ramips: consistently use 'firmware' name for sysupgrade partitions
[openwrt.git] / tools / mtd-utils / patches / 130-lzma_jffs2.patch
1 --- a/Makefile
2 +++ b/Makefile
3 @@ -1,7 +1,7 @@
4
5 # -*- sh -*-
6
7 -CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS)
8 +CPPFLAGS += -I./include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS) -I./include/linux/lzma
9
10 ifeq ($(WITHOUT_XATTR), 1)
11 CPPFLAGS += -DWITHOUT_XATTR
12 @@ -52,7 +52,9 @@ $(SYMLINKS):
13 ln -sf ../fs/jffs2/$@ $@
14
15 $(BUILDDIR)/mkfs.jffs2: $(addprefix $(BUILDDIR)/,\
16 - compr_rtime.o mkfs.jffs2.o compr_zlib.o $(if $(NO_LZO),,compr_lzo.o) \
17 + compr_rtime.o mkfs.jffs2.o compr_zlib.o \
18 + $(if $(NO_LZO),,compr_lzo.o) \
19 + compr_lzma.o lzma/LzFind.o lzma/LzmaEnc.o lzma/LzmaDec.o \
20 compr.o rbtree.o)
21 LDFLAGS_mkfs.jffs2 := $(ZLIBLDFLAGS)
22 LDLIBS_mkfs.jffs2 := -lz
23 --- a/compr.c
24 +++ b/compr.c
25 @@ -520,6 +520,9 @@ int jffs2_compressors_init(void)
26 #ifdef CONFIG_JFFS2_LZO
27 jffs2_lzo_init();
28 #endif
29 +#ifdef CONFIG_JFFS2_LZMA
30 + jffs2_lzma_init();
31 +#endif
32 return 0;
33 }
34
35 @@ -534,5 +537,8 @@ int jffs2_compressors_exit(void)
36 #ifdef CONFIG_JFFS2_LZO
37 jffs2_lzo_exit();
38 #endif
39 +#ifdef CONFIG_JFFS2_LZMA
40 + jffs2_lzma_exit();
41 +#endif
42 return 0;
43 }
44 --- a/compr.h
45 +++ b/compr.h
46 @@ -18,13 +18,14 @@
47
48 #define CONFIG_JFFS2_ZLIB
49 #define CONFIG_JFFS2_RTIME
50 -#define CONFIG_JFFS2_LZO
51 +#define CONFIG_JFFS2_LZMA
52
53 #define JFFS2_RUBINMIPS_PRIORITY 10
54 #define JFFS2_DYNRUBIN_PRIORITY 20
55 #define JFFS2_RTIME_PRIORITY 50
56 -#define JFFS2_ZLIB_PRIORITY 60
57 -#define JFFS2_LZO_PRIORITY 80
58 +#define JFFS2_LZMA_PRIORITY 70
59 +#define JFFS2_ZLIB_PRIORITY 80
60 +#define JFFS2_LZO_PRIORITY 90
61
62 #define JFFS2_COMPR_MODE_NONE 0
63 #define JFFS2_COMPR_MODE_PRIORITY 1
64 @@ -115,5 +116,10 @@ void jffs2_rtime_exit(void);
65 int jffs2_lzo_init(void);
66 void jffs2_lzo_exit(void);
67 #endif
68 +#ifdef CONFIG_JFFS2_LZMA
69 +int jffs2_lzma_init(void);
70 +void jffs2_lzma_exit(void);
71 +#endif
72 +
73
74 #endif /* __JFFS2_COMPR_H__ */
75 --- /dev/null
76 +++ b/compr_lzma.c
77 @@ -0,0 +1,128 @@
78 +/*
79 + * JFFS2 -- Journalling Flash File System, Version 2.
80 + *
81 + * For licensing information, see the file 'LICENCE' in this directory.
82 + *
83 + * JFFS2 wrapper to the LZMA C SDK
84 + *
85 + */
86 +
87 +#include <linux/lzma.h>
88 +#include "compr.h"
89 +
90 +#ifdef __KERNEL__
91 + static DEFINE_MUTEX(deflate_mutex);
92 +#endif
93 +
94 +CLzmaEncHandle *p;
95 +Byte propsEncoded[LZMA_PROPS_SIZE];
96 +SizeT propsSize = sizeof(propsEncoded);
97 +
98 +STATIC void lzma_free_workspace(void)
99 +{
100 + LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
101 +}
102 +
103 +STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
104 +{
105 + if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
106 + {
107 + PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
108 + return -ENOMEM;
109 + }
110 +
111 + if (LzmaEnc_SetProps(p, props) != SZ_OK)
112 + {
113 + lzma_free_workspace();
114 + return -1;
115 + }
116 +
117 + if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
118 + {
119 + lzma_free_workspace();
120 + return -1;
121 + }
122 +
123 + return 0;
124 +}
125 +
126 +STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
127 + uint32_t *sourcelen, uint32_t *dstlen, void *model)
128 +{
129 + SizeT compress_size = (SizeT)(*dstlen);
130 + int ret;
131 +
132 + #ifdef __KERNEL__
133 + mutex_lock(&deflate_mutex);
134 + #endif
135 +
136 + ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
137 + 0, NULL, &lzma_alloc, &lzma_alloc);
138 +
139 + #ifdef __KERNEL__
140 + mutex_unlock(&deflate_mutex);
141 + #endif
142 +
143 + if (ret != SZ_OK)
144 + return -1;
145 +
146 + *dstlen = (uint32_t)compress_size;
147 +
148 + return 0;
149 +}
150 +
151 +STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
152 + uint32_t srclen, uint32_t destlen, void *model)
153 +{
154 + int ret;
155 + SizeT dl = (SizeT)destlen;
156 + SizeT sl = (SizeT)srclen;
157 + ELzmaStatus status;
158 +
159 + ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
160 + propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
161 +
162 + if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
163 + return -1;
164 +
165 + return 0;
166 +}
167 +
168 +static struct jffs2_compressor jffs2_lzma_comp = {
169 + .priority = JFFS2_LZMA_PRIORITY,
170 + .name = "lzma",
171 + .compr = JFFS2_COMPR_LZMA,
172 + .compress = &jffs2_lzma_compress,
173 + .decompress = &jffs2_lzma_decompress,
174 + .disabled = 0,
175 +};
176 +
177 +int INIT jffs2_lzma_init(void)
178 +{
179 + int ret;
180 + CLzmaEncProps props;
181 + LzmaEncProps_Init(&props);
182 +
183 + props.dictSize = LZMA_BEST_DICT(0x2000);
184 + props.level = LZMA_BEST_LEVEL;
185 + props.lc = LZMA_BEST_LC;
186 + props.lp = LZMA_BEST_LP;
187 + props.pb = LZMA_BEST_PB;
188 + props.fb = LZMA_BEST_FB;
189 +
190 + ret = lzma_alloc_workspace(&props);
191 + if (ret < 0)
192 + return ret;
193 +
194 + ret = jffs2_register_compressor(&jffs2_lzma_comp);
195 + if (ret)
196 + lzma_free_workspace();
197 +
198 + return ret;
199 +}
200 +
201 +void jffs2_lzma_exit(void)
202 +{
203 + jffs2_unregister_compressor(&jffs2_lzma_comp);
204 + lzma_free_workspace();
205 +}
206 --- a/include/linux/jffs2.h
207 +++ b/include/linux/jffs2.h
208 @@ -47,6 +47,7 @@
209 #define JFFS2_COMPR_DYNRUBIN 0x05
210 #define JFFS2_COMPR_ZLIB 0x06
211 #define JFFS2_COMPR_LZO 0x07
212 +#define JFFS2_COMPR_LZMA 0x08
213 /* Compatibility flags. */
214 #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
215 #define JFFS2_NODE_ACCURATE 0x2000
216 --- /dev/null
217 +++ b/include/linux/lzma.h
218 @@ -0,0 +1,61 @@
219 +#ifndef __LZMA_H__
220 +#define __LZMA_H__
221 +
222 +#ifdef __KERNEL__
223 + #include <linux/kernel.h>
224 + #include <linux/sched.h>
225 + #include <linux/slab.h>
226 + #include <linux/vmalloc.h>
227 + #include <linux/init.h>
228 + #define LZMA_MALLOC vmalloc
229 + #define LZMA_FREE vfree
230 + #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
231 + #define INIT __init
232 + #define STATIC static
233 +#else
234 + #include <stdint.h>
235 + #include <stdlib.h>
236 + #include <stdio.h>
237 + #include <unistd.h>
238 + #include <string.h>
239 + #include <errno.h>
240 + #include <linux/jffs2.h>
241 + #ifndef PAGE_SIZE
242 + extern int page_size;
243 + #define PAGE_SIZE page_size
244 + #endif
245 + #define LZMA_MALLOC malloc
246 + #define LZMA_FREE free
247 + #define PRINT_ERROR(msg) fprintf(stderr, msg)
248 + #define INIT
249 + #define STATIC
250 +#endif
251 +
252 +#include "lzma/LzmaDec.h"
253 +#include "lzma/LzmaEnc.h"
254 +
255 +#define LZMA_BEST_LEVEL (9)
256 +#define LZMA_BEST_LC (0)
257 +#define LZMA_BEST_LP (0)
258 +#define LZMA_BEST_PB (0)
259 +#define LZMA_BEST_FB (273)
260 +
261 +#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
262 +
263 +static void *p_lzma_malloc(void *p, size_t size)
264 +{
265 + if (size == 0)
266 + return NULL;
267 +
268 + return LZMA_MALLOC(size);
269 +}
270 +
271 +static void p_lzma_free(void *p, void *address)
272 +{
273 + if (address != NULL)
274 + LZMA_FREE(address);
275 +}
276 +
277 +static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
278 +
279 +#endif
280 --- /dev/null
281 +++ b/include/linux/lzma/LzFind.h
282 @@ -0,0 +1,116 @@
283 +/* LzFind.h -- Match finder for LZ algorithms
284 +2008-04-04
285 +Copyright (c) 1999-2008 Igor Pavlov
286 +You can use any of the following license options:
287 + 1) GNU Lesser General Public License (GNU LGPL)
288 + 2) Common Public License (CPL)
289 + 3) Common Development and Distribution License (CDDL) Version 1.0
290 + 4) Igor Pavlov, as the author of this code, expressly permits you to
291 + statically or dynamically link your code (or bind by name) to this file,
292 + while you keep this file unmodified.
293 +*/
294 +
295 +#ifndef __LZFIND_H
296 +#define __LZFIND_H
297 +
298 +#include "Types.h"
299 +
300 +typedef UInt32 CLzRef;
301 +
302 +typedef struct _CMatchFinder
303 +{
304 + Byte *buffer;
305 + UInt32 pos;
306 + UInt32 posLimit;
307 + UInt32 streamPos;
308 + UInt32 lenLimit;
309 +
310 + UInt32 cyclicBufferPos;
311 + UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
312 +
313 + UInt32 matchMaxLen;
314 + CLzRef *hash;
315 + CLzRef *son;
316 + UInt32 hashMask;
317 + UInt32 cutValue;
318 +
319 + Byte *bufferBase;
320 + ISeqInStream *stream;
321 + int streamEndWasReached;
322 +
323 + UInt32 blockSize;
324 + UInt32 keepSizeBefore;
325 + UInt32 keepSizeAfter;
326 +
327 + UInt32 numHashBytes;
328 + int directInput;
329 + int btMode;
330 + /* int skipModeBits; */
331 + int bigHash;
332 + UInt32 historySize;
333 + UInt32 fixedHashSize;
334 + UInt32 hashSizeSum;
335 + UInt32 numSons;
336 + SRes result;
337 + UInt32 crc[256];
338 +} CMatchFinder;
339 +
340 +#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
341 +#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
342 +
343 +#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
344 +
345 +int MatchFinder_NeedMove(CMatchFinder *p);
346 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
347 +void MatchFinder_MoveBlock(CMatchFinder *p);
348 +void MatchFinder_ReadIfRequired(CMatchFinder *p);
349 +
350 +void MatchFinder_Construct(CMatchFinder *p);
351 +
352 +/* Conditions:
353 + historySize <= 3 GB
354 + keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
355 +*/
356 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
357 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
358 + ISzAlloc *alloc);
359 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
360 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
361 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
362 +
363 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
364 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
365 + UInt32 *distances, UInt32 maxLen);
366 +
367 +/*
368 +Conditions:
369 + Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
370 + Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
371 +*/
372 +
373 +typedef void (*Mf_Init_Func)(void *object);
374 +typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
375 +typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
376 +typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
377 +typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
378 +typedef void (*Mf_Skip_Func)(void *object, UInt32);
379 +
380 +typedef struct _IMatchFinder
381 +{
382 + Mf_Init_Func Init;
383 + Mf_GetIndexByte_Func GetIndexByte;
384 + Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
385 + Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
386 + Mf_GetMatches_Func GetMatches;
387 + Mf_Skip_Func Skip;
388 +} IMatchFinder;
389 +
390 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
391 +
392 +void MatchFinder_Init(CMatchFinder *p);
393 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
394 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
395 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
396 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
397 +
398 +#endif
399 --- /dev/null
400 +++ b/include/linux/lzma/LzHash.h
401 @@ -0,0 +1,56 @@
402 +/* LzHash.h -- HASH functions for LZ algorithms
403 +2008-03-26
404 +Copyright (c) 1999-2008 Igor Pavlov
405 +Read LzFind.h for license options */
406 +
407 +#ifndef __LZHASH_H
408 +#define __LZHASH_H
409 +
410 +#define kHash2Size (1 << 10)
411 +#define kHash3Size (1 << 16)
412 +#define kHash4Size (1 << 20)
413 +
414 +#define kFix3HashSize (kHash2Size)
415 +#define kFix4HashSize (kHash2Size + kHash3Size)
416 +#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
417 +
418 +#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
419 +
420 +#define HASH3_CALC { \
421 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
422 + hash2Value = temp & (kHash2Size - 1); \
423 + hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
424 +
425 +#define HASH4_CALC { \
426 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
427 + hash2Value = temp & (kHash2Size - 1); \
428 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
429 + hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
430 +
431 +#define HASH5_CALC { \
432 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
433 + hash2Value = temp & (kHash2Size - 1); \
434 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
435 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
436 + hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
437 + hash4Value &= (kHash4Size - 1); }
438 +
439 +/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
440 +#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
441 +
442 +
443 +#define MT_HASH2_CALC \
444 + hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
445 +
446 +#define MT_HASH3_CALC { \
447 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
448 + hash2Value = temp & (kHash2Size - 1); \
449 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
450 +
451 +#define MT_HASH4_CALC { \
452 + UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
453 + hash2Value = temp & (kHash2Size - 1); \
454 + hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
455 + hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
456 +
457 +#endif
458 --- /dev/null
459 +++ b/include/linux/lzma/LzmaDec.h
460 @@ -0,0 +1,232 @@
461 +/* LzmaDec.h -- LZMA Decoder
462 +2008-04-29
463 +Copyright (c) 1999-2008 Igor Pavlov
464 +You can use any of the following license options:
465 + 1) GNU Lesser General Public License (GNU LGPL)
466 + 2) Common Public License (CPL)
467 + 3) Common Development and Distribution License (CDDL) Version 1.0
468 + 4) Igor Pavlov, as the author of this code, expressly permits you to
469 + statically or dynamically link your code (or bind by name) to this file,
470 + while you keep this file unmodified.
471 +*/
472 +
473 +#ifndef __LZMADEC_H
474 +#define __LZMADEC_H
475 +
476 +#include "Types.h"
477 +
478 +/* #define _LZMA_PROB32 */
479 +/* _LZMA_PROB32 can increase the speed on some CPUs,
480 + but memory usage for CLzmaDec::probs will be doubled in that case */
481 +
482 +#ifdef _LZMA_PROB32
483 +#define CLzmaProb UInt32
484 +#else
485 +#define CLzmaProb UInt16
486 +#endif
487 +
488 +
489 +/* ---------- LZMA Properties ---------- */
490 +
491 +#define LZMA_PROPS_SIZE 5
492 +
493 +typedef struct _CLzmaProps
494 +{
495 + unsigned lc, lp, pb;
496 + UInt32 dicSize;
497 +} CLzmaProps;
498 +
499 +/* LzmaProps_Decode - decodes properties
500 +Returns:
501 + SZ_OK
502 + SZ_ERROR_UNSUPPORTED - Unsupported properties
503 +*/
504 +
505 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
506 +
507 +
508 +/* ---------- LZMA Decoder state ---------- */
509 +
510 +/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
511 + Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
512 +
513 +#define LZMA_REQUIRED_INPUT_MAX 20
514 +
515 +typedef struct
516 +{
517 + CLzmaProps prop;
518 + CLzmaProb *probs;
519 + Byte *dic;
520 + const Byte *buf;
521 + UInt32 range, code;
522 + SizeT dicPos;
523 + SizeT dicBufSize;
524 + UInt32 processedPos;
525 + UInt32 checkDicSize;
526 + unsigned state;
527 + UInt32 reps[4];
528 + unsigned remainLen;
529 + int needFlush;
530 + int needInitState;
531 + UInt32 numProbs;
532 + unsigned tempBufSize;
533 + Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
534 +} CLzmaDec;
535 +
536 +#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
537 +
538 +void LzmaDec_Init(CLzmaDec *p);
539 +
540 +/* There are two types of LZMA streams:
541 + 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
542 + 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
543 +
544 +typedef enum
545 +{
546 + LZMA_FINISH_ANY, /* finish at any point */
547 + LZMA_FINISH_END /* block must be finished at the end */
548 +} ELzmaFinishMode;
549 +
550 +/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
551 +
552 + You must use LZMA_FINISH_END, when you know that current output buffer
553 + covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
554 +
555 + If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
556 + and output value of destLen will be less than output buffer size limit.
557 + You can check status result also.
558 +
559 + You can use multiple checks to test data integrity after full decompression:
560 + 1) Check Result and "status" variable.
561 + 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
562 + 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
563 + You must use correct finish mode in that case. */
564 +
565 +typedef enum
566 +{
567 + LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
568 + LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
569 + LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
570 + LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
571 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
572 +} ELzmaStatus;
573 +
574 +/* ELzmaStatus is used only as output value for function call */
575 +
576 +
577 +/* ---------- Interfaces ---------- */
578 +
579 +/* There are 3 levels of interfaces:
580 + 1) Dictionary Interface
581 + 2) Buffer Interface
582 + 3) One Call Interface
583 + You can select any of these interfaces, but don't mix functions from different
584 + groups for same object. */
585 +
586 +
587 +/* There are two variants to allocate state for Dictionary Interface:
588 + 1) LzmaDec_Allocate / LzmaDec_Free
589 + 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
590 + You can use variant 2, if you set dictionary buffer manually.
591 + For Buffer Interface you must always use variant 1.
592 +
593 +LzmaDec_Allocate* can return:
594 + SZ_OK
595 + SZ_ERROR_MEM - Memory allocation error
596 + SZ_ERROR_UNSUPPORTED - Unsupported properties
597 +*/
598 +
599 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
600 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
601 +
602 +SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
603 +void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
604 +
605 +/* ---------- Dictionary Interface ---------- */
606 +
607 +/* You can use it, if you want to eliminate the overhead for data copying from
608 + dictionary to some other external buffer.
609 + You must work with CLzmaDec variables directly in this interface.
610 +
611 + STEPS:
612 + LzmaDec_Constr()
613 + LzmaDec_Allocate()
614 + for (each new stream)
615 + {
616 + LzmaDec_Init()
617 + while (it needs more decompression)
618 + {
619 + LzmaDec_DecodeToDic()
620 + use data from CLzmaDec::dic and update CLzmaDec::dicPos
621 + }
622 + }
623 + LzmaDec_Free()
624 +*/
625 +
626 +/* LzmaDec_DecodeToDic
627 +
628 + The decoding to internal dictionary buffer (CLzmaDec::dic).
629 + You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
630 +
631 +finishMode:
632 + It has meaning only if the decoding reaches output limit (dicLimit).
633 + LZMA_FINISH_ANY - Decode just dicLimit bytes.
634 + LZMA_FINISH_END - Stream must be finished after dicLimit.
635 +
636 +Returns:
637 + SZ_OK
638 + status:
639 + LZMA_STATUS_FINISHED_WITH_MARK
640 + LZMA_STATUS_NOT_FINISHED
641 + LZMA_STATUS_NEEDS_MORE_INPUT
642 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
643 + SZ_ERROR_DATA - Data error
644 +*/
645 +
646 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
647 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
648 +
649 +
650 +/* ---------- Buffer Interface ---------- */
651 +
652 +/* It's zlib-like interface.
653 + See LzmaDec_DecodeToDic description for information about STEPS and return results,
654 + but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
655 + to work with CLzmaDec variables manually.
656 +
657 +finishMode:
658 + It has meaning only if the decoding reaches output limit (*destLen).
659 + LZMA_FINISH_ANY - Decode just destLen bytes.
660 + LZMA_FINISH_END - Stream must be finished after (*destLen).
661 +*/
662 +
663 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
664 + const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
665 +
666 +
667 +/* ---------- One Call Interface ---------- */
668 +
669 +/* LzmaDecode
670 +
671 +finishMode:
672 + It has meaning only if the decoding reaches output limit (*destLen).
673 + LZMA_FINISH_ANY - Decode just destLen bytes.
674 + LZMA_FINISH_END - Stream must be finished after (*destLen).
675 +
676 +Returns:
677 + SZ_OK
678 + status:
679 + LZMA_STATUS_FINISHED_WITH_MARK
680 + LZMA_STATUS_NOT_FINISHED
681 + LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
682 + SZ_ERROR_DATA - Data error
683 + SZ_ERROR_MEM - Memory allocation error
684 + SZ_ERROR_UNSUPPORTED - Unsupported properties
685 + SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
686 +*/
687 +
688 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
689 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
690 + ELzmaStatus *status, ISzAlloc *alloc);
691 +
692 +#endif
693 --- /dev/null
694 +++ b/include/linux/lzma/LzmaEnc.h
695 @@ -0,0 +1,74 @@
696 +/* LzmaEnc.h -- LZMA Encoder
697 +2008-04-27
698 +Copyright (c) 1999-2008 Igor Pavlov
699 +Read LzFind.h for license options */
700 +
701 +#ifndef __LZMAENC_H
702 +#define __LZMAENC_H
703 +
704 +#include "Types.h"
705 +
706 +#define LZMA_PROPS_SIZE 5
707 +
708 +typedef struct _CLzmaEncProps
709 +{
710 + int level; /* 0 <= level <= 9 */
711 + UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
712 + (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
713 + default = (1 << 24) */
714 + int lc; /* 0 <= lc <= 8, default = 3 */
715 + int lp; /* 0 <= lp <= 4, default = 0 */
716 + int pb; /* 0 <= pb <= 4, default = 2 */
717 + int algo; /* 0 - fast, 1 - normal, default = 1 */
718 + int fb; /* 5 <= fb <= 273, default = 32 */
719 + int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
720 + int numHashBytes; /* 2, 3 or 4, default = 4 */
721 + UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
722 + unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
723 + int numThreads; /* 1 or 2, default = 2 */
724 +} CLzmaEncProps;
725 +
726 +void LzmaEncProps_Init(CLzmaEncProps *p);
727 +void LzmaEncProps_Normalize(CLzmaEncProps *p);
728 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
729 +
730 +
731 +/* ---------- CLzmaEncHandle Interface ---------- */
732 +
733 +/* LzmaEnc_* functions can return the following exit codes:
734 +Returns:
735 + SZ_OK - OK
736 + SZ_ERROR_MEM - Memory allocation error
737 + SZ_ERROR_PARAM - Incorrect paramater in props
738 + SZ_ERROR_WRITE - Write callback error.
739 + SZ_ERROR_PROGRESS - some break from progress callback
740 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
741 +*/
742 +
743 +typedef void * CLzmaEncHandle;
744 +
745 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
746 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
747 +SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
748 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
749 +SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
750 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
751 +SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
752 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
753 +
754 +/* ---------- One Call Interface ---------- */
755 +
756 +/* LzmaEncode
757 +Return code:
758 + SZ_OK - OK
759 + SZ_ERROR_MEM - Memory allocation error
760 + SZ_ERROR_PARAM - Incorrect paramater
761 + SZ_ERROR_OUTPUT_EOF - output buffer overflow
762 + SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
763 +*/
764 +
765 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
766 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
767 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
768 +
769 +#endif
770 --- /dev/null
771 +++ b/include/linux/lzma/Types.h
772 @@ -0,0 +1,130 @@
773 +/* Types.h -- Basic types
774 +2008-04-11
775 +Igor Pavlov
776 +Public domain */
777 +
778 +#ifndef __7Z_TYPES_H
779 +#define __7Z_TYPES_H
780 +
781 +#define SZ_OK 0
782 +
783 +#define SZ_ERROR_DATA 1
784 +#define SZ_ERROR_MEM 2
785 +#define SZ_ERROR_CRC 3
786 +#define SZ_ERROR_UNSUPPORTED 4
787 +#define SZ_ERROR_PARAM 5
788 +#define SZ_ERROR_INPUT_EOF 6
789 +#define SZ_ERROR_OUTPUT_EOF 7
790 +#define SZ_ERROR_READ 8
791 +#define SZ_ERROR_WRITE 9
792 +#define SZ_ERROR_PROGRESS 10
793 +#define SZ_ERROR_FAIL 11
794 +#define SZ_ERROR_THREAD 12
795 +
796 +#define SZ_ERROR_ARCHIVE 16
797 +#define SZ_ERROR_NO_ARCHIVE 17
798 +
799 +typedef int SRes;
800 +
801 +#ifndef RINOK
802 +#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
803 +#endif
804 +
805 +typedef unsigned char Byte;
806 +typedef short Int16;
807 +typedef unsigned short UInt16;
808 +
809 +#ifdef _LZMA_UINT32_IS_ULONG
810 +typedef long Int32;
811 +typedef unsigned long UInt32;
812 +#else
813 +typedef int Int32;
814 +typedef unsigned int UInt32;
815 +#endif
816 +
817 +/* #define _SZ_NO_INT_64 */
818 +/* define it if your compiler doesn't support 64-bit integers */
819 +
820 +#ifdef _SZ_NO_INT_64
821 +
822 +typedef long Int64;
823 +typedef unsigned long UInt64;
824 +
825 +#else
826 +
827 +#if defined(_MSC_VER) || defined(__BORLANDC__)
828 +typedef __int64 Int64;
829 +typedef unsigned __int64 UInt64;
830 +#else
831 +typedef long long int Int64;
832 +typedef unsigned long long int UInt64;
833 +#endif
834 +
835 +#endif
836 +
837 +#ifdef _LZMA_NO_SYSTEM_SIZE_T
838 +typedef UInt32 SizeT;
839 +#else
840 +#include <stddef.h>
841 +typedef size_t SizeT;
842 +#endif
843 +
844 +typedef int Bool;
845 +#define True 1
846 +#define False 0
847 +
848 +
849 +#ifdef _MSC_VER
850 +
851 +#if _MSC_VER >= 1300
852 +#define MY_NO_INLINE __declspec(noinline)
853 +#else
854 +#define MY_NO_INLINE
855 +#endif
856 +
857 +#define MY_CDECL __cdecl
858 +#define MY_STD_CALL __stdcall
859 +#define MY_FAST_CALL MY_NO_INLINE __fastcall
860 +
861 +#else
862 +
863 +#define MY_CDECL
864 +#define MY_STD_CALL
865 +#define MY_FAST_CALL
866 +
867 +#endif
868 +
869 +
870 +/* The following interfaces use first parameter as pointer to structure */
871 +
872 +typedef struct
873 +{
874 + SRes (*Read)(void *p, void *buf, size_t *size);
875 + /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
876 + (output(*size) < input(*size)) is allowed */
877 +} ISeqInStream;
878 +
879 +typedef struct
880 +{
881 + size_t (*Write)(void *p, const void *buf, size_t size);
882 + /* Returns: result - the number of actually written bytes.
883 + (result < size) means error */
884 +} ISeqOutStream;
885 +
886 +typedef struct
887 +{
888 + SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
889 + /* Returns: result. (result != SZ_OK) means break.
890 + Value (UInt64)(Int64)-1 for size means unknown value. */
891 +} ICompressProgress;
892 +
893 +typedef struct
894 +{
895 + void *(*Alloc)(void *p, size_t size);
896 + void (*Free)(void *p, void *address); /* address can be 0 */
897 +} ISzAlloc;
898 +
899 +#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
900 +#define IAlloc_Free(p, a) (p)->Free((p), a)
901 +
902 +#endif
903 --- /dev/null
904 +++ b/lzma/LzFind.c
905 @@ -0,0 +1,753 @@
906 +/* LzFind.c -- Match finder for LZ algorithms
907 +2008-04-04
908 +Copyright (c) 1999-2008 Igor Pavlov
909 +Read LzFind.h for license options */
910 +
911 +#include <string.h>
912 +
913 +#include "LzFind.h"
914 +#include "LzHash.h"
915 +
916 +#define kEmptyHashValue 0
917 +#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
918 +#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
919 +#define kNormalizeMask (~(kNormalizeStepMin - 1))
920 +#define kMaxHistorySize ((UInt32)3 << 30)
921 +
922 +#define kStartMaxLen 3
923 +
924 +static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
925 +{
926 + if (!p->directInput)
927 + {
928 + alloc->Free(alloc, p->bufferBase);
929 + p->bufferBase = 0;
930 + }
931 +}
932 +
933 +/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
934 +
935 +static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
936 +{
937 + UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
938 + if (p->directInput)
939 + {
940 + p->blockSize = blockSize;
941 + return 1;
942 + }
943 + if (p->bufferBase == 0 || p->blockSize != blockSize)
944 + {
945 + LzInWindow_Free(p, alloc);
946 + p->blockSize = blockSize;
947 + p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
948 + }
949 + return (p->bufferBase != 0);
950 +}
951 +
952 +Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
953 +Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
954 +
955 +UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
956 +
957 +void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
958 +{
959 + p->posLimit -= subValue;
960 + p->pos -= subValue;
961 + p->streamPos -= subValue;
962 +}
963 +
964 +static void MatchFinder_ReadBlock(CMatchFinder *p)
965 +{
966 + if (p->streamEndWasReached || p->result != SZ_OK)
967 + return;
968 + for (;;)
969 + {
970 + Byte *dest = p->buffer + (p->streamPos - p->pos);
971 + size_t size = (p->bufferBase + p->blockSize - dest);
972 + if (size == 0)
973 + return;
974 + p->result = p->stream->Read(p->stream, dest, &size);
975 + if (p->result != SZ_OK)
976 + return;
977 + if (size == 0)
978 + {
979 + p->streamEndWasReached = 1;
980 + return;
981 + }
982 + p->streamPos += (UInt32)size;
983 + if (p->streamPos - p->pos > p->keepSizeAfter)
984 + return;
985 + }
986 +}
987 +
988 +void MatchFinder_MoveBlock(CMatchFinder *p)
989 +{
990 + memmove(p->bufferBase,
991 + p->buffer - p->keepSizeBefore,
992 + (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
993 + p->buffer = p->bufferBase + p->keepSizeBefore;
994 +}
995 +
996 +int MatchFinder_NeedMove(CMatchFinder *p)
997 +{
998 + /* if (p->streamEndWasReached) return 0; */
999 + return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
1000 +}
1001 +
1002 +void MatchFinder_ReadIfRequired(CMatchFinder *p)
1003 +{
1004 + if (p->streamEndWasReached)
1005 + return;
1006 + if (p->keepSizeAfter >= p->streamPos - p->pos)
1007 + MatchFinder_ReadBlock(p);
1008 +}
1009 +
1010 +static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
1011 +{
1012 + if (MatchFinder_NeedMove(p))
1013 + MatchFinder_MoveBlock(p);
1014 + MatchFinder_ReadBlock(p);
1015 +}
1016 +
1017 +static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
1018 +{
1019 + p->cutValue = 32;
1020 + p->btMode = 1;
1021 + p->numHashBytes = 4;
1022 + /* p->skipModeBits = 0; */
1023 + p->directInput = 0;
1024 + p->bigHash = 0;
1025 +}
1026 +
1027 +#define kCrcPoly 0xEDB88320
1028 +
1029 +void MatchFinder_Construct(CMatchFinder *p)
1030 +{
1031 + UInt32 i;
1032 + p->bufferBase = 0;
1033 + p->directInput = 0;
1034 + p->hash = 0;
1035 + MatchFinder_SetDefaultSettings(p);
1036 +
1037 + for (i = 0; i < 256; i++)
1038 + {
1039 + UInt32 r = i;
1040 + int j;
1041 + for (j = 0; j < 8; j++)
1042 + r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
1043 + p->crc[i] = r;
1044 + }
1045 +}
1046 +
1047 +static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
1048 +{
1049 + alloc->Free(alloc, p->hash);
1050 + p->hash = 0;
1051 +}
1052 +
1053 +void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
1054 +{
1055 + MatchFinder_FreeThisClassMemory(p, alloc);
1056 + LzInWindow_Free(p, alloc);
1057 +}
1058 +
1059 +static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
1060 +{
1061 + size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
1062 + if (sizeInBytes / sizeof(CLzRef) != num)
1063 + return 0;
1064 + return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
1065 +}
1066 +
1067 +int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
1068 + UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
1069 + ISzAlloc *alloc)
1070 +{
1071 + UInt32 sizeReserv;
1072 + if (historySize > kMaxHistorySize)
1073 + {
1074 + MatchFinder_Free(p, alloc);
1075 + return 0;
1076 + }
1077 + sizeReserv = historySize >> 1;
1078 + if (historySize > ((UInt32)2 << 30))
1079 + sizeReserv = historySize >> 2;
1080 + sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
1081 +
1082 + p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
1083 + p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
1084 + /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
1085 + if (LzInWindow_Create(p, sizeReserv, alloc))
1086 + {
1087 + UInt32 newCyclicBufferSize = (historySize /* >> p->skipModeBits */) + 1;
1088 + UInt32 hs;
1089 + p->matchMaxLen = matchMaxLen;
1090 + {
1091 + p->fixedHashSize = 0;
1092 + if (p->numHashBytes == 2)
1093 + hs = (1 << 16) - 1;
1094 + else
1095 + {
1096 + hs = historySize - 1;
1097 + hs |= (hs >> 1);
1098 + hs |= (hs >> 2);
1099 + hs |= (hs >> 4);
1100 + hs |= (hs >> 8);
1101 + hs >>= 1;
1102 + /* hs >>= p->skipModeBits; */
1103 + hs |= 0xFFFF; /* don't change it! It's required for Deflate */
1104 + if (hs > (1 << 24))
1105 + {
1106 + if (p->numHashBytes == 3)
1107 + hs = (1 << 24) - 1;
1108 + else
1109 + hs >>= 1;
1110 + }
1111 + }
1112 + p->hashMask = hs;
1113 + hs++;
1114 + if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
1115 + if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
1116 + if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
1117 + hs += p->fixedHashSize;
1118 + }
1119 +
1120 + {
1121 + UInt32 prevSize = p->hashSizeSum + p->numSons;
1122 + UInt32 newSize;
1123 + p->historySize = historySize;
1124 + p->hashSizeSum = hs;
1125 + p->cyclicBufferSize = newCyclicBufferSize;
1126 + p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
1127 + newSize = p->hashSizeSum + p->numSons;
1128 + if (p->hash != 0 && prevSize == newSize)
1129 + return 1;
1130 + MatchFinder_FreeThisClassMemory(p, alloc);
1131 + p->hash = AllocRefs(newSize, alloc);
1132 + if (p->hash != 0)
1133 + {
1134 + p->son = p->hash + p->hashSizeSum;
1135 + return 1;
1136 + }
1137 + }
1138 + }
1139 + MatchFinder_Free(p, alloc);
1140 + return 0;
1141 +}
1142 +
1143 +static void MatchFinder_SetLimits(CMatchFinder *p)
1144 +{
1145 + UInt32 limit = kMaxValForNormalize - p->pos;
1146 + UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
1147 + if (limit2 < limit)
1148 + limit = limit2;
1149 + limit2 = p->streamPos - p->pos;
1150 + if (limit2 <= p->keepSizeAfter)
1151 + {
1152 + if (limit2 > 0)
1153 + limit2 = 1;
1154 + }
1155 + else
1156 + limit2 -= p->keepSizeAfter;
1157 + if (limit2 < limit)
1158 + limit = limit2;
1159 + {
1160 + UInt32 lenLimit = p->streamPos - p->pos;
1161 + if (lenLimit > p->matchMaxLen)
1162 + lenLimit = p->matchMaxLen;
1163 + p->lenLimit = lenLimit;
1164 + }
1165 + p->posLimit = p->pos + limit;
1166 +}
1167 +
1168 +void MatchFinder_Init(CMatchFinder *p)
1169 +{
1170 + UInt32 i;
1171 + for(i = 0; i < p->hashSizeSum; i++)
1172 + p->hash[i] = kEmptyHashValue;
1173 + p->cyclicBufferPos = 0;
1174 + p->buffer = p->bufferBase;
1175 + p->pos = p->streamPos = p->cyclicBufferSize;
1176 + p->result = SZ_OK;
1177 + p->streamEndWasReached = 0;
1178 + MatchFinder_ReadBlock(p);
1179 + MatchFinder_SetLimits(p);
1180 +}
1181 +
1182 +static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
1183 +{
1184 + return (p->pos - p->historySize - 1) & kNormalizeMask;
1185 +}
1186 +
1187 +void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
1188 +{
1189 + UInt32 i;
1190 + for (i = 0; i < numItems; i++)
1191 + {
1192 + UInt32 value = items[i];
1193 + if (value <= subValue)
1194 + value = kEmptyHashValue;
1195 + else
1196 + value -= subValue;
1197 + items[i] = value;
1198 + }
1199 +}
1200 +
1201 +static void MatchFinder_Normalize(CMatchFinder *p)
1202 +{
1203 + UInt32 subValue = MatchFinder_GetSubValue(p);
1204 + MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
1205 + MatchFinder_ReduceOffsets(p, subValue);
1206 +}
1207 +
1208 +static void MatchFinder_CheckLimits(CMatchFinder *p)
1209 +{
1210 + if (p->pos == kMaxValForNormalize)
1211 + MatchFinder_Normalize(p);
1212 + if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
1213 + MatchFinder_CheckAndMoveAndRead(p);
1214 + if (p->cyclicBufferPos == p->cyclicBufferSize)
1215 + p->cyclicBufferPos = 0;
1216 + MatchFinder_SetLimits(p);
1217 +}
1218 +
1219 +static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1220 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1221 + UInt32 *distances, UInt32 maxLen)
1222 +{
1223 + son[_cyclicBufferPos] = curMatch;
1224 + for (;;)
1225 + {
1226 + UInt32 delta = pos - curMatch;
1227 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1228 + return distances;
1229 + {
1230 + const Byte *pb = cur - delta;
1231 + curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
1232 + if (pb[maxLen] == cur[maxLen] && *pb == *cur)
1233 + {
1234 + UInt32 len = 0;
1235 + while(++len != lenLimit)
1236 + if (pb[len] != cur[len])
1237 + break;
1238 + if (maxLen < len)
1239 + {
1240 + *distances++ = maxLen = len;
1241 + *distances++ = delta - 1;
1242 + if (len == lenLimit)
1243 + return distances;
1244 + }
1245 + }
1246 + }
1247 + }
1248 +}
1249 +
1250 +UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1251 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
1252 + UInt32 *distances, UInt32 maxLen)
1253 +{
1254 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1255 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1256 + UInt32 len0 = 0, len1 = 0;
1257 + for (;;)
1258 + {
1259 + UInt32 delta = pos - curMatch;
1260 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1261 + {
1262 + *ptr0 = *ptr1 = kEmptyHashValue;
1263 + return distances;
1264 + }
1265 + {
1266 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1267 + const Byte *pb = cur - delta;
1268 + UInt32 len = (len0 < len1 ? len0 : len1);
1269 + if (pb[len] == cur[len])
1270 + {
1271 + if (++len != lenLimit && pb[len] == cur[len])
1272 + while(++len != lenLimit)
1273 + if (pb[len] != cur[len])
1274 + break;
1275 + if (maxLen < len)
1276 + {
1277 + *distances++ = maxLen = len;
1278 + *distances++ = delta - 1;
1279 + if (len == lenLimit)
1280 + {
1281 + *ptr1 = pair[0];
1282 + *ptr0 = pair[1];
1283 + return distances;
1284 + }
1285 + }
1286 + }
1287 + if (pb[len] < cur[len])
1288 + {
1289 + *ptr1 = curMatch;
1290 + ptr1 = pair + 1;
1291 + curMatch = *ptr1;
1292 + len1 = len;
1293 + }
1294 + else
1295 + {
1296 + *ptr0 = curMatch;
1297 + ptr0 = pair;
1298 + curMatch = *ptr0;
1299 + len0 = len;
1300 + }
1301 + }
1302 + }
1303 +}
1304 +
1305 +static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
1306 + UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
1307 +{
1308 + CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
1309 + CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
1310 + UInt32 len0 = 0, len1 = 0;
1311 + for (;;)
1312 + {
1313 + UInt32 delta = pos - curMatch;
1314 + if (cutValue-- == 0 || delta >= _cyclicBufferSize)
1315 + {
1316 + *ptr0 = *ptr1 = kEmptyHashValue;
1317 + return;
1318 + }
1319 + {
1320 + CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
1321 + const Byte *pb = cur - delta;
1322 + UInt32 len = (len0 < len1 ? len0 : len1);
1323 + if (pb[len] == cur[len])
1324 + {
1325 + while(++len != lenLimit)
1326 + if (pb[len] != cur[len])
1327 + break;
1328 + {
1329 + if (len == lenLimit)
1330 + {
1331 + *ptr1 = pair[0];
1332 + *ptr0 = pair[1];
1333 + return;
1334 + }
1335 + }
1336 + }
1337 + if (pb[len] < cur[len])
1338 + {
1339 + *ptr1 = curMatch;
1340 + ptr1 = pair + 1;
1341 + curMatch = *ptr1;
1342 + len1 = len;
1343 + }
1344 + else
1345 + {
1346 + *ptr0 = curMatch;
1347 + ptr0 = pair;
1348 + curMatch = *ptr0;
1349 + len0 = len;
1350 + }
1351 + }
1352 + }
1353 +}
1354 +
1355 +#define MOVE_POS \
1356 + ++p->cyclicBufferPos; \
1357 + p->buffer++; \
1358 + if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
1359 +
1360 +#define MOVE_POS_RET MOVE_POS return offset;
1361 +
1362 +static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
1363 +
1364 +#define GET_MATCHES_HEADER2(minLen, ret_op) \
1365 + UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
1366 + lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
1367 + cur = p->buffer;
1368 +
1369 +#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
1370 +#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
1371 +
1372 +#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
1373 +
1374 +#define GET_MATCHES_FOOTER(offset, maxLen) \
1375 + offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
1376 + distances + offset, maxLen) - distances); MOVE_POS_RET;
1377 +
1378 +#define SKIP_FOOTER \
1379 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
1380 +
1381 +static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1382 +{
1383 + UInt32 offset;
1384 + GET_MATCHES_HEADER(2)
1385 + HASH2_CALC;
1386 + curMatch = p->hash[hashValue];
1387 + p->hash[hashValue] = p->pos;
1388 + offset = 0;
1389 + GET_MATCHES_FOOTER(offset, 1)
1390 +}
1391 +
1392 +UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1393 +{
1394 + UInt32 offset;
1395 + GET_MATCHES_HEADER(3)
1396 + HASH_ZIP_CALC;
1397 + curMatch = p->hash[hashValue];
1398 + p->hash[hashValue] = p->pos;
1399 + offset = 0;
1400 + GET_MATCHES_FOOTER(offset, 2)
1401 +}
1402 +
1403 +static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1404 +{
1405 + UInt32 hash2Value, delta2, maxLen, offset;
1406 + GET_MATCHES_HEADER(3)
1407 +
1408 + HASH3_CALC;
1409 +
1410 + delta2 = p->pos - p->hash[hash2Value];
1411 + curMatch = p->hash[kFix3HashSize + hashValue];
1412 +
1413 + p->hash[hash2Value] =
1414 + p->hash[kFix3HashSize + hashValue] = p->pos;
1415 +
1416 +
1417 + maxLen = 2;
1418 + offset = 0;
1419 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1420 + {
1421 + for (; maxLen != lenLimit; maxLen++)
1422 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1423 + break;
1424 + distances[0] = maxLen;
1425 + distances[1] = delta2 - 1;
1426 + offset = 2;
1427 + if (maxLen == lenLimit)
1428 + {
1429 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1430 + MOVE_POS_RET;
1431 + }
1432 + }
1433 + GET_MATCHES_FOOTER(offset, maxLen)
1434 +}
1435 +
1436 +static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1437 +{
1438 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1439 + GET_MATCHES_HEADER(4)
1440 +
1441 + HASH4_CALC;
1442 +
1443 + delta2 = p->pos - p->hash[ hash2Value];
1444 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1445 + curMatch = p->hash[kFix4HashSize + hashValue];
1446 +
1447 + p->hash[ hash2Value] =
1448 + p->hash[kFix3HashSize + hash3Value] =
1449 + p->hash[kFix4HashSize + hashValue] = p->pos;
1450 +
1451 + maxLen = 1;
1452 + offset = 0;
1453 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1454 + {
1455 + distances[0] = maxLen = 2;
1456 + distances[1] = delta2 - 1;
1457 + offset = 2;
1458 + }
1459 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1460 + {
1461 + maxLen = 3;
1462 + distances[offset + 1] = delta3 - 1;
1463 + offset += 2;
1464 + delta2 = delta3;
1465 + }
1466 + if (offset != 0)
1467 + {
1468 + for (; maxLen != lenLimit; maxLen++)
1469 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1470 + break;
1471 + distances[offset - 2] = maxLen;
1472 + if (maxLen == lenLimit)
1473 + {
1474 + SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
1475 + MOVE_POS_RET;
1476 + }
1477 + }
1478 + if (maxLen < 3)
1479 + maxLen = 3;
1480 + GET_MATCHES_FOOTER(offset, maxLen)
1481 +}
1482 +
1483 +static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1484 +{
1485 + UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
1486 + GET_MATCHES_HEADER(4)
1487 +
1488 + HASH4_CALC;
1489 +
1490 + delta2 = p->pos - p->hash[ hash2Value];
1491 + delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
1492 + curMatch = p->hash[kFix4HashSize + hashValue];
1493 +
1494 + p->hash[ hash2Value] =
1495 + p->hash[kFix3HashSize + hash3Value] =
1496 + p->hash[kFix4HashSize + hashValue] = p->pos;
1497 +
1498 + maxLen = 1;
1499 + offset = 0;
1500 + if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
1501 + {
1502 + distances[0] = maxLen = 2;
1503 + distances[1] = delta2 - 1;
1504 + offset = 2;
1505 + }
1506 + if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
1507 + {
1508 + maxLen = 3;
1509 + distances[offset + 1] = delta3 - 1;
1510 + offset += 2;
1511 + delta2 = delta3;
1512 + }
1513 + if (offset != 0)
1514 + {
1515 + for (; maxLen != lenLimit; maxLen++)
1516 + if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
1517 + break;
1518 + distances[offset - 2] = maxLen;
1519 + if (maxLen == lenLimit)
1520 + {
1521 + p->son[p->cyclicBufferPos] = curMatch;
1522 + MOVE_POS_RET;
1523 + }
1524 + }
1525 + if (maxLen < 3)
1526 + maxLen = 3;
1527 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1528 + distances + offset, maxLen) - (distances));
1529 + MOVE_POS_RET
1530 +}
1531 +
1532 +UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
1533 +{
1534 + UInt32 offset;
1535 + GET_MATCHES_HEADER(3)
1536 + HASH_ZIP_CALC;
1537 + curMatch = p->hash[hashValue];
1538 + p->hash[hashValue] = p->pos;
1539 + offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
1540 + distances, 2) - (distances));
1541 + MOVE_POS_RET
1542 +}
1543 +
1544 +static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1545 +{
1546 + do
1547 + {
1548 + SKIP_HEADER(2)
1549 + HASH2_CALC;
1550 + curMatch = p->hash[hashValue];
1551 + p->hash[hashValue] = p->pos;
1552 + SKIP_FOOTER
1553 + }
1554 + while (--num != 0);
1555 +}
1556 +
1557 +void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1558 +{
1559 + do
1560 + {
1561 + SKIP_HEADER(3)
1562 + HASH_ZIP_CALC;
1563 + curMatch = p->hash[hashValue];
1564 + p->hash[hashValue] = p->pos;
1565 + SKIP_FOOTER
1566 + }
1567 + while (--num != 0);
1568 +}
1569 +
1570 +static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1571 +{
1572 + do
1573 + {
1574 + UInt32 hash2Value;
1575 + SKIP_HEADER(3)
1576 + HASH3_CALC;
1577 + curMatch = p->hash[kFix3HashSize + hashValue];
1578 + p->hash[hash2Value] =
1579 + p->hash[kFix3HashSize + hashValue] = p->pos;
1580 + SKIP_FOOTER
1581 + }
1582 + while (--num != 0);
1583 +}
1584 +
1585 +static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1586 +{
1587 + do
1588 + {
1589 + UInt32 hash2Value, hash3Value;
1590 + SKIP_HEADER(4)
1591 + HASH4_CALC;
1592 + curMatch = p->hash[kFix4HashSize + hashValue];
1593 + p->hash[ hash2Value] =
1594 + p->hash[kFix3HashSize + hash3Value] = p->pos;
1595 + p->hash[kFix4HashSize + hashValue] = p->pos;
1596 + SKIP_FOOTER
1597 + }
1598 + while (--num != 0);
1599 +}
1600 +
1601 +static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1602 +{
1603 + do
1604 + {
1605 + UInt32 hash2Value, hash3Value;
1606 + SKIP_HEADER(4)
1607 + HASH4_CALC;
1608 + curMatch = p->hash[kFix4HashSize + hashValue];
1609 + p->hash[ hash2Value] =
1610 + p->hash[kFix3HashSize + hash3Value] =
1611 + p->hash[kFix4HashSize + hashValue] = p->pos;
1612 + p->son[p->cyclicBufferPos] = curMatch;
1613 + MOVE_POS
1614 + }
1615 + while (--num != 0);
1616 +}
1617 +
1618 +void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
1619 +{
1620 + do
1621 + {
1622 + SKIP_HEADER(3)
1623 + HASH_ZIP_CALC;
1624 + curMatch = p->hash[hashValue];
1625 + p->hash[hashValue] = p->pos;
1626 + p->son[p->cyclicBufferPos] = curMatch;
1627 + MOVE_POS
1628 + }
1629 + while (--num != 0);
1630 +}
1631 +
1632 +void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
1633 +{
1634 + vTable->Init = (Mf_Init_Func)MatchFinder_Init;
1635 + vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
1636 + vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
1637 + vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
1638 + if (!p->btMode)
1639 + {
1640 + vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
1641 + vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
1642 + }
1643 + else if (p->numHashBytes == 2)
1644 + {
1645 + vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
1646 + vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
1647 + }
1648 + else if (p->numHashBytes == 3)
1649 + {
1650 + vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
1651 + vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
1652 + }
1653 + else
1654 + {
1655 + vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
1656 + vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
1657 + }
1658 +}
1659 --- /dev/null
1660 +++ b/lzma/LzmaDec.c
1661 @@ -0,0 +1,1014 @@
1662 +/* LzmaDec.c -- LZMA Decoder
1663 +2008-04-29
1664 +Copyright (c) 1999-2008 Igor Pavlov
1665 +Read LzmaDec.h for license options */
1666 +
1667 +#include "LzmaDec.h"
1668 +
1669 +#include <string.h>
1670 +
1671 +#define kNumTopBits 24
1672 +#define kTopValue ((UInt32)1 << kNumTopBits)
1673 +
1674 +#define kNumBitModelTotalBits 11
1675 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
1676 +#define kNumMoveBits 5
1677 +
1678 +#define RC_INIT_SIZE 5
1679 +
1680 +#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
1681 +
1682 +#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1683 +#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
1684 +#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
1685 +#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
1686 + { UPDATE_0(p); i = (i + i); A0; } else \
1687 + { UPDATE_1(p); i = (i + i) + 1; A1; }
1688 +#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
1689 +
1690 +#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
1691 +#define TREE_DECODE(probs, limit, i) \
1692 + { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
1693 +
1694 +/* #define _LZMA_SIZE_OPT */
1695 +
1696 +#ifdef _LZMA_SIZE_OPT
1697 +#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
1698 +#else
1699 +#define TREE_6_DECODE(probs, i) \
1700 + { i = 1; \
1701 + TREE_GET_BIT(probs, i); \
1702 + TREE_GET_BIT(probs, i); \
1703 + TREE_GET_BIT(probs, i); \
1704 + TREE_GET_BIT(probs, i); \
1705 + TREE_GET_BIT(probs, i); \
1706 + TREE_GET_BIT(probs, i); \
1707 + i -= 0x40; }
1708 +#endif
1709 +
1710 +#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
1711 +
1712 +#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
1713 +#define UPDATE_0_CHECK range = bound;
1714 +#define UPDATE_1_CHECK range -= bound; code -= bound;
1715 +#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
1716 + { UPDATE_0_CHECK; i = (i + i); A0; } else \
1717 + { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
1718 +#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
1719 +#define TREE_DECODE_CHECK(probs, limit, i) \
1720 + { i = 1; do { GET_BIT_CHECK(probs + i, i) } while(i < limit); i -= limit; }
1721 +
1722 +
1723 +#define kNumPosBitsMax 4
1724 +#define kNumPosStatesMax (1 << kNumPosBitsMax)
1725 +
1726 +#define kLenNumLowBits 3
1727 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
1728 +#define kLenNumMidBits 3
1729 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
1730 +#define kLenNumHighBits 8
1731 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
1732 +
1733 +#define LenChoice 0
1734 +#define LenChoice2 (LenChoice + 1)
1735 +#define LenLow (LenChoice2 + 1)
1736 +#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
1737 +#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
1738 +#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
1739 +
1740 +
1741 +#define kNumStates 12
1742 +#define kNumLitStates 7
1743 +
1744 +#define kStartPosModelIndex 4
1745 +#define kEndPosModelIndex 14
1746 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
1747 +
1748 +#define kNumPosSlotBits 6
1749 +#define kNumLenToPosStates 4
1750 +
1751 +#define kNumAlignBits 4
1752 +#define kAlignTableSize (1 << kNumAlignBits)
1753 +
1754 +#define kMatchMinLen 2
1755 +#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
1756 +
1757 +#define IsMatch 0
1758 +#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
1759 +#define IsRepG0 (IsRep + kNumStates)
1760 +#define IsRepG1 (IsRepG0 + kNumStates)
1761 +#define IsRepG2 (IsRepG1 + kNumStates)
1762 +#define IsRep0Long (IsRepG2 + kNumStates)
1763 +#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
1764 +#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
1765 +#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
1766 +#define LenCoder (Align + kAlignTableSize)
1767 +#define RepLenCoder (LenCoder + kNumLenProbs)
1768 +#define Literal (RepLenCoder + kNumLenProbs)
1769 +
1770 +#define LZMA_BASE_SIZE 1846
1771 +#define LZMA_LIT_SIZE 768
1772 +
1773 +#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
1774 +
1775 +#if Literal != LZMA_BASE_SIZE
1776 +StopCompilingDueBUG
1777 +#endif
1778 +
1779 +/*
1780 +#define LZMA_STREAM_WAS_FINISHED_ID (-1)
1781 +#define LZMA_SPEC_LEN_OFFSET (-3)
1782 +*/
1783 +
1784 +Byte kLiteralNextStates[kNumStates * 2] =
1785 +{
1786 + 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
1787 + 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
1788 +};
1789 +
1790 +#define LZMA_DIC_MIN (1 << 12)
1791 +
1792 +/* First LZMA-symbol is always decoded.
1793 +And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
1794 +Out:
1795 + Result:
1796 + 0 - OK
1797 + 1 - Error
1798 + p->remainLen:
1799 + < kMatchSpecLenStart : normal remain
1800 + = kMatchSpecLenStart : finished
1801 + = kMatchSpecLenStart + 1 : Flush marker
1802 + = kMatchSpecLenStart + 2 : State Init Marker
1803 +*/
1804 +
1805 +static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
1806 +{
1807 + CLzmaProb *probs = p->probs;
1808 +
1809 + unsigned state = p->state;
1810 + UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
1811 + unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
1812 + unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
1813 + unsigned lc = p->prop.lc;
1814 +
1815 + Byte *dic = p->dic;
1816 + SizeT dicBufSize = p->dicBufSize;
1817 + SizeT dicPos = p->dicPos;
1818 +
1819 + UInt32 processedPos = p->processedPos;
1820 + UInt32 checkDicSize = p->checkDicSize;
1821 + unsigned len = 0;
1822 +
1823 + const Byte *buf = p->buf;
1824 + UInt32 range = p->range;
1825 + UInt32 code = p->code;
1826 +
1827 + do
1828 + {
1829 + CLzmaProb *prob;
1830 + UInt32 bound;
1831 + unsigned ttt;
1832 + unsigned posState = processedPos & pbMask;
1833 +
1834 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
1835 + IF_BIT_0(prob)
1836 + {
1837 + unsigned symbol;
1838 + UPDATE_0(prob);
1839 + prob = probs + Literal;
1840 + if (checkDicSize != 0 || processedPos != 0)
1841 + prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
1842 + (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
1843 +
1844 + if (state < kNumLitStates)
1845 + {
1846 + symbol = 1;
1847 + do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
1848 + }
1849 + else
1850 + {
1851 + unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1852 + unsigned offs = 0x100;
1853 + symbol = 1;
1854 + do
1855 + {
1856 + unsigned bit;
1857 + CLzmaProb *probLit;
1858 + matchByte <<= 1;
1859 + bit = (matchByte & offs);
1860 + probLit = prob + offs + bit + symbol;
1861 + GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
1862 + }
1863 + while (symbol < 0x100);
1864 + }
1865 + dic[dicPos++] = (Byte)symbol;
1866 + processedPos++;
1867 +
1868 + state = kLiteralNextStates[state];
1869 + /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
1870 + continue;
1871 + }
1872 + else
1873 + {
1874 + UPDATE_1(prob);
1875 + prob = probs + IsRep + state;
1876 + IF_BIT_0(prob)
1877 + {
1878 + UPDATE_0(prob);
1879 + state += kNumStates;
1880 + prob = probs + LenCoder;
1881 + }
1882 + else
1883 + {
1884 + UPDATE_1(prob);
1885 + if (checkDicSize == 0 && processedPos == 0)
1886 + return SZ_ERROR_DATA;
1887 + prob = probs + IsRepG0 + state;
1888 + IF_BIT_0(prob)
1889 + {
1890 + UPDATE_0(prob);
1891 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
1892 + IF_BIT_0(prob)
1893 + {
1894 + UPDATE_0(prob);
1895 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
1896 + dicPos++;
1897 + processedPos++;
1898 + state = state < kNumLitStates ? 9 : 11;
1899 + continue;
1900 + }
1901 + UPDATE_1(prob);
1902 + }
1903 + else
1904 + {
1905 + UInt32 distance;
1906 + UPDATE_1(prob);
1907 + prob = probs + IsRepG1 + state;
1908 + IF_BIT_0(prob)
1909 + {
1910 + UPDATE_0(prob);
1911 + distance = rep1;
1912 + }
1913 + else
1914 + {
1915 + UPDATE_1(prob);
1916 + prob = probs + IsRepG2 + state;
1917 + IF_BIT_0(prob)
1918 + {
1919 + UPDATE_0(prob);
1920 + distance = rep2;
1921 + }
1922 + else
1923 + {
1924 + UPDATE_1(prob);
1925 + distance = rep3;
1926 + rep3 = rep2;
1927 + }
1928 + rep2 = rep1;
1929 + }
1930 + rep1 = rep0;
1931 + rep0 = distance;
1932 + }
1933 + state = state < kNumLitStates ? 8 : 11;
1934 + prob = probs + RepLenCoder;
1935 + }
1936 + {
1937 + unsigned limit, offset;
1938 + CLzmaProb *probLen = prob + LenChoice;
1939 + IF_BIT_0(probLen)
1940 + {
1941 + UPDATE_0(probLen);
1942 + probLen = prob + LenLow + (posState << kLenNumLowBits);
1943 + offset = 0;
1944 + limit = (1 << kLenNumLowBits);
1945 + }
1946 + else
1947 + {
1948 + UPDATE_1(probLen);
1949 + probLen = prob + LenChoice2;
1950 + IF_BIT_0(probLen)
1951 + {
1952 + UPDATE_0(probLen);
1953 + probLen = prob + LenMid + (posState << kLenNumMidBits);
1954 + offset = kLenNumLowSymbols;
1955 + limit = (1 << kLenNumMidBits);
1956 + }
1957 + else
1958 + {
1959 + UPDATE_1(probLen);
1960 + probLen = prob + LenHigh;
1961 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
1962 + limit = (1 << kLenNumHighBits);
1963 + }
1964 + }
1965 + TREE_DECODE(probLen, limit, len);
1966 + len += offset;
1967 + }
1968 +
1969 + if (state >= kNumStates)
1970 + {
1971 + UInt32 distance;
1972 + prob = probs + PosSlot +
1973 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
1974 + TREE_6_DECODE(prob, distance);
1975 + if (distance >= kStartPosModelIndex)
1976 + {
1977 + unsigned posSlot = (unsigned)distance;
1978 + int numDirectBits = (int)(((distance >> 1) - 1));
1979 + distance = (2 | (distance & 1));
1980 + if (posSlot < kEndPosModelIndex)
1981 + {
1982 + distance <<= numDirectBits;
1983 + prob = probs + SpecPos + distance - posSlot - 1;
1984 + {
1985 + UInt32 mask = 1;
1986 + unsigned i = 1;
1987 + do
1988 + {
1989 + GET_BIT2(prob + i, i, ; , distance |= mask);
1990 + mask <<= 1;
1991 + }
1992 + while(--numDirectBits != 0);
1993 + }
1994 + }
1995 + else
1996 + {
1997 + numDirectBits -= kNumAlignBits;
1998 + do
1999 + {
2000 + NORMALIZE
2001 + range >>= 1;
2002 +
2003 + {
2004 + UInt32 t;
2005 + code -= range;
2006 + t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
2007 + distance = (distance << 1) + (t + 1);
2008 + code += range & t;
2009 + }
2010 + /*
2011 + distance <<= 1;
2012 + if (code >= range)
2013 + {
2014 + code -= range;
2015 + distance |= 1;
2016 + }
2017 + */
2018 + }
2019 + while (--numDirectBits != 0);
2020 + prob = probs + Align;
2021 + distance <<= kNumAlignBits;
2022 + {
2023 + unsigned i = 1;
2024 + GET_BIT2(prob + i, i, ; , distance |= 1);
2025 + GET_BIT2(prob + i, i, ; , distance |= 2);
2026 + GET_BIT2(prob + i, i, ; , distance |= 4);
2027 + GET_BIT2(prob + i, i, ; , distance |= 8);
2028 + }
2029 + if (distance == (UInt32)0xFFFFFFFF)
2030 + {
2031 + len += kMatchSpecLenStart;
2032 + state -= kNumStates;
2033 + break;
2034 + }
2035 + }
2036 + }
2037 + rep3 = rep2;
2038 + rep2 = rep1;
2039 + rep1 = rep0;
2040 + rep0 = distance + 1;
2041 + if (checkDicSize == 0)
2042 + {
2043 + if (distance >= processedPos)
2044 + return SZ_ERROR_DATA;
2045 + }
2046 + else if (distance >= checkDicSize)
2047 + return SZ_ERROR_DATA;
2048 + state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
2049 + /* state = kLiteralNextStates[state]; */
2050 + }
2051 +
2052 + len += kMatchMinLen;
2053 +
2054 + {
2055 + SizeT rem = limit - dicPos;
2056 + unsigned curLen = ((rem < len) ? (unsigned)rem : len);
2057 + SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
2058 +
2059 + processedPos += curLen;
2060 +
2061 + len -= curLen;
2062 + if (pos + curLen <= dicBufSize)
2063 + {
2064 + Byte *dest = dic + dicPos;
2065 + ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
2066 + const Byte *lim = dest + curLen;
2067 + dicPos += curLen;
2068 + do
2069 + *(dest) = (Byte)*(dest + src);
2070 + while (++dest != lim);
2071 + }
2072 + else
2073 + {
2074 + do
2075 + {
2076 + dic[dicPos++] = dic[pos];
2077 + if (++pos == dicBufSize)
2078 + pos = 0;
2079 + }
2080 + while (--curLen != 0);
2081 + }
2082 + }
2083 + }
2084 + }
2085 + while (dicPos < limit && buf < bufLimit);
2086 + NORMALIZE;
2087 + p->buf = buf;
2088 + p->range = range;
2089 + p->code = code;
2090 + p->remainLen = len;
2091 + p->dicPos = dicPos;
2092 + p->processedPos = processedPos;
2093 + p->reps[0] = rep0;
2094 + p->reps[1] = rep1;
2095 + p->reps[2] = rep2;
2096 + p->reps[3] = rep3;
2097 + p->state = state;
2098 +
2099 + return SZ_OK;
2100 +}
2101 +
2102 +static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
2103 +{
2104 + if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
2105 + {
2106 + Byte *dic = p->dic;
2107 + SizeT dicPos = p->dicPos;
2108 + SizeT dicBufSize = p->dicBufSize;
2109 + unsigned len = p->remainLen;
2110 + UInt32 rep0 = p->reps[0];
2111 + if (limit - dicPos < len)
2112 + len = (unsigned)(limit - dicPos);
2113 +
2114 + if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
2115 + p->checkDicSize = p->prop.dicSize;
2116 +
2117 + p->processedPos += len;
2118 + p->remainLen -= len;
2119 + while (len-- != 0)
2120 + {
2121 + dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
2122 + dicPos++;
2123 + }
2124 + p->dicPos = dicPos;
2125 + }
2126 +}
2127 +
2128 +/* LzmaDec_DecodeReal2 decodes LZMA-symbols and sets p->needFlush and p->needInit, if required. */
2129 +
2130 +static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
2131 +{
2132 + do
2133 + {
2134 + SizeT limit2 = limit;
2135 + if (p->checkDicSize == 0)
2136 + {
2137 + UInt32 rem = p->prop.dicSize - p->processedPos;
2138 + if (limit - p->dicPos > rem)
2139 + limit2 = p->dicPos + rem;
2140 + }
2141 + RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
2142 + if (p->processedPos >= p->prop.dicSize)
2143 + p->checkDicSize = p->prop.dicSize;
2144 + LzmaDec_WriteRem(p, limit);
2145 + }
2146 + while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
2147 +
2148 + if (p->remainLen > kMatchSpecLenStart)
2149 + {
2150 + p->remainLen = kMatchSpecLenStart;
2151 + }
2152 + return 0;
2153 +}
2154 +
2155 +typedef enum
2156 +{
2157 + DUMMY_ERROR, /* unexpected end of input stream */
2158 + DUMMY_LIT,
2159 + DUMMY_MATCH,
2160 + DUMMY_REP
2161 +} ELzmaDummy;
2162 +
2163 +static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
2164 +{
2165 + UInt32 range = p->range;
2166 + UInt32 code = p->code;
2167 + const Byte *bufLimit = buf + inSize;
2168 + CLzmaProb *probs = p->probs;
2169 + unsigned state = p->state;
2170 + ELzmaDummy res;
2171 +
2172 + {
2173 + CLzmaProb *prob;
2174 + UInt32 bound;
2175 + unsigned ttt;
2176 + unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
2177 +
2178 + prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
2179 + IF_BIT_0_CHECK(prob)
2180 + {
2181 + UPDATE_0_CHECK
2182 +
2183 + /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
2184 +
2185 + prob = probs + Literal;
2186 + if (p->checkDicSize != 0 || p->processedPos != 0)
2187 + prob += (LZMA_LIT_SIZE *
2188 + ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
2189 + (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
2190 +
2191 + if (state < kNumLitStates)
2192 + {
2193 + unsigned symbol = 1;
2194 + do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
2195 + }
2196 + else
2197 + {
2198 + unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
2199 + ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
2200 + unsigned offs = 0x100;
2201 + unsigned symbol = 1;
2202 + do
2203 + {
2204 + unsigned bit;
2205 + CLzmaProb *probLit;
2206 + matchByte <<= 1;
2207 + bit = (matchByte & offs);
2208 + probLit = prob + offs + bit + symbol;
2209 + GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
2210 + }
2211 + while (symbol < 0x100);
2212 + }
2213 + res = DUMMY_LIT;
2214 + }
2215 + else
2216 + {
2217 + unsigned len;
2218 + UPDATE_1_CHECK;
2219 +
2220 + prob = probs + IsRep + state;
2221 + IF_BIT_0_CHECK(prob)
2222 + {
2223 + UPDATE_0_CHECK;
2224 + state = 0;
2225 + prob = probs + LenCoder;
2226 + res = DUMMY_MATCH;
2227 + }
2228 + else
2229 + {
2230 + UPDATE_1_CHECK;
2231 + res = DUMMY_REP;
2232 + prob = probs + IsRepG0 + state;
2233 + IF_BIT_0_CHECK(prob)
2234 + {
2235 + UPDATE_0_CHECK;
2236 + prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
2237 + IF_BIT_0_CHECK(prob)
2238 + {
2239 + UPDATE_0_CHECK;
2240 + NORMALIZE_CHECK;
2241 + return DUMMY_REP;
2242 + }
2243 + else
2244 + {
2245 + UPDATE_1_CHECK;
2246 + }
2247 + }
2248 + else
2249 + {
2250 + UPDATE_1_CHECK;
2251 + prob = probs + IsRepG1 + state;
2252 + IF_BIT_0_CHECK(prob)
2253 + {
2254 + UPDATE_0_CHECK;
2255 + }
2256 + else
2257 + {
2258 + UPDATE_1_CHECK;
2259 + prob = probs + IsRepG2 + state;
2260 + IF_BIT_0_CHECK(prob)
2261 + {
2262 + UPDATE_0_CHECK;
2263 + }
2264 + else
2265 + {
2266 + UPDATE_1_CHECK;
2267 + }
2268 + }
2269 + }
2270 + state = kNumStates;
2271 + prob = probs + RepLenCoder;
2272 + }
2273 + {
2274 + unsigned limit, offset;
2275 + CLzmaProb *probLen = prob + LenChoice;
2276 + IF_BIT_0_CHECK(probLen)
2277 + {
2278 + UPDATE_0_CHECK;
2279 + probLen = prob + LenLow + (posState << kLenNumLowBits);
2280 + offset = 0;
2281 + limit = 1 << kLenNumLowBits;
2282 + }
2283 + else
2284 + {
2285 + UPDATE_1_CHECK;
2286 + probLen = prob + LenChoice2;
2287 + IF_BIT_0_CHECK(probLen)
2288 + {
2289 + UPDATE_0_CHECK;
2290 + probLen = prob + LenMid + (posState << kLenNumMidBits);
2291 + offset = kLenNumLowSymbols;
2292 + limit = 1 << kLenNumMidBits;
2293 + }
2294 + else
2295 + {
2296 + UPDATE_1_CHECK;
2297 + probLen = prob + LenHigh;
2298 + offset = kLenNumLowSymbols + kLenNumMidSymbols;
2299 + limit = 1 << kLenNumHighBits;
2300 + }
2301 + }
2302 + TREE_DECODE_CHECK(probLen, limit, len);
2303 + len += offset;
2304 + }
2305 +
2306 + if (state < 4)
2307 + {
2308 + unsigned posSlot;
2309 + prob = probs + PosSlot +
2310 + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
2311 + kNumPosSlotBits);
2312 + TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
2313 + if (posSlot >= kStartPosModelIndex)
2314 + {
2315 + int numDirectBits = ((posSlot >> 1) - 1);
2316 +
2317 + /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
2318 +
2319 + if (posSlot < kEndPosModelIndex)
2320 + {
2321 + prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
2322 + }
2323 + else
2324 + {
2325 + numDirectBits -= kNumAlignBits;
2326 + do
2327 + {
2328 + NORMALIZE_CHECK
2329 + range >>= 1;
2330 + code -= range & (((code - range) >> 31) - 1);
2331 + /* if (code >= range) code -= range; */
2332 + }
2333 + while (--numDirectBits != 0);
2334 + prob = probs + Align;
2335 + numDirectBits = kNumAlignBits;
2336 + }
2337 + {
2338 + unsigned i = 1;
2339 + do
2340 + {
2341 + GET_BIT_CHECK(prob + i, i);
2342 + }
2343 + while(--numDirectBits != 0);
2344 + }
2345 + }
2346 + }
2347 + }
2348 + }
2349 + NORMALIZE_CHECK;
2350 + return res;
2351 +}
2352 +
2353 +
2354 +static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
2355 +{
2356 + p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
2357 + p->range = 0xFFFFFFFF;
2358 + p->needFlush = 0;
2359 +}
2360 +
2361 +void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
2362 +{
2363 + p->needFlush = 1;
2364 + p->remainLen = 0;
2365 + p->tempBufSize = 0;
2366 +
2367 + if (initDic)
2368 + {
2369 + p->processedPos = 0;
2370 + p->checkDicSize = 0;
2371 + p->needInitState = 1;
2372 + }
2373 + if (initState)
2374 + p->needInitState = 1;
2375 +}
2376 +
2377 +void LzmaDec_Init(CLzmaDec *p)
2378 +{
2379 + p->dicPos = 0;
2380 + LzmaDec_InitDicAndState(p, True, True);
2381 +}
2382 +
2383 +static void LzmaDec_InitStateReal(CLzmaDec *p)
2384 +{
2385 + UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
2386 + UInt32 i;
2387 + CLzmaProb *probs = p->probs;
2388 + for (i = 0; i < numProbs; i++)
2389 + probs[i] = kBitModelTotal >> 1;
2390 + p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
2391 + p->state = 0;
2392 + p->needInitState = 0;
2393 +}
2394 +
2395 +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
2396 + ELzmaFinishMode finishMode, ELzmaStatus *status)
2397 +{
2398 + SizeT inSize = *srcLen;
2399 + (*srcLen) = 0;
2400 + LzmaDec_WriteRem(p, dicLimit);
2401 +
2402 + *status = LZMA_STATUS_NOT_SPECIFIED;
2403 +
2404 + while (p->remainLen != kMatchSpecLenStart)
2405 + {
2406 + int checkEndMarkNow;
2407 +
2408 + if (p->needFlush != 0)
2409 + {
2410 + for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
2411 + p->tempBuf[p->tempBufSize++] = *src++;
2412 + if (p->tempBufSize < RC_INIT_SIZE)
2413 + {
2414 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2415 + return SZ_OK;
2416 + }
2417 + if (p->tempBuf[0] != 0)
2418 + return SZ_ERROR_DATA;
2419 +
2420 + LzmaDec_InitRc(p, p->tempBuf);
2421 + p->tempBufSize = 0;
2422 + }
2423 +
2424 + checkEndMarkNow = 0;
2425 + if (p->dicPos >= dicLimit)
2426 + {
2427 + if (p->remainLen == 0 && p->code == 0)
2428 + {
2429 + *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
2430 + return SZ_OK;
2431 + }
2432 + if (finishMode == LZMA_FINISH_ANY)
2433 + {
2434 + *status = LZMA_STATUS_NOT_FINISHED;
2435 + return SZ_OK;
2436 + }
2437 + if (p->remainLen != 0)
2438 + {
2439 + *status = LZMA_STATUS_NOT_FINISHED;
2440 + return SZ_ERROR_DATA;
2441 + }
2442 + checkEndMarkNow = 1;
2443 + }
2444 +
2445 + if (p->needInitState)
2446 + LzmaDec_InitStateReal(p);
2447 +
2448 + if (p->tempBufSize == 0)
2449 + {
2450 + SizeT processed;
2451 + const Byte *bufLimit;
2452 + if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2453 + {
2454 + int dummyRes = LzmaDec_TryDummy(p, src, inSize);
2455 + if (dummyRes == DUMMY_ERROR)
2456 + {
2457 + memcpy(p->tempBuf, src, inSize);
2458 + p->tempBufSize = (unsigned)inSize;
2459 + (*srcLen) += inSize;
2460 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2461 + return SZ_OK;
2462 + }
2463 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2464 + {
2465 + *status = LZMA_STATUS_NOT_FINISHED;
2466 + return SZ_ERROR_DATA;
2467 + }
2468 + bufLimit = src;
2469 + }
2470 + else
2471 + bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
2472 + p->buf = src;
2473 + if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
2474 + return SZ_ERROR_DATA;
2475 + processed = p->buf - src;
2476 + (*srcLen) += processed;
2477 + src += processed;
2478 + inSize -= processed;
2479 + }
2480 + else
2481 + {
2482 + unsigned rem = p->tempBufSize, lookAhead = 0;
2483 + while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
2484 + p->tempBuf[rem++] = src[lookAhead++];
2485 + p->tempBufSize = rem;
2486 + if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
2487 + {
2488 + int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
2489 + if (dummyRes == DUMMY_ERROR)
2490 + {
2491 + (*srcLen) += lookAhead;
2492 + *status = LZMA_STATUS_NEEDS_MORE_INPUT;
2493 + return SZ_OK;
2494 + }
2495 + if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
2496 + {
2497 + *status = LZMA_STATUS_NOT_FINISHED;
2498 + return SZ_ERROR_DATA;
2499 + }
2500 + }
2501 + p->buf = p->tempBuf;
2502 + if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
2503 + return SZ_ERROR_DATA;
2504 + lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
2505 + (*srcLen) += lookAhead;
2506 + src += lookAhead;
2507 + inSize -= lookAhead;
2508 + p->tempBufSize = 0;
2509 + }
2510 + }
2511 + if (p->code == 0)
2512 + *status = LZMA_STATUS_FINISHED_WITH_MARK;
2513 + return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
2514 +}
2515 +
2516 +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
2517 +{
2518 + SizeT outSize = *destLen;
2519 + SizeT inSize = *srcLen;
2520 + *srcLen = *destLen = 0;
2521 + for (;;)
2522 + {
2523 + SizeT inSizeCur = inSize, outSizeCur, dicPos;
2524 + ELzmaFinishMode curFinishMode;
2525 + SRes res;
2526 + if (p->dicPos == p->dicBufSize)
2527 + p->dicPos = 0;
2528 + dicPos = p->dicPos;
2529 + if (outSize > p->dicBufSize - dicPos)
2530 + {
2531 + outSizeCur = p->dicBufSize;
2532 + curFinishMode = LZMA_FINISH_ANY;
2533 + }
2534 + else
2535 + {
2536 + outSizeCur = dicPos + outSize;
2537 + curFinishMode = finishMode;
2538 + }
2539 +
2540 + res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
2541 + src += inSizeCur;
2542 + inSize -= inSizeCur;
2543 + *srcLen += inSizeCur;
2544 + outSizeCur = p->dicPos - dicPos;
2545 + memcpy(dest, p->dic + dicPos, outSizeCur);
2546 + dest += outSizeCur;
2547 + outSize -= outSizeCur;
2548 + *destLen += outSizeCur;
2549 + if (res != 0)
2550 + return res;
2551 + if (outSizeCur == 0 || outSize == 0)
2552 + return SZ_OK;
2553 + }
2554 +}
2555 +
2556 +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
2557 +{
2558 + alloc->Free(alloc, p->probs);
2559 + p->probs = 0;
2560 +}
2561 +
2562 +static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
2563 +{
2564 + alloc->Free(alloc, p->dic);
2565 + p->dic = 0;
2566 +}
2567 +
2568 +void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
2569 +{
2570 + LzmaDec_FreeProbs(p, alloc);
2571 + LzmaDec_FreeDict(p, alloc);
2572 +}
2573 +
2574 +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
2575 +{
2576 + UInt32 dicSize;
2577 + Byte d;
2578 +
2579 + if (size < LZMA_PROPS_SIZE)
2580 + return SZ_ERROR_UNSUPPORTED;
2581 + else
2582 + dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
2583 +
2584 + if (dicSize < LZMA_DIC_MIN)
2585 + dicSize = LZMA_DIC_MIN;
2586 + p->dicSize = dicSize;
2587 +
2588 + d = data[0];
2589 + if (d >= (9 * 5 * 5))
2590 + return SZ_ERROR_UNSUPPORTED;
2591 +
2592 + p->lc = d % 9;
2593 + d /= 9;
2594 + p->pb = d / 5;
2595 + p->lp = d % 5;
2596 +
2597 + return SZ_OK;
2598 +}
2599 +
2600 +static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
2601 +{
2602 + UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
2603 + if (p->probs == 0 || numProbs != p->numProbs)
2604 + {
2605 + LzmaDec_FreeProbs(p, alloc);
2606 + p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
2607 + p->numProbs = numProbs;
2608 + if (p->probs == 0)
2609 + return SZ_ERROR_MEM;
2610 + }
2611 + return SZ_OK;
2612 +}
2613 +
2614 +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2615 +{
2616 + CLzmaProps propNew;
2617 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2618 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2619 + p->prop = propNew;
2620 + return SZ_OK;
2621 +}
2622 +
2623 +SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
2624 +{
2625 + CLzmaProps propNew;
2626 + SizeT dicBufSize;
2627 + RINOK(LzmaProps_Decode(&propNew, props, propsSize));
2628 + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
2629 + dicBufSize = propNew.dicSize;
2630 + if (p->dic == 0 || dicBufSize != p->dicBufSize)
2631 + {
2632 + LzmaDec_FreeDict(p, alloc);
2633 + p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
2634 + if (p->dic == 0)
2635 + {
2636 + LzmaDec_FreeProbs(p, alloc);
2637 + return SZ_ERROR_MEM;
2638 + }
2639 + }
2640 + p->dicBufSize = dicBufSize;
2641 + p->prop = propNew;
2642 + return SZ_OK;
2643 +}
2644 +
2645 +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
2646 + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
2647 + ELzmaStatus *status, ISzAlloc *alloc)
2648 +{
2649 + CLzmaDec p;
2650 + SRes res;
2651 + SizeT inSize = *srcLen;
2652 + SizeT outSize = *destLen;
2653 + *srcLen = *destLen = 0;
2654 + if (inSize < RC_INIT_SIZE)
2655 + return SZ_ERROR_INPUT_EOF;
2656 +
2657 + LzmaDec_Construct(&p);
2658 + res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
2659 + if (res != 0)
2660 + return res;
2661 + p.dic = dest;
2662 + p.dicBufSize = outSize;
2663 +
2664 + LzmaDec_Init(&p);
2665 +
2666 + *srcLen = inSize;
2667 + res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
2668 +
2669 + if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
2670 + res = SZ_ERROR_INPUT_EOF;
2671 +
2672 + (*destLen) = p.dicPos;
2673 + LzmaDec_FreeProbs(&p, alloc);
2674 + return res;
2675 +}
2676 --- /dev/null
2677 +++ b/lzma/LzmaEnc.c
2678 @@ -0,0 +1,2335 @@
2679 +/* LzmaEnc.c -- LZMA Encoder
2680 +2008-04-28
2681 +Copyright (c) 1999-2008 Igor Pavlov
2682 +Read LzmaEnc.h for license options */
2683 +
2684 +#if defined(SHOW_STAT) || defined(SHOW_STAT2)
2685 +#include <stdio.h>
2686 +#endif
2687 +
2688 +#include <string.h>
2689 +
2690 +#include "LzmaEnc.h"
2691 +
2692 +#include "LzFind.h"
2693 +#ifdef COMPRESS_MF_MT
2694 +#include "LzFindMt.h"
2695 +#endif
2696 +
2697 +/* #define SHOW_STAT */
2698 +/* #define SHOW_STAT2 */
2699 +
2700 +#ifdef SHOW_STAT
2701 +static int ttt = 0;
2702 +#endif
2703 +
2704 +#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
2705 +
2706 +#define kBlockSize (9 << 10)
2707 +#define kUnpackBlockSize (1 << 18)
2708 +#define kMatchArraySize (1 << 21)
2709 +#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
2710 +
2711 +#define kNumMaxDirectBits (31)
2712 +
2713 +#define kNumTopBits 24
2714 +#define kTopValue ((UInt32)1 << kNumTopBits)
2715 +
2716 +#define kNumBitModelTotalBits 11
2717 +#define kBitModelTotal (1 << kNumBitModelTotalBits)
2718 +#define kNumMoveBits 5
2719 +#define kProbInitValue (kBitModelTotal >> 1)
2720 +
2721 +#define kNumMoveReducingBits 4
2722 +#define kNumBitPriceShiftBits 4
2723 +#define kBitPrice (1 << kNumBitPriceShiftBits)
2724 +
2725 +void LzmaEncProps_Init(CLzmaEncProps *p)
2726 +{
2727 + p->level = 5;
2728 + p->dictSize = p->mc = 0;
2729 + p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
2730 + p->writeEndMark = 0;
2731 +}
2732 +
2733 +void LzmaEncProps_Normalize(CLzmaEncProps *p)
2734 +{
2735 + int level = p->level;
2736 + if (level < 0) level = 5;
2737 + p->level = level;
2738 + if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
2739 + if (p->lc < 0) p->lc = 3;
2740 + if (p->lp < 0) p->lp = 0;
2741 + if (p->pb < 0) p->pb = 2;
2742 + if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
2743 + if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
2744 + if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
2745 + if (p->numHashBytes < 0) p->numHashBytes = 4;
2746 + if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
2747 + if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
2748 +}
2749 +
2750 +UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
2751 +{
2752 + CLzmaEncProps props = *props2;
2753 + LzmaEncProps_Normalize(&props);
2754 + return props.dictSize;
2755 +}
2756 +
2757 +/* #define LZMA_LOG_BSR */
2758 +/* Define it for Intel's CPU */
2759 +
2760 +
2761 +#ifdef LZMA_LOG_BSR
2762 +
2763 +#define kDicLogSizeMaxCompress 30
2764 +
2765 +#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
2766 +
2767 +UInt32 GetPosSlot1(UInt32 pos)
2768 +{
2769 + UInt32 res;
2770 + BSR2_RET(pos, res);
2771 + return res;
2772 +}
2773 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2774 +#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
2775 +
2776 +#else
2777 +
2778 +#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
2779 +#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
2780 +
2781 +void LzmaEnc_FastPosInit(Byte *g_FastPos)
2782 +{
2783 + int c = 2, slotFast;
2784 + g_FastPos[0] = 0;
2785 + g_FastPos[1] = 1;
2786 +
2787 + for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
2788 + {
2789 + UInt32 k = (1 << ((slotFast >> 1) - 1));
2790 + UInt32 j;
2791 + for (j = 0; j < k; j++, c++)
2792 + g_FastPos[c] = (Byte)slotFast;
2793 + }
2794 +}
2795 +
2796 +#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
2797 + (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
2798 + res = p->g_FastPos[pos >> i] + (i * 2); }
2799 +/*
2800 +#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
2801 + p->g_FastPos[pos >> 6] + 12 : \
2802 + p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
2803 +*/
2804 +
2805 +#define GetPosSlot1(pos) p->g_FastPos[pos]
2806 +#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
2807 +#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
2808 +
2809 +#endif
2810 +
2811 +
2812 +#define LZMA_NUM_REPS 4
2813 +
2814 +typedef unsigned CState;
2815 +
2816 +typedef struct _COptimal
2817 +{
2818 + UInt32 price;
2819 +
2820 + CState state;
2821 + int prev1IsChar;
2822 + int prev2;
2823 +
2824 + UInt32 posPrev2;
2825 + UInt32 backPrev2;
2826 +
2827 + UInt32 posPrev;
2828 + UInt32 backPrev;
2829 + UInt32 backs[LZMA_NUM_REPS];
2830 +} COptimal;
2831 +
2832 +#define kNumOpts (1 << 12)
2833 +
2834 +#define kNumLenToPosStates 4
2835 +#define kNumPosSlotBits 6
2836 +#define kDicLogSizeMin 0
2837 +#define kDicLogSizeMax 32
2838 +#define kDistTableSizeMax (kDicLogSizeMax * 2)
2839 +
2840 +
2841 +#define kNumAlignBits 4
2842 +#define kAlignTableSize (1 << kNumAlignBits)
2843 +#define kAlignMask (kAlignTableSize - 1)
2844 +
2845 +#define kStartPosModelIndex 4
2846 +#define kEndPosModelIndex 14
2847 +#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
2848 +
2849 +#define kNumFullDistances (1 << (kEndPosModelIndex / 2))
2850 +
2851 +#ifdef _LZMA_PROB32
2852 +#define CLzmaProb UInt32
2853 +#else
2854 +#define CLzmaProb UInt16
2855 +#endif
2856 +
2857 +#define LZMA_PB_MAX 4
2858 +#define LZMA_LC_MAX 8
2859 +#define LZMA_LP_MAX 4
2860 +
2861 +#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
2862 +
2863 +
2864 +#define kLenNumLowBits 3
2865 +#define kLenNumLowSymbols (1 << kLenNumLowBits)
2866 +#define kLenNumMidBits 3
2867 +#define kLenNumMidSymbols (1 << kLenNumMidBits)
2868 +#define kLenNumHighBits 8
2869 +#define kLenNumHighSymbols (1 << kLenNumHighBits)
2870 +
2871 +#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
2872 +
2873 +#define LZMA_MATCH_LEN_MIN 2
2874 +#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
2875 +
2876 +#define kNumStates 12
2877 +
2878 +typedef struct
2879 +{
2880 + CLzmaProb choice;
2881 + CLzmaProb choice2;
2882 + CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
2883 + CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
2884 + CLzmaProb high[kLenNumHighSymbols];
2885 +} CLenEnc;
2886 +
2887 +typedef struct
2888 +{
2889 + CLenEnc p;
2890 + UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
2891 + UInt32 tableSize;
2892 + UInt32 counters[LZMA_NUM_PB_STATES_MAX];
2893 +} CLenPriceEnc;
2894 +
2895 +typedef struct _CRangeEnc
2896 +{
2897 + UInt32 range;
2898 + Byte cache;
2899 + UInt64 low;
2900 + UInt64 cacheSize;
2901 + Byte *buf;
2902 + Byte *bufLim;
2903 + Byte *bufBase;
2904 + ISeqOutStream *outStream;
2905 + UInt64 processed;
2906 + SRes res;
2907 +} CRangeEnc;
2908 +
2909 +typedef struct _CSeqInStreamBuf
2910 +{
2911 + ISeqInStream funcTable;
2912 + const Byte *data;
2913 + SizeT rem;
2914 +} CSeqInStreamBuf;
2915 +
2916 +static SRes MyRead(void *pp, void *data, size_t *size)
2917 +{
2918 + size_t curSize = *size;
2919 + CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
2920 + if (p->rem < curSize)
2921 + curSize = p->rem;
2922 + memcpy(data, p->data, curSize);
2923 + p->rem -= curSize;
2924 + p->data += curSize;
2925 + *size = curSize;
2926 + return SZ_OK;
2927 +}
2928 +
2929 +typedef struct
2930 +{
2931 + CLzmaProb *litProbs;
2932 +
2933 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
2934 + CLzmaProb isRep[kNumStates];
2935 + CLzmaProb isRepG0[kNumStates];
2936 + CLzmaProb isRepG1[kNumStates];
2937 + CLzmaProb isRepG2[kNumStates];
2938 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
2939 +
2940 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
2941 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
2942 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
2943 +
2944 + CLenPriceEnc lenEnc;
2945 + CLenPriceEnc repLenEnc;
2946 +
2947 + UInt32 reps[LZMA_NUM_REPS];
2948 + UInt32 state;
2949 +} CSaveState;
2950 +
2951 +typedef struct _CLzmaEnc
2952 +{
2953 + IMatchFinder matchFinder;
2954 + void *matchFinderObj;
2955 +
2956 + #ifdef COMPRESS_MF_MT
2957 + Bool mtMode;
2958 + CMatchFinderMt matchFinderMt;
2959 + #endif
2960 +
2961 + CMatchFinder matchFinderBase;
2962 +
2963 + #ifdef COMPRESS_MF_MT
2964 + Byte pad[128];
2965 + #endif
2966 +
2967 + UInt32 optimumEndIndex;
2968 + UInt32 optimumCurrentIndex;
2969 +
2970 + Bool longestMatchWasFound;
2971 + UInt32 longestMatchLength;
2972 + UInt32 numDistancePairs;
2973 +
2974 + COptimal opt[kNumOpts];
2975 +
2976 + #ifndef LZMA_LOG_BSR
2977 + Byte g_FastPos[1 << kNumLogBits];
2978 + #endif
2979 +
2980 + UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
2981 + UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
2982 + UInt32 numFastBytes;
2983 + UInt32 additionalOffset;
2984 + UInt32 reps[LZMA_NUM_REPS];
2985 + UInt32 state;
2986 +
2987 + UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
2988 + UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
2989 + UInt32 alignPrices[kAlignTableSize];
2990 + UInt32 alignPriceCount;
2991 +
2992 + UInt32 distTableSize;
2993 +
2994 + unsigned lc, lp, pb;
2995 + unsigned lpMask, pbMask;
2996 +
2997 + CLzmaProb *litProbs;
2998 +
2999 + CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
3000 + CLzmaProb isRep[kNumStates];
3001 + CLzmaProb isRepG0[kNumStates];
3002 + CLzmaProb isRepG1[kNumStates];
3003 + CLzmaProb isRepG2[kNumStates];
3004 + CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
3005 +
3006 + CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
3007 + CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
3008 + CLzmaProb posAlignEncoder[1 << kNumAlignBits];
3009 +
3010 + CLenPriceEnc lenEnc;
3011 + CLenPriceEnc repLenEnc;
3012 +
3013 + unsigned lclp;
3014 +
3015 + Bool fastMode;
3016 +
3017 + CRangeEnc rc;
3018 +
3019 + Bool writeEndMark;
3020 + UInt64 nowPos64;
3021 + UInt32 matchPriceCount;
3022 + Bool finished;
3023 + Bool multiThread;
3024 +
3025 + SRes result;
3026 + UInt32 dictSize;
3027 + UInt32 matchFinderCycles;
3028 +
3029 + ISeqInStream *inStream;
3030 + CSeqInStreamBuf seqBufInStream;
3031 +
3032 + CSaveState saveState;
3033 +} CLzmaEnc;
3034 +
3035 +void LzmaEnc_SaveState(CLzmaEncHandle pp)
3036 +{
3037 + CLzmaEnc *p = (CLzmaEnc *)pp;
3038 + CSaveState *dest = &p->saveState;
3039 + int i;
3040 + dest->lenEnc = p->lenEnc;
3041 + dest->repLenEnc = p->repLenEnc;
3042 + dest->state = p->state;
3043 +
3044 + for (i = 0; i < kNumStates; i++)
3045 + {
3046 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3047 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3048 + }
3049 + for (i = 0; i < kNumLenToPosStates; i++)
3050 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3051 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3052 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3053 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3054 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3055 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3056 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3057 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3058 + memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
3059 +}
3060 +
3061 +void LzmaEnc_RestoreState(CLzmaEncHandle pp)
3062 +{
3063 + CLzmaEnc *dest = (CLzmaEnc *)pp;
3064 + const CSaveState *p = &dest->saveState;
3065 + int i;
3066 + dest->lenEnc = p->lenEnc;
3067 + dest->repLenEnc = p->repLenEnc;
3068 + dest->state = p->state;
3069 +
3070 + for (i = 0; i < kNumStates; i++)
3071 + {
3072 + memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
3073 + memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
3074 + }
3075 + for (i = 0; i < kNumLenToPosStates; i++)
3076 + memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
3077 + memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
3078 + memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
3079 + memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
3080 + memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
3081 + memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
3082 + memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
3083 + memcpy(dest->reps, p->reps, sizeof(p->reps));
3084 + memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
3085 +}
3086 +
3087 +SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
3088 +{
3089 + CLzmaEnc *p = (CLzmaEnc *)pp;
3090 + CLzmaEncProps props = *props2;
3091 + LzmaEncProps_Normalize(&props);
3092 +
3093 + if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
3094 + props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
3095 + return SZ_ERROR_PARAM;
3096 + p->dictSize = props.dictSize;
3097 + p->matchFinderCycles = props.mc;
3098 + {
3099 + unsigned fb = props.fb;
3100 + if (fb < 5)
3101 + fb = 5;
3102 + if (fb > LZMA_MATCH_LEN_MAX)
3103 + fb = LZMA_MATCH_LEN_MAX;
3104 + p->numFastBytes = fb;
3105 + }
3106 + p->lc = props.lc;
3107 + p->lp = props.lp;
3108 + p->pb = props.pb;
3109 + p->fastMode = (props.algo == 0);
3110 + p->matchFinderBase.btMode = props.btMode;
3111 + {
3112 + UInt32 numHashBytes = 4;
3113 + if (props.btMode)
3114 + {
3115 + if (props.numHashBytes < 2)
3116 + numHashBytes = 2;
3117 + else if (props.numHashBytes < 4)
3118 + numHashBytes = props.numHashBytes;
3119 + }
3120 + p->matchFinderBase.numHashBytes = numHashBytes;
3121 + }
3122 +
3123 + p->matchFinderBase.cutValue = props.mc;
3124 +
3125 + p->writeEndMark = props.writeEndMark;
3126 +
3127 + #ifdef COMPRESS_MF_MT
3128 + /*
3129 + if (newMultiThread != _multiThread)
3130 + {
3131 + ReleaseMatchFinder();
3132 + _multiThread = newMultiThread;
3133 + }
3134 + */
3135 + p->multiThread = (props.numThreads > 1);
3136 + #endif
3137 +
3138 + return SZ_OK;
3139 +}
3140 +
3141 +static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
3142 +static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
3143 +static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
3144 +static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
3145 +
3146 +/*
3147 + void UpdateChar() { Index = kLiteralNextStates[Index]; }
3148 + void UpdateMatch() { Index = kMatchNextStates[Index]; }
3149 + void UpdateRep() { Index = kRepNextStates[Index]; }
3150 + void UpdateShortRep() { Index = kShortRepNextStates[Index]; }
3151 +*/
3152 +
3153 +#define IsCharState(s) ((s) < 7)
3154 +
3155 +
3156 +#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
3157 +
3158 +#define kInfinityPrice (1 << 30)
3159 +
3160 +static void RangeEnc_Construct(CRangeEnc *p)
3161 +{
3162 + p->outStream = 0;
3163 + p->bufBase = 0;
3164 +}
3165 +
3166 +#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
3167 +
3168 +#define RC_BUF_SIZE (1 << 16)
3169 +static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
3170 +{
3171 + if (p->bufBase == 0)
3172 + {
3173 + p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
3174 + if (p->bufBase == 0)
3175 + return 0;
3176 + p->bufLim = p->bufBase + RC_BUF_SIZE;
3177 + }
3178 + return 1;
3179 +}
3180 +
3181 +static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
3182 +{
3183 + alloc->Free(alloc, p->bufBase);
3184 + p->bufBase = 0;
3185 +}
3186 +
3187 +static void RangeEnc_Init(CRangeEnc *p)
3188 +{
3189 + /* Stream.Init(); */
3190 + p->low = 0;
3191 + p->range = 0xFFFFFFFF;
3192 + p->cacheSize = 1;
3193 + p->cache = 0;
3194 +
3195 + p->buf = p->bufBase;
3196 +
3197 + p->processed = 0;
3198 + p->res = SZ_OK;
3199 +}
3200 +
3201 +static void RangeEnc_FlushStream(CRangeEnc *p)
3202 +{
3203 + size_t num;
3204 + if (p->res != SZ_OK)
3205 + return;
3206 + num = p->buf - p->bufBase;
3207 + if (num != p->outStream->Write(p->outStream, p->bufBase, num))
3208 + p->res = SZ_ERROR_WRITE;
3209 + p->processed += num;
3210 + p->buf = p->bufBase;
3211 +}
3212 +
3213 +static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
3214 +{
3215 + if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
3216 + {
3217 + Byte temp = p->cache;
3218 + do
3219 + {
3220 + Byte *buf = p->buf;
3221 + *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
3222 + p->buf = buf;
3223 + if (buf == p->bufLim)
3224 + RangeEnc_FlushStream(p);
3225 + temp = 0xFF;
3226 + }
3227 + while (--p->cacheSize != 0);
3228 + p->cache = (Byte)((UInt32)p->low >> 24);
3229 + }
3230 + p->cacheSize++;
3231 + p->low = (UInt32)p->low << 8;
3232 +}
3233 +
3234 +static void RangeEnc_FlushData(CRangeEnc *p)
3235 +{
3236 + int i;
3237 + for (i = 0; i < 5; i++)
3238 + RangeEnc_ShiftLow(p);
3239 +}
3240 +
3241 +static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
3242 +{
3243 + do
3244 + {
3245 + p->range >>= 1;
3246 + p->low += p->range & (0 - ((value >> --numBits) & 1));
3247 + if (p->range < kTopValue)
3248 + {
3249 + p->range <<= 8;
3250 + RangeEnc_ShiftLow(p);
3251 + }
3252 + }
3253 + while (numBits != 0);
3254 +}
3255 +
3256 +static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
3257 +{
3258 + UInt32 ttt = *prob;
3259 + UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
3260 + if (symbol == 0)
3261 + {
3262 + p->range = newBound;
3263 + ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
3264 + }
3265 + else
3266 + {
3267 + p->low += newBound;
3268 + p->range -= newBound;
3269 + ttt -= ttt >> kNumMoveBits;
3270 + }
3271 + *prob = (CLzmaProb)ttt;
3272 + if (p->range < kTopValue)
3273 + {
3274 + p->range <<= 8;
3275 + RangeEnc_ShiftLow(p);
3276 + }
3277 +}
3278 +
3279 +static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
3280 +{
3281 + symbol |= 0x100;
3282 + do
3283 + {
3284 + RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
3285 + symbol <<= 1;
3286 + }
3287 + while (symbol < 0x10000);
3288 +}
3289 +
3290 +static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
3291 +{
3292 + UInt32 offs = 0x100;
3293 + symbol |= 0x100;
3294 + do
3295 + {
3296 + matchByte <<= 1;
3297 + RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
3298 + symbol <<= 1;
3299 + offs &= ~(matchByte ^ symbol);
3300 + }
3301 + while (symbol < 0x10000);
3302 +}
3303 +
3304 +void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
3305 +{
3306 + UInt32 i;
3307 + for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
3308 + {
3309 + const int kCyclesBits = kNumBitPriceShiftBits;
3310 + UInt32 w = i;
3311 + UInt32 bitCount = 0;
3312 + int j;
3313 + for (j = 0; j < kCyclesBits; j++)
3314 + {
3315 + w = w * w;
3316 + bitCount <<= 1;
3317 + while (w >= ((UInt32)1 << 16))
3318 + {
3319 + w >>= 1;
3320 + bitCount++;
3321 + }
3322 + }
3323 + ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
3324 + }
3325 +}
3326 +
3327 +
3328 +#define GET_PRICE(prob, symbol) \
3329 + p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3330 +
3331 +#define GET_PRICEa(prob, symbol) \
3332 + ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
3333 +
3334 +#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
3335 +#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3336 +
3337 +#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
3338 +#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
3339 +
3340 +static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
3341 +{
3342 + UInt32 price = 0;
3343 + symbol |= 0x100;
3344 + do
3345 + {
3346 + price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
3347 + symbol <<= 1;
3348 + }
3349 + while (symbol < 0x10000);
3350 + return price;
3351 +};
3352 +
3353 +static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
3354 +{
3355 + UInt32 price = 0;
3356 + UInt32 offs = 0x100;
3357 + symbol |= 0x100;
3358 + do
3359 + {
3360 + matchByte <<= 1;
3361 + price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
3362 + symbol <<= 1;
3363 + offs &= ~(matchByte ^ symbol);
3364 + }
3365 + while (symbol < 0x10000);
3366 + return price;
3367 +};
3368 +
3369 +
3370 +static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3371 +{
3372 + UInt32 m = 1;
3373 + int i;
3374 + for (i = numBitLevels; i != 0 ;)
3375 + {
3376 + UInt32 bit;
3377 + i--;
3378 + bit = (symbol >> i) & 1;
3379 + RangeEnc_EncodeBit(rc, probs + m, bit);
3380 + m = (m << 1) | bit;
3381 + }
3382 +};
3383 +
3384 +static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
3385 +{
3386 + UInt32 m = 1;
3387 + int i;
3388 + for (i = 0; i < numBitLevels; i++)
3389 + {
3390 + UInt32 bit = symbol & 1;
3391 + RangeEnc_EncodeBit(rc, probs + m, bit);
3392 + m = (m << 1) | bit;
3393 + symbol >>= 1;
3394 + }
3395 +}
3396 +
3397 +static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3398 +{
3399 + UInt32 price = 0;
3400 + symbol |= (1 << numBitLevels);
3401 + while (symbol != 1)
3402 + {
3403 + price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
3404 + symbol >>= 1;
3405 + }
3406 + return price;
3407 +}
3408 +
3409 +static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
3410 +{
3411 + UInt32 price = 0;
3412 + UInt32 m = 1;
3413 + int i;
3414 + for (i = numBitLevels; i != 0; i--)
3415 + {
3416 + UInt32 bit = symbol & 1;
3417 + symbol >>= 1;
3418 + price += GET_PRICEa(probs[m], bit);
3419 + m = (m << 1) | bit;
3420 + }
3421 + return price;
3422 +}
3423 +
3424 +
3425 +static void LenEnc_Init(CLenEnc *p)
3426 +{
3427 + unsigned i;
3428 + p->choice = p->choice2 = kProbInitValue;
3429 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
3430 + p->low[i] = kProbInitValue;
3431 + for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
3432 + p->mid[i] = kProbInitValue;
3433 + for (i = 0; i < kLenNumHighSymbols; i++)
3434 + p->high[i] = kProbInitValue;
3435 +}
3436 +
3437 +static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
3438 +{
3439 + if (symbol < kLenNumLowSymbols)
3440 + {
3441 + RangeEnc_EncodeBit(rc, &p->choice, 0);
3442 + RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
3443 + }
3444 + else
3445 + {
3446 + RangeEnc_EncodeBit(rc, &p->choice, 1);
3447 + if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
3448 + {
3449 + RangeEnc_EncodeBit(rc, &p->choice2, 0);
3450 + RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
3451 + }
3452 + else
3453 + {
3454 + RangeEnc_EncodeBit(rc, &p->choice2, 1);
3455 + RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
3456 + }
3457 + }
3458 +}
3459 +
3460 +static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
3461 +{
3462 + UInt32 a0 = GET_PRICE_0a(p->choice);
3463 + UInt32 a1 = GET_PRICE_1a(p->choice);
3464 + UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
3465 + UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
3466 + UInt32 i = 0;
3467 + for (i = 0; i < kLenNumLowSymbols; i++)
3468 + {
3469 + if (i >= numSymbols)
3470 + return;
3471 + prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
3472 + }
3473 + for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
3474 + {
3475 + if (i >= numSymbols)
3476 + return;
3477 + prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
3478 + }
3479 + for (; i < numSymbols; i++)
3480 + prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
3481 +}
3482 +
3483 +static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
3484 +{
3485 + LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
3486 + p->counters[posState] = p->tableSize;
3487 +}
3488 +
3489 +static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
3490 +{
3491 + UInt32 posState;
3492 + for (posState = 0; posState < numPosStates; posState++)
3493 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3494 +}
3495 +
3496 +static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
3497 +{
3498 + LenEnc_Encode(&p->p, rc, symbol, posState);
3499 + if (updatePrice)
3500 + if (--p->counters[posState] == 0)
3501 + LenPriceEnc_UpdateTable(p, posState, ProbPrices);
3502 +}
3503 +
3504 +
3505 +
3506 +
3507 +static void MovePos(CLzmaEnc *p, UInt32 num)
3508 +{
3509 + #ifdef SHOW_STAT
3510 + ttt += num;
3511 + printf("\n MovePos %d", num);
3512 + #endif
3513 + if (num != 0)
3514 + {
3515 + p->additionalOffset += num;
3516 + p->matchFinder.Skip(p->matchFinderObj, num);
3517 + }
3518 +}
3519 +
3520 +static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
3521 +{
3522 + UInt32 lenRes = 0, numDistancePairs;
3523 + numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances);
3524 + #ifdef SHOW_STAT
3525 + printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2);
3526 + if (ttt >= 61994)
3527 + ttt = ttt;
3528 +
3529 + ttt++;
3530 + {
3531 + UInt32 i;
3532 + for (i = 0; i < numDistancePairs; i += 2)
3533 + printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]);
3534 + }
3535 + #endif
3536 + if (numDistancePairs > 0)
3537 + {
3538 + lenRes = p->matchDistances[numDistancePairs - 2];
3539 + if (lenRes == p->numFastBytes)
3540 + {
3541 + UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1;
3542 + const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3543 + UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1;
3544 + if (numAvail > LZMA_MATCH_LEN_MAX)
3545 + numAvail = LZMA_MATCH_LEN_MAX;
3546 +
3547 + {
3548 + const Byte *pby2 = pby - distance;
3549 + for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
3550 + }
3551 + }
3552 + }
3553 + p->additionalOffset++;
3554 + *numDistancePairsRes = numDistancePairs;
3555 + return lenRes;
3556 +}
3557 +
3558 +
3559 +#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
3560 +#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
3561 +#define IsShortRep(p) ((p)->backPrev == 0)
3562 +
3563 +static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
3564 +{
3565 + return
3566 + GET_PRICE_0(p->isRepG0[state]) +
3567 + GET_PRICE_0(p->isRep0Long[state][posState]);
3568 +}
3569 +
3570 +static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
3571 +{
3572 + UInt32 price;
3573 + if (repIndex == 0)
3574 + {
3575 + price = GET_PRICE_0(p->isRepG0[state]);
3576 + price += GET_PRICE_1(p->isRep0Long[state][posState]);
3577 + }
3578 + else
3579 + {
3580 + price = GET_PRICE_1(p->isRepG0[state]);
3581 + if (repIndex == 1)
3582 + price += GET_PRICE_0(p->isRepG1[state]);
3583 + else
3584 + {
3585 + price += GET_PRICE_1(p->isRepG1[state]);
3586 + price += GET_PRICE(p->isRepG2[state], repIndex - 2);
3587 + }
3588 + }
3589 + return price;
3590 +}
3591 +
3592 +static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
3593 +{
3594 + return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
3595 + GetPureRepPrice(p, repIndex, state, posState);
3596 +}
3597 +
3598 +static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
3599 +{
3600 + UInt32 posMem = p->opt[cur].posPrev;
3601 + UInt32 backMem = p->opt[cur].backPrev;
3602 + p->optimumEndIndex = cur;
3603 + do
3604 + {
3605 + if (p->opt[cur].prev1IsChar)
3606 + {
3607 + MakeAsChar(&p->opt[posMem])
3608 + p->opt[posMem].posPrev = posMem - 1;
3609 + if (p->opt[cur].prev2)
3610 + {
3611 + p->opt[posMem - 1].prev1IsChar = False;
3612 + p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
3613 + p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
3614 + }
3615 + }
3616 + {
3617 + UInt32 posPrev = posMem;
3618 + UInt32 backCur = backMem;
3619 +
3620 + backMem = p->opt[posPrev].backPrev;
3621 + posMem = p->opt[posPrev].posPrev;
3622 +
3623 + p->opt[posPrev].backPrev = backCur;
3624 + p->opt[posPrev].posPrev = cur;
3625 + cur = posPrev;
3626 + }
3627 + }
3628 + while (cur != 0);
3629 + *backRes = p->opt[0].backPrev;
3630 + p->optimumCurrentIndex = p->opt[0].posPrev;
3631 + return p->optimumCurrentIndex;
3632 +}
3633 +
3634 +#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
3635 +
3636 +static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
3637 +{
3638 + UInt32 numAvailableBytes, lenMain, numDistancePairs;
3639 + const Byte *data;
3640 + UInt32 reps[LZMA_NUM_REPS];
3641 + UInt32 repLens[LZMA_NUM_REPS];
3642 + UInt32 repMaxIndex, i;
3643 + UInt32 *matchDistances;
3644 + Byte currentByte, matchByte;
3645 + UInt32 posState;
3646 + UInt32 matchPrice, repMatchPrice;
3647 + UInt32 lenEnd;
3648 + UInt32 len;
3649 + UInt32 normalMatchPrice;
3650 + UInt32 cur;
3651 + if (p->optimumEndIndex != p->optimumCurrentIndex)
3652 + {
3653 + const COptimal *opt = &p->opt[p->optimumCurrentIndex];
3654 + UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
3655 + *backRes = opt->backPrev;
3656 + p->optimumCurrentIndex = opt->posPrev;
3657 + return lenRes;
3658 + }
3659 + p->optimumCurrentIndex = p->optimumEndIndex = 0;
3660 +
3661 + numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3662 +
3663 + if (!p->longestMatchWasFound)
3664 + {
3665 + lenMain = ReadMatchDistances(p, &numDistancePairs);
3666 + }
3667 + else
3668 + {
3669 + lenMain = p->longestMatchLength;
3670 + numDistancePairs = p->numDistancePairs;
3671 + p->longestMatchWasFound = False;
3672 + }
3673 +
3674 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3675 + if (numAvailableBytes < 2)
3676 + {
3677 + *backRes = (UInt32)(-1);
3678 + return 1;
3679 + }
3680 + if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
3681 + numAvailableBytes = LZMA_MATCH_LEN_MAX;
3682 +
3683 + repMaxIndex = 0;
3684 + for (i = 0; i < LZMA_NUM_REPS; i++)
3685 + {
3686 + UInt32 lenTest;
3687 + const Byte *data2;
3688 + reps[i] = p->reps[i];
3689 + data2 = data - (reps[i] + 1);
3690 + if (data[0] != data2[0] || data[1] != data2[1])
3691 + {
3692 + repLens[i] = 0;
3693 + continue;
3694 + }
3695 + for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
3696 + repLens[i] = lenTest;
3697 + if (lenTest > repLens[repMaxIndex])
3698 + repMaxIndex = i;
3699 + }
3700 + if (repLens[repMaxIndex] >= p->numFastBytes)
3701 + {
3702 + UInt32 lenRes;
3703 + *backRes = repMaxIndex;
3704 + lenRes = repLens[repMaxIndex];
3705 + MovePos(p, lenRes - 1);
3706 + return lenRes;
3707 + }
3708 +
3709 + matchDistances = p->matchDistances;
3710 + if (lenMain >= p->numFastBytes)
3711 + {
3712 + *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
3713 + MovePos(p, lenMain - 1);
3714 + return lenMain;
3715 + }
3716 + currentByte = *data;
3717 + matchByte = *(data - (reps[0] + 1));
3718 +
3719 + if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2)
3720 + {
3721 + *backRes = (UInt32)-1;
3722 + return 1;
3723 + }
3724 +
3725 + p->opt[0].state = (CState)p->state;
3726 +
3727 + posState = (position & p->pbMask);
3728 +
3729 + {
3730 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3731 + p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
3732 + (!IsCharState(p->state) ?
3733 + LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3734 + LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3735 + }
3736 +
3737 + MakeAsChar(&p->opt[1]);
3738 +
3739 + matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
3740 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
3741 +
3742 + if (matchByte == currentByte)
3743 + {
3744 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
3745 + if (shortRepPrice < p->opt[1].price)
3746 + {
3747 + p->opt[1].price = shortRepPrice;
3748 + MakeAsShortRep(&p->opt[1]);
3749 + }
3750 + }
3751 + lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]);
3752 +
3753 + if (lenEnd < 2)
3754 + {
3755 + *backRes = p->opt[1].backPrev;
3756 + return 1;
3757 + }
3758 +
3759 + p->opt[1].posPrev = 0;
3760 + for (i = 0; i < LZMA_NUM_REPS; i++)
3761 + p->opt[0].backs[i] = reps[i];
3762 +
3763 + len = lenEnd;
3764 + do
3765 + p->opt[len--].price = kInfinityPrice;
3766 + while (len >= 2);
3767 +
3768 + for (i = 0; i < LZMA_NUM_REPS; i++)
3769 + {
3770 + UInt32 repLen = repLens[i];
3771 + UInt32 price;
3772 + if (repLen < 2)
3773 + continue;
3774 + price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
3775 + do
3776 + {
3777 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
3778 + COptimal *opt = &p->opt[repLen];
3779 + if (curAndLenPrice < opt->price)
3780 + {
3781 + opt->price = curAndLenPrice;
3782 + opt->posPrev = 0;
3783 + opt->backPrev = i;
3784 + opt->prev1IsChar = False;
3785 + }
3786 + }
3787 + while (--repLen >= 2);
3788 + }
3789 +
3790 + normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
3791 +
3792 + len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
3793 + if (len <= lenMain)
3794 + {
3795 + UInt32 offs = 0;
3796 + while (len > matchDistances[offs])
3797 + offs += 2;
3798 + for (; ; len++)
3799 + {
3800 + COptimal *opt;
3801 + UInt32 distance = matchDistances[offs + 1];
3802 +
3803 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
3804 + UInt32 lenToPosState = GetLenToPosState(len);
3805 + if (distance < kNumFullDistances)
3806 + curAndLenPrice += p->distancesPrices[lenToPosState][distance];
3807 + else
3808 + {
3809 + UInt32 slot;
3810 + GetPosSlot2(distance, slot);
3811 + curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
3812 + }
3813 + opt = &p->opt[len];
3814 + if (curAndLenPrice < opt->price)
3815 + {
3816 + opt->price = curAndLenPrice;
3817 + opt->posPrev = 0;
3818 + opt->backPrev = distance + LZMA_NUM_REPS;
3819 + opt->prev1IsChar = False;
3820 + }
3821 + if (len == matchDistances[offs])
3822 + {
3823 + offs += 2;
3824 + if (offs == numDistancePairs)
3825 + break;
3826 + }
3827 + }
3828 + }
3829 +
3830 + cur = 0;
3831 +
3832 + #ifdef SHOW_STAT2
3833 + if (position >= 0)
3834 + {
3835 + unsigned i;
3836 + printf("\n pos = %4X", position);
3837 + for (i = cur; i <= lenEnd; i++)
3838 + printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
3839 + }
3840 + #endif
3841 +
3842 + for (;;)
3843 + {
3844 + UInt32 numAvailableBytesFull, newLen, numDistancePairs;
3845 + COptimal *curOpt;
3846 + UInt32 posPrev;
3847 + UInt32 state;
3848 + UInt32 curPrice;
3849 + Bool nextIsChar;
3850 + const Byte *data;
3851 + Byte currentByte, matchByte;
3852 + UInt32 posState;
3853 + UInt32 curAnd1Price;
3854 + COptimal *nextOpt;
3855 + UInt32 matchPrice, repMatchPrice;
3856 + UInt32 numAvailableBytes;
3857 + UInt32 startLen;
3858 +
3859 + cur++;
3860 + if (cur == lenEnd)
3861 + return Backward(p, backRes, cur);
3862 +
3863 + numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
3864 + newLen = ReadMatchDistances(p, &numDistancePairs);
3865 + if (newLen >= p->numFastBytes)
3866 + {
3867 + p->numDistancePairs = numDistancePairs;
3868 + p->longestMatchLength = newLen;
3869 + p->longestMatchWasFound = True;
3870 + return Backward(p, backRes, cur);
3871 + }
3872 + position++;
3873 + curOpt = &p->opt[cur];
3874 + posPrev = curOpt->posPrev;
3875 + if (curOpt->prev1IsChar)
3876 + {
3877 + posPrev--;
3878 + if (curOpt->prev2)
3879 + {
3880 + state = p->opt[curOpt->posPrev2].state;
3881 + if (curOpt->backPrev2 < LZMA_NUM_REPS)
3882 + state = kRepNextStates[state];
3883 + else
3884 + state = kMatchNextStates[state];
3885 + }
3886 + else
3887 + state = p->opt[posPrev].state;
3888 + state = kLiteralNextStates[state];
3889 + }
3890 + else
3891 + state = p->opt[posPrev].state;
3892 + if (posPrev == cur - 1)
3893 + {
3894 + if (IsShortRep(curOpt))
3895 + state = kShortRepNextStates[state];
3896 + else
3897 + state = kLiteralNextStates[state];
3898 + }
3899 + else
3900 + {
3901 + UInt32 pos;
3902 + const COptimal *prevOpt;
3903 + if (curOpt->prev1IsChar && curOpt->prev2)
3904 + {
3905 + posPrev = curOpt->posPrev2;
3906 + pos = curOpt->backPrev2;
3907 + state = kRepNextStates[state];
3908 + }
3909 + else
3910 + {
3911 + pos = curOpt->backPrev;
3912 + if (pos < LZMA_NUM_REPS)
3913 + state = kRepNextStates[state];
3914 + else
3915 + state = kMatchNextStates[state];
3916 + }
3917 + prevOpt = &p->opt[posPrev];
3918 + if (pos < LZMA_NUM_REPS)
3919 + {
3920 + UInt32 i;
3921 + reps[0] = prevOpt->backs[pos];
3922 + for (i = 1; i <= pos; i++)
3923 + reps[i] = prevOpt->backs[i - 1];
3924 + for (; i < LZMA_NUM_REPS; i++)
3925 + reps[i] = prevOpt->backs[i];
3926 + }
3927 + else
3928 + {
3929 + UInt32 i;
3930 + reps[0] = (pos - LZMA_NUM_REPS);
3931 + for (i = 1; i < LZMA_NUM_REPS; i++)
3932 + reps[i] = prevOpt->backs[i - 1];
3933 + }
3934 + }
3935 + curOpt->state = (CState)state;
3936 +
3937 + curOpt->backs[0] = reps[0];
3938 + curOpt->backs[1] = reps[1];
3939 + curOpt->backs[2] = reps[2];
3940 + curOpt->backs[3] = reps[3];
3941 +
3942 + curPrice = curOpt->price;
3943 + nextIsChar = False;
3944 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
3945 + currentByte = *data;
3946 + matchByte = *(data - (reps[0] + 1));
3947 +
3948 + posState = (position & p->pbMask);
3949 +
3950 + curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
3951 + {
3952 + const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
3953 + curAnd1Price +=
3954 + (!IsCharState(state) ?
3955 + LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
3956 + LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
3957 + }
3958 +
3959 + nextOpt = &p->opt[cur + 1];
3960 +
3961 + if (curAnd1Price < nextOpt->price)
3962 + {
3963 + nextOpt->price = curAnd1Price;
3964 + nextOpt->posPrev = cur;
3965 + MakeAsChar(nextOpt);
3966 + nextIsChar = True;
3967 + }
3968 +
3969 + matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
3970 + repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
3971 +
3972 + if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
3973 + {
3974 + UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
3975 + if (shortRepPrice <= nextOpt->price)
3976 + {
3977 + nextOpt->price = shortRepPrice;
3978 + nextOpt->posPrev = cur;
3979 + MakeAsShortRep(nextOpt);
3980 + nextIsChar = True;
3981 + }
3982 + }
3983 +
3984 + {
3985 + UInt32 temp = kNumOpts - 1 - cur;
3986 + if (temp < numAvailableBytesFull)
3987 + numAvailableBytesFull = temp;
3988 + }
3989 + numAvailableBytes = numAvailableBytesFull;
3990 +
3991 + if (numAvailableBytes < 2)
3992 + continue;
3993 + if (numAvailableBytes > p->numFastBytes)
3994 + numAvailableBytes = p->numFastBytes;
3995 + if (!nextIsChar && matchByte != currentByte) /* speed optimization */
3996 + {
3997 + /* try Literal + rep0 */
3998 + UInt32 temp;
3999 + UInt32 lenTest2;
4000 + const Byte *data2 = data - (reps[0] + 1);
4001 + UInt32 limit = p->numFastBytes + 1;
4002 + if (limit > numAvailableBytesFull)
4003 + limit = numAvailableBytesFull;
4004 +
4005 + for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
4006 + lenTest2 = temp - 1;
4007 + if (lenTest2 >= 2)
4008 + {
4009 + UInt32 state2 = kLiteralNextStates[state];
4010 + UInt32 posStateNext = (position + 1) & p->pbMask;
4011 + UInt32 nextRepMatchPrice = curAnd1Price +
4012 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4013 + GET_PRICE_1(p->isRep[state2]);
4014 + /* for (; lenTest2 >= 2; lenTest2--) */
4015 + {
4016 + UInt32 curAndLenPrice;
4017 + COptimal *opt;
4018 + UInt32 offset = cur + 1 + lenTest2;
4019 + while (lenEnd < offset)
4020 + p->opt[++lenEnd].price = kInfinityPrice;
4021 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4022 + opt = &p->opt[offset];
4023 + if (curAndLenPrice < opt->price)
4024 + {
4025 + opt->price = curAndLenPrice;
4026 + opt->posPrev = cur + 1;
4027 + opt->backPrev = 0;
4028 + opt->prev1IsChar = True;
4029 + opt->prev2 = False;
4030 + }
4031 + }
4032 + }
4033 + }
4034 +
4035 + startLen = 2; /* speed optimization */
4036 + {
4037 + UInt32 repIndex;
4038 + for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
4039 + {
4040 + UInt32 lenTest;
4041 + UInt32 lenTestTemp;
4042 + UInt32 price;
4043 + const Byte *data2 = data - (reps[repIndex] + 1);
4044 + if (data[0] != data2[0] || data[1] != data2[1])
4045 + continue;
4046 + for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
4047 + while (lenEnd < cur + lenTest)
4048 + p->opt[++lenEnd].price = kInfinityPrice;
4049 + lenTestTemp = lenTest;
4050 + price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
4051 + do
4052 + {
4053 + UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
4054 + COptimal *opt = &p->opt[cur + lenTest];
4055 + if (curAndLenPrice < opt->price)
4056 + {
4057 + opt->price = curAndLenPrice;
4058 + opt->posPrev = cur;
4059 + opt->backPrev = repIndex;
4060 + opt->prev1IsChar = False;
4061 + }
4062 + }
4063 + while (--lenTest >= 2);
4064 + lenTest = lenTestTemp;
4065 +
4066 + if (repIndex == 0)
4067 + startLen = lenTest + 1;
4068 +
4069 + /* if (_maxMode) */
4070 + {
4071 + UInt32 lenTest2 = lenTest + 1;
4072 + UInt32 limit = lenTest2 + p->numFastBytes;
4073 + UInt32 nextRepMatchPrice;
4074 + if (limit > numAvailableBytesFull)
4075 + limit = numAvailableBytesFull;
4076 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4077 + lenTest2 -= lenTest + 1;
4078 + if (lenTest2 >= 2)
4079 + {
4080 + UInt32 state2 = kRepNextStates[state];
4081 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4082 + UInt32 curAndLenCharPrice =
4083 + price + p->repLenEnc.prices[posState][lenTest - 2] +
4084 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4085 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4086 + data[lenTest], data2[lenTest], p->ProbPrices);
4087 + state2 = kLiteralNextStates[state2];
4088 + posStateNext = (position + lenTest + 1) & p->pbMask;
4089 + nextRepMatchPrice = curAndLenCharPrice +
4090 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4091 + GET_PRICE_1(p->isRep[state2]);
4092 +
4093 + /* for (; lenTest2 >= 2; lenTest2--) */
4094 + {
4095 + UInt32 curAndLenPrice;
4096 + COptimal *opt;
4097 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4098 + while (lenEnd < offset)
4099 + p->opt[++lenEnd].price = kInfinityPrice;
4100 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4101 + opt = &p->opt[offset];
4102 + if (curAndLenPrice < opt->price)
4103 + {
4104 + opt->price = curAndLenPrice;
4105 + opt->posPrev = cur + lenTest + 1;
4106 + opt->backPrev = 0;
4107 + opt->prev1IsChar = True;
4108 + opt->prev2 = True;
4109 + opt->posPrev2 = cur;
4110 + opt->backPrev2 = repIndex;
4111 + }
4112 + }
4113 + }
4114 + }
4115 + }
4116 + }
4117 + /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
4118 + if (newLen > numAvailableBytes)
4119 + {
4120 + newLen = numAvailableBytes;
4121 + for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2);
4122 + matchDistances[numDistancePairs] = newLen;
4123 + numDistancePairs += 2;
4124 + }
4125 + if (newLen >= startLen)
4126 + {
4127 + UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
4128 + UInt32 offs, curBack, posSlot;
4129 + UInt32 lenTest;
4130 + while (lenEnd < cur + newLen)
4131 + p->opt[++lenEnd].price = kInfinityPrice;
4132 +
4133 + offs = 0;
4134 + while (startLen > matchDistances[offs])
4135 + offs += 2;
4136 + curBack = matchDistances[offs + 1];
4137 + GetPosSlot2(curBack, posSlot);
4138 + for (lenTest = /*2*/ startLen; ; lenTest++)
4139 + {
4140 + UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
4141 + UInt32 lenToPosState = GetLenToPosState(lenTest);
4142 + COptimal *opt;
4143 + if (curBack < kNumFullDistances)
4144 + curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
4145 + else
4146 + curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
4147 +
4148 + opt = &p->opt[cur + lenTest];
4149 + if (curAndLenPrice < opt->price)
4150 + {
4151 + opt->price = curAndLenPrice;
4152 + opt->posPrev = cur;
4153 + opt->backPrev = curBack + LZMA_NUM_REPS;
4154 + opt->prev1IsChar = False;
4155 + }
4156 +
4157 + if (/*_maxMode && */lenTest == matchDistances[offs])
4158 + {
4159 + /* Try Match + Literal + Rep0 */
4160 + const Byte *data2 = data - (curBack + 1);
4161 + UInt32 lenTest2 = lenTest + 1;
4162 + UInt32 limit = lenTest2 + p->numFastBytes;
4163 + UInt32 nextRepMatchPrice;
4164 + if (limit > numAvailableBytesFull)
4165 + limit = numAvailableBytesFull;
4166 + for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
4167 + lenTest2 -= lenTest + 1;
4168 + if (lenTest2 >= 2)
4169 + {
4170 + UInt32 state2 = kMatchNextStates[state];
4171 + UInt32 posStateNext = (position + lenTest) & p->pbMask;
4172 + UInt32 curAndLenCharPrice = curAndLenPrice +
4173 + GET_PRICE_0(p->isMatch[state2][posStateNext]) +
4174 + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
4175 + data[lenTest], data2[lenTest], p->ProbPrices);
4176 + state2 = kLiteralNextStates[state2];
4177 + posStateNext = (posStateNext + 1) & p->pbMask;
4178 + nextRepMatchPrice = curAndLenCharPrice +
4179 + GET_PRICE_1(p->isMatch[state2][posStateNext]) +
4180 + GET_PRICE_1(p->isRep[state2]);
4181 +
4182 + /* for (; lenTest2 >= 2; lenTest2--) */
4183 + {
4184 + UInt32 offset = cur + lenTest + 1 + lenTest2;
4185 + UInt32 curAndLenPrice;
4186 + COptimal *opt;
4187 + while (lenEnd < offset)
4188 + p->opt[++lenEnd].price = kInfinityPrice;
4189 + curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
4190 + opt = &p->opt[offset];
4191 + if (curAndLenPrice < opt->price)
4192 + {
4193 + opt->price = curAndLenPrice;
4194 + opt->posPrev = cur + lenTest + 1;
4195 + opt->backPrev = 0;
4196 + opt->prev1IsChar = True;
4197 + opt->prev2 = True;
4198 + opt->posPrev2 = cur;
4199 + opt->backPrev2 = curBack + LZMA_NUM_REPS;
4200 + }
4201 + }
4202 + }
4203 + offs += 2;
4204 + if (offs == numDistancePairs)
4205 + break;
4206 + curBack = matchDistances[offs + 1];
4207 + if (curBack >= kNumFullDistances)
4208 + GetPosSlot2(curBack, posSlot);
4209 + }
4210 + }
4211 + }
4212 + }
4213 +}
4214 +
4215 +#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
4216 +
4217 +static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
4218 +{
4219 + UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4220 + UInt32 lenMain, numDistancePairs;
4221 + const Byte *data;
4222 + UInt32 repLens[LZMA_NUM_REPS];
4223 + UInt32 repMaxIndex, i;
4224 + UInt32 *matchDistances;
4225 + UInt32 backMain;
4226 +
4227 + if (!p->longestMatchWasFound)
4228 + {
4229 + lenMain = ReadMatchDistances(p, &numDistancePairs);
4230 + }
4231 + else
4232 + {
4233 + lenMain = p->longestMatchLength;
4234 + numDistancePairs = p->numDistancePairs;
4235 + p->longestMatchWasFound = False;
4236 + }
4237 +
4238 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4239 + if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
4240 + numAvailableBytes = LZMA_MATCH_LEN_MAX;
4241 + if (numAvailableBytes < 2)
4242 + {
4243 + *backRes = (UInt32)(-1);
4244 + return 1;
4245 + }
4246 +
4247 + repMaxIndex = 0;
4248 +
4249 + for (i = 0; i < LZMA_NUM_REPS; i++)
4250 + {
4251 + const Byte *data2 = data - (p->reps[i] + 1);
4252 + UInt32 len;
4253 + if (data[0] != data2[0] || data[1] != data2[1])
4254 + {
4255 + repLens[i] = 0;
4256 + continue;
4257 + }
4258 + for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4259 + if (len >= p->numFastBytes)
4260 + {
4261 + *backRes = i;
4262 + MovePos(p, len - 1);
4263 + return len;
4264 + }
4265 + repLens[i] = len;
4266 + if (len > repLens[repMaxIndex])
4267 + repMaxIndex = i;
4268 + }
4269 + matchDistances = p->matchDistances;
4270 + if (lenMain >= p->numFastBytes)
4271 + {
4272 + *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
4273 + MovePos(p, lenMain - 1);
4274 + return lenMain;
4275 + }
4276 +
4277 + backMain = 0; /* for GCC */
4278 + if (lenMain >= 2)
4279 + {
4280 + backMain = matchDistances[numDistancePairs - 1];
4281 + while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1)
4282 + {
4283 + if (!ChangePair(matchDistances[numDistancePairs - 3], backMain))
4284 + break;
4285 + numDistancePairs -= 2;
4286 + lenMain = matchDistances[numDistancePairs - 2];
4287 + backMain = matchDistances[numDistancePairs - 1];
4288 + }
4289 + if (lenMain == 2 && backMain >= 0x80)
4290 + lenMain = 1;
4291 + }
4292 +
4293 + if (repLens[repMaxIndex] >= 2)
4294 + {
4295 + if (repLens[repMaxIndex] + 1 >= lenMain ||
4296 + (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) ||
4297 + (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15))))
4298 + {
4299 + UInt32 lenRes;
4300 + *backRes = repMaxIndex;
4301 + lenRes = repLens[repMaxIndex];
4302 + MovePos(p, lenRes - 1);
4303 + return lenRes;
4304 + }
4305 + }
4306 +
4307 + if (lenMain >= 2 && numAvailableBytes > 2)
4308 + {
4309 + UInt32 i;
4310 + numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4311 + p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs);
4312 + if (p->longestMatchLength >= 2)
4313 + {
4314 + UInt32 newDistance = matchDistances[p->numDistancePairs - 1];
4315 + if ((p->longestMatchLength >= lenMain && newDistance < backMain) ||
4316 + (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) ||
4317 + (p->longestMatchLength > lenMain + 1) ||
4318 + (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain)))
4319 + {
4320 + p->longestMatchWasFound = True;
4321 + *backRes = (UInt32)(-1);
4322 + return 1;
4323 + }
4324 + }
4325 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
4326 + for (i = 0; i < LZMA_NUM_REPS; i++)
4327 + {
4328 + UInt32 len;
4329 + const Byte *data2 = data - (p->reps[i] + 1);
4330 + if (data[1] != data2[1] || data[2] != data2[2])
4331 + {
4332 + repLens[i] = 0;
4333 + continue;
4334 + }
4335 + for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
4336 + if (len + 1 >= lenMain)
4337 + {
4338 + p->longestMatchWasFound = True;
4339 + *backRes = (UInt32)(-1);
4340 + return 1;
4341 + }
4342 + }
4343 + *backRes = backMain + LZMA_NUM_REPS;
4344 + MovePos(p, lenMain - 2);
4345 + return lenMain;
4346 + }
4347 + *backRes = (UInt32)(-1);
4348 + return 1;
4349 +}
4350 +
4351 +static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
4352 +{
4353 + UInt32 len;
4354 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4355 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4356 + p->state = kMatchNextStates[p->state];
4357 + len = LZMA_MATCH_LEN_MIN;
4358 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4359 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
4360 + RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
4361 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
4362 +}
4363 +
4364 +static SRes CheckErrors(CLzmaEnc *p)
4365 +{
4366 + if (p->result != SZ_OK)
4367 + return p->result;
4368 + if (p->rc.res != SZ_OK)
4369 + p->result = SZ_ERROR_WRITE;
4370 + if (p->matchFinderBase.result != SZ_OK)
4371 + p->result = SZ_ERROR_READ;
4372 + if (p->result != SZ_OK)
4373 + p->finished = True;
4374 + return p->result;
4375 +}
4376 +
4377 +static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
4378 +{
4379 + /* ReleaseMFStream(); */
4380 + p->finished = True;
4381 + if (p->writeEndMark)
4382 + WriteEndMarker(p, nowPos & p->pbMask);
4383 + RangeEnc_FlushData(&p->rc);
4384 + RangeEnc_FlushStream(&p->rc);
4385 + return CheckErrors(p);
4386 +}
4387 +
4388 +static void FillAlignPrices(CLzmaEnc *p)
4389 +{
4390 + UInt32 i;
4391 + for (i = 0; i < kAlignTableSize; i++)
4392 + p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
4393 + p->alignPriceCount = 0;
4394 +}
4395 +
4396 +static void FillDistancesPrices(CLzmaEnc *p)
4397 +{
4398 + UInt32 tempPrices[kNumFullDistances];
4399 + UInt32 i, lenToPosState;
4400 + for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
4401 + {
4402 + UInt32 posSlot = GetPosSlot1(i);
4403 + UInt32 footerBits = ((posSlot >> 1) - 1);
4404 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4405 + tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
4406 + }
4407 +
4408 + for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
4409 + {
4410 + UInt32 posSlot;
4411 + const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
4412 + UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
4413 + for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
4414 + posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
4415 + for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
4416 + posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
4417 +
4418 + {
4419 + UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
4420 + UInt32 i;
4421 + for (i = 0; i < kStartPosModelIndex; i++)
4422 + distancesPrices[i] = posSlotPrices[i];
4423 + for (; i < kNumFullDistances; i++)
4424 + distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
4425 + }
4426 + }
4427 + p->matchPriceCount = 0;
4428 +}
4429 +
4430 +void LzmaEnc_Construct(CLzmaEnc *p)
4431 +{
4432 + RangeEnc_Construct(&p->rc);
4433 + MatchFinder_Construct(&p->matchFinderBase);
4434 + #ifdef COMPRESS_MF_MT
4435 + MatchFinderMt_Construct(&p->matchFinderMt);
4436 + p->matchFinderMt.MatchFinder = &p->matchFinderBase;
4437 + #endif
4438 +
4439 + {
4440 + CLzmaEncProps props;
4441 + LzmaEncProps_Init(&props);
4442 + LzmaEnc_SetProps(p, &props);
4443 + }
4444 +
4445 + #ifndef LZMA_LOG_BSR
4446 + LzmaEnc_FastPosInit(p->g_FastPos);
4447 + #endif
4448 +
4449 + LzmaEnc_InitPriceTables(p->ProbPrices);
4450 + p->litProbs = 0;
4451 + p->saveState.litProbs = 0;
4452 +}
4453 +
4454 +CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
4455 +{
4456 + void *p;
4457 + p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
4458 + if (p != 0)
4459 + LzmaEnc_Construct((CLzmaEnc *)p);
4460 + return p;
4461 +}
4462 +
4463 +void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
4464 +{
4465 + alloc->Free(alloc, p->litProbs);
4466 + alloc->Free(alloc, p->saveState.litProbs);
4467 + p->litProbs = 0;
4468 + p->saveState.litProbs = 0;
4469 +}
4470 +
4471 +void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
4472 +{
4473 + #ifdef COMPRESS_MF_MT
4474 + MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
4475 + #endif
4476 + MatchFinder_Free(&p->matchFinderBase, allocBig);
4477 + LzmaEnc_FreeLits(p, alloc);
4478 + RangeEnc_Free(&p->rc, alloc);
4479 +}
4480 +
4481 +void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
4482 +{
4483 + LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
4484 + alloc->Free(alloc, p);
4485 +}
4486 +
4487 +static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
4488 +{
4489 + UInt32 nowPos32, startPos32;
4490 + if (p->inStream != 0)
4491 + {
4492 + p->matchFinderBase.stream = p->inStream;
4493 + p->matchFinder.Init(p->matchFinderObj);
4494 + p->inStream = 0;
4495 + }
4496 +
4497 + if (p->finished)
4498 + return p->result;
4499 + RINOK(CheckErrors(p));
4500 +
4501 + nowPos32 = (UInt32)p->nowPos64;
4502 + startPos32 = nowPos32;
4503 +
4504 + if (p->nowPos64 == 0)
4505 + {
4506 + UInt32 numDistancePairs;
4507 + Byte curByte;
4508 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4509 + return Flush(p, nowPos32);
4510 + ReadMatchDistances(p, &numDistancePairs);
4511 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
4512 + p->state = kLiteralNextStates[p->state];
4513 + curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
4514 + LitEnc_Encode(&p->rc, p->litProbs, curByte);
4515 + p->additionalOffset--;
4516 + nowPos32++;
4517 + }
4518 +
4519 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
4520 + for (;;)
4521 + {
4522 + UInt32 pos, len, posState;
4523 +
4524 + if (p->fastMode)
4525 + len = GetOptimumFast(p, &pos);
4526 + else
4527 + len = GetOptimum(p, nowPos32, &pos);
4528 +
4529 + #ifdef SHOW_STAT2
4530 + printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
4531 + #endif
4532 +
4533 + posState = nowPos32 & p->pbMask;
4534 + if (len == 1 && pos == 0xFFFFFFFF)
4535 + {
4536 + Byte curByte;
4537 + CLzmaProb *probs;
4538 + const Byte *data;
4539 +
4540 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
4541 + data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4542 + curByte = *data;
4543 + probs = LIT_PROBS(nowPos32, *(data - 1));
4544 + if (IsCharState(p->state))
4545 + LitEnc_Encode(&p->rc, probs, curByte);
4546 + else
4547 + LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
4548 + p->state = kLiteralNextStates[p->state];
4549 + }
4550 + else
4551 + {
4552 + RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
4553 + if (pos < LZMA_NUM_REPS)
4554 + {
4555 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
4556 + if (pos == 0)
4557 + {
4558 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
4559 + RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
4560 + }
4561 + else
4562 + {
4563 + UInt32 distance = p->reps[pos];
4564 + RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
4565 + if (pos == 1)
4566 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
4567 + else
4568 + {
4569 + RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
4570 + RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
4571 + if (pos == 3)
4572 + p->reps[3] = p->reps[2];
4573 + p->reps[2] = p->reps[1];
4574 + }
4575 + p->reps[1] = p->reps[0];
4576 + p->reps[0] = distance;
4577 + }
4578 + if (len == 1)
4579 + p->state = kShortRepNextStates[p->state];
4580 + else
4581 + {
4582 + LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4583 + p->state = kRepNextStates[p->state];
4584 + }
4585 + }
4586 + else
4587 + {
4588 + UInt32 posSlot;
4589 + RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
4590 + p->state = kMatchNextStates[p->state];
4591 + LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
4592 + pos -= LZMA_NUM_REPS;
4593 + GetPosSlot(pos, posSlot);
4594 + RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
4595 +
4596 + if (posSlot >= kStartPosModelIndex)
4597 + {
4598 + UInt32 footerBits = ((posSlot >> 1) - 1);
4599 + UInt32 base = ((2 | (posSlot & 1)) << footerBits);
4600 + UInt32 posReduced = pos - base;
4601 +
4602 + if (posSlot < kEndPosModelIndex)
4603 + RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
4604 + else
4605 + {
4606 + RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
4607 + RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
4608 + p->alignPriceCount++;
4609 + }
4610 + }
4611 + p->reps[3] = p->reps[2];
4612 + p->reps[2] = p->reps[1];
4613 + p->reps[1] = p->reps[0];
4614 + p->reps[0] = pos;
4615 + p->matchPriceCount++;
4616 + }
4617 + }
4618 + p->additionalOffset -= len;
4619 + nowPos32 += len;
4620 + if (p->additionalOffset == 0)
4621 + {
4622 + UInt32 processed;
4623 + if (!p->fastMode)
4624 + {
4625 + if (p->matchPriceCount >= (1 << 7))
4626 + FillDistancesPrices(p);
4627 + if (p->alignPriceCount >= kAlignTableSize)
4628 + FillAlignPrices(p);
4629 + }
4630 + if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
4631 + break;
4632 + processed = nowPos32 - startPos32;
4633 + if (useLimits)
4634 + {
4635 + if (processed + kNumOpts + 300 >= maxUnpackSize ||
4636 + RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
4637 + break;
4638 + }
4639 + else if (processed >= (1 << 15))
4640 + {
4641 + p->nowPos64 += nowPos32 - startPos32;
4642 + return CheckErrors(p);
4643 + }
4644 + }
4645 + }
4646 + p->nowPos64 += nowPos32 - startPos32;
4647 + return Flush(p, nowPos32);
4648 +}
4649 +
4650 +#define kBigHashDicLimit ((UInt32)1 << 24)
4651 +
4652 +static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4653 +{
4654 + UInt32 beforeSize = kNumOpts;
4655 + Bool btMode;
4656 + if (!RangeEnc_Alloc(&p->rc, alloc))
4657 + return SZ_ERROR_MEM;
4658 + btMode = (p->matchFinderBase.btMode != 0);
4659 + #ifdef COMPRESS_MF_MT
4660 + p->mtMode = (p->multiThread && !p->fastMode && btMode);
4661 + #endif
4662 +
4663 + {
4664 + unsigned lclp = p->lc + p->lp;
4665 + if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
4666 + {
4667 + LzmaEnc_FreeLits(p, alloc);
4668 + p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4669 + p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
4670 + if (p->litProbs == 0 || p->saveState.litProbs == 0)
4671 + {
4672 + LzmaEnc_FreeLits(p, alloc);
4673 + return SZ_ERROR_MEM;
4674 + }
4675 + p->lclp = lclp;
4676 + }
4677 + }
4678 +
4679 + p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
4680 +
4681 + if (beforeSize + p->dictSize < keepWindowSize)
4682 + beforeSize = keepWindowSize - p->dictSize;
4683 +
4684 + #ifdef COMPRESS_MF_MT
4685 + if (p->mtMode)
4686 + {
4687 + RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
4688 + p->matchFinderObj = &p->matchFinderMt;
4689 + MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
4690 + }
4691 + else
4692 + #endif
4693 + {
4694 + if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
4695 + return SZ_ERROR_MEM;
4696 + p->matchFinderObj = &p->matchFinderBase;
4697 + MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
4698 + }
4699 + return SZ_OK;
4700 +}
4701 +
4702 +void LzmaEnc_Init(CLzmaEnc *p)
4703 +{
4704 + UInt32 i;
4705 + p->state = 0;
4706 + for(i = 0 ; i < LZMA_NUM_REPS; i++)
4707 + p->reps[i] = 0;
4708 +
4709 + RangeEnc_Init(&p->rc);
4710 +
4711 +
4712 + for (i = 0; i < kNumStates; i++)
4713 + {
4714 + UInt32 j;
4715 + for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
4716 + {
4717 + p->isMatch[i][j] = kProbInitValue;
4718 + p->isRep0Long[i][j] = kProbInitValue;
4719 + }
4720 + p->isRep[i] = kProbInitValue;
4721 + p->isRepG0[i] = kProbInitValue;
4722 + p->isRepG1[i] = kProbInitValue;
4723 + p->isRepG2[i] = kProbInitValue;
4724 + }
4725 +
4726 + {
4727 + UInt32 num = 0x300 << (p->lp + p->lc);
4728 + for (i = 0; i < num; i++)
4729 + p->litProbs[i] = kProbInitValue;
4730 + }
4731 +
4732 + {
4733 + for (i = 0; i < kNumLenToPosStates; i++)
4734 + {
4735 + CLzmaProb *probs = p->posSlotEncoder[i];
4736 + UInt32 j;
4737 + for (j = 0; j < (1 << kNumPosSlotBits); j++)
4738 + probs[j] = kProbInitValue;
4739 + }
4740 + }
4741 + {
4742 + for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
4743 + p->posEncoders[i] = kProbInitValue;
4744 + }
4745 +
4746 + LenEnc_Init(&p->lenEnc.p);
4747 + LenEnc_Init(&p->repLenEnc.p);
4748 +
4749 + for (i = 0; i < (1 << kNumAlignBits); i++)
4750 + p->posAlignEncoder[i] = kProbInitValue;
4751 +
4752 + p->longestMatchWasFound = False;
4753 + p->optimumEndIndex = 0;
4754 + p->optimumCurrentIndex = 0;
4755 + p->additionalOffset = 0;
4756 +
4757 + p->pbMask = (1 << p->pb) - 1;
4758 + p->lpMask = (1 << p->lp) - 1;
4759 +}
4760 +
4761 +void LzmaEnc_InitPrices(CLzmaEnc *p)
4762 +{
4763 + if (!p->fastMode)
4764 + {
4765 + FillDistancesPrices(p);
4766 + FillAlignPrices(p);
4767 + }
4768 +
4769 + p->lenEnc.tableSize =
4770 + p->repLenEnc.tableSize =
4771 + p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
4772 + LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
4773 + LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
4774 +}
4775 +
4776 +static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4777 +{
4778 + UInt32 i;
4779 + for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
4780 + if (p->dictSize <= ((UInt32)1 << i))
4781 + break;
4782 + p->distTableSize = i * 2;
4783 +
4784 + p->finished = False;
4785 + p->result = SZ_OK;
4786 + RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
4787 + LzmaEnc_Init(p);
4788 + LzmaEnc_InitPrices(p);
4789 + p->nowPos64 = 0;
4790 + return SZ_OK;
4791 +}
4792 +
4793 +static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
4794 + ISzAlloc *alloc, ISzAlloc *allocBig)
4795 +{
4796 + CLzmaEnc *p = (CLzmaEnc *)pp;
4797 + p->inStream = inStream;
4798 + p->rc.outStream = outStream;
4799 + return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
4800 +}
4801 +
4802 +SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
4803 + ISeqInStream *inStream, UInt32 keepWindowSize,
4804 + ISzAlloc *alloc, ISzAlloc *allocBig)
4805 +{
4806 + CLzmaEnc *p = (CLzmaEnc *)pp;
4807 + p->inStream = inStream;
4808 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4809 +}
4810 +
4811 +static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
4812 +{
4813 + p->seqBufInStream.funcTable.Read = MyRead;
4814 + p->seqBufInStream.data = src;
4815 + p->seqBufInStream.rem = srcLen;
4816 +}
4817 +
4818 +SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
4819 + UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
4820 +{
4821 + CLzmaEnc *p = (CLzmaEnc *)pp;
4822 + LzmaEnc_SetInputBuf(p, src, srcLen);
4823 + p->inStream = &p->seqBufInStream.funcTable;
4824 + return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
4825 +}
4826 +
4827 +void LzmaEnc_Finish(CLzmaEncHandle pp)
4828 +{
4829 + #ifdef COMPRESS_MF_MT
4830 + CLzmaEnc *p = (CLzmaEnc *)pp;
4831 + if (p->mtMode)
4832 + MatchFinderMt_ReleaseStream(&p->matchFinderMt);
4833 + #endif
4834 +}
4835 +
4836 +typedef struct _CSeqOutStreamBuf
4837 +{
4838 + ISeqOutStream funcTable;
4839 + Byte *data;
4840 + SizeT rem;
4841 + Bool overflow;
4842 +} CSeqOutStreamBuf;
4843 +
4844 +static size_t MyWrite(void *pp, const void *data, size_t size)
4845 +{
4846 + CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
4847 + if (p->rem < size)
4848 + {
4849 + size = p->rem;
4850 + p->overflow = True;
4851 + }
4852 + memcpy(p->data, data, size);
4853 + p->rem -= size;
4854 + p->data += size;
4855 + return size;
4856 +}
4857 +
4858 +
4859 +UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
4860 +{
4861 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4862 + return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
4863 +}
4864 +
4865 +const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
4866 +{
4867 + const CLzmaEnc *p = (CLzmaEnc *)pp;
4868 + return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
4869 +}
4870 +
4871 +SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
4872 + Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
4873 +{
4874 + CLzmaEnc *p = (CLzmaEnc *)pp;
4875 + UInt64 nowPos64;
4876 + SRes res;
4877 + CSeqOutStreamBuf outStream;
4878 +
4879 + outStream.funcTable.Write = MyWrite;
4880 + outStream.data = dest;
4881 + outStream.rem = *destLen;
4882 + outStream.overflow = False;
4883 +
4884 + p->writeEndMark = False;
4885 + p->finished = False;
4886 + p->result = SZ_OK;
4887 +
4888 + if (reInit)
4889 + LzmaEnc_Init(p);
4890 + LzmaEnc_InitPrices(p);
4891 + nowPos64 = p->nowPos64;
4892 + RangeEnc_Init(&p->rc);
4893 + p->rc.outStream = &outStream.funcTable;
4894 +
4895 + res = LzmaEnc_CodeOneBlock(pp, True, desiredPackSize, *unpackSize);
4896 +
4897 + *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
4898 + *destLen -= outStream.rem;
4899 + if (outStream.overflow)
4900 + return SZ_ERROR_OUTPUT_EOF;
4901 +
4902 + return res;
4903 +}
4904 +
4905 +SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
4906 + ISzAlloc *alloc, ISzAlloc *allocBig)
4907 +{
4908 + CLzmaEnc *p = (CLzmaEnc *)pp;
4909 + SRes res = SZ_OK;
4910 +
4911 + #ifdef COMPRESS_MF_MT
4912 + Byte allocaDummy[0x300];
4913 + int i = 0;
4914 + for (i = 0; i < 16; i++)
4915 + allocaDummy[i] = (Byte)i;
4916 + #endif
4917 +
4918 + RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
4919 +
4920 + for (;;)
4921 + {
4922 + res = LzmaEnc_CodeOneBlock(pp, False, 0, 0);
4923 + if (res != SZ_OK || p->finished != 0)
4924 + break;
4925 + if (progress != 0)
4926 + {
4927 + res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
4928 + if (res != SZ_OK)
4929 + {
4930 + res = SZ_ERROR_PROGRESS;
4931 + break;
4932 + }
4933 + }
4934 + }
4935 + LzmaEnc_Finish(pp);
4936 + return res;
4937 +}
4938 +
4939 +SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
4940 +{
4941 + CLzmaEnc *p = (CLzmaEnc *)pp;
4942 + int i;
4943 + UInt32 dictSize = p->dictSize;
4944 + if (*size < LZMA_PROPS_SIZE)
4945 + return SZ_ERROR_PARAM;
4946 + *size = LZMA_PROPS_SIZE;
4947 + props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
4948 +
4949 + for (i = 11; i <= 30; i++)
4950 + {
4951 + if (dictSize <= ((UInt32)2 << i))
4952 + {
4953 + dictSize = (2 << i);
4954 + break;
4955 + }
4956 + if (dictSize <= ((UInt32)3 << i))
4957 + {
4958 + dictSize = (3 << i);
4959 + break;
4960 + }
4961 + }
4962 +
4963 + for (i = 0; i < 4; i++)
4964 + props[1 + i] = (Byte)(dictSize >> (8 * i));
4965 + return SZ_OK;
4966 +}
4967 +
4968 +SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4969 + int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4970 +{
4971 + SRes res;
4972 + CLzmaEnc *p = (CLzmaEnc *)pp;
4973 +
4974 + CSeqOutStreamBuf outStream;
4975 +
4976 + LzmaEnc_SetInputBuf(p, src, srcLen);
4977 +
4978 + outStream.funcTable.Write = MyWrite;
4979 + outStream.data = dest;
4980 + outStream.rem = *destLen;
4981 + outStream.overflow = False;
4982 +
4983 + p->writeEndMark = writeEndMark;
4984 + res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
4985 + progress, alloc, allocBig);
4986 +
4987 + *destLen -= outStream.rem;
4988 + if (outStream.overflow)
4989 + return SZ_ERROR_OUTPUT_EOF;
4990 + return res;
4991 +}
4992 +
4993 +SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
4994 + const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
4995 + ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
4996 +{
4997 + CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
4998 + SRes res;
4999 + if (p == 0)
5000 + return SZ_ERROR_MEM;
5001 +
5002 + res = LzmaEnc_SetProps(p, props);
5003 + if (res == SZ_OK)
5004 + {
5005 + res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
5006 + if (res == SZ_OK)
5007 + res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
5008 + writeEndMark, progress, alloc, allocBig);
5009 + }
5010 +
5011 + LzmaEnc_Destroy(p, alloc, allocBig);
5012 + return res;
5013 +}
5014 --- a/mkfs.jffs2.c
5015 +++ b/mkfs.jffs2.c
5016 @@ -1684,11 +1684,11 @@ int main(int argc, char **argv)
5017 }
5018 erase_block_size *= units;
5019
5020 - /* If it's less than 8KiB, they're not allowed */
5021 - if (erase_block_size < 0x2000) {
5022 - fprintf(stderr, "Erase size 0x%x too small. Increasing to 8KiB minimum\n",
5023 + /* If it's less than 4KiB, they're not allowed */
5024 + if (erase_block_size < 0x1000) {
5025 + fprintf(stderr, "Erase size 0x%x too small. Increasing to 4KiB minimum\n",
5026 erase_block_size);
5027 - erase_block_size = 0x2000;
5028 + erase_block_size = 0x1000;
5029 }
5030 break;
5031 }
This page took 0.240154 seconds and 5 git commands to generate.