* calculate the speed the SB would run at given a set of clockcontrol values */
2467 uint32 BCMINITFN(sb_clock_rate) (uint32 pll_type, uint32 n, uint32 m) {
2468 uint32 n1, n2, clock, m1, m2, m3, mc;
2469
2470 n1 = n & CN_N1_MASK;
2471 n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
2472
2473 if (pll_type == PLL_TYPE6) {
2474 if (m & CC_T6_MMASK)
2475 return CC_T6_M1;
2476 else
2477 return CC_T6_M0;
2478 } else if ((pll_type == PLL_TYPE1) ||
2479 (pll_type == PLL_TYPE3) ||
2480 (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
2481 n1 = factor6(n1);
2482 n2 += CC_F5_BIAS;
2483 } else if (pll_type == PLL_TYPE2) {
2484 n1 += CC_T2_BIAS;
2485 n2 += CC_T2_BIAS;
2486 ASSERT((n1 >= 2) && (n1 <= 7));
2487 ASSERT((n2 >= 5) && (n2 <= 23));
2488 } else if (pll_type == PLL_TYPE5) {
2489 return (100000000);
2490 } else
2491 ASSERT(0);
2492 /* PLL types 3 and 7 use BASE2 (25Mhz) */
2493 if ((pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE7)) {
2494 clock = CC_CLOCK_BASE2 * n1 * n2;
2495 } else
2496 clock = CC_CLOCK_BASE1 * n1 * n2;
2497
2498 if (clock == 0)
2499 return 0;
2500
2501 m1 = m & CC_M1_MASK;
2502 m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
2503 m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
2504 mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
2505
2506 if ((pll_type == PLL_TYPE1) ||
2507 (pll_type == PLL_TYPE3) ||
2508 (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) {
2509 m1 = factor6(m1);
2510 if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
2511 m2 += CC_F5_BIAS;
2512 else
2513 m2 = factor6(m2);
2514 m3 = factor6(m3);
2515
2516 switch (mc) {
2517 case CC_MC_BYPASS:
2518 return (clock);
2519 case CC_MC_M1:
2520 return (clock / m1);
2521 case CC_MC_M1M2:
2522 return (clock / (m1 * m2));
2523 case CC_MC_M1M2M3:
2524 return (clock / (m1 * m2 * m3));
2525 case CC_MC_M1M3:
2526 return (clock / (m1 * m3));
2527 default:
2528 return (0);
2529 }
2530 } else {
2531 ASSERT(pll_type == PLL_TYPE2);
2532
2533 m1 += CC_T2_BIAS;
2534 m2 += CC_T2M2_BIAS;
2535 m3 += CC_T2_BIAS;
2536 ASSERT((m1 >= 2) && (m1 <= 7));
2537 ASSERT((m2 >= 3) && (m2 <= 10));
2538 ASSERT((m3 >= 2) && (m3 <= 7));
2539
2540 if ((mc & CC_T2MC_M1BYP) == 0)
2541 clock /= m1;
2542 if ((mc & CC_T2MC_M2BYP) == 0)
2543 clock /= m2;
2544 if ((mc & CC_T2MC_M3BYP) == 0)
2545 clock /= m3;
2546
2547 return (clock);
2548 }
2549 }
2550
2551 /* returns the current speed the SB is running at */
2552 uint32 BCMINITFN(sb_clock) (sb_t * sbh) {
2553 sb_info_t *si;
2554 extifregs_t *eir;
2555 chipcregs_t *cc;
2556 uint32 n, m;
2557 uint idx;
2558 uint32 cap, pll_type, rate;
2559 uint intr_val = 0;
2560
2561 si = SB_INFO(sbh);
2562 idx = si->curidx;
2563 pll_type = PLL_TYPE1;
2564
2565 INTR_OFF(si, intr_val);
2566
2567 /* switch to extif or chipc core */
2568 if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
2569 n = R_REG(si->osh, &eir->clockcontrol_n);
2570 m = R_REG(si->osh, &eir->clockcontrol_sb);
2571 } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
2572
2573 cap = R_REG(si->osh, &cc->capabilities);
2574
2575 if (cap & CC_CAP_PMU) {
2576
2577 if (sb_chip(sbh) == BCM5354_CHIP_ID) {
2578 /* 5354 has a constant sb clock of 120MHz */
2579 rate = 120000000;
2580 goto end;
2581 } else
2582 if (sb_chip(sbh) == BCM4328_CHIP_ID) {
2583 rate = 80000000;
2584 goto end;
2585 } else
2586 ASSERT(0);
2587 }
2588
2589 pll_type = cap & CC_CAP_PLL_MASK;
2590 if (pll_type == PLL_NONE) {
2591 INTR_RESTORE(si, intr_val);
2592 return 80000000;
2593 }
2594 n = R_REG(si->osh, &cc->clockcontrol_n);
2595 if (pll_type == PLL_TYPE6)
2596 m = R_REG(si->osh, &cc->clockcontrol_m3);
2597 else if (pll_type == PLL_TYPE3
2598 && !(BCMINIT(sb_chip) (sbh) == 0x5365))
2599 m = R_REG(si->osh, &cc->clockcontrol_m2);
2600 else
2601 m = R_REG(si->osh, &cc->clockcontrol_sb);
2602 } else {
2603 INTR_RESTORE(si, intr_val);
2604 return 0;
2605 }
2606
2607 /* calculate rate */
2608 if (BCMINIT(sb_chip) (sbh) == 0x5365)
2609 rate = 100000000;
2610 else {
2611 rate = sb_clock_rate(pll_type, n, m);
2612
2613 if (pll_type == PLL_TYPE3)
2614 rate = rate / 2;
2615 }
2616
2617 end:
2618 /* switch back to previous core */
2619 sb_setcoreidx(sbh, idx);
2620
2621 INTR_RESTORE(si, intr_val);
2622
2623 return rate;
2624 }
2625
2626 uint32 BCMINITFN(sb_alp_clock) (sb_t * sbh) {
2627 uint32 clock = ALP_CLOCK;
2628
2629 if (sbh->cccaps & CC_CAP_PMU)
2630 clock = sb_pmu_alp_clock(sbh, sb_osh(sbh));
2631
2632 return clock;
2633 }
2634
2635 /* change logical "focus" to the gpio core for optimized access */
2636 void *sb_gpiosetcore(sb_t * sbh)
2637 {
2638 sb_info_t *si;
2639
2640 si = SB_INFO(sbh);
2641
2642 return (sb_setcoreidx(sbh, si->gpioidx));
2643 }
2644
2645 /* mask&set gpiocontrol bits */
2646 uint32 sb_gpiocontrol(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
2647 {
2648 sb_info_t *si;
2649 uint regoff;
2650
2651 si = SB_INFO(sbh);
2652 regoff = 0;
2653
2654 /* gpios could be shared on router platforms
2655 * ignore reservation if it's high priority (e.g., test apps)
2656 */
2657 if ((priority != GPIO_HI_PRIORITY) &&
2658 (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
2659 mask = priority ? (sb_gpioreservation & mask) :
2660 ((sb_gpioreservation | mask) & ~(sb_gpioreservation));
2661 val &= mask;
2662 }
2663
2664 switch (si->gpioid) {
2665 case SB_CC:
2666 regoff = OFFSETOF(chipcregs_t, gpiocontrol);
2667 break;
2668
2669 case SB_PCI:
2670 regoff = OFFSETOF(sbpciregs_t, gpiocontrol);
2671 break;
2672
2673 case SB_EXTIF:
2674 return (0);
2675 }
2676
2677 return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
2678 }
2679
2680 /* mask&set gpio output enable bits */
2681 uint32 sb_gpioouten(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
2682 {
2683 sb_info_t *si;
2684 uint regoff;
2685
2686 si = SB_INFO(sbh);
2687 regoff = 0;
2688
2689 /* gpios could be shared on router platforms
2690 * ignore reservation if it's high priority (e.g., test apps)
2691 */
2692 if ((priority != GPIO_HI_PRIORITY) &&
2693 (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
2694 mask = priority ? (sb_gpioreservation & mask) :
2695 ((sb_gpioreservation | mask) & ~(sb_gpioreservation));
2696 val &= mask;
2697 }
2698
2699 switch (si->gpioid) {
2700 case SB_CC:
2701 regoff = OFFSETOF(chipcregs_t, gpioouten);
2702 break;
2703
2704 case SB_PCI:
2705 regoff = OFFSETOF(sbpciregs_t, gpioouten);
2706 break;
2707
2708 case SB_EXTIF:
2709 regoff = OFFSETOF(extifregs_t, gpio[0].outen);
2710 break;
2711 }
2712
2713 return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
2714 }
2715
2716 /* mask&set gpio output bits */
2717 uint32 sb_gpioout(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
2718 {
2719 sb_info_t *si;
2720 uint regoff;
2721
2722 si = SB_INFO(sbh);
2723 regoff = 0;
2724
2725 /* gpios could be shared on router platforms
2726 * ignore reservation if it's high priority (e.g., test apps)
2727 */
2728 if ((priority != GPIO_HI_PRIORITY) &&
2729 (BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
2730 mask = priority ? (sb_gpioreservation & mask) :
2731 ((sb_gpioreservation | mask) & ~(sb_gpioreservation));
2732 val &= mask;
2733 }
2734
2735 switch (si->gpioid) {
2736 case SB_CC:
2737 regoff = OFFSETOF(chipcregs_t, gpioout);
2738 break;
2739
2740 case SB_PCI:
2741 regoff = OFFSETOF(sbpciregs_t, gpioout);
2742 break;
2743
2744 case SB_EXTIF:
2745 regoff = OFFSETOF(extifregs_t, gpio[0].out);
2746 break;
2747 }
2748
2749 return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
2750 }
2751
2752 /* reserve one gpio */
2753 uint32 sb_gpioreserve(sb_t * sbh, uint32 gpio_bitmask, uint8 priority)
2754 {
2755 sb_info_t *si;
2756
2757 si = SB_INFO(sbh);
2758
2759 /* only cores on SB_BUS share GPIO's and only applcation users need to
2760 * reserve/release GPIO
2761 */
2762 if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
2763 ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
2764 return -1;
2765 }
2766 /* make sure only one bit is set */
2767 if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
2768 ASSERT((gpio_bitmask)
2769 && !((gpio_bitmask) & (gpio_bitmask - 1)));
2770 return -1;
2771 }
2772
2773 /* already reserved */
2774 if (sb_gpioreservation & gpio_bitmask)
2775 return -1;
2776 /* set reservation */
2777 sb_gpioreservation |= gpio_bitmask;
2778
2779 return sb_gpioreservation;
2780 }
2781
2782 /* release one gpio */
2783 /*
2784 * releasing the gpio doesn't change the current value on the GPIO last write value
2785 * persists till some one overwrites it
2786 */
2787
2788 uint32 sb_gpiorelease(sb_t * sbh, uint32 gpio_bitmask, uint8 priority)
2789 {
2790 sb_info_t *si;
2791
2792 si = SB_INFO(sbh);
2793
2794 /* only cores on SB_BUS share GPIO's and only applcation users need to
2795 * reserve/release GPIO
2796 */
2797 if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
2798 ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
2799 return -1;
2800 }
2801 /* make sure only one bit is set */
2802 if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
2803 ASSERT((gpio_bitmask)
2804 && !((gpio_bitmask) & (gpio_bitmask - 1)));
2805 return -1;
2806 }
2807
2808 /* already released */
2809 if (!(sb_gpioreservation & gpio_bitmask))
2810 return -1;
2811
2812 /* clear reservation */
2813 sb_gpioreservation &= ~gpio_bitmask;
2814
2815 return sb_gpioreservation;
2816 }
2817
2818 /* return the current gpioin register value */
2819 uint32 sb_gpioin(sb_t * sbh)
2820 {
2821 sb_info_t *si;
2822 uint regoff;
2823
2824 si = SB_INFO(sbh);
2825 regoff = 0;
2826
2827 switch (si->gpioid) {
2828 case SB_CC:
2829 regoff = OFFSETOF(chipcregs_t, gpioin);
2830 break;
2831
2832 case SB_PCI:
2833 regoff = OFFSETOF(sbpciregs_t, gpioin);
2834 break;
2835
2836 case SB_EXTIF:
2837 regoff = OFFSETOF(extifregs_t, gpioin);
2838 break;
2839 }
2840
2841 return (sb_corereg(sbh, si->gpioidx, regoff, 0, 0));
2842 }
2843
2844 /* mask&set gpio interrupt polarity bits */
2845 uint32 sb_gpiointpolarity(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
2846 {
2847 sb_info_t *si;
2848 uint regoff;
2849
2850 si = SB_INFO(sbh);
2851 regoff = 0;
2852
2853 /* gpios could be shared on router platforms */
2854 if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
2855 mask = priority ? (sb_gpioreservation & mask) :
2856 ((sb_gpioreservation | mask) & ~(sb_gpioreservation));
2857 val &= mask;
2858 }
2859
2860 switch (si->gpioid) {
2861 case SB_CC:
2862 regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
2863 break;
2864
2865 case SB_PCI:
2866 /* pci gpio implementation does not support interrupt polarity */
2867 ASSERT(0);
2868 break;
2869
2870 case SB_EXTIF:
2871 regoff = OFFSETOF(extifregs_t, gpiointpolarity);
2872 break;
2873 }
2874
2875 return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
2876 }
2877
2878 /* mask&set gpio interrupt mask bits */
2879 uint32 sb_gpiointmask(sb_t * sbh, uint32 mask, uint32 val, uint8 priority)
2880 {
2881 sb_info_t *si;
2882 uint regoff;
2883
2884 si = SB_INFO(sbh);
2885 regoff = 0;
2886
2887 /* gpios could be shared on router platforms */
2888 if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
2889 mask = priority ? (sb_gpioreservation & mask) :
2890 ((sb_gpioreservation | mask) & ~(sb_gpioreservation));
2891 val &= mask;
2892 }
2893
2894 switch (si->gpioid) {
2895 case SB_CC:
2896 regoff = OFFSETOF(chipcregs_t, gpiointmask);
2897 break;
2898
2899 case SB_PCI:
2900 /* pci gpio implementation does not support interrupt mask */
2901 ASSERT(0);
2902 break;
2903
2904 case SB_EXTIF:
2905 regoff = OFFSETOF(extifregs_t, gpiointmask);
2906 break;
2907 }
2908
2909 return (sb_corereg(sbh, si->gpioidx, regoff, mask, val));
2910 }
2911
2912 /* assign the gpio to an led */
2913 uint32 sb_gpioled(sb_t * sbh, uint32 mask, uint32 val)
2914 {
2915 sb_info_t *si;
2916
2917 si = SB_INFO(sbh);
2918 if (si->sb.ccrev < 16)
2919 return -1;
2920
2921 /* gpio led powersave reg */
2922 return (sb_corereg
2923 (sbh, SB_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask,
2924 val));
2925 }
2926
2927 /* mask&set gpio timer val */
2928 uint32 sb_gpiotimerval(sb_t * sbh, uint32 mask, uint32 gpiotimerval)
2929 {
2930 sb_info_t *si;
2931 si = SB_INFO(sbh);
2932
2933 if (si->sb.ccrev < 16)
2934 return -1;
2935
2936 return (sb_corereg(sbh, SB_CC_IDX,
2937 OFFSETOF(chipcregs_t, gpiotimerval), mask,
2938 gpiotimerval));
2939 }
2940
2941 uint32 sb_gpiopull(sb_t * sbh, bool updown, uint32 mask, uint32 val)
2942 {
2943 sb_info_t *si;
2944 uint offs;
2945
2946 si = SB_INFO(sbh);
2947 if (si->sb.ccrev < 20)
2948 return -1;
2949
2950 offs =
2951 (updown ? OFFSETOF(chipcregs_t, gpiopulldown) :
2952 OFFSETOF(chipcregs_t, gpiopullup));
2953 return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val));
2954 }
2955
2956 uint32 sb_gpioevent(sb_t * sbh, uint regtype, uint32 mask, uint32 val)
2957 {
2958 sb_info_t *si;
2959 uint offs;
2960
2961 si = SB_INFO(sbh);
2962 if (si->sb.ccrev < 11)
2963 return -1;
2964
2965 if (regtype == GPIO_REGEVT)
2966 offs = OFFSETOF(chipcregs_t, gpioevent);
2967 else if (regtype == GPIO_REGEVT_INTMSK)
2968 offs = OFFSETOF(chipcregs_t, gpioeventintmask);
2969 else if (regtype == GPIO_REGEVT_INTPOL)
2970 offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
2971 else
2972 return -1;
2973
2974 return (sb_corereg(sbh, SB_CC_IDX, offs, mask, val));
2975 }
2976
2977 void *BCMINITFN(sb_gpio_handler_register) (sb_t * sbh, uint32 event,
2978 bool level, gpio_handler_t cb,
2979 void *arg) {
2980 sb_info_t *si;
2981 gpioh_item_t *gi;
2982
2983 ASSERT(event);
2984 ASSERT(cb);
2985
2986 si = SB_INFO(sbh);
2987 if (si->sb.ccrev < 11)
2988 return NULL;
2989
2990 if ((gi = MALLOC(si->osh, sizeof(gpioh_item_t))) == NULL)
2991 return NULL;
2992
2993 bzero(gi, sizeof(gpioh_item_t));
2994 gi->event = event;
2995 gi->handler = cb;
2996 gi->arg = arg;
2997 gi->level = level;
2998
2999 gi->next = si->gpioh_head;
3000 si->gpioh_head = gi;
3001
3002 return (void *)(gi);
3003 }
3004
3005 void BCMINITFN(sb_gpio_handler_unregister) (sb_t * sbh, void *gpioh) {
3006 sb_info_t *si;
3007 gpioh_item_t *p, *n;
3008
3009 si = SB_INFO(sbh);
3010 if (si->sb.ccrev < 11)
3011 return;
3012
3013 ASSERT(si->gpioh_head);
3014 if ((void *)si->gpioh_head == gpioh) {
3015 si->gpioh_head = si->gpioh_head->next;
3016 MFREE(si->osh, gpioh, sizeof(gpioh_item_t));
3017 return;
3018 } else {
3019 p = si->gpioh_head;
3020 n = p->next;
3021 while (n) {
3022 if ((void *)n == gpioh) {
3023 p->next = n->next;
3024 MFREE(si->osh, gpioh, sizeof(gpioh_item_t));
3025 return;
3026 }
3027 p = n;
3028 n = n->next;
3029 }
3030 }
3031
3032 ASSERT(0); /* Not found in list */
3033 }
3034
3035 void sb_gpio_handler_process(sb_t * sbh)
3036 {
3037 sb_info_t *si;
3038 gpioh_item_t *h;
3039 uint32 status;
3040 uint32 level = sb_gpioin(sbh);
3041 uint32 edge = sb_gpioevent(sbh, GPIO_REGEVT, 0, 0);
3042
3043 si = SB_INFO(sbh);
3044 for (h = si->gpioh_head; h != NULL; h = h->next) {
3045 if (h->handler) {
3046 status = (h->level ? level : edge);
3047
3048 if (status & h->event)
3049 h->handler(status, h->arg);
3050 }
3051 }
3052
3053 sb_gpioevent(sbh, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
3054 }
3055
3056 uint32 sb_gpio_int_enable(sb_t * sbh, bool enable)
3057 {
3058 sb_info_t *si;
3059 uint offs;
3060
3061 si = SB_INFO(sbh);
3062 if (si->sb.ccrev < 11)
3063 return -1;
3064
3065 offs = OFFSETOF(chipcregs_t, intmask);
3066 return (sb_corereg
3067 (sbh, SB_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
3068 }
3069
3070 #ifdef BCMDBG
3071 void sb_dump(sb_t * sbh, struct bcmstrbuf *b)
3072 {
3073 sb_info_t *si;
3074 uint i;
3075
3076 si = SB_INFO(sbh);
3077
3078 bcm_bprintf(b,
3079 "si %p chip 0x%x chiprev 0x%x boardtype 0x%x boardvendor 0x%x bus %d\n",
3080 si, si->sb.chip, si->sb.chiprev, si->sb.boardtype,
3081 si->sb.boardvendor, si->sb.bustype);
3082 bcm_bprintf(b, "osh %p curmap %p\n", si->osh, si->curmap);
3083 bcm_bprintf(b,
3084 "sonicsrev %d ccrev %d buscoretype 0x%x buscorerev %d curidx %d\n",
3085 si->sb.sonicsrev, si->sb.ccrev, si->sb.buscoretype,
3086 si->sb.buscorerev, si->curidx);
3087
3088 bcm_bprintf(b, "forceHT %d ASPM overflowPR42780 %d pcie_polarity %d\n",
3089 si->sb.pr32414, si->sb.pr42780, si->pcie_polarity);
3090
3091 bcm_bprintf(b, "cores: ");
3092 for (i = 0; i < si->numcores; i++)
3093 bcm_bprintf(b, "0x%x ", si->coreid[i]);
3094 bcm_bprintf(b, "\n");
3095 }
3096
3097 /* print interesting sbconfig registers */
3098 void sb_dumpregs(sb_t * sbh, struct bcmstrbuf *b)
3099 {
3100 sb_info_t *si;
3101 sbconfig_t *sb;
3102 uint origidx;
3103 uint curidx, i, intr_val = 0;
3104
3105 si = SB_INFO(sbh);
3106 origidx = si->curidx;
3107
3108 INTR_OFF(si, intr_val);
3109 curidx = si->curidx;
3110
3111 for (i = 0; i < si->numcores; i++) {
3112 sb = REGS2SB(sb_setcoreidx(sbh, i));
3113
3114 bcm_bprintf(b, "core 0x%x: \n", si->coreid[i]);
3115 bcm_bprintf(b,
3116 "sbtmstatelow 0x%x sbtmstatehigh 0x%x sbidhigh 0x%x "
3117 "sbimstate 0x%x\n sbimconfiglow 0x%x sbimconfighigh 0x%x\n",
3118 R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si,
3119 &sb->
3120 sbtmstatehigh),
3121 R_SBREG(si, &sb->sbidhigh), R_SBREG(si,
3122 &sb->sbimstate),
3123 R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si,
3124 &sb->
3125 sbimconfighigh));
3126 }
3127
3128 sb_setcoreidx(sbh, origidx);
3129 INTR_RESTORE(si, intr_val);
3130 }
3131
3132 void sb_view(sb_t * sbh)
3133 {
3134 sb_info_t *si;
3135 sbconfig_t *sb;
3136
3137 si = SB_INFO(sbh);
3138 sb = REGS2SB(si->curmap);
3139
3140 if (si->sb.sonicsrev > SONICS_2_2)
3141 SB_ERROR(("sbimerrlog 0x%x sbimerrloga 0x%x\n",
3142 sb_corereg(sbh, sb_coreidx(&si->sb), SBIMERRLOG, 0,
3143 0), sb_corereg(sbh, sb_coreidx(&si->sb),
3144 SBIMERRLOGA, 0, 0)));
3145
3146 SB_ERROR(("sbipsflag 0x%x sbtpsflag 0x%x sbtmerrloga 0x%x sbtmerrlog 0x%x\n", R_SBREG(si, &sb->sbipsflag), R_SBREG(si, &sb->sbtpsflag), R_SBREG(si, &sb->sbtmerrloga), R_SBREG(si, &sb->sbtmerrlog)));
3147 SB_ERROR(("sbadmatch3 0x%x sbadmatch2 0x%x sbadmatch1 0x%x\n",
3148 R_SBREG(si, &sb->sbadmatch3), R_SBREG(si, &sb->sbadmatch2),
3149 R_SBREG(si, &sb->sbadmatch1)));
3150 SB_ERROR(("sbimstate 0x%x sbintvec 0x%x sbtmstatelow 0x%x sbtmstatehigh 0x%x\n", R_SBREG(si, &sb->sbimstate), R_SBREG(si, &sb->sbintvec), R_SBREG(si, &sb->sbtmstatelow), R_SBREG(si, &sb->sbtmstatehigh)));
3151 SB_ERROR(("sbbwa0 0x%x sbimconfiglow 0x%x sbimconfighigh 0x%x sbadmatch0 0x%x\n", R_SBREG(si, &sb->sbbwa0), R_SBREG(si, &sb->sbimconfiglow), R_SBREG(si, &sb->sbimconfighigh), R_SBREG(si, &sb->sbadmatch0)));
3152 SB_ERROR(("sbtmconfiglow 0x%x sbtmconfighigh 0x%x sbbconfig 0x%x sbbstate 0x%x\n", R_SBREG(si, &sb->sbtmconfiglow), R_SBREG(si, &sb->sbtmconfighigh), R_SBREG(si, &sb->sbbconfig), R_SBREG(si, &sb->sbbstate)));
3153 SB_ERROR(("sbactcnfg 0x%x sbflagst 0x%x sbidlow 0x%x sbidhigh 0x%x\n",
3154 R_SBREG(si, &sb->sbactcnfg), R_SBREG(si, &sb->sbflagst),
3155 R_SBREG(si, &sb->sbidlow), R_SBREG(si, &sb->sbidhigh)));
3156 }
3157
3158 void sb_viewall(sb_t * sbh)
3159 {
3160 sb_info_t *si;
3161 uint curidx, i;
3162 uint intr_val = 0;
3163
3164 si = SB_INFO(sbh);
3165 curidx = si->curidx;
3166
3167 for (i = 0; i < si->numcores; i++) {
3168 INTR_OFF(si, intr_val);
3169 sb_setcoreidx(sbh, i);
3170 sb_view(sbh);
3171 INTR_RESTORE(si, intr_val);
3172 }
3173
3174 sb_setcoreidx(sbh, curidx);
3175 }
3176 #endif /* BCMDBG */
3177
3178 /* return the slow clock source - LPO, XTAL, or PCI */
3179 static uint sb_slowclk_src(sb_info_t * si)
3180 {
3181 chipcregs_t *cc;
3182
3183 ASSERT(sb_coreid(&si->sb) == SB_CC);
3184
3185 if (si->sb.ccrev < 6) {
3186 if ((BUSTYPE(si->sb.bustype) == PCI_BUS) &&
3187 (OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32))
3188 & PCI_CFG_GPIO_SCS))
3189 return (SCC_SS_PCI);
3190 else
3191 return (SCC_SS_XTAL);
3192 } else if (si->sb.ccrev < 10) {
3193 cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx);
3194 return (R_REG(si->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
3195 } else /* Insta-clock */
3196 return (SCC_SS_XTAL);
3197 }
3198
3199 /* return the ILP (slowclock) min or max frequency */
3200 static uint sb_slowclk_freq(sb_info_t * si, bool max_freq)
3201 {
3202 chipcregs_t *cc;
3203 uint32 slowclk;
3204 uint div;
3205
3206 ASSERT(sb_coreid(&si->sb) == SB_CC);
3207
3208 cc = (chipcregs_t *) sb_setcoreidx(&si->sb, si->curidx);
3209
3210 /* shouldn't be here unless we've established the chip has dynamic clk control */
3211 ASSERT(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
3212
3213 slowclk = sb_slowclk_src(si);
3214 if (si->sb.ccrev < 6) {
3215 if (slowclk == SCC_SS_PCI)
3216 return (max_freq ? (PCIMAXFREQ / 64)
3217 : (PCIMINFREQ / 64));
3218 else
3219 return (max_freq ? (XTALMAXFREQ / 32)
3220 : (XTALMINFREQ / 32));
3221 } else if (si->sb.ccrev < 10) {
3222 div =
3223 4 *
3224 (((R_REG(si->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >>
3225 SCC_CD_SHIFT)
3226 + 1);
3227 if (slowclk == SCC_SS_LPO)
3228 return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
3229 else if (slowclk == SCC_SS_XTAL)
3230 return (max_freq ? (XTALMAXFREQ / div)
3231 : (XTALMINFREQ / div));
3232 else if (slowclk == SCC_SS_PCI)
3233 return (max_freq ? (PCIMAXFREQ / div)
3234 : (PCIMINFREQ / div));
3235 else
3236 ASSERT(0);
3237 } else {
3238 /* Chipc rev 10 is InstaClock */
3239 div = R_REG(si->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
3240 div = 4 * (div + 1);
3241 return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
3242 }
3243 return (0);
3244 }
3245
3246 static void BCMINITFN(sb_clkctl_setdelay) (sb_info_t * si, void *chipcregs) {
3247 chipcregs_t *cc;
3248 uint slowmaxfreq, pll_delay, slowclk;
3249 uint pll_on_delay, fref_sel_delay;
3250
3251 pll_delay = PLL_DELAY;
3252
3253 /* If the slow clock is not sourced by the xtal then add the xtal_on_delay
3254 * since the xtal will also be powered down by dynamic clk control logic.
3255 */
3256
3257 slowclk = sb_slowclk_src(si);
3258 if (slowclk != SCC_SS_XTAL)
3259 pll_delay += XTAL_ON_DELAY;
3260
3261 /* Starting with 4318 it is ILP that is used for the delays */
3262 slowmaxfreq = sb_slowclk_freq(si, (si->sb.ccrev >= 10) ? FALSE : TRUE);
3263
3264 pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
3265 fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
3266
3267 cc = (chipcregs_t *) chipcregs;
3268 W_REG(si->osh, &cc->pll_on_delay, pll_on_delay);
3269 W_REG(si->osh, &cc->fref_sel_delay, fref_sel_delay);
3270 }
3271
3272 /* initialize power control delay registers */
3273 void BCMINITFN(sb_clkctl_init) (sb_t * sbh) {
3274 sb_info_t *si;
3275 uint origidx;
3276 chipcregs_t *cc;
3277
3278 si = SB_INFO(sbh);
3279
3280 origidx = si->curidx;
3281
3282 if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL)
3283 return;
3284
3285 if ((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev < 2))
3286 W_REG(si->osh, &cc->chipcontrol,
3287 (si->sb.chiprev ==
3288 0) ? CHIPCTRL_4321A0_DEFAULT : CHIPCTRL_4321A1_DEFAULT);
3289
3290 if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL))
3291 goto done;
3292
3293 /* set all Instaclk chip ILP to 1 MHz */
3294 if (si->sb.ccrev >= 10)
3295 SET_REG(si->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
3296 (ILP_DIV_1MHZ << SYCC_CD_SHIFT));
3297
3298 sb_clkctl_setdelay(si, (void *)(uintptr) cc);
3299
3300 done:
3301 sb_setcoreidx(sbh, origidx);
3302 }
3303
3304 /* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */
3305 uint16 BCMINITFN(sb_clkctl_fast_pwrup_delay) (sb_t * sbh) {
3306 sb_info_t *si;
3307 uint origidx;
3308 chipcregs_t *cc;
3309 uint slowminfreq;
3310 uint16 fpdelay;
3311 uint intr_val = 0;
3312
3313 si = SB_INFO(sbh);
3314 fpdelay = 0;
3315 origidx = si->curidx;
3316
3317 INTR_OFF(si, intr_val);
3318
3319 if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL)
3320 goto done;
3321
3322 if (sbh->cccaps & CC_CAP_PMU) {
3323 fpdelay = sb_pmu_fast_pwrup_delay(sbh, si->osh);
3324 goto done;
3325 }
3326
3327 if (!(sbh->cccaps & CC_CAP_PWR_CTL))
3328 goto done;
3329
3330 slowminfreq = sb_slowclk_freq(si, FALSE);
3331 fpdelay = (((R_REG(si->osh, &cc->pll_on_delay) + 2) * 1000000) +
3332 (slowminfreq - 1)) / slowminfreq;
3333
3334 done:
3335 sb_setcoreidx(sbh, origidx);
3336 INTR_RESTORE(si, intr_val);
3337 return (fpdelay);
3338 }
3339
3340 /* turn primary xtal and/or pll off/on */
3341 int sb_clkctl_xtal(sb_t * sbh, uint what, bool on)
3342 {
3343 sb_info_t *si;
3344 uint32 in, out, outen;
3345
3346 si = SB_INFO(sbh);
3347
3348 switch (BUSTYPE(si->sb.bustype)) {
3349
3350 case PCMCIA_BUS:
3351 return (0);
3352
3353 case PCI_BUS:
3354
3355 /* pcie core doesn't have any mapping to control the xtal pu */
3356 if (PCIE(si))
3357 return -1;
3358
3359 in = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_IN, sizeof(uint32));
3360 out =
3361 OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32));
3362 outen =
3363 OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN,
3364 sizeof(uint32));
3365
3366 /*
3367 * Avoid glitching the clock if GPRS is already using it.
3368 * We can't actually read the state of the PLLPD so we infer it
3369 * by the value of XTAL_PU which *is* readable via gpioin.
3370 */
3371 if (on && (in & PCI_CFG_GPIO_XTAL))
3372 return (0);
3373
3374 if (what & XTAL)
3375 outen |= PCI_CFG_GPIO_XTAL;
3376 if (what & PLL)
3377 outen |= PCI_CFG_GPIO_PLL;
3378
3379 if (on) {
3380 /* turn primary xtal on */
3381 if (what & XTAL) {
3382 out |= PCI_CFG_GPIO_XTAL;
3383 if (what & PLL)
3384 out |= PCI_CFG_GPIO_PLL;
3385 OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
3386 sizeof(uint32), out);
3387 OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
3388 sizeof(uint32), outen);
3389 OSL_DELAY(XTAL_ON_DELAY);
3390 }
3391
3392 /* turn pll on */
3393 if (what & PLL) {
3394 out &= ~PCI_CFG_GPIO_PLL;
3395 OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
3396 sizeof(uint32), out);
3397 OSL_DELAY(2000);
3398 }
3399 } else {
3400 if (what & XTAL)
3401 out &= ~PCI_CFG_GPIO_XTAL;
3402 if (what & PLL)
3403 out |= PCI_CFG_GPIO_PLL;
3404 OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
3405 sizeof(uint32), out);
3406 OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
3407 sizeof(uint32), outen);
3408 }
3409
3410 default:
3411 return (-1);
3412 }
3413
3414 return (0);
3415 }
3416
3417 /* set dynamic clk control mode (forceslow, forcefast, dynamic) */
3418 /* returns true if we are forcing fast clock */
3419 bool sb_clkctl_clk(sb_t * sbh, uint mode)
3420 {
3421 sb_info_t *si;
3422 uint origidx;
3423 chipcregs_t *cc;
3424 uint32 scc;
3425 uint intr_val = 0;
3426
3427 si = SB_INFO(sbh);
3428
3429 /* chipcommon cores prior to rev6 don't support dynamic clock control */
3430 if (si->sb.ccrev < 6)
3431 return (FALSE);
3432
3433 /* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */
3434 ASSERT(si->sb.ccrev != 10);
3435
3436 INTR_OFF(si, intr_val);
3437
3438 origidx = si->curidx;
3439
3440 if (sb_setcore(sbh, SB_MIPS33, 0) && (sb_corerev(&si->sb) <= 7) &&
3441 (BUSTYPE(si->sb.bustype) == SB_BUS) && (si->sb.ccrev >= 10))
3442 goto done;
3443
3444 if (FORCEHT_WAR32414(si))
3445 goto done;
3446
3447 cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
3448 ASSERT(cc != NULL);
3449
3450 if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL)
3451 && (si->sb.ccrev < 20))
3452 goto done;
3453
3454 switch (mode) {
3455 case CLK_FAST: /* force fast (pll) clock */
3456 if (si->sb.ccrev < 10) {
3457 /* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */
3458 sb_clkctl_xtal(&si->sb, XTAL, ON);
3459
3460 SET_REG(si->osh, &cc->slow_clk_ctl,
3461 (SCC_XC | SCC_FS | SCC_IP), SCC_IP);
3462 } else if (si->sb.ccrev < 20) {
3463 OR_REG(si->osh, &cc->system_clk_ctl, SYCC_HR);
3464 } else {
3465 OR_REG(si->osh, &cc->clk_ctl_st, CCS_FORCEHT);
3466 }
3467
3468 /* wait for the PLL */
3469 if (R_REG(si->osh, &cc->capabilities) & CC_CAP_PMU) {
3470 SPINWAIT(((R_REG(si->osh, &cc->clk_ctl_st) &
3471 CCS_HTAVAIL) == 0), PMU_MAX_TRANSITION_DLY);
3472 ASSERT(R_REG(si->osh, &cc->clk_ctl_st) & CCS_HTAVAIL);
3473 } else {
3474 OSL_DELAY(PLL_DELAY);
3475 }
3476 break;
3477
3478 case CLK_DYNAMIC: /* enable dynamic clock control */
3479 if (si->sb.ccrev < 10) {
3480 scc = R_REG(si->osh, &cc->slow_clk_ctl);
3481 scc &= ~(SCC_FS | SCC_IP | SCC_XC);
3482 if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
3483 scc |= SCC_XC;
3484 W_REG(si->osh, &cc->slow_clk_ctl, scc);
3485
3486 /* for dynamic control, we have to release our xtal_pu "force on" */
3487 if (scc & SCC_XC)
3488 sb_clkctl_xtal(&si->sb, XTAL, OFF);
3489 } else if (si->sb.ccrev < 20) {
3490 /* Instaclock */
3491 AND_REG(si->osh, &cc->system_clk_ctl, ~SYCC_HR);
3492 } else {
3493 AND_REG(si->osh, &cc->clk_ctl_st, ~CCS_FORCEHT);
3494 }
3495 break;
3496
3497 default:
3498 ASSERT(0);
3499 }
3500
3501 done:
3502 sb_setcoreidx(sbh, origidx);
3503 INTR_RESTORE(si, intr_val);
3504 return (mode == CLK_FAST);
3505 }
3506
3507 /* register driver interrupt disabling and restoring callback functions */
3508 void
3509 sb_register_intr_callback(sb_t * sbh, void *intrsoff_fn,
3510 void *intrsrestore_fn, void *intrsenabled_fn,
3511 void *intr_arg)
3512 {
3513 sb_info_t *si;
3514
3515 si = SB_INFO(sbh);
3516 si->intr_arg = intr_arg;
3517 si->intrsoff_fn = (sb_intrsoff_t) intrsoff_fn;
3518 si->intrsrestore_fn = (sb_intrsrestore_t) intrsrestore_fn;
3519 si->intrsenabled_fn = (sb_intrsenabled_t) intrsenabled_fn;
3520 /* save current core id. when this function called, the current core
3521 * must be the core which provides driver functions(il, et, wl, etc.)
3522 */
3523 si->dev_coreid = si->coreid[si->curidx];
3524 }
3525
3526 void sb_deregister_intr_callback(sb_t * sbh)
3527 {
3528 sb_info_t *si;
3529
3530 si = SB_INFO(sbh);
3531 si->intrsoff_fn = NULL;
3532 }
3533
3534 #ifdef BCMDBG
3535 /* dump dynamic clock control related registers */
3536 void sb_clkctl_dump(sb_t * sbh, struct bcmstrbuf *b)
3537 {
3538 sb_info_t *si;
3539 chipcregs_t *cc;
3540 uint origidx;
3541 uint intr_val = 0;
3542
3543 si = SB_INFO(sbh);
3544
3545 INTR_OFF(si, intr_val);
3546
3547 origidx = si->curidx;
3548
3549 if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0)) == NULL) {
3550 INTR_RESTORE(si, intr_val);
3551 return;
3552 }
3553
3554 if (!(R_REG(si->osh, &cc->capabilities) & CC_CAP_PWR_CTL))
3555 goto done;
3556
3557 bcm_bprintf(b, "pll_on_delay 0x%x fref_sel_delay 0x%x ",
3558 cc->pll_on_delay, cc->fref_sel_delay);
3559 if ((si->sb.ccrev >= 6) && (si->sb.ccrev < 10))
3560 bcm_bprintf(b, "slow_clk_ctl 0x%x ", cc->slow_clk_ctl);
3561 if (si->sb.ccrev >= 10) {
3562 bcm_bprintf(b, "system_clk_ctl 0x%x ", cc->system_clk_ctl);
3563 bcm_bprintf(b, "clkstatestretch 0x%x ", cc->clkstatestretch);
3564 }
3565 if (BUSTYPE(si->sb.bustype) == PCI_BUS)
3566 bcm_bprintf(b, "gpioout 0x%x gpioouten 0x%x ",
3567 OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT,
3568 sizeof(uint32)),
3569 OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN,
3570 sizeof(uint32)));
3571 bcm_bprintf(b, "\n");
3572
3573 done:
3574 sb_setcoreidx(sbh, origidx);
3575 INTR_RESTORE(si, intr_val);
3576 }
3577 #endif /* BCMDBG */
3578
3579 uint16 BCMINITFN(sb_d11_devid) (sb_t * sbh) {
3580 sb_info_t *si = SB_INFO(sbh);
3581 uint16 device;
3582
3583 #if defined(BCM4328)
3584 /* Fix device id for dual band BCM4328 */
3585 if (sbh->chip == BCM4328_CHIP_ID &&
3586 (sbh->chippkg == BCM4328USBDUAL_PKG_ID
3587 || sbh->chippkg == BCM4328SDIODUAL_PKG_ID))
3588 device = BCM4328_D11DUAL_ID;
3589 else
3590 #endif /* BCM4328 */
3591 /* Let an nvram variable with devpath override devid */
3592 if ((device = (uint16) sb_getdevpathintvar(sbh, "devid")) != 0) ;
3593 /* Get devid from OTP/SPROM depending on where the SROM is read */
3594 else if ((device = (uint16) getintvar(si->vars, "devid")) != 0) ;
3595 /*
3596 * no longer support wl0id, but keep the code
3597 * here for backward compatibility.
3598 */
3599 else if ((device = (uint16) getintvar(si->vars, "wl0id")) != 0) ;
3600 /* Chip specific conversion */
3601 else if (sbh->chip == BCM4712_CHIP_ID) {
3602 if (sbh->chippkg == BCM4712SMALL_PKG_ID)
3603 device = BCM4306_D11G_ID;
3604 else
3605 device = BCM4306_D11DUAL_ID;
3606 }
3607 /* ignore it */
3608 else
3609 device = 0xffff;
3610
3611 return device;
3612 }
3613
3614 int
3615 BCMINITFN(sb_corepciid) (sb_t * sbh, uint func, uint16 * pcivendor,
3616 uint16 * pcidevice, uint8 * pciclass,
3617 uint8 * pcisubclass, uint8 * pciprogif,
3618 uint8 * pciheader) {
3619 uint16 vendor = 0xffff, device = 0xffff;
3620 uint8 class, subclass, progif = 0;
3621 uint8 header = PCI_HEADER_NORMAL;
3622 uint32 core = sb_coreid(sbh);
3623
3624 /* Verify whether the function exists for the core */
3625 if (func >= (uint) (core == SB_USB20H ? 2 : 1))
3626 return -1;
3627
3628 /* Known vendor translations */
3629 switch (sb_corevendor(sbh)) {
3630 case SB_VEND_BCM:
3631 vendor = VENDOR_BROADCOM;
3632 break;
3633 default:
3634 return -1;
3635 }
3636
3637 /* Determine class based on known core codes */
3638 switch (core) {
3639 case SB_ILINE20:
3640 class = PCI_CLASS_NET;
3641 subclass = PCI_NET_ETHER;
3642 device = BCM47XX_ILINE_ID;
3643 break;
3644 case SB_ENET:
3645 class = PCI_CLASS_NET;
3646 subclass = PCI_NET_ETHER;
3647 device = BCM47XX_ENET_ID;
3648 break;
3649 case SB_GIGETH:
3650 class = PCI_CLASS_NET;
3651 subclass = PCI_NET_ETHER;
3652 device = BCM47XX_GIGETH_ID;
3653 break;
3654 case SB_SDRAM:
3655 case SB_MEMC:
3656 class = PCI_CLASS_MEMORY;
3657 subclass = PCI_MEMORY_RAM;
3658 device = (uint16) core;
3659 break;
3660 case SB_PCI:
3661 case SB_PCIE:
3662 class = PCI_CLASS_BRIDGE;
3663 subclass = PCI_BRIDGE_PCI;
3664 device = (uint16) core;
3665 header = PCI_HEADER_BRIDGE;
3666 break;
3667 case SB_MIPS:
3668 case SB_MIPS33:
3669 class = PCI_CLASS_CPU;
3670 subclass = PCI_CPU_MIPS;
3671 device = (uint16) core;
3672 break;
3673 case SB_CODEC:
3674 class = PCI_CLASS_COMM;
3675 subclass = PCI_COMM_MODEM;
3676 device = BCM47XX_V90_ID;
3677 break;
3678 case SB_USB:
3679 class = PCI_CLASS_SERIAL;
3680 subclass = PCI_SERIAL_USB;
3681 progif = 0x10; /* OHCI */
3682 device = BCM47XX_USB_ID;
3683 break;
3684 case SB_USB11H:
3685 class = PCI_CLASS_SERIAL;
3686 subclass = PCI_SERIAL_USB;
3687 progif = 0x10; /* OHCI */
3688 device = BCM47XX_USBH_ID;
3689 break;
3690 case SB_USB20H:
3691 class = PCI_CLASS_SERIAL;
3692 subclass = PCI_SERIAL_USB;
3693 progif = func == 0 ? 0x10 : 0x20; /* OHCI/EHCI */
3694 device = BCM47XX_USB20H_ID;
3695 header = 0x80; /* multifunction */
3696 break;
3697 case SB_IPSEC:
3698 class = PCI_CLASS_CRYPT;
3699 subclass = PCI_CRYPT_NETWORK;
3700 device = BCM47XX_IPSEC_ID;
3701 break;
3702 case SB_ROBO:
3703 class = PCI_CLASS_NET;
3704 subclass = PCI_NET_OTHER;
3705 device = BCM47XX_ROBO_ID;
3706 break;
3707 case SB_EXTIF:
3708 case SB_CC:
3709 class = PCI_CLASS_MEMORY;
3710 subclass = PCI_MEMORY_FLASH;
3711 device = (uint16) core;
3712 break;
3713 case SB_SATAXOR:
3714 class = PCI_CLASS_XOR;
3715 subclass = PCI_XOR_QDMA;
3716 device = BCM47XX_SATAXOR_ID;
3717 break;
3718 case SB_ATA100:
3719 class = PCI_CLASS_DASDI;
3720 subclass = PCI_DASDI_IDE;
3721 device = BCM47XX_ATA100_ID;
3722 break;
3723 case SB_USB11D:
3724 class = PCI_CLASS_SERIAL;
3725 subclass = PCI_SERIAL_USB;
3726 device = BCM47XX_USBD_ID;
3727 break;
3728 case SB_USB20D:
3729 class = PCI_CLASS_SERIAL;
3730 subclass = PCI_SERIAL_USB;
3731 device = BCM47XX_USB20D_ID;
3732 break;
3733 case SB_D11:
3734 class = PCI_CLASS_NET;
3735 subclass = PCI_NET_OTHER;
3736 device = sb_d11_devid(sbh);
3737 break;
3738
3739 default:
3740 class = subclass = progif = 0xff;
3741 device = (uint16) core;
3742 break;
3743 }
3744
3745 *pcivendor = vendor;
3746 *pcidevice = device;
3747 *pciclass = class;
3748 *pcisubclass = subclass;
3749 *pciprogif = progif;
3750 *pciheader = header;
3751
3752 return 0;
3753 }
3754
3755 /* use the mdio interface to read from mdio slaves */
3756 static int
3757 sb_pcie_mdioread(sb_info_t * si, uint physmedia, uint regaddr, uint * regval)
3758 {
3759 uint mdiodata;
3760 uint i = 0;
3761 sbpcieregs_t *pcieregs;
3762
3763 pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
3764 ASSERT(pcieregs);
3765
3766 /* enable mdio access to SERDES */
3767 W_REG(si->osh, (&pcieregs->mdiocontrol),
3768 MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
3769
3770 mdiodata = MDIODATA_START | MDIODATA_READ |
3771 (physmedia << MDIODATA_DEVADDR_SHF) |
3772 (regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA;
3773
3774 W_REG(si->osh, &pcieregs->mdiodata, mdiodata);
3775
3776 PR28829_DELAY();
3777
3778 /* retry till the transaction is complete */
3779 while (i < 10) {
3780 if (R_REG(si->osh, &(pcieregs->mdiocontrol)) &
3781 MDIOCTL_ACCESS_DONE) {
3782 PR28829_DELAY();
3783 *regval =
3784 (R_REG(si->osh, &(pcieregs->mdiodata)) &
3785 MDIODATA_MASK);
3786 /* Disable mdio access to SERDES */
3787 W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
3788 return 0;
3789 }
3790 OSL_DELAY(1000);
3791 i++;
3792 }
3793
3794 SB_ERROR(("sb_pcie_mdioread: timed out\n"));
3795 /* Disable mdio access to SERDES */
3796 W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
3797 return 1;
3798 }
3799
3800 /* use the mdio interface to write to mdio slaves */
3801 static int
3802 sb_pcie_mdiowrite(sb_info_t * si, uint physmedia, uint regaddr, uint val)
3803 {
3804 uint mdiodata;
3805 uint i = 0;
3806 sbpcieregs_t *pcieregs;
3807
3808 pcieregs = (sbpcieregs_t *) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
3809 ASSERT(pcieregs);
3810
3811 /* enable mdio access to SERDES */
3812 W_REG(si->osh, (&pcieregs->mdiocontrol),
3813 MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
3814
3815 mdiodata = MDIODATA_START | MDIODATA_WRITE |
3816 (physmedia << MDIODATA_DEVADDR_SHF) |
3817 (regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA | val;
3818
3819 W_REG(si->osh, (&pcieregs->mdiodata), mdiodata);
3820
3821 PR28829_DELAY();
3822
3823 /* retry till the transaction is complete */
3824 while (i < 10) {
3825 if (R_REG(si->osh, &(pcieregs->mdiocontrol)) &
3826 MDIOCTL_ACCESS_DONE) {
3827 /* Disable mdio access to SERDES */
3828 W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
3829 return 0;
3830 }
3831 OSL_DELAY(1000);
3832 i++;
3833 }
3834
3835 SB_ERROR(("sb_pcie_mdiowrite: timed out\n"));
3836 /* Disable mdio access to SERDES */
3837 W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
3838 return 1;
3839
3840 }
3841
3842 /* indirect way to read pcie config regs */
3843 uint sb_pcie_readreg(void *sb, void *arg1, uint offset)
3844 {
3845 sb_info_t *si;
3846 sb_t *sbh;
3847 uint retval = 0xFFFFFFFF;
3848 sbpcieregs_t *pcieregs;
3849 uint addrtype;
3850
3851 sbh = (sb_t *) sb;
3852 si = SB_INFO(sbh);
3853 ASSERT(PCIE(si));
3854
3855 pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0);
3856 ASSERT(pcieregs);
3857
3858 addrtype = (uint) ((uintptr) arg1);
3859 switch (addrtype) {
3860 case PCIE_CONFIGREGS:
3861 W_REG(si->osh, (&pcieregs->configaddr), offset);
3862 retval = R_REG(si->osh, &(pcieregs->configdata));
3863 break;
3864 case PCIE_PCIEREGS:
3865 W_REG(si->osh, &(pcieregs->pcieindaddr), offset);
3866 retval = R_REG(si->osh, &(pcieregs->pcieinddata));
3867 break;
3868 default:
3869 ASSERT(0);
3870 break;
3871 }
3872 return retval;
3873 }
3874
3875 /* indirect way to write pcie config/mdio/pciecore regs */
3876 uint sb_pcie_writereg(sb_t * sbh, void *arg1, uint offset, uint val)
3877 {
3878 sb_info_t *si;
3879 sbpcieregs_t *pcieregs;
3880 uint addrtype;
3881
3882 si = SB_INFO(sbh);
3883 ASSERT(PCIE(si));
3884
3885 pcieregs = (sbpcieregs_t *) sb_setcore(sbh, SB_PCIE, 0);
3886 ASSERT(pcieregs);
3887
3888 addrtype = (uint) ((uintptr) arg1);
3889
3890 switch (addrtype) {
3891 case PCIE_CONFIGREGS:
3892 W_REG(si->osh, (&pcieregs->configaddr), offset);
3893 W_REG(si->osh, (&pcieregs->configdata), val);
3894 break;
3895 case PCIE_PCIEREGS:
3896 W_REG(si->osh, (&pcieregs->pcieindaddr), offset);
3897 W_REG(si->osh, (&pcieregs->pcieinddata), val);
3898 break;
3899 default:
3900 ASSERT(0);
3901 break;
3902 }
3903 return 0;
3904 }
3905
3906 /* Build device path. Support SB, PCI, and JTAG for now. */
3907 int BCMINITFN(sb_devpath) (sb_t * sbh, char *path, int size) {
3908 int slen;
3909 ASSERT(path);
3910 ASSERT(size >= SB_DEVPATH_BUFSZ);
3911
3912 if (!path || size <= 0)
3913 return -1;
3914
3915 switch (BUSTYPE((SB_INFO(sbh))->sb.bustype)) {
3916 case SB_BUS:
3917 case JTAG_BUS:
3918 slen = snprintf(path, (size_t) size, "sb/%u/", sb_coreidx(sbh));
3919 break;
3920 case PCI_BUS:
3921 ASSERT((SB_INFO(sbh))->osh);
3922 slen = snprintf(path, (size_t) size, "pci/%u/%u/",
3923 OSL_PCI_BUS((SB_INFO(sbh))->osh),
3924 OSL_PCI_SLOT((SB_INFO(sbh))->osh));
3925 break;
3926 case PCMCIA_BUS:
3927 SB_ERROR(("sb_devpath: OSL_PCMCIA_BUS() not implemented, bus 1 assumed\n"));
3928 SB_ERROR(("sb_devpath: OSL_PCMCIA_SLOT() not implemented, slot 1 assumed\n"));
3929 slen = snprintf(path, (size_t) size, "pc/1/1/");
3930 break;
3931 default:
3932 slen = -1;
3933 ASSERT(0);
3934 break;
3935 }
3936
3937 if (slen < 0 || slen >= size) {
3938 path[0] = '\0';
3939 return -1;
3940 }
3941
3942 return 0;
3943 }
3944
3945 /* Get a variable, but only if it has a devpath prefix */
3946 char *BCMINITFN(sb_getdevpathvar) (sb_t * sbh, const char *name) {
3947 char varname[SB_DEVPATH_BUFSZ + 32];
3948
3949 sb_devpathvar(sbh, varname, sizeof(varname), name);
3950
3951 return (getvar(NULL, varname));
3952 }
3953
3954 /* Get a variable, but only if it has a devpath prefix */
3955 int BCMINITFN(sb_getdevpathintvar) (sb_t * sbh, const char *name) {
3956 char varname[SB_DEVPATH_BUFSZ + 32];
3957
3958 sb_devpathvar(sbh, varname, sizeof(varname), name);
3959
3960 return (getintvar(NULL, varname));
3961 }
3962
3963 /* Concatenate the dev path with a varname into the given 'var' buffer
3964 * and return the 'var' pointer.
3965 * Nothing is done to the arguments if len == 0 or var is NULL, var is still returned.
3966 * On overflow, the first char will be set to '\0'.
3967 */
3968 static char *BCMINITFN(sb_devpathvar) (sb_t * sbh, char *var, int len,
3969 const char *name) {
3970 uint path_len;
3971
3972 if (!var || len <= 0)
3973 return var;
3974
3975 if (sb_devpath(sbh, var, len) == 0) {
3976 path_len = strlen(var);
3977
3978 if (strlen(name) + 1 > (uint) (len - path_len))
3979 var[0] = '\0';
3980 else
3981 strncpy(var + path_len, name, len - path_len - 1);
3982 }
3983
3984 return var;
3985 }
3986
3987 /*
3988 * Fixup SROMless PCI device's configuration.
3989 * The current core may be changed upon return.
3990 */
3991 static int sb_pci_fixcfg(sb_info_t * si)
3992 {
3993 uint origidx, pciidx;
3994 sbpciregs_t *pciregs;
3995 sbpcieregs_t *pcieregs = NULL;
3996 uint16 val16, *reg16;
3997 uint32 w;
3998
3999 ASSERT(BUSTYPE(si->sb.bustype) == PCI_BUS);
4000
4001 /* Fixup PI in SROM shadow area to enable the correct PCI core access */
4002 /* save the current index */
4003 origidx = sb_coreidx(&si->sb);
4004
4005 /* check 'pi' is correct and fix it if not */
4006 if (si->sb.buscoretype == SB_PCIE) {
4007 pcieregs = (sbpcieregs_t *) sb_setcore(&si->sb, SB_PCIE, 0);
4008 ASSERT(pcieregs);
4009 reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
4010 } else if (si->sb.buscoretype == SB_PCI) {
4011 pciregs = (sbpciregs_t *) sb_setcore(&si->sb, SB_PCI, 0);
4012 ASSERT(pciregs);
4013 reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
4014 } else {
4015 ASSERT(0);
4016 return -1;
4017 }
4018 pciidx = sb_coreidx(&si->sb);
4019 val16 = R_REG(si->osh, reg16);
4020 if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16) pciidx) {
4021 val16 =
4022 (uint16) (pciidx << SRSH_PI_SHIFT) | (val16 &
4023 ~SRSH_PI_MASK);
4024 W_REG(si->osh, reg16, val16);
4025 }
4026
4027 if (PCIE_ASPMWARS(si)) {
4028 w = sb_pcie_readreg((void *)(uintptr) & si->sb,
4029 (void *)PCIE_PCIEREGS, PCIE_PLP_STATUSREG);
4030
4031 /* Detect the current polarity at attach and force that polarity and
4032 * disable changing the polarity
4033 */
4034 if ((w & PCIE_PLP_POLARITYINV_STAT) == 0) {
4035 si->pcie_polarity = (SERDES_RX_CTRL_FORCE);
4036 } else {
4037 si->pcie_polarity = (SERDES_RX_CTRL_FORCE |
4038 SERDES_RX_CTRL_POLARITY);
4039 }
4040
4041 w = OSL_PCI_READ_CONFIG(si->osh, si->pciecap_lcreg_offset,
4042 sizeof(uint32));
4043 if (w & PCIE_CLKREQ_ENAB) {
4044 reg16 = &pcieregs->sprom[SRSH_CLKREQ_OFFSET];
4045 val16 = R_REG(si->osh, reg16);
4046 /* if clockreq is not advertized clkreq should not be enabled */
4047 if (!(val16 & SRSH_CLKREQ_ENB))
4048 SB_ERROR(("WARNING: CLK REQ enabled already 0x%x\n", w));
4049 }
4050
4051 sb_war43448(&si->sb);
4052
4053 sb_war42767(&si->sb);
4054
4055 }
4056
4057 /* restore the original index */
4058 sb_setcoreidx(&si->sb, origidx);
4059
4060 return 0;
4061 }
4062
4063 /* Return ADDR64 capability of the backplane */
4064 bool sb_backplane64(sb_t * sbh)
4065 {
4066 sb_info_t *si;
4067
4068 si = SB_INFO(sbh);
4069 return ((si->sb.cccaps & CC_CAP_BKPLN64) != 0);
4070 }
4071
4072 void sb_btcgpiowar(sb_t * sbh)
4073 {
4074 sb_info_t *si;
4075 uint origidx;
4076 uint intr_val = 0;
4077 chipcregs_t *cc;
4078 si = SB_INFO(sbh);
4079
4080 /* Make sure that there is ChipCommon core present &&
4081 * UART_TX is strapped to 1
4082 */
4083 if (!(si->sb.cccaps & CC_CAP_UARTGPIO))
4084 return;
4085
4086 /* sb_corereg cannot be used as we have to guarantee 8-bit read/writes */
4087 INTR_OFF(si, intr_val);
4088
4089 origidx = sb_coreidx(sbh);
4090
4091 cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0);
4092 ASSERT(cc);
4093
4094 W_REG(si->osh, &cc->uart0mcr, R_REG(si->osh, &cc->uart0mcr) | 0x04);
4095
4096 /* restore the original index */
4097 sb_setcoreidx(sbh, origidx);
4098
4099 INTR_RESTORE(si, intr_val);
4100 }
4101
4102 /* check if the device is removed */
4103 bool sb_deviceremoved(sb_t * sbh)
4104 {
4105 uint32 w;
4106 sb_info_t *si;
4107
4108 si = SB_INFO(sbh);
4109
4110 switch (BUSTYPE(si->sb.bustype)) {
4111 case PCI_BUS:
4112 ASSERT(si->osh);
4113 w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_VID, sizeof(uint32));
4114 if ((w & 0xFFFF) != VENDOR_BROADCOM)
4115 return TRUE;
4116 else
4117 return FALSE;
4118 default:
4119 return FALSE;
4120 }
4121 return FALSE;
4122 }
4123
4124 #if 0
4125 /* Return the RAM size of the SOCRAM core */
4126 uint32 BCMINITFN(sb_socram_size) (sb_t * sbh) {
4127 sb_info_t *si;
4128 uint origidx;
4129 uint intr_val = 0;
4130
4131 sbsocramregs_t *regs;
4132 bool wasup;
4133 uint corerev;
4134 uint32 coreinfo;
4135 uint memsize = 0;
4136
4137 si = SB_INFO(sbh);
4138 ASSERT(si);
4139
4140 /* Block ints and save current core */
4141 INTR_OFF(si, intr_val);
4142 origidx = sb_coreidx(sbh);
4143
4144 /* Switch to SOCRAM core */
4145 if (!(regs = sb_setcore(sbh, SB_SOCRAM, 0)))
4146 goto done;
4147
4148 /* Get info for determining size */
4149 if (!(wasup = sb_iscoreup(sbh)))
4150 sb_core_reset(sbh, 0, 0);
4151 corerev = sb_corerev(sbh);
4152 coreinfo = R_REG(si->osh, &regs->coreinfo);
4153
4154 /* Calculate size from coreinfo based on rev */
4155 if (corerev == 0)
4156 memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
4157 else if (corerev < 3) {
4158 memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
4159 memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
4160 } else {
4161 uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
4162 uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
4163 uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
4164 if (lss != 0)
4165 nb--;
4166 memsize = nb * (1 << (bsz + SR_BSZ_BASE));
4167 if (lss != 0)
4168 memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
4169 }
4170 /* Return to previous state and core */
4171 if (!wasup)
4172 sb_core_disable(sbh, 0);
4173 sb_setcoreidx(sbh, origidx);
4174
4175 done:
4176 INTR_RESTORE(si, intr_val);
4177 return memsize;
4178 }
4179
4180 #endif
This page took 0.269503 seconds and 5 git commands to generate.