apex: Create both 8MB and 16MB apex binaries
[openwrt.git] / package / rt2x00 / src / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 /*
27 * Set enviroment defines for rt2x00.h
28 */
29 #define DRV_NAME "rt2x00lib"
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00lib.h"
36
37 /*
38 * Ring handler.
39 */
40 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41 const unsigned int queue)
42 {
43 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
44
45 /*
46 * Check if we are requesting a reqular TX ring,
47 * or if we are requesting a Beacon or Atim ring.
48 * For Atim rings, we should check if it is supported.
49 */
50 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51 return &rt2x00dev->tx[queue];
52
53 if (!rt2x00dev->bcn || !beacon)
54 return NULL;
55
56 if (queue == IEEE80211_TX_QUEUE_BEACON)
57 return &rt2x00dev->bcn[0];
58 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59 return &rt2x00dev->bcn[1];
60
61 return NULL;
62 }
63 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
64
65 /*
66 * Link tuning handlers
67 */
68 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
69 {
70 rt2x00_clear_link(&rt2x00dev->link);
71
72 /*
73 * Reset the link tuner.
74 */
75 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
87 {
88 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
89 return;
90
91 rt2x00lib_stop_link_tuner(rt2x00dev);
92 rt2x00lib_start_link_tuner(rt2x00dev);
93 }
94
95 /*
96 * Radio control handlers.
97 */
98 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
99 {
100 int status;
101
102 /*
103 * Don't enable the radio twice.
104 * And check if the hardware button has been disabled.
105 */
106 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
107 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
108 return 0;
109
110 /*
111 * Enable radio.
112 */
113 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
114 STATE_RADIO_ON);
115 if (status)
116 return status;
117
118 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120 /*
121 * Enable RX.
122 */
123 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125 /*
126 * Start the TX queues.
127 */
128 ieee80211_start_queues(rt2x00dev->hw);
129
130 return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136 return;
137
138 /*
139 * Stop all scheduled work.
140 */
141 if (work_pending(&rt2x00dev->beacon_work))
142 cancel_work_sync(&rt2x00dev->beacon_work);
143 if (work_pending(&rt2x00dev->filter_work))
144 cancel_work_sync(&rt2x00dev->filter_work);
145 if (work_pending(&rt2x00dev->config_work))
146 cancel_work_sync(&rt2x00dev->config_work);
147
148 /*
149 * Stop the TX queues.
150 */
151 ieee80211_stop_queues(rt2x00dev->hw);
152
153 /*
154 * Disable RX.
155 */
156 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157
158 /*
159 * Disable radio.
160 */
161 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166 /*
167 * When we are disabling the RX, we should also stop the link tuner.
168 */
169 if (state == STATE_RADIO_RX_OFF)
170 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174 /*
175 * When we are enabling the RX, we should also start the link tuner.
176 */
177 if (state == STATE_RADIO_RX_ON &&
178 is_interface_present(&rt2x00dev->interface))
179 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_precalculate_link_signal(struct link *link)
183 {
184 if (link->rx_failed || link->rx_success)
185 link->rx_percentage =
186 (link->rx_success * 100) /
187 (link->rx_failed + link->rx_success);
188 else
189 link->rx_percentage = 50;
190
191 if (link->tx_failed || link->tx_success)
192 link->tx_percentage =
193 (link->tx_success * 100) /
194 (link->tx_failed + link->tx_success);
195 else
196 link->tx_percentage = 50;
197
198 link->rx_success = 0;
199 link->rx_failed = 0;
200 link->tx_success = 0;
201 link->tx_failed = 0;
202 }
203
204 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
205 int rssi)
206 {
207 int rssi_percentage = 0;
208 int signal;
209
210 /*
211 * We need a positive value for the RSSI.
212 */
213 if (rssi < 0)
214 rssi += rt2x00dev->rssi_offset;
215
216 /*
217 * Calculate the different percentages,
218 * which will be used for the signal.
219 */
220 if (rt2x00dev->rssi_offset)
221 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
222
223 /*
224 * Add the individual percentages and use the WEIGHT
225 * defines to calculate the current link signal.
226 */
227 signal = ((WEIGHT_RSSI * rssi_percentage) +
228 (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
229 (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;
230
231 return (signal > 100) ? 100 : signal;
232 }
233
234 static void rt2x00lib_link_tuner(struct work_struct *work)
235 {
236 struct rt2x00_dev *rt2x00dev =
237 container_of(work, struct rt2x00_dev, link.work.work);
238
239 /*
240 * When the radio is shutting down we should
241 * immediately cease all link tuning.
242 */
243 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
244 return;
245
246 /*
247 * Update statistics.
248 */
249 rt2x00dev->ops->lib->link_stats(rt2x00dev);
250
251 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
252 rt2x00dev->link.rx_failed;
253
254 /*
255 * Only perform the link tuning when Link tuning
256 * has been enabled (This could have been disabled from the EEPROM).
257 */
258 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
259 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
260
261 /*
262 * Precalculate a portion of the link signal which is
263 * in based on the tx/rx success/failure counters.
264 */
265 rt2x00lib_precalculate_link_signal(&rt2x00dev->link);
266
267 /*
268 * Increase tuner counter, and reschedule the next link tuner run.
269 */
270 rt2x00dev->link.count++;
271 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
272 LINK_TUNE_INTERVAL);
273 }
274
275 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
276 {
277 struct rt2x00_dev *rt2x00dev =
278 container_of(work, struct rt2x00_dev, filter_work);
279 unsigned int filter = rt2x00dev->interface.filter;
280
281 /*
282 * Since we had stored the filter inside interface.filter,
283 * we should now clear that field. Otherwise the driver will
284 * assume nothing has changed (*total_flags will be compared
285 * to interface.filter to determine if any action is required).
286 */
287 rt2x00dev->interface.filter = 0;
288
289 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
290 filter, &filter, 0, NULL);
291 }
292
293 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
294 {
295 struct rt2x00_dev *rt2x00dev =
296 container_of(work, struct rt2x00_dev, config_work);
297 int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
298
299 rt2x00mac_erp_ie_changed(rt2x00dev->hw,
300 IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
301 }
302
303 /*
304 * Interrupt context handlers.
305 */
306 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
307 {
308 struct rt2x00_dev *rt2x00dev =
309 container_of(work, struct rt2x00_dev, beacon_work);
310 struct data_ring *ring =
311 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
312 struct data_entry *entry = rt2x00_get_data_entry(ring);
313 struct sk_buff *skb;
314
315 skb = ieee80211_beacon_get(rt2x00dev->hw,
316 rt2x00dev->interface.id,
317 &entry->tx_status.control);
318 if (!skb)
319 return;
320
321 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
322 &entry->tx_status.control);
323
324 dev_kfree_skb(skb);
325 }
326
327 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
328 {
329 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
330 return;
331
332 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
333 }
334 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
335
336 void rt2x00lib_txdone(struct data_entry *entry,
337 const int status, const int retry)
338 {
339 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
340 struct ieee80211_tx_status *tx_status = &entry->tx_status;
341 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
342 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
343 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
344 status == TX_FAIL_OTHER);
345
346 /*
347 * Update TX statistics.
348 */
349 tx_status->flags = 0;
350 tx_status->ack_signal = 0;
351 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
352 tx_status->retry_count = retry;
353 rt2x00dev->link.tx_success += success;
354 rt2x00dev->link.tx_failed += retry + fail;
355
356 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
357 if (success)
358 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
359 else
360 stats->dot11ACKFailureCount++;
361 }
362
363 tx_status->queue_length = entry->ring->stats.limit;
364 tx_status->queue_number = tx_status->control.queue;
365
366 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
367 if (success)
368 stats->dot11RTSSuccessCount++;
369 else
370 stats->dot11RTSFailureCount++;
371 }
372
373 /*
374 * Send the tx_status to mac80211,
375 * that method also cleans up the skb structure.
376 */
377 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
378 entry->skb = NULL;
379 }
380 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
381
382 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
383 struct rxdata_entry_desc *desc)
384 {
385 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
386 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
387 struct ieee80211_hw_mode *mode;
388 struct ieee80211_rate *rate;
389 unsigned int i;
390 int val = 0;
391
392 /*
393 * Update RX statistics.
394 */
395 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
396 for (i = 0; i < mode->num_rates; i++) {
397 rate = &mode->rates[i];
398
399 /*
400 * When frame was received with an OFDM bitrate,
401 * the signal is the PLCP value. If it was received with
402 * a CCK bitrate the signal is the rate in 0.5kbit/s.
403 */
404 if (!desc->ofdm)
405 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
406 else
407 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
408
409 if (val == desc->signal) {
410 val = rate->val;
411 break;
412 }
413 }
414
415 rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
416 rt2x00dev->link.rx_success++;
417 rx_status->rate = val;
418 rx_status->signal =
419 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
420 rx_status->ssi = desc->rssi;
421 rx_status->flag = desc->flags;
422
423 /*
424 * Send frame to mac80211
425 */
426 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
427 }
428 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
429
430 /*
431 * TX descriptor initializer
432 */
433 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
434 struct data_desc *txd,
435 struct ieee80211_hdr *ieee80211hdr,
436 unsigned int length,
437 struct ieee80211_tx_control *control)
438 {
439 struct txdata_entry_desc desc;
440 struct data_ring *ring;
441 int tx_rate;
442 int bitrate;
443 int duration;
444 int residual;
445 u16 frame_control;
446 u16 seq_ctrl;
447
448 /*
449 * Make sure the descriptor is properly cleared.
450 */
451 memset(&desc, 0x00, sizeof(desc));
452
453 /*
454 * Get ring pointer, if we fail to obtain the
455 * correct ring, then use the first TX ring.
456 */
457 ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
458 if (!ring)
459 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
460
461 desc.cw_min = ring->tx_params.cw_min;
462 desc.cw_max = ring->tx_params.cw_max;
463 desc.aifs = ring->tx_params.aifs;
464
465 /*
466 * Identify queue
467 */
468 if (control->queue < rt2x00dev->hw->queues)
469 desc.queue = control->queue;
470 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
471 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
472 desc.queue = QUEUE_MGMT;
473 else
474 desc.queue = QUEUE_OTHER;
475
476 /*
477 * Read required fields from ieee80211 header.
478 */
479 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
480 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
481
482 tx_rate = control->tx_rate;
483
484 /*
485 * Check if this is a RTS/CTS frame
486 */
487 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
488 __set_bit(ENTRY_TXD_BURST, &desc.flags);
489 if (is_rts_frame(frame_control))
490 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
491 if (control->rts_cts_rate)
492 tx_rate = control->rts_cts_rate;
493 }
494
495 /*
496 * Check for OFDM
497 */
498 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
499 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
500
501 /*
502 * Check if more fragments are pending
503 */
504 if (ieee80211_get_morefrag(ieee80211hdr)) {
505 __set_bit(ENTRY_TXD_BURST, &desc.flags);
506 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
507 }
508
509 /*
510 * Beacons and probe responses require the tsf timestamp
511 * to be inserted into the frame.
512 */
513 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
514 is_probe_resp(frame_control))
515 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
516
517 /*
518 * Determine with what IFS priority this frame should be send.
519 * Set ifs to IFS_SIFS when the this is not the first fragment,
520 * or this fragment came after RTS/CTS.
521 */
522 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
523 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
524 desc.ifs = IFS_SIFS;
525 else
526 desc.ifs = IFS_BACKOFF;
527
528 /*
529 * PLCP setup
530 * Length calculation depends on OFDM/CCK rate.
531 */
532 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
533 desc.service = 0x04;
534
535 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
536 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
537 desc.length_low = ((length + FCS_LEN) & 0x3f);
538 } else {
539 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
540
541 /*
542 * Convert length to microseconds.
543 */
544 residual = get_duration_res(length + FCS_LEN, bitrate);
545 duration = get_duration(length + FCS_LEN, bitrate);
546
547 if (residual != 0) {
548 duration++;
549
550 /*
551 * Check if we need to set the Length Extension
552 */
553 if (bitrate == 110 && residual <= 30)
554 desc.service |= 0x80;
555 }
556
557 desc.length_high = (duration >> 8) & 0xff;
558 desc.length_low = duration & 0xff;
559
560 /*
561 * When preamble is enabled we should set the
562 * preamble bit for the signal.
563 */
564 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
565 desc.signal |= 0x08;
566 }
567
568 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
569 ieee80211hdr, length, control);
570 }
571 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
572
573 /*
574 * Driver initialization handlers.
575 */
576 static void rt2x00lib_channel(struct ieee80211_channel *entry,
577 const int channel, const int tx_power,
578 const int value)
579 {
580 entry->chan = channel;
581 if (channel <= 14)
582 entry->freq = 2407 + (5 * channel);
583 else
584 entry->freq = 5000 + (5 * channel);
585 entry->val = value;
586 entry->flag =
587 IEEE80211_CHAN_W_IBSS |
588 IEEE80211_CHAN_W_ACTIVE_SCAN |
589 IEEE80211_CHAN_W_SCAN;
590 entry->power_level = tx_power;
591 entry->antenna_max = 0xff;
592 }
593
594 static void rt2x00lib_rate(struct ieee80211_rate *entry,
595 const int rate, const int mask,
596 const int plcp, const int flags)
597 {
598 entry->rate = rate;
599 entry->val =
600 DEVICE_SET_RATE_FIELD(rate, RATE) |
601 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
602 DEVICE_SET_RATE_FIELD(plcp, PLCP);
603 entry->flags = flags;
604 entry->val2 = entry->val;
605 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
606 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
607 entry->min_rssi_ack = 0;
608 entry->min_rssi_ack_delta = 0;
609 }
610
611 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
612 struct hw_mode_spec *spec)
613 {
614 struct ieee80211_hw *hw = rt2x00dev->hw;
615 struct ieee80211_hw_mode *hwmodes;
616 struct ieee80211_channel *channels;
617 struct ieee80211_rate *rates;
618 unsigned int i;
619 unsigned char tx_power;
620
621 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
622 if (!hwmodes)
623 goto exit;
624
625 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
626 if (!channels)
627 goto exit_free_modes;
628
629 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
630 if (!rates)
631 goto exit_free_channels;
632
633 /*
634 * Initialize Rate list.
635 */
636 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
637 0x00, IEEE80211_RATE_CCK);
638 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
639 0x01, IEEE80211_RATE_CCK_2);
640 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
641 0x02, IEEE80211_RATE_CCK_2);
642 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
643 0x03, IEEE80211_RATE_CCK_2);
644
645 if (spec->num_rates > 4) {
646 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
647 0x0b, IEEE80211_RATE_OFDM);
648 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
649 0x0f, IEEE80211_RATE_OFDM);
650 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
651 0x0a, IEEE80211_RATE_OFDM);
652 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
653 0x0e, IEEE80211_RATE_OFDM);
654 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
655 0x09, IEEE80211_RATE_OFDM);
656 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
657 0x0d, IEEE80211_RATE_OFDM);
658 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
659 0x08, IEEE80211_RATE_OFDM);
660 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
661 0x0c, IEEE80211_RATE_OFDM);
662 }
663
664 /*
665 * Initialize Channel list.
666 */
667 for (i = 0; i < spec->num_channels; i++) {
668 if (spec->channels[i].channel <= 14)
669 tx_power = spec->tx_power_bg[i];
670 else if (spec->tx_power_a)
671 tx_power = spec->tx_power_a[i];
672 else
673 tx_power = spec->tx_power_default;
674
675 rt2x00lib_channel(&channels[i],
676 spec->channels[i].channel, tx_power, i);
677 }
678
679 /*
680 * Intitialize 802.11b
681 * Rates: CCK.
682 * Channels: OFDM.
683 */
684 if (spec->num_modes > HWMODE_B) {
685 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
686 hwmodes[HWMODE_B].num_channels = 14;
687 hwmodes[HWMODE_B].num_rates = 4;
688 hwmodes[HWMODE_B].channels = channels;
689 hwmodes[HWMODE_B].rates = rates;
690 }
691
692 /*
693 * Intitialize 802.11g
694 * Rates: CCK, OFDM.
695 * Channels: OFDM.
696 */
697 if (spec->num_modes > HWMODE_G) {
698 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
699 hwmodes[HWMODE_G].num_channels = 14;
700 hwmodes[HWMODE_G].num_rates = spec->num_rates;
701 hwmodes[HWMODE_G].channels = channels;
702 hwmodes[HWMODE_G].rates = rates;
703 }
704
705 /*
706 * Intitialize 802.11a
707 * Rates: OFDM.
708 * Channels: OFDM, UNII, HiperLAN2.
709 */
710 if (spec->num_modes > HWMODE_A) {
711 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
712 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
713 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
714 hwmodes[HWMODE_A].channels = &channels[14];
715 hwmodes[HWMODE_A].rates = &rates[4];
716 }
717
718 if (spec->num_modes > HWMODE_G &&
719 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
720 goto exit_free_rates;
721
722 if (spec->num_modes > HWMODE_B &&
723 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
724 goto exit_free_rates;
725
726 if (spec->num_modes > HWMODE_A &&
727 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
728 goto exit_free_rates;
729
730 rt2x00dev->hwmodes = hwmodes;
731
732 return 0;
733
734 exit_free_rates:
735 kfree(rates);
736
737 exit_free_channels:
738 kfree(channels);
739
740 exit_free_modes:
741 kfree(hwmodes);
742
743 exit:
744 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
745 return -ENOMEM;
746 }
747
748 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
749 {
750 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
751 ieee80211_unregister_hw(rt2x00dev->hw);
752
753 if (likely(rt2x00dev->hwmodes)) {
754 kfree(rt2x00dev->hwmodes->channels);
755 kfree(rt2x00dev->hwmodes->rates);
756 kfree(rt2x00dev->hwmodes);
757 rt2x00dev->hwmodes = NULL;
758 }
759 }
760
761 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
762 {
763 struct hw_mode_spec *spec = &rt2x00dev->spec;
764 int status;
765
766 /*
767 * Initialize HW modes.
768 */
769 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
770 if (status)
771 return status;
772
773 /*
774 * Register HW.
775 */
776 status = ieee80211_register_hw(rt2x00dev->hw);
777 if (status) {
778 rt2x00lib_remove_hw(rt2x00dev);
779 return status;
780 }
781
782 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
783
784 return 0;
785 }
786
787 /*
788 * Initialization/uninitialization handlers.
789 */
790 static int rt2x00lib_alloc_entries(struct data_ring *ring,
791 const u16 max_entries, const u16 data_size,
792 const u16 desc_size)
793 {
794 struct data_entry *entry;
795 unsigned int i;
796
797 ring->stats.limit = max_entries;
798 ring->data_size = data_size;
799 ring->desc_size = desc_size;
800
801 /*
802 * Allocate all ring entries.
803 */
804 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
805 if (!entry)
806 return -ENOMEM;
807
808 for (i = 0; i < ring->stats.limit; i++) {
809 entry[i].flags = 0;
810 entry[i].ring = ring;
811 entry[i].skb = NULL;
812 }
813
814 ring->entry = entry;
815
816 return 0;
817 }
818
819 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
820 {
821 struct data_ring *ring;
822
823 /*
824 * Allocate the RX ring.
825 */
826 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
827 rt2x00dev->ops->rxd_size))
828 return -ENOMEM;
829
830 /*
831 * First allocate the TX rings.
832 */
833 txring_for_each(rt2x00dev, ring) {
834 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
835 rt2x00dev->ops->txd_size))
836 return -ENOMEM;
837 }
838
839 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
840 return 0;
841
842 /*
843 * Allocate the BEACON ring.
844 */
845 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
846 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
847 return -ENOMEM;
848
849 /*
850 * Allocate the Atim ring.
851 */
852 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
853 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
854 return -ENOMEM;
855
856 return 0;
857 }
858
859 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
860 {
861 struct data_ring *ring;
862
863 ring_for_each(rt2x00dev, ring) {
864 kfree(ring->entry);
865 ring->entry = NULL;
866 }
867 }
868
869 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
870 {
871 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
872 return;
873
874 /*
875 * Unregister rfkill.
876 */
877 rt2x00rfkill_unregister(rt2x00dev);
878
879 /*
880 * Allow the HW to uninitialize.
881 */
882 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
883
884 /*
885 * Free allocated ring entries.
886 */
887 rt2x00lib_free_ring_entries(rt2x00dev);
888 }
889
890 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
891 {
892 int status;
893
894 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
895 return 0;
896
897 /*
898 * Allocate all ring entries.
899 */
900 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
901 if (status) {
902 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
903 return status;
904 }
905
906 /*
907 * Initialize the device.
908 */
909 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
910 if (status)
911 goto exit;
912
913 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
914
915 /*
916 * Register the rfkill handler.
917 */
918 status = rt2x00rfkill_register(rt2x00dev);
919 if (status)
920 goto exit_unitialize;
921
922 return 0;
923
924 exit_unitialize:
925 rt2x00lib_uninitialize(rt2x00dev);
926
927 exit:
928 rt2x00lib_free_ring_entries(rt2x00dev);
929
930 return status;
931 }
932
933 /*
934 * driver allocation handlers.
935 */
936 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
937 {
938 struct data_ring *ring;
939
940 /*
941 * We need the following rings:
942 * RX: 1
943 * TX: hw->queues
944 * Beacon: 1 (if required)
945 * Atim: 1 (if required)
946 */
947 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
948 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
949
950 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
951 if (!ring) {
952 ERROR(rt2x00dev, "Ring allocation failed.\n");
953 return -ENOMEM;
954 }
955
956 /*
957 * Initialize pointers
958 */
959 rt2x00dev->rx = ring;
960 rt2x00dev->tx = &rt2x00dev->rx[1];
961 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
962 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
963
964 /*
965 * Initialize ring parameters.
966 * cw_min: 2^5 = 32.
967 * cw_max: 2^10 = 1024.
968 */
969 ring_for_each(rt2x00dev, ring) {
970 ring->rt2x00dev = rt2x00dev;
971 ring->tx_params.aifs = 2;
972 ring->tx_params.cw_min = 5;
973 ring->tx_params.cw_max = 10;
974 }
975
976 return 0;
977 }
978
979 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
980 {
981 kfree(rt2x00dev->rx);
982 rt2x00dev->rx = NULL;
983 rt2x00dev->tx = NULL;
984 rt2x00dev->bcn = NULL;
985 }
986
987 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
988 {
989 int retval = -ENOMEM;
990
991 /*
992 * Let the driver probe the device to detect the capabilities.
993 */
994 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
995 if (retval) {
996 ERROR(rt2x00dev, "Failed to allocate device.\n");
997 goto exit;
998 }
999
1000 /*
1001 * Initialize configuration work.
1002 */
1003 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1004 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1005 INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1006 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1007
1008 /*
1009 * Reset current working type.
1010 */
1011 rt2x00dev->interface.type = INVALID_INTERFACE;
1012
1013 /*
1014 * Allocate ring array.
1015 */
1016 retval = rt2x00lib_alloc_rings(rt2x00dev);
1017 if (retval)
1018 goto exit;
1019
1020 /*
1021 * Initialize ieee80211 structure.
1022 */
1023 retval = rt2x00lib_probe_hw(rt2x00dev);
1024 if (retval) {
1025 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1026 goto exit;
1027 }
1028
1029 /*
1030 * Allocatie rfkill.
1031 */
1032 retval = rt2x00rfkill_allocate(rt2x00dev);
1033 if (retval)
1034 goto exit;
1035
1036 /*
1037 * Open the debugfs entry.
1038 */
1039 rt2x00debug_register(rt2x00dev);
1040
1041 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1042
1043 return 0;
1044
1045 exit:
1046 rt2x00lib_remove_dev(rt2x00dev);
1047
1048 return retval;
1049 }
1050 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1051
1052 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1053 {
1054 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1055
1056 /*
1057 * Disable radio.
1058 */
1059 rt2x00lib_disable_radio(rt2x00dev);
1060
1061 /*
1062 * Uninitialize device.
1063 */
1064 rt2x00lib_uninitialize(rt2x00dev);
1065
1066 /*
1067 * Close debugfs entry.
1068 */
1069 rt2x00debug_deregister(rt2x00dev);
1070
1071 /*
1072 * Free rfkill
1073 */
1074 rt2x00rfkill_free(rt2x00dev);
1075
1076 /*
1077 * Free ieee80211_hw memory.
1078 */
1079 rt2x00lib_remove_hw(rt2x00dev);
1080
1081 /*
1082 * Free firmware image.
1083 */
1084 rt2x00lib_free_firmware(rt2x00dev);
1085
1086 /*
1087 * Free ring structures.
1088 */
1089 rt2x00lib_free_rings(rt2x00dev);
1090 }
1091 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1092
1093 /*
1094 * Device state handlers
1095 */
1096 #ifdef CONFIG_PM
1097 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1098 {
1099 int retval;
1100
1101 NOTICE(rt2x00dev, "Going to sleep.\n");
1102 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1103
1104 /*
1105 * Only continue if mac80211 has open interfaces.
1106 */
1107 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1108 goto exit;
1109 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1110
1111 /*
1112 * Disable radio and unitialize all items
1113 * that must be recreated on resume.
1114 */
1115 rt2x00mac_stop(rt2x00dev->hw);
1116 rt2x00lib_uninitialize(rt2x00dev);
1117 rt2x00debug_deregister(rt2x00dev);
1118
1119 exit:
1120 /*
1121 * Set device mode to sleep for power management.
1122 */
1123 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1124 if (retval)
1125 return retval;
1126
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1130
1131 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1132 {
1133 struct interface *intf = &rt2x00dev->interface;
1134 int retval;
1135
1136 NOTICE(rt2x00dev, "Waking up.\n");
1137 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1138
1139 /*
1140 * Open the debugfs entry.
1141 */
1142 rt2x00debug_register(rt2x00dev);
1143
1144 /*
1145 * Only continue if mac80211 had open interfaces.
1146 */
1147 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1148 return 0;
1149
1150 /*
1151 * Reinitialize device and all active interfaces.
1152 */
1153 retval = rt2x00mac_start(rt2x00dev->hw);
1154 if (retval)
1155 goto exit;
1156
1157 /*
1158 * Reconfigure device.
1159 */
1160 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1161 if (!rt2x00dev->hw->conf.radio_enabled)
1162 rt2x00lib_disable_radio(rt2x00dev);
1163
1164 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1165 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1166 rt2x00lib_config_type(rt2x00dev, intf->type);
1167
1168 /*
1169 * It is possible that during that mac80211 has attempted
1170 * to send frames while we were suspending or resuming.
1171 * In that case we have disabled the TX queue and should
1172 * now enable it again
1173 */
1174 ieee80211_start_queues(rt2x00dev->hw);
1175
1176 /*
1177 * When in Master or Ad-hoc mode,
1178 * restart Beacon transmitting by faking a beacondone event.
1179 */
1180 if (intf->type == IEEE80211_IF_TYPE_AP ||
1181 intf->type == IEEE80211_IF_TYPE_IBSS)
1182 rt2x00lib_beacondone(rt2x00dev);
1183
1184 return 0;
1185
1186 exit:
1187 rt2x00lib_disable_radio(rt2x00dev);
1188 rt2x00lib_uninitialize(rt2x00dev);
1189 rt2x00debug_deregister(rt2x00dev);
1190
1191 return retval;
1192 }
1193 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1194 #endif /* CONFIG_PM */
1195
1196 /*
1197 * rt2x00lib module information.
1198 */
1199 MODULE_AUTHOR(DRV_PROJECT);
1200 MODULE_VERSION(DRV_VERSION);
1201 MODULE_DESCRIPTION("rt2x00 library");
1202 MODULE_LICENSE("GPL");
This page took 0.094209 seconds and 5 git commands to generate.