generic: ar8216: rename ar8216_ops to ar8216_sw_ops
[openwrt.git] / target / linux / generic / files / crypto / ocf / crypto.c
1 /*-
2 * Linux port done by David McCullough <david_mccullough@mcafee.com>
3 * Copyright (C) 2006-2010 David McCullough
4 * Copyright (C) 2004-2005 Intel Corporation.
5 * The license and original author are listed below.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
9 *
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #if 0
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
33 #endif
34
35 /*
36 * Cryptographic Subsystem.
37 *
38 * This code is derived from the Openbsd Cryptographic Framework (OCF)
39 * that has the copyright shown below. Very little of the original
40 * code remains.
41 */
42 /*-
43 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
44 *
45 * This code was written by Angelos D. Keromytis in Athens, Greece, in
46 * February 2000. Network Security Technologies Inc. (NSTI) kindly
47 * supported the development of this code.
48 *
49 * Copyright (c) 2000, 2001 Angelos D. Keromytis
50 *
51 * Permission to use, copy, and modify this software with or without fee
52 * is hereby granted, provided that this entire notice is included in
53 * all source code copies of any software which is or includes a copy or
54 * modification of this software.
55 *
56 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
57 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
58 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
59 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
60 * PURPOSE.
61 *
62 __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
63 */
64
65
66 #include <linux/version.h>
67 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
68 #include <linux/config.h>
69 #endif
70 #include <linux/module.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/wait.h>
75 #include <linux/sched.h>
76 #include <linux/spinlock.h>
77 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4)
78 #include <linux/kthread.h>
79 #endif
80 #include <cryptodev.h>
81
82 /*
83 * keep track of whether or not we have been initialised, a big
84 * issue if we are linked into the kernel and a driver gets started before
85 * us
86 */
87 static int crypto_initted = 0;
88
89 /*
90 * Crypto drivers register themselves by allocating a slot in the
91 * crypto_drivers table with crypto_get_driverid() and then registering
92 * each algorithm they support with crypto_register() and crypto_kregister().
93 */
94
95 /*
96 * lock on driver table
97 * we track its state as spin_is_locked does not do anything on non-SMP boxes
98 */
99 static spinlock_t crypto_drivers_lock;
100 static int crypto_drivers_locked; /* for non-SMP boxes */
101
102 #define CRYPTO_DRIVER_LOCK() \
103 ({ \
104 spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
105 crypto_drivers_locked = 1; \
106 dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
107 })
108 #define CRYPTO_DRIVER_UNLOCK() \
109 ({ \
110 dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
111 crypto_drivers_locked = 0; \
112 spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
113 })
114 #define CRYPTO_DRIVER_ASSERT() \
115 ({ \
116 if (!crypto_drivers_locked) { \
117 dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
118 } \
119 })
120
121 /*
122 * Crypto device/driver capabilities structure.
123 *
124 * Synchronization:
125 * (d) - protected by CRYPTO_DRIVER_LOCK()
126 * (q) - protected by CRYPTO_Q_LOCK()
127 * Not tagged fields are read-only.
128 */
129 struct cryptocap {
130 device_t cc_dev; /* (d) device/driver */
131 u_int32_t cc_sessions; /* (d) # of sessions */
132 u_int32_t cc_koperations; /* (d) # os asym operations */
133 /*
134 * Largest possible operator length (in bits) for each type of
135 * encryption algorithm. XXX not used
136 */
137 u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
138 u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
139 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
140
141 int cc_flags; /* (d) flags */
142 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
143 int cc_qblocked; /* (q) symmetric q blocked */
144 int cc_kqblocked; /* (q) asymmetric q blocked */
145
146 int cc_unqblocked; /* (q) symmetric q blocked */
147 int cc_unkqblocked; /* (q) asymmetric q blocked */
148 };
149 static struct cryptocap *crypto_drivers = NULL;
150 static int crypto_drivers_num = 0;
151
152 /*
153 * There are two queues for crypto requests; one for symmetric (e.g.
154 * cipher) operations and one for asymmetric (e.g. MOD)operations.
155 * A single mutex is used to lock access to both queues. We could
156 * have one per-queue but having one simplifies handling of block/unblock
157 * operations.
158 */
159 static LIST_HEAD(crp_q); /* crypto request queue */
160 static LIST_HEAD(crp_kq); /* asym request queue */
161
162 static spinlock_t crypto_q_lock;
163
164 int crypto_all_qblocked = 0; /* protect with Q_LOCK */
165 module_param(crypto_all_qblocked, int, 0444);
166 MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
167
168 int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
169 module_param(crypto_all_kqblocked, int, 0444);
170 MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
171
172 #define CRYPTO_Q_LOCK() \
173 ({ \
174 spin_lock_irqsave(&crypto_q_lock, q_flags); \
175 dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
176 })
177 #define CRYPTO_Q_UNLOCK() \
178 ({ \
179 dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
180 spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
181 })
182
183 /*
184 * There are two queues for processing completed crypto requests; one
185 * for the symmetric and one for the asymmetric ops. We only need one
186 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
187 * mutex is used to lock access to both queues. Note that this lock
188 * must be separate from the lock on request queues to insure driver
189 * callbacks don't generate lock order reversals.
190 */
191 static LIST_HEAD(crp_ret_q); /* callback queues */
192 static LIST_HEAD(crp_ret_kq);
193
194 static spinlock_t crypto_ret_q_lock;
195 #define CRYPTO_RETQ_LOCK() \
196 ({ \
197 spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
198 dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
199 })
200 #define CRYPTO_RETQ_UNLOCK() \
201 ({ \
202 dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
203 spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
204 })
205 #define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
206
207 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
208 static kmem_cache_t *cryptop_zone;
209 static kmem_cache_t *cryptodesc_zone;
210 #else
211 static struct kmem_cache *cryptop_zone;
212 static struct kmem_cache *cryptodesc_zone;
213 #endif
214
215 #define debug crypto_debug
216 int crypto_debug = 0;
217 module_param(crypto_debug, int, 0644);
218 MODULE_PARM_DESC(crypto_debug, "Enable debug");
219 EXPORT_SYMBOL(crypto_debug);
220
221 /*
222 * Maximum number of outstanding crypto requests before we start
223 * failing requests. We need this to prevent DOS when too many
224 * requests are arriving for us to keep up. Otherwise we will
225 * run the system out of memory. Since crypto is slow, we are
226 * usually the bottleneck that needs to say, enough is enough.
227 *
228 * We cannot print errors when this condition occurs, we are already too
229 * slow, printing anything will just kill us
230 */
231
232 static int crypto_q_cnt = 0;
233 module_param(crypto_q_cnt, int, 0444);
234 MODULE_PARM_DESC(crypto_q_cnt,
235 "Current number of outstanding crypto requests");
236
237 static int crypto_q_max = 1000;
238 module_param(crypto_q_max, int, 0644);
239 MODULE_PARM_DESC(crypto_q_max,
240 "Maximum number of outstanding crypto requests");
241
242 #define bootverbose crypto_verbose
243 static int crypto_verbose = 0;
244 module_param(crypto_verbose, int, 0644);
245 MODULE_PARM_DESC(crypto_verbose,
246 "Enable verbose crypto startup");
247
248 int crypto_usercrypto = 1; /* userland may do crypto reqs */
249 module_param(crypto_usercrypto, int, 0644);
250 MODULE_PARM_DESC(crypto_usercrypto,
251 "Enable/disable user-mode access to crypto support");
252
253 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
254 module_param(crypto_userasymcrypto, int, 0644);
255 MODULE_PARM_DESC(crypto_userasymcrypto,
256 "Enable/disable user-mode access to asymmetric crypto support");
257
258 int crypto_devallowsoft = 0; /* only use hardware crypto */
259 module_param(crypto_devallowsoft, int, 0644);
260 MODULE_PARM_DESC(crypto_devallowsoft,
261 "Enable/disable use of software crypto support");
262
263 /*
264 * This parameter controls the maximum number of crypto operations to
265 * do consecutively in the crypto kernel thread before scheduling to allow
266 * other processes to run. Without it, it is possible to get into a
267 * situation where the crypto thread never allows any other processes to run.
268 * Default to 1000 which should be less than one second.
269 */
270 static int crypto_max_loopcount = 1000;
271 module_param(crypto_max_loopcount, int, 0644);
272 MODULE_PARM_DESC(crypto_max_loopcount,
273 "Maximum number of crypto ops to do before yielding to other processes");
274
275 #ifndef CONFIG_NR_CPUS
276 #define CONFIG_NR_CPUS 1
277 #endif
278
279 static struct task_struct *cryptoproc[CONFIG_NR_CPUS];
280 static struct task_struct *cryptoretproc[CONFIG_NR_CPUS];
281 static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
282 static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
283
284 static int crypto_proc(void *arg);
285 static int crypto_ret_proc(void *arg);
286 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
287 static int crypto_kinvoke(struct cryptkop *krp, int flags);
288 static void crypto_exit(void);
289 static int crypto_init(void);
290
291 static struct cryptostats cryptostats;
292
293 static struct cryptocap *
294 crypto_checkdriver(u_int32_t hid)
295 {
296 if (crypto_drivers == NULL)
297 return NULL;
298 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
299 }
300
301 /*
302 * Compare a driver's list of supported algorithms against another
303 * list; return non-zero if all algorithms are supported.
304 */
305 static int
306 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
307 {
308 const struct cryptoini *cr;
309
310 /* See if all the algorithms are supported. */
311 for (cr = cri; cr; cr = cr->cri_next)
312 if (cap->cc_alg[cr->cri_alg] == 0)
313 return 0;
314 return 1;
315 }
316
317
318 /*
319 * Select a driver for a new session that supports the specified
320 * algorithms and, optionally, is constrained according to the flags.
321 * The algorithm we use here is pretty stupid; just use the
322 * first driver that supports all the algorithms we need. If there
323 * are multiple drivers we choose the driver with the fewest active
324 * sessions. We prefer hardware-backed drivers to software ones.
325 *
326 * XXX We need more smarts here (in real life too, but that's
327 * XXX another story altogether).
328 */
329 static struct cryptocap *
330 crypto_select_driver(const struct cryptoini *cri, int flags)
331 {
332 struct cryptocap *cap, *best;
333 int match, hid;
334
335 CRYPTO_DRIVER_ASSERT();
336
337 /*
338 * Look first for hardware crypto devices if permitted.
339 */
340 if (flags & CRYPTOCAP_F_HARDWARE)
341 match = CRYPTOCAP_F_HARDWARE;
342 else
343 match = CRYPTOCAP_F_SOFTWARE;
344 best = NULL;
345 again:
346 for (hid = 0; hid < crypto_drivers_num; hid++) {
347 cap = &crypto_drivers[hid];
348 /*
349 * If it's not initialized, is in the process of
350 * going away, or is not appropriate (hardware
351 * or software based on match), then skip.
352 */
353 if (cap->cc_dev == NULL ||
354 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
355 (cap->cc_flags & match) == 0)
356 continue;
357
358 /* verify all the algorithms are supported. */
359 if (driver_suitable(cap, cri)) {
360 if (best == NULL ||
361 cap->cc_sessions < best->cc_sessions)
362 best = cap;
363 }
364 }
365 if (best != NULL)
366 return best;
367 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
368 /* sort of an Algol 68-style for loop */
369 match = CRYPTOCAP_F_SOFTWARE;
370 goto again;
371 }
372 return best;
373 }
374
375 /*
376 * Create a new session. The crid argument specifies a crypto
377 * driver to use or constraints on a driver to select (hardware
378 * only, software only, either). Whatever driver is selected
379 * must be capable of the requested crypto algorithms.
380 */
381 int
382 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
383 {
384 struct cryptocap *cap;
385 u_int32_t hid, lid;
386 int err;
387 unsigned long d_flags;
388
389 CRYPTO_DRIVER_LOCK();
390 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
391 /*
392 * Use specified driver; verify it is capable.
393 */
394 cap = crypto_checkdriver(crid);
395 if (cap != NULL && !driver_suitable(cap, cri))
396 cap = NULL;
397 } else {
398 /*
399 * No requested driver; select based on crid flags.
400 */
401 cap = crypto_select_driver(cri, crid);
402 /*
403 * if NULL then can't do everything in one session.
404 * XXX Fix this. We need to inject a "virtual" session
405 * XXX layer right about here.
406 */
407 }
408 if (cap != NULL) {
409 /* Call the driver initialization routine. */
410 hid = cap - crypto_drivers;
411 lid = hid; /* Pass the driver ID. */
412 cap->cc_sessions++;
413 CRYPTO_DRIVER_UNLOCK();
414 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
415 CRYPTO_DRIVER_LOCK();
416 if (err == 0) {
417 (*sid) = (cap->cc_flags & 0xff000000)
418 | (hid & 0x00ffffff);
419 (*sid) <<= 32;
420 (*sid) |= (lid & 0xffffffff);
421 } else
422 cap->cc_sessions--;
423 } else
424 err = EINVAL;
425 CRYPTO_DRIVER_UNLOCK();
426 return err;
427 }
428
429 static void
430 crypto_remove(struct cryptocap *cap)
431 {
432 CRYPTO_DRIVER_ASSERT();
433 if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
434 bzero(cap, sizeof(*cap));
435 }
436
437 /*
438 * Delete an existing session (or a reserved session on an unregistered
439 * driver).
440 */
441 int
442 crypto_freesession(u_int64_t sid)
443 {
444 struct cryptocap *cap;
445 u_int32_t hid;
446 int err = 0;
447 unsigned long d_flags;
448
449 dprintk("%s()\n", __FUNCTION__);
450 CRYPTO_DRIVER_LOCK();
451
452 if (crypto_drivers == NULL) {
453 err = EINVAL;
454 goto done;
455 }
456
457 /* Determine two IDs. */
458 hid = CRYPTO_SESID2HID(sid);
459
460 if (hid >= crypto_drivers_num) {
461 dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
462 err = ENOENT;
463 goto done;
464 }
465 cap = &crypto_drivers[hid];
466
467 if (cap->cc_dev) {
468 CRYPTO_DRIVER_UNLOCK();
469 /* Call the driver cleanup routine, if available, unlocked. */
470 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
471 CRYPTO_DRIVER_LOCK();
472 }
473
474 if (cap->cc_sessions)
475 cap->cc_sessions--;
476
477 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
478 crypto_remove(cap);
479
480 done:
481 CRYPTO_DRIVER_UNLOCK();
482 return err;
483 }
484
485 /*
486 * Return an unused driver id. Used by drivers prior to registering
487 * support for the algorithms they handle.
488 */
489 int32_t
490 crypto_get_driverid(device_t dev, int flags)
491 {
492 struct cryptocap *newdrv;
493 int i;
494 unsigned long d_flags;
495
496 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
497 printf("%s: no flags specified when registering driver\n",
498 device_get_nameunit(dev));
499 return -1;
500 }
501
502 CRYPTO_DRIVER_LOCK();
503
504 for (i = 0; i < crypto_drivers_num; i++) {
505 if (crypto_drivers[i].cc_dev == NULL &&
506 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
507 break;
508 }
509 }
510
511 /* Out of entries, allocate some more. */
512 if (i == crypto_drivers_num) {
513 /* Be careful about wrap-around. */
514 if (2 * crypto_drivers_num <= crypto_drivers_num) {
515 CRYPTO_DRIVER_UNLOCK();
516 printk("crypto: driver count wraparound!\n");
517 return -1;
518 }
519
520 newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
521 GFP_KERNEL);
522 if (newdrv == NULL) {
523 CRYPTO_DRIVER_UNLOCK();
524 printk("crypto: no space to expand driver table!\n");
525 return -1;
526 }
527
528 memcpy(newdrv, crypto_drivers,
529 crypto_drivers_num * sizeof(struct cryptocap));
530 memset(&newdrv[crypto_drivers_num], 0,
531 crypto_drivers_num * sizeof(struct cryptocap));
532
533 crypto_drivers_num *= 2;
534
535 kfree(crypto_drivers);
536 crypto_drivers = newdrv;
537 }
538
539 /* NB: state is zero'd on free */
540 crypto_drivers[i].cc_sessions = 1; /* Mark */
541 crypto_drivers[i].cc_dev = dev;
542 crypto_drivers[i].cc_flags = flags;
543 if (bootverbose)
544 printf("crypto: assign %s driver id %u, flags %u\n",
545 device_get_nameunit(dev), i, flags);
546
547 CRYPTO_DRIVER_UNLOCK();
548
549 return i;
550 }
551
552 /*
553 * Lookup a driver by name. We match against the full device
554 * name and unit, and against just the name. The latter gives
555 * us a simple widlcarding by device name. On success return the
556 * driver/hardware identifier; otherwise return -1.
557 */
558 int
559 crypto_find_driver(const char *match)
560 {
561 int i, len = strlen(match);
562 unsigned long d_flags;
563
564 CRYPTO_DRIVER_LOCK();
565 for (i = 0; i < crypto_drivers_num; i++) {
566 device_t dev = crypto_drivers[i].cc_dev;
567 if (dev == NULL ||
568 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
569 continue;
570 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
571 strncmp(match, device_get_name(dev), len) == 0)
572 break;
573 }
574 CRYPTO_DRIVER_UNLOCK();
575 return i < crypto_drivers_num ? i : -1;
576 }
577
578 /*
579 * Return the device_t for the specified driver or NULL
580 * if the driver identifier is invalid.
581 */
582 device_t
583 crypto_find_device_byhid(int hid)
584 {
585 struct cryptocap *cap = crypto_checkdriver(hid);
586 return cap != NULL ? cap->cc_dev : NULL;
587 }
588
589 /*
590 * Return the device/driver capabilities.
591 */
592 int
593 crypto_getcaps(int hid)
594 {
595 struct cryptocap *cap = crypto_checkdriver(hid);
596 return cap != NULL ? cap->cc_flags : 0;
597 }
598
599 /*
600 * Register support for a key-related algorithm. This routine
601 * is called once for each algorithm supported a driver.
602 */
603 int
604 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
605 {
606 struct cryptocap *cap;
607 int err;
608 unsigned long d_flags;
609
610 dprintk("%s()\n", __FUNCTION__);
611 CRYPTO_DRIVER_LOCK();
612
613 cap = crypto_checkdriver(driverid);
614 if (cap != NULL &&
615 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
616 /*
617 * XXX Do some performance testing to determine placing.
618 * XXX We probably need an auxiliary data structure that
619 * XXX describes relative performances.
620 */
621
622 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
623 if (bootverbose)
624 printf("crypto: %s registers key alg %u flags %u\n"
625 , device_get_nameunit(cap->cc_dev)
626 , kalg
627 , flags
628 );
629 err = 0;
630 } else
631 err = EINVAL;
632
633 CRYPTO_DRIVER_UNLOCK();
634 return err;
635 }
636
637 /*
638 * Register support for a non-key-related algorithm. This routine
639 * is called once for each such algorithm supported by a driver.
640 */
641 int
642 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
643 u_int32_t flags)
644 {
645 struct cryptocap *cap;
646 int err;
647 unsigned long d_flags;
648
649 dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
650 driverid, alg, maxoplen, flags);
651
652 CRYPTO_DRIVER_LOCK();
653
654 cap = crypto_checkdriver(driverid);
655 /* NB: algorithms are in the range [1..max] */
656 if (cap != NULL &&
657 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
658 /*
659 * XXX Do some performance testing to determine placing.
660 * XXX We probably need an auxiliary data structure that
661 * XXX describes relative performances.
662 */
663
664 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
665 cap->cc_max_op_len[alg] = maxoplen;
666 if (bootverbose)
667 printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
668 , device_get_nameunit(cap->cc_dev)
669 , alg
670 , flags
671 , maxoplen
672 );
673 cap->cc_sessions = 0; /* Unmark */
674 err = 0;
675 } else
676 err = EINVAL;
677
678 CRYPTO_DRIVER_UNLOCK();
679 return err;
680 }
681
682 static void
683 driver_finis(struct cryptocap *cap)
684 {
685 u_int32_t ses, kops;
686
687 CRYPTO_DRIVER_ASSERT();
688
689 ses = cap->cc_sessions;
690 kops = cap->cc_koperations;
691 bzero(cap, sizeof(*cap));
692 if (ses != 0 || kops != 0) {
693 /*
694 * If there are pending sessions,
695 * just mark as invalid.
696 */
697 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
698 cap->cc_sessions = ses;
699 cap->cc_koperations = kops;
700 }
701 }
702
703 /*
704 * Unregister a crypto driver. If there are pending sessions using it,
705 * leave enough information around so that subsequent calls using those
706 * sessions will correctly detect the driver has been unregistered and
707 * reroute requests.
708 */
709 int
710 crypto_unregister(u_int32_t driverid, int alg)
711 {
712 struct cryptocap *cap;
713 int i, err;
714 unsigned long d_flags;
715
716 dprintk("%s()\n", __FUNCTION__);
717 CRYPTO_DRIVER_LOCK();
718
719 cap = crypto_checkdriver(driverid);
720 if (cap != NULL &&
721 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
722 cap->cc_alg[alg] != 0) {
723 cap->cc_alg[alg] = 0;
724 cap->cc_max_op_len[alg] = 0;
725
726 /* Was this the last algorithm ? */
727 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
728 if (cap->cc_alg[i] != 0)
729 break;
730
731 if (i == CRYPTO_ALGORITHM_MAX + 1)
732 driver_finis(cap);
733 err = 0;
734 } else
735 err = EINVAL;
736 CRYPTO_DRIVER_UNLOCK();
737 return err;
738 }
739
740 /*
741 * Unregister all algorithms associated with a crypto driver.
742 * If there are pending sessions using it, leave enough information
743 * around so that subsequent calls using those sessions will
744 * correctly detect the driver has been unregistered and reroute
745 * requests.
746 */
747 int
748 crypto_unregister_all(u_int32_t driverid)
749 {
750 struct cryptocap *cap;
751 int err;
752 unsigned long d_flags;
753
754 dprintk("%s()\n", __FUNCTION__);
755 CRYPTO_DRIVER_LOCK();
756 cap = crypto_checkdriver(driverid);
757 if (cap != NULL) {
758 driver_finis(cap);
759 err = 0;
760 } else
761 err = EINVAL;
762 CRYPTO_DRIVER_UNLOCK();
763
764 return err;
765 }
766
767 /*
768 * Clear blockage on a driver. The what parameter indicates whether
769 * the driver is now ready for cryptop's and/or cryptokop's.
770 */
771 int
772 crypto_unblock(u_int32_t driverid, int what)
773 {
774 struct cryptocap *cap;
775 int err;
776 unsigned long q_flags;
777
778 CRYPTO_Q_LOCK();
779 cap = crypto_checkdriver(driverid);
780 if (cap != NULL) {
781 if (what & CRYPTO_SYMQ) {
782 cap->cc_qblocked = 0;
783 cap->cc_unqblocked = 0;
784 crypto_all_qblocked = 0;
785 }
786 if (what & CRYPTO_ASYMQ) {
787 cap->cc_kqblocked = 0;
788 cap->cc_unkqblocked = 0;
789 crypto_all_kqblocked = 0;
790 }
791 wake_up_interruptible(&cryptoproc_wait);
792 err = 0;
793 } else
794 err = EINVAL;
795 CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
796
797 return err;
798 }
799
800 /*
801 * Add a crypto request to a queue, to be processed by the kernel thread.
802 */
803 int
804 crypto_dispatch(struct cryptop *crp)
805 {
806 struct cryptocap *cap;
807 int result = -1;
808 unsigned long q_flags;
809
810 dprintk("%s()\n", __FUNCTION__);
811
812 cryptostats.cs_ops++;
813
814 CRYPTO_Q_LOCK();
815 if (crypto_q_cnt >= crypto_q_max) {
816 cryptostats.cs_drops++;
817 CRYPTO_Q_UNLOCK();
818 return ENOMEM;
819 }
820 crypto_q_cnt++;
821
822 /* make sure we are starting a fresh run on this crp. */
823 crp->crp_flags &= ~CRYPTO_F_DONE;
824 crp->crp_etype = 0;
825
826 /*
827 * Caller marked the request to be processed immediately; dispatch
828 * it directly to the driver unless the driver is currently blocked.
829 */
830 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
831 int hid = CRYPTO_SESID2HID(crp->crp_sid);
832 cap = crypto_checkdriver(hid);
833 /* Driver cannot disappear when there is an active session. */
834 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
835 if (!cap->cc_qblocked) {
836 crypto_all_qblocked = 0;
837 crypto_drivers[hid].cc_unqblocked = 1;
838 CRYPTO_Q_UNLOCK();
839 result = crypto_invoke(cap, crp, 0);
840 CRYPTO_Q_LOCK();
841 if (result == ERESTART)
842 if (crypto_drivers[hid].cc_unqblocked)
843 crypto_drivers[hid].cc_qblocked = 1;
844 crypto_drivers[hid].cc_unqblocked = 0;
845 }
846 }
847 if (result == ERESTART) {
848 /*
849 * The driver ran out of resources, mark the
850 * driver ``blocked'' for cryptop's and put
851 * the request back in the queue. It would
852 * best to put the request back where we got
853 * it but that's hard so for now we put it
854 * at the front. This should be ok; putting
855 * it at the end does not work.
856 */
857 list_add(&crp->crp_next, &crp_q);
858 cryptostats.cs_blocks++;
859 result = 0;
860 } else if (result == -1) {
861 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
862 result = 0;
863 }
864 wake_up_interruptible(&cryptoproc_wait);
865 CRYPTO_Q_UNLOCK();
866 return result;
867 }
868
869 /*
870 * Add an asymetric crypto request to a queue,
871 * to be processed by the kernel thread.
872 */
873 int
874 crypto_kdispatch(struct cryptkop *krp)
875 {
876 int error;
877 unsigned long q_flags;
878
879 cryptostats.cs_kops++;
880
881 error = crypto_kinvoke(krp, krp->krp_crid);
882 if (error == ERESTART) {
883 CRYPTO_Q_LOCK();
884 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
885 wake_up_interruptible(&cryptoproc_wait);
886 CRYPTO_Q_UNLOCK();
887 error = 0;
888 }
889 return error;
890 }
891
892 /*
893 * Verify a driver is suitable for the specified operation.
894 */
895 static __inline int
896 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
897 {
898 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
899 }
900
901 /*
902 * Select a driver for an asym operation. The driver must
903 * support the necessary algorithm. The caller can constrain
904 * which device is selected with the flags parameter. The
905 * algorithm we use here is pretty stupid; just use the first
906 * driver that supports the algorithms we need. If there are
907 * multiple suitable drivers we choose the driver with the
908 * fewest active operations. We prefer hardware-backed
909 * drivers to software ones when either may be used.
910 */
911 static struct cryptocap *
912 crypto_select_kdriver(const struct cryptkop *krp, int flags)
913 {
914 struct cryptocap *cap, *best, *blocked;
915 int match, hid;
916
917 CRYPTO_DRIVER_ASSERT();
918
919 /*
920 * Look first for hardware crypto devices if permitted.
921 */
922 if (flags & CRYPTOCAP_F_HARDWARE)
923 match = CRYPTOCAP_F_HARDWARE;
924 else
925 match = CRYPTOCAP_F_SOFTWARE;
926 best = NULL;
927 blocked = NULL;
928 again:
929 for (hid = 0; hid < crypto_drivers_num; hid++) {
930 cap = &crypto_drivers[hid];
931 /*
932 * If it's not initialized, is in the process of
933 * going away, or is not appropriate (hardware
934 * or software based on match), then skip.
935 */
936 if (cap->cc_dev == NULL ||
937 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
938 (cap->cc_flags & match) == 0)
939 continue;
940
941 /* verify all the algorithms are supported. */
942 if (kdriver_suitable(cap, krp)) {
943 if (best == NULL ||
944 cap->cc_koperations < best->cc_koperations)
945 best = cap;
946 }
947 }
948 if (best != NULL)
949 return best;
950 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
951 /* sort of an Algol 68-style for loop */
952 match = CRYPTOCAP_F_SOFTWARE;
953 goto again;
954 }
955 return best;
956 }
957
958 /*
959 * Dispatch an assymetric crypto request.
960 */
961 static int
962 crypto_kinvoke(struct cryptkop *krp, int crid)
963 {
964 struct cryptocap *cap = NULL;
965 int error;
966 unsigned long d_flags;
967
968 KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
969 KASSERT(krp->krp_callback != NULL,
970 ("%s: krp->crp_callback == NULL", __func__));
971
972 CRYPTO_DRIVER_LOCK();
973 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
974 cap = crypto_checkdriver(crid);
975 if (cap != NULL) {
976 /*
977 * Driver present, it must support the necessary
978 * algorithm and, if s/w drivers are excluded,
979 * it must be registered as hardware-backed.
980 */
981 if (!kdriver_suitable(cap, krp) ||
982 (!crypto_devallowsoft &&
983 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
984 cap = NULL;
985 }
986 } else {
987 /*
988 * No requested driver; select based on crid flags.
989 */
990 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
991 crid &= ~CRYPTOCAP_F_SOFTWARE;
992 cap = crypto_select_kdriver(krp, crid);
993 }
994 if (cap != NULL && !cap->cc_kqblocked) {
995 krp->krp_hid = cap - crypto_drivers;
996 cap->cc_koperations++;
997 CRYPTO_DRIVER_UNLOCK();
998 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
999 CRYPTO_DRIVER_LOCK();
1000 if (error == ERESTART) {
1001 cap->cc_koperations--;
1002 CRYPTO_DRIVER_UNLOCK();
1003 return (error);
1004 }
1005 /* return the actual device used */
1006 krp->krp_crid = krp->krp_hid;
1007 } else {
1008 /*
1009 * NB: cap is !NULL if device is blocked; in
1010 * that case return ERESTART so the operation
1011 * is resubmitted if possible.
1012 */
1013 error = (cap == NULL) ? ENODEV : ERESTART;
1014 }
1015 CRYPTO_DRIVER_UNLOCK();
1016
1017 if (error) {
1018 krp->krp_status = error;
1019 crypto_kdone(krp);
1020 }
1021 return 0;
1022 }
1023
1024
1025 /*
1026 * Dispatch a crypto request to the appropriate crypto devices.
1027 */
1028 static int
1029 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1030 {
1031 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1032 KASSERT(crp->crp_callback != NULL,
1033 ("%s: crp->crp_callback == NULL", __func__));
1034 KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1035
1036 dprintk("%s()\n", __FUNCTION__);
1037
1038 #ifdef CRYPTO_TIMING
1039 if (crypto_timing)
1040 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1041 #endif
1042 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1043 struct cryptodesc *crd;
1044 u_int64_t nid;
1045
1046 /*
1047 * Driver has unregistered; migrate the session and return
1048 * an error to the caller so they'll resubmit the op.
1049 *
1050 * XXX: What if there are more already queued requests for this
1051 * session?
1052 */
1053 crypto_freesession(crp->crp_sid);
1054
1055 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1056 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1057
1058 /* XXX propagate flags from initial session? */
1059 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1060 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1061 crp->crp_sid = nid;
1062
1063 crp->crp_etype = EAGAIN;
1064 crypto_done(crp);
1065 return 0;
1066 } else {
1067 /*
1068 * Invoke the driver to process the request.
1069 */
1070 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1071 }
1072 }
1073
1074 /*
1075 * Release a set of crypto descriptors.
1076 */
1077 void
1078 crypto_freereq(struct cryptop *crp)
1079 {
1080 struct cryptodesc *crd;
1081
1082 if (crp == NULL)
1083 return;
1084
1085 #ifdef DIAGNOSTIC
1086 {
1087 struct cryptop *crp2;
1088 unsigned long q_flags;
1089
1090 CRYPTO_Q_LOCK();
1091 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1092 KASSERT(crp2 != crp,
1093 ("Freeing cryptop from the crypto queue (%p).",
1094 crp));
1095 }
1096 CRYPTO_Q_UNLOCK();
1097 CRYPTO_RETQ_LOCK();
1098 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1099 KASSERT(crp2 != crp,
1100 ("Freeing cryptop from the return queue (%p).",
1101 crp));
1102 }
1103 CRYPTO_RETQ_UNLOCK();
1104 }
1105 #endif
1106
1107 while ((crd = crp->crp_desc) != NULL) {
1108 crp->crp_desc = crd->crd_next;
1109 kmem_cache_free(cryptodesc_zone, crd);
1110 }
1111 kmem_cache_free(cryptop_zone, crp);
1112 }
1113
1114 /*
1115 * Acquire a set of crypto descriptors.
1116 */
1117 struct cryptop *
1118 crypto_getreq(int num)
1119 {
1120 struct cryptodesc *crd;
1121 struct cryptop *crp;
1122
1123 crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
1124 if (crp != NULL) {
1125 memset(crp, 0, sizeof(*crp));
1126 INIT_LIST_HEAD(&crp->crp_next);
1127 init_waitqueue_head(&crp->crp_waitq);
1128 while (num--) {
1129 crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
1130 if (crd == NULL) {
1131 crypto_freereq(crp);
1132 return NULL;
1133 }
1134 memset(crd, 0, sizeof(*crd));
1135 crd->crd_next = crp->crp_desc;
1136 crp->crp_desc = crd;
1137 }
1138 }
1139 return crp;
1140 }
1141
1142 /*
1143 * Invoke the callback on behalf of the driver.
1144 */
1145 void
1146 crypto_done(struct cryptop *crp)
1147 {
1148 unsigned long q_flags;
1149
1150 dprintk("%s()\n", __FUNCTION__);
1151 if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
1152 crp->crp_flags |= CRYPTO_F_DONE;
1153 CRYPTO_Q_LOCK();
1154 crypto_q_cnt--;
1155 CRYPTO_Q_UNLOCK();
1156 } else
1157 printk("crypto: crypto_done op already done, flags 0x%x",
1158 crp->crp_flags);
1159 if (crp->crp_etype != 0)
1160 cryptostats.cs_errs++;
1161 /*
1162 * CBIMM means unconditionally do the callback immediately;
1163 * CBIFSYNC means do the callback immediately only if the
1164 * operation was done synchronously. Both are used to avoid
1165 * doing extraneous context switches; the latter is mostly
1166 * used with the software crypto driver.
1167 */
1168 if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1169 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1170 (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1171 /*
1172 * Do the callback directly. This is ok when the
1173 * callback routine does very little (e.g. the
1174 * /dev/crypto callback method just does a wakeup).
1175 */
1176 crp->crp_callback(crp);
1177 } else {
1178 unsigned long r_flags;
1179 /*
1180 * Normal case; queue the callback for the thread.
1181 */
1182 CRYPTO_RETQ_LOCK();
1183 wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1184 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1185 CRYPTO_RETQ_UNLOCK();
1186 }
1187 }
1188
1189 /*
1190 * Invoke the callback on behalf of the driver.
1191 */
1192 void
1193 crypto_kdone(struct cryptkop *krp)
1194 {
1195 struct cryptocap *cap;
1196 unsigned long d_flags;
1197
1198 if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
1199 printk("crypto: crypto_kdone op already done, flags 0x%x",
1200 krp->krp_flags);
1201 krp->krp_flags |= CRYPTO_KF_DONE;
1202 if (krp->krp_status != 0)
1203 cryptostats.cs_kerrs++;
1204
1205 CRYPTO_DRIVER_LOCK();
1206 /* XXX: What if driver is loaded in the meantime? */
1207 if (krp->krp_hid < crypto_drivers_num) {
1208 cap = &crypto_drivers[krp->krp_hid];
1209 cap->cc_koperations--;
1210 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1211 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1212 crypto_remove(cap);
1213 }
1214 CRYPTO_DRIVER_UNLOCK();
1215
1216 /*
1217 * CBIMM means unconditionally do the callback immediately;
1218 * This is used to avoid doing extraneous context switches
1219 */
1220 if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
1221 /*
1222 * Do the callback directly. This is ok when the
1223 * callback routine does very little (e.g. the
1224 * /dev/crypto callback method just does a wakeup).
1225 */
1226 krp->krp_callback(krp);
1227 } else {
1228 unsigned long r_flags;
1229 /*
1230 * Normal case; queue the callback for the thread.
1231 */
1232 CRYPTO_RETQ_LOCK();
1233 wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
1234 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1235 CRYPTO_RETQ_UNLOCK();
1236 }
1237 }
1238
1239 int
1240 crypto_getfeat(int *featp)
1241 {
1242 int hid, kalg, feat = 0;
1243 unsigned long d_flags;
1244
1245 CRYPTO_DRIVER_LOCK();
1246 for (hid = 0; hid < crypto_drivers_num; hid++) {
1247 const struct cryptocap *cap = &crypto_drivers[hid];
1248
1249 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1250 !crypto_devallowsoft) {
1251 continue;
1252 }
1253 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1254 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1255 feat |= 1 << kalg;
1256 }
1257 CRYPTO_DRIVER_UNLOCK();
1258 *featp = feat;
1259 return (0);
1260 }
1261
1262 /*
1263 * Crypto thread, dispatches crypto requests.
1264 */
1265 static int
1266 crypto_proc(void *arg)
1267 {
1268 struct cryptop *crp, *submit;
1269 struct cryptkop *krp, *krpp;
1270 struct cryptocap *cap;
1271 u_int32_t hid;
1272 int result, hint;
1273 unsigned long q_flags;
1274 int loopcount = 0;
1275
1276 set_current_state(TASK_INTERRUPTIBLE);
1277
1278 CRYPTO_Q_LOCK();
1279 for (;;) {
1280 /*
1281 * we need to make sure we don't get into a busy loop with nothing
1282 * to do, the two crypto_all_*blocked vars help us find out when
1283 * we are all full and can do nothing on any driver or Q. If so we
1284 * wait for an unblock.
1285 */
1286 crypto_all_qblocked = !list_empty(&crp_q);
1287
1288 /*
1289 * Find the first element in the queue that can be
1290 * processed and look-ahead to see if multiple ops
1291 * are ready for the same driver.
1292 */
1293 submit = NULL;
1294 hint = 0;
1295 list_for_each_entry(crp, &crp_q, crp_next) {
1296 hid = CRYPTO_SESID2HID(crp->crp_sid);
1297 cap = crypto_checkdriver(hid);
1298 /*
1299 * Driver cannot disappear when there is an active
1300 * session.
1301 */
1302 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1303 __func__, __LINE__));
1304 if (cap == NULL || cap->cc_dev == NULL) {
1305 /* Op needs to be migrated, process it. */
1306 if (submit == NULL)
1307 submit = crp;
1308 break;
1309 }
1310 if (!cap->cc_qblocked) {
1311 if (submit != NULL) {
1312 /*
1313 * We stop on finding another op,
1314 * regardless whether its for the same
1315 * driver or not. We could keep
1316 * searching the queue but it might be
1317 * better to just use a per-driver
1318 * queue instead.
1319 */
1320 if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1321 hint = CRYPTO_HINT_MORE;
1322 break;
1323 } else {
1324 submit = crp;
1325 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1326 break;
1327 /* keep scanning for more are q'd */
1328 }
1329 }
1330 }
1331 if (submit != NULL) {
1332 hid = CRYPTO_SESID2HID(submit->crp_sid);
1333 crypto_all_qblocked = 0;
1334 list_del(&submit->crp_next);
1335 crypto_drivers[hid].cc_unqblocked = 1;
1336 cap = crypto_checkdriver(hid);
1337 CRYPTO_Q_UNLOCK();
1338 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1339 __func__, __LINE__));
1340 result = crypto_invoke(cap, submit, hint);
1341 CRYPTO_Q_LOCK();
1342 if (result == ERESTART) {
1343 /*
1344 * The driver ran out of resources, mark the
1345 * driver ``blocked'' for cryptop's and put
1346 * the request back in the queue. It would
1347 * best to put the request back where we got
1348 * it but that's hard so for now we put it
1349 * at the front. This should be ok; putting
1350 * it at the end does not work.
1351 */
1352 /* XXX validate sid again? */
1353 list_add(&submit->crp_next, &crp_q);
1354 cryptostats.cs_blocks++;
1355 if (crypto_drivers[hid].cc_unqblocked)
1356 crypto_drivers[hid].cc_qblocked=0;
1357 crypto_drivers[hid].cc_unqblocked=0;
1358 }
1359 crypto_drivers[hid].cc_unqblocked = 0;
1360 }
1361
1362 crypto_all_kqblocked = !list_empty(&crp_kq);
1363
1364 /* As above, but for key ops */
1365 krp = NULL;
1366 list_for_each_entry(krpp, &crp_kq, krp_next) {
1367 cap = crypto_checkdriver(krpp->krp_hid);
1368 if (cap == NULL || cap->cc_dev == NULL) {
1369 /*
1370 * Operation needs to be migrated, invalidate
1371 * the assigned device so it will reselect a
1372 * new one below. Propagate the original
1373 * crid selection flags if supplied.
1374 */
1375 krp->krp_hid = krp->krp_crid &
1376 (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1377 if (krp->krp_hid == 0)
1378 krp->krp_hid =
1379 CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1380 break;
1381 }
1382 if (!cap->cc_kqblocked) {
1383 krp = krpp;
1384 break;
1385 }
1386 }
1387 if (krp != NULL) {
1388 crypto_all_kqblocked = 0;
1389 list_del(&krp->krp_next);
1390 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1391 CRYPTO_Q_UNLOCK();
1392 result = crypto_kinvoke(krp, krp->krp_hid);
1393 CRYPTO_Q_LOCK();
1394 if (result == ERESTART) {
1395 /*
1396 * The driver ran out of resources, mark the
1397 * driver ``blocked'' for cryptkop's and put
1398 * the request back in the queue. It would
1399 * best to put the request back where we got
1400 * it but that's hard so for now we put it
1401 * at the front. This should be ok; putting
1402 * it at the end does not work.
1403 */
1404 /* XXX validate sid again? */
1405 list_add(&krp->krp_next, &crp_kq);
1406 cryptostats.cs_kblocks++;
1407 } else
1408 crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
1409 }
1410
1411 if (submit == NULL && krp == NULL) {
1412 /*
1413 * Nothing more to be processed. Sleep until we're
1414 * woken because there are more ops to process.
1415 * This happens either by submission or by a driver
1416 * becoming unblocked and notifying us through
1417 * crypto_unblock. Note that when we wakeup we
1418 * start processing each queue again from the
1419 * front. It's not clear that it's important to
1420 * preserve this ordering since ops may finish
1421 * out of order if dispatched to different devices
1422 * and some become blocked while others do not.
1423 */
1424 dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
1425 __FUNCTION__,
1426 list_empty(&crp_q), crypto_all_qblocked,
1427 list_empty(&crp_kq), crypto_all_kqblocked);
1428 loopcount = 0;
1429 CRYPTO_Q_UNLOCK();
1430 wait_event_interruptible(cryptoproc_wait,
1431 !(list_empty(&crp_q) || crypto_all_qblocked) ||
1432 !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
1433 kthread_should_stop());
1434 if (signal_pending (current)) {
1435 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1436 spin_lock_irq(&current->sigmask_lock);
1437 #endif
1438 flush_signals(current);
1439 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1440 spin_unlock_irq(&current->sigmask_lock);
1441 #endif
1442 }
1443 CRYPTO_Q_LOCK();
1444 dprintk("%s - awake\n", __FUNCTION__);
1445 if (kthread_should_stop())
1446 break;
1447 cryptostats.cs_intrs++;
1448 } else if (loopcount > crypto_max_loopcount) {
1449 /*
1450 * Give other processes a chance to run if we've
1451 * been using the CPU exclusively for a while.
1452 */
1453 loopcount = 0;
1454 CRYPTO_Q_UNLOCK();
1455 schedule();
1456 CRYPTO_Q_LOCK();
1457 }
1458 loopcount++;
1459 }
1460 CRYPTO_Q_UNLOCK();
1461 return 0;
1462 }
1463
1464 /*
1465 * Crypto returns thread, does callbacks for processed crypto requests.
1466 * Callbacks are done here, rather than in the crypto drivers, because
1467 * callbacks typically are expensive and would slow interrupt handling.
1468 */
1469 static int
1470 crypto_ret_proc(void *arg)
1471 {
1472 struct cryptop *crpt;
1473 struct cryptkop *krpt;
1474 unsigned long r_flags;
1475
1476 set_current_state(TASK_INTERRUPTIBLE);
1477
1478 CRYPTO_RETQ_LOCK();
1479 for (;;) {
1480 /* Harvest return q's for completed ops */
1481 crpt = NULL;
1482 if (!list_empty(&crp_ret_q))
1483 crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
1484 if (crpt != NULL)
1485 list_del(&crpt->crp_next);
1486
1487 krpt = NULL;
1488 if (!list_empty(&crp_ret_kq))
1489 krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
1490 if (krpt != NULL)
1491 list_del(&krpt->krp_next);
1492
1493 if (crpt != NULL || krpt != NULL) {
1494 CRYPTO_RETQ_UNLOCK();
1495 /*
1496 * Run callbacks unlocked.
1497 */
1498 if (crpt != NULL)
1499 crpt->crp_callback(crpt);
1500 if (krpt != NULL)
1501 krpt->krp_callback(krpt);
1502 CRYPTO_RETQ_LOCK();
1503 } else {
1504 /*
1505 * Nothing more to be processed. Sleep until we're
1506 * woken because there are more returns to process.
1507 */
1508 dprintk("%s - sleeping\n", __FUNCTION__);
1509 CRYPTO_RETQ_UNLOCK();
1510 wait_event_interruptible(cryptoretproc_wait,
1511 !list_empty(&crp_ret_q) ||
1512 !list_empty(&crp_ret_kq) ||
1513 kthread_should_stop());
1514 if (signal_pending (current)) {
1515 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1516 spin_lock_irq(&current->sigmask_lock);
1517 #endif
1518 flush_signals(current);
1519 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
1520 spin_unlock_irq(&current->sigmask_lock);
1521 #endif
1522 }
1523 CRYPTO_RETQ_LOCK();
1524 dprintk("%s - awake\n", __FUNCTION__);
1525 if (kthread_should_stop()) {
1526 dprintk("%s - EXITING!\n", __FUNCTION__);
1527 break;
1528 }
1529 cryptostats.cs_rets++;
1530 }
1531 }
1532 CRYPTO_RETQ_UNLOCK();
1533 return 0;
1534 }
1535
1536
1537 #if 0 /* should put this into /proc or something */
1538 static void
1539 db_show_drivers(void)
1540 {
1541 int hid;
1542
1543 db_printf("%12s %4s %4s %8s %2s %2s\n"
1544 , "Device"
1545 , "Ses"
1546 , "Kops"
1547 , "Flags"
1548 , "QB"
1549 , "KB"
1550 );
1551 for (hid = 0; hid < crypto_drivers_num; hid++) {
1552 const struct cryptocap *cap = &crypto_drivers[hid];
1553 if (cap->cc_dev == NULL)
1554 continue;
1555 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1556 , device_get_nameunit(cap->cc_dev)
1557 , cap->cc_sessions
1558 , cap->cc_koperations
1559 , cap->cc_flags
1560 , cap->cc_qblocked
1561 , cap->cc_kqblocked
1562 );
1563 }
1564 }
1565
1566 DB_SHOW_COMMAND(crypto, db_show_crypto)
1567 {
1568 struct cryptop *crp;
1569
1570 db_show_drivers();
1571 db_printf("\n");
1572
1573 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1574 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1575 "Desc", "Callback");
1576 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1577 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1578 , (int) CRYPTO_SESID2HID(crp->crp_sid)
1579 , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1580 , crp->crp_ilen, crp->crp_olen
1581 , crp->crp_etype
1582 , crp->crp_flags
1583 , crp->crp_desc
1584 , crp->crp_callback
1585 );
1586 }
1587 if (!TAILQ_EMPTY(&crp_ret_q)) {
1588 db_printf("\n%4s %4s %4s %8s\n",
1589 "HID", "Etype", "Flags", "Callback");
1590 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1591 db_printf("%4u %4u %04x %8p\n"
1592 , (int) CRYPTO_SESID2HID(crp->crp_sid)
1593 , crp->crp_etype
1594 , crp->crp_flags
1595 , crp->crp_callback
1596 );
1597 }
1598 }
1599 }
1600
1601 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1602 {
1603 struct cryptkop *krp;
1604
1605 db_show_drivers();
1606 db_printf("\n");
1607
1608 db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1609 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1610 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1611 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1612 , krp->krp_op
1613 , krp->krp_status
1614 , krp->krp_iparams, krp->krp_oparams
1615 , krp->krp_crid, krp->krp_hid
1616 , krp->krp_callback
1617 );
1618 }
1619 if (!TAILQ_EMPTY(&crp_ret_q)) {
1620 db_printf("%4s %5s %8s %4s %8s\n",
1621 "Op", "Status", "CRID", "HID", "Callback");
1622 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1623 db_printf("%4u %5u %08x %4u %8p\n"
1624 , krp->krp_op
1625 , krp->krp_status
1626 , krp->krp_crid, krp->krp_hid
1627 , krp->krp_callback
1628 );
1629 }
1630 }
1631 }
1632 #endif
1633
1634
1635 static int
1636 crypto_init(void)
1637 {
1638 int error;
1639 unsigned long cpu;
1640
1641 dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init);
1642
1643 if (crypto_initted)
1644 return 0;
1645 crypto_initted = 1;
1646
1647 spin_lock_init(&crypto_drivers_lock);
1648 spin_lock_init(&crypto_q_lock);
1649 spin_lock_init(&crypto_ret_q_lock);
1650
1651 cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
1652 0, SLAB_HWCACHE_ALIGN, NULL
1653 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1654 , NULL
1655 #endif
1656 );
1657
1658 cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
1659 0, SLAB_HWCACHE_ALIGN, NULL
1660 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
1661 , NULL
1662 #endif
1663 );
1664
1665 if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
1666 printk("crypto: crypto_init cannot setup crypto zones\n");
1667 error = ENOMEM;
1668 goto bad;
1669 }
1670
1671 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
1672 crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
1673 GFP_KERNEL);
1674 if (crypto_drivers == NULL) {
1675 printk("crypto: crypto_init cannot setup crypto drivers\n");
1676 error = ENOMEM;
1677 goto bad;
1678 }
1679
1680 memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
1681
1682 ocf_for_each_cpu(cpu) {
1683 cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu,
1684 "ocf_%d", (int) cpu);
1685 if (IS_ERR(cryptoproc[cpu])) {
1686 error = PTR_ERR(cryptoproc[cpu]);
1687 printk("crypto: crypto_init cannot start crypto thread; error %d",
1688 error);
1689 goto bad;
1690 }
1691 kthread_bind(cryptoproc[cpu], cpu);
1692 wake_up_process(cryptoproc[cpu]);
1693
1694 cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu,
1695 "ocf_ret_%d", (int) cpu);
1696 if (IS_ERR(cryptoretproc[cpu])) {
1697 error = PTR_ERR(cryptoretproc[cpu]);
1698 printk("crypto: crypto_init cannot start cryptoret thread; error %d",
1699 error);
1700 goto bad;
1701 }
1702 kthread_bind(cryptoretproc[cpu], cpu);
1703 wake_up_process(cryptoretproc[cpu]);
1704 }
1705
1706 return 0;
1707 bad:
1708 crypto_exit();
1709 return error;
1710 }
1711
1712
1713 static void
1714 crypto_exit(void)
1715 {
1716 int cpu;
1717
1718 dprintk("%s()\n", __FUNCTION__);
1719
1720 /*
1721 * Terminate any crypto threads.
1722 */
1723 ocf_for_each_cpu(cpu) {
1724 kthread_stop(cryptoproc[cpu]);
1725 kthread_stop(cryptoretproc[cpu]);
1726 }
1727
1728 /*
1729 * Reclaim dynamically allocated resources.
1730 */
1731 if (crypto_drivers != NULL)
1732 kfree(crypto_drivers);
1733
1734 if (cryptodesc_zone != NULL)
1735 kmem_cache_destroy(cryptodesc_zone);
1736 if (cryptop_zone != NULL)
1737 kmem_cache_destroy(cryptop_zone);
1738 }
1739
1740
1741 EXPORT_SYMBOL(crypto_newsession);
1742 EXPORT_SYMBOL(crypto_freesession);
1743 EXPORT_SYMBOL(crypto_get_driverid);
1744 EXPORT_SYMBOL(crypto_kregister);
1745 EXPORT_SYMBOL(crypto_register);
1746 EXPORT_SYMBOL(crypto_unregister);
1747 EXPORT_SYMBOL(crypto_unregister_all);
1748 EXPORT_SYMBOL(crypto_unblock);
1749 EXPORT_SYMBOL(crypto_dispatch);
1750 EXPORT_SYMBOL(crypto_kdispatch);
1751 EXPORT_SYMBOL(crypto_freereq);
1752 EXPORT_SYMBOL(crypto_getreq);
1753 EXPORT_SYMBOL(crypto_done);
1754 EXPORT_SYMBOL(crypto_kdone);
1755 EXPORT_SYMBOL(crypto_getfeat);
1756 EXPORT_SYMBOL(crypto_userasymcrypto);
1757 EXPORT_SYMBOL(crypto_getcaps);
1758 EXPORT_SYMBOL(crypto_find_driver);
1759 EXPORT_SYMBOL(crypto_find_device_byhid);
1760
1761 module_init(crypto_init);
1762 module_exit(crypto_exit);
1763
1764 MODULE_LICENSE("BSD");
1765 MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
1766 MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");
This page took 0.190961 seconds and 5 git commands to generate.