[kernel] fix yaffs build failure on 2.6.28.2 (thanks to Alexandros C. Couloumbis...
[openwrt.git] / target / linux / brcm63xx / files / drivers / net / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/clk.h>
23 #include <linux/etherdevice.h>
24 #include <linux/delay.h>
25 #include <linux/ethtool.h>
26 #include <linux/crc32.h>
27 #include <linux/err.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/platform_device.h>
30
31 #include <bcm63xx_dev_enet.h>
32 #include "bcm63xx_enet.h"
33
34 static char bcm_enet_driver_name[] = "bcm63xx_enet";
35 static char bcm_enet_driver_version[] = "1.0";
36
37 static int copybreak __read_mostly = 128;
38 module_param(copybreak, int, 0);
39 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
40
41 /* io memory shared between all devices */
42 static void __iomem *bcm_enet_shared_base;
43
44 /*
45 * io helpers to access mac registers
46 */
47 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
48 {
49 return bcm_readl(priv->base + off);
50 }
51
52 static inline void enet_writel(struct bcm_enet_priv *priv,
53 u32 val, u32 off)
54 {
55 bcm_writel(val, priv->base + off);
56 }
57
58 /*
59 * io helpers to access shared registers
60 */
61 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
62 {
63 return bcm_readl(bcm_enet_shared_base + off);
64 }
65
66 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
67 u32 val, u32 off)
68 {
69 bcm_writel(val, bcm_enet_shared_base + off);
70 }
71
72 /*
73 * write given data into mii register and wait for transfer to end
74 * with timeout (average measured transfer time is 25us)
75 */
76 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
77 {
78 int limit;
79
80 /* make sure mii interrupt status is cleared */
81 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
82
83 enet_writel(priv, data, ENET_MIIDATA_REG);
84 wmb();
85
86 /* busy wait on mii interrupt bit, with timeout */
87 limit = 1000;
88 do {
89 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
90 break;
91 udelay(1);
92 } while (limit-- >= 0);
93
94 return (limit < 0) ? 1 : 0;
95 }
96
97 /*
98 * MII internal read callback
99 */
100 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
101 int regnum)
102 {
103 u32 tmp, val;
104
105 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
106 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
107 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
108 tmp |= ENET_MIIDATA_OP_READ_MASK;
109
110 if (do_mdio_op(priv, tmp))
111 return -1;
112
113 val = enet_readl(priv, ENET_MIIDATA_REG);
114 val &= 0xffff;
115 return val;
116 }
117
118 /*
119 * MII internal write callback
120 */
121 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
122 int regnum, u16 value)
123 {
124 u32 tmp;
125
126 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
127 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
128 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
129 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
130 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
131
132 (void)do_mdio_op(priv, tmp);
133 return 0;
134 }
135
136 /*
137 * MII read callback from phylib
138 */
139 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
140 int regnum)
141 {
142 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
143 }
144
145 /*
146 * MII write callback from phylib
147 */
148 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
149 int regnum, u16 value)
150 {
151 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
152 }
153
154 /*
155 * MII read callback from mii core
156 */
157 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
158 int regnum)
159 {
160 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
161 }
162
163 /*
164 * MII write callback from mii core
165 */
166 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
167 int regnum, int value)
168 {
169 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
170 }
171
172 /*
173 * refill rx queue
174 */
175 static int bcm_enet_refill_rx(struct net_device *dev)
176 {
177 struct bcm_enet_priv *priv;
178
179 priv = netdev_priv(dev);
180
181 while (priv->rx_desc_count < priv->rx_ring_size) {
182 struct bcm_enet_desc *desc;
183 struct sk_buff *skb;
184 dma_addr_t p;
185 int desc_idx;
186 u32 len_stat;
187
188 desc_idx = priv->rx_dirty_desc;
189 desc = &priv->rx_desc_cpu[desc_idx];
190
191 if (!priv->rx_skb[desc_idx]) {
192 skb = netdev_alloc_skb(dev, BCMENET_MAX_RX_SIZE);
193 if (!skb)
194 break;
195 priv->rx_skb[desc_idx] = skb;
196
197 p = dma_map_single(&priv->pdev->dev, skb->data,
198 BCMENET_MAX_RX_SIZE,
199 DMA_FROM_DEVICE);
200 desc->address = p;
201 }
202
203 len_stat = BCMENET_MAX_RX_SIZE << DMADESC_LENGTH_SHIFT;
204 len_stat |= DMADESC_OWNER_MASK;
205 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
206 len_stat |= DMADESC_WRAP_MASK;
207 priv->rx_dirty_desc = 0;
208 } else {
209 priv->rx_dirty_desc++;
210 }
211 wmb();
212 desc->len_stat = len_stat;
213
214 priv->rx_desc_count++;
215
216 /* tell dma engine we allocated one buffer */
217 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
218 }
219
220 /* If rx ring is still empty, set a timer to try allocating
221 * again at a later time. */
222 if (priv->rx_desc_count == 0 && netif_running(dev)) {
223 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
224 priv->rx_timeout.expires = jiffies + HZ;
225 add_timer(&priv->rx_timeout);
226 }
227
228 return 0;
229 }
230
231 /*
232 * timer callback to defer refill rx queue in case we're OOM
233 */
234 static void bcm_enet_refill_rx_timer(unsigned long data)
235 {
236 struct net_device *dev;
237 struct bcm_enet_priv *priv;
238
239 dev = (struct net_device *)data;
240 priv = netdev_priv(dev);
241
242 spin_lock(&priv->rx_lock);
243 bcm_enet_refill_rx((struct net_device *)data);
244 spin_unlock(&priv->rx_lock);
245 }
246
247 /*
248 * extract packet from rx queue
249 */
250 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
251 {
252 struct bcm_enet_priv *priv;
253 struct device *kdev;
254 int processed;
255
256 priv = netdev_priv(dev);
257 kdev = &priv->pdev->dev;
258 processed = 0;
259
260 /* don't scan ring further than number of refilled
261 * descriptor */
262 if (budget > priv->rx_desc_count)
263 budget = priv->rx_desc_count;
264
265 do {
266 struct bcm_enet_desc *desc;
267 struct sk_buff *skb;
268 int desc_idx;
269 u32 len_stat;
270 unsigned int len;
271
272 desc_idx = priv->rx_curr_desc;
273 desc = &priv->rx_desc_cpu[desc_idx];
274
275 /* make sure we actually read the descriptor status at
276 * each loop */
277 rmb();
278
279 len_stat = desc->len_stat;
280
281 /* break if dma ownership belongs to hw */
282 if (len_stat & DMADESC_OWNER_MASK)
283 break;
284
285 processed++;
286 priv->rx_curr_desc++;
287 if (priv->rx_curr_desc == priv->rx_ring_size)
288 priv->rx_curr_desc = 0;
289 priv->rx_desc_count--;
290
291 /* if the packet does not have start of packet _and_
292 * end of packet flag set, then just recycle it */
293 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
294 priv->stats.rx_dropped++;
295 continue;
296 }
297
298 /* recycle packet if it's marked as bad */
299 if (unlikely(len_stat & DMADESC_ERR_MASK)) {
300 priv->stats.rx_errors++;
301
302 if (len_stat & DMADESC_OVSIZE_MASK)
303 priv->stats.rx_length_errors++;
304 if (len_stat & DMADESC_CRC_MASK)
305 priv->stats.rx_crc_errors++;
306 if (len_stat & DMADESC_UNDER_MASK)
307 priv->stats.rx_frame_errors++;
308 if (len_stat & DMADESC_OV_MASK)
309 priv->stats.rx_fifo_errors++;
310 continue;
311 }
312
313 /* valid packet */
314 skb = priv->rx_skb[desc_idx];
315 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
316 /* don't include FCS */
317 len -= 4;
318
319 if (len < copybreak) {
320 struct sk_buff *nskb;
321
322 nskb = netdev_alloc_skb(dev, len + 2);
323 if (!nskb) {
324 /* forget packet, just rearm desc */
325 priv->stats.rx_dropped++;
326 continue;
327 }
328
329 /* since we're copying the data, we can align
330 * them properly */
331 skb_reserve(nskb, NET_IP_ALIGN);
332 dma_sync_single_for_cpu(kdev, desc->address,
333 len, DMA_FROM_DEVICE);
334 memcpy(nskb->data, skb->data, len);
335 dma_sync_single_for_device(kdev, desc->address,
336 len, DMA_FROM_DEVICE);
337 skb = nskb;
338 } else {
339 dma_unmap_single(&priv->pdev->dev, desc->address,
340 BCMENET_MAX_RX_SIZE, DMA_FROM_DEVICE);
341 priv->rx_skb[desc_idx] = NULL;
342 }
343
344 skb_put(skb, len);
345 skb->dev = dev;
346 skb->protocol = eth_type_trans(skb, dev);
347 priv->stats.rx_packets++;
348 priv->stats.rx_bytes += len;
349 dev->last_rx = jiffies;
350 netif_receive_skb(skb);
351
352 } while (--budget > 0);
353
354 if (processed || !priv->rx_desc_count) {
355 bcm_enet_refill_rx(dev);
356
357 /* kick rx dma */
358 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
359 ENETDMA_CHANCFG_REG(priv->rx_chan));
360 }
361
362 return processed;
363 }
364
365
366 /*
367 * try to or force reclaim of transmitted buffers
368 */
369 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
370 {
371 struct bcm_enet_priv *priv;
372 int released;
373
374 priv = netdev_priv(dev);
375 released = 0;
376
377 while (priv->tx_desc_count < priv->tx_ring_size) {
378 struct bcm_enet_desc *desc;
379 struct sk_buff *skb;
380
381 /* We run in a bh and fight against start_xmit, which
382 * is called with bh disabled */
383 spin_lock(&priv->tx_lock);
384
385 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
386
387 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
388 spin_unlock(&priv->tx_lock);
389 break;
390 }
391
392 /* ensure other field of the descriptor were not read
393 * before we checked ownership */
394 rmb();
395
396 skb = priv->tx_skb[priv->tx_dirty_desc];
397 priv->tx_skb[priv->tx_dirty_desc] = NULL;
398 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
399 DMA_TO_DEVICE);
400
401 priv->tx_dirty_desc++;
402 if (priv->tx_dirty_desc == priv->tx_ring_size)
403 priv->tx_dirty_desc = 0;
404 priv->tx_desc_count++;
405
406 spin_unlock(&priv->tx_lock);
407
408 if (desc->len_stat & DMADESC_UNDER_MASK)
409 priv->stats.tx_errors++;
410
411 dev_kfree_skb(skb);
412 released++;
413 }
414
415 if (netif_queue_stopped(dev) && released)
416 netif_wake_queue(dev);
417
418 return released;
419 }
420
421 /*
422 * poll func, called by network core
423 */
424 static int bcm_enet_poll(struct napi_struct *napi, int budget)
425 {
426 struct bcm_enet_priv *priv;
427 struct net_device *dev;
428 int tx_work_done, rx_work_done;
429
430 priv = container_of(napi, struct bcm_enet_priv, napi);
431 dev = priv->net_dev;
432
433 /* ack interrupts */
434 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
435 ENETDMA_IR_REG(priv->rx_chan));
436 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
437 ENETDMA_IR_REG(priv->tx_chan));
438
439 /* reclaim sent skb */
440 tx_work_done = bcm_enet_tx_reclaim(dev, 0);
441
442 spin_lock(&priv->rx_lock);
443 rx_work_done = bcm_enet_receive_queue(dev, budget);
444 spin_unlock(&priv->rx_lock);
445
446 if (rx_work_done >= budget || tx_work_done > 0) {
447 /* rx/tx queue is not yet empty/clean */
448 return rx_work_done;
449 }
450
451 /* no more packet in rx/tx queue, remove device from poll
452 * queue */
453 __netif_rx_complete(dev, napi);
454
455 /* restore rx/tx interrupt */
456 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
457 ENETDMA_IRMASK_REG(priv->rx_chan));
458 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
459 ENETDMA_IRMASK_REG(priv->tx_chan));
460
461 return rx_work_done;
462 }
463
464 /*
465 * mac interrupt handler
466 */
467 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
468 {
469 struct net_device *dev;
470 struct bcm_enet_priv *priv;
471 u32 stat;
472
473 dev = dev_id;
474 priv = netdev_priv(dev);
475
476 stat = enet_readl(priv, ENET_IR_REG);
477 if (!(stat & ENET_IR_MIB))
478 return IRQ_NONE;
479
480 /* clear & mask interrupt */
481 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
482 enet_writel(priv, 0, ENET_IRMASK_REG);
483
484 /* read mib registers in workqueue */
485 schedule_work(&priv->mib_update_task);
486
487 return IRQ_HANDLED;
488 }
489
490 /*
491 * rx/tx dma interrupt handler
492 */
493 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
494 {
495 struct net_device *dev;
496 struct bcm_enet_priv *priv;
497
498 dev = dev_id;
499 priv = netdev_priv(dev);
500
501 /* mask rx/tx interrupts */
502 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
503 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
504
505 netif_rx_schedule(dev, &priv->napi);
506
507 return IRQ_HANDLED;
508 }
509
510 /*
511 * tx request callback
512 */
513 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
514 {
515 struct bcm_enet_priv *priv;
516 struct bcm_enet_desc *desc;
517 u32 len_stat;
518 int ret;
519
520 priv = netdev_priv(dev);
521
522 /* lock against tx reclaim */
523 spin_lock(&priv->tx_lock);
524
525 /* make sure the tx hw queue is not full, should not happen
526 * since we stop queue before it's the case */
527 if (unlikely(!priv->tx_desc_count)) {
528 netif_stop_queue(dev);
529 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
530 "available?\n");
531 ret = NETDEV_TX_BUSY;
532 goto out_unlock;
533 }
534
535 /* point to the next available desc */
536 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
537 priv->tx_skb[priv->tx_curr_desc] = skb;
538
539 /* fill descriptor */
540 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
541 DMA_TO_DEVICE);
542
543 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
544 len_stat |= DMADESC_ESOP_MASK |
545 DMADESC_APPEND_CRC |
546 DMADESC_OWNER_MASK;
547
548 priv->tx_curr_desc++;
549 if (priv->tx_curr_desc == priv->tx_ring_size) {
550 priv->tx_curr_desc = 0;
551 len_stat |= DMADESC_WRAP_MASK;
552 }
553 priv->tx_desc_count--;
554
555 /* dma might be already polling, make sure we update desc
556 * fields in correct order */
557 wmb();
558 desc->len_stat = len_stat;
559 wmb();
560
561 /* kick tx dma */
562 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
563 ENETDMA_CHANCFG_REG(priv->tx_chan));
564
565 /* stop queue if no more desc available */
566 if (!priv->tx_desc_count)
567 netif_stop_queue(dev);
568
569 priv->stats.tx_bytes += skb->len;
570 priv->stats.tx_packets++;
571 dev->trans_start = jiffies;
572 ret = NETDEV_TX_OK;
573
574 out_unlock:
575 spin_unlock(&priv->tx_lock);
576 return ret;
577 }
578
579 /*
580 * Change the interface's mac address.
581 */
582 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
583 {
584 struct bcm_enet_priv *priv;
585 struct sockaddr *addr = p;
586 u32 val;
587
588 priv = netdev_priv(dev);
589 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
590
591 /* use perfect match register 0 to store my mac address */
592 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
593 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
594 enet_writel(priv, val, ENET_PML_REG(0));
595
596 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
597 val |= ENET_PMH_DATAVALID_MASK;
598 enet_writel(priv, val, ENET_PMH_REG(0));
599
600 return 0;
601 }
602
603 /*
604 * Change rx mode (promiscous/allmulti) and update multicast list
605 */
606 static void bcm_enet_set_multicast_list(struct net_device *dev)
607 {
608 struct bcm_enet_priv *priv;
609 struct dev_mc_list *mc_list;
610 u32 val;
611 int i;
612
613 priv = netdev_priv(dev);
614
615 val = enet_readl(priv, ENET_RXCFG_REG);
616
617 if (dev->flags & IFF_PROMISC)
618 val |= ENET_RXCFG_PROMISC_MASK;
619 else
620 val &= ~ENET_RXCFG_PROMISC_MASK;
621
622 /* only 3 perfect match registers left, first one is used for
623 * own mac address */
624 if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 3)
625 val |= ENET_RXCFG_ALLMCAST_MASK;
626 else
627 val &= ~ENET_RXCFG_ALLMCAST_MASK;
628
629 /* no need to set perfect match registers if we catch all
630 * multicast */
631 if (val & ENET_RXCFG_ALLMCAST_MASK) {
632 enet_writel(priv, val, ENET_RXCFG_REG);
633 return;
634 }
635
636 for (i = 0, mc_list = dev->mc_list;
637 (mc_list != NULL) && (i < dev->mc_count) && (i < 3);
638 i++, mc_list = mc_list->next) {
639 u8 *dmi_addr;
640 u32 tmp;
641
642 /* filter non ethernet address */
643 if (mc_list->dmi_addrlen != 6)
644 continue;
645
646 /* update perfect match registers */
647 dmi_addr = mc_list->dmi_addr;
648 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
649 (dmi_addr[4] << 8) | dmi_addr[5];
650 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
651
652 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
653 tmp |= ENET_PMH_DATAVALID_MASK;
654 enet_writel(priv, tmp, ENET_PMH_REG(i + 1));
655 }
656
657 for (; i < 3; i++) {
658 enet_writel(priv, 0, ENET_PML_REG(i + 1));
659 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
660 }
661
662 enet_writel(priv, val, ENET_RXCFG_REG);
663 }
664
665 /*
666 * set mac duplex parameters
667 */
668 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
669 {
670 u32 val;
671
672 val = enet_readl(priv, ENET_TXCTL_REG);
673 if (fullduplex)
674 val |= ENET_TXCTL_FD_MASK;
675 else
676 val &= ~ENET_TXCTL_FD_MASK;
677 enet_writel(priv, val, ENET_TXCTL_REG);
678 }
679
680 /*
681 * set mac flow control parameters
682 */
683 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
684 {
685 u32 val;
686
687 /* rx flow control (pause frame handling) */
688 val = enet_readl(priv, ENET_RXCFG_REG);
689 if (rx_en)
690 val |= ENET_RXCFG_ENFLOW_MASK;
691 else
692 val &= ~ENET_RXCFG_ENFLOW_MASK;
693 enet_writel(priv, val, ENET_RXCFG_REG);
694
695 /* tx flow control (pause frame generation) */
696 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
697 if (tx_en)
698 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
699 else
700 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
701 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
702 }
703
704 /*
705 * link changed callback (from phylib)
706 */
707 static void bcm_enet_adjust_phy_link(struct net_device *dev)
708 {
709 struct bcm_enet_priv *priv;
710 struct phy_device *phydev;
711 int status_changed;
712
713 priv = netdev_priv(dev);
714 phydev = priv->phydev;
715 status_changed = 0;
716
717 if (priv->old_link != phydev->link) {
718 status_changed = 1;
719 priv->old_link = phydev->link;
720 }
721
722 /* reflect duplex change in mac configuration */
723 if (phydev->link && phydev->duplex != priv->old_duplex) {
724 bcm_enet_set_duplex(priv,
725 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
726 status_changed = 1;
727 priv->old_duplex = phydev->duplex;
728 }
729
730 /* enable flow control if remote advertise it (trust phylib to
731 * check that duplex is full */
732 if (phydev->link && phydev->pause != priv->old_pause) {
733 int rx_pause_en, tx_pause_en;
734
735 if (phydev->pause) {
736 /* pause was advertised by lpa and us */
737 rx_pause_en = 1;
738 tx_pause_en = 1;
739 } else if (!priv->pause_auto) {
740 /* pause setting overrided by user */
741 rx_pause_en = priv->pause_rx;
742 tx_pause_en = priv->pause_tx;
743 } else {
744 rx_pause_en = 0;
745 tx_pause_en = 0;
746 }
747
748 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
749 status_changed = 1;
750 priv->old_pause = phydev->pause;
751 }
752
753 if (status_changed) {
754 pr_info("%s: link %s", dev->name, phydev->link ?
755 "UP" : "DOWN");
756 if (phydev->link)
757 printk(" - %d/%s - flow control %s", phydev->speed,
758 DUPLEX_FULL == phydev->duplex ? "full" : "half",
759 phydev->pause == 1 ? "rx&tx" : "off");
760
761 printk("\n");
762 }
763 }
764
765 /*
766 * link changed callback (if phylib is not used)
767 */
768 static void bcm_enet_adjust_link(struct net_device *dev)
769 {
770 struct bcm_enet_priv *priv;
771
772 priv = netdev_priv(dev);
773 bcm_enet_set_duplex(priv, priv->force_duplex_full);
774 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
775
776 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
777 dev->name,
778 priv->force_speed_100 ? 100 : 10,
779 priv->force_duplex_full ? "full" : "half",
780 priv->pause_rx ? "rx" : "off",
781 priv->pause_tx ? "tx" : "off");
782 }
783
784 /*
785 * open callback, allocate dma rings & buffers and start rx operation
786 */
787 static int bcm_enet_open(struct net_device *dev)
788 {
789 struct bcm_enet_priv *priv;
790 struct sockaddr addr;
791 struct device *kdev;
792 struct phy_device *phydev;
793 int irq_requested, i, ret;
794 unsigned int size;
795 char phy_id[BUS_ID_SIZE];
796 void *p;
797 u32 val;
798
799 priv = netdev_priv(dev);
800 priv->rx_desc_cpu = priv->tx_desc_cpu = NULL;
801 priv->rx_skb = priv->tx_skb = NULL;
802
803 kdev = &priv->pdev->dev;
804
805 if (priv->has_phy) {
806 /* connect to PHY */
807 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT,
808 priv->mac_id ? "1" : "0", priv->phy_id);
809
810 phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0,
811 PHY_INTERFACE_MODE_MII);
812
813 if (IS_ERR(phydev)) {
814 dev_err(kdev, "could not attach to PHY\n");
815 return PTR_ERR(phydev);
816 }
817
818 /* mask with MAC supported features */
819 phydev->supported &= (SUPPORTED_10baseT_Half |
820 SUPPORTED_10baseT_Full |
821 SUPPORTED_100baseT_Half |
822 SUPPORTED_100baseT_Full |
823 SUPPORTED_Autoneg |
824 SUPPORTED_Pause |
825 SUPPORTED_MII);
826 phydev->advertising = phydev->supported;
827
828 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
829 phydev->advertising |= SUPPORTED_Pause;
830 else
831 phydev->advertising &= ~SUPPORTED_Pause;
832
833 dev_info(kdev, "attached PHY at address %d [%s]\n",
834 phydev->addr, phydev->drv->name);
835
836 priv->old_link = 0;
837 priv->old_duplex = -1;
838 priv->old_pause = -1;
839 priv->phydev = phydev;
840 }
841
842 /* mask all interrupts and request them */
843 enet_writel(priv, 0, ENET_IRMASK_REG);
844 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
845 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
846
847 irq_requested = 0;
848 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
849 if (ret)
850 goto out;
851 irq_requested++;
852
853 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
854 IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev);
855 if (ret)
856 goto out;
857 irq_requested++;
858
859 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
860 IRQF_DISABLED, dev->name, dev);
861 if (ret)
862 goto out;
863 irq_requested++;
864
865 /* initialize perfect match registers */
866 for (i = 0; i < 4; i++) {
867 enet_writel(priv, 0, ENET_PML_REG(i));
868 enet_writel(priv, 0, ENET_PMH_REG(i));
869 }
870
871 /* write device mac address */
872 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
873 bcm_enet_set_mac_address(dev, &addr);
874
875 /* allocate rx dma ring */
876 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
877 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
878 if (!p) {
879 dev_err(kdev, "cannot allocate rx ring %u\n", size);
880 ret = -ENOMEM;
881 goto out;
882 }
883
884 memset(p, 0, size);
885 priv->rx_desc_alloc_size = size;
886 priv->rx_desc_cpu = p;
887
888 /* allocate tx dma ring */
889 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
890 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
891 if (!p) {
892 dev_err(kdev, "cannot allocate tx ring\n");
893 ret = -ENOMEM;
894 goto out;
895 }
896
897 memset(p, 0, size);
898 priv->tx_desc_alloc_size = size;
899 priv->tx_desc_cpu = p;
900
901 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
902 GFP_KERNEL);
903 if (!priv->tx_skb) {
904 dev_err(kdev, "cannot allocate rx skb queue\n");
905 ret = -ENOMEM;
906 goto out;
907 }
908
909 priv->tx_desc_count = priv->tx_ring_size;
910 priv->tx_dirty_desc = 0;
911 priv->tx_curr_desc = 0;
912 spin_lock_init(&priv->tx_lock);
913
914 /* init & fill rx ring with skbs */
915 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
916 GFP_KERNEL);
917 if (!priv->rx_skb) {
918 dev_err(kdev, "cannot allocate rx skb queue\n");
919 ret = -ENOMEM;
920 goto out;
921 }
922
923 priv->rx_desc_count = 0;
924 priv->rx_dirty_desc = 0;
925 priv->rx_curr_desc = 0;
926
927 /* initialize flow control buffer allocation */
928 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
929 ENETDMA_BUFALLOC_REG(priv->rx_chan));
930
931 if (bcm_enet_refill_rx(dev)) {
932 dev_err(kdev, "cannot allocate rx skb queue\n");
933 ret = -ENOMEM;
934 goto out;
935 }
936
937 /* write rx & tx ring addresses */
938 enet_dma_writel(priv, priv->rx_desc_dma,
939 ENETDMA_RSTART_REG(priv->rx_chan));
940 enet_dma_writel(priv, priv->tx_desc_dma,
941 ENETDMA_RSTART_REG(priv->tx_chan));
942
943 /* clear remaining state ram for rx & tx channel */
944 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
945 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
946 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
947 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
948 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
949 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
950
951 /* set max rx/tx length */
952 enet_writel(priv, BCMENET_MAX_RX_SIZE, ENET_RXMAXLEN_REG);
953 enet_writel(priv, BCMENET_MAX_TX_SIZE, ENET_TXMAXLEN_REG);
954
955 /* set dma maximum burst len */
956 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
957 ENETDMA_MAXBURST_REG(priv->rx_chan));
958 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
959 ENETDMA_MAXBURST_REG(priv->tx_chan));
960
961 /* set correct transmit fifo watermark */
962 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
963
964 /* set flow control low/high threshold to 1/3 / 2/3 */
965 val = priv->rx_ring_size / 3;
966 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
967 val = (priv->rx_ring_size * 2) / 3;
968 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
969
970 /* all set, enable mac and interrupts, start dma engine and
971 * kick rx dma channel */
972 wmb();
973 enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG);
974 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
975 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
976 ENETDMA_CHANCFG_REG(priv->rx_chan));
977
978 /* watch "mib counters about to overflow" interrupt */
979 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
980 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
981
982 /* watch "packet transferred" interrupt in rx and tx */
983 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
984 ENETDMA_IR_REG(priv->rx_chan));
985 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
986 ENETDMA_IR_REG(priv->tx_chan));
987
988 /* make sure we enable napi before rx interrupt */
989 napi_enable(&priv->napi);
990
991 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
992 ENETDMA_IRMASK_REG(priv->rx_chan));
993 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
994 ENETDMA_IRMASK_REG(priv->tx_chan));
995
996 if (priv->has_phy)
997 phy_start(priv->phydev);
998 else
999 bcm_enet_adjust_link(dev);
1000
1001 netif_start_queue(dev);
1002 return 0;
1003
1004 out:
1005 phy_disconnect(priv->phydev);
1006 if (irq_requested > 2)
1007 free_irq(priv->irq_tx, dev);
1008 if (irq_requested > 1)
1009 free_irq(priv->irq_rx, dev);
1010 if (irq_requested > 0)
1011 free_irq(dev->irq, dev);
1012 for (i = 0; i < priv->rx_ring_size; i++) {
1013 struct bcm_enet_desc *desc;
1014
1015 if (!priv->rx_skb[i])
1016 continue;
1017
1018 desc = &priv->rx_desc_cpu[i];
1019 dma_unmap_single(kdev, desc->address, BCMENET_MAX_RX_SIZE,
1020 DMA_FROM_DEVICE);
1021 kfree_skb(priv->rx_skb[i]);
1022 }
1023 if (priv->rx_desc_cpu)
1024 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1025 priv->rx_desc_cpu, priv->rx_desc_dma);
1026 if (priv->tx_desc_cpu)
1027 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1028 priv->tx_desc_cpu, priv->tx_desc_dma);
1029 kfree(priv->rx_skb);
1030 kfree(priv->tx_skb);
1031 return ret;
1032 }
1033
1034 /*
1035 * disable mac
1036 */
1037 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1038 {
1039 int limit;
1040 u32 val;
1041
1042 val = enet_readl(priv, ENET_CTL_REG);
1043 val |= ENET_CTL_DISABLE_MASK;
1044 enet_writel(priv, val, ENET_CTL_REG);
1045
1046 limit = 1000;
1047 do {
1048 u32 val;
1049
1050 val = enet_readl(priv, ENET_CTL_REG);
1051 if (!(val & ENET_CTL_DISABLE_MASK))
1052 break;
1053 udelay(1);
1054 } while (limit--);
1055 }
1056
1057 /*
1058 * disable dma in given channel
1059 */
1060 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1061 {
1062 int limit;
1063
1064 enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
1065
1066 limit = 1000;
1067 do {
1068 u32 val;
1069
1070 val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
1071 if (!(val & ENETDMA_CHANCFG_EN_MASK))
1072 break;
1073 udelay(1);
1074 } while (limit--);
1075 }
1076
1077 /*
1078 * stop callback
1079 */
1080 static int bcm_enet_stop(struct net_device *dev)
1081 {
1082 struct bcm_enet_priv *priv;
1083 struct device *kdev;
1084 int i;
1085
1086 priv = netdev_priv(dev);
1087 kdev = &priv->pdev->dev;
1088
1089 netif_stop_queue(dev);
1090 napi_disable(&priv->napi);
1091 if (priv->has_phy)
1092 phy_stop(priv->phydev);
1093 del_timer_sync(&priv->rx_timeout);
1094
1095 /* mask all interrupts */
1096 enet_writel(priv, 0, ENET_IRMASK_REG);
1097 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
1098 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
1099
1100 /* make sure no mib update is scheduled */
1101 flush_scheduled_work();
1102
1103 /* disable dma & mac */
1104 bcm_enet_disable_dma(priv, priv->tx_chan);
1105 bcm_enet_disable_dma(priv, priv->rx_chan);
1106 bcm_enet_disable_mac(priv);
1107
1108 /* force reclaim of all tx buffers */
1109 bcm_enet_tx_reclaim(dev, 1);
1110
1111 /* free the rx skb ring */
1112 for (i = 0; i < priv->rx_ring_size; i++) {
1113 struct bcm_enet_desc *desc;
1114
1115 if (!priv->rx_skb[i])
1116 continue;
1117
1118 desc = &priv->rx_desc_cpu[i];
1119 dma_unmap_single(kdev, desc->address, BCMENET_MAX_RX_SIZE,
1120 DMA_FROM_DEVICE);
1121 kfree_skb(priv->rx_skb[i]);
1122 }
1123
1124 /* free remaining allocated memory */
1125 kfree(priv->rx_skb);
1126 kfree(priv->tx_skb);
1127 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1128 priv->rx_desc_cpu, priv->rx_desc_dma);
1129 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1130 priv->tx_desc_cpu, priv->tx_desc_dma);
1131 free_irq(priv->irq_tx, dev);
1132 free_irq(priv->irq_rx, dev);
1133 free_irq(dev->irq, dev);
1134
1135 /* release phy */
1136 if (priv->has_phy) {
1137 phy_disconnect(priv->phydev);
1138 priv->phydev = NULL;
1139 }
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * core request to return device rx/tx stats
1146 */
1147 static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev)
1148 {
1149 struct bcm_enet_priv *priv;
1150
1151 priv = netdev_priv(dev);
1152 return &priv->stats;
1153 }
1154
1155 /*
1156 * ethtool callbacks
1157 */
1158 struct bcm_enet_stats {
1159 char stat_string[ETH_GSTRING_LEN];
1160 int sizeof_stat;
1161 int stat_offset;
1162 int mib_reg;
1163 };
1164
1165 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1166 offsetof(struct bcm_enet_priv, m)
1167
1168 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1169 { "rx_packets", GEN_STAT(stats.rx_packets), -1 },
1170 { "tx_packets", GEN_STAT(stats.tx_packets), -1 },
1171 { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 },
1172 { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 },
1173 { "rx_errors", GEN_STAT(stats.rx_errors), -1 },
1174 { "tx_errors", GEN_STAT(stats.tx_errors), -1 },
1175 { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 },
1176 { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 },
1177
1178 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1179 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1180 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1181 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1182 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1183 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1184 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1185 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1186 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1187 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1188 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1189 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1190 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1191 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1192 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1193 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1194 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1195 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1196 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1197 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1198 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1199
1200 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1201 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1202 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1203 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1204 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1205 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1206 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1207 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1208 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1209 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1210 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1211 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1212 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1213 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1214 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1215 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1216 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1217 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1218 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1219 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1220 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1221 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1222
1223 };
1224
1225 #define BCM_ENET_STATS_LEN \
1226 (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
1227
1228 static const u32 unused_mib_regs[] = {
1229 ETH_MIB_TX_ALL_OCTETS,
1230 ETH_MIB_TX_ALL_PKTS,
1231 ETH_MIB_RX_ALL_OCTETS,
1232 ETH_MIB_RX_ALL_PKTS,
1233 };
1234
1235
1236 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1237 struct ethtool_drvinfo *drvinfo)
1238 {
1239 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
1240 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
1241 strncpy(drvinfo->fw_version, "N/A", 32);
1242 strncpy(drvinfo->bus_info, "bcm63xx", 32);
1243 drvinfo->n_stats = BCM_ENET_STATS_LEN;
1244 }
1245
1246 static int bcm_enet_get_stats_count(struct net_device *netdev)
1247 {
1248 return BCM_ENET_STATS_LEN;
1249 }
1250
1251 static void bcm_enet_get_strings(struct net_device *netdev,
1252 u32 stringset, u8 *data)
1253 {
1254 int i;
1255
1256 switch (stringset) {
1257 case ETH_SS_STATS:
1258 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1259 memcpy(data + i * ETH_GSTRING_LEN,
1260 bcm_enet_gstrings_stats[i].stat_string,
1261 ETH_GSTRING_LEN);
1262 }
1263 break;
1264 }
1265 }
1266
1267 static void update_mib_counters(struct bcm_enet_priv *priv)
1268 {
1269 int i;
1270
1271 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1272 const struct bcm_enet_stats *s;
1273 u32 val;
1274 char *p;
1275
1276 s = &bcm_enet_gstrings_stats[i];
1277 if (s->mib_reg == -1)
1278 continue;
1279
1280 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1281 p = (char *)priv + s->stat_offset;
1282
1283 if (s->sizeof_stat == sizeof(u64))
1284 *(u64 *)p += val;
1285 else
1286 *(u32 *)p += val;
1287 }
1288
1289 /* also empty unused mib counters to make sure mib counter
1290 * overflow interrupt is cleared */
1291 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1292 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1293 }
1294
1295 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1296 {
1297 struct bcm_enet_priv *priv;
1298
1299 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1300 mutex_lock(&priv->mib_update_lock);
1301 update_mib_counters(priv);
1302 mutex_unlock(&priv->mib_update_lock);
1303
1304 /* reenable mib interrupt */
1305 if (netif_running(priv->net_dev))
1306 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1307 }
1308
1309 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1310 struct ethtool_stats *stats,
1311 u64 *data)
1312 {
1313 struct bcm_enet_priv *priv;
1314 int i;
1315
1316 priv = netdev_priv(netdev);
1317
1318 mutex_lock(&priv->mib_update_lock);
1319 update_mib_counters(priv);
1320
1321 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1322 const struct bcm_enet_stats *s;
1323 char *p;
1324
1325 s = &bcm_enet_gstrings_stats[i];
1326 p = (char *)priv + s->stat_offset;
1327 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1328 *(u64 *)p : *(u32 *)p;
1329 }
1330 mutex_unlock(&priv->mib_update_lock);
1331 }
1332
1333 static int bcm_enet_get_settings(struct net_device *dev,
1334 struct ethtool_cmd *cmd)
1335 {
1336 struct bcm_enet_priv *priv;
1337
1338 priv = netdev_priv(dev);
1339
1340 cmd->maxrxpkt = 0;
1341 cmd->maxtxpkt = 0;
1342
1343 if (priv->has_phy) {
1344 if (!priv->phydev)
1345 return -ENODEV;
1346 return phy_ethtool_gset(priv->phydev, cmd);
1347 } else {
1348 cmd->autoneg = 0;
1349 cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10;
1350 cmd->duplex = (priv->force_duplex_full) ?
1351 DUPLEX_FULL : DUPLEX_HALF;
1352 cmd->supported = ADVERTISED_10baseT_Half |
1353 ADVERTISED_10baseT_Full |
1354 ADVERTISED_100baseT_Half |
1355 ADVERTISED_100baseT_Full;
1356 cmd->advertising = 0;
1357 cmd->port = PORT_MII;
1358 cmd->transceiver = XCVR_EXTERNAL;
1359 }
1360 return 0;
1361 }
1362
1363 static int bcm_enet_set_settings(struct net_device *dev,
1364 struct ethtool_cmd *cmd)
1365 {
1366 struct bcm_enet_priv *priv;
1367
1368 priv = netdev_priv(dev);
1369 if (priv->has_phy) {
1370 if (!priv->phydev)
1371 return -ENODEV;
1372 return phy_ethtool_sset(priv->phydev, cmd);
1373 } else {
1374
1375 if (cmd->autoneg ||
1376 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1377 cmd->port != PORT_MII)
1378 return -EINVAL;
1379
1380 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1381 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1382
1383 if (netif_running(dev))
1384 bcm_enet_adjust_link(dev);
1385 return 0;
1386 }
1387 }
1388
1389 static void bcm_enet_get_ringparam(struct net_device *dev,
1390 struct ethtool_ringparam *ering)
1391 {
1392 struct bcm_enet_priv *priv;
1393
1394 priv = netdev_priv(dev);
1395
1396 /* rx/tx ring is actually only limited by memory */
1397 ering->rx_max_pending = 8192;
1398 ering->tx_max_pending = 8192;
1399 ering->rx_mini_max_pending = 0;
1400 ering->rx_jumbo_max_pending = 0;
1401 ering->rx_pending = priv->rx_ring_size;
1402 ering->tx_pending = priv->tx_ring_size;
1403 }
1404
1405 static int bcm_enet_set_ringparam(struct net_device *dev,
1406 struct ethtool_ringparam *ering)
1407 {
1408 struct bcm_enet_priv *priv;
1409 int was_running;
1410
1411 priv = netdev_priv(dev);
1412
1413 was_running = 0;
1414 if (netif_running(dev)) {
1415 bcm_enet_stop(dev);
1416 was_running = 1;
1417 }
1418
1419 priv->rx_ring_size = ering->rx_pending;
1420 priv->tx_ring_size = ering->tx_pending;
1421
1422 if (was_running) {
1423 int err;
1424
1425 err = bcm_enet_open(dev);
1426 if (err)
1427 dev_close(dev);
1428 else
1429 bcm_enet_set_multicast_list(dev);
1430 }
1431 return 0;
1432 }
1433
1434 static void bcm_enet_get_pauseparam(struct net_device *dev,
1435 struct ethtool_pauseparam *ecmd)
1436 {
1437 struct bcm_enet_priv *priv;
1438
1439 priv = netdev_priv(dev);
1440 ecmd->autoneg = priv->pause_auto;
1441 ecmd->rx_pause = priv->pause_rx;
1442 ecmd->tx_pause = priv->pause_tx;
1443 }
1444
1445 static int bcm_enet_set_pauseparam(struct net_device *dev,
1446 struct ethtool_pauseparam *ecmd)
1447 {
1448 struct bcm_enet_priv *priv;
1449
1450 priv = netdev_priv(dev);
1451
1452 if (priv->has_phy) {
1453 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1454 /* asymetric pause mode not supported,
1455 * actually possible but integrated PHY has RO
1456 * asym_pause bit */
1457 return -EINVAL;
1458 }
1459 } else {
1460 /* no pause autoneg on direct mii connection */
1461 if (ecmd->autoneg)
1462 return -EINVAL;
1463 }
1464
1465 priv->pause_auto = ecmd->autoneg;
1466 priv->pause_rx = ecmd->rx_pause;
1467 priv->pause_tx = ecmd->tx_pause;
1468
1469 return 0;
1470 }
1471
1472 static struct ethtool_ops bcm_enet_ethtool_ops = {
1473 .get_strings = bcm_enet_get_strings,
1474 .get_stats_count = bcm_enet_get_stats_count,
1475 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1476 .get_settings = bcm_enet_get_settings,
1477 .set_settings = bcm_enet_set_settings,
1478 .get_drvinfo = bcm_enet_get_drvinfo,
1479 .get_link = ethtool_op_get_link,
1480 .get_ringparam = bcm_enet_get_ringparam,
1481 .set_ringparam = bcm_enet_set_ringparam,
1482 .get_pauseparam = bcm_enet_get_pauseparam,
1483 .set_pauseparam = bcm_enet_set_pauseparam,
1484 };
1485
1486 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1487 {
1488 struct bcm_enet_priv *priv;
1489
1490 priv = netdev_priv(dev);
1491 if (priv->has_phy) {
1492 if (!priv->phydev)
1493 return -ENODEV;
1494 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1495 } else {
1496 struct mii_if_info mii;
1497
1498 mii.dev = dev;
1499 mii.mdio_read = bcm_enet_mdio_read_mii;
1500 mii.mdio_write = bcm_enet_mdio_write_mii;
1501 mii.phy_id = 0;
1502 mii.phy_id_mask = 0x3f;
1503 mii.reg_num_mask = 0x1f;
1504 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1505 }
1506 }
1507
1508 /*
1509 * preinit hardware to allow mii operation while device is down
1510 */
1511 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1512 {
1513 u32 val;
1514 int limit;
1515
1516 /* make sure mac is disabled */
1517 bcm_enet_disable_mac(priv);
1518
1519 /* soft reset mac */
1520 val = ENET_CTL_SRESET_MASK;
1521 enet_writel(priv, val, ENET_CTL_REG);
1522 wmb();
1523
1524 limit = 1000;
1525 do {
1526 val = enet_readl(priv, ENET_CTL_REG);
1527 if (!(val & ENET_CTL_SRESET_MASK))
1528 break;
1529 udelay(1);
1530 } while (limit--);
1531
1532 /* select correct mii interface */
1533 val = enet_readl(priv, ENET_CTL_REG);
1534 if (priv->use_external_mii)
1535 val |= ENET_CTL_EPHYSEL_MASK;
1536 else
1537 val &= ~ENET_CTL_EPHYSEL_MASK;
1538 enet_writel(priv, val, ENET_CTL_REG);
1539
1540 /* turn on mdc clock */
1541 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1542 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1543
1544 /* set mib counters to self-clear when read */
1545 val = enet_readl(priv, ENET_MIBCTL_REG);
1546 val |= ENET_MIBCTL_RDCLEAR_MASK;
1547 enet_writel(priv, val, ENET_MIBCTL_REG);
1548 }
1549
1550 /*
1551 * allocate netdevice, request register memory and register device.
1552 */
1553 static int __devinit bcm_enet_probe(struct platform_device *pdev)
1554 {
1555 struct bcm_enet_priv *priv;
1556 struct net_device *dev;
1557 struct bcm63xx_enet_platform_data *pd;
1558 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1559 struct mii_bus *bus;
1560 const char *clk_name;
1561 unsigned int iomem_size;
1562 int i, ret, mdio_registered, mem_requested;
1563
1564 /* stop if shared driver failed, assume driver->probe will be
1565 * called in the same order we register devices (correct ?) */
1566 if (!bcm_enet_shared_base)
1567 return -ENODEV;
1568
1569 mdio_registered = mem_requested = 0;
1570
1571 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1572 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1573 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1574 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1575 if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
1576 return -ENODEV;
1577
1578 ret = 0;
1579 dev = alloc_etherdev(sizeof(*priv));
1580 if (!dev)
1581 return -ENOMEM;
1582 priv = netdev_priv(dev);
1583 memset(priv, 0, sizeof(*priv));
1584
1585 iomem_size = res_mem->end - res_mem->start + 1;
1586 if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
1587 ret = -EBUSY;
1588 goto err;
1589 }
1590 mem_requested = 1;
1591
1592 priv->base = ioremap(res_mem->start, iomem_size);
1593 if (priv->base == NULL) {
1594 ret = -ENOMEM;
1595 goto err;
1596 }
1597 dev->irq = priv->irq = res_irq->start;
1598 priv->irq_rx = res_irq_rx->start;
1599 priv->irq_tx = res_irq_tx->start;
1600 priv->mac_id = pdev->id;
1601
1602 /* get rx & tx dma channel id for this mac */
1603 if (priv->mac_id == 0) {
1604 priv->rx_chan = 0;
1605 priv->tx_chan = 1;
1606 clk_name = "enet0";
1607 } else {
1608 priv->rx_chan = 2;
1609 priv->tx_chan = 3;
1610 clk_name = "enet1";
1611 }
1612
1613 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1614 if (IS_ERR(priv->mac_clk)) {
1615 ret = PTR_ERR(priv->mac_clk);
1616 priv->mac_clk = NULL;
1617 goto err;
1618 }
1619 clk_enable(priv->mac_clk);
1620
1621 /* initialize default and fetch platform data */
1622 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1623 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1624
1625 pd = pdev->dev.platform_data;
1626 if (pd) {
1627 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1628 priv->has_phy = pd->has_phy;
1629 priv->phy_id = pd->phy_id;
1630 priv->has_phy_interrupt = pd->has_phy_interrupt;
1631 priv->phy_interrupt = pd->phy_interrupt;
1632 priv->use_external_mii = !pd->use_internal_phy;
1633 priv->pause_auto = pd->pause_auto;
1634 priv->pause_rx = pd->pause_rx;
1635 priv->pause_tx = pd->pause_tx;
1636 priv->force_duplex_full = pd->force_duplex_full;
1637 priv->force_speed_100 = pd->force_speed_100;
1638 }
1639
1640 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1641 /* using internal PHY, enable clock */
1642 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1643 if (IS_ERR(priv->phy_clk)) {
1644 ret = PTR_ERR(priv->phy_clk);
1645 priv->phy_clk = NULL;
1646 goto err;
1647 }
1648 clk_enable(priv->phy_clk);
1649 }
1650
1651 /* do minimal hardware init to be able to probe mii bus */
1652 bcm_enet_hw_preinit(priv);
1653
1654 /* MII bus registration */
1655 if (priv->has_phy) {
1656 bus = &priv->mii_bus;
1657 bus->name = "bcm63xx_enet MII bus";
1658 bus->dev = &pdev->dev;
1659 bus->priv = priv;
1660 bus->read = bcm_enet_mdio_read_phylib;
1661 bus->write = bcm_enet_mdio_write_phylib;
1662 sprintf(bus->id, "%d", priv->mac_id);
1663
1664 /* only probe bus where we think the PHY is, because
1665 * the mdio read operation return 0 instead of 0xffff
1666 * if a slave is not present on hw */
1667 bus->phy_mask = ~(1 << priv->phy_id);
1668
1669 bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1670 if (!bus->irq) {
1671 ret = -ENOMEM;
1672 goto err;
1673 }
1674
1675 if (priv->has_phy_interrupt)
1676 bus->irq[priv->phy_id] = priv->phy_interrupt;
1677 else
1678 bus->irq[priv->phy_id] = PHY_POLL;
1679
1680 ret = mdiobus_register(bus);
1681 if (ret) {
1682 dev_err(&pdev->dev, "unable to register mdio bus\n");
1683 goto err;
1684 }
1685 mdio_registered = 1;
1686 } else {
1687
1688 /* run platform code to initialize PHY device */
1689 if (pd->mii_config &&
1690 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1691 bcm_enet_mdio_write_mii)) {
1692 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1693 goto err;
1694 }
1695 }
1696
1697 spin_lock_init(&priv->rx_lock);
1698
1699 /* init rx timeout (used for oom) */
1700 init_timer(&priv->rx_timeout);
1701 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1702 priv->rx_timeout.data = (unsigned long)dev;
1703
1704 /* init the mib update lock&work */
1705 mutex_init(&priv->mib_update_lock);
1706 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1707
1708 /* zero mib counters */
1709 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1710 enet_writel(priv, 0, ENET_MIB_REG(i));
1711
1712 /* register netdevice */
1713 dev->open = bcm_enet_open;
1714 dev->stop = bcm_enet_stop;
1715 dev->hard_start_xmit = bcm_enet_start_xmit;
1716 dev->get_stats = bcm_enet_get_stats;
1717 dev->set_mac_address = bcm_enet_set_mac_address;
1718 dev->set_multicast_list = bcm_enet_set_multicast_list;
1719 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1720 dev->do_ioctl = bcm_enet_ioctl;
1721 #ifdef CONFIG_NET_POLL_CONTROLLER
1722 dev->poll_controller = bcm_enet_netpoll;
1723 #endif
1724
1725 SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
1726
1727 ret = register_netdev(dev);
1728 if (ret)
1729 goto err;
1730
1731 platform_set_drvdata(pdev, dev);
1732 priv->pdev = pdev;
1733 priv->net_dev = dev;
1734 SET_NETDEV_DEV(dev, &pdev->dev);
1735
1736 return 0;
1737
1738 err:
1739 if (mem_requested)
1740 release_mem_region(res_mem->start, iomem_size);
1741 if (mdio_registered)
1742 mdiobus_unregister(&priv->mii_bus);
1743 kfree(priv->mii_bus.irq);
1744 if (priv->mac_clk) {
1745 clk_disable(priv->mac_clk);
1746 clk_put(priv->mac_clk);
1747 }
1748 if (priv->phy_clk) {
1749 clk_disable(priv->phy_clk);
1750 clk_put(priv->phy_clk);
1751 }
1752 if (priv->base) {
1753 /* turn off mdc clock */
1754 enet_writel(priv, 0, ENET_MIISC_REG);
1755 iounmap(priv->base);
1756 }
1757 free_netdev(dev);
1758 return ret;
1759 }
1760
1761
1762 /*
1763 * exit func, stops hardware and unregisters netdevice
1764 */
1765 static int __devexit bcm_enet_remove(struct platform_device *pdev)
1766 {
1767 struct bcm_enet_priv *priv;
1768 struct net_device *dev;
1769 struct resource *res;
1770
1771 /* stop netdevice */
1772 dev = platform_get_drvdata(pdev);
1773 priv = netdev_priv(dev);
1774 unregister_netdev(dev);
1775
1776 /* turn off mdc clock */
1777 enet_writel(priv, 0, ENET_MIISC_REG);
1778
1779 if (priv->has_phy) {
1780 mdiobus_unregister(&priv->mii_bus);
1781 kfree(priv->mii_bus.irq);
1782 } else {
1783 struct bcm63xx_enet_platform_data *pd;
1784
1785 pd = pdev->dev.platform_data;
1786 if (pd && pd->mii_config)
1787 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1788 bcm_enet_mdio_write_mii);
1789 }
1790
1791 /* release device resources */
1792 iounmap(priv->base);
1793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 release_mem_region(res->start, res->end - res->start + 1);
1795
1796 /* disable hw block clocks */
1797 if (priv->phy_clk) {
1798 clk_disable(priv->phy_clk);
1799 clk_put(priv->phy_clk);
1800 }
1801 clk_disable(priv->mac_clk);
1802 clk_put(priv->mac_clk);
1803
1804 free_netdev(dev);
1805 return 0;
1806 }
1807
1808 struct platform_driver bcm63xx_enet_driver = {
1809 .probe = bcm_enet_probe,
1810 .remove = __devexit_p(bcm_enet_remove),
1811 .driver = {
1812 .name = "bcm63xx_enet",
1813 .owner = THIS_MODULE,
1814 },
1815 };
1816
1817 /*
1818 * reserve & remap memory space shared between all macs
1819 */
1820 static int __devinit bcm_enet_shared_probe(struct platform_device *pdev)
1821 {
1822 struct resource *res;
1823 unsigned int iomem_size;
1824
1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 if (!res)
1827 return -ENODEV;
1828
1829 iomem_size = res->end - res->start + 1;
1830 if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma"))
1831 return -EBUSY;
1832
1833 bcm_enet_shared_base = ioremap(res->start, iomem_size);
1834 if (!bcm_enet_shared_base) {
1835 release_mem_region(res->start, iomem_size);
1836 return -ENOMEM;
1837 }
1838 return 0;
1839 }
1840
1841 static int __devexit bcm_enet_shared_remove(struct platform_device *pdev)
1842 {
1843 struct resource *res;
1844
1845 iounmap(bcm_enet_shared_base);
1846 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1847 release_mem_region(res->start, res->end - res->start + 1);
1848 return 0;
1849 }
1850
1851 /*
1852 * this "shared" driver is needed because both macs share a single
1853 * address space
1854 */
1855 struct platform_driver bcm63xx_enet_shared_driver = {
1856 .probe = bcm_enet_shared_probe,
1857 .remove = __devexit_p(bcm_enet_shared_remove),
1858 .driver = {
1859 .name = "bcm63xx_enet_shared",
1860 .owner = THIS_MODULE,
1861 },
1862 };
1863
1864 /*
1865 * entry point
1866 */
1867 static int __init bcm_enet_init(void)
1868 {
1869 int ret;
1870
1871 ret = platform_driver_register(&bcm63xx_enet_shared_driver);
1872 if (ret)
1873 return ret;
1874
1875 ret = platform_driver_register(&bcm63xx_enet_driver);
1876 if (ret)
1877 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1878
1879 return ret;
1880 }
1881
1882 static void __exit bcm_enet_exit(void)
1883 {
1884 platform_driver_unregister(&bcm63xx_enet_driver);
1885 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1886 }
1887
1888
1889 module_init(bcm_enet_init);
1890 module_exit(bcm_enet_exit);
1891
1892 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
1893 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
1894 MODULE_LICENSE("GPL");
This page took 0.139232 seconds and 5 git commands to generate.