[au1000] refresh patches
[openwrt.git] / target / linux / generic-2.6 / patches-2.6.26 / 910-cryptodev_backport.patch
1 --- a/crypto/Kconfig
2 +++ b/crypto/Kconfig
3 @@ -65,6 +65,7 @@ config CRYPTO_NULL
4 config CRYPTO_CRYPTD
5 tristate "Software async crypto daemon"
6 select CRYPTO_BLKCIPHER
7 + select CRYPTO_HASH
8 select CRYPTO_MANAGER
9 help
10 This is a generic software asynchronous crypto daemon that
11 @@ -212,7 +213,7 @@ comment "Digest"
12
13 config CRYPTO_CRC32C
14 tristate "CRC32c CRC algorithm"
15 - select CRYPTO_ALGAPI
16 + select CRYPTO_HASH
17 select LIBCRC32C
18 help
19 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
20 @@ -241,6 +242,57 @@ config CRYPTO_MICHAEL_MIC
21 should not be used for other purposes because of the weakness
22 of the algorithm.
23
24 +config CRYPTO_RMD128
25 + tristate "RIPEMD-128 digest algorithm"
26 + select CRYPTO_ALGAPI
27 + help
28 + RIPEMD-128 (ISO/IEC 10118-3:2004).
29 +
30 + RIPEMD-128 is a 128-bit cryptographic hash function. It should only
31 + to be used as a secure replacement for RIPEMD. For other use cases
32 + RIPEMD-160 should be used.
33 +
34 + Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
35 + See <http://home.esat.kuleuven.be/~bosselae/ripemd160.html>
36 +
37 +config CRYPTO_RMD160
38 + tristate "RIPEMD-160 digest algorithm"
39 + select CRYPTO_ALGAPI
40 + help
41 + RIPEMD-160 (ISO/IEC 10118-3:2004).
42 +
43 + RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
44 + to be used as a secure replacement for the 128-bit hash functions
45 + MD4, MD5 and it's predecessor RIPEMD (not to be confused with RIPEMD-128).
46 +
47 + It's speed is comparable to SHA1 and there are no known attacks against
48 + RIPEMD-160.
49 +
50 + Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
51 + See <http://home.esat.kuleuven.be/~bosselae/ripemd160.html>
52 +
53 +config CRYPTO_RMD256
54 + tristate "RIPEMD-256 digest algorithm"
55 + select CRYPTO_ALGAPI
56 + help
57 + RIPEMD-256 is an optional extension of RIPEMD-128 with a 256 bit hash.
58 + It is intended for applications that require longer hash-results, without
59 + needing a larger security level (than RIPEMD-128).
60 +
61 + Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
62 + See <http://home.esat.kuleuven.be/~bosselae/ripemd160.html>
63 +
64 +config CRYPTO_RMD320
65 + tristate "RIPEMD-320 digest algorithm"
66 + select CRYPTO_ALGAPI
67 + help
68 + RIPEMD-320 is an optional extension of RIPEMD-160 with a 320 bit hash.
69 + It is intended for applications that require longer hash-results, without
70 + needing a larger security level (than RIPEMD-160).
71 +
72 + Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
73 + See <http://home.esat.kuleuven.be/~bosselae/ripemd160.html>
74 +
75 config CRYPTO_SHA1
76 tristate "SHA1 digest algorithm"
77 select CRYPTO_ALGAPI
78 @@ -614,6 +666,15 @@ config CRYPTO_LZO
79 help
80 This is the LZO algorithm.
81
82 +comment "Random Number Generation"
83 +
84 +config CRYPTO_PRNG
85 + tristate "Pseudo Random Number Generation for Cryptographic modules"
86 + help
87 + This option enables the generic pseudo random number generator
88 + for cryptographic modules. Uses the Algorithm specified in
89 + ANSI X9.31 A.2.4
90 +
91 source "drivers/crypto/Kconfig"
92
93 endif # if CRYPTO
94 --- a/crypto/Makefile
95 +++ b/crypto/Makefile
96 @@ -19,6 +19,7 @@ obj-$(CONFIG_CRYPTO_BLKCIPHER) += crypto
97 obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o
98
99 crypto_hash-objs := hash.o
100 +crypto_hash-objs += ahash.o
101 obj-$(CONFIG_CRYPTO_HASH) += crypto_hash.o
102
103 obj-$(CONFIG_CRYPTO_MANAGER) += cryptomgr.o
104 @@ -27,6 +28,10 @@ obj-$(CONFIG_CRYPTO_XCBC) += xcbc.o
105 obj-$(CONFIG_CRYPTO_NULL) += crypto_null.o
106 obj-$(CONFIG_CRYPTO_MD4) += md4.o
107 obj-$(CONFIG_CRYPTO_MD5) += md5.o
108 +obj-$(CONFIG_CRYPTO_RMD128) += rmd128.o
109 +obj-$(CONFIG_CRYPTO_RMD160) += rmd160.o
110 +obj-$(CONFIG_CRYPTO_RMD256) += rmd256.o
111 +obj-$(CONFIG_CRYPTO_RMD320) += rmd320.o
112 obj-$(CONFIG_CRYPTO_SHA1) += sha1_generic.o
113 obj-$(CONFIG_CRYPTO_SHA256) += sha256_generic.o
114 obj-$(CONFIG_CRYPTO_SHA512) += sha512_generic.o
115 @@ -64,7 +69,7 @@ obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += mich
116 obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
117 obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o
118 obj-$(CONFIG_CRYPTO_LZO) += lzo.o
119 -
120 +obj-$(CONFIG_CRYPTO_PRNG) += prng.o
121 obj-$(CONFIG_CRYPTO_TEST) += tcrypt.o
122
123 #
124 --- /dev/null
125 +++ b/crypto/ahash.c
126 @@ -0,0 +1,194 @@
127 +/*
128 + * Asynchronous Cryptographic Hash operations.
129 + *
130 + * This is the asynchronous version of hash.c with notification of
131 + * completion via a callback.
132 + *
133 + * Copyright (c) 2008 Loc Ho <lho@amcc.com>
134 + *
135 + * This program is free software; you can redistribute it and/or modify it
136 + * under the terms of the GNU General Public License as published by the Free
137 + * Software Foundation; either version 2 of the License, or (at your option)
138 + * any later version.
139 + *
140 + */
141 +
142 +#include <crypto/internal/hash.h>
143 +#include <crypto/scatterwalk.h>
144 +#include <linux/err.h>
145 +#include <linux/kernel.h>
146 +#include <linux/module.h>
147 +#include <linux/sched.h>
148 +#include <linux/slab.h>
149 +#include <linux/seq_file.h>
150 +
151 +#include "internal.h"
152 +
153 +static int hash_walk_next(struct crypto_hash_walk *walk)
154 +{
155 + unsigned int alignmask = walk->alignmask;
156 + unsigned int offset = walk->offset;
157 + unsigned int nbytes = min(walk->entrylen,
158 + ((unsigned int)(PAGE_SIZE)) - offset);
159 +
160 + walk->data = crypto_kmap(walk->pg, 0);
161 + walk->data += offset;
162 +
163 + if (offset & alignmask)
164 + nbytes = alignmask + 1 - (offset & alignmask);
165 +
166 + walk->entrylen -= nbytes;
167 + return nbytes;
168 +}
169 +
170 +static int hash_walk_new_entry(struct crypto_hash_walk *walk)
171 +{
172 + struct scatterlist *sg;
173 +
174 + sg = walk->sg;
175 + walk->pg = sg_page(sg);
176 + walk->offset = sg->offset;
177 + walk->entrylen = sg->length;
178 +
179 + if (walk->entrylen > walk->total)
180 + walk->entrylen = walk->total;
181 + walk->total -= walk->entrylen;
182 +
183 + return hash_walk_next(walk);
184 +}
185 +
186 +int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err)
187 +{
188 + unsigned int alignmask = walk->alignmask;
189 + unsigned int nbytes = walk->entrylen;
190 +
191 + walk->data -= walk->offset;
192 +
193 + if (nbytes && walk->offset & alignmask && !err) {
194 + walk->offset += alignmask - 1;
195 + walk->offset = ALIGN(walk->offset, alignmask + 1);
196 + walk->data += walk->offset;
197 +
198 + nbytes = min(nbytes,
199 + ((unsigned int)(PAGE_SIZE)) - walk->offset);
200 + walk->entrylen -= nbytes;
201 +
202 + return nbytes;
203 + }
204 +
205 + crypto_kunmap(walk->data, 0);
206 + crypto_yield(walk->flags);
207 +
208 + if (err)
209 + return err;
210 +
211 + walk->offset = 0;
212 +
213 + if (nbytes)
214 + return hash_walk_next(walk);
215 +
216 + if (!walk->total)
217 + return 0;
218 +
219 + walk->sg = scatterwalk_sg_next(walk->sg);
220 +
221 + return hash_walk_new_entry(walk);
222 +}
223 +EXPORT_SYMBOL_GPL(crypto_hash_walk_done);
224 +
225 +int crypto_hash_walk_first(struct ahash_request *req,
226 + struct crypto_hash_walk *walk)
227 +{
228 + walk->total = req->nbytes;
229 +
230 + if (!walk->total)
231 + return 0;
232 +
233 + walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
234 + walk->sg = req->src;
235 + walk->flags = req->base.flags;
236 +
237 + return hash_walk_new_entry(walk);
238 +}
239 +EXPORT_SYMBOL_GPL(crypto_hash_walk_first);
240 +
241 +static int ahash_setkey_unaligned(struct crypto_ahash *tfm, const u8 *key,
242 + unsigned int keylen)
243 +{
244 + struct ahash_alg *ahash = crypto_ahash_alg(tfm);
245 + unsigned long alignmask = crypto_ahash_alignmask(tfm);
246 + int ret;
247 + u8 *buffer, *alignbuffer;
248 + unsigned long absize;
249 +
250 + absize = keylen + alignmask;
251 + buffer = kmalloc(absize, GFP_ATOMIC);
252 + if (!buffer)
253 + return -ENOMEM;
254 +
255 + alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
256 + memcpy(alignbuffer, key, keylen);
257 + ret = ahash->setkey(tfm, alignbuffer, keylen);
258 + memset(alignbuffer, 0, keylen);
259 + kfree(buffer);
260 + return ret;
261 +}
262 +
263 +static int ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
264 + unsigned int keylen)
265 +{
266 + struct ahash_alg *ahash = crypto_ahash_alg(tfm);
267 + unsigned long alignmask = crypto_ahash_alignmask(tfm);
268 +
269 + if ((unsigned long)key & alignmask)
270 + return ahash_setkey_unaligned(tfm, key, keylen);
271 +
272 + return ahash->setkey(tfm, key, keylen);
273 +}
274 +
275 +static unsigned int crypto_ahash_ctxsize(struct crypto_alg *alg, u32 type,
276 + u32 mask)
277 +{
278 + return alg->cra_ctxsize;
279 +}
280 +
281 +static int crypto_init_ahash_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
282 +{
283 + struct ahash_alg *alg = &tfm->__crt_alg->cra_ahash;
284 + struct ahash_tfm *crt = &tfm->crt_ahash;
285 +
286 + if (alg->digestsize > PAGE_SIZE / 8)
287 + return -EINVAL;
288 +
289 + crt->init = alg->init;
290 + crt->update = alg->update;
291 + crt->final = alg->final;
292 + crt->digest = alg->digest;
293 + crt->setkey = ahash_setkey;
294 + crt->digestsize = alg->digestsize;
295 +
296 + return 0;
297 +}
298 +
299 +static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
300 + __attribute__ ((unused));
301 +static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
302 +{
303 + seq_printf(m, "type : ahash\n");
304 + seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
305 + "yes" : "no");
306 + seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
307 + seq_printf(m, "digestsize : %u\n", alg->cra_hash.digestsize);
308 +}
309 +
310 +const struct crypto_type crypto_ahash_type = {
311 + .ctxsize = crypto_ahash_ctxsize,
312 + .init = crypto_init_ahash_ops,
313 +#ifdef CONFIG_PROC_FS
314 + .show = crypto_ahash_show,
315 +#endif
316 +};
317 +EXPORT_SYMBOL_GPL(crypto_ahash_type);
318 +
319 +MODULE_LICENSE("GPL");
320 +MODULE_DESCRIPTION("Asynchronous cryptographic hash type");
321 --- a/crypto/api.c
322 +++ b/crypto/api.c
323 @@ -235,8 +235,12 @@ static int crypto_init_ops(struct crypto
324 return crypto_init_cipher_ops(tfm);
325
326 case CRYPTO_ALG_TYPE_DIGEST:
327 - return crypto_init_digest_ops(tfm);
328 -
329 + if ((mask & CRYPTO_ALG_TYPE_HASH_MASK) !=
330 + CRYPTO_ALG_TYPE_HASH_MASK)
331 + return crypto_init_digest_ops_async(tfm);
332 + else
333 + return crypto_init_digest_ops(tfm);
334 +
335 case CRYPTO_ALG_TYPE_COMPRESS:
336 return crypto_init_compress_ops(tfm);
337
338 --- a/crypto/camellia.c
339 +++ b/crypto/camellia.c
340 @@ -35,6 +35,8 @@
341 #include <linux/init.h>
342 #include <linux/kernel.h>
343 #include <linux/module.h>
344 +#include <linux/bitops.h>
345 +#include <asm/unaligned.h>
346
347 static const u32 camellia_sp1110[256] = {
348 0x70707000,0x82828200,0x2c2c2c00,0xececec00,
349 @@ -335,20 +337,6 @@ static const u32 camellia_sp4404[256] =
350 /*
351 * macros
352 */
353 -#define GETU32(v, pt) \
354 - do { \
355 - /* latest breed of gcc is clever enough to use move */ \
356 - memcpy(&(v), (pt), 4); \
357 - (v) = be32_to_cpu(v); \
358 - } while(0)
359 -
360 -/* rotation right shift 1byte */
361 -#define ROR8(x) (((x) >> 8) + ((x) << 24))
362 -/* rotation left shift 1bit */
363 -#define ROL1(x) (((x) << 1) + ((x) >> 31))
364 -/* rotation left shift 1byte */
365 -#define ROL8(x) (((x) << 8) + ((x) >> 24))
366 -
367 #define ROLDQ(ll, lr, rl, rr, w0, w1, bits) \
368 do { \
369 w0 = ll; \
370 @@ -383,7 +371,7 @@ static const u32 camellia_sp4404[256] =
371 ^ camellia_sp3033[(u8)(il >> 8)] \
372 ^ camellia_sp4404[(u8)(il )]; \
373 yl ^= yr; \
374 - yr = ROR8(yr); \
375 + yr = ror32(yr, 8); \
376 yr ^= yl; \
377 } while(0)
378
379 @@ -405,7 +393,7 @@ static void camellia_setup_tail(u32 *sub
380 subL[7] ^= subL[1]; subR[7] ^= subR[1];
381 subL[1] ^= subR[1] & ~subR[9];
382 dw = subL[1] & subL[9],
383 - subR[1] ^= ROL1(dw); /* modified for FLinv(kl2) */
384 + subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl2) */
385 /* round 8 */
386 subL[11] ^= subL[1]; subR[11] ^= subR[1];
387 /* round 10 */
388 @@ -414,7 +402,7 @@ static void camellia_setup_tail(u32 *sub
389 subL[15] ^= subL[1]; subR[15] ^= subR[1];
390 subL[1] ^= subR[1] & ~subR[17];
391 dw = subL[1] & subL[17],
392 - subR[1] ^= ROL1(dw); /* modified for FLinv(kl4) */
393 + subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl4) */
394 /* round 14 */
395 subL[19] ^= subL[1]; subR[19] ^= subR[1];
396 /* round 16 */
397 @@ -430,7 +418,7 @@ static void camellia_setup_tail(u32 *sub
398 } else {
399 subL[1] ^= subR[1] & ~subR[25];
400 dw = subL[1] & subL[25],
401 - subR[1] ^= ROL1(dw); /* modified for FLinv(kl6) */
402 + subR[1] ^= rol32(dw, 1); /* modified for FLinv(kl6) */
403 /* round 20 */
404 subL[27] ^= subL[1]; subR[27] ^= subR[1];
405 /* round 22 */
406 @@ -450,7 +438,7 @@ static void camellia_setup_tail(u32 *sub
407 subL[26] ^= kw4l; subR[26] ^= kw4r;
408 kw4l ^= kw4r & ~subR[24];
409 dw = kw4l & subL[24],
410 - kw4r ^= ROL1(dw); /* modified for FL(kl5) */
411 + kw4r ^= rol32(dw, 1); /* modified for FL(kl5) */
412 }
413 /* round 17 */
414 subL[22] ^= kw4l; subR[22] ^= kw4r;
415 @@ -460,7 +448,7 @@ static void camellia_setup_tail(u32 *sub
416 subL[18] ^= kw4l; subR[18] ^= kw4r;
417 kw4l ^= kw4r & ~subR[16];
418 dw = kw4l & subL[16],
419 - kw4r ^= ROL1(dw); /* modified for FL(kl3) */
420 + kw4r ^= rol32(dw, 1); /* modified for FL(kl3) */
421 /* round 11 */
422 subL[14] ^= kw4l; subR[14] ^= kw4r;
423 /* round 9 */
424 @@ -469,7 +457,7 @@ static void camellia_setup_tail(u32 *sub
425 subL[10] ^= kw4l; subR[10] ^= kw4r;
426 kw4l ^= kw4r & ~subR[8];
427 dw = kw4l & subL[8],
428 - kw4r ^= ROL1(dw); /* modified for FL(kl1) */
429 + kw4r ^= rol32(dw, 1); /* modified for FL(kl1) */
430 /* round 5 */
431 subL[6] ^= kw4l; subR[6] ^= kw4r;
432 /* round 3 */
433 @@ -494,7 +482,7 @@ static void camellia_setup_tail(u32 *sub
434 SUBKEY_R(6) = subR[5] ^ subR[7];
435 tl = subL[10] ^ (subR[10] & ~subR[8]);
436 dw = tl & subL[8], /* FL(kl1) */
437 - tr = subR[10] ^ ROL1(dw);
438 + tr = subR[10] ^ rol32(dw, 1);
439 SUBKEY_L(7) = subL[6] ^ tl; /* round 6 */
440 SUBKEY_R(7) = subR[6] ^ tr;
441 SUBKEY_L(8) = subL[8]; /* FL(kl1) */
442 @@ -503,7 +491,7 @@ static void camellia_setup_tail(u32 *sub
443 SUBKEY_R(9) = subR[9];
444 tl = subL[7] ^ (subR[7] & ~subR[9]);
445 dw = tl & subL[9], /* FLinv(kl2) */
446 - tr = subR[7] ^ ROL1(dw);
447 + tr = subR[7] ^ rol32(dw, 1);
448 SUBKEY_L(10) = tl ^ subL[11]; /* round 7 */
449 SUBKEY_R(10) = tr ^ subR[11];
450 SUBKEY_L(11) = subL[10] ^ subL[12]; /* round 8 */
451 @@ -516,7 +504,7 @@ static void camellia_setup_tail(u32 *sub
452 SUBKEY_R(14) = subR[13] ^ subR[15];
453 tl = subL[18] ^ (subR[18] & ~subR[16]);
454 dw = tl & subL[16], /* FL(kl3) */
455 - tr = subR[18] ^ ROL1(dw);
456 + tr = subR[18] ^ rol32(dw, 1);
457 SUBKEY_L(15) = subL[14] ^ tl; /* round 12 */
458 SUBKEY_R(15) = subR[14] ^ tr;
459 SUBKEY_L(16) = subL[16]; /* FL(kl3) */
460 @@ -525,7 +513,7 @@ static void camellia_setup_tail(u32 *sub
461 SUBKEY_R(17) = subR[17];
462 tl = subL[15] ^ (subR[15] & ~subR[17]);
463 dw = tl & subL[17], /* FLinv(kl4) */
464 - tr = subR[15] ^ ROL1(dw);
465 + tr = subR[15] ^ rol32(dw, 1);
466 SUBKEY_L(18) = tl ^ subL[19]; /* round 13 */
467 SUBKEY_R(18) = tr ^ subR[19];
468 SUBKEY_L(19) = subL[18] ^ subL[20]; /* round 14 */
469 @@ -544,7 +532,7 @@ static void camellia_setup_tail(u32 *sub
470 } else {
471 tl = subL[26] ^ (subR[26] & ~subR[24]);
472 dw = tl & subL[24], /* FL(kl5) */
473 - tr = subR[26] ^ ROL1(dw);
474 + tr = subR[26] ^ rol32(dw, 1);
475 SUBKEY_L(23) = subL[22] ^ tl; /* round 18 */
476 SUBKEY_R(23) = subR[22] ^ tr;
477 SUBKEY_L(24) = subL[24]; /* FL(kl5) */
478 @@ -553,7 +541,7 @@ static void camellia_setup_tail(u32 *sub
479 SUBKEY_R(25) = subR[25];
480 tl = subL[23] ^ (subR[23] & ~subR[25]);
481 dw = tl & subL[25], /* FLinv(kl6) */
482 - tr = subR[23] ^ ROL1(dw);
483 + tr = subR[23] ^ rol32(dw, 1);
484 SUBKEY_L(26) = tl ^ subL[27]; /* round 19 */
485 SUBKEY_R(26) = tr ^ subR[27];
486 SUBKEY_L(27) = subL[26] ^ subL[28]; /* round 20 */
487 @@ -573,17 +561,17 @@ static void camellia_setup_tail(u32 *sub
488 /* apply the inverse of the last half of P-function */
489 i = 2;
490 do {
491 - dw = SUBKEY_L(i + 0) ^ SUBKEY_R(i + 0); dw = ROL8(dw);/* round 1 */
492 + dw = SUBKEY_L(i + 0) ^ SUBKEY_R(i + 0); dw = rol32(dw, 8);/* round 1 */
493 SUBKEY_R(i + 0) = SUBKEY_L(i + 0) ^ dw; SUBKEY_L(i + 0) = dw;
494 - dw = SUBKEY_L(i + 1) ^ SUBKEY_R(i + 1); dw = ROL8(dw);/* round 2 */
495 + dw = SUBKEY_L(i + 1) ^ SUBKEY_R(i + 1); dw = rol32(dw, 8);/* round 2 */
496 SUBKEY_R(i + 1) = SUBKEY_L(i + 1) ^ dw; SUBKEY_L(i + 1) = dw;
497 - dw = SUBKEY_L(i + 2) ^ SUBKEY_R(i + 2); dw = ROL8(dw);/* round 3 */
498 + dw = SUBKEY_L(i + 2) ^ SUBKEY_R(i + 2); dw = rol32(dw, 8);/* round 3 */
499 SUBKEY_R(i + 2) = SUBKEY_L(i + 2) ^ dw; SUBKEY_L(i + 2) = dw;
500 - dw = SUBKEY_L(i + 3) ^ SUBKEY_R(i + 3); dw = ROL8(dw);/* round 4 */
501 + dw = SUBKEY_L(i + 3) ^ SUBKEY_R(i + 3); dw = rol32(dw, 8);/* round 4 */
502 SUBKEY_R(i + 3) = SUBKEY_L(i + 3) ^ dw; SUBKEY_L(i + 3) = dw;
503 - dw = SUBKEY_L(i + 4) ^ SUBKEY_R(i + 4); dw = ROL8(dw);/* round 5 */
504 + dw = SUBKEY_L(i + 4) ^ SUBKEY_R(i + 4); dw = rol32(dw, 9);/* round 5 */
505 SUBKEY_R(i + 4) = SUBKEY_L(i + 4) ^ dw; SUBKEY_L(i + 4) = dw;
506 - dw = SUBKEY_L(i + 5) ^ SUBKEY_R(i + 5); dw = ROL8(dw);/* round 6 */
507 + dw = SUBKEY_L(i + 5) ^ SUBKEY_R(i + 5); dw = rol32(dw, 8);/* round 6 */
508 SUBKEY_R(i + 5) = SUBKEY_L(i + 5) ^ dw; SUBKEY_L(i + 5) = dw;
509 i += 8;
510 } while (i < max);
511 @@ -599,10 +587,10 @@ static void camellia_setup128(const unsi
512 /**
513 * k == kll || klr || krl || krr (|| is concatenation)
514 */
515 - GETU32(kll, key );
516 - GETU32(klr, key + 4);
517 - GETU32(krl, key + 8);
518 - GETU32(krr, key + 12);
519 + kll = get_unaligned_be32(key);
520 + klr = get_unaligned_be32(key + 4);
521 + krl = get_unaligned_be32(key + 8);
522 + krr = get_unaligned_be32(key + 12);
523
524 /* generate KL dependent subkeys */
525 /* kw1 */
526 @@ -707,14 +695,14 @@ static void camellia_setup256(const unsi
527 * key = (kll || klr || krl || krr || krll || krlr || krrl || krrr)
528 * (|| is concatenation)
529 */
530 - GETU32(kll, key );
531 - GETU32(klr, key + 4);
532 - GETU32(krl, key + 8);
533 - GETU32(krr, key + 12);
534 - GETU32(krll, key + 16);
535 - GETU32(krlr, key + 20);
536 - GETU32(krrl, key + 24);
537 - GETU32(krrr, key + 28);
538 + kll = get_unaligned_be32(key);
539 + klr = get_unaligned_be32(key + 4);
540 + krl = get_unaligned_be32(key + 8);
541 + krr = get_unaligned_be32(key + 12);
542 + krll = get_unaligned_be32(key + 16);
543 + krlr = get_unaligned_be32(key + 20);
544 + krrl = get_unaligned_be32(key + 24);
545 + krrr = get_unaligned_be32(key + 28);
546
547 /* generate KL dependent subkeys */
548 /* kw1 */
549 @@ -870,13 +858,13 @@ static void camellia_setup192(const unsi
550 t0 &= ll; \
551 t2 |= rr; \
552 rl ^= t2; \
553 - lr ^= ROL1(t0); \
554 + lr ^= rol32(t0, 1); \
555 t3 = krl; \
556 t1 = klr; \
557 t3 &= rl; \
558 t1 |= lr; \
559 ll ^= t1; \
560 - rr ^= ROL1(t3); \
561 + rr ^= rol32(t3, 1); \
562 } while(0)
563
564 #define CAMELLIA_ROUNDSM(xl, xr, kl, kr, yl, yr, il, ir) \
565 @@ -892,7 +880,7 @@ static void camellia_setup192(const unsi
566 il ^= kl; \
567 ir ^= il ^ kr; \
568 yl ^= ir; \
569 - yr ^= ROR8(il) ^ ir; \
570 + yr ^= ror32(il, 8) ^ ir; \
571 } while(0)
572
573 /* max = 24: 128bit encrypt, max = 32: 256bit encrypt */
574 --- a/crypto/crc32c.c
575 +++ b/crypto/crc32c.c
576 @@ -1,24 +1,27 @@
577 -/*
578 +/*
579 * Cryptographic API.
580 *
581 * CRC32C chksum
582 *
583 * This module file is a wrapper to invoke the lib/crc32c routines.
584 *
585 + * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
586 + *
587 * This program is free software; you can redistribute it and/or modify it
588 * under the terms of the GNU General Public License as published by the Free
589 - * Software Foundation; either version 2 of the License, or (at your option)
590 + * Software Foundation; either version 2 of the License, or (at your option)
591 * any later version.
592 *
593 */
594 +
595 +#include <crypto/internal/hash.h>
596 #include <linux/init.h>
597 #include <linux/module.h>
598 #include <linux/string.h>
599 -#include <linux/crypto.h>
600 #include <linux/crc32c.h>
601 #include <linux/kernel.h>
602
603 -#define CHKSUM_BLOCK_SIZE 32
604 +#define CHKSUM_BLOCK_SIZE 1
605 #define CHKSUM_DIGEST_SIZE 4
606
607 struct chksum_ctx {
608 @@ -27,7 +30,7 @@ struct chksum_ctx {
609 };
610
611 /*
612 - * Steps through buffer one byte at at time, calculates reflected
613 + * Steps through buffer one byte at at time, calculates reflected
614 * crc using table.
615 */
616
617 @@ -67,11 +70,11 @@ static void chksum_update(struct crypto_
618 static void chksum_final(struct crypto_tfm *tfm, u8 *out)
619 {
620 struct chksum_ctx *mctx = crypto_tfm_ctx(tfm);
621 -
622 +
623 *(__le32 *)out = ~cpu_to_le32(mctx->crc);
624 }
625
626 -static int crc32c_cra_init(struct crypto_tfm *tfm)
627 +static int crc32c_cra_init_old(struct crypto_tfm *tfm)
628 {
629 struct chksum_ctx *mctx = crypto_tfm_ctx(tfm);
630
631 @@ -79,14 +82,14 @@ static int crc32c_cra_init(struct crypto
632 return 0;
633 }
634
635 -static struct crypto_alg alg = {
636 +static struct crypto_alg old_alg = {
637 .cra_name = "crc32c",
638 .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
639 .cra_blocksize = CHKSUM_BLOCK_SIZE,
640 .cra_ctxsize = sizeof(struct chksum_ctx),
641 .cra_module = THIS_MODULE,
642 - .cra_list = LIST_HEAD_INIT(alg.cra_list),
643 - .cra_init = crc32c_cra_init,
644 + .cra_list = LIST_HEAD_INIT(old_alg.cra_list),
645 + .cra_init = crc32c_cra_init_old,
646 .cra_u = {
647 .digest = {
648 .dia_digestsize= CHKSUM_DIGEST_SIZE,
649 @@ -98,14 +101,125 @@ static struct crypto_alg alg = {
650 }
651 };
652
653 +/*
654 + * Setting the seed allows arbitrary accumulators and flexible XOR policy
655 + * If your algorithm starts with ~0, then XOR with ~0 before you set
656 + * the seed.
657 + */
658 +static int crc32c_setkey(struct crypto_ahash *hash, const u8 *key,
659 + unsigned int keylen)
660 +{
661 + u32 *mctx = crypto_ahash_ctx(hash);
662 +
663 + if (keylen != sizeof(u32)) {
664 + crypto_ahash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
665 + return -EINVAL;
666 + }
667 + *mctx = le32_to_cpup((__le32 *)key);
668 + return 0;
669 +}
670 +
671 +static int crc32c_init(struct ahash_request *req)
672 +{
673 + u32 *mctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
674 + u32 *crcp = ahash_request_ctx(req);
675 +
676 + *crcp = *mctx;
677 + return 0;
678 +}
679 +
680 +static int crc32c_update(struct ahash_request *req)
681 +{
682 + struct crypto_hash_walk walk;
683 + u32 *crcp = ahash_request_ctx(req);
684 + u32 crc = *crcp;
685 + int nbytes;
686 +
687 + for (nbytes = crypto_hash_walk_first(req, &walk); nbytes;
688 + nbytes = crypto_hash_walk_done(&walk, 0))
689 + crc = crc32c(crc, walk.data, nbytes);
690 +
691 + *crcp = crc;
692 + return 0;
693 +}
694 +
695 +static int crc32c_final(struct ahash_request *req)
696 +{
697 + u32 *crcp = ahash_request_ctx(req);
698 +
699 + *(__le32 *)req->result = ~cpu_to_le32p(crcp);
700 + return 0;
701 +}
702 +
703 +static int crc32c_digest(struct ahash_request *req)
704 +{
705 + struct crypto_hash_walk walk;
706 + u32 *mctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
707 + u32 crc = *mctx;
708 + int nbytes;
709 +
710 + for (nbytes = crypto_hash_walk_first(req, &walk); nbytes;
711 + nbytes = crypto_hash_walk_done(&walk, 0))
712 + crc = crc32c(crc, walk.data, nbytes);
713 +
714 + *(__le32 *)req->result = ~cpu_to_le32(crc);
715 + return 0;
716 +}
717 +
718 +static int crc32c_cra_init(struct crypto_tfm *tfm)
719 +{
720 + u32 *key = crypto_tfm_ctx(tfm);
721 +
722 + *key = ~0;
723 +
724 + tfm->crt_ahash.reqsize = sizeof(u32);
725 +
726 + return 0;
727 +}
728 +
729 +static struct crypto_alg alg = {
730 + .cra_name = "crc32c",
731 + .cra_driver_name = "crc32c-generic",
732 + .cra_priority = 100,
733 + .cra_flags = CRYPTO_ALG_TYPE_AHASH,
734 + .cra_blocksize = CHKSUM_BLOCK_SIZE,
735 + .cra_alignmask = 3,
736 + .cra_ctxsize = sizeof(u32),
737 + .cra_module = THIS_MODULE,
738 + .cra_list = LIST_HEAD_INIT(alg.cra_list),
739 + .cra_init = crc32c_cra_init,
740 + .cra_type = &crypto_ahash_type,
741 + .cra_u = {
742 + .ahash = {
743 + .digestsize = CHKSUM_DIGEST_SIZE,
744 + .setkey = crc32c_setkey,
745 + .init = crc32c_init,
746 + .update = crc32c_update,
747 + .final = crc32c_final,
748 + .digest = crc32c_digest,
749 + }
750 + }
751 +};
752 +
753 static int __init crc32c_mod_init(void)
754 {
755 - return crypto_register_alg(&alg);
756 + int err;
757 +
758 + err = crypto_register_alg(&old_alg);
759 + if (err)
760 + return err;
761 +
762 + err = crypto_register_alg(&alg);
763 + if (err)
764 + crypto_unregister_alg(&old_alg);
765 +
766 + return err;
767 }
768
769 static void __exit crc32c_mod_fini(void)
770 {
771 crypto_unregister_alg(&alg);
772 + crypto_unregister_alg(&old_alg);
773 }
774
775 module_init(crc32c_mod_init);
776 --- a/crypto/cryptd.c
777 +++ b/crypto/cryptd.c
778 @@ -11,6 +11,7 @@
779 */
780
781 #include <crypto/algapi.h>
782 +#include <crypto/internal/hash.h>
783 #include <linux/err.h>
784 #include <linux/init.h>
785 #include <linux/kernel.h>
786 @@ -45,6 +46,13 @@ struct cryptd_blkcipher_request_ctx {
787 crypto_completion_t complete;
788 };
789
790 +struct cryptd_hash_ctx {
791 + struct crypto_hash *child;
792 +};
793 +
794 +struct cryptd_hash_request_ctx {
795 + crypto_completion_t complete;
796 +};
797
798 static inline struct cryptd_state *cryptd_get_state(struct crypto_tfm *tfm)
799 {
800 @@ -82,10 +90,8 @@ static void cryptd_blkcipher_crypt(struc
801
802 rctx = ablkcipher_request_ctx(req);
803
804 - if (unlikely(err == -EINPROGRESS)) {
805 - rctx->complete(&req->base, err);
806 - return;
807 - }
808 + if (unlikely(err == -EINPROGRESS))
809 + goto out;
810
811 desc.tfm = child;
812 desc.info = req->info;
813 @@ -95,8 +101,9 @@ static void cryptd_blkcipher_crypt(struc
814
815 req->base.complete = rctx->complete;
816
817 +out:
818 local_bh_disable();
819 - req->base.complete(&req->base, err);
820 + rctx->complete(&req->base, err);
821 local_bh_enable();
822 }
823
824 @@ -261,6 +268,240 @@ out_put_alg:
825 return inst;
826 }
827
828 +static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
829 +{
830 + struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
831 + struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
832 + struct crypto_spawn *spawn = &ictx->spawn;
833 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
834 + struct crypto_hash *cipher;
835 +
836 + cipher = crypto_spawn_hash(spawn);
837 + if (IS_ERR(cipher))
838 + return PTR_ERR(cipher);
839 +
840 + ctx->child = cipher;
841 + tfm->crt_ahash.reqsize =
842 + sizeof(struct cryptd_hash_request_ctx);
843 + return 0;
844 +}
845 +
846 +static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
847 +{
848 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
849 + struct cryptd_state *state = cryptd_get_state(tfm);
850 + int active;
851 +
852 + mutex_lock(&state->mutex);
853 + active = ahash_tfm_in_queue(&state->queue,
854 + __crypto_ahash_cast(tfm));
855 + mutex_unlock(&state->mutex);
856 +
857 + BUG_ON(active);
858 +
859 + crypto_free_hash(ctx->child);
860 +}
861 +
862 +static int cryptd_hash_setkey(struct crypto_ahash *parent,
863 + const u8 *key, unsigned int keylen)
864 +{
865 + struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
866 + struct crypto_hash *child = ctx->child;
867 + int err;
868 +
869 + crypto_hash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
870 + crypto_hash_set_flags(child, crypto_ahash_get_flags(parent) &
871 + CRYPTO_TFM_REQ_MASK);
872 + err = crypto_hash_setkey(child, key, keylen);
873 + crypto_ahash_set_flags(parent, crypto_hash_get_flags(child) &
874 + CRYPTO_TFM_RES_MASK);
875 + return err;
876 +}
877 +
878 +static int cryptd_hash_enqueue(struct ahash_request *req,
879 + crypto_completion_t complete)
880 +{
881 + struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
882 + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
883 + struct cryptd_state *state =
884 + cryptd_get_state(crypto_ahash_tfm(tfm));
885 + int err;
886 +
887 + rctx->complete = req->base.complete;
888 + req->base.complete = complete;
889 +
890 + spin_lock_bh(&state->lock);
891 + err = ahash_enqueue_request(&state->queue, req);
892 + spin_unlock_bh(&state->lock);
893 +
894 + wake_up_process(state->task);
895 + return err;
896 +}
897 +
898 +static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
899 +{
900 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
901 + struct crypto_hash *child = ctx->child;
902 + struct ahash_request *req = ahash_request_cast(req_async);
903 + struct cryptd_hash_request_ctx *rctx;
904 + struct hash_desc desc;
905 +
906 + rctx = ahash_request_ctx(req);
907 +
908 + if (unlikely(err == -EINPROGRESS))
909 + goto out;
910 +
911 + desc.tfm = child;
912 + desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
913 +
914 + err = crypto_hash_crt(child)->init(&desc);
915 +
916 + req->base.complete = rctx->complete;
917 +
918 +out:
919 + local_bh_disable();
920 + rctx->complete(&req->base, err);
921 + local_bh_enable();
922 +}
923 +
924 +static int cryptd_hash_init_enqueue(struct ahash_request *req)
925 +{
926 + return cryptd_hash_enqueue(req, cryptd_hash_init);
927 +}
928 +
929 +static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
930 +{
931 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
932 + struct crypto_hash *child = ctx->child;
933 + struct ahash_request *req = ahash_request_cast(req_async);
934 + struct cryptd_hash_request_ctx *rctx;
935 + struct hash_desc desc;
936 +
937 + rctx = ahash_request_ctx(req);
938 +
939 + if (unlikely(err == -EINPROGRESS))
940 + goto out;
941 +
942 + desc.tfm = child;
943 + desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
944 +
945 + err = crypto_hash_crt(child)->update(&desc,
946 + req->src,
947 + req->nbytes);
948 +
949 + req->base.complete = rctx->complete;
950 +
951 +out:
952 + local_bh_disable();
953 + rctx->complete(&req->base, err);
954 + local_bh_enable();
955 +}
956 +
957 +static int cryptd_hash_update_enqueue(struct ahash_request *req)
958 +{
959 + return cryptd_hash_enqueue(req, cryptd_hash_update);
960 +}
961 +
962 +static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
963 +{
964 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
965 + struct crypto_hash *child = ctx->child;
966 + struct ahash_request *req = ahash_request_cast(req_async);
967 + struct cryptd_hash_request_ctx *rctx;
968 + struct hash_desc desc;
969 +
970 + rctx = ahash_request_ctx(req);
971 +
972 + if (unlikely(err == -EINPROGRESS))
973 + goto out;
974 +
975 + desc.tfm = child;
976 + desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
977 +
978 + err = crypto_hash_crt(child)->final(&desc, req->result);
979 +
980 + req->base.complete = rctx->complete;
981 +
982 +out:
983 + local_bh_disable();
984 + rctx->complete(&req->base, err);
985 + local_bh_enable();
986 +}
987 +
988 +static int cryptd_hash_final_enqueue(struct ahash_request *req)
989 +{
990 + return cryptd_hash_enqueue(req, cryptd_hash_final);
991 +}
992 +
993 +static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
994 +{
995 + struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
996 + struct crypto_hash *child = ctx->child;
997 + struct ahash_request *req = ahash_request_cast(req_async);
998 + struct cryptd_hash_request_ctx *rctx;
999 + struct hash_desc desc;
1000 +
1001 + rctx = ahash_request_ctx(req);
1002 +
1003 + if (unlikely(err == -EINPROGRESS))
1004 + goto out;
1005 +
1006 + desc.tfm = child;
1007 + desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
1008 +
1009 + err = crypto_hash_crt(child)->digest(&desc,
1010 + req->src,
1011 + req->nbytes,
1012 + req->result);
1013 +
1014 + req->base.complete = rctx->complete;
1015 +
1016 +out:
1017 + local_bh_disable();
1018 + rctx->complete(&req->base, err);
1019 + local_bh_enable();
1020 +}
1021 +
1022 +static int cryptd_hash_digest_enqueue(struct ahash_request *req)
1023 +{
1024 + return cryptd_hash_enqueue(req, cryptd_hash_digest);
1025 +}
1026 +
1027 +static struct crypto_instance *cryptd_alloc_hash(
1028 + struct rtattr **tb, struct cryptd_state *state)
1029 +{
1030 + struct crypto_instance *inst;
1031 + struct crypto_alg *alg;
1032 +
1033 + alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_HASH,
1034 + CRYPTO_ALG_TYPE_HASH_MASK);
1035 + if (IS_ERR(alg))
1036 + return ERR_PTR(PTR_ERR(alg));
1037 +
1038 + inst = cryptd_alloc_instance(alg, state);
1039 + if (IS_ERR(inst))
1040 + goto out_put_alg;
1041 +
1042 + inst->alg.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
1043 + inst->alg.cra_type = &crypto_ahash_type;
1044 +
1045 + inst->alg.cra_ahash.digestsize = alg->cra_hash.digestsize;
1046 + inst->alg.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
1047 +
1048 + inst->alg.cra_init = cryptd_hash_init_tfm;
1049 + inst->alg.cra_exit = cryptd_hash_exit_tfm;
1050 +
1051 + inst->alg.cra_ahash.init = cryptd_hash_init_enqueue;
1052 + inst->alg.cra_ahash.update = cryptd_hash_update_enqueue;
1053 + inst->alg.cra_ahash.final = cryptd_hash_final_enqueue;
1054 + inst->alg.cra_ahash.setkey = cryptd_hash_setkey;
1055 + inst->alg.cra_ahash.digest = cryptd_hash_digest_enqueue;
1056 +
1057 +out_put_alg:
1058 + crypto_mod_put(alg);
1059 + return inst;
1060 +}
1061 +
1062 static struct cryptd_state state;
1063
1064 static struct crypto_instance *cryptd_alloc(struct rtattr **tb)
1065 @@ -274,6 +515,8 @@ static struct crypto_instance *cryptd_al
1066 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1067 case CRYPTO_ALG_TYPE_BLKCIPHER:
1068 return cryptd_alloc_blkcipher(tb, &state);
1069 + case CRYPTO_ALG_TYPE_DIGEST:
1070 + return cryptd_alloc_hash(tb, &state);
1071 }
1072
1073 return ERR_PTR(-EINVAL);
1074 --- a/crypto/digest.c
1075 +++ b/crypto/digest.c
1076 @@ -12,6 +12,7 @@
1077 *
1078 */
1079
1080 +#include <crypto/internal/hash.h>
1081 #include <crypto/scatterwalk.h>
1082 #include <linux/mm.h>
1083 #include <linux/errno.h>
1084 @@ -141,7 +142,7 @@ int crypto_init_digest_ops(struct crypto
1085 struct hash_tfm *ops = &tfm->crt_hash;
1086 struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
1087
1088 - if (dalg->dia_digestsize > crypto_tfm_alg_blocksize(tfm))
1089 + if (dalg->dia_digestsize > PAGE_SIZE / 8)
1090 return -EINVAL;
1091
1092 ops->init = init;
1093 @@ -157,3 +158,83 @@ int crypto_init_digest_ops(struct crypto
1094 void crypto_exit_digest_ops(struct crypto_tfm *tfm)
1095 {
1096 }
1097 +
1098 +static int digest_async_nosetkey(struct crypto_ahash *tfm_async, const u8 *key,
1099 + unsigned int keylen)
1100 +{
1101 + crypto_ahash_clear_flags(tfm_async, CRYPTO_TFM_RES_MASK);
1102 + return -ENOSYS;
1103 +}
1104 +
1105 +static int digest_async_setkey(struct crypto_ahash *tfm_async, const u8 *key,
1106 + unsigned int keylen)
1107 +{
1108 + struct crypto_tfm *tfm = crypto_ahash_tfm(tfm_async);
1109 + struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
1110 +
1111 + crypto_ahash_clear_flags(tfm_async, CRYPTO_TFM_RES_MASK);
1112 + return dalg->dia_setkey(tfm, key, keylen);
1113 +}
1114 +
1115 +static int digest_async_init(struct ahash_request *req)
1116 +{
1117 + struct crypto_tfm *tfm = req->base.tfm;
1118 + struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
1119 +
1120 + dalg->dia_init(tfm);
1121 + return 0;
1122 +}
1123 +
1124 +static int digest_async_update(struct ahash_request *req)
1125 +{
1126 + struct crypto_tfm *tfm = req->base.tfm;
1127 + struct hash_desc desc = {
1128 + .tfm = __crypto_hash_cast(tfm),
1129 + .flags = req->base.flags,
1130 + };
1131 +
1132 + update(&desc, req->src, req->nbytes);
1133 + return 0;
1134 +}
1135 +
1136 +static int digest_async_final(struct ahash_request *req)
1137 +{
1138 + struct crypto_tfm *tfm = req->base.tfm;
1139 + struct hash_desc desc = {
1140 + .tfm = __crypto_hash_cast(tfm),
1141 + .flags = req->base.flags,
1142 + };
1143 +
1144 + final(&desc, req->result);
1145 + return 0;
1146 +}
1147 +
1148 +static int digest_async_digest(struct ahash_request *req)
1149 +{
1150 + struct crypto_tfm *tfm = req->base.tfm;
1151 + struct hash_desc desc = {
1152 + .tfm = __crypto_hash_cast(tfm),
1153 + .flags = req->base.flags,
1154 + };
1155 +
1156 + return digest(&desc, req->src, req->nbytes, req->result);
1157 +}
1158 +
1159 +int crypto_init_digest_ops_async(struct crypto_tfm *tfm)
1160 +{
1161 + struct ahash_tfm *crt = &tfm->crt_ahash;
1162 + struct digest_alg *dalg = &tfm->__crt_alg->cra_digest;
1163 +
1164 + if (dalg->dia_digestsize > crypto_tfm_alg_blocksize(tfm))
1165 + return -EINVAL;
1166 +
1167 + crt->init = digest_async_init;
1168 + crt->update = digest_async_update;
1169 + crt->final = digest_async_final;
1170 + crt->digest = digest_async_digest;
1171 + crt->setkey = dalg->dia_setkey ? digest_async_setkey :
1172 + digest_async_nosetkey;
1173 + crt->digestsize = dalg->dia_digestsize;
1174 +
1175 + return 0;
1176 +}
1177 --- a/crypto/hash.c
1178 +++ b/crypto/hash.c
1179 @@ -9,6 +9,7 @@
1180 * any later version.
1181 */
1182
1183 +#include <crypto/internal/hash.h>
1184 #include <linux/errno.h>
1185 #include <linux/kernel.h>
1186 #include <linux/module.h>
1187 @@ -59,24 +60,107 @@ static int hash_setkey(struct crypto_has
1188 return alg->setkey(crt, key, keylen);
1189 }
1190
1191 -static int crypto_init_hash_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
1192 +static int hash_async_setkey(struct crypto_ahash *tfm_async, const u8 *key,
1193 + unsigned int keylen)
1194 +{
1195 + struct crypto_tfm *tfm = crypto_ahash_tfm(tfm_async);
1196 + struct crypto_hash *tfm_hash = __crypto_hash_cast(tfm);
1197 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1198 +
1199 + return alg->setkey(tfm_hash, key, keylen);
1200 +}
1201 +
1202 +static int hash_async_init(struct ahash_request *req)
1203 +{
1204 + struct crypto_tfm *tfm = req->base.tfm;
1205 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1206 + struct hash_desc desc = {
1207 + .tfm = __crypto_hash_cast(tfm),
1208 + .flags = req->base.flags,
1209 + };
1210 +
1211 + return alg->init(&desc);
1212 +}
1213 +
1214 +static int hash_async_update(struct ahash_request *req)
1215 +{
1216 + struct crypto_tfm *tfm = req->base.tfm;
1217 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1218 + struct hash_desc desc = {
1219 + .tfm = __crypto_hash_cast(tfm),
1220 + .flags = req->base.flags,
1221 + };
1222 +
1223 + return alg->update(&desc, req->src, req->nbytes);
1224 +}
1225 +
1226 +static int hash_async_final(struct ahash_request *req)
1227 +{
1228 + struct crypto_tfm *tfm = req->base.tfm;
1229 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1230 + struct hash_desc desc = {
1231 + .tfm = __crypto_hash_cast(tfm),
1232 + .flags = req->base.flags,
1233 + };
1234 +
1235 + return alg->final(&desc, req->result);
1236 +}
1237 +
1238 +static int hash_async_digest(struct ahash_request *req)
1239 +{
1240 + struct crypto_tfm *tfm = req->base.tfm;
1241 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1242 + struct hash_desc desc = {
1243 + .tfm = __crypto_hash_cast(tfm),
1244 + .flags = req->base.flags,
1245 + };
1246 +
1247 + return alg->digest(&desc, req->src, req->nbytes, req->result);
1248 +}
1249 +
1250 +static int crypto_init_hash_ops_async(struct crypto_tfm *tfm)
1251 +{
1252 + struct ahash_tfm *crt = &tfm->crt_ahash;
1253 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1254 +
1255 + crt->init = hash_async_init;
1256 + crt->update = hash_async_update;
1257 + crt->final = hash_async_final;
1258 + crt->digest = hash_async_digest;
1259 + crt->setkey = hash_async_setkey;
1260 + crt->digestsize = alg->digestsize;
1261 +
1262 + return 0;
1263 +}
1264 +
1265 +static int crypto_init_hash_ops_sync(struct crypto_tfm *tfm)
1266 {
1267 struct hash_tfm *crt = &tfm->crt_hash;
1268 struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1269
1270 - if (alg->digestsize > crypto_tfm_alg_blocksize(tfm))
1271 - return -EINVAL;
1272 -
1273 - crt->init = alg->init;
1274 - crt->update = alg->update;
1275 - crt->final = alg->final;
1276 - crt->digest = alg->digest;
1277 - crt->setkey = hash_setkey;
1278 + crt->init = alg->init;
1279 + crt->update = alg->update;
1280 + crt->final = alg->final;
1281 + crt->digest = alg->digest;
1282 + crt->setkey = hash_setkey;
1283 crt->digestsize = alg->digestsize;
1284
1285 return 0;
1286 }
1287
1288 +static int crypto_init_hash_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
1289 +{
1290 + struct hash_alg *alg = &tfm->__crt_alg->cra_hash;
1291 +
1292 + if (alg->digestsize > PAGE_SIZE / 8)
1293 + return -EINVAL;
1294 +
1295 + if ((mask & CRYPTO_ALG_TYPE_HASH_MASK) != CRYPTO_ALG_TYPE_HASH_MASK)
1296 + return crypto_init_hash_ops_async(tfm);
1297 + else
1298 + return crypto_init_hash_ops_sync(tfm);
1299 +}
1300 +
1301 static void crypto_hash_show(struct seq_file *m, struct crypto_alg *alg)
1302 __attribute__ ((unused));
1303 static void crypto_hash_show(struct seq_file *m, struct crypto_alg *alg)
1304 --- a/crypto/hmac.c
1305 +++ b/crypto/hmac.c
1306 @@ -226,6 +226,7 @@ static struct crypto_instance *hmac_allo
1307 struct crypto_instance *inst;
1308 struct crypto_alg *alg;
1309 int err;
1310 + int ds;
1311
1312 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_HASH);
1313 if (err)
1314 @@ -236,6 +237,13 @@ static struct crypto_instance *hmac_allo
1315 if (IS_ERR(alg))
1316 return ERR_CAST(alg);
1317
1318 + inst = ERR_PTR(-EINVAL);
1319 + ds = (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
1320 + CRYPTO_ALG_TYPE_HASH ? alg->cra_hash.digestsize :
1321 + alg->cra_digest.dia_digestsize;
1322 + if (ds > alg->cra_blocksize)
1323 + goto out_put_alg;
1324 +
1325 inst = crypto_alloc_instance("hmac", alg);
1326 if (IS_ERR(inst))
1327 goto out_put_alg;
1328 @@ -246,14 +254,10 @@ static struct crypto_instance *hmac_allo
1329 inst->alg.cra_alignmask = alg->cra_alignmask;
1330 inst->alg.cra_type = &crypto_hash_type;
1331
1332 - inst->alg.cra_hash.digestsize =
1333 - (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
1334 - CRYPTO_ALG_TYPE_HASH ? alg->cra_hash.digestsize :
1335 - alg->cra_digest.dia_digestsize;
1336 + inst->alg.cra_hash.digestsize = ds;
1337
1338 inst->alg.cra_ctxsize = sizeof(struct hmac_ctx) +
1339 - ALIGN(inst->alg.cra_blocksize * 2 +
1340 - inst->alg.cra_hash.digestsize,
1341 + ALIGN(inst->alg.cra_blocksize * 2 + ds,
1342 sizeof(void *));
1343
1344 inst->alg.cra_init = hmac_init_tfm;
1345 --- a/crypto/internal.h
1346 +++ b/crypto/internal.h
1347 @@ -86,6 +86,7 @@ struct crypto_alg *__crypto_alg_lookup(c
1348 struct crypto_alg *crypto_alg_mod_lookup(const char *name, u32 type, u32 mask);
1349
1350 int crypto_init_digest_ops(struct crypto_tfm *tfm);
1351 +int crypto_init_digest_ops_async(struct crypto_tfm *tfm);
1352 int crypto_init_cipher_ops(struct crypto_tfm *tfm);
1353 int crypto_init_compress_ops(struct crypto_tfm *tfm);
1354
1355 --- /dev/null
1356 +++ b/crypto/prng.c
1357 @@ -0,0 +1,410 @@
1358 +/*
1359 + * PRNG: Pseudo Random Number Generator
1360 + * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
1361 + * AES 128 cipher in RFC3686 ctr mode
1362 + *
1363 + * (C) Neil Horman <nhorman@tuxdriver.com>
1364 + *
1365 + * This program is free software; you can redistribute it and/or modify it
1366 + * under the terms of the GNU General Public License as published by the
1367 + * Free Software Foundation; either version 2 of the License, or (at your
1368 + * any later version.
1369 + *
1370 + *
1371 + */
1372 +
1373 +#include <linux/err.h>
1374 +#include <linux/init.h>
1375 +#include <linux/module.h>
1376 +#include <linux/mm.h>
1377 +#include <linux/slab.h>
1378 +#include <linux/fs.h>
1379 +#include <linux/scatterlist.h>
1380 +#include <linux/string.h>
1381 +#include <linux/crypto.h>
1382 +#include <linux/highmem.h>
1383 +#include <linux/moduleparam.h>
1384 +#include <linux/jiffies.h>
1385 +#include <linux/timex.h>
1386 +#include <linux/interrupt.h>
1387 +#include <linux/miscdevice.h>
1388 +#include "prng.h"
1389 +
1390 +#define TEST_PRNG_ON_START 0
1391 +
1392 +#define DEFAULT_PRNG_KEY "0123456789abcdef1011"
1393 +#define DEFAULT_PRNG_KSZ 20
1394 +#define DEFAULT_PRNG_IV "defaultv"
1395 +#define DEFAULT_PRNG_IVSZ 8
1396 +#define DEFAULT_BLK_SZ 16
1397 +#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
1398 +
1399 +/*
1400 + * Flags for the prng_context flags field
1401 + */
1402 +
1403 +#define PRNG_FIXED_SIZE 0x1
1404 +#define PRNG_NEED_RESET 0x2
1405 +
1406 +/*
1407 + * Note: DT is our counter value
1408 + * I is our intermediate value
1409 + * V is our seed vector
1410 + * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
1411 + * for implementation details
1412 + */
1413 +
1414 +
1415 +struct prng_context {
1416 + char *prng_key;
1417 + char *prng_iv;
1418 + spinlock_t prng_lock;
1419 + unsigned char rand_data[DEFAULT_BLK_SZ];
1420 + unsigned char last_rand_data[DEFAULT_BLK_SZ];
1421 + unsigned char DT[DEFAULT_BLK_SZ];
1422 + unsigned char I[DEFAULT_BLK_SZ];
1423 + unsigned char V[DEFAULT_BLK_SZ];
1424 + u32 rand_data_valid;
1425 + struct crypto_blkcipher *tfm;
1426 + u32 flags;
1427 +};
1428 +
1429 +static int dbg;
1430 +
1431 +static void hexdump(char *note, unsigned char *buf, unsigned int len)
1432 +{
1433 + if (dbg) {
1434 + printk(KERN_CRIT "%s", note);
1435 + print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
1436 + 16, 1,
1437 + buf, len, false);
1438 + }
1439 +}
1440 +
1441 +#define dbgprint(format, args...) do {if(dbg) printk(format, ##args);} while(0)
1442 +
1443 +static void xor_vectors(unsigned char *in1, unsigned char *in2,
1444 + unsigned char *out, unsigned int size)
1445 +{
1446 + int i;
1447 +
1448 + for (i=0;i<size;i++)
1449 + out[i] = in1[i] ^ in2[i];
1450 +
1451 +}
1452 +/*
1453 + * Returns DEFAULT_BLK_SZ bytes of random data per call
1454 + * returns 0 if generation succeded, <0 if something went wrong
1455 + */
1456 +static int _get_more_prng_bytes(struct prng_context *ctx)
1457 +{
1458 + int i;
1459 + struct blkcipher_desc desc;
1460 + struct scatterlist sg_in, sg_out;
1461 + int ret;
1462 + unsigned char tmp[DEFAULT_BLK_SZ];
1463 +
1464 + desc.tfm = ctx->tfm;
1465 + desc.flags = 0;
1466 +
1467 +
1468 + dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",ctx);
1469 +
1470 + hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
1471 + hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
1472 + hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
1473 +
1474 + /*
1475 + * This algorithm is a 3 stage state machine
1476 + */
1477 + for (i=0;i<3;i++) {
1478 +
1479 + desc.tfm = ctx->tfm;
1480 + desc.flags = 0;
1481 + switch (i) {
1482 + case 0:
1483 + /*
1484 + * Start by encrypting the counter value
1485 + * This gives us an intermediate value I
1486 + */
1487 + memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
1488 + sg_init_one(&sg_out, &ctx->I[0], DEFAULT_BLK_SZ);
1489 + hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
1490 + break;
1491 + case 1:
1492 +
1493 + /*
1494 + * Next xor I with our secret vector V
1495 + * encrypt that result to obtain our
1496 + * pseudo random data which we output
1497 + */
1498 + xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
1499 + sg_init_one(&sg_out, &ctx->rand_data[0], DEFAULT_BLK_SZ);
1500 + hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
1501 + break;
1502 + case 2:
1503 + /*
1504 + * First check that we didn't produce the same random data
1505 + * that we did last time around through this
1506 + */
1507 + if (!memcmp(ctx->rand_data, ctx->last_rand_data, DEFAULT_BLK_SZ)) {
1508 + printk(KERN_ERR "ctx %p Failed repetition check!\n",
1509 + ctx);
1510 + ctx->flags |= PRNG_NEED_RESET;
1511 + return -1;
1512 + }
1513 + memcpy(ctx->last_rand_data, ctx->rand_data, DEFAULT_BLK_SZ);
1514 +
1515 + /*
1516 + * Lastly xor the random data with I
1517 + * and encrypt that to obtain a new secret vector V
1518 + */
1519 + xor_vectors(ctx->rand_data, ctx->I, tmp, DEFAULT_BLK_SZ);
1520 + sg_init_one(&sg_out, &ctx->V[0], DEFAULT_BLK_SZ);
1521 + hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
1522 + break;
1523 + }
1524 +
1525 + /* Initialize our input buffer */
1526 + sg_init_one(&sg_in, &tmp[0], DEFAULT_BLK_SZ);
1527 +
1528 + /* do the encryption */
1529 + ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, DEFAULT_BLK_SZ);
1530 +
1531 + /* And check the result */
1532 + if (ret) {
1533 + dbgprint(KERN_CRIT "Encryption of new block failed for context %p\n",ctx);
1534 + ctx->rand_data_valid = DEFAULT_BLK_SZ;
1535 + return -1;
1536 + }
1537 +
1538 + }
1539 +
1540 + /*
1541 + * Now update our DT value
1542 + */
1543 + for (i=DEFAULT_BLK_SZ-1;i>0;i--) {
1544 + ctx->DT[i] = ctx->DT[i-1];
1545 + }
1546 + ctx->DT[0] += 1;
1547 +
1548 + dbgprint("Returning new block for context %p\n",ctx);
1549 + ctx->rand_data_valid = 0;
1550 +
1551 + hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
1552 + hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
1553 + hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
1554 + hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
1555 +
1556 + return 0;
1557 +}
1558 +
1559 +/* Our exported functions */
1560 +int get_prng_bytes(char *buf, int nbytes, struct prng_context *ctx)
1561 +{
1562 + unsigned long flags;
1563 + unsigned char *ptr = buf;
1564 + unsigned int byte_count = (unsigned int)nbytes;
1565 + int err;
1566 +
1567 +
1568 + if (nbytes < 0)
1569 + return -EINVAL;
1570 +
1571 + spin_lock_irqsave(&ctx->prng_lock, flags);
1572 +
1573 + err = -EFAULT;
1574 + if (ctx->flags & PRNG_NEED_RESET)
1575 + goto done;
1576 +
1577 + /*
1578 + * If the FIXED_SIZE flag is on, only return whole blocks of
1579 + * pseudo random data
1580 + */
1581 + err = -EINVAL;
1582 + if (ctx->flags & PRNG_FIXED_SIZE) {
1583 + if (nbytes < DEFAULT_BLK_SZ)
1584 + goto done;
1585 + byte_count = DEFAULT_BLK_SZ;
1586 + }
1587 +
1588 + err = byte_count;
1589 +
1590 + dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",byte_count, ctx);
1591 +
1592 +
1593 +remainder:
1594 + if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
1595 + if (_get_more_prng_bytes(ctx) < 0) {
1596 + memset(buf, 0, nbytes);
1597 + err = -EFAULT;
1598 + goto done;
1599 + }
1600 + }
1601 +
1602 + /*
1603 + * Copy up to the next whole block size
1604 + */
1605 + if (byte_count < DEFAULT_BLK_SZ) {
1606 + for (;ctx->rand_data_valid < DEFAULT_BLK_SZ; ctx->rand_data_valid++) {
1607 + *ptr = ctx->rand_data[ctx->rand_data_valid];
1608 + ptr++;
1609 + byte_count--;
1610 + if (byte_count == 0)
1611 + goto done;
1612 + }
1613 + }
1614 +
1615 + /*
1616 + * Now copy whole blocks
1617 + */
1618 + for(;byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
1619 + if (_get_more_prng_bytes(ctx) < 0) {
1620 + memset(buf, 0, nbytes);
1621 + err = -1;
1622 + goto done;
1623 + }
1624 + memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
1625 + ctx->rand_data_valid += DEFAULT_BLK_SZ;
1626 + ptr += DEFAULT_BLK_SZ;
1627 + }
1628 +
1629 + /*
1630 + * Now copy any extra partial data
1631 + */
1632 + if (byte_count)
1633 + goto remainder;
1634 +
1635 +done:
1636 + spin_unlock_irqrestore(&ctx->prng_lock, flags);
1637 + dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",err, ctx);
1638 + return err;
1639 +}
1640 +EXPORT_SYMBOL_GPL(get_prng_bytes);
1641 +
1642 +struct prng_context *alloc_prng_context(void)
1643 +{
1644 + struct prng_context *ctx=kzalloc(sizeof(struct prng_context), GFP_KERNEL);
1645 +
1646 + spin_lock_init(&ctx->prng_lock);
1647 +
1648 + if (reset_prng_context(ctx, NULL, NULL, NULL, NULL)) {
1649 + kfree(ctx);
1650 + ctx = NULL;
1651 + }
1652 +
1653 + dbgprint(KERN_CRIT "returning context %p\n",ctx);
1654 + return ctx;
1655 +}
1656 +
1657 +EXPORT_SYMBOL_GPL(alloc_prng_context);
1658 +
1659 +void free_prng_context(struct prng_context *ctx)
1660 +{
1661 + crypto_free_blkcipher(ctx->tfm);
1662 + kfree(ctx);
1663 +}
1664 +EXPORT_SYMBOL_GPL(free_prng_context);
1665 +
1666 +int reset_prng_context(struct prng_context *ctx,
1667 + unsigned char *key, unsigned char *iv,
1668 + unsigned char *V, unsigned char *DT)
1669 +{
1670 + int ret;
1671 + int iv_len;
1672 + int rc = -EFAULT;
1673 +
1674 + spin_lock(&ctx->prng_lock);
1675 + ctx->flags |= PRNG_NEED_RESET;
1676 +
1677 + if (key)
1678 + memcpy(ctx->prng_key,key,strlen(ctx->prng_key));
1679 + else
1680 + ctx->prng_key = DEFAULT_PRNG_KEY;
1681 +
1682 + if (iv)
1683 + memcpy(ctx->prng_iv,iv, strlen(ctx->prng_iv));
1684 + else
1685 + ctx->prng_iv = DEFAULT_PRNG_IV;
1686 +
1687 + if (V)
1688 + memcpy(ctx->V,V,DEFAULT_BLK_SZ);
1689 + else
1690 + memcpy(ctx->V,DEFAULT_V_SEED,DEFAULT_BLK_SZ);
1691 +
1692 + if (DT)
1693 + memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
1694 + else
1695 + memset(ctx->DT, 0, DEFAULT_BLK_SZ);
1696 +
1697 + memset(ctx->rand_data,0,DEFAULT_BLK_SZ);
1698 + memset(ctx->last_rand_data,0,DEFAULT_BLK_SZ);
1699 +
1700 + if (ctx->tfm)
1701 + crypto_free_blkcipher(ctx->tfm);
1702 +
1703 + ctx->tfm = crypto_alloc_blkcipher("rfc3686(ctr(aes))",0,0);
1704 + if (!ctx->tfm) {
1705 + dbgprint(KERN_CRIT "Failed to alloc crypto tfm for context %p\n",ctx->tfm);
1706 + goto out;
1707 + }
1708 +
1709 + ctx->rand_data_valid = DEFAULT_BLK_SZ;
1710 +
1711 + ret = crypto_blkcipher_setkey(ctx->tfm, ctx->prng_key, strlen(ctx->prng_key));
1712 + if (ret) {
1713 + dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
1714 + crypto_blkcipher_get_flags(ctx->tfm));
1715 + crypto_free_blkcipher(ctx->tfm);
1716 + goto out;
1717 + }
1718 +
1719 + iv_len = crypto_blkcipher_ivsize(ctx->tfm);
1720 + if (iv_len) {
1721 + crypto_blkcipher_set_iv(ctx->tfm, ctx->prng_iv, iv_len);
1722 + }
1723 + rc = 0;
1724 + ctx->flags &= ~PRNG_NEED_RESET;
1725 +out:
1726 + spin_unlock(&ctx->prng_lock);
1727 +
1728 + return rc;
1729 +
1730 +}
1731 +EXPORT_SYMBOL_GPL(reset_prng_context);
1732 +
1733 +/* Module initalization */
1734 +static int __init prng_mod_init(void)
1735 +{
1736 +
1737 +#ifdef TEST_PRNG_ON_START
1738 + int i;
1739 + unsigned char tmpbuf[DEFAULT_BLK_SZ];
1740 +
1741 + struct prng_context *ctx = alloc_prng_context();
1742 + if (ctx == NULL)
1743 + return -EFAULT;
1744 + for (i=0;i<16;i++) {
1745 + if (get_prng_bytes(tmpbuf, DEFAULT_BLK_SZ, ctx) < 0) {
1746 + free_prng_context(ctx);
1747 + return -EFAULT;
1748 + }
1749 + }
1750 + free_prng_context(ctx);
1751 +#endif
1752 +
1753 + return 0;
1754 +}
1755 +
1756 +static void __exit prng_mod_fini(void)
1757 +{
1758 + return;
1759 +}
1760 +
1761 +MODULE_LICENSE("GPL");
1762 +MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
1763 +MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
1764 +module_param(dbg, int, 0);
1765 +MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
1766 +module_init(prng_mod_init);
1767 +module_exit(prng_mod_fini);
1768 --- /dev/null
1769 +++ b/crypto/prng.h
1770 @@ -0,0 +1,27 @@
1771 +/*
1772 + * PRNG: Pseudo Random Number Generator
1773 + *
1774 + * (C) Neil Horman <nhorman@tuxdriver.com>
1775 + *
1776 + * This program is free software; you can redistribute it and/or modify it
1777 + * under the terms of the GNU General Public License as published by the
1778 + * Free Software Foundation; either version 2 of the License, or (at your
1779 + * any later version.
1780 + *
1781 + *
1782 + */
1783 +
1784 +#ifndef _PRNG_H_
1785 +#define _PRNG_H_
1786 +struct prng_context;
1787 +
1788 +int get_prng_bytes(char *buf, int nbytes, struct prng_context *ctx);
1789 +struct prng_context *alloc_prng_context(void);
1790 +int reset_prng_context(struct prng_context *ctx,
1791 + unsigned char *key, unsigned char *iv,
1792 + unsigned char *V,
1793 + unsigned char *DT);
1794 +void free_prng_context(struct prng_context *ctx);
1795 +
1796 +#endif
1797 +
1798 --- /dev/null
1799 +++ b/crypto/ripemd.h
1800 @@ -0,0 +1,43 @@
1801 +/*
1802 + * Common values for RIPEMD algorithms
1803 + */
1804 +
1805 +#ifndef _CRYPTO_RMD_H
1806 +#define _CRYPTO_RMD_H
1807 +
1808 +#define RMD128_DIGEST_SIZE 16
1809 +#define RMD128_BLOCK_SIZE 64
1810 +
1811 +#define RMD160_DIGEST_SIZE 20
1812 +#define RMD160_BLOCK_SIZE 64
1813 +
1814 +#define RMD256_DIGEST_SIZE 32
1815 +#define RMD256_BLOCK_SIZE 64
1816 +
1817 +#define RMD320_DIGEST_SIZE 40
1818 +#define RMD320_BLOCK_SIZE 64
1819 +
1820 +/* initial values */
1821 +#define RMD_H0 0x67452301UL
1822 +#define RMD_H1 0xefcdab89UL
1823 +#define RMD_H2 0x98badcfeUL
1824 +#define RMD_H3 0x10325476UL
1825 +#define RMD_H4 0xc3d2e1f0UL
1826 +#define RMD_H5 0x76543210UL
1827 +#define RMD_H6 0xfedcba98UL
1828 +#define RMD_H7 0x89abcdefUL
1829 +#define RMD_H8 0x01234567UL
1830 +#define RMD_H9 0x3c2d1e0fUL
1831 +
1832 +/* constants */
1833 +#define RMD_K1 0x00000000UL
1834 +#define RMD_K2 0x5a827999UL
1835 +#define RMD_K3 0x6ed9eba1UL
1836 +#define RMD_K4 0x8f1bbcdcUL
1837 +#define RMD_K5 0xa953fd4eUL
1838 +#define RMD_K6 0x50a28be6UL
1839 +#define RMD_K7 0x5c4dd124UL
1840 +#define RMD_K8 0x6d703ef3UL
1841 +#define RMD_K9 0x7a6d76e9UL
1842 +
1843 +#endif
1844 --- /dev/null
1845 +++ b/crypto/rmd128.c
1846 @@ -0,0 +1,325 @@
1847 +/*
1848 + * Cryptographic API.
1849 + *
1850 + * RIPEMD-128 - RACE Integrity Primitives Evaluation Message Digest.
1851 + *
1852 + * Based on the reference implementation by Antoon Bosselaers, ESAT-COSIC
1853 + *
1854 + * Copyright (c) 2008 Adrian-Ken Rueegsegger <rueegsegger (at) swiss-it.ch>
1855 + *
1856 + * This program is free software; you can redistribute it and/or modify it
1857 + * under the terms of the GNU General Public License as published by the Free
1858 + * Software Foundation; either version 2 of the License, or (at your option)
1859 + * any later version.
1860 + *
1861 + */
1862 +#include <linux/init.h>
1863 +#include <linux/module.h>
1864 +#include <linux/mm.h>
1865 +#include <linux/crypto.h>
1866 +#include <linux/cryptohash.h>
1867 +#include <linux/types.h>
1868 +#include <asm/byteorder.h>
1869 +
1870 +#include "ripemd.h"
1871 +
1872 +struct rmd128_ctx {
1873 + u64 byte_count;
1874 + u32 state[4];
1875 + __le32 buffer[16];
1876 +};
1877 +
1878 +#define K1 RMD_K1
1879 +#define K2 RMD_K2
1880 +#define K3 RMD_K3
1881 +#define K4 RMD_K4
1882 +#define KK1 RMD_K6
1883 +#define KK2 RMD_K7
1884 +#define KK3 RMD_K8
1885 +#define KK4 RMD_K1
1886 +
1887 +#define F1(x, y, z) (x ^ y ^ z) /* XOR */
1888 +#define F2(x, y, z) (z ^ (x & (y ^ z))) /* x ? y : z */
1889 +#define F3(x, y, z) ((x | ~y) ^ z)
1890 +#define F4(x, y, z) (y ^ (z & (x ^ y))) /* z ? x : y */
1891 +
1892 +#define ROUND(a, b, c, d, f, k, x, s) { \
1893 + (a) += f((b), (c), (d)) + le32_to_cpup(&(x)) + (k); \
1894 + (a) = rol32((a), (s)); \
1895 +}
1896 +
1897 +static void rmd128_transform(u32 *state, const __le32 *in)
1898 +{
1899 + u32 aa, bb, cc, dd, aaa, bbb, ccc, ddd;
1900 +
1901 + /* Initialize left lane */
1902 + aa = state[0];
1903 + bb = state[1];
1904 + cc = state[2];
1905 + dd = state[3];
1906 +
1907 + /* Initialize right lane */
1908 + aaa = state[0];
1909 + bbb = state[1];
1910 + ccc = state[2];
1911 + ddd = state[3];
1912 +
1913 + /* round 1: left lane */
1914 + ROUND(aa, bb, cc, dd, F1, K1, in[0], 11);
1915 + ROUND(dd, aa, bb, cc, F1, K1, in[1], 14);
1916 + ROUND(cc, dd, aa, bb, F1, K1, in[2], 15);
1917 + ROUND(bb, cc, dd, aa, F1, K1, in[3], 12);
1918 + ROUND(aa, bb, cc, dd, F1, K1, in[4], 5);
1919 + ROUND(dd, aa, bb, cc, F1, K1, in[5], 8);
1920 + ROUND(cc, dd, aa, bb, F1, K1, in[6], 7);
1921 + ROUND(bb, cc, dd, aa, F1, K1, in[7], 9);
1922 + ROUND(aa, bb, cc, dd, F1, K1, in[8], 11);
1923 + ROUND(dd, aa, bb, cc, F1, K1, in[9], 13);
1924 + ROUND(cc, dd, aa, bb, F1, K1, in[10], 14);
1925 + ROUND(bb, cc, dd, aa, F1, K1, in[11], 15);
1926 + ROUND(aa, bb, cc, dd, F1, K1, in[12], 6);
1927 + ROUND(dd, aa, bb, cc, F1, K1, in[13], 7);
1928 + ROUND(cc, dd, aa, bb, F1, K1, in[14], 9);
1929 + ROUND(bb, cc, dd, aa, F1, K1, in[15], 8);
1930 +
1931 + /* round 2: left lane */
1932 + ROUND(aa, bb, cc, dd, F2, K2, in[7], 7);
1933 + ROUND(dd, aa, bb, cc, F2, K2, in[4], 6);
1934 + ROUND(cc, dd, aa, bb, F2, K2, in[13], 8);
1935 + ROUND(bb, cc, dd, aa, F2, K2, in[1], 13);
1936 + ROUND(aa, bb, cc, dd, F2, K2, in[10], 11);
1937 + ROUND(dd, aa, bb, cc, F2, K2, in[6], 9);
1938 + ROUND(cc, dd, aa, bb, F2, K2, in[15], 7);
1939 + ROUND(bb, cc, dd, aa, F2, K2, in[3], 15);
1940 + ROUND(aa, bb, cc, dd, F2, K2, in[12], 7);
1941 + ROUND(dd, aa, bb, cc, F2, K2, in[0], 12);
1942 + ROUND(cc, dd, aa, bb, F2, K2, in[9], 15);
1943 + ROUND(bb, cc, dd, aa, F2, K2, in[5], 9);
1944 + ROUND(aa, bb, cc, dd, F2, K2, in[2], 11);
1945 + ROUND(dd, aa, bb, cc, F2, K2, in[14], 7);
1946 + ROUND(cc, dd, aa, bb, F2, K2, in[11], 13);
1947 + ROUND(bb, cc, dd, aa, F2, K2, in[8], 12);
1948 +
1949 + /* round 3: left lane */
1950 + ROUND(aa, bb, cc, dd, F3, K3, in[3], 11);
1951 + ROUND(dd, aa, bb, cc, F3, K3, in[10], 13);
1952 + ROUND(cc, dd, aa, bb, F3, K3, in[14], 6);
1953 + ROUND(bb, cc, dd, aa, F3, K3, in[4], 7);
1954 + ROUND(aa, bb, cc, dd, F3, K3, in[9], 14);
1955 + ROUND(dd, aa, bb, cc, F3, K3, in[15], 9);
1956 + ROUND(cc, dd, aa, bb, F3, K3, in[8], 13);
1957 + ROUND(bb, cc, dd, aa, F3, K3, in[1], 15);
1958 + ROUND(aa, bb, cc, dd, F3, K3, in[2], 14);
1959 + ROUND(dd, aa, bb, cc, F3, K3, in[7], 8);
1960 + ROUND(cc, dd, aa, bb, F3, K3, in[0], 13);
1961 + ROUND(bb, cc, dd, aa, F3, K3, in[6], 6);
1962 + ROUND(aa, bb, cc, dd, F3, K3, in[13], 5);
1963 + ROUND(dd, aa, bb, cc, F3, K3, in[11], 12);
1964 + ROUND(cc, dd, aa, bb, F3, K3, in[5], 7);
1965 + ROUND(bb, cc, dd, aa, F3, K3, in[12], 5);
1966 +
1967 + /* round 4: left lane */
1968 + ROUND(aa, bb, cc, dd, F4, K4, in[1], 11);
1969 + ROUND(dd, aa, bb, cc, F4, K4, in[9], 12);
1970 + ROUND(cc, dd, aa, bb, F4, K4, in[11], 14);
1971 + ROUND(bb, cc, dd, aa, F4, K4, in[10], 15);
1972 + ROUND(aa, bb, cc, dd, F4, K4, in[0], 14);
1973 + ROUND(dd, aa, bb, cc, F4, K4, in[8], 15);
1974 + ROUND(cc, dd, aa, bb, F4, K4, in[12], 9);
1975 + ROUND(bb, cc, dd, aa, F4, K4, in[4], 8);
1976 + ROUND(aa, bb, cc, dd, F4, K4, in[13], 9);
1977 + ROUND(dd, aa, bb, cc, F4, K4, in[3], 14);
1978 + ROUND(cc, dd, aa, bb, F4, K4, in[7], 5);
1979 + ROUND(bb, cc, dd, aa, F4, K4, in[15], 6);
1980 + ROUND(aa, bb, cc, dd, F4, K4, in[14], 8);
1981 + ROUND(dd, aa, bb, cc, F4, K4, in[5], 6);
1982 + ROUND(cc, dd, aa, bb, F4, K4, in[6], 5);
1983 + ROUND(bb, cc, dd, aa, F4, K4, in[2], 12);
1984 +
1985 + /* round 1: right lane */
1986 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[5], 8);
1987 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[14], 9);
1988 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[7], 9);
1989 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[0], 11);
1990 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[9], 13);
1991 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[2], 15);
1992 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[11], 15);
1993 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[4], 5);
1994 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[13], 7);
1995 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[6], 7);
1996 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[15], 8);
1997 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[8], 11);
1998 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[1], 14);
1999 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[10], 14);
2000 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[3], 12);
2001 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[12], 6);
2002 +
2003 + /* round 2: right lane */
2004 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[6], 9);
2005 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[11], 13);
2006 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[3], 15);
2007 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[7], 7);
2008 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[0], 12);
2009 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[13], 8);
2010 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[5], 9);
2011 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[10], 11);
2012 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[14], 7);
2013 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[15], 7);
2014 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[8], 12);
2015 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[12], 7);
2016 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[4], 6);
2017 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[9], 15);
2018 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[1], 13);
2019 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[2], 11);
2020 +
2021 + /* round 3: right lane */
2022 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[15], 9);
2023 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[5], 7);
2024 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[1], 15);
2025 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[3], 11);
2026 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[7], 8);
2027 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[14], 6);
2028 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[6], 6);
2029 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[9], 14);
2030 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[11], 12);
2031 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[8], 13);
2032 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[12], 5);
2033 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[2], 14);
2034 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[10], 13);
2035 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[0], 13);
2036 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[4], 7);
2037 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[13], 5);
2038 +
2039 + /* round 4: right lane */
2040 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[8], 15);
2041 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[6], 5);
2042 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[4], 8);
2043 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[1], 11);
2044 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[3], 14);
2045 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[11], 14);
2046 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[15], 6);
2047 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[0], 14);
2048 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[5], 6);
2049 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[12], 9);
2050 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[2], 12);
2051 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[13], 9);
2052 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[9], 12);
2053 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[7], 5);
2054 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[10], 15);
2055 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[14], 8);
2056 +
2057 + /* combine results */
2058 + ddd += cc + state[1]; /* final result for state[0] */
2059 + state[1] = state[2] + dd + aaa;
2060 + state[2] = state[3] + aa + bbb;
2061 + state[3] = state[0] + bb + ccc;
2062 + state[0] = ddd;
2063 +
2064 + return;
2065 +}
2066 +
2067 +static void rmd128_init(struct crypto_tfm *tfm)
2068 +{
2069 + struct rmd128_ctx *rctx = crypto_tfm_ctx(tfm);
2070 +
2071 + rctx->byte_count = 0;
2072 +
2073 + rctx->state[0] = RMD_H0;
2074 + rctx->state[1] = RMD_H1;
2075 + rctx->state[2] = RMD_H2;
2076 + rctx->state[3] = RMD_H3;
2077 +
2078 + memset(rctx->buffer, 0, sizeof(rctx->buffer));
2079 +}
2080 +
2081 +static void rmd128_update(struct crypto_tfm *tfm, const u8 *data,
2082 + unsigned int len)
2083 +{
2084 + struct rmd128_ctx *rctx = crypto_tfm_ctx(tfm);
2085 + const u32 avail = sizeof(rctx->buffer) - (rctx->byte_count & 0x3f);
2086 +
2087 + rctx->byte_count += len;
2088 +
2089 + /* Enough space in buffer? If so copy and we're done */
2090 + if (avail > len) {
2091 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2092 + data, len);
2093 + return;
2094 + }
2095 +
2096 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2097 + data, avail);
2098 +
2099 + rmd128_transform(rctx->state, rctx->buffer);
2100 + data += avail;
2101 + len -= avail;
2102 +
2103 + while (len >= sizeof(rctx->buffer)) {
2104 + memcpy(rctx->buffer, data, sizeof(rctx->buffer));
2105 + rmd128_transform(rctx->state, rctx->buffer);
2106 + data += sizeof(rctx->buffer);
2107 + len -= sizeof(rctx->buffer);
2108 + }
2109 +
2110 + memcpy(rctx->buffer, data, len);
2111 +}
2112 +
2113 +/* Add padding and return the message digest. */
2114 +static void rmd128_final(struct crypto_tfm *tfm, u8 *out)
2115 +{
2116 + struct rmd128_ctx *rctx = crypto_tfm_ctx(tfm);
2117 + u32 i, index, padlen;
2118 + __le64 bits;
2119 + __le32 *dst = (__le32 *)out;
2120 + static const u8 padding[64] = { 0x80, };
2121 +
2122 + bits = cpu_to_le64(rctx->byte_count << 3);
2123 +
2124 + /* Pad out to 56 mod 64 */
2125 + index = rctx->byte_count & 0x3f;
2126 + padlen = (index < 56) ? (56 - index) : ((64+56) - index);
2127 + rmd128_update(tfm, padding, padlen);
2128 +
2129 + /* Append length */
2130 + rmd128_update(tfm, (const u8 *)&bits, sizeof(bits));
2131 +
2132 + /* Store state in digest */
2133 + for (i = 0; i < 4; i++)
2134 + dst[i] = cpu_to_le32p(&rctx->state[i]);
2135 +
2136 + /* Wipe context */
2137 + memset(rctx, 0, sizeof(*rctx));
2138 +}
2139 +
2140 +static struct crypto_alg alg = {
2141 + .cra_name = "rmd128",
2142 + .cra_driver_name = "rmd128",
2143 + .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
2144 + .cra_blocksize = RMD128_BLOCK_SIZE,
2145 + .cra_ctxsize = sizeof(struct rmd128_ctx),
2146 + .cra_module = THIS_MODULE,
2147 + .cra_list = LIST_HEAD_INIT(alg.cra_list),
2148 + .cra_u = { .digest = {
2149 + .dia_digestsize = RMD128_DIGEST_SIZE,
2150 + .dia_init = rmd128_init,
2151 + .dia_update = rmd128_update,
2152 + .dia_final = rmd128_final } }
2153 +};
2154 +
2155 +static int __init rmd128_mod_init(void)
2156 +{
2157 + return crypto_register_alg(&alg);
2158 +}
2159 +
2160 +static void __exit rmd128_mod_fini(void)
2161 +{
2162 + crypto_unregister_alg(&alg);
2163 +}
2164 +
2165 +module_init(rmd128_mod_init);
2166 +module_exit(rmd128_mod_fini);
2167 +
2168 +MODULE_LICENSE("GPL");
2169 +MODULE_DESCRIPTION("RIPEMD-128 Message Digest");
2170 +
2171 +MODULE_ALIAS("rmd128");
2172 --- /dev/null
2173 +++ b/crypto/rmd160.c
2174 @@ -0,0 +1,369 @@
2175 +/*
2176 + * Cryptographic API.
2177 + *
2178 + * RIPEMD-160 - RACE Integrity Primitives Evaluation Message Digest.
2179 + *
2180 + * Based on the reference implementation by Antoon Bosselaers, ESAT-COSIC
2181 + *
2182 + * Copyright (c) 2008 Adrian-Ken Rueegsegger <rueegsegger (at) swiss-it.ch>
2183 + *
2184 + * This program is free software; you can redistribute it and/or modify it
2185 + * under the terms of the GNU General Public License as published by the Free
2186 + * Software Foundation; either version 2 of the License, or (at your option)
2187 + * any later version.
2188 + *
2189 + */
2190 +#include <linux/init.h>
2191 +#include <linux/module.h>
2192 +#include <linux/mm.h>
2193 +#include <linux/crypto.h>
2194 +#include <linux/cryptohash.h>
2195 +#include <linux/types.h>
2196 +#include <asm/byteorder.h>
2197 +
2198 +#include "ripemd.h"
2199 +
2200 +struct rmd160_ctx {
2201 + u64 byte_count;
2202 + u32 state[5];
2203 + __le32 buffer[16];
2204 +};
2205 +
2206 +#define K1 RMD_K1
2207 +#define K2 RMD_K2
2208 +#define K3 RMD_K3
2209 +#define K4 RMD_K4
2210 +#define K5 RMD_K5
2211 +#define KK1 RMD_K6
2212 +#define KK2 RMD_K7
2213 +#define KK3 RMD_K8
2214 +#define KK4 RMD_K9
2215 +#define KK5 RMD_K1
2216 +
2217 +#define F1(x, y, z) (x ^ y ^ z) /* XOR */
2218 +#define F2(x, y, z) (z ^ (x & (y ^ z))) /* x ? y : z */
2219 +#define F3(x, y, z) ((x | ~y) ^ z)
2220 +#define F4(x, y, z) (y ^ (z & (x ^ y))) /* z ? x : y */
2221 +#define F5(x, y, z) (x ^ (y | ~z))
2222 +
2223 +#define ROUND(a, b, c, d, e, f, k, x, s) { \
2224 + (a) += f((b), (c), (d)) + le32_to_cpup(&(x)) + (k); \
2225 + (a) = rol32((a), (s)) + (e); \
2226 + (c) = rol32((c), 10); \
2227 +}
2228 +
2229 +static void rmd160_transform(u32 *state, const __le32 *in)
2230 +{
2231 + u32 aa, bb, cc, dd, ee, aaa, bbb, ccc, ddd, eee;
2232 +
2233 + /* Initialize left lane */
2234 + aa = state[0];
2235 + bb = state[1];
2236 + cc = state[2];
2237 + dd = state[3];
2238 + ee = state[4];
2239 +
2240 + /* Initialize right lane */
2241 + aaa = state[0];
2242 + bbb = state[1];
2243 + ccc = state[2];
2244 + ddd = state[3];
2245 + eee = state[4];
2246 +
2247 + /* round 1: left lane */
2248 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[0], 11);
2249 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[1], 14);
2250 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[2], 15);
2251 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[3], 12);
2252 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[4], 5);
2253 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[5], 8);
2254 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[6], 7);
2255 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[7], 9);
2256 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[8], 11);
2257 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[9], 13);
2258 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[10], 14);
2259 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[11], 15);
2260 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[12], 6);
2261 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[13], 7);
2262 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[14], 9);
2263 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[15], 8);
2264 +
2265 + /* round 2: left lane" */
2266 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[7], 7);
2267 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[4], 6);
2268 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[13], 8);
2269 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[1], 13);
2270 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[10], 11);
2271 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[6], 9);
2272 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[15], 7);
2273 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[3], 15);
2274 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[12], 7);
2275 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[0], 12);
2276 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[9], 15);
2277 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[5], 9);
2278 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[2], 11);
2279 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[14], 7);
2280 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[11], 13);
2281 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[8], 12);
2282 +
2283 + /* round 3: left lane" */
2284 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[3], 11);
2285 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[10], 13);
2286 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[14], 6);
2287 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[4], 7);
2288 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[9], 14);
2289 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[15], 9);
2290 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[8], 13);
2291 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[1], 15);
2292 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[2], 14);
2293 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[7], 8);
2294 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[0], 13);
2295 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[6], 6);
2296 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[13], 5);
2297 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[11], 12);
2298 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[5], 7);
2299 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[12], 5);
2300 +
2301 + /* round 4: left lane" */
2302 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[1], 11);
2303 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[9], 12);
2304 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[11], 14);
2305 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[10], 15);
2306 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[0], 14);
2307 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[8], 15);
2308 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[12], 9);
2309 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[4], 8);
2310 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[13], 9);
2311 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[3], 14);
2312 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[7], 5);
2313 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[15], 6);
2314 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[14], 8);
2315 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[5], 6);
2316 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[6], 5);
2317 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[2], 12);
2318 +
2319 + /* round 5: left lane" */
2320 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[4], 9);
2321 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[0], 15);
2322 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[5], 5);
2323 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[9], 11);
2324 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[7], 6);
2325 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[12], 8);
2326 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[2], 13);
2327 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[10], 12);
2328 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[14], 5);
2329 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[1], 12);
2330 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[3], 13);
2331 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[8], 14);
2332 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[11], 11);
2333 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[6], 8);
2334 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[15], 5);
2335 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[13], 6);
2336 +
2337 + /* round 1: right lane */
2338 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[5], 8);
2339 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[14], 9);
2340 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[7], 9);
2341 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[0], 11);
2342 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[9], 13);
2343 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[2], 15);
2344 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[11], 15);
2345 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[4], 5);
2346 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[13], 7);
2347 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[6], 7);
2348 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[15], 8);
2349 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[8], 11);
2350 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[1], 14);
2351 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[10], 14);
2352 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[3], 12);
2353 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[12], 6);
2354 +
2355 + /* round 2: right lane */
2356 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[6], 9);
2357 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[11], 13);
2358 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[3], 15);
2359 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[7], 7);
2360 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[0], 12);
2361 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[13], 8);
2362 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[5], 9);
2363 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[10], 11);
2364 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[14], 7);
2365 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[15], 7);
2366 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[8], 12);
2367 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[12], 7);
2368 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[4], 6);
2369 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[9], 15);
2370 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[1], 13);
2371 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[2], 11);
2372 +
2373 + /* round 3: right lane */
2374 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[15], 9);
2375 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[5], 7);
2376 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[1], 15);
2377 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[3], 11);
2378 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[7], 8);
2379 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[14], 6);
2380 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[6], 6);
2381 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[9], 14);
2382 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[11], 12);
2383 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[8], 13);
2384 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[12], 5);
2385 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[2], 14);
2386 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[10], 13);
2387 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[0], 13);
2388 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[4], 7);
2389 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[13], 5);
2390 +
2391 + /* round 4: right lane */
2392 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[8], 15);
2393 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[6], 5);
2394 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[4], 8);
2395 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[1], 11);
2396 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[3], 14);
2397 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[11], 14);
2398 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[15], 6);
2399 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[0], 14);
2400 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[5], 6);
2401 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[12], 9);
2402 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[2], 12);
2403 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[13], 9);
2404 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[9], 12);
2405 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[7], 5);
2406 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[10], 15);
2407 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[14], 8);
2408 +
2409 + /* round 5: right lane */
2410 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[12], 8);
2411 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[15], 5);
2412 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[10], 12);
2413 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[4], 9);
2414 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[1], 12);
2415 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[5], 5);
2416 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[8], 14);
2417 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[7], 6);
2418 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[6], 8);
2419 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[2], 13);
2420 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[13], 6);
2421 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[14], 5);
2422 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[0], 15);
2423 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[3], 13);
2424 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[9], 11);
2425 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[11], 11);
2426 +
2427 + /* combine results */
2428 + ddd += cc + state[1]; /* final result for state[0] */
2429 + state[1] = state[2] + dd + eee;
2430 + state[2] = state[3] + ee + aaa;
2431 + state[3] = state[4] + aa + bbb;
2432 + state[4] = state[0] + bb + ccc;
2433 + state[0] = ddd;
2434 +
2435 + return;
2436 +}
2437 +
2438 +static void rmd160_init(struct crypto_tfm *tfm)
2439 +{
2440 + struct rmd160_ctx *rctx = crypto_tfm_ctx(tfm);
2441 +
2442 + rctx->byte_count = 0;
2443 +
2444 + rctx->state[0] = RMD_H0;
2445 + rctx->state[1] = RMD_H1;
2446 + rctx->state[2] = RMD_H2;
2447 + rctx->state[3] = RMD_H3;
2448 + rctx->state[4] = RMD_H4;
2449 +
2450 + memset(rctx->buffer, 0, sizeof(rctx->buffer));
2451 +}
2452 +
2453 +static void rmd160_update(struct crypto_tfm *tfm, const u8 *data,
2454 + unsigned int len)
2455 +{
2456 + struct rmd160_ctx *rctx = crypto_tfm_ctx(tfm);
2457 + const u32 avail = sizeof(rctx->buffer) - (rctx->byte_count & 0x3f);
2458 +
2459 + rctx->byte_count += len;
2460 +
2461 + /* Enough space in buffer? If so copy and we're done */
2462 + if (avail > len) {
2463 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2464 + data, len);
2465 + return;
2466 + }
2467 +
2468 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2469 + data, avail);
2470 +
2471 + rmd160_transform(rctx->state, rctx->buffer);
2472 + data += avail;
2473 + len -= avail;
2474 +
2475 + while (len >= sizeof(rctx->buffer)) {
2476 + memcpy(rctx->buffer, data, sizeof(rctx->buffer));
2477 + rmd160_transform(rctx->state, rctx->buffer);
2478 + data += sizeof(rctx->buffer);
2479 + len -= sizeof(rctx->buffer);
2480 + }
2481 +
2482 + memcpy(rctx->buffer, data, len);
2483 +}
2484 +
2485 +/* Add padding and return the message digest. */
2486 +static void rmd160_final(struct crypto_tfm *tfm, u8 *out)
2487 +{
2488 + struct rmd160_ctx *rctx = crypto_tfm_ctx(tfm);
2489 + u32 i, index, padlen;
2490 + __le64 bits;
2491 + __le32 *dst = (__le32 *)out;
2492 + static const u8 padding[64] = { 0x80, };
2493 +
2494 + bits = cpu_to_le64(rctx->byte_count << 3);
2495 +
2496 + /* Pad out to 56 mod 64 */
2497 + index = rctx->byte_count & 0x3f;
2498 + padlen = (index < 56) ? (56 - index) : ((64+56) - index);
2499 + rmd160_update(tfm, padding, padlen);
2500 +
2501 + /* Append length */
2502 + rmd160_update(tfm, (const u8 *)&bits, sizeof(bits));
2503 +
2504 + /* Store state in digest */
2505 + for (i = 0; i < 5; i++)
2506 + dst[i] = cpu_to_le32p(&rctx->state[i]);
2507 +
2508 + /* Wipe context */
2509 + memset(rctx, 0, sizeof(*rctx));
2510 +}
2511 +
2512 +static struct crypto_alg alg = {
2513 + .cra_name = "rmd160",
2514 + .cra_driver_name = "rmd160",
2515 + .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
2516 + .cra_blocksize = RMD160_BLOCK_SIZE,
2517 + .cra_ctxsize = sizeof(struct rmd160_ctx),
2518 + .cra_module = THIS_MODULE,
2519 + .cra_list = LIST_HEAD_INIT(alg.cra_list),
2520 + .cra_u = { .digest = {
2521 + .dia_digestsize = RMD160_DIGEST_SIZE,
2522 + .dia_init = rmd160_init,
2523 + .dia_update = rmd160_update,
2524 + .dia_final = rmd160_final } }
2525 +};
2526 +
2527 +static int __init rmd160_mod_init(void)
2528 +{
2529 + return crypto_register_alg(&alg);
2530 +}
2531 +
2532 +static void __exit rmd160_mod_fini(void)
2533 +{
2534 + crypto_unregister_alg(&alg);
2535 +}
2536 +
2537 +module_init(rmd160_mod_init);
2538 +module_exit(rmd160_mod_fini);
2539 +
2540 +MODULE_LICENSE("GPL");
2541 +MODULE_DESCRIPTION("RIPEMD-160 Message Digest");
2542 +
2543 +MODULE_ALIAS("rmd160");
2544 --- /dev/null
2545 +++ b/crypto/rmd256.c
2546 @@ -0,0 +1,344 @@
2547 +/*
2548 + * Cryptographic API.
2549 + *
2550 + * RIPEMD-256 - RACE Integrity Primitives Evaluation Message Digest.
2551 + *
2552 + * Based on the reference implementation by Antoon Bosselaers, ESAT-COSIC
2553 + *
2554 + * Copyright (c) 2008 Adrian-Ken Rueegsegger <rueegsegger (at) swiss-it.ch>
2555 + *
2556 + * This program is free software; you can redistribute it and/or modify it
2557 + * under the terms of the GNU General Public License as published by the Free
2558 + * Software Foundation; either version 2 of the License, or (at your option)
2559 + * any later version.
2560 + *
2561 + */
2562 +#include <linux/init.h>
2563 +#include <linux/module.h>
2564 +#include <linux/mm.h>
2565 +#include <linux/crypto.h>
2566 +#include <linux/cryptohash.h>
2567 +#include <linux/types.h>
2568 +#include <asm/byteorder.h>
2569 +
2570 +#include "ripemd.h"
2571 +
2572 +struct rmd256_ctx {
2573 + u64 byte_count;
2574 + u32 state[8];
2575 + __le32 buffer[16];
2576 +};
2577 +
2578 +#define K1 RMD_K1
2579 +#define K2 RMD_K2
2580 +#define K3 RMD_K3
2581 +#define K4 RMD_K4
2582 +#define KK1 RMD_K6
2583 +#define KK2 RMD_K7
2584 +#define KK3 RMD_K8
2585 +#define KK4 RMD_K1
2586 +
2587 +#define F1(x, y, z) (x ^ y ^ z) /* XOR */
2588 +#define F2(x, y, z) (z ^ (x & (y ^ z))) /* x ? y : z */
2589 +#define F3(x, y, z) ((x | ~y) ^ z)
2590 +#define F4(x, y, z) (y ^ (z & (x ^ y))) /* z ? x : y */
2591 +
2592 +#define ROUND(a, b, c, d, f, k, x, s) { \
2593 + (a) += f((b), (c), (d)) + le32_to_cpup(&(x)) + (k); \
2594 + (a) = rol32((a), (s)); \
2595 +}
2596 +
2597 +static void rmd256_transform(u32 *state, const __le32 *in)
2598 +{
2599 + u32 aa, bb, cc, dd, aaa, bbb, ccc, ddd, tmp;
2600 +
2601 + /* Initialize left lane */
2602 + aa = state[0];
2603 + bb = state[1];
2604 + cc = state[2];
2605 + dd = state[3];
2606 +
2607 + /* Initialize right lane */
2608 + aaa = state[4];
2609 + bbb = state[5];
2610 + ccc = state[6];
2611 + ddd = state[7];
2612 +
2613 + /* round 1: left lane */
2614 + ROUND(aa, bb, cc, dd, F1, K1, in[0], 11);
2615 + ROUND(dd, aa, bb, cc, F1, K1, in[1], 14);
2616 + ROUND(cc, dd, aa, bb, F1, K1, in[2], 15);
2617 + ROUND(bb, cc, dd, aa, F1, K1, in[3], 12);
2618 + ROUND(aa, bb, cc, dd, F1, K1, in[4], 5);
2619 + ROUND(dd, aa, bb, cc, F1, K1, in[5], 8);
2620 + ROUND(cc, dd, aa, bb, F1, K1, in[6], 7);
2621 + ROUND(bb, cc, dd, aa, F1, K1, in[7], 9);
2622 + ROUND(aa, bb, cc, dd, F1, K1, in[8], 11);
2623 + ROUND(dd, aa, bb, cc, F1, K1, in[9], 13);
2624 + ROUND(cc, dd, aa, bb, F1, K1, in[10], 14);
2625 + ROUND(bb, cc, dd, aa, F1, K1, in[11], 15);
2626 + ROUND(aa, bb, cc, dd, F1, K1, in[12], 6);
2627 + ROUND(dd, aa, bb, cc, F1, K1, in[13], 7);
2628 + ROUND(cc, dd, aa, bb, F1, K1, in[14], 9);
2629 + ROUND(bb, cc, dd, aa, F1, K1, in[15], 8);
2630 +
2631 + /* round 1: right lane */
2632 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[5], 8);
2633 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[14], 9);
2634 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[7], 9);
2635 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[0], 11);
2636 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[9], 13);
2637 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[2], 15);
2638 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[11], 15);
2639 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[4], 5);
2640 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[13], 7);
2641 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[6], 7);
2642 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[15], 8);
2643 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[8], 11);
2644 + ROUND(aaa, bbb, ccc, ddd, F4, KK1, in[1], 14);
2645 + ROUND(ddd, aaa, bbb, ccc, F4, KK1, in[10], 14);
2646 + ROUND(ccc, ddd, aaa, bbb, F4, KK1, in[3], 12);
2647 + ROUND(bbb, ccc, ddd, aaa, F4, KK1, in[12], 6);
2648 +
2649 + /* Swap contents of "a" registers */
2650 + tmp = aa; aa = aaa; aaa = tmp;
2651 +
2652 + /* round 2: left lane */
2653 + ROUND(aa, bb, cc, dd, F2, K2, in[7], 7);
2654 + ROUND(dd, aa, bb, cc, F2, K2, in[4], 6);
2655 + ROUND(cc, dd, aa, bb, F2, K2, in[13], 8);
2656 + ROUND(bb, cc, dd, aa, F2, K2, in[1], 13);
2657 + ROUND(aa, bb, cc, dd, F2, K2, in[10], 11);
2658 + ROUND(dd, aa, bb, cc, F2, K2, in[6], 9);
2659 + ROUND(cc, dd, aa, bb, F2, K2, in[15], 7);
2660 + ROUND(bb, cc, dd, aa, F2, K2, in[3], 15);
2661 + ROUND(aa, bb, cc, dd, F2, K2, in[12], 7);
2662 + ROUND(dd, aa, bb, cc, F2, K2, in[0], 12);
2663 + ROUND(cc, dd, aa, bb, F2, K2, in[9], 15);
2664 + ROUND(bb, cc, dd, aa, F2, K2, in[5], 9);
2665 + ROUND(aa, bb, cc, dd, F2, K2, in[2], 11);
2666 + ROUND(dd, aa, bb, cc, F2, K2, in[14], 7);
2667 + ROUND(cc, dd, aa, bb, F2, K2, in[11], 13);
2668 + ROUND(bb, cc, dd, aa, F2, K2, in[8], 12);
2669 +
2670 + /* round 2: right lane */
2671 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[6], 9);
2672 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[11], 13);
2673 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[3], 15);
2674 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[7], 7);
2675 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[0], 12);
2676 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[13], 8);
2677 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[5], 9);
2678 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[10], 11);
2679 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[14], 7);
2680 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[15], 7);
2681 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[8], 12);
2682 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[12], 7);
2683 + ROUND(aaa, bbb, ccc, ddd, F3, KK2, in[4], 6);
2684 + ROUND(ddd, aaa, bbb, ccc, F3, KK2, in[9], 15);
2685 + ROUND(ccc, ddd, aaa, bbb, F3, KK2, in[1], 13);
2686 + ROUND(bbb, ccc, ddd, aaa, F3, KK2, in[2], 11);
2687 +
2688 + /* Swap contents of "b" registers */
2689 + tmp = bb; bb = bbb; bbb = tmp;
2690 +
2691 + /* round 3: left lane */
2692 + ROUND(aa, bb, cc, dd, F3, K3, in[3], 11);
2693 + ROUND(dd, aa, bb, cc, F3, K3, in[10], 13);
2694 + ROUND(cc, dd, aa, bb, F3, K3, in[14], 6);
2695 + ROUND(bb, cc, dd, aa, F3, K3, in[4], 7);
2696 + ROUND(aa, bb, cc, dd, F3, K3, in[9], 14);
2697 + ROUND(dd, aa, bb, cc, F3, K3, in[15], 9);
2698 + ROUND(cc, dd, aa, bb, F3, K3, in[8], 13);
2699 + ROUND(bb, cc, dd, aa, F3, K3, in[1], 15);
2700 + ROUND(aa, bb, cc, dd, F3, K3, in[2], 14);
2701 + ROUND(dd, aa, bb, cc, F3, K3, in[7], 8);
2702 + ROUND(cc, dd, aa, bb, F3, K3, in[0], 13);
2703 + ROUND(bb, cc, dd, aa, F3, K3, in[6], 6);
2704 + ROUND(aa, bb, cc, dd, F3, K3, in[13], 5);
2705 + ROUND(dd, aa, bb, cc, F3, K3, in[11], 12);
2706 + ROUND(cc, dd, aa, bb, F3, K3, in[5], 7);
2707 + ROUND(bb, cc, dd, aa, F3, K3, in[12], 5);
2708 +
2709 + /* round 3: right lane */
2710 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[15], 9);
2711 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[5], 7);
2712 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[1], 15);
2713 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[3], 11);
2714 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[7], 8);
2715 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[14], 6);
2716 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[6], 6);
2717 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[9], 14);
2718 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[11], 12);
2719 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[8], 13);
2720 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[12], 5);
2721 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[2], 14);
2722 + ROUND(aaa, bbb, ccc, ddd, F2, KK3, in[10], 13);
2723 + ROUND(ddd, aaa, bbb, ccc, F2, KK3, in[0], 13);
2724 + ROUND(ccc, ddd, aaa, bbb, F2, KK3, in[4], 7);
2725 + ROUND(bbb, ccc, ddd, aaa, F2, KK3, in[13], 5);
2726 +
2727 + /* Swap contents of "c" registers */
2728 + tmp = cc; cc = ccc; ccc = tmp;
2729 +
2730 + /* round 4: left lane */
2731 + ROUND(aa, bb, cc, dd, F4, K4, in[1], 11);
2732 + ROUND(dd, aa, bb, cc, F4, K4, in[9], 12);
2733 + ROUND(cc, dd, aa, bb, F4, K4, in[11], 14);
2734 + ROUND(bb, cc, dd, aa, F4, K4, in[10], 15);
2735 + ROUND(aa, bb, cc, dd, F4, K4, in[0], 14);
2736 + ROUND(dd, aa, bb, cc, F4, K4, in[8], 15);
2737 + ROUND(cc, dd, aa, bb, F4, K4, in[12], 9);
2738 + ROUND(bb, cc, dd, aa, F4, K4, in[4], 8);
2739 + ROUND(aa, bb, cc, dd, F4, K4, in[13], 9);
2740 + ROUND(dd, aa, bb, cc, F4, K4, in[3], 14);
2741 + ROUND(cc, dd, aa, bb, F4, K4, in[7], 5);
2742 + ROUND(bb, cc, dd, aa, F4, K4, in[15], 6);
2743 + ROUND(aa, bb, cc, dd, F4, K4, in[14], 8);
2744 + ROUND(dd, aa, bb, cc, F4, K4, in[5], 6);
2745 + ROUND(cc, dd, aa, bb, F4, K4, in[6], 5);
2746 + ROUND(bb, cc, dd, aa, F4, K4, in[2], 12);
2747 +
2748 + /* round 4: right lane */
2749 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[8], 15);
2750 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[6], 5);
2751 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[4], 8);
2752 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[1], 11);
2753 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[3], 14);
2754 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[11], 14);
2755 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[15], 6);
2756 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[0], 14);
2757 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[5], 6);
2758 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[12], 9);
2759 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[2], 12);
2760 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[13], 9);
2761 + ROUND(aaa, bbb, ccc, ddd, F1, KK4, in[9], 12);
2762 + ROUND(ddd, aaa, bbb, ccc, F1, KK4, in[7], 5);
2763 + ROUND(ccc, ddd, aaa, bbb, F1, KK4, in[10], 15);
2764 + ROUND(bbb, ccc, ddd, aaa, F1, KK4, in[14], 8);
2765 +
2766 + /* Swap contents of "d" registers */
2767 + tmp = dd; dd = ddd; ddd = tmp;
2768 +
2769 + /* combine results */
2770 + state[0] += aa;
2771 + state[1] += bb;
2772 + state[2] += cc;
2773 + state[3] += dd;
2774 + state[4] += aaa;
2775 + state[5] += bbb;
2776 + state[6] += ccc;
2777 + state[7] += ddd;
2778 +
2779 + return;
2780 +}
2781 +
2782 +static void rmd256_init(struct crypto_tfm *tfm)
2783 +{
2784 + struct rmd256_ctx *rctx = crypto_tfm_ctx(tfm);
2785 +
2786 + rctx->byte_count = 0;
2787 +
2788 + rctx->state[0] = RMD_H0;
2789 + rctx->state[1] = RMD_H1;
2790 + rctx->state[2] = RMD_H2;
2791 + rctx->state[3] = RMD_H3;
2792 + rctx->state[4] = RMD_H5;
2793 + rctx->state[5] = RMD_H6;
2794 + rctx->state[6] = RMD_H7;
2795 + rctx->state[7] = RMD_H8;
2796 +
2797 + memset(rctx->buffer, 0, sizeof(rctx->buffer));
2798 +}
2799 +
2800 +static void rmd256_update(struct crypto_tfm *tfm, const u8 *data,
2801 + unsigned int len)
2802 +{
2803 + struct rmd256_ctx *rctx = crypto_tfm_ctx(tfm);
2804 + const u32 avail = sizeof(rctx->buffer) - (rctx->byte_count & 0x3f);
2805 +
2806 + rctx->byte_count += len;
2807 +
2808 + /* Enough space in buffer? If so copy and we're done */
2809 + if (avail > len) {
2810 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2811 + data, len);
2812 + return;
2813 + }
2814 +
2815 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
2816 + data, avail);
2817 +
2818 + rmd256_transform(rctx->state, rctx->buffer);
2819 + data += avail;
2820 + len -= avail;
2821 +
2822 + while (len >= sizeof(rctx->buffer)) {
2823 + memcpy(rctx->buffer, data, sizeof(rctx->buffer));
2824 + rmd256_transform(rctx->state, rctx->buffer);
2825 + data += sizeof(rctx->buffer);
2826 + len -= sizeof(rctx->buffer);
2827 + }
2828 +
2829 + memcpy(rctx->buffer, data, len);
2830 +}
2831 +
2832 +/* Add padding and return the message digest. */
2833 +static void rmd256_final(struct crypto_tfm *tfm, u8 *out)
2834 +{
2835 + struct rmd256_ctx *rctx = crypto_tfm_ctx(tfm);
2836 + u32 i, index, padlen;
2837 + __le64 bits;
2838 + __le32 *dst = (__le32 *)out;
2839 + static const u8 padding[64] = { 0x80, };
2840 +
2841 + bits = cpu_to_le64(rctx->byte_count << 3);
2842 +
2843 + /* Pad out to 56 mod 64 */
2844 + index = rctx->byte_count & 0x3f;
2845 + padlen = (index < 56) ? (56 - index) : ((64+56) - index);
2846 + rmd256_update(tfm, padding, padlen);
2847 +
2848 + /* Append length */
2849 + rmd256_update(tfm, (const u8 *)&bits, sizeof(bits));
2850 +
2851 + /* Store state in digest */
2852 + for (i = 0; i < 8; i++)
2853 + dst[i] = cpu_to_le32p(&rctx->state[i]);
2854 +
2855 + /* Wipe context */
2856 + memset(rctx, 0, sizeof(*rctx));
2857 +}
2858 +
2859 +static struct crypto_alg alg = {
2860 + .cra_name = "rmd256",
2861 + .cra_driver_name = "rmd256",
2862 + .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
2863 + .cra_blocksize = RMD256_BLOCK_SIZE,
2864 + .cra_ctxsize = sizeof(struct rmd256_ctx),
2865 + .cra_module = THIS_MODULE,
2866 + .cra_list = LIST_HEAD_INIT(alg.cra_list),
2867 + .cra_u = { .digest = {
2868 + .dia_digestsize = RMD256_DIGEST_SIZE,
2869 + .dia_init = rmd256_init,
2870 + .dia_update = rmd256_update,
2871 + .dia_final = rmd256_final } }
2872 +};
2873 +
2874 +static int __init rmd256_mod_init(void)
2875 +{
2876 + return crypto_register_alg(&alg);
2877 +}
2878 +
2879 +static void __exit rmd256_mod_fini(void)
2880 +{
2881 + crypto_unregister_alg(&alg);
2882 +}
2883 +
2884 +module_init(rmd256_mod_init);
2885 +module_exit(rmd256_mod_fini);
2886 +
2887 +MODULE_LICENSE("GPL");
2888 +MODULE_DESCRIPTION("RIPEMD-256 Message Digest");
2889 +
2890 +MODULE_ALIAS("rmd256");
2891 --- /dev/null
2892 +++ b/crypto/rmd320.c
2893 @@ -0,0 +1,393 @@
2894 +/*
2895 + * Cryptographic API.
2896 + *
2897 + * RIPEMD-320 - RACE Integrity Primitives Evaluation Message Digest.
2898 + *
2899 + * Based on the reference implementation by Antoon Bosselaers, ESAT-COSIC
2900 + *
2901 + * Copyright (c) 2008 Adrian-Ken Rueegsegger <rueegsegger (at) swiss-it.ch>
2902 + *
2903 + * This program is free software; you can redistribute it and/or modify it
2904 + * under the terms of the GNU General Public License as published by the Free
2905 + * Software Foundation; either version 2 of the License, or (at your option)
2906 + * any later version.
2907 + *
2908 + */
2909 +#include <linux/init.h>
2910 +#include <linux/module.h>
2911 +#include <linux/mm.h>
2912 +#include <linux/crypto.h>
2913 +#include <linux/cryptohash.h>
2914 +#include <linux/types.h>
2915 +#include <asm/byteorder.h>
2916 +
2917 +#include "ripemd.h"
2918 +
2919 +struct rmd320_ctx {
2920 + u64 byte_count;
2921 + u32 state[10];
2922 + __le32 buffer[16];
2923 +};
2924 +
2925 +#define K1 RMD_K1
2926 +#define K2 RMD_K2
2927 +#define K3 RMD_K3
2928 +#define K4 RMD_K4
2929 +#define K5 RMD_K5
2930 +#define KK1 RMD_K6
2931 +#define KK2 RMD_K7
2932 +#define KK3 RMD_K8
2933 +#define KK4 RMD_K9
2934 +#define KK5 RMD_K1
2935 +
2936 +#define F1(x, y, z) (x ^ y ^ z) /* XOR */
2937 +#define F2(x, y, z) (z ^ (x & (y ^ z))) /* x ? y : z */
2938 +#define F3(x, y, z) ((x | ~y) ^ z)
2939 +#define F4(x, y, z) (y ^ (z & (x ^ y))) /* z ? x : y */
2940 +#define F5(x, y, z) (x ^ (y | ~z))
2941 +
2942 +#define ROUND(a, b, c, d, e, f, k, x, s) { \
2943 + (a) += f((b), (c), (d)) + le32_to_cpup(&(x)) + (k); \
2944 + (a) = rol32((a), (s)) + (e); \
2945 + (c) = rol32((c), 10); \
2946 +}
2947 +
2948 +static void rmd320_transform(u32 *state, const __le32 *in)
2949 +{
2950 + u32 aa, bb, cc, dd, ee, aaa, bbb, ccc, ddd, eee, tmp;
2951 +
2952 + /* Initialize left lane */
2953 + aa = state[0];
2954 + bb = state[1];
2955 + cc = state[2];
2956 + dd = state[3];
2957 + ee = state[4];
2958 +
2959 + /* Initialize right lane */
2960 + aaa = state[5];
2961 + bbb = state[6];
2962 + ccc = state[7];
2963 + ddd = state[8];
2964 + eee = state[9];
2965 +
2966 + /* round 1: left lane */
2967 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[0], 11);
2968 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[1], 14);
2969 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[2], 15);
2970 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[3], 12);
2971 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[4], 5);
2972 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[5], 8);
2973 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[6], 7);
2974 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[7], 9);
2975 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[8], 11);
2976 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[9], 13);
2977 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[10], 14);
2978 + ROUND(ee, aa, bb, cc, dd, F1, K1, in[11], 15);
2979 + ROUND(dd, ee, aa, bb, cc, F1, K1, in[12], 6);
2980 + ROUND(cc, dd, ee, aa, bb, F1, K1, in[13], 7);
2981 + ROUND(bb, cc, dd, ee, aa, F1, K1, in[14], 9);
2982 + ROUND(aa, bb, cc, dd, ee, F1, K1, in[15], 8);
2983 +
2984 + /* round 1: right lane */
2985 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[5], 8);
2986 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[14], 9);
2987 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[7], 9);
2988 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[0], 11);
2989 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[9], 13);
2990 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[2], 15);
2991 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[11], 15);
2992 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[4], 5);
2993 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[13], 7);
2994 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[6], 7);
2995 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[15], 8);
2996 + ROUND(eee, aaa, bbb, ccc, ddd, F5, KK1, in[8], 11);
2997 + ROUND(ddd, eee, aaa, bbb, ccc, F5, KK1, in[1], 14);
2998 + ROUND(ccc, ddd, eee, aaa, bbb, F5, KK1, in[10], 14);
2999 + ROUND(bbb, ccc, ddd, eee, aaa, F5, KK1, in[3], 12);
3000 + ROUND(aaa, bbb, ccc, ddd, eee, F5, KK1, in[12], 6);
3001 +
3002 + /* Swap contents of "a" registers */
3003 + tmp = aa; aa = aaa; aaa = tmp;
3004 +
3005 + /* round 2: left lane" */
3006 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[7], 7);
3007 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[4], 6);
3008 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[13], 8);
3009 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[1], 13);
3010 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[10], 11);
3011 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[6], 9);
3012 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[15], 7);
3013 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[3], 15);
3014 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[12], 7);
3015 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[0], 12);
3016 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[9], 15);
3017 + ROUND(dd, ee, aa, bb, cc, F2, K2, in[5], 9);
3018 + ROUND(cc, dd, ee, aa, bb, F2, K2, in[2], 11);
3019 + ROUND(bb, cc, dd, ee, aa, F2, K2, in[14], 7);
3020 + ROUND(aa, bb, cc, dd, ee, F2, K2, in[11], 13);
3021 + ROUND(ee, aa, bb, cc, dd, F2, K2, in[8], 12);
3022 +
3023 + /* round 2: right lane */
3024 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[6], 9);
3025 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[11], 13);
3026 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[3], 15);
3027 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[7], 7);
3028 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[0], 12);
3029 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[13], 8);
3030 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[5], 9);
3031 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[10], 11);
3032 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[14], 7);
3033 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[15], 7);
3034 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[8], 12);
3035 + ROUND(ddd, eee, aaa, bbb, ccc, F4, KK2, in[12], 7);
3036 + ROUND(ccc, ddd, eee, aaa, bbb, F4, KK2, in[4], 6);
3037 + ROUND(bbb, ccc, ddd, eee, aaa, F4, KK2, in[9], 15);
3038 + ROUND(aaa, bbb, ccc, ddd, eee, F4, KK2, in[1], 13);
3039 + ROUND(eee, aaa, bbb, ccc, ddd, F4, KK2, in[2], 11);
3040 +
3041 + /* Swap contents of "b" registers */
3042 + tmp = bb; bb = bbb; bbb = tmp;
3043 +
3044 + /* round 3: left lane" */
3045 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[3], 11);
3046 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[10], 13);
3047 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[14], 6);
3048 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[4], 7);
3049 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[9], 14);
3050 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[15], 9);
3051 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[8], 13);
3052 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[1], 15);
3053 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[2], 14);
3054 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[7], 8);
3055 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[0], 13);
3056 + ROUND(cc, dd, ee, aa, bb, F3, K3, in[6], 6);
3057 + ROUND(bb, cc, dd, ee, aa, F3, K3, in[13], 5);
3058 + ROUND(aa, bb, cc, dd, ee, F3, K3, in[11], 12);
3059 + ROUND(ee, aa, bb, cc, dd, F3, K3, in[5], 7);
3060 + ROUND(dd, ee, aa, bb, cc, F3, K3, in[12], 5);
3061 +
3062 + /* round 3: right lane */
3063 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[15], 9);
3064 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[5], 7);
3065 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[1], 15);
3066 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[3], 11);
3067 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[7], 8);
3068 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[14], 6);
3069 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[6], 6);
3070 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[9], 14);
3071 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[11], 12);
3072 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[8], 13);
3073 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[12], 5);
3074 + ROUND(ccc, ddd, eee, aaa, bbb, F3, KK3, in[2], 14);
3075 + ROUND(bbb, ccc, ddd, eee, aaa, F3, KK3, in[10], 13);
3076 + ROUND(aaa, bbb, ccc, ddd, eee, F3, KK3, in[0], 13);
3077 + ROUND(eee, aaa, bbb, ccc, ddd, F3, KK3, in[4], 7);
3078 + ROUND(ddd, eee, aaa, bbb, ccc, F3, KK3, in[13], 5);
3079 +
3080 + /* Swap contents of "c" registers */
3081 + tmp = cc; cc = ccc; ccc = tmp;
3082 +
3083 + /* round 4: left lane" */
3084 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[1], 11);
3085 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[9], 12);
3086 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[11], 14);
3087 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[10], 15);
3088 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[0], 14);
3089 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[8], 15);
3090 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[12], 9);
3091 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[4], 8);
3092 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[13], 9);
3093 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[3], 14);
3094 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[7], 5);
3095 + ROUND(bb, cc, dd, ee, aa, F4, K4, in[15], 6);
3096 + ROUND(aa, bb, cc, dd, ee, F4, K4, in[14], 8);
3097 + ROUND(ee, aa, bb, cc, dd, F4, K4, in[5], 6);
3098 + ROUND(dd, ee, aa, bb, cc, F4, K4, in[6], 5);
3099 + ROUND(cc, dd, ee, aa, bb, F4, K4, in[2], 12);
3100 +
3101 + /* round 4: right lane */
3102 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[8], 15);
3103 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[6], 5);
3104 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[4], 8);
3105 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[1], 11);
3106 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[3], 14);
3107 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[11], 14);
3108 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[15], 6);
3109 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[0], 14);
3110 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[5], 6);
3111 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[12], 9);
3112 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[2], 12);
3113 + ROUND(bbb, ccc, ddd, eee, aaa, F2, KK4, in[13], 9);
3114 + ROUND(aaa, bbb, ccc, ddd, eee, F2, KK4, in[9], 12);
3115 + ROUND(eee, aaa, bbb, ccc, ddd, F2, KK4, in[7], 5);
3116 + ROUND(ddd, eee, aaa, bbb, ccc, F2, KK4, in[10], 15);
3117 + ROUND(ccc, ddd, eee, aaa, bbb, F2, KK4, in[14], 8);
3118 +
3119 + /* Swap contents of "d" registers */
3120 + tmp = dd; dd = ddd; ddd = tmp;
3121 +
3122 + /* round 5: left lane" */
3123 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[4], 9);
3124 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[0], 15);
3125 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[5], 5);
3126 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[9], 11);
3127 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[7], 6);
3128 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[12], 8);
3129 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[2], 13);
3130 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[10], 12);
3131 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[14], 5);
3132 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[1], 12);
3133 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[3], 13);
3134 + ROUND(aa, bb, cc, dd, ee, F5, K5, in[8], 14);
3135 + ROUND(ee, aa, bb, cc, dd, F5, K5, in[11], 11);
3136 + ROUND(dd, ee, aa, bb, cc, F5, K5, in[6], 8);
3137 + ROUND(cc, dd, ee, aa, bb, F5, K5, in[15], 5);
3138 + ROUND(bb, cc, dd, ee, aa, F5, K5, in[13], 6);
3139 +
3140 + /* round 5: right lane */
3141 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[12], 8);
3142 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[15], 5);
3143 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[10], 12);
3144 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[4], 9);
3145 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[1], 12);
3146 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[5], 5);
3147 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[8], 14);
3148 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[7], 6);
3149 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[6], 8);
3150 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[2], 13);
3151 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[13], 6);
3152 + ROUND(aaa, bbb, ccc, ddd, eee, F1, KK5, in[14], 5);
3153 + ROUND(eee, aaa, bbb, ccc, ddd, F1, KK5, in[0], 15);
3154 + ROUND(ddd, eee, aaa, bbb, ccc, F1, KK5, in[3], 13);
3155 + ROUND(ccc, ddd, eee, aaa, bbb, F1, KK5, in[9], 11);
3156 + ROUND(bbb, ccc, ddd, eee, aaa, F1, KK5, in[11], 11);
3157 +
3158 + /* Swap contents of "e" registers */
3159 + tmp = ee; ee = eee; eee = tmp;
3160 +
3161 + /* combine results */
3162 + state[0] += aa;
3163 + state[1] += bb;
3164 + state[2] += cc;
3165 + state[3] += dd;
3166 + state[4] += ee;
3167 + state[5] += aaa;
3168 + state[6] += bbb;
3169 + state[7] += ccc;
3170 + state[8] += ddd;
3171 + state[9] += eee;
3172 +
3173 + return;
3174 +}
3175 +
3176 +static void rmd320_init(struct crypto_tfm *tfm)
3177 +{
3178 + struct rmd320_ctx *rctx = crypto_tfm_ctx(tfm);
3179 +
3180 + rctx->byte_count = 0;
3181 +
3182 + rctx->state[0] = RMD_H0;
3183 + rctx->state[1] = RMD_H1;
3184 + rctx->state[2] = RMD_H2;
3185 + rctx->state[3] = RMD_H3;
3186 + rctx->state[4] = RMD_H4;
3187 + rctx->state[5] = RMD_H5;
3188 + rctx->state[6] = RMD_H6;
3189 + rctx->state[7] = RMD_H7;
3190 + rctx->state[8] = RMD_H8;
3191 + rctx->state[9] = RMD_H9;
3192 +
3193 + memset(rctx->buffer, 0, sizeof(rctx->buffer));
3194 +}
3195 +
3196 +static void rmd320_update(struct crypto_tfm *tfm, const u8 *data,
3197 + unsigned int len)
3198 +{
3199 + struct rmd320_ctx *rctx = crypto_tfm_ctx(tfm);
3200 + const u32 avail = sizeof(rctx->buffer) - (rctx->byte_count & 0x3f);
3201 +
3202 + rctx->byte_count += len;
3203 +
3204 + /* Enough space in buffer? If so copy and we're done */
3205 + if (avail > len) {
3206 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
3207 + data, len);
3208 + return;
3209 + }
3210 +
3211 + memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
3212 + data, avail);
3213 +
3214 + rmd320_transform(rctx->state, rctx->buffer);
3215 + data += avail;
3216 + len -= avail;
3217 +
3218 + while (len >= sizeof(rctx->buffer)) {
3219 + memcpy(rctx->buffer, data, sizeof(rctx->buffer));
3220 + rmd320_transform(rctx->state, rctx->buffer);
3221 + data += sizeof(rctx->buffer);
3222 + len -= sizeof(rctx->buffer);
3223 + }
3224 +
3225 + memcpy(rctx->buffer, data, len);
3226 +}
3227 +
3228 +/* Add padding and return the message digest. */
3229 +static void rmd320_final(struct crypto_tfm *tfm, u8 *out)
3230 +{
3231 + struct rmd320_ctx *rctx = crypto_tfm_ctx(tfm);
3232 + u32 i, index, padlen;
3233 + __le64 bits;
3234 + __le32 *dst = (__le32 *)out;
3235 + static const u8 padding[64] = { 0x80, };
3236 +
3237 + bits = cpu_to_le64(rctx->byte_count << 3);
3238 +
3239 + /* Pad out to 56 mod 64 */
3240 + index = rctx->byte_count & 0x3f;
3241 + padlen = (index < 56) ? (56 - index) : ((64+56) - index);
3242 + rmd320_update(tfm, padding, padlen);
3243 +
3244 + /* Append length */
3245 + rmd320_update(tfm, (const u8 *)&bits, sizeof(bits));
3246 +
3247 + /* Store state in digest */
3248 + for (i = 0; i < 10; i++)
3249 + dst[i] = cpu_to_le32p(&rctx->state[i]);
3250 +
3251 + /* Wipe context */
3252 + memset(rctx, 0, sizeof(*rctx));
3253 +}
3254 +
3255 +static struct crypto_alg alg = {
3256 + .cra_name = "rmd320",
3257 + .cra_driver_name = "rmd320",
3258 + .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
3259 + .cra_blocksize = RMD320_BLOCK_SIZE,
3260 + .cra_ctxsize = sizeof(struct rmd320_ctx),
3261 + .cra_module = THIS_MODULE,
3262 + .cra_list = LIST_HEAD_INIT(alg.cra_list),
3263 + .cra_u = { .digest = {
3264 + .dia_digestsize = RMD320_DIGEST_SIZE,
3265 + .dia_init = rmd320_init,
3266 + .dia_update = rmd320_update,
3267 + .dia_final = rmd320_final } }
3268 +};
3269 +
3270 +static int __init rmd320_mod_init(void)
3271 +{
3272 + return crypto_register_alg(&alg);
3273 +}
3274 +
3275 +static void __exit rmd320_mod_fini(void)
3276 +{
3277 + crypto_unregister_alg(&alg);
3278 +}
3279 +
3280 +module_init(rmd320_mod_init);
3281 +module_exit(rmd320_mod_fini);
3282 +
3283 +MODULE_LICENSE("GPL");
3284 +MODULE_DESCRIPTION("RIPEMD-320 Message Digest");
3285 +
3286 +MODULE_ALIAS("rmd320");
3287 --- a/crypto/tcrypt.c
3288 +++ b/crypto/tcrypt.c
3289 @@ -13,15 +13,9 @@
3290 * Software Foundation; either version 2 of the License, or (at your option)
3291 * any later version.
3292 *
3293 - * 2007-11-13 Added GCM tests
3294 - * 2007-11-13 Added AEAD support
3295 - * 2007-11-06 Added SHA-224 and SHA-224-HMAC tests
3296 - * 2006-12-07 Added SHA384 HMAC and SHA512 HMAC tests
3297 - * 2004-08-09 Added cipher speed tests (Reyk Floeter <reyk@vantronix.net>)
3298 - * 2003-09-14 Rewritten by Kartikey Mahendra Bhatt
3299 - *
3300 */
3301
3302 +#include <crypto/hash.h>
3303 #include <linux/err.h>
3304 #include <linux/init.h>
3305 #include <linux/module.h>
3306 @@ -30,7 +24,6 @@
3307 #include <linux/scatterlist.h>
3308 #include <linux/string.h>
3309 #include <linux/crypto.h>
3310 -#include <linux/highmem.h>
3311 #include <linux/moduleparam.h>
3312 #include <linux/jiffies.h>
3313 #include <linux/timex.h>
3314 @@ -38,7 +31,7 @@
3315 #include "tcrypt.h"
3316
3317 /*
3318 - * Need to kmalloc() memory for testing kmap().
3319 + * Need to kmalloc() memory for testing.
3320 */
3321 #define TVMEMSIZE 16384
3322 #define XBUFSIZE 32768
3323 @@ -46,7 +39,7 @@
3324 /*
3325 * Indexes into the xbuf to simulate cross-page access.
3326 */
3327 -#define IDX1 37
3328 +#define IDX1 32
3329 #define IDX2 32400
3330 #define IDX3 1
3331 #define IDX4 8193
3332 @@ -83,7 +76,8 @@ static char *check[] = {
3333 "blowfish", "twofish", "serpent", "sha384", "sha512", "md4", "aes",
3334 "cast6", "arc4", "michael_mic", "deflate", "crc32c", "tea", "xtea",
3335 "khazad", "wp512", "wp384", "wp256", "tnepres", "xeta", "fcrypt",
3336 - "camellia", "seed", "salsa20", "lzo", "cts", NULL
3337 + "camellia", "seed", "salsa20", "rmd128", "rmd160", "rmd256", "rmd320",
3338 + "lzo", "cts", NULL
3339 };
3340
3341 static void hexdump(unsigned char *buf, unsigned int len)
3342 @@ -110,22 +104,30 @@ static void test_hash(char *algo, struct
3343 unsigned int i, j, k, temp;
3344 struct scatterlist sg[8];
3345 char result[64];
3346 - struct crypto_hash *tfm;
3347 - struct hash_desc desc;
3348 + struct crypto_ahash *tfm;
3349 + struct ahash_request *req;
3350 + struct tcrypt_result tresult;
3351 int ret;
3352 void *hash_buff;
3353
3354 printk("\ntesting %s\n", algo);
3355
3356 - tfm = crypto_alloc_hash(algo, 0, CRYPTO_ALG_ASYNC);
3357 + init_completion(&tresult.completion);
3358 +
3359 + tfm = crypto_alloc_ahash(algo, 0, 0);
3360 if (IS_ERR(tfm)) {
3361 printk("failed to load transform for %s: %ld\n", algo,
3362 PTR_ERR(tfm));
3363 return;
3364 }
3365
3366 - desc.tfm = tfm;
3367 - desc.flags = 0;
3368 + req = ahash_request_alloc(tfm, GFP_KERNEL);
3369 + if (!req) {
3370 + printk(KERN_ERR "failed to allocate request for %s\n", algo);
3371 + goto out_noreq;
3372 + }
3373 + ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
3374 + tcrypt_complete, &tresult);
3375
3376 for (i = 0; i < tcount; i++) {
3377 printk("test %u:\n", i + 1);
3378 @@ -139,8 +141,9 @@ static void test_hash(char *algo, struct
3379 sg_init_one(&sg[0], hash_buff, template[i].psize);
3380
3381 if (template[i].ksize) {
3382 - ret = crypto_hash_setkey(tfm, template[i].key,
3383 - template[i].ksize);
3384 + crypto_ahash_clear_flags(tfm, ~0);
3385 + ret = crypto_ahash_setkey(tfm, template[i].key,
3386 + template[i].ksize);
3387 if (ret) {
3388 printk("setkey() failed ret=%d\n", ret);
3389 kfree(hash_buff);
3390 @@ -148,17 +151,30 @@ static void test_hash(char *algo, struct
3391 }
3392 }
3393
3394 - ret = crypto_hash_digest(&desc, sg, template[i].psize, result);
3395 - if (ret) {
3396 + ahash_request_set_crypt(req, sg, result, template[i].psize);
3397 + ret = crypto_ahash_digest(req);
3398 + switch (ret) {
3399 + case 0:
3400 + break;
3401 + case -EINPROGRESS:
3402 + case -EBUSY:
3403 + ret = wait_for_completion_interruptible(
3404 + &tresult.completion);
3405 + if (!ret && !(ret = tresult.err)) {
3406 + INIT_COMPLETION(tresult.completion);
3407 + break;
3408 + }
3409 + /* fall through */
3410 + default:
3411 printk("digest () failed ret=%d\n", ret);
3412 kfree(hash_buff);
3413 goto out;
3414 }
3415
3416 - hexdump(result, crypto_hash_digestsize(tfm));
3417 + hexdump(result, crypto_ahash_digestsize(tfm));
3418 printk("%s\n",
3419 memcmp(result, template[i].digest,
3420 - crypto_hash_digestsize(tfm)) ?
3421 + crypto_ahash_digestsize(tfm)) ?
3422 "fail" : "pass");
3423 kfree(hash_buff);
3424 }
3425 @@ -187,8 +203,9 @@ static void test_hash(char *algo, struct
3426 }
3427
3428 if (template[i].ksize) {
3429 - ret = crypto_hash_setkey(tfm, template[i].key,
3430 - template[i].ksize);
3431 + crypto_ahash_clear_flags(tfm, ~0);
3432 + ret = crypto_ahash_setkey(tfm, template[i].key,
3433 + template[i].ksize);
3434
3435 if (ret) {
3436 printk("setkey() failed ret=%d\n", ret);
3437 @@ -196,29 +213,44 @@ static void test_hash(char *algo, struct
3438 }
3439 }
3440
3441 - ret = crypto_hash_digest(&desc, sg, template[i].psize,
3442 - result);
3443 - if (ret) {
3444 + ahash_request_set_crypt(req, sg, result,
3445 + template[i].psize);
3446 + ret = crypto_ahash_digest(req);
3447 + switch (ret) {
3448 + case 0:
3449 + break;
3450 + case -EINPROGRESS:
3451 + case -EBUSY:
3452 + ret = wait_for_completion_interruptible(
3453 + &tresult.completion);
3454 + if (!ret && !(ret = tresult.err)) {
3455 + INIT_COMPLETION(tresult.completion);
3456 + break;
3457 + }
3458 + /* fall through */
3459 + default:
3460 printk("digest () failed ret=%d\n", ret);
3461 goto out;
3462 }
3463
3464 - hexdump(result, crypto_hash_digestsize(tfm));
3465 + hexdump(result, crypto_ahash_digestsize(tfm));
3466 printk("%s\n",
3467 memcmp(result, template[i].digest,
3468 - crypto_hash_digestsize(tfm)) ?
3469 + crypto_ahash_digestsize(tfm)) ?
3470 "fail" : "pass");
3471 }
3472 }
3473
3474 out:
3475 - crypto_free_hash(tfm);
3476 + ahash_request_free(req);
3477 +out_noreq:
3478 + crypto_free_ahash(tfm);
3479 }
3480
3481 static void test_aead(char *algo, int enc, struct aead_testvec *template,
3482 unsigned int tcount)
3483 {
3484 - unsigned int ret, i, j, k, temp;
3485 + unsigned int ret, i, j, k, n, temp;
3486 char *q;
3487 struct crypto_aead *tfm;
3488 char *key;
3489 @@ -344,13 +376,12 @@ static void test_aead(char *algo, int en
3490 goto next_one;
3491 }
3492
3493 - q = kmap(sg_page(&sg[0])) + sg[0].offset;
3494 + q = input;
3495 hexdump(q, template[i].rlen);
3496
3497 printk(KERN_INFO "enc/dec: %s\n",
3498 memcmp(q, template[i].result,
3499 template[i].rlen) ? "fail" : "pass");
3500 - kunmap(sg_page(&sg[0]));
3501 next_one:
3502 if (!template[i].key)
3503 kfree(key);
3504 @@ -360,7 +391,6 @@ next_one:
3505 }
3506
3507 printk(KERN_INFO "\ntesting %s %s across pages (chunking)\n", algo, e);
3508 - memset(xbuf, 0, XBUFSIZE);
3509 memset(axbuf, 0, XBUFSIZE);
3510
3511 for (i = 0, j = 0; i < tcount; i++) {
3512 @@ -388,6 +418,7 @@ next_one:
3513 goto out;
3514 }
3515
3516 + memset(xbuf, 0, XBUFSIZE);
3517 sg_init_table(sg, template[i].np);
3518 for (k = 0, temp = 0; k < template[i].np; k++) {
3519 memcpy(&xbuf[IDX[k]],
3520 @@ -450,7 +481,7 @@ next_one:
3521
3522 for (k = 0, temp = 0; k < template[i].np; k++) {
3523 printk(KERN_INFO "page %u\n", k);
3524 - q = kmap(sg_page(&sg[k])) + sg[k].offset;
3525 + q = &axbuf[IDX[k]];
3526 hexdump(q, template[i].tap[k]);
3527 printk(KERN_INFO "%s\n",
3528 memcmp(q, template[i].result + temp,
3529 @@ -459,8 +490,15 @@ next_one:
3530 0 : authsize)) ?
3531 "fail" : "pass");
3532
3533 + for (n = 0; q[template[i].tap[k] + n]; n++)
3534 + ;
3535 + if (n) {
3536 + printk("Result buffer corruption %u "
3537 + "bytes:\n", n);
3538 + hexdump(&q[template[i].tap[k]], n);
3539 + }
3540 +
3541 temp += template[i].tap[k];
3542 - kunmap(sg_page(&sg[k]));
3543 }
3544 }
3545 }
3546 @@ -473,7 +511,7 @@ out:
3547 static void test_cipher(char *algo, int enc,
3548 struct cipher_testvec *template, unsigned int tcount)
3549 {
3550 - unsigned int ret, i, j, k, temp;
3551 + unsigned int ret, i, j, k, n, temp;
3552 char *q;
3553 struct crypto_ablkcipher *tfm;
3554 struct ablkcipher_request *req;
3555 @@ -569,19 +607,17 @@ static void test_cipher(char *algo, int
3556 goto out;
3557 }
3558
3559 - q = kmap(sg_page(&sg[0])) + sg[0].offset;
3560 + q = data;
3561 hexdump(q, template[i].rlen);
3562
3563 printk("%s\n",
3564 memcmp(q, template[i].result,
3565 template[i].rlen) ? "fail" : "pass");
3566 - kunmap(sg_page(&sg[0]));
3567 }
3568 kfree(data);
3569 }
3570
3571 printk("\ntesting %s %s across pages (chunking)\n", algo, e);
3572 - memset(xbuf, 0, XBUFSIZE);
3573
3574 j = 0;
3575 for (i = 0; i < tcount; i++) {
3576 @@ -596,6 +632,7 @@ static void test_cipher(char *algo, int
3577 printk("test %u (%d bit key):\n",
3578 j, template[i].klen * 8);
3579
3580 + memset(xbuf, 0, XBUFSIZE);
3581 crypto_ablkcipher_clear_flags(tfm, ~0);
3582 if (template[i].wk)
3583 crypto_ablkcipher_set_flags(
3584 @@ -649,14 +686,21 @@ static void test_cipher(char *algo, int
3585 temp = 0;
3586 for (k = 0; k < template[i].np; k++) {
3587 printk("page %u\n", k);
3588 - q = kmap(sg_page(&sg[k])) + sg[k].offset;
3589 + q = &xbuf[IDX[k]];
3590 hexdump(q, template[i].tap[k]);
3591 printk("%s\n",
3592 memcmp(q, template[i].result + temp,
3593 template[i].tap[k]) ? "fail" :
3594 "pass");
3595 +
3596 + for (n = 0; q[template[i].tap[k] + n]; n++)
3597 + ;
3598 + if (n) {
3599 + printk("Result buffer corruption %u "
3600 + "bytes:\n", n);
3601 + hexdump(&q[template[i].tap[k]], n);
3602 + }
3603 temp += template[i].tap[k];
3604 - kunmap(sg_page(&sg[k]));
3605 }
3606 }
3607 }
3608 @@ -1172,6 +1216,14 @@ static void do_test(void)
3609 test_cipher("ecb(des3_ede)", DECRYPT, des3_ede_dec_tv_template,
3610 DES3_EDE_DEC_TEST_VECTORS);
3611
3612 + test_cipher("cbc(des3_ede)", ENCRYPT,
3613 + des3_ede_cbc_enc_tv_template,
3614 + DES3_EDE_CBC_ENC_TEST_VECTORS);
3615 +
3616 + test_cipher("cbc(des3_ede)", DECRYPT,
3617 + des3_ede_cbc_dec_tv_template,
3618 + DES3_EDE_CBC_DEC_TEST_VECTORS);
3619 +
3620 test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
3621
3622 test_hash("sha224", sha224_tv_template, SHA224_TEST_VECTORS);
3623 @@ -1382,6 +1434,14 @@ static void do_test(void)
3624 DES3_EDE_ENC_TEST_VECTORS);
3625 test_cipher("ecb(des3_ede)", DECRYPT, des3_ede_dec_tv_template,
3626 DES3_EDE_DEC_TEST_VECTORS);
3627 +
3628 + test_cipher("cbc(des3_ede)", ENCRYPT,
3629 + des3_ede_cbc_enc_tv_template,
3630 + DES3_EDE_CBC_ENC_TEST_VECTORS);
3631 +
3632 + test_cipher("cbc(des3_ede)", DECRYPT,
3633 + des3_ede_cbc_dec_tv_template,
3634 + DES3_EDE_CBC_DEC_TEST_VECTORS);
3635 break;
3636
3637 case 5:
3638 @@ -1550,7 +1610,7 @@ static void do_test(void)
3639 case 29:
3640 test_hash("tgr128", tgr128_tv_template, TGR128_TEST_VECTORS);
3641 break;
3642 -
3643 +
3644 case 30:
3645 test_cipher("ecb(xeta)", ENCRYPT, xeta_enc_tv_template,
3646 XETA_ENC_TEST_VECTORS);
3647 @@ -1615,6 +1675,22 @@ static void do_test(void)
3648 CTS_MODE_DEC_TEST_VECTORS);
3649 break;
3650
3651 + case 39:
3652 + test_hash("rmd128", rmd128_tv_template, RMD128_TEST_VECTORS);
3653 + break;
3654 +
3655 + case 40:
3656 + test_hash("rmd160", rmd160_tv_template, RMD160_TEST_VECTORS);
3657 + break;
3658 +
3659 + case 41:
3660 + test_hash("rmd256", rmd256_tv_template, RMD256_TEST_VECTORS);
3661 + break;
3662 +
3663 + case 42:
3664 + test_hash("rmd320", rmd320_tv_template, RMD320_TEST_VECTORS);
3665 + break;
3666 +
3667 case 100:
3668 test_hash("hmac(md5)", hmac_md5_tv_template,
3669 HMAC_MD5_TEST_VECTORS);
3670 @@ -1650,6 +1726,16 @@ static void do_test(void)
3671 XCBC_AES_TEST_VECTORS);
3672 break;
3673
3674 + case 107:
3675 + test_hash("hmac(rmd128)", hmac_rmd128_tv_template,
3676 + HMAC_RMD128_TEST_VECTORS);
3677 + break;
3678 +
3679 + case 108:
3680 + test_hash("hmac(rmd160)", hmac_rmd160_tv_template,
3681 + HMAC_RMD160_TEST_VECTORS);
3682 + break;
3683 +
3684 case 200:
3685 test_cipher_speed("ecb(aes)", ENCRYPT, sec, NULL, 0,
3686 speed_template_16_24_32);
3687 @@ -1788,6 +1874,22 @@ static void do_test(void)
3688 test_hash_speed("sha224", sec, generic_hash_speed_template);
3689 if (mode > 300 && mode < 400) break;
3690
3691 + case 314:
3692 + test_hash_speed("rmd128", sec, generic_hash_speed_template);
3693 + if (mode > 300 && mode < 400) break;
3694 +
3695 + case 315:
3696 + test_hash_speed("rmd160", sec, generic_hash_speed_template);
3697 + if (mode > 300 && mode < 400) break;
3698 +
3699 + case 316:
3700 + test_hash_speed("rmd256", sec, generic_hash_speed_template);
3701 + if (mode > 300 && mode < 400) break;
3702 +
3703 + case 317:
3704 + test_hash_speed("rmd320", sec, generic_hash_speed_template);
3705 + if (mode > 300 && mode < 400) break;
3706 +
3707 case 399:
3708 break;
3709
3710 --- a/crypto/tcrypt.h
3711 +++ b/crypto/tcrypt.h
3712 @@ -13,12 +13,6 @@
3713 * Software Foundation; either version 2 of the License, or (at your option)
3714 * any later version.
3715 *
3716 - * 2007-11-13 Added GCM tests
3717 - * 2007-11-13 Added AEAD support
3718 - * 2006-12-07 Added SHA384 HMAC and SHA512 HMAC tests
3719 - * 2004-08-09 Cipher speed tests by Reyk Floeter <reyk@vantronix.net>
3720 - * 2003-09-14 Changes by Kartikey Mahendra Bhatt
3721 - *
3722 */
3723 #ifndef _CRYPTO_TCRYPT_H
3724 #define _CRYPTO_TCRYPT_H
3725 @@ -168,6 +162,271 @@ static struct hash_testvec md5_tv_templa
3726 .digest = "\x57\xed\xf4\xa2\x2b\xe3\xc9\x55"
3727 "\xac\x49\xda\x2e\x21\x07\xb6\x7a",
3728 }
3729 +
3730 +};
3731 +
3732 +/*
3733 + * RIPEMD-128 test vectors from ISO/IEC 10118-3:2004(E)
3734 + */
3735 +#define RMD128_TEST_VECTORS 10
3736 +
3737 +static struct hash_testvec rmd128_tv_template[] = {
3738 + {
3739 + .digest = "\xcd\xf2\x62\x13\xa1\x50\xdc\x3e"
3740 + "\xcb\x61\x0f\x18\xf6\xb3\x8b\x46",
3741 + }, {
3742 + .plaintext = "a",
3743 + .psize = 1,
3744 + .digest = "\x86\xbe\x7a\xfa\x33\x9d\x0f\xc7"
3745 + "\xcf\xc7\x85\xe7\x2f\x57\x8d\x33",
3746 + }, {
3747 + .plaintext = "abc",
3748 + .psize = 3,
3749 + .digest = "\xc1\x4a\x12\x19\x9c\x66\xe4\xba"
3750 + "\x84\x63\x6b\x0f\x69\x14\x4c\x77",
3751 + }, {
3752 + .plaintext = "message digest",
3753 + .psize = 14,
3754 + .digest = "\x9e\x32\x7b\x3d\x6e\x52\x30\x62"
3755 + "\xaf\xc1\x13\x2d\x7d\xf9\xd1\xb8",
3756 + }, {
3757 + .plaintext = "abcdefghijklmnopqrstuvwxyz",
3758 + .psize = 26,
3759 + .digest = "\xfd\x2a\xa6\x07\xf7\x1d\xc8\xf5"
3760 + "\x10\x71\x49\x22\xb3\x71\x83\x4e",
3761 + }, {
3762 + .plaintext = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
3763 + "fghijklmnopqrstuvwxyz0123456789",
3764 + .psize = 62,
3765 + .digest = "\xd1\xe9\x59\xeb\x17\x9c\x91\x1f"
3766 + "\xae\xa4\x62\x4c\x60\xc5\xc7\x02",
3767 + }, {
3768 + .plaintext = "1234567890123456789012345678901234567890"
3769 + "1234567890123456789012345678901234567890",
3770 + .psize = 80,
3771 + .digest = "\x3f\x45\xef\x19\x47\x32\xc2\xdb"
3772 + "\xb2\xc4\xa2\xc7\x69\x79\x5f\xa3",
3773 + }, {
3774 + .plaintext = "abcdbcdecdefdefgefghfghighij"
3775 + "hijkijkljklmklmnlmnomnopnopq",
3776 + .psize = 56,
3777 + .digest = "\xa1\xaa\x06\x89\xd0\xfa\xfa\x2d"
3778 + "\xdc\x22\xe8\x8b\x49\x13\x3a\x06",
3779 + .np = 2,
3780 + .tap = { 28, 28 },
3781 + }, {
3782 + .plaintext = "abcdefghbcdefghicdefghijdefghijkefghijklfghi"
3783 + "jklmghijklmnhijklmnoijklmnopjklmnopqklmnopqr"
3784 + "lmnopqrsmnopqrstnopqrstu",
3785 + .psize = 112,
3786 + .digest = "\xd4\xec\xc9\x13\xe1\xdf\x77\x6b"
3787 + "\xf4\x8d\xe9\xd5\x5b\x1f\x25\x46",
3788 + }, {
3789 + .plaintext = "abcdbcdecdefdefgefghfghighijhijk",
3790 + .psize = 32,
3791 + .digest = "\x13\xfc\x13\xe8\xef\xff\x34\x7d"
3792 + "\xe1\x93\xff\x46\xdb\xac\xcf\xd4",
3793 + }
3794 +};
3795 +
3796 +/*
3797 + * RIPEMD-160 test vectors from ISO/IEC 10118-3:2004(E)
3798 + */
3799 +#define RMD160_TEST_VECTORS 10
3800 +
3801 +static struct hash_testvec rmd160_tv_template[] = {
3802 + {
3803 + .digest = "\x9c\x11\x85\xa5\xc5\xe9\xfc\x54\x61\x28"
3804 + "\x08\x97\x7e\xe8\xf5\x48\xb2\x25\x8d\x31",
3805 + }, {
3806 + .plaintext = "a",
3807 + .psize = 1,
3808 + .digest = "\x0b\xdc\x9d\x2d\x25\x6b\x3e\xe9\xda\xae"
3809 + "\x34\x7b\xe6\xf4\xdc\x83\x5a\x46\x7f\xfe",
3810 + }, {
3811 + .plaintext = "abc",
3812 + .psize = 3,
3813 + .digest = "\x8e\xb2\x08\xf7\xe0\x5d\x98\x7a\x9b\x04"
3814 + "\x4a\x8e\x98\xc6\xb0\x87\xf1\x5a\x0b\xfc",
3815 + }, {
3816 + .plaintext = "message digest",
3817 + .psize = 14,
3818 + .digest = "\x5d\x06\x89\xef\x49\xd2\xfa\xe5\x72\xb8"
3819 + "\x81\xb1\x23\xa8\x5f\xfa\x21\x59\x5f\x36",
3820 + }, {
3821 + .plaintext = "abcdefghijklmnopqrstuvwxyz",
3822 + .psize = 26,
3823 + .digest = "\xf7\x1c\x27\x10\x9c\x69\x2c\x1b\x56\xbb"
3824 + "\xdc\xeb\x5b\x9d\x28\x65\xb3\x70\x8d\xbc",
3825 + }, {
3826 + .plaintext = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
3827 + "fghijklmnopqrstuvwxyz0123456789",
3828 + .psize = 62,
3829 + .digest = "\xb0\xe2\x0b\x6e\x31\x16\x64\x02\x86\xed"
3830 + "\x3a\x87\xa5\x71\x30\x79\xb2\x1f\x51\x89",
3831 + }, {
3832 + .plaintext = "1234567890123456789012345678901234567890"
3833 + "1234567890123456789012345678901234567890",
3834 + .psize = 80,
3835 + .digest = "\x9b\x75\x2e\x45\x57\x3d\x4b\x39\xf4\xdb"
3836 + "\xd3\x32\x3c\xab\x82\xbf\x63\x32\x6b\xfb",
3837 + }, {
3838 + .plaintext = "abcdbcdecdefdefgefghfghighij"
3839 + "hijkijkljklmklmnlmnomnopnopq",
3840 + .psize = 56,
3841 + .digest = "\x12\xa0\x53\x38\x4a\x9c\x0c\x88\xe4\x05"
3842 + "\xa0\x6c\x27\xdc\xf4\x9a\xda\x62\xeb\x2b",
3843 + .np = 2,
3844 + .tap = { 28, 28 },
3845 + }, {
3846 + .plaintext = "abcdefghbcdefghicdefghijdefghijkefghijklfghi"
3847 + "jklmghijklmnhijklmnoijklmnopjklmnopqklmnopqr"
3848 + "lmnopqrsmnopqrstnopqrstu",
3849 + .psize = 112,
3850 + .digest = "\x6f\x3f\xa3\x9b\x6b\x50\x3c\x38\x4f\x91"
3851 + "\x9a\x49\xa7\xaa\x5c\x2c\x08\xbd\xfb\x45",
3852 + }, {
3853 + .plaintext = "abcdbcdecdefdefgefghfghighijhijk",
3854 + .psize = 32,
3855 + .digest = "\x94\xc2\x64\x11\x54\x04\xe6\x33\x79\x0d"
3856 + "\xfc\xc8\x7b\x58\x7d\x36\x77\x06\x7d\x9f",
3857 + }
3858 +};
3859 +
3860 +/*
3861 + * RIPEMD-256 test vectors
3862 + */
3863 +#define RMD256_TEST_VECTORS 8
3864 +
3865 +static struct hash_testvec rmd256_tv_template[] = {
3866 + {
3867 + .digest = "\x02\xba\x4c\x4e\x5f\x8e\xcd\x18"
3868 + "\x77\xfc\x52\xd6\x4d\x30\xe3\x7a"
3869 + "\x2d\x97\x74\xfb\x1e\x5d\x02\x63"
3870 + "\x80\xae\x01\x68\xe3\xc5\x52\x2d",
3871 + }, {
3872 + .plaintext = "a",
3873 + .psize = 1,
3874 + .digest = "\xf9\x33\x3e\x45\xd8\x57\xf5\xd9"
3875 + "\x0a\x91\xba\xb7\x0a\x1e\xba\x0c"
3876 + "\xfb\x1b\xe4\xb0\x78\x3c\x9a\xcf"
3877 + "\xcd\x88\x3a\x91\x34\x69\x29\x25",
3878 + }, {
3879 + .plaintext = "abc",
3880 + .psize = 3,
3881 + .digest = "\xaf\xbd\x6e\x22\x8b\x9d\x8c\xbb"
3882 + "\xce\xf5\xca\x2d\x03\xe6\xdb\xa1"
3883 + "\x0a\xc0\xbc\x7d\xcb\xe4\x68\x0e"
3884 + "\x1e\x42\xd2\xe9\x75\x45\x9b\x65",
3885 + }, {
3886 + .plaintext = "message digest",
3887 + .psize = 14,
3888 + .digest = "\x87\xe9\x71\x75\x9a\x1c\xe4\x7a"
3889 + "\x51\x4d\x5c\x91\x4c\x39\x2c\x90"
3890 + "\x18\xc7\xc4\x6b\xc1\x44\x65\x55"
3891 + "\x4a\xfc\xdf\x54\xa5\x07\x0c\x0e",
3892 + }, {
3893 + .plaintext = "abcdefghijklmnopqrstuvwxyz",
3894 + .psize = 26,
3895 + .digest = "\x64\x9d\x30\x34\x75\x1e\xa2\x16"
3896 + "\x77\x6b\xf9\xa1\x8a\xcc\x81\xbc"
3897 + "\x78\x96\x11\x8a\x51\x97\x96\x87"
3898 + "\x82\xdd\x1f\xd9\x7d\x8d\x51\x33",
3899 + }, {
3900 + .plaintext = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
3901 + "fghijklmnopqrstuvwxyz0123456789",
3902 + .psize = 62,
3903 + .digest = "\x57\x40\xa4\x08\xac\x16\xb7\x20"
3904 + "\xb8\x44\x24\xae\x93\x1c\xbb\x1f"
3905 + "\xe3\x63\xd1\xd0\xbf\x40\x17\xf1"
3906 + "\xa8\x9f\x7e\xa6\xde\x77\xa0\xb8",
3907 + }, {
3908 + .plaintext = "1234567890123456789012345678901234567890"
3909 + "1234567890123456789012345678901234567890",
3910 + .psize = 80,
3911 + .digest = "\x06\xfd\xcc\x7a\x40\x95\x48\xaa"
3912 + "\xf9\x13\x68\xc0\x6a\x62\x75\xb5"
3913 + "\x53\xe3\xf0\x99\xbf\x0e\xa4\xed"
3914 + "\xfd\x67\x78\xdf\x89\xa8\x90\xdd",
3915 + }, {
3916 + .plaintext = "abcdbcdecdefdefgefghfghighij"
3917 + "hijkijkljklmklmnlmnomnopnopq",
3918 + .psize = 56,
3919 + .digest = "\x38\x43\x04\x55\x83\xaa\xc6\xc8"
3920 + "\xc8\xd9\x12\x85\x73\xe7\xa9\x80"
3921 + "\x9a\xfb\x2a\x0f\x34\xcc\xc3\x6e"
3922 + "\xa9\xe7\x2f\x16\xf6\x36\x8e\x3f",
3923 + .np = 2,
3924 + .tap = { 28, 28 },
3925 + }
3926 +};
3927 +
3928 +/*
3929 + * RIPEMD-320 test vectors
3930 + */
3931 +#define RMD320_TEST_VECTORS 8
3932 +
3933 +static struct hash_testvec rmd320_tv_template[] = {
3934 + {
3935 + .digest = "\x22\xd6\x5d\x56\x61\x53\x6c\xdc\x75\xc1"
3936 + "\xfd\xf5\xc6\xde\x7b\x41\xb9\xf2\x73\x25"
3937 + "\xeb\xc6\x1e\x85\x57\x17\x7d\x70\x5a\x0e"
3938 + "\xc8\x80\x15\x1c\x3a\x32\xa0\x08\x99\xb8",
3939 + }, {
3940 + .plaintext = "a",
3941 + .psize = 1,
3942 + .digest = "\xce\x78\x85\x06\x38\xf9\x26\x58\xa5\xa5"
3943 + "\x85\x09\x75\x79\x92\x6d\xda\x66\x7a\x57"
3944 + "\x16\x56\x2c\xfc\xf6\xfb\xe7\x7f\x63\x54"
3945 + "\x2f\x99\xb0\x47\x05\xd6\x97\x0d\xff\x5d",
3946 + }, {
3947 + .plaintext = "abc",
3948 + .psize = 3,
3949 + .digest = "\xde\x4c\x01\xb3\x05\x4f\x89\x30\xa7\x9d"
3950 + "\x09\xae\x73\x8e\x92\x30\x1e\x5a\x17\x08"
3951 + "\x5b\xef\xfd\xc1\xb8\xd1\x16\x71\x3e\x74"
3952 + "\xf8\x2f\xa9\x42\xd6\x4c\xdb\xc4\x68\x2d",
3953 + }, {
3954 + .plaintext = "message digest",
3955 + .psize = 14,
3956 + .digest = "\x3a\x8e\x28\x50\x2e\xd4\x5d\x42\x2f\x68"
3957 + "\x84\x4f\x9d\xd3\x16\xe7\xb9\x85\x33\xfa"
3958 + "\x3f\x2a\x91\xd2\x9f\x84\xd4\x25\xc8\x8d"
3959 + "\x6b\x4e\xff\x72\x7d\xf6\x6a\x7c\x01\x97",
3960 + }, {
3961 + .plaintext = "abcdefghijklmnopqrstuvwxyz",
3962 + .psize = 26,
3963 + .digest = "\xca\xbd\xb1\x81\x0b\x92\x47\x0a\x20\x93"
3964 + "\xaa\x6b\xce\x05\x95\x2c\x28\x34\x8c\xf4"
3965 + "\x3f\xf6\x08\x41\x97\x51\x66\xbb\x40\xed"
3966 + "\x23\x40\x04\xb8\x82\x44\x63\xe6\xb0\x09",
3967 + }, {
3968 + .plaintext = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
3969 + "fghijklmnopqrstuvwxyz0123456789",
3970 + .psize = 62,
3971 + .digest = "\xed\x54\x49\x40\xc8\x6d\x67\xf2\x50\xd2"
3972 + "\x32\xc3\x0b\x7b\x3e\x57\x70\xe0\xc6\x0c"
3973 + "\x8c\xb9\xa4\xca\xfe\x3b\x11\x38\x8a\xf9"
3974 + "\x92\x0e\x1b\x99\x23\x0b\x84\x3c\x86\xa4",
3975 + }, {
3976 + .plaintext = "1234567890123456789012345678901234567890"
3977 + "1234567890123456789012345678901234567890",
3978 + .psize = 80,
3979 + .digest = "\x55\x78\x88\xaf\x5f\x6d\x8e\xd6\x2a\xb6"
3980 + "\x69\x45\xc6\xd2\xa0\xa4\x7e\xcd\x53\x41"
3981 + "\xe9\x15\xeb\x8f\xea\x1d\x05\x24\x95\x5f"
3982 + "\x82\x5d\xc7\x17\xe4\xa0\x08\xab\x2d\x42",
3983 + }, {
3984 + .plaintext = "abcdbcdecdefdefgefghfghighij"
3985 + "hijkijkljklmklmnlmnomnopnopq",
3986 + .psize = 56,
3987 + .digest = "\xd0\x34\xa7\x95\x0c\xf7\x22\x02\x1b\xa4"
3988 + "\xb8\x4d\xf7\x69\xa5\xde\x20\x60\xe2\x59"
3989 + "\xdf\x4c\x9b\xb4\xa4\x26\x8c\x0e\x93\x5b"
3990 + "\xbc\x74\x70\xa9\x69\xc9\xd0\x72\xa1\xac",
3991 + .np = 2,
3992 + .tap = { 28, 28 },
3993 + }
3994 };
3995
3996 /*
3997 @@ -817,6 +1076,168 @@ static struct hash_testvec hmac_md5_tv_t
3998 };
3999
4000 /*
4001 + * HMAC-RIPEMD128 test vectors from RFC2286
4002 + */
4003 +#define HMAC_RMD128_TEST_VECTORS 7
4004 +
4005 +static struct hash_testvec hmac_rmd128_tv_template[] = {
4006 + {
4007 + .key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
4008 + .ksize = 16,
4009 + .plaintext = "Hi There",
4010 + .psize = 8,
4011 + .digest = "\xfb\xf6\x1f\x94\x92\xaa\x4b\xbf"
4012 + "\x81\xc1\x72\xe8\x4e\x07\x34\xdb",
4013 + }, {
4014 + .key = "Jefe",
4015 + .ksize = 4,
4016 + .plaintext = "what do ya want for nothing?",
4017 + .psize = 28,
4018 + .digest = "\x87\x5f\x82\x88\x62\xb6\xb3\x34"
4019 + "\xb4\x27\xc5\x5f\x9f\x7f\xf0\x9b",
4020 + .np = 2,
4021 + .tap = { 14, 14 },
4022 + }, {
4023 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
4024 + .ksize = 16,
4025 + .plaintext = "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4026 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4027 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4028 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd",
4029 + .psize = 50,
4030 + .digest = "\x09\xf0\xb2\x84\x6d\x2f\x54\x3d"
4031 + "\xa3\x63\xcb\xec\x8d\x62\xa3\x8d",
4032 + }, {
4033 + .key = "\x01\x02\x03\x04\x05\x06\x07\x08"
4034 + "\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"
4035 + "\x11\x12\x13\x14\x15\x16\x17\x18\x19",
4036 + .ksize = 25,
4037 + .plaintext = "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4038 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4039 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4040 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd",
4041 + .psize = 50,
4042 + .digest = "\xbd\xbb\xd7\xcf\x03\xe4\x4b\x5a"
4043 + "\xa6\x0a\xf8\x15\xbe\x4d\x22\x94",
4044 + }, {
4045 + .key = "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c",
4046 + .ksize = 16,
4047 + .plaintext = "Test With Truncation",
4048 + .psize = 20,
4049 + .digest = "\xe7\x98\x08\xf2\x4b\x25\xfd\x03"
4050 + "\x1c\x15\x5f\x0d\x55\x1d\x9a\x3a",
4051 + }, {
4052 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4053 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4054 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4055 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4056 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4057 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4058 + "\xaa\xaa",
4059 + .ksize = 80,
4060 + .plaintext = "Test Using Larger Than Block-Size Key - Hash Key First",
4061 + .psize = 54,
4062 + .digest = "\xdc\x73\x29\x28\xde\x98\x10\x4a"
4063 + "\x1f\x59\xd3\x73\xc1\x50\xac\xbb",
4064 + }, {
4065 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4066 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4067 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4068 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4069 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4070 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4071 + "\xaa\xaa",
4072 + .ksize = 80,
4073 + .plaintext = "Test Using Larger Than Block-Size Key and Larger Than One "
4074 + "Block-Size Data",
4075 + .psize = 73,
4076 + .digest = "\x5c\x6b\xec\x96\x79\x3e\x16\xd4"
4077 + "\x06\x90\xc2\x37\x63\x5f\x30\xc5",
4078 + },
4079 +};
4080 +
4081 +/*
4082 + * HMAC-RIPEMD160 test vectors from RFC2286
4083 + */
4084 +#define HMAC_RMD160_TEST_VECTORS 7
4085 +
4086 +static struct hash_testvec hmac_rmd160_tv_template[] = {
4087 + {
4088 + .key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
4089 + .ksize = 20,
4090 + .plaintext = "Hi There",
4091 + .psize = 8,
4092 + .digest = "\x24\xcb\x4b\xd6\x7d\x20\xfc\x1a\x5d\x2e"
4093 + "\xd7\x73\x2d\xcc\x39\x37\x7f\x0a\x56\x68",
4094 + }, {
4095 + .key = "Jefe",
4096 + .ksize = 4,
4097 + .plaintext = "what do ya want for nothing?",
4098 + .psize = 28,
4099 + .digest = "\xdd\xa6\xc0\x21\x3a\x48\x5a\x9e\x24\xf4"
4100 + "\x74\x20\x64\xa7\xf0\x33\xb4\x3c\x40\x69",
4101 + .np = 2,
4102 + .tap = { 14, 14 },
4103 + }, {
4104 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
4105 + .ksize = 20,
4106 + .plaintext = "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4107 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4108 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd"
4109 + "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd",
4110 + .psize = 50,
4111 + .digest = "\xb0\xb1\x05\x36\x0d\xe7\x59\x96\x0a\xb4"
4112 + "\xf3\x52\x98\xe1\x16\xe2\x95\xd8\xe7\xc1",
4113 + }, {
4114 + .key = "\x01\x02\x03\x04\x05\x06\x07\x08"
4115 + "\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"
4116 + "\x11\x12\x13\x14\x15\x16\x17\x18\x19",
4117 + .ksize = 25,
4118 + .plaintext = "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4119 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4120 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd"
4121 + "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd",
4122 + .psize = 50,
4123 + .digest = "\xd5\xca\x86\x2f\x4d\x21\xd5\xe6\x10\xe1"
4124 + "\x8b\x4c\xf1\xbe\xb9\x7a\x43\x65\xec\xf4",
4125 + }, {
4126 + .key = "\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c",
4127 + .ksize = 20,
4128 + .plaintext = "Test With Truncation",
4129 + .psize = 20,
4130 + .digest = "\x76\x19\x69\x39\x78\xf9\x1d\x90\x53\x9a"
4131 + "\xe7\x86\x50\x0f\xf3\xd8\xe0\x51\x8e\x39",
4132 + }, {
4133 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4134 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4135 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4136 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4137 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4138 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4139 + "\xaa\xaa",
4140 + .ksize = 80,
4141 + .plaintext = "Test Using Larger Than Block-Size Key - Hash Key First",
4142 + .psize = 54,
4143 + .digest = "\x64\x66\xca\x07\xac\x5e\xac\x29\xe1\xbd"
4144 + "\x52\x3e\x5a\xda\x76\x05\xb7\x91\xfd\x8b",
4145 + }, {
4146 + .key = "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4147 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4148 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4149 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4150 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4151 + "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
4152 + "\xaa\xaa",
4153 + .ksize = 80,
4154 + .plaintext = "Test Using Larger Than Block-Size Key and Larger Than One "
4155 + "Block-Size Data",
4156 + .psize = 73,
4157 + .digest = "\x69\xea\x60\x79\x8d\x71\x61\x6c\xce\x5f"
4158 + "\xd0\x87\x1e\x23\x75\x4c\xd7\x5d\x5a\x0a",
4159 + },
4160 +};
4161 +
4162 +/*
4163 * HMAC-SHA1 test vectors from RFC2202
4164 */
4165 #define HMAC_SHA1_TEST_VECTORS 7
4166 @@ -1442,6 +1863,8 @@ static struct hash_testvec hmac_sha512_t
4167 #define DES_CBC_DEC_TEST_VECTORS 4
4168 #define DES3_EDE_ENC_TEST_VECTORS 3
4169 #define DES3_EDE_DEC_TEST_VECTORS 3
4170 +#define DES3_EDE_CBC_ENC_TEST_VECTORS 1
4171 +#define DES3_EDE_CBC_DEC_TEST_VECTORS 1
4172
4173 static struct cipher_testvec des_enc_tv_template[] = {
4174 { /* From Applied Cryptography */
4175 @@ -1680,9 +2103,6 @@ static struct cipher_testvec des_cbc_dec
4176 },
4177 };
4178
4179 -/*
4180 - * We really need some more test vectors, especially for DES3 CBC.
4181 - */
4182 static struct cipher_testvec des3_ede_enc_tv_template[] = {
4183 { /* These are from openssl */
4184 .key = "\x01\x23\x45\x67\x89\xab\xcd\xef"
4185 @@ -1745,6 +2165,94 @@ static struct cipher_testvec des3_ede_de
4186 },
4187 };
4188
4189 +static struct cipher_testvec des3_ede_cbc_enc_tv_template[] = {
4190 + { /* Generated from openssl */
4191 + .key = "\xE9\xC0\xFF\x2E\x76\x0B\x64\x24"
4192 + "\x44\x4D\x99\x5A\x12\xD6\x40\xC0"
4193 + "\xEA\xC2\x84\xE8\x14\x95\xDB\xE8",
4194 + .klen = 24,
4195 + .iv = "\x7D\x33\x88\x93\x0F\x93\xB2\x42",
4196 + .input = "\x6f\x54\x20\x6f\x61\x4d\x79\x6e"
4197 + "\x53\x20\x63\x65\x65\x72\x73\x74"
4198 + "\x54\x20\x6f\x6f\x4d\x20\x6e\x61"
4199 + "\x20\x79\x65\x53\x72\x63\x74\x65"
4200 + "\x20\x73\x6f\x54\x20\x6f\x61\x4d"
4201 + "\x79\x6e\x53\x20\x63\x65\x65\x72"
4202 + "\x73\x74\x54\x20\x6f\x6f\x4d\x20"
4203 + "\x6e\x61\x20\x79\x65\x53\x72\x63"
4204 + "\x74\x65\x20\x73\x6f\x54\x20\x6f"
4205 + "\x61\x4d\x79\x6e\x53\x20\x63\x65"
4206 + "\x65\x72\x73\x74\x54\x20\x6f\x6f"
4207 + "\x4d\x20\x6e\x61\x20\x79\x65\x53"
4208 + "\x72\x63\x74\x65\x20\x73\x6f\x54"
4209 + "\x20\x6f\x61\x4d\x79\x6e\x53\x20"
4210 + "\x63\x65\x65\x72\x73\x74\x54\x20"
4211 + "\x6f\x6f\x4d\x20\x6e\x61\x0a\x79",
4212 + .ilen = 128,
4213 + .result = "\x0e\x2d\xb6\x97\x3c\x56\x33\xf4"
4214 + "\x67\x17\x21\xc7\x6e\x8a\xd5\x49"
4215 + "\x74\xb3\x49\x05\xc5\x1c\xd0\xed"
4216 + "\x12\x56\x5c\x53\x96\xb6\x00\x7d"
4217 + "\x90\x48\xfc\xf5\x8d\x29\x39\xcc"
4218 + "\x8a\xd5\x35\x18\x36\x23\x4e\xd7"
4219 + "\x76\xd1\xda\x0c\x94\x67\xbb\x04"
4220 + "\x8b\xf2\x03\x6c\xa8\xcf\xb6\xea"
4221 + "\x22\x64\x47\xaa\x8f\x75\x13\xbf"
4222 + "\x9f\xc2\xc3\xf0\xc9\x56\xc5\x7a"
4223 + "\x71\x63\x2e\x89\x7b\x1e\x12\xca"
4224 + "\xe2\x5f\xaf\xd8\xa4\xf8\xc9\x7a"
4225 + "\xd6\xf9\x21\x31\x62\x44\x45\xa6"
4226 + "\xd6\xbc\x5a\xd3\x2d\x54\x43\xcc"
4227 + "\x9d\xde\xa5\x70\xe9\x42\x45\x8a"
4228 + "\x6b\xfa\xb1\x91\x13\xb0\xd9\x19",
4229 + .rlen = 128,
4230 + },
4231 +};
4232 +
4233 +static struct cipher_testvec des3_ede_cbc_dec_tv_template[] = {
4234 + { /* Generated from openssl */
4235 + .key = "\xE9\xC0\xFF\x2E\x76\x0B\x64\x24"
4236 + "\x44\x4D\x99\x5A\x12\xD6\x40\xC0"
4237 + "\xEA\xC2\x84\xE8\x14\x95\xDB\xE8",
4238 + .klen = 24,
4239 + .iv = "\x7D\x33\x88\x93\x0F\x93\xB2\x42",
4240 + .input = "\x0e\x2d\xb6\x97\x3c\x56\x33\xf4"
4241 + "\x67\x17\x21\xc7\x6e\x8a\xd5\x49"
4242 + "\x74\xb3\x49\x05\xc5\x1c\xd0\xed"
4243 + "\x12\x56\x5c\x53\x96\xb6\x00\x7d"
4244 + "\x90\x48\xfc\xf5\x8d\x29\x39\xcc"
4245 + "\x8a\xd5\x35\x18\x36\x23\x4e\xd7"
4246 + "\x76\xd1\xda\x0c\x94\x67\xbb\x04"
4247 + "\x8b\xf2\x03\x6c\xa8\xcf\xb6\xea"
4248 + "\x22\x64\x47\xaa\x8f\x75\x13\xbf"
4249 + "\x9f\xc2\xc3\xf0\xc9\x56\xc5\x7a"
4250 + "\x71\x63\x2e\x89\x7b\x1e\x12\xca"
4251 + "\xe2\x5f\xaf\xd8\xa4\xf8\xc9\x7a"
4252 + "\xd6\xf9\x21\x31\x62\x44\x45\xa6"
4253 + "\xd6\xbc\x5a\xd3\x2d\x54\x43\xcc"
4254 + "\x9d\xde\xa5\x70\xe9\x42\x45\x8a"
4255 + "\x6b\xfa\xb1\x91\x13\xb0\xd9\x19",
4256 + .ilen = 128,
4257 + .result = "\x6f\x54\x20\x6f\x61\x4d\x79\x6e"
4258 + "\x53\x20\x63\x65\x65\x72\x73\x74"
4259 + "\x54\x20\x6f\x6f\x4d\x20\x6e\x61"
4260 + "\x20\x79\x65\x53\x72\x63\x74\x65"
4261 + "\x20\x73\x6f\x54\x20\x6f\x61\x4d"
4262 + "\x79\x6e\x53\x20\x63\x65\x65\x72"
4263 + "\x73\x74\x54\x20\x6f\x6f\x4d\x20"
4264 + "\x6e\x61\x20\x79\x65\x53\x72\x63"
4265 + "\x74\x65\x20\x73\x6f\x54\x20\x6f"
4266 + "\x61\x4d\x79\x6e\x53\x20\x63\x65"
4267 + "\x65\x72\x73\x74\x54\x20\x6f\x6f"
4268 + "\x4d\x20\x6e\x61\x20\x79\x65\x53"
4269 + "\x72\x63\x74\x65\x20\x73\x6f\x54"
4270 + "\x20\x6f\x61\x4d\x79\x6e\x53\x20"
4271 + "\x63\x65\x65\x72\x73\x74\x54\x20"
4272 + "\x6f\x6f\x4d\x20\x6e\x61\x0a\x79",
4273 + .rlen = 128,
4274 + },
4275 +};
4276 +
4277 /*
4278 * Blowfish test vectors.
4279 */
4280 --- a/drivers/crypto/Kconfig
4281 +++ b/drivers/crypto/Kconfig
4282 @@ -174,4 +174,30 @@ config CRYPTO_DEV_HIFN_795X_RNG
4283 Select this option if you want to enable the random number generator
4284 on the HIFN 795x crypto adapters.
4285
4286 +config CRYPTO_DEV_TALITOS
4287 + tristate "Talitos Freescale Security Engine (SEC)"
4288 + select CRYPTO_ALGAPI
4289 + select CRYPTO_AUTHENC
4290 + select HW_RANDOM
4291 + depends on FSL_SOC
4292 + help
4293 + Say 'Y' here to use the Freescale Security Engine (SEC)
4294 + to offload cryptographic algorithm computation.
4295 +
4296 + The Freescale SEC is present on PowerQUICC 'E' processors, such
4297 + as the MPC8349E and MPC8548E.
4298 +
4299 + To compile this driver as a module, choose M here: the module
4300 + will be called talitos.
4301 +
4302 +config CRYPTO_DEV_IXP4XX
4303 + tristate "Driver for IXP4xx crypto hardware acceleration"
4304 + depends on ARCH_IXP4XX
4305 + select CRYPTO_DES
4306 + select CRYPTO_ALGAPI
4307 + select CRYPTO_AUTHENC
4308 + select CRYPTO_BLKCIPHER
4309 + help
4310 + Driver for the IXP4xx NPE crypto engine.
4311 +
4312 endif # CRYPTO_HW
4313 --- a/drivers/crypto/Makefile
4314 +++ b/drivers/crypto/Makefile
4315 @@ -2,3 +2,5 @@ obj-$(CONFIG_CRYPTO_DEV_PADLOCK_AES) +=
4316 obj-$(CONFIG_CRYPTO_DEV_PADLOCK_SHA) += padlock-sha.o
4317 obj-$(CONFIG_CRYPTO_DEV_GEODE) += geode-aes.o
4318 obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
4319 +obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
4320 +obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
4321 --- a/drivers/crypto/hifn_795x.c
4322 +++ b/drivers/crypto/hifn_795x.c
4323 @@ -29,7 +29,6 @@
4324 #include <linux/dma-mapping.h>
4325 #include <linux/scatterlist.h>
4326 #include <linux/highmem.h>
4327 -#include <linux/interrupt.h>
4328 #include <linux/crypto.h>
4329 #include <linux/hw_random.h>
4330 #include <linux/ktime.h>
4331 @@ -369,7 +368,9 @@ static atomic_t hifn_dev_number;
4332 #define HIFN_D_DST_RSIZE 80*4
4333 #define HIFN_D_RES_RSIZE 24*4
4334
4335 -#define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-5
4336 +#define HIFN_D_DST_DALIGN 4
4337 +
4338 +#define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-1
4339
4340 #define AES_MIN_KEY_SIZE 16
4341 #define AES_MAX_KEY_SIZE 32
4342 @@ -535,10 +536,10 @@ struct hifn_crypt_command
4343 */
4344 struct hifn_mac_command
4345 {
4346 - volatile u16 masks;
4347 - volatile u16 header_skip;
4348 - volatile u16 source_count;
4349 - volatile u16 reserved;
4350 + volatile __le16 masks;
4351 + volatile __le16 header_skip;
4352 + volatile __le16 source_count;
4353 + volatile __le16 reserved;
4354 };
4355
4356 #define HIFN_MAC_CMD_ALG_MASK 0x0001
4357 @@ -564,10 +565,10 @@ struct hifn_mac_command
4358
4359 struct hifn_comp_command
4360 {
4361 - volatile u16 masks;
4362 - volatile u16 header_skip;
4363 - volatile u16 source_count;
4364 - volatile u16 reserved;
4365 + volatile __le16 masks;
4366 + volatile __le16 header_skip;
4367 + volatile __le16 source_count;
4368 + volatile __le16 reserved;
4369 };
4370
4371 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
4372 @@ -583,10 +584,10 @@ struct hifn_comp_command
4373
4374 struct hifn_base_result
4375 {
4376 - volatile u16 flags;
4377 - volatile u16 session;
4378 - volatile u16 src_cnt; /* 15:0 of source count */
4379 - volatile u16 dst_cnt; /* 15:0 of dest count */
4380 + volatile __le16 flags;
4381 + volatile __le16 session;
4382 + volatile __le16 src_cnt; /* 15:0 of source count */
4383 + volatile __le16 dst_cnt; /* 15:0 of dest count */
4384 };
4385
4386 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
4387 @@ -597,8 +598,8 @@ struct hifn_base_result
4388
4389 struct hifn_comp_result
4390 {
4391 - volatile u16 flags;
4392 - volatile u16 crc;
4393 + volatile __le16 flags;
4394 + volatile __le16 crc;
4395 };
4396
4397 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
4398 @@ -609,8 +610,8 @@ struct hifn_comp_result
4399
4400 struct hifn_mac_result
4401 {
4402 - volatile u16 flags;
4403 - volatile u16 reserved;
4404 + volatile __le16 flags;
4405 + volatile __le16 reserved;
4406 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
4407 };
4408
4409 @@ -619,8 +620,8 @@ struct hifn_mac_result
4410
4411 struct hifn_crypt_result
4412 {
4413 - volatile u16 flags;
4414 - volatile u16 reserved;
4415 + volatile __le16 flags;
4416 + volatile __le16 reserved;
4417 };
4418
4419 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
4420 @@ -686,12 +687,12 @@ static inline u32 hifn_read_1(struct hif
4421
4422 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
4423 {
4424 - writel(val, dev->bar[0] + reg);
4425 + writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
4426 }
4427
4428 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
4429 {
4430 - writel(val, dev->bar[1] + reg);
4431 + writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
4432 }
4433
4434 static void hifn_wait_puc(struct hifn_device *dev)
4435 @@ -894,7 +895,7 @@ static int hifn_enable_crypto(struct hif
4436 char *offtbl = NULL;
4437 int i;
4438
4439 - for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
4440 + for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
4441 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
4442 pci2id[i].pci_prod == dev->pdev->device) {
4443 offtbl = pci2id[i].card_id;
4444 @@ -1037,14 +1038,14 @@ static void hifn_init_registers(struct h
4445 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
4446
4447 /* write all 4 ring address registers */
4448 - hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
4449 - offsetof(struct hifn_dma, cmdr[0])));
4450 - hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
4451 - offsetof(struct hifn_dma, srcr[0])));
4452 - hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
4453 - offsetof(struct hifn_dma, dstr[0])));
4454 - hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
4455 - offsetof(struct hifn_dma, resr[0])));
4456 + hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
4457 + offsetof(struct hifn_dma, cmdr[0]));
4458 + hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
4459 + offsetof(struct hifn_dma, srcr[0]));
4460 + hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
4461 + offsetof(struct hifn_dma, dstr[0]));
4462 + hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
4463 + offsetof(struct hifn_dma, resr[0]));
4464
4465 mdelay(2);
4466 #if 0
4467 @@ -1166,109 +1167,15 @@ static int hifn_setup_crypto_command(str
4468 return cmd_len;
4469 }
4470
4471 -static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
4472 - unsigned int offset, unsigned int size)
4473 -{
4474 - struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4475 - int idx;
4476 - dma_addr_t addr;
4477 -
4478 - addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
4479 -
4480 - idx = dma->srci;
4481 -
4482 - dma->srcr[idx].p = __cpu_to_le32(addr);
4483 - dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
4484 - HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;
4485 -
4486 - if (++idx == HIFN_D_SRC_RSIZE) {
4487 - dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
4488 - HIFN_D_JUMP |
4489 - HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4490 - idx = 0;
4491 - }
4492 -
4493 - dma->srci = idx;
4494 - dma->srcu++;
4495 -
4496 - if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
4497 - hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
4498 - dev->flags |= HIFN_FLAG_SRC_BUSY;
4499 - }
4500 -
4501 - return size;
4502 -}
4503 -
4504 -static void hifn_setup_res_desc(struct hifn_device *dev)
4505 -{
4506 - struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4507 -
4508 - dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
4509 - HIFN_D_VALID | HIFN_D_LAST);
4510 - /*
4511 - * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
4512 - * HIFN_D_LAST | HIFN_D_NOINVALID);
4513 - */
4514 -
4515 - if (++dma->resi == HIFN_D_RES_RSIZE) {
4516 - dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
4517 - HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4518 - dma->resi = 0;
4519 - }
4520 -
4521 - dma->resu++;
4522 -
4523 - if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
4524 - hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
4525 - dev->flags |= HIFN_FLAG_RES_BUSY;
4526 - }
4527 -}
4528 -
4529 -static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
4530 - unsigned offset, unsigned size)
4531 -{
4532 - struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4533 - int idx;
4534 - dma_addr_t addr;
4535 -
4536 - addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
4537 -
4538 - idx = dma->dsti;
4539 - dma->dstr[idx].p = __cpu_to_le32(addr);
4540 - dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
4541 - HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
4542 -
4543 - if (++idx == HIFN_D_DST_RSIZE) {
4544 - dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
4545 - HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
4546 - HIFN_D_LAST | HIFN_D_NOINVALID);
4547 - idx = 0;
4548 - }
4549 - dma->dsti = idx;
4550 - dma->dstu++;
4551 -
4552 - if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
4553 - hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
4554 - dev->flags |= HIFN_FLAG_DST_BUSY;
4555 - }
4556 -}
4557 -
4558 -static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
4559 - struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
4560 - struct hifn_context *ctx)
4561 +static int hifn_setup_cmd_desc(struct hifn_device *dev,
4562 + struct hifn_context *ctx, void *priv, unsigned int nbytes)
4563 {
4564 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4565 int cmd_len, sa_idx;
4566 u8 *buf, *buf_pos;
4567 u16 mask;
4568
4569 - dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
4570 - dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
4571 -
4572 - sa_idx = dma->resi;
4573 -
4574 - hifn_setup_src_desc(dev, spage, soff, nbytes);
4575 -
4576 + sa_idx = dma->cmdi;
4577 buf_pos = buf = dma->command_bufs[dma->cmdi];
4578
4579 mask = 0;
4580 @@ -1370,16 +1277,113 @@ static int hifn_setup_dma(struct hifn_de
4581 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
4582 dev->flags |= HIFN_FLAG_CMD_BUSY;
4583 }
4584 -
4585 - hifn_setup_dst_desc(dev, dpage, doff, nbytes);
4586 - hifn_setup_res_desc(dev);
4587 -
4588 return 0;
4589
4590 err_out:
4591 return -EINVAL;
4592 }
4593
4594 +static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
4595 + unsigned int offset, unsigned int size)
4596 +{
4597 + struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4598 + int idx;
4599 + dma_addr_t addr;
4600 +
4601 + addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
4602 +
4603 + idx = dma->srci;
4604 +
4605 + dma->srcr[idx].p = __cpu_to_le32(addr);
4606 + dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
4607 + HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4608 +
4609 + if (++idx == HIFN_D_SRC_RSIZE) {
4610 + dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
4611 + HIFN_D_JUMP |
4612 + HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4613 + idx = 0;
4614 + }
4615 +
4616 + dma->srci = idx;
4617 + dma->srcu++;
4618 +
4619 + if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
4620 + hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
4621 + dev->flags |= HIFN_FLAG_SRC_BUSY;
4622 + }
4623 +
4624 + return size;
4625 +}
4626 +
4627 +static void hifn_setup_res_desc(struct hifn_device *dev)
4628 +{
4629 + struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4630 +
4631 + dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
4632 + HIFN_D_VALID | HIFN_D_LAST);
4633 + /*
4634 + * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
4635 + * HIFN_D_LAST);
4636 + */
4637 +
4638 + if (++dma->resi == HIFN_D_RES_RSIZE) {
4639 + dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
4640 + HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4641 + dma->resi = 0;
4642 + }
4643 +
4644 + dma->resu++;
4645 +
4646 + if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
4647 + hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
4648 + dev->flags |= HIFN_FLAG_RES_BUSY;
4649 + }
4650 +}
4651 +
4652 +static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
4653 + unsigned offset, unsigned size)
4654 +{
4655 + struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
4656 + int idx;
4657 + dma_addr_t addr;
4658 +
4659 + addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
4660 +
4661 + idx = dma->dsti;
4662 + dma->dstr[idx].p = __cpu_to_le32(addr);
4663 + dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
4664 + HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
4665 +
4666 + if (++idx == HIFN_D_DST_RSIZE) {
4667 + dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
4668 + HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
4669 + HIFN_D_LAST);
4670 + idx = 0;
4671 + }
4672 + dma->dsti = idx;
4673 + dma->dstu++;
4674 +
4675 + if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
4676 + hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
4677 + dev->flags |= HIFN_FLAG_DST_BUSY;
4678 + }
4679 +}
4680 +
4681 +static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
4682 + struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
4683 + struct hifn_context *ctx)
4684 +{
4685 + dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
4686 + dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
4687 +
4688 + hifn_setup_src_desc(dev, spage, soff, nbytes);
4689 + hifn_setup_cmd_desc(dev, ctx, priv, nbytes);
4690 + hifn_setup_dst_desc(dev, dpage, doff, nbytes);
4691 + hifn_setup_res_desc(dev);
4692 + return 0;
4693 +}
4694 +
4695 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
4696 int num, gfp_t gfp_flags)
4697 {
4698 @@ -1431,7 +1435,7 @@ static int ablkcipher_add(void *daddr, u
4699 return -EINVAL;
4700
4701 while (size) {
4702 - copy = min(drest, src->length);
4703 + copy = min(drest, min(size, src->length));
4704
4705 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
4706 memcpy(daddr, saddr + src->offset, copy);
4707 @@ -1458,10 +1462,6 @@ static int ablkcipher_add(void *daddr, u
4708 static int ablkcipher_walk(struct ablkcipher_request *req,
4709 struct ablkcipher_walk *w)
4710 {
4711 - unsigned blocksize =
4712 - crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
4713 - unsigned alignmask =
4714 - crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
4715 struct scatterlist *src, *dst, *t;
4716 void *daddr;
4717 unsigned int nbytes = req->nbytes, offset, copy, diff;
4718 @@ -1477,16 +1477,14 @@ static int ablkcipher_walk(struct ablkci
4719 dst = &req->dst[idx];
4720
4721 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
4722 - "blocksize: %u, nbytes: %u.\n",
4723 + "nbytes: %u.\n",
4724 __func__, src->length, dst->length, src->offset,
4725 - dst->offset, offset, blocksize, nbytes);
4726 + dst->offset, offset, nbytes);
4727
4728 - if (src->length & (blocksize - 1) ||
4729 - src->offset & (alignmask - 1) ||
4730 - dst->length & (blocksize - 1) ||
4731 - dst->offset & (alignmask - 1) ||
4732 - offset) {
4733 - unsigned slen = src->length - offset;
4734 + if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
4735 + !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
4736 + offset) {
4737 + unsigned slen = min(src->length - offset, nbytes);
4738 unsigned dlen = PAGE_SIZE;
4739
4740 t = &w->cache[idx];
4741 @@ -1498,8 +1496,8 @@ static int ablkcipher_walk(struct ablkci
4742
4743 idx += err;
4744
4745 - copy = slen & ~(blocksize - 1);
4746 - diff = slen & (blocksize - 1);
4747 + copy = slen & ~(HIFN_D_DST_DALIGN - 1);
4748 + diff = slen & (HIFN_D_DST_DALIGN - 1);
4749
4750 if (dlen < nbytes) {
4751 /*
4752 @@ -1507,7 +1505,7 @@ static int ablkcipher_walk(struct ablkci
4753 * to put there additional blocksized chunk,
4754 * so we mark that page as containing only
4755 * blocksize aligned chunks:
4756 - * t->length = (slen & ~(blocksize - 1));
4757 + * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
4758 * and increase number of bytes to be processed
4759 * in next chunk:
4760 * nbytes += diff;
4761 @@ -1544,7 +1542,7 @@ static int ablkcipher_walk(struct ablkci
4762
4763 kunmap_atomic(daddr, KM_SOFTIRQ0);
4764 } else {
4765 - nbytes -= src->length;
4766 + nbytes -= min(src->length, nbytes);
4767 idx++;
4768 }
4769
4770 @@ -1563,14 +1561,10 @@ static int hifn_setup_session(struct abl
4771 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
4772 struct hifn_device *dev = ctx->dev;
4773 struct page *spage, *dpage;
4774 - unsigned long soff, doff, flags;
4775 + unsigned long soff, doff, dlen, flags;
4776 unsigned int nbytes = req->nbytes, idx = 0, len;
4777 int err = -EINVAL, sg_num;
4778 struct scatterlist *src, *dst, *t;
4779 - unsigned blocksize =
4780 - crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
4781 - unsigned alignmask =
4782 - crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
4783
4784 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
4785 goto err_out_exit;
4786 @@ -1578,17 +1572,14 @@ static int hifn_setup_session(struct abl
4787 ctx->walk.flags = 0;
4788
4789 while (nbytes) {
4790 - src = &req->src[idx];
4791 dst = &req->dst[idx];
4792 + dlen = min(dst->length, nbytes);
4793
4794 - if (src->length & (blocksize - 1) ||
4795 - src->offset & (alignmask - 1) ||
4796 - dst->length & (blocksize - 1) ||
4797 - dst->offset & (alignmask - 1)) {
4798 + if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
4799 + !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
4800 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
4801 - }
4802
4803 - nbytes -= src->length;
4804 + nbytes -= dlen;
4805 idx++;
4806 }
4807
4808 @@ -1602,7 +1593,10 @@ static int hifn_setup_session(struct abl
4809 idx = 0;
4810
4811 sg_num = ablkcipher_walk(req, &ctx->walk);
4812 -
4813 + if (sg_num < 0) {
4814 + err = sg_num;
4815 + goto err_out_exit;
4816 + }
4817 atomic_set(&ctx->sg_num, sg_num);
4818
4819 spin_lock_irqsave(&dev->lock, flags);
4820 @@ -1640,7 +1634,7 @@ static int hifn_setup_session(struct abl
4821 if (err)
4822 goto err_out;
4823
4824 - nbytes -= len;
4825 + nbytes -= min(len, nbytes);
4826 }
4827
4828 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
4829 @@ -1651,7 +1645,7 @@ static int hifn_setup_session(struct abl
4830 err_out:
4831 spin_unlock_irqrestore(&dev->lock, flags);
4832 err_out_exit:
4833 - if (err && printk_ratelimit())
4834 + if (err)
4835 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
4836 "type: %u, err: %d.\n",
4837 dev->name, ctx->iv, ctx->ivsize,
4838 @@ -1745,8 +1739,7 @@ static int ablkcipher_get(void *saddr, u
4839 return -EINVAL;
4840
4841 while (size) {
4842 -
4843 - copy = min(dst->length, srest);
4844 + copy = min(srest, min(dst->length, size));
4845
4846 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
4847 memcpy(daddr + dst->offset + offset, saddr, copy);
4848 @@ -1803,7 +1796,7 @@ static void hifn_process_ready(struct ab
4849 sg_page(dst), dst->length, nbytes);
4850
4851 if (!t->length) {
4852 - nbytes -= dst->length;
4853 + nbytes -= min(dst->length, nbytes);
4854 idx++;
4855 continue;
4856 }
4857 @@ -2202,9 +2195,9 @@ static int hifn_setup_crypto(struct ablk
4858 return err;
4859
4860 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
4861 - err = hifn_process_queue(dev);
4862 + hifn_process_queue(dev);
4863
4864 - return err;
4865 + return -EINPROGRESS;
4866 }
4867
4868 /*
4869 @@ -2364,7 +2357,7 @@ static struct hifn_alg_template hifn_alg
4870 * 3DES ECB, CBC, CFB and OFB modes.
4871 */
4872 {
4873 - .name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
4874 + .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
4875 .ablkcipher = {
4876 .min_keysize = HIFN_3DES_KEY_LENGTH,
4877 .max_keysize = HIFN_3DES_KEY_LENGTH,
4878 @@ -2374,7 +2367,7 @@ static struct hifn_alg_template hifn_alg
4879 },
4880 },
4881 {
4882 - .name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
4883 + .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
4884 .ablkcipher = {
4885 .min_keysize = HIFN_3DES_KEY_LENGTH,
4886 .max_keysize = HIFN_3DES_KEY_LENGTH,
4887 @@ -2384,8 +2377,9 @@ static struct hifn_alg_template hifn_alg
4888 },
4889 },
4890 {
4891 - .name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
4892 + .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
4893 .ablkcipher = {
4894 + .ivsize = HIFN_IV_LENGTH,
4895 .min_keysize = HIFN_3DES_KEY_LENGTH,
4896 .max_keysize = HIFN_3DES_KEY_LENGTH,
4897 .setkey = hifn_setkey,
4898 @@ -2394,7 +2388,7 @@ static struct hifn_alg_template hifn_alg
4899 },
4900 },
4901 {
4902 - .name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
4903 + .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
4904 .ablkcipher = {
4905 .min_keysize = HIFN_3DES_KEY_LENGTH,
4906 .max_keysize = HIFN_3DES_KEY_LENGTH,
4907 @@ -2408,7 +2402,7 @@ static struct hifn_alg_template hifn_alg
4908 * DES ECB, CBC, CFB and OFB modes.
4909 */
4910 {
4911 - .name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
4912 + .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
4913 .ablkcipher = {
4914 .min_keysize = HIFN_DES_KEY_LENGTH,
4915 .max_keysize = HIFN_DES_KEY_LENGTH,
4916 @@ -2418,7 +2412,7 @@ static struct hifn_alg_template hifn_alg
4917 },
4918 },
4919 {
4920 - .name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
4921 + .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
4922 .ablkcipher = {
4923 .min_keysize = HIFN_DES_KEY_LENGTH,
4924 .max_keysize = HIFN_DES_KEY_LENGTH,
4925 @@ -2428,8 +2422,9 @@ static struct hifn_alg_template hifn_alg
4926 },
4927 },
4928 {
4929 - .name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
4930 + .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
4931 .ablkcipher = {
4932 + .ivsize = HIFN_IV_LENGTH,
4933 .min_keysize = HIFN_DES_KEY_LENGTH,
4934 .max_keysize = HIFN_DES_KEY_LENGTH,
4935 .setkey = hifn_setkey,
4936 @@ -2438,7 +2433,7 @@ static struct hifn_alg_template hifn_alg
4937 },
4938 },
4939 {
4940 - .name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
4941 + .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
4942 .ablkcipher = {
4943 .min_keysize = HIFN_DES_KEY_LENGTH,
4944 .max_keysize = HIFN_DES_KEY_LENGTH,
4945 @@ -2452,7 +2447,7 @@ static struct hifn_alg_template hifn_alg
4946 * AES ECB, CBC, CFB and OFB modes.
4947 */
4948 {
4949 - .name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
4950 + .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
4951 .ablkcipher = {
4952 .min_keysize = AES_MIN_KEY_SIZE,
4953 .max_keysize = AES_MAX_KEY_SIZE,
4954 @@ -2462,8 +2457,9 @@ static struct hifn_alg_template hifn_alg
4955 },
4956 },
4957 {
4958 - .name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
4959 + .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
4960 .ablkcipher = {
4961 + .ivsize = HIFN_AES_IV_LENGTH,
4962 .min_keysize = AES_MIN_KEY_SIZE,
4963 .max_keysize = AES_MAX_KEY_SIZE,
4964 .setkey = hifn_setkey,
4965 @@ -2472,7 +2468,7 @@ static struct hifn_alg_template hifn_alg
4966 },
4967 },
4968 {
4969 - .name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
4970 + .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
4971 .ablkcipher = {
4972 .min_keysize = AES_MIN_KEY_SIZE,
4973 .max_keysize = AES_MAX_KEY_SIZE,
4974 @@ -2482,7 +2478,7 @@ static struct hifn_alg_template hifn_alg
4975 },
4976 },
4977 {
4978 - .name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
4979 + .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
4980 .ablkcipher = {
4981 .min_keysize = AES_MIN_KEY_SIZE,
4982 .max_keysize = AES_MAX_KEY_SIZE,
4983 @@ -2514,15 +2510,14 @@ static int hifn_alg_alloc(struct hifn_de
4984 return -ENOMEM;
4985
4986 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
4987 - snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);
4988 + snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
4989 + t->drv_name, dev->name);
4990
4991 alg->alg.cra_priority = 300;
4992 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
4993 alg->alg.cra_blocksize = t->bsize;
4994 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
4995 - alg->alg.cra_alignmask = 15;
4996 - if (t->bsize == 8)
4997 - alg->alg.cra_alignmask = 3;
4998 + alg->alg.cra_alignmask = 0;
4999 alg->alg.cra_type = &crypto_ablkcipher_type;
5000 alg->alg.cra_module = THIS_MODULE;
5001 alg->alg.cra_u.ablkcipher = t->ablkcipher;
5002 --- /dev/null
5003 +++ b/drivers/crypto/ixp4xx_crypto.c
5004 @@ -0,0 +1,1506 @@
5005 +/*
5006 + * Intel IXP4xx NPE-C crypto driver
5007 + *
5008 + * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5009 + *
5010 + * This program is free software; you can redistribute it and/or modify it
5011 + * under the terms of version 2 of the GNU General Public License
5012 + * as published by the Free Software Foundation.
5013 + *
5014 + */
5015 +
5016 +#include <linux/platform_device.h>
5017 +#include <linux/dma-mapping.h>
5018 +#include <linux/dmapool.h>
5019 +#include <linux/crypto.h>
5020 +#include <linux/kernel.h>
5021 +#include <linux/rtnetlink.h>
5022 +#include <linux/interrupt.h>
5023 +#include <linux/spinlock.h>
5024 +
5025 +#include <crypto/ctr.h>
5026 +#include <crypto/des.h>
5027 +#include <crypto/aes.h>
5028 +#include <crypto/sha.h>
5029 +#include <crypto/algapi.h>
5030 +#include <crypto/aead.h>
5031 +#include <crypto/authenc.h>
5032 +#include <crypto/scatterwalk.h>
5033 +
5034 +#include <asm/arch/npe.h>
5035 +#include <asm/arch/qmgr.h>
5036 +
5037 +#define MAX_KEYLEN 32
5038 +
5039 +/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
5040 +#define NPE_CTX_LEN 80
5041 +#define AES_BLOCK128 16
5042 +
5043 +#define NPE_OP_HASH_VERIFY 0x01
5044 +#define NPE_OP_CCM_ENABLE 0x04
5045 +#define NPE_OP_CRYPT_ENABLE 0x08
5046 +#define NPE_OP_HASH_ENABLE 0x10
5047 +#define NPE_OP_NOT_IN_PLACE 0x20
5048 +#define NPE_OP_HMAC_DISABLE 0x40
5049 +#define NPE_OP_CRYPT_ENCRYPT 0x80
5050 +
5051 +#define NPE_OP_CCM_GEN_MIC 0xcc
5052 +#define NPE_OP_HASH_GEN_ICV 0x50
5053 +#define NPE_OP_ENC_GEN_KEY 0xc9
5054 +
5055 +#define MOD_ECB 0x0000
5056 +#define MOD_CTR 0x1000
5057 +#define MOD_CBC_ENC 0x2000
5058 +#define MOD_CBC_DEC 0x3000
5059 +#define MOD_CCM_ENC 0x4000
5060 +#define MOD_CCM_DEC 0x5000
5061 +
5062 +#define KEYLEN_128 4
5063 +#define KEYLEN_192 6
5064 +#define KEYLEN_256 8
5065 +
5066 +#define CIPH_DECR 0x0000
5067 +#define CIPH_ENCR 0x0400
5068 +
5069 +#define MOD_DES 0x0000
5070 +#define MOD_TDEA2 0x0100
5071 +#define MOD_3DES 0x0200
5072 +#define MOD_AES 0x0800
5073 +#define MOD_AES128 (0x0800 | KEYLEN_128)
5074 +#define MOD_AES192 (0x0900 | KEYLEN_192)
5075 +#define MOD_AES256 (0x0a00 | KEYLEN_256)
5076 +
5077 +#define MAX_IVLEN 16
5078 +#define NPE_ID 2 /* NPE C */
5079 +#define NPE_QLEN 16
5080 +/* Space for registering when the first
5081 + * NPE_QLEN crypt_ctl are busy */
5082 +#define NPE_QLEN_TOTAL 64
5083 +
5084 +#define SEND_QID 29
5085 +#define RECV_QID 30
5086 +
5087 +#define CTL_FLAG_UNUSED 0x0000
5088 +#define CTL_FLAG_USED 0x1000
5089 +#define CTL_FLAG_PERFORM_ABLK 0x0001
5090 +#define CTL_FLAG_GEN_ICV 0x0002
5091 +#define CTL_FLAG_GEN_REVAES 0x0004
5092 +#define CTL_FLAG_PERFORM_AEAD 0x0008
5093 +#define CTL_FLAG_MASK 0x000f
5094 +
5095 +#define HMAC_IPAD_VALUE 0x36
5096 +#define HMAC_OPAD_VALUE 0x5C
5097 +#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
5098 +
5099 +#define MD5_DIGEST_SIZE 16
5100 +
5101 +struct buffer_desc {
5102 + u32 phys_next;
5103 + u16 buf_len;
5104 + u16 pkt_len;
5105 + u32 phys_addr;
5106 + u32 __reserved[4];
5107 + struct buffer_desc *next;
5108 +};
5109 +
5110 +struct crypt_ctl {
5111 + u8 mode; /* NPE_OP_* operation mode */
5112 + u8 init_len;
5113 + u16 reserved;
5114 + u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
5115 + u32 icv_rev_aes; /* icv or rev aes */
5116 + u32 src_buf;
5117 + u32 dst_buf;
5118 + u16 auth_offs; /* Authentication start offset */
5119 + u16 auth_len; /* Authentication data length */
5120 + u16 crypt_offs; /* Cryption start offset */
5121 + u16 crypt_len; /* Cryption data length */
5122 + u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
5123 + u32 crypto_ctx; /* NPE Crypto Param structure address */
5124 +
5125 + /* Used by Host: 4*4 bytes*/
5126 + unsigned ctl_flags;
5127 + union {
5128 + struct ablkcipher_request *ablk_req;
5129 + struct aead_request *aead_req;
5130 + struct crypto_tfm *tfm;
5131 + } data;
5132 + struct buffer_desc *regist_buf;
5133 + u8 *regist_ptr;
5134 +};
5135 +
5136 +struct ablk_ctx {
5137 + struct buffer_desc *src;
5138 + struct buffer_desc *dst;
5139 + unsigned src_nents;
5140 + unsigned dst_nents;
5141 +};
5142 +
5143 +struct aead_ctx {
5144 + struct buffer_desc *buffer;
5145 + unsigned short assoc_nents;
5146 + unsigned short src_nents;
5147 + struct scatterlist ivlist;
5148 + /* used when the hmac is not on one sg entry */
5149 + u8 *hmac_virt;
5150 + int encrypt;
5151 +};
5152 +
5153 +struct ix_hash_algo {
5154 + u32 cfgword;
5155 + unsigned char *icv;
5156 +};
5157 +
5158 +struct ix_sa_dir {
5159 + unsigned char *npe_ctx;
5160 + dma_addr_t npe_ctx_phys;
5161 + int npe_ctx_idx;
5162 + u8 npe_mode;
5163 +};
5164 +
5165 +struct ixp_ctx {
5166 + struct ix_sa_dir encrypt;
5167 + struct ix_sa_dir decrypt;
5168 + int authkey_len;
5169 + u8 authkey[MAX_KEYLEN];
5170 + int enckey_len;
5171 + u8 enckey[MAX_KEYLEN];
5172 + u8 salt[MAX_IVLEN];
5173 + u8 nonce[CTR_RFC3686_NONCE_SIZE];
5174 + unsigned salted;
5175 + atomic_t configuring;
5176 + struct completion completion;
5177 +};
5178 +
5179 +struct ixp_alg {
5180 + struct crypto_alg crypto;
5181 + const struct ix_hash_algo *hash;
5182 + u32 cfg_enc;
5183 + u32 cfg_dec;
5184 +
5185 + int registered;
5186 +};
5187 +
5188 +static const struct ix_hash_algo hash_alg_md5 = {
5189 + .cfgword = 0xAA010004,
5190 + .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
5191 + "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
5192 +};
5193 +static const struct ix_hash_algo hash_alg_sha1 = {
5194 + .cfgword = 0x00000005,
5195 + .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
5196 + "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
5197 +};
5198 +
5199 +static struct npe *npe_c;
5200 +static struct dma_pool *buffer_pool = NULL;
5201 +static struct dma_pool *ctx_pool = NULL;
5202 +
5203 +static struct crypt_ctl *crypt_virt = NULL;
5204 +static dma_addr_t crypt_phys;
5205 +
5206 +static int support_aes = 1;
5207 +
5208 +static void dev_release(struct device *dev)
5209 +{
5210 + return;
5211 +}
5212 +
5213 +#define DRIVER_NAME "ixp4xx_crypto"
5214 +static struct platform_device pseudo_dev = {
5215 + .name = DRIVER_NAME,
5216 + .id = 0,
5217 + .num_resources = 0,
5218 + .dev = {
5219 + .coherent_dma_mask = DMA_32BIT_MASK,
5220 + .release = dev_release,
5221 + }
5222 +};
5223 +
5224 +static struct device *dev = &pseudo_dev.dev;
5225 +
5226 +static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
5227 +{
5228 + return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
5229 +}
5230 +
5231 +static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
5232 +{
5233 + return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
5234 +}
5235 +
5236 +static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
5237 +{
5238 + return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
5239 +}
5240 +
5241 +static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
5242 +{
5243 + return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
5244 +}
5245 +
5246 +static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
5247 +{
5248 + return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
5249 +}
5250 +
5251 +static int setup_crypt_desc(void)
5252 +{
5253 + BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
5254 + crypt_virt = dma_alloc_coherent(dev,
5255 + NPE_QLEN * sizeof(struct crypt_ctl),
5256 + &crypt_phys, GFP_KERNEL);
5257 + if (!crypt_virt)
5258 + return -ENOMEM;
5259 + memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
5260 + return 0;
5261 +}
5262 +
5263 +static spinlock_t desc_lock;
5264 +static struct crypt_ctl *get_crypt_desc(void)
5265 +{
5266 + int i;
5267 + static int idx = 0;
5268 + unsigned long flags;
5269 +
5270 + spin_lock_irqsave(&desc_lock, flags);
5271 +
5272 + if (unlikely(!crypt_virt))
5273 + setup_crypt_desc();
5274 + if (unlikely(!crypt_virt)) {
5275 + spin_unlock_irqrestore(&desc_lock, flags);
5276 + return NULL;
5277 + }
5278 + i = idx;
5279 + if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
5280 + if (++idx >= NPE_QLEN)
5281 + idx = 0;
5282 + crypt_virt[i].ctl_flags = CTL_FLAG_USED;
5283 + spin_unlock_irqrestore(&desc_lock, flags);
5284 + return crypt_virt +i;
5285 + } else {
5286 + spin_unlock_irqrestore(&desc_lock, flags);
5287 + return NULL;
5288 + }
5289 +}
5290 +
5291 +static spinlock_t emerg_lock;
5292 +static struct crypt_ctl *get_crypt_desc_emerg(void)
5293 +{
5294 + int i;
5295 + static int idx = NPE_QLEN;
5296 + struct crypt_ctl *desc;
5297 + unsigned long flags;
5298 +
5299 + desc = get_crypt_desc();
5300 + if (desc)
5301 + return desc;
5302 + if (unlikely(!crypt_virt))
5303 + return NULL;
5304 +
5305 + spin_lock_irqsave(&emerg_lock, flags);
5306 + i = idx;
5307 + if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
5308 + if (++idx >= NPE_QLEN_TOTAL)
5309 + idx = NPE_QLEN;
5310 + crypt_virt[i].ctl_flags = CTL_FLAG_USED;
5311 + spin_unlock_irqrestore(&emerg_lock, flags);
5312 + return crypt_virt +i;
5313 + } else {
5314 + spin_unlock_irqrestore(&emerg_lock, flags);
5315 + return NULL;
5316 + }
5317 +}
5318 +
5319 +static void free_buf_chain(struct buffer_desc *buf, u32 phys)
5320 +{
5321 + while (buf) {
5322 + struct buffer_desc *buf1;
5323 + u32 phys1;
5324 +
5325 + buf1 = buf->next;
5326 + phys1 = buf->phys_next;
5327 + dma_pool_free(buffer_pool, buf, phys);
5328 + buf = buf1;
5329 + phys = phys1;
5330 + }
5331 +}
5332 +
5333 +static struct tasklet_struct crypto_done_tasklet;
5334 +
5335 +static void finish_scattered_hmac(struct crypt_ctl *crypt)
5336 +{
5337 + struct aead_request *req = crypt->data.aead_req;
5338 + struct aead_ctx *req_ctx = aead_request_ctx(req);
5339 + struct crypto_aead *tfm = crypto_aead_reqtfm(req);
5340 + int authsize = crypto_aead_authsize(tfm);
5341 + int decryptlen = req->cryptlen - authsize;
5342 +
5343 + if (req_ctx->encrypt) {
5344 + scatterwalk_map_and_copy(req_ctx->hmac_virt,
5345 + req->src, decryptlen, authsize, 1);
5346 + }
5347 + dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
5348 +}
5349 +
5350 +static void one_packet(dma_addr_t phys)
5351 +{
5352 + struct crypt_ctl *crypt;
5353 + struct ixp_ctx *ctx;
5354 + int failed;
5355 + enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
5356 +
5357 + failed = phys & 0x1 ? -EBADMSG : 0;
5358 + phys &= ~0x3;
5359 + crypt = crypt_phys2virt(phys);
5360 +
5361 + switch (crypt->ctl_flags & CTL_FLAG_MASK) {
5362 + case CTL_FLAG_PERFORM_AEAD: {
5363 + struct aead_request *req = crypt->data.aead_req;
5364 + struct aead_ctx *req_ctx = aead_request_ctx(req);
5365 + dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents,
5366 + DMA_TO_DEVICE);
5367 + dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
5368 + dma_unmap_sg(dev, req->src, req_ctx->src_nents,
5369 + DMA_BIDIRECTIONAL);
5370 +
5371 + free_buf_chain(req_ctx->buffer, crypt->src_buf);
5372 + if (req_ctx->hmac_virt) {
5373 + finish_scattered_hmac(crypt);
5374 + }
5375 + req->base.complete(&req->base, failed);
5376 + break;
5377 + }
5378 + case CTL_FLAG_PERFORM_ABLK: {
5379 + struct ablkcipher_request *req = crypt->data.ablk_req;
5380 + struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
5381 + int nents;
5382 + if (req_ctx->dst) {
5383 + nents = req_ctx->dst_nents;
5384 + dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
5385 + free_buf_chain(req_ctx->dst, crypt->dst_buf);
5386 + src_direction = DMA_TO_DEVICE;
5387 + }
5388 + nents = req_ctx->src_nents;
5389 + dma_unmap_sg(dev, req->src, nents, src_direction);
5390 + free_buf_chain(req_ctx->src, crypt->src_buf);
5391 + req->base.complete(&req->base, failed);
5392 + break;
5393 + }
5394 + case CTL_FLAG_GEN_ICV:
5395 + ctx = crypto_tfm_ctx(crypt->data.tfm);
5396 + dma_pool_free(ctx_pool, crypt->regist_ptr,
5397 + crypt->regist_buf->phys_addr);
5398 + dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
5399 + if (atomic_dec_and_test(&ctx->configuring))
5400 + complete(&ctx->completion);
5401 + break;
5402 + case CTL_FLAG_GEN_REVAES:
5403 + ctx = crypto_tfm_ctx(crypt->data.tfm);
5404 + *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
5405 + if (atomic_dec_and_test(&ctx->configuring))
5406 + complete(&ctx->completion);
5407 + break;
5408 + default:
5409 + BUG();
5410 + }
5411 + crypt->ctl_flags = CTL_FLAG_UNUSED;
5412 +}
5413 +
5414 +static void irqhandler(void *_unused)
5415 +{
5416 + tasklet_schedule(&crypto_done_tasklet);
5417 +}
5418 +
5419 +static void crypto_done_action(unsigned long arg)
5420 +{
5421 + int i;
5422 +
5423 + for(i=0; i<4; i++) {
5424 + dma_addr_t phys = qmgr_get_entry(RECV_QID);
5425 + if (!phys)
5426 + return;
5427 + one_packet(phys);
5428 + }
5429 + tasklet_schedule(&crypto_done_tasklet);
5430 +}
5431 +
5432 +static int init_ixp_crypto(void)
5433 +{
5434 + int ret = -ENODEV;
5435 +
5436 + if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
5437 + IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
5438 + printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
5439 + return ret;
5440 + }
5441 + npe_c = npe_request(NPE_ID);
5442 + if (!npe_c)
5443 + return ret;
5444 +
5445 + if (!npe_running(npe_c)) {
5446 + npe_load_firmware(npe_c, npe_name(npe_c), dev);
5447 + }
5448 +
5449 + /* buffer_pool will also be used to sometimes store the hmac,
5450 + * so assure it is large enough
5451 + */
5452 + BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
5453 + buffer_pool = dma_pool_create("buffer", dev,
5454 + sizeof(struct buffer_desc), 32, 0);
5455 + ret = -ENOMEM;
5456 + if (!buffer_pool) {
5457 + goto err;
5458 + }
5459 + ctx_pool = dma_pool_create("context", dev,
5460 + NPE_CTX_LEN, 16, 0);
5461 + if (!ctx_pool) {
5462 + goto err;
5463 + }
5464 + ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0);
5465 + if (ret)
5466 + goto err;
5467 + ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0);
5468 + if (ret) {
5469 + qmgr_release_queue(SEND_QID);
5470 + goto err;
5471 + }
5472 + qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
5473 + tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
5474 +
5475 + qmgr_enable_irq(RECV_QID);
5476 + return 0;
5477 +err:
5478 + if (ctx_pool)
5479 + dma_pool_destroy(ctx_pool);
5480 + if (buffer_pool)
5481 + dma_pool_destroy(buffer_pool);
5482 + npe_release(npe_c);
5483 + return ret;
5484 +}
5485 +
5486 +static void release_ixp_crypto(void)
5487 +{
5488 + qmgr_disable_irq(RECV_QID);
5489 + tasklet_kill(&crypto_done_tasklet);
5490 +
5491 + qmgr_release_queue(SEND_QID);
5492 + qmgr_release_queue(RECV_QID);
5493 +
5494 + dma_pool_destroy(ctx_pool);
5495 + dma_pool_destroy(buffer_pool);
5496 +
5497 + npe_release(npe_c);
5498 +
5499 + if (crypt_virt) {
5500 + dma_free_coherent(dev,
5501 + NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
5502 + crypt_virt, crypt_phys);
5503 + }
5504 + return;
5505 +}
5506 +
5507 +static void reset_sa_dir(struct ix_sa_dir *dir)
5508 +{
5509 + memset(dir->npe_ctx, 0, NPE_CTX_LEN);
5510 + dir->npe_ctx_idx = 0;
5511 + dir->npe_mode = 0;
5512 +}
5513 +
5514 +static int init_sa_dir(struct ix_sa_dir *dir)
5515 +{
5516 + dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
5517 + if (!dir->npe_ctx) {
5518 + return -ENOMEM;
5519 + }
5520 + reset_sa_dir(dir);
5521 + return 0;
5522 +}
5523 +
5524 +static void free_sa_dir(struct ix_sa_dir *dir)
5525 +{
5526 + memset(dir->npe_ctx, 0, NPE_CTX_LEN);
5527 + dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
5528 +}
5529 +
5530 +static int init_tfm(struct crypto_tfm *tfm)
5531 +{
5532 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5533 + int ret;
5534 +
5535 + atomic_set(&ctx->configuring, 0);
5536 + ret = init_sa_dir(&ctx->encrypt);
5537 + if (ret)
5538 + return ret;
5539 + ret = init_sa_dir(&ctx->decrypt);
5540 + if (ret) {
5541 + free_sa_dir(&ctx->encrypt);
5542 + }
5543 + return ret;
5544 +}
5545 +
5546 +static int init_tfm_ablk(struct crypto_tfm *tfm)
5547 +{
5548 + tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
5549 + return init_tfm(tfm);
5550 +}
5551 +
5552 +static int init_tfm_aead(struct crypto_tfm *tfm)
5553 +{
5554 + tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
5555 + return init_tfm(tfm);
5556 +}
5557 +
5558 +static void exit_tfm(struct crypto_tfm *tfm)
5559 +{
5560 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5561 + free_sa_dir(&ctx->encrypt);
5562 + free_sa_dir(&ctx->decrypt);
5563 +}
5564 +
5565 +static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
5566 + int init_len, u32 ctx_addr, const u8 *key, int key_len)
5567 +{
5568 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5569 + struct crypt_ctl *crypt;
5570 + struct buffer_desc *buf;
5571 + int i;
5572 + u8 *pad;
5573 + u32 pad_phys, buf_phys;
5574 +
5575 + BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
5576 + pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
5577 + if (!pad)
5578 + return -ENOMEM;
5579 + buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
5580 + if (!buf) {
5581 + dma_pool_free(ctx_pool, pad, pad_phys);
5582 + return -ENOMEM;
5583 + }
5584 + crypt = get_crypt_desc_emerg();
5585 + if (!crypt) {
5586 + dma_pool_free(ctx_pool, pad, pad_phys);
5587 + dma_pool_free(buffer_pool, buf, buf_phys);
5588 + return -EAGAIN;
5589 + }
5590 +
5591 + memcpy(pad, key, key_len);
5592 + memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
5593 + for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
5594 + pad[i] ^= xpad;
5595 + }
5596 +
5597 + crypt->data.tfm = tfm;
5598 + crypt->regist_ptr = pad;
5599 + crypt->regist_buf = buf;
5600 +
5601 + crypt->auth_offs = 0;
5602 + crypt->auth_len = HMAC_PAD_BLOCKLEN;
5603 + crypt->crypto_ctx = ctx_addr;
5604 + crypt->src_buf = buf_phys;
5605 + crypt->icv_rev_aes = target;
5606 + crypt->mode = NPE_OP_HASH_GEN_ICV;
5607 + crypt->init_len = init_len;
5608 + crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
5609 +
5610 + buf->next = 0;
5611 + buf->buf_len = HMAC_PAD_BLOCKLEN;
5612 + buf->pkt_len = 0;
5613 + buf->phys_addr = pad_phys;
5614 +
5615 + atomic_inc(&ctx->configuring);
5616 + qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
5617 + BUG_ON(qmgr_stat_overflow(SEND_QID));
5618 + return 0;
5619 +}
5620 +
5621 +static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
5622 + const u8 *key, int key_len, unsigned digest_len)
5623 +{
5624 + u32 itarget, otarget, npe_ctx_addr;
5625 + unsigned char *cinfo;
5626 + int init_len, ret = 0;
5627 + u32 cfgword;
5628 + struct ix_sa_dir *dir;
5629 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5630 + const struct ix_hash_algo *algo;
5631 +
5632 + dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
5633 + cinfo = dir->npe_ctx + dir->npe_ctx_idx;
5634 + algo = ix_hash(tfm);
5635 +
5636 + /* write cfg word to cryptinfo */
5637 + cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
5638 + *(u32*)cinfo = cpu_to_be32(cfgword);
5639 + cinfo += sizeof(cfgword);
5640 +
5641 + /* write ICV to cryptinfo */
5642 + memcpy(cinfo, algo->icv, digest_len);
5643 + cinfo += digest_len;
5644 +
5645 + itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
5646 + + sizeof(algo->cfgword);
5647 + otarget = itarget + digest_len;
5648 + init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
5649 + npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
5650 +
5651 + dir->npe_ctx_idx += init_len;
5652 + dir->npe_mode |= NPE_OP_HASH_ENABLE;
5653 +
5654 + if (!encrypt)
5655 + dir->npe_mode |= NPE_OP_HASH_VERIFY;
5656 +
5657 + ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
5658 + init_len, npe_ctx_addr, key, key_len);
5659 + if (ret)
5660 + return ret;
5661 + return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
5662 + init_len, npe_ctx_addr, key, key_len);
5663 +}
5664 +
5665 +static int gen_rev_aes_key(struct crypto_tfm *tfm)
5666 +{
5667 + struct crypt_ctl *crypt;
5668 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5669 + struct ix_sa_dir *dir = &ctx->decrypt;
5670 +
5671 + crypt = get_crypt_desc_emerg();
5672 + if (!crypt) {
5673 + return -EAGAIN;
5674 + }
5675 + *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
5676 +
5677 + crypt->data.tfm = tfm;
5678 + crypt->crypt_offs = 0;
5679 + crypt->crypt_len = AES_BLOCK128;
5680 + crypt->src_buf = 0;
5681 + crypt->crypto_ctx = dir->npe_ctx_phys;
5682 + crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
5683 + crypt->mode = NPE_OP_ENC_GEN_KEY;
5684 + crypt->init_len = dir->npe_ctx_idx;
5685 + crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
5686 +
5687 + atomic_inc(&ctx->configuring);
5688 + qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
5689 + BUG_ON(qmgr_stat_overflow(SEND_QID));
5690 + return 0;
5691 +}
5692 +
5693 +static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
5694 + const u8 *key, int key_len)
5695 +{
5696 + u8 *cinfo;
5697 + u32 cipher_cfg;
5698 + u32 keylen_cfg = 0;
5699 + struct ix_sa_dir *dir;
5700 + struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
5701 + u32 *flags = &tfm->crt_flags;
5702 +
5703 + dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
5704 + cinfo = dir->npe_ctx;
5705 +
5706 + if (encrypt) {
5707 + cipher_cfg = cipher_cfg_enc(tfm);
5708 + dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
5709 + } else {
5710 + cipher_cfg = cipher_cfg_dec(tfm);
5711 + }
5712 + if (cipher_cfg & MOD_AES) {
5713 + switch (key_len) {
5714 + case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
5715 + case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
5716 + case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
5717 + default:
5718 + *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
5719 + return -EINVAL;
5720 + }
5721 + cipher_cfg |= keylen_cfg;
5722 + } else if (cipher_cfg & MOD_3DES) {
5723 + const u32 *K = (const u32 *)key;
5724 + if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
5725 + !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
5726 + {
5727 + *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
5728 + return -EINVAL;
5729 + }
5730 + } else {
5731 + u32 tmp[DES_EXPKEY_WORDS];
5732 + if (des_ekey(tmp, key) == 0) {
5733 + *flags |= CRYPTO_TFM_RES_WEAK_KEY;
5734 + }
5735 + }
5736 + /* write cfg word to cryptinfo */
5737 + *(u32*)cinfo = cpu_to_be32(cipher_cfg);
5738 + cinfo += sizeof(cipher_cfg);
5739 +
5740 + /* write cipher key to cryptinfo */
5741 + memcpy(cinfo, key, key_len);
5742 + /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
5743 + if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
5744 + memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
5745 + key_len = DES3_EDE_KEY_SIZE;
5746 + }
5747 + dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
5748 + dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
5749 + if ((cipher_cfg & MOD_AES) && !encrypt) {
5750 + return gen_rev_aes_key(tfm);
5751 + }
5752 + return 0;
5753 +}
5754 +
5755 +static int count_sg(struct scatterlist *sg, int nbytes)
5756 +{
5757 + int i;
5758 + for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
5759 + nbytes -= sg->length;
5760 + return i;
5761 +}
5762 +
5763 +static struct buffer_desc *chainup_buffers(struct scatterlist *sg,
5764 + unsigned nbytes, struct buffer_desc *buf, gfp_t flags)
5765 +{
5766 + int nents = 0;
5767 +
5768 + while (nbytes > 0) {
5769 + struct buffer_desc *next_buf;
5770 + u32 next_buf_phys;
5771 + unsigned len = min(nbytes, sg_dma_len(sg));
5772 +
5773 + nents++;
5774 + nbytes -= len;
5775 + if (!buf->phys_addr) {
5776 + buf->phys_addr = sg_dma_address(sg);
5777 + buf->buf_len = len;
5778 + buf->next = NULL;
5779 + buf->phys_next = 0;
5780 + goto next;
5781 + }
5782 + /* Two consecutive chunks on one page may be handled by the old
5783 + * buffer descriptor, increased by the length of the new one
5784 + */
5785 + if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) {
5786 + buf->buf_len += len;
5787 + goto next;
5788 + }
5789 + next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
5790 + if (!next_buf)
5791 + return NULL;
5792 + buf->next = next_buf;
5793 + buf->phys_next = next_buf_phys;
5794 +
5795 + buf = next_buf;
5796 + buf->next = NULL;
5797 + buf->phys_next = 0;
5798 + buf->phys_addr = sg_dma_address(sg);
5799 + buf->buf_len = len;
5800 +next:
5801 + if (nbytes > 0) {
5802 + sg = sg_next(sg);
5803 + }
5804 + }
5805 + return buf;
5806 +}
5807 +
5808 +static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
5809 + unsigned int key_len)
5810 +{
5811 + struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
5812 + u32 *flags = &tfm->base.crt_flags;
5813 + int ret;
5814 +
5815 + init_completion(&ctx->completion);
5816 + atomic_inc(&ctx->configuring);
5817 +
5818 + reset_sa_dir(&ctx->encrypt);
5819 + reset_sa_dir(&ctx->decrypt);
5820 +
5821 + ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
5822 + ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
5823 +
5824 + ret = setup_cipher(&tfm->base, 0, key, key_len);
5825 + if (ret)
5826 + goto out;
5827 + ret = setup_cipher(&tfm->base, 1, key, key_len);
5828 + if (ret)
5829 + goto out;
5830 +
5831 + if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
5832 + if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
5833 + ret = -EINVAL;
5834 + } else {
5835 + *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
5836 + }
5837 + }
5838 +out:
5839 + if (!atomic_dec_and_test(&ctx->configuring))
5840 + wait_for_completion(&ctx->completion);
5841 + return ret;
5842 +}
5843 +
5844 +static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
5845 + unsigned int key_len)
5846 +{
5847 + struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
5848 +
5849 + /* the nonce is stored in bytes at end of key */
5850 + if (key_len < CTR_RFC3686_NONCE_SIZE)
5851 + return -EINVAL;
5852 +
5853 + memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
5854 + CTR_RFC3686_NONCE_SIZE);
5855 +
5856 + key_len -= CTR_RFC3686_NONCE_SIZE;
5857 + return ablk_setkey(tfm, key, key_len);
5858 +}
5859 +
5860 +static int ablk_perform(struct ablkcipher_request *req, int encrypt)
5861 +{
5862 + struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
5863 + struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
5864 + unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
5865 + int ret = -ENOMEM;
5866 + struct ix_sa_dir *dir;
5867 + struct crypt_ctl *crypt;
5868 + unsigned int nbytes = req->nbytes, nents;
5869 + enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
5870 + struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
5871 + gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
5872 + GFP_KERNEL : GFP_ATOMIC;
5873 +
5874 + if (qmgr_stat_full(SEND_QID))
5875 + return -EAGAIN;
5876 + if (atomic_read(&ctx->configuring))
5877 + return -EAGAIN;
5878 +
5879 + dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
5880 +
5881 + crypt = get_crypt_desc();
5882 + if (!crypt)
5883 + return ret;
5884 +
5885 + crypt->data.ablk_req = req;
5886 + crypt->crypto_ctx = dir->npe_ctx_phys;
5887 + crypt->mode = dir->npe_mode;
5888 + crypt->init_len = dir->npe_ctx_idx;
5889 +
5890 + crypt->crypt_offs = 0;
5891 + crypt->crypt_len = nbytes;
5892 +
5893 + BUG_ON(ivsize && !req->info);
5894 + memcpy(crypt->iv, req->info, ivsize);
5895 + if (req->src != req->dst) {
5896 + crypt->mode |= NPE_OP_NOT_IN_PLACE;
5897 + nents = count_sg(req->dst, nbytes);
5898 + /* This was never tested by Intel
5899 + * for more than one dst buffer, I think. */
5900 + BUG_ON(nents != 1);
5901 + req_ctx->dst_nents = nents;
5902 + dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
5903 + req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf);
5904 + if (!req_ctx->dst)
5905 + goto unmap_sg_dest;
5906 + req_ctx->dst->phys_addr = 0;
5907 + if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags))
5908 + goto free_buf_dest;
5909 + src_direction = DMA_TO_DEVICE;
5910 + } else {
5911 + req_ctx->dst = NULL;
5912 + req_ctx->dst_nents = 0;
5913 + }
5914 + nents = count_sg(req->src, nbytes);
5915 + req_ctx->src_nents = nents;
5916 + dma_map_sg(dev, req->src, nents, src_direction);
5917 +
5918 + req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
5919 + if (!req_ctx->src)
5920 + goto unmap_sg_src;
5921 + req_ctx->src->phys_addr = 0;
5922 + if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags))
5923 + goto free_buf_src;
5924 +
5925 + crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
5926 + qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
5927 + BUG_ON(qmgr_stat_overflow(SEND_QID));
5928 + return -EINPROGRESS;
5929 +
5930 +free_buf_src:
5931 + free_buf_chain(req_ctx->src, crypt->src_buf);
5932 +unmap_sg_src:
5933 + dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction);
5934 +free_buf_dest:
5935 + if (req->src != req->dst) {
5936 + free_buf_chain(req_ctx->dst, crypt->dst_buf);
5937 +unmap_sg_dest:
5938 + dma_unmap_sg(dev, req->src, req_ctx->dst_nents,
5939 + DMA_FROM_DEVICE);
5940 + }
5941 + crypt->ctl_flags = CTL_FLAG_UNUSED;
5942 + return ret;
5943 +}
5944 +
5945 +static int ablk_encrypt(struct ablkcipher_request *req)
5946 +{
5947 + return ablk_perform(req, 1);
5948 +}
5949 +
5950 +static int ablk_decrypt(struct ablkcipher_request *req)
5951 +{
5952 + return ablk_perform(req, 0);
5953 +}
5954 +
5955 +static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
5956 +{
5957 + struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
5958 + struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
5959 + u8 iv[CTR_RFC3686_BLOCK_SIZE];
5960 + u8 *info = req->info;
5961 + int ret;
5962 +
5963 + /* set up counter block */
5964 + memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
5965 + memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
5966 +
5967 + /* initialize counter portion of counter block */
5968 + *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
5969 + cpu_to_be32(1);
5970 +
5971 + req->info = iv;
5972 + ret = ablk_perform(req, 1);
5973 + req->info = info;
5974 + return ret;
5975 +}
5976 +
5977 +static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
5978 + unsigned int nbytes)
5979 +{
5980 + int offset = 0;
5981 +
5982 + if (!nbytes)
5983 + return 0;
5984 +
5985 + for (;;) {
5986 + if (start < offset + sg->length)
5987 + break;
5988 +
5989 + offset += sg->length;
5990 + sg = sg_next(sg);
5991 + }
5992 + return (start + nbytes > offset + sg->length);
5993 +}
5994 +
5995 +static int aead_perform(struct aead_request *req, int encrypt,
5996 + int cryptoffset, int eff_cryptlen, u8 *iv)
5997 +{
5998 + struct crypto_aead *tfm = crypto_aead_reqtfm(req);
5999 + struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
6000 + unsigned ivsize = crypto_aead_ivsize(tfm);
6001 + unsigned authsize = crypto_aead_authsize(tfm);
6002 + int ret = -ENOMEM;
6003 + struct ix_sa_dir *dir;
6004 + struct crypt_ctl *crypt;
6005 + unsigned int cryptlen, nents;
6006 + struct buffer_desc *buf;
6007 + struct aead_ctx *req_ctx = aead_request_ctx(req);
6008 + gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
6009 + GFP_KERNEL : GFP_ATOMIC;
6010 +
6011 + if (qmgr_stat_full(SEND_QID))
6012 + return -EAGAIN;
6013 + if (atomic_read(&ctx->configuring))
6014 + return -EAGAIN;
6015 +
6016 + if (encrypt) {
6017 + dir = &ctx->encrypt;
6018 + cryptlen = req->cryptlen;
6019 + } else {
6020 + dir = &ctx->decrypt;
6021 + /* req->cryptlen includes the authsize when decrypting */
6022 + cryptlen = req->cryptlen -authsize;
6023 + eff_cryptlen -= authsize;
6024 + }
6025 + crypt = get_crypt_desc();
6026 + if (!crypt)
6027 + return ret;
6028 +
6029 + crypt->data.aead_req = req;
6030 + crypt->crypto_ctx = dir->npe_ctx_phys;
6031 + crypt->mode = dir->npe_mode;
6032 + crypt->init_len = dir->npe_ctx_idx;
6033 +
6034 + crypt->crypt_offs = cryptoffset;
6035 + crypt->crypt_len = eff_cryptlen;
6036 +
6037 + crypt->auth_offs = 0;
6038 + crypt->auth_len = req->assoclen + ivsize + cryptlen;
6039 + BUG_ON(ivsize && !req->iv);
6040 + memcpy(crypt->iv, req->iv, ivsize);
6041 +
6042 + if (req->src != req->dst) {
6043 + BUG(); /* -ENOTSUP because of my lazyness */
6044 + }
6045 +
6046 + req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
6047 + if (!req_ctx->buffer)
6048 + goto out;
6049 + req_ctx->buffer->phys_addr = 0;
6050 + /* ASSOC data */
6051 + nents = count_sg(req->assoc, req->assoclen);
6052 + req_ctx->assoc_nents = nents;
6053 + dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE);
6054 + buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags);
6055 + if (!buf)
6056 + goto unmap_sg_assoc;
6057 + /* IV */
6058 + sg_init_table(&req_ctx->ivlist, 1);
6059 + sg_set_buf(&req_ctx->ivlist, iv, ivsize);
6060 + dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
6061 + buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags);
6062 + if (!buf)
6063 + goto unmap_sg_iv;
6064 + if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
6065 + /* The 12 hmac bytes are scattered,
6066 + * we need to copy them into a safe buffer */
6067 + req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
6068 + &crypt->icv_rev_aes);
6069 + if (unlikely(!req_ctx->hmac_virt))
6070 + goto unmap_sg_iv;
6071 + if (!encrypt) {
6072 + scatterwalk_map_and_copy(req_ctx->hmac_virt,
6073 + req->src, cryptlen, authsize, 0);
6074 + }
6075 + req_ctx->encrypt = encrypt;
6076 + } else {
6077 + req_ctx->hmac_virt = NULL;
6078 + }
6079 + /* Crypt */
6080 + nents = count_sg(req->src, cryptlen + authsize);
6081 + req_ctx->src_nents = nents;
6082 + dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL);
6083 + buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags);
6084 + if (!buf)
6085 + goto unmap_sg_src;
6086 + if (!req_ctx->hmac_virt) {
6087 + crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
6088 + }
6089 + crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
6090 + qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
6091 + BUG_ON(qmgr_stat_overflow(SEND_QID));
6092 + return -EINPROGRESS;
6093 +unmap_sg_src:
6094 + dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL);
6095 + if (req_ctx->hmac_virt) {
6096 + dma_pool_free(buffer_pool, req_ctx->hmac_virt,
6097 + crypt->icv_rev_aes);
6098 + }
6099 +unmap_sg_iv:
6100 + dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
6101 +unmap_sg_assoc:
6102 + dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE);
6103 + free_buf_chain(req_ctx->buffer, crypt->src_buf);
6104 +out:
6105 + crypt->ctl_flags = CTL_FLAG_UNUSED;
6106 + return ret;
6107 +}
6108 +
6109 +static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
6110 +{
6111 + struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
6112 + u32 *flags = &tfm->base.crt_flags;
6113 + unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
6114 + int ret;
6115 +
6116 + if (!ctx->enckey_len && !ctx->authkey_len)
6117 + return 0;
6118 + init_completion(&ctx->completion);
6119 + atomic_inc(&ctx->configuring);
6120 +
6121 + reset_sa_dir(&ctx->encrypt);
6122 + reset_sa_dir(&ctx->decrypt);
6123 +
6124 + ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
6125 + if (ret)
6126 + goto out;
6127 + ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
6128 + if (ret)
6129 + goto out;
6130 + ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
6131 + ctx->authkey_len, digest_len);
6132 + if (ret)
6133 + goto out;
6134 + ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
6135 + ctx->authkey_len, digest_len);
6136 + if (ret)
6137 + goto out;
6138 +
6139 + if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
6140 + if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
6141 + ret = -EINVAL;
6142 + goto out;
6143 + } else {
6144 + *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
6145 + }
6146 + }
6147 +out:
6148 + if (!atomic_dec_and_test(&ctx->configuring))
6149 + wait_for_completion(&ctx->completion);
6150 + return ret;
6151 +}
6152 +
6153 +static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
6154 +{
6155 + int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
6156 +
6157 + if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
6158 + return -EINVAL;
6159 + return aead_setup(tfm, authsize);
6160 +}
6161 +
6162 +static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
6163 + unsigned int keylen)
6164 +{
6165 + struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
6166 + struct rtattr *rta = (struct rtattr *)key;
6167 + struct crypto_authenc_key_param *param;
6168 +
6169 + if (!RTA_OK(rta, keylen))
6170 + goto badkey;
6171 + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
6172 + goto badkey;
6173 + if (RTA_PAYLOAD(rta) < sizeof(*param))
6174 + goto badkey;
6175 +
6176 + param = RTA_DATA(rta);
6177 + ctx->enckey_len = be32_to_cpu(param->enckeylen);
6178 +
6179 + key += RTA_ALIGN(rta->rta_len);
6180 + keylen -= RTA_ALIGN(rta->rta_len);
6181 +
6182 + if (keylen < ctx->enckey_len)
6183 + goto badkey;
6184 +
6185 + ctx->authkey_len = keylen - ctx->enckey_len;
6186 + memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
6187 + memcpy(ctx->authkey, key, ctx->authkey_len);
6188 +
6189 + return aead_setup(tfm, crypto_aead_authsize(tfm));
6190 +badkey:
6191 + ctx->enckey_len = 0;
6192 + crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
6193 + return -EINVAL;
6194 +}
6195 +
6196 +static int aead_encrypt(struct aead_request *req)
6197 +{
6198 + unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
6199 + return aead_perform(req, 1, req->assoclen + ivsize,
6200 + req->cryptlen, req->iv);
6201 +}
6202 +
6203 +static int aead_decrypt(struct aead_request *req)
6204 +{
6205 + unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
6206 + return aead_perform(req, 0, req->assoclen + ivsize,
6207 + req->cryptlen, req->iv);
6208 +}
6209 +
6210 +static int aead_givencrypt(struct aead_givcrypt_request *req)
6211 +{
6212 + struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
6213 + struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
6214 + unsigned len, ivsize = crypto_aead_ivsize(tfm);
6215 + __be64 seq;
6216 +
6217 + /* copied from eseqiv.c */
6218 + if (!ctx->salted) {
6219 + get_random_bytes(ctx->salt, ivsize);
6220 + ctx->salted = 1;
6221 + }
6222 + memcpy(req->areq.iv, ctx->salt, ivsize);
6223 + len = ivsize;
6224 + if (ivsize > sizeof(u64)) {
6225 + memset(req->giv, 0, ivsize - sizeof(u64));
6226 + len = sizeof(u64);
6227 + }
6228 + seq = cpu_to_be64(req->seq);
6229 + memcpy(req->giv + ivsize - len, &seq, len);
6230 + return aead_perform(&req->areq, 1, req->areq.assoclen,
6231 + req->areq.cryptlen +ivsize, req->giv);
6232 +}
6233 +
6234 +static struct ixp_alg ixp4xx_algos[] = {
6235 +{
6236 + .crypto = {
6237 + .cra_name = "cbc(des)",
6238 + .cra_blocksize = DES_BLOCK_SIZE,
6239 + .cra_u = { .ablkcipher = {
6240 + .min_keysize = DES_KEY_SIZE,
6241 + .max_keysize = DES_KEY_SIZE,
6242 + .ivsize = DES_BLOCK_SIZE,
6243 + .geniv = "eseqiv",
6244 + }
6245 + }
6246 + },
6247 + .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
6248 + .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
6249 +
6250 +}, {
6251 + .crypto = {
6252 + .cra_name = "ecb(des)",
6253 + .cra_blocksize = DES_BLOCK_SIZE,
6254 + .cra_u = { .ablkcipher = {
6255 + .min_keysize = DES_KEY_SIZE,
6256 + .max_keysize = DES_KEY_SIZE,
6257 + }
6258 + }
6259 + },
6260 + .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
6261 + .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
6262 +}, {
6263 + .crypto = {
6264 + .cra_name = "cbc(des3_ede)",
6265 + .cra_blocksize = DES3_EDE_BLOCK_SIZE,
6266 + .cra_u = { .ablkcipher = {
6267 + .min_keysize = DES3_EDE_KEY_SIZE,
6268 + .max_keysize = DES3_EDE_KEY_SIZE,
6269 + .ivsize = DES3_EDE_BLOCK_SIZE,
6270 + .geniv = "eseqiv",
6271 + }
6272 + }
6273 + },
6274 + .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
6275 + .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
6276 +}, {
6277 + .crypto = {
6278 + .cra_name = "ecb(des3_ede)",
6279 + .cra_blocksize = DES3_EDE_BLOCK_SIZE,
6280 + .cra_u = { .ablkcipher = {
6281 + .min_keysize = DES3_EDE_KEY_SIZE,
6282 + .max_keysize = DES3_EDE_KEY_SIZE,
6283 + }
6284 + }
6285 + },
6286 + .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
6287 + .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
6288 +}, {
6289 + .crypto = {
6290 + .cra_name = "cbc(aes)",
6291 + .cra_blocksize = AES_BLOCK_SIZE,
6292 + .cra_u = { .ablkcipher = {
6293 + .min_keysize = AES_MIN_KEY_SIZE,
6294 + .max_keysize = AES_MAX_KEY_SIZE,
6295 + .ivsize = AES_BLOCK_SIZE,
6296 + .geniv = "eseqiv",
6297 + }
6298 + }
6299 + },
6300 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
6301 + .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
6302 +}, {
6303 + .crypto = {
6304 + .cra_name = "ecb(aes)",
6305 + .cra_blocksize = AES_BLOCK_SIZE,
6306 + .cra_u = { .ablkcipher = {
6307 + .min_keysize = AES_MIN_KEY_SIZE,
6308 + .max_keysize = AES_MAX_KEY_SIZE,
6309 + }
6310 + }
6311 + },
6312 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
6313 + .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
6314 +}, {
6315 + .crypto = {
6316 + .cra_name = "ctr(aes)",
6317 + .cra_blocksize = AES_BLOCK_SIZE,
6318 + .cra_u = { .ablkcipher = {
6319 + .min_keysize = AES_MIN_KEY_SIZE,
6320 + .max_keysize = AES_MAX_KEY_SIZE,
6321 + .ivsize = AES_BLOCK_SIZE,
6322 + .geniv = "eseqiv",
6323 + }
6324 + }
6325 + },
6326 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
6327 + .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
6328 +}, {
6329 + .crypto = {
6330 + .cra_name = "rfc3686(ctr(aes))",
6331 + .cra_blocksize = AES_BLOCK_SIZE,
6332 + .cra_u = { .ablkcipher = {
6333 + .min_keysize = AES_MIN_KEY_SIZE,
6334 + .max_keysize = AES_MAX_KEY_SIZE,
6335 + .ivsize = AES_BLOCK_SIZE,
6336 + .geniv = "eseqiv",
6337 + .setkey = ablk_rfc3686_setkey,
6338 + .encrypt = ablk_rfc3686_crypt,
6339 + .decrypt = ablk_rfc3686_crypt }
6340 + }
6341 + },
6342 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
6343 + .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
6344 +}, {
6345 + .crypto = {
6346 + .cra_name = "authenc(hmac(md5),cbc(des))",
6347 + .cra_blocksize = DES_BLOCK_SIZE,
6348 + .cra_u = { .aead = {
6349 + .ivsize = DES_BLOCK_SIZE,
6350 + .maxauthsize = MD5_DIGEST_SIZE,
6351 + }
6352 + }
6353 + },
6354 + .hash = &hash_alg_md5,
6355 + .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
6356 + .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
6357 +}, {
6358 + .crypto = {
6359 + .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
6360 + .cra_blocksize = DES3_EDE_BLOCK_SIZE,
6361 + .cra_u = { .aead = {
6362 + .ivsize = DES3_EDE_BLOCK_SIZE,
6363 + .maxauthsize = MD5_DIGEST_SIZE,
6364 + }
6365 + }
6366 + },
6367 + .hash = &hash_alg_md5,
6368 + .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
6369 + .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
6370 +}, {
6371 + .crypto = {
6372 + .cra_name = "authenc(hmac(sha1),cbc(des))",
6373 + .cra_blocksize = DES_BLOCK_SIZE,
6374 + .cra_u = { .aead = {
6375 + .ivsize = DES_BLOCK_SIZE,
6376 + .maxauthsize = SHA1_DIGEST_SIZE,
6377 + }
6378 + }
6379 + },
6380 + .hash = &hash_alg_sha1,
6381 + .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
6382 + .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
6383 +}, {
6384 + .crypto = {
6385 + .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
6386 + .cra_blocksize = DES3_EDE_BLOCK_SIZE,
6387 + .cra_u = { .aead = {
6388 + .ivsize = DES3_EDE_BLOCK_SIZE,
6389 + .maxauthsize = SHA1_DIGEST_SIZE,
6390 + }
6391 + }
6392 + },
6393 + .hash = &hash_alg_sha1,
6394 + .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
6395 + .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
6396 +}, {
6397 + .crypto = {
6398 + .cra_name = "authenc(hmac(md5),cbc(aes))",
6399 + .cra_blocksize = AES_BLOCK_SIZE,
6400 + .cra_u = { .aead = {
6401 + .ivsize = AES_BLOCK_SIZE,
6402 + .maxauthsize = MD5_DIGEST_SIZE,
6403 + }
6404 + }
6405 + },
6406 + .hash = &hash_alg_md5,
6407 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
6408 + .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
6409 +}, {
6410 + .crypto = {
6411 + .cra_name = "authenc(hmac(sha1),cbc(aes))",
6412 + .cra_blocksize = AES_BLOCK_SIZE,
6413 + .cra_u = { .aead = {
6414 + .ivsize = AES_BLOCK_SIZE,
6415 + .maxauthsize = SHA1_DIGEST_SIZE,
6416 + }
6417 + }
6418 + },
6419 + .hash = &hash_alg_sha1,
6420 + .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
6421 + .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
6422 +} };
6423 +
6424 +#define IXP_POSTFIX "-ixp4xx"
6425 +static int __init ixp_module_init(void)
6426 +{
6427 + int num = ARRAY_SIZE(ixp4xx_algos);
6428 + int i,err ;
6429 +
6430 + if (platform_device_register(&pseudo_dev))
6431 + return -ENODEV;
6432 +
6433 + spin_lock_init(&desc_lock);
6434 + spin_lock_init(&emerg_lock);
6435 +
6436 + err = init_ixp_crypto();
6437 + if (err) {
6438 + platform_device_unregister(&pseudo_dev);
6439 + return err;
6440 + }
6441 + for (i=0; i< num; i++) {
6442 + struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
6443 +
6444 + if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
6445 + "%s"IXP_POSTFIX, cra->cra_name) >=
6446 + CRYPTO_MAX_ALG_NAME)
6447 + {
6448 + continue;
6449 + }
6450 + if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
6451 + continue;
6452 + }
6453 + if (!ixp4xx_algos[i].hash) {
6454 + /* block ciphers */
6455 + cra->cra_type = &crypto_ablkcipher_type;
6456 + cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
6457 + CRYPTO_ALG_ASYNC;
6458 + if (!cra->cra_ablkcipher.setkey)
6459 + cra->cra_ablkcipher.setkey = ablk_setkey;
6460 + if (!cra->cra_ablkcipher.encrypt)
6461 + cra->cra_ablkcipher.encrypt = ablk_encrypt;
6462 + if (!cra->cra_ablkcipher.decrypt)
6463 + cra->cra_ablkcipher.decrypt = ablk_decrypt;
6464 + cra->cra_init = init_tfm_ablk;
6465 + } else {
6466 + /* authenc */
6467 + cra->cra_type = &crypto_aead_type;
6468 + cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
6469 + CRYPTO_ALG_ASYNC;
6470 + cra->cra_aead.setkey = aead_setkey;
6471 + cra->cra_aead.setauthsize = aead_setauthsize;
6472 + cra->cra_aead.encrypt = aead_encrypt;
6473 + cra->cra_aead.decrypt = aead_decrypt;
6474 + cra->cra_aead.givencrypt = aead_givencrypt;
6475 + cra->cra_init = init_tfm_aead;
6476 + }
6477 + cra->cra_ctxsize = sizeof(struct ixp_ctx);
6478 + cra->cra_module = THIS_MODULE;
6479 + cra->cra_alignmask = 3;
6480 + cra->cra_priority = 300;
6481 + cra->cra_exit = exit_tfm;
6482 + if (crypto_register_alg(cra))
6483 + printk(KERN_ERR "Failed to register '%s'\n",
6484 + cra->cra_name);
6485 + else
6486 + ixp4xx_algos[i].registered = 1;
6487 + }
6488 + return 0;
6489 +}
6490 +
6491 +static void __exit ixp_module_exit(void)
6492 +{
6493 + int num = ARRAY_SIZE(ixp4xx_algos);
6494 + int i;
6495 +
6496 + for (i=0; i< num; i++) {
6497 + if (ixp4xx_algos[i].registered)
6498 + crypto_unregister_alg(&ixp4xx_algos[i].crypto);
6499 + }
6500 + release_ixp_crypto();
6501 + platform_device_unregister(&pseudo_dev);
6502 +}
6503 +
6504 +module_init(ixp_module_init);
6505 +module_exit(ixp_module_exit);
6506 +
6507 +MODULE_LICENSE("GPL");
6508 +MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
6509 +MODULE_DESCRIPTION("IXP4xx hardware crypto");
6510 +
6511 --- a/drivers/crypto/padlock-aes.c
6512 +++ b/drivers/crypto/padlock-aes.c
6513 @@ -411,12 +411,12 @@ static int __init padlock_init(void)
6514 int ret;
6515
6516 if (!cpu_has_xcrypt) {
6517 - printk(KERN_ERR PFX "VIA PadLock not detected.\n");
6518 + printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
6519 return -ENODEV;
6520 }
6521
6522 if (!cpu_has_xcrypt_enabled) {
6523 - printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
6524 + printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
6525 return -ENODEV;
6526 }
6527
6528 --- a/drivers/crypto/padlock-sha.c
6529 +++ b/drivers/crypto/padlock-sha.c
6530 @@ -263,12 +263,12 @@ static int __init padlock_init(void)
6531 int rc = -ENODEV;
6532
6533 if (!cpu_has_phe) {
6534 - printk(KERN_ERR PFX "VIA PadLock Hash Engine not detected.\n");
6535 + printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n");
6536 return -ENODEV;
6537 }
6538
6539 if (!cpu_has_phe_enabled) {
6540 - printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
6541 + printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
6542 return -ENODEV;
6543 }
6544
6545 --- /dev/null
6546 +++ b/drivers/crypto/talitos.c
6547 @@ -0,0 +1,1597 @@
6548 +/*
6549 + * talitos - Freescale Integrated Security Engine (SEC) device driver
6550 + *
6551 + * Copyright (c) 2008 Freescale Semiconductor, Inc.
6552 + *
6553 + * Scatterlist Crypto API glue code copied from files with the following:
6554 + * Copyright (c) 2006-2007 Herbert Xu <herbert@gondor.apana.org.au>
6555 + *
6556 + * Crypto algorithm registration code copied from hifn driver:
6557 + * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
6558 + * All rights reserved.
6559 + *
6560 + * This program is free software; you can redistribute it and/or modify
6561 + * it under the terms of the GNU General Public License as published by
6562 + * the Free Software Foundation; either version 2 of the License, or
6563 + * (at your option) any later version.
6564 + *
6565 + * This program is distributed in the hope that it will be useful,
6566 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
6567 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
6568 + * GNU General Public License for more details.
6569 + *
6570 + * You should have received a copy of the GNU General Public License
6571 + * along with this program; if not, write to the Free Software
6572 + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
6573 + */
6574 +
6575 +#include <linux/kernel.h>
6576 +#include <linux/module.h>
6577 +#include <linux/mod_devicetable.h>
6578 +#include <linux/device.h>
6579 +#include <linux/interrupt.h>
6580 +#include <linux/crypto.h>
6581 +#include <linux/hw_random.h>
6582 +#include <linux/of_platform.h>
6583 +#include <linux/dma-mapping.h>
6584 +#include <linux/io.h>
6585 +#include <linux/spinlock.h>
6586 +#include <linux/rtnetlink.h>
6587 +
6588 +#include <crypto/algapi.h>
6589 +#include <crypto/aes.h>
6590 +#include <crypto/des.h>
6591 +#include <crypto/sha.h>
6592 +#include <crypto/aead.h>
6593 +#include <crypto/authenc.h>
6594 +
6595 +#include "talitos.h"
6596 +
6597 +#define TALITOS_TIMEOUT 100000
6598 +#define TALITOS_MAX_DATA_LEN 65535
6599 +
6600 +#define DESC_TYPE(desc_hdr) ((be32_to_cpu(desc_hdr) >> 3) & 0x1f)
6601 +#define PRIMARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 28) & 0xf)
6602 +#define SECONDARY_EU(desc_hdr) ((be32_to_cpu(desc_hdr) >> 16) & 0xf)
6603 +
6604 +/* descriptor pointer entry */
6605 +struct talitos_ptr {
6606 + __be16 len; /* length */
6607 + u8 j_extent; /* jump to sg link table and/or extent */
6608 + u8 eptr; /* extended address */
6609 + __be32 ptr; /* address */
6610 +};
6611 +
6612 +/* descriptor */
6613 +struct talitos_desc {
6614 + __be32 hdr; /* header high bits */
6615 + __be32 hdr_lo; /* header low bits */
6616 + struct talitos_ptr ptr[7]; /* ptr/len pair array */
6617 +};
6618 +
6619 +/**
6620 + * talitos_request - descriptor submission request
6621 + * @desc: descriptor pointer (kernel virtual)
6622 + * @dma_desc: descriptor's physical bus address
6623 + * @callback: whom to call when descriptor processing is done
6624 + * @context: caller context (optional)
6625 + */
6626 +struct talitos_request {
6627 + struct talitos_desc *desc;
6628 + dma_addr_t dma_desc;
6629 + void (*callback) (struct device *dev, struct talitos_desc *desc,
6630 + void *context, int error);
6631 + void *context;
6632 +};
6633 +
6634 +struct talitos_private {
6635 + struct device *dev;
6636 + struct of_device *ofdev;
6637 + void __iomem *reg;
6638 + int irq;
6639 +
6640 + /* SEC version geometry (from device tree node) */
6641 + unsigned int num_channels;
6642 + unsigned int chfifo_len;
6643 + unsigned int exec_units;
6644 + unsigned int desc_types;
6645 +
6646 + /* next channel to be assigned next incoming descriptor */
6647 + atomic_t last_chan;
6648 +
6649 + /* per-channel request fifo */
6650 + struct talitos_request **fifo;
6651 +
6652 + /*
6653 + * length of the request fifo
6654 + * fifo_len is chfifo_len rounded up to next power of 2
6655 + * so we can use bitwise ops to wrap
6656 + */
6657 + unsigned int fifo_len;
6658 +
6659 + /* per-channel index to next free descriptor request */
6660 + int *head;
6661 +
6662 + /* per-channel index to next in-progress/done descriptor request */
6663 + int *tail;
6664 +
6665 + /* per-channel request submission (head) and release (tail) locks */
6666 + spinlock_t *head_lock;
6667 + spinlock_t *tail_lock;
6668 +
6669 + /* request callback tasklet */
6670 + struct tasklet_struct done_task;
6671 + struct tasklet_struct error_task;
6672 +
6673 + /* list of registered algorithms */
6674 + struct list_head alg_list;
6675 +
6676 + /* hwrng device */
6677 + struct hwrng rng;
6678 +};
6679 +
6680 +/*
6681 + * map virtual single (contiguous) pointer to h/w descriptor pointer
6682 + */
6683 +static void map_single_talitos_ptr(struct device *dev,
6684 + struct talitos_ptr *talitos_ptr,
6685 + unsigned short len, void *data,
6686 + unsigned char extent,
6687 + enum dma_data_direction dir)
6688 +{
6689 + talitos_ptr->len = cpu_to_be16(len);
6690 + talitos_ptr->ptr = cpu_to_be32(dma_map_single(dev, data, len, dir));
6691 + talitos_ptr->j_extent = extent;
6692 +}
6693 +
6694 +/*
6695 + * unmap bus single (contiguous) h/w descriptor pointer
6696 + */
6697 +static void unmap_single_talitos_ptr(struct device *dev,
6698 + struct talitos_ptr *talitos_ptr,
6699 + enum dma_data_direction dir)
6700 +{
6701 + dma_unmap_single(dev, be32_to_cpu(talitos_ptr->ptr),
6702 + be16_to_cpu(talitos_ptr->len), dir);
6703 +}
6704 +
6705 +static int reset_channel(struct device *dev, int ch)
6706 +{
6707 + struct talitos_private *priv = dev_get_drvdata(dev);
6708 + unsigned int timeout = TALITOS_TIMEOUT;
6709 +
6710 + setbits32(priv->reg + TALITOS_CCCR(ch), TALITOS_CCCR_RESET);
6711 +
6712 + while ((in_be32(priv->reg + TALITOS_CCCR(ch)) & TALITOS_CCCR_RESET)
6713 + && --timeout)
6714 + cpu_relax();
6715 +
6716 + if (timeout == 0) {
6717 + dev_err(dev, "failed to reset channel %d\n", ch);
6718 + return -EIO;
6719 + }
6720 +
6721 + /* set done writeback and IRQ */
6722 + setbits32(priv->reg + TALITOS_CCCR_LO(ch), TALITOS_CCCR_LO_CDWE |
6723 + TALITOS_CCCR_LO_CDIE);
6724 +
6725 + return 0;
6726 +}
6727 +
6728 +static int reset_device(struct device *dev)
6729 +{
6730 + struct talitos_private *priv = dev_get_drvdata(dev);
6731 + unsigned int timeout = TALITOS_TIMEOUT;
6732 +
6733 + setbits32(priv->reg + TALITOS_MCR, TALITOS_MCR_SWR);
6734 +
6735 + while ((in_be32(priv->reg + TALITOS_MCR) & TALITOS_MCR_SWR)
6736 + && --timeout)
6737 + cpu_relax();
6738 +
6739 + if (timeout == 0) {
6740 + dev_err(dev, "failed to reset device\n");
6741 + return -EIO;
6742 + }
6743 +
6744 + return 0;
6745 +}
6746 +
6747 +/*
6748 + * Reset and initialize the device
6749 + */
6750 +static int init_device(struct device *dev)
6751 +{
6752 + struct talitos_private *priv = dev_get_drvdata(dev);
6753 + int ch, err;
6754 +
6755 + /*
6756 + * Master reset
6757 + * errata documentation: warning: certain SEC interrupts
6758 + * are not fully cleared by writing the MCR:SWR bit,
6759 + * set bit twice to completely reset
6760 + */
6761 + err = reset_device(dev);
6762 + if (err)
6763 + return err;
6764 +
6765 + err = reset_device(dev);
6766 + if (err)
6767 + return err;
6768 +
6769 + /* reset channels */
6770 + for (ch = 0; ch < priv->num_channels; ch++) {
6771 + err = reset_channel(dev, ch);
6772 + if (err)
6773 + return err;
6774 + }
6775 +
6776 + /* enable channel done and error interrupts */
6777 + setbits32(priv->reg + TALITOS_IMR, TALITOS_IMR_INIT);
6778 + setbits32(priv->reg + TALITOS_IMR_LO, TALITOS_IMR_LO_INIT);
6779 +
6780 + return 0;
6781 +}
6782 +
6783 +/**
6784 + * talitos_submit - submits a descriptor to the device for processing
6785 + * @dev: the SEC device to be used
6786 + * @desc: the descriptor to be processed by the device
6787 + * @callback: whom to call when processing is complete
6788 + * @context: a handle for use by caller (optional)
6789 + *
6790 + * desc must contain valid dma-mapped (bus physical) address pointers.
6791 + * callback must check err and feedback in descriptor header
6792 + * for device processing status.
6793 + */
6794 +static int talitos_submit(struct device *dev, struct talitos_desc *desc,
6795 + void (*callback)(struct device *dev,
6796 + struct talitos_desc *desc,
6797 + void *context, int error),
6798 + void *context)
6799 +{
6800 + struct talitos_private *priv = dev_get_drvdata(dev);
6801 + struct talitos_request *request;
6802 + unsigned long flags, ch;
6803 + int head;
6804 +
6805 + /* select done notification */
6806 + desc->hdr |= DESC_HDR_DONE_NOTIFY;
6807 +
6808 + /* emulate SEC's round-robin channel fifo polling scheme */
6809 + ch = atomic_inc_return(&priv->last_chan) & (priv->num_channels - 1);
6810 +
6811 + spin_lock_irqsave(&priv->head_lock[ch], flags);
6812 +
6813 + head = priv->head[ch];
6814 + request = &priv->fifo[ch][head];
6815 +
6816 + if (request->desc) {
6817 + /* request queue is full */
6818 + spin_unlock_irqrestore(&priv->head_lock[ch], flags);
6819 + return -EAGAIN;
6820 + }
6821 +
6822 + /* map descriptor and save caller data */
6823 + request->dma_desc = dma_map_single(dev, desc, sizeof(*desc),
6824 + DMA_BIDIRECTIONAL);
6825 + request->callback = callback;
6826 + request->context = context;
6827 +
6828 + /* increment fifo head */
6829 + priv->head[ch] = (priv->head[ch] + 1) & (priv->fifo_len - 1);
6830 +
6831 + smp_wmb();
6832 + request->desc = desc;
6833 +
6834 + /* GO! */
6835 + wmb();
6836 + out_be32(priv->reg + TALITOS_FF_LO(ch), request->dma_desc);
6837 +
6838 + spin_unlock_irqrestore(&priv->head_lock[ch], flags);
6839 +
6840 + return -EINPROGRESS;
6841 +}
6842 +
6843 +/*
6844 + * process what was done, notify callback of error if not
6845 + */
6846 +static void flush_channel(struct device *dev, int ch, int error, int reset_ch)
6847 +{
6848 + struct talitos_private *priv = dev_get_drvdata(dev);
6849 + struct talitos_request *request, saved_req;
6850 + unsigned long flags;
6851 + int tail, status;
6852 +
6853 + spin_lock_irqsave(&priv->tail_lock[ch], flags);
6854 +
6855 + tail = priv->tail[ch];
6856 + while (priv->fifo[ch][tail].desc) {
6857 + request = &priv->fifo[ch][tail];
6858 +
6859 + /* descriptors with their done bits set don't get the error */
6860 + rmb();
6861 + if ((request->desc->hdr & DESC_HDR_DONE) == DESC_HDR_DONE)
6862 + status = 0;
6863 + else
6864 + if (!error)
6865 + break;
6866 + else
6867 + status = error;
6868 +
6869 + dma_unmap_single(dev, request->dma_desc,
6870 + sizeof(struct talitos_desc), DMA_BIDIRECTIONAL);
6871 +
6872 + /* copy entries so we can call callback outside lock */
6873 + saved_req.desc = request->desc;
6874 + saved_req.callback = request->callback;
6875 + saved_req.context = request->context;
6876 +
6877 + /* release request entry in fifo */
6878 + smp_wmb();
6879 + request->desc = NULL;
6880 +
6881 + /* increment fifo tail */
6882 + priv->tail[ch] = (tail + 1) & (priv->fifo_len - 1);
6883 +
6884 + spin_unlock_irqrestore(&priv->tail_lock[ch], flags);
6885 + saved_req.callback(dev, saved_req.desc, saved_req.context,
6886 + status);
6887 + /* channel may resume processing in single desc error case */
6888 + if (error && !reset_ch && status == error)
6889 + return;
6890 + spin_lock_irqsave(&priv->tail_lock[ch], flags);
6891 + tail = priv->tail[ch];
6892 + }
6893 +
6894 + spin_unlock_irqrestore(&priv->tail_lock[ch], flags);
6895 +}
6896 +
6897 +/*
6898 + * process completed requests for channels that have done status
6899 + */
6900 +static void talitos_done(unsigned long data)
6901 +{
6902 + struct device *dev = (struct device *)data;
6903 + struct talitos_private *priv = dev_get_drvdata(dev);
6904 + int ch;
6905 +
6906 + for (ch = 0; ch < priv->num_channels; ch++)
6907 + flush_channel(dev, ch, 0, 0);
6908 +}
6909 +
6910 +/*
6911 + * locate current (offending) descriptor
6912 + */
6913 +static struct talitos_desc *current_desc(struct device *dev, int ch)
6914 +{
6915 + struct talitos_private *priv = dev_get_drvdata(dev);
6916 + int tail = priv->tail[ch];
6917 + dma_addr_t cur_desc;
6918 +
6919 + cur_desc = in_be32(priv->reg + TALITOS_CDPR_LO(ch));
6920 +
6921 + while (priv->fifo[ch][tail].dma_desc != cur_desc) {
6922 + tail = (tail + 1) & (priv->fifo_len - 1);
6923 + if (tail == priv->tail[ch]) {
6924 + dev_err(dev, "couldn't locate current descriptor\n");
6925 + return NULL;
6926 + }
6927 + }
6928 +
6929 + return priv->fifo[ch][tail].desc;
6930 +}
6931 +
6932 +/*
6933 + * user diagnostics; report root cause of error based on execution unit status
6934 + */
6935 +static void report_eu_error(struct device *dev, int ch, struct talitos_desc *desc)
6936 +{
6937 + struct talitos_private *priv = dev_get_drvdata(dev);
6938 + int i;
6939 +
6940 + switch (desc->hdr & DESC_HDR_SEL0_MASK) {
6941 + case DESC_HDR_SEL0_AFEU:
6942 + dev_err(dev, "AFEUISR 0x%08x_%08x\n",
6943 + in_be32(priv->reg + TALITOS_AFEUISR),
6944 + in_be32(priv->reg + TALITOS_AFEUISR_LO));
6945 + break;
6946 + case DESC_HDR_SEL0_DEU:
6947 + dev_err(dev, "DEUISR 0x%08x_%08x\n",
6948 + in_be32(priv->reg + TALITOS_DEUISR),
6949 + in_be32(priv->reg + TALITOS_DEUISR_LO));
6950 + break;
6951 + case DESC_HDR_SEL0_MDEUA:
6952 + case DESC_HDR_SEL0_MDEUB:
6953 + dev_err(dev, "MDEUISR 0x%08x_%08x\n",
6954 + in_be32(priv->reg + TALITOS_MDEUISR),
6955 + in_be32(priv->reg + TALITOS_MDEUISR_LO));
6956 + break;
6957 + case DESC_HDR_SEL0_RNG:
6958 + dev_err(dev, "RNGUISR 0x%08x_%08x\n",
6959 + in_be32(priv->reg + TALITOS_RNGUISR),
6960 + in_be32(priv->reg + TALITOS_RNGUISR_LO));
6961 + break;
6962 + case DESC_HDR_SEL0_PKEU:
6963 + dev_err(dev, "PKEUISR 0x%08x_%08x\n",
6964 + in_be32(priv->reg + TALITOS_PKEUISR),
6965 + in_be32(priv->reg + TALITOS_PKEUISR_LO));
6966 + break;
6967 + case DESC_HDR_SEL0_AESU:
6968 + dev_err(dev, "AESUISR 0x%08x_%08x\n",
6969 + in_be32(priv->reg + TALITOS_AESUISR),
6970 + in_be32(priv->reg + TALITOS_AESUISR_LO));
6971 + break;
6972 + case DESC_HDR_SEL0_CRCU:
6973 + dev_err(dev, "CRCUISR 0x%08x_%08x\n",
6974 + in_be32(priv->reg + TALITOS_CRCUISR),
6975 + in_be32(priv->reg + TALITOS_CRCUISR_LO));
6976 + break;
6977 + case DESC_HDR_SEL0_KEU:
6978 + dev_err(dev, "KEUISR 0x%08x_%08x\n",
6979 + in_be32(priv->reg + TALITOS_KEUISR),
6980 + in_be32(priv->reg + TALITOS_KEUISR_LO));
6981 + break;
6982 + }
6983 +
6984 + switch (desc->hdr & DESC_HDR_SEL1_MASK) {
6985 + case DESC_HDR_SEL1_MDEUA:
6986 + case DESC_HDR_SEL1_MDEUB:
6987 + dev_err(dev, "MDEUISR 0x%08x_%08x\n",
6988 + in_be32(priv->reg + TALITOS_MDEUISR),
6989 + in_be32(priv->reg + TALITOS_MDEUISR_LO));
6990 + break;
6991 + case DESC_HDR_SEL1_CRCU:
6992 + dev_err(dev, "CRCUISR 0x%08x_%08x\n",
6993 + in_be32(priv->reg + TALITOS_CRCUISR),
6994 + in_be32(priv->reg + TALITOS_CRCUISR_LO));
6995 + break;
6996 + }
6997 +
6998 + for (i = 0; i < 8; i++)
6999 + dev_err(dev, "DESCBUF 0x%08x_%08x\n",
7000 + in_be32(priv->reg + TALITOS_DESCBUF(ch) + 8*i),
7001 + in_be32(priv->reg + TALITOS_DESCBUF_LO(ch) + 8*i));
7002 +}
7003 +
7004 +/*
7005 + * recover from error interrupts
7006 + */
7007 +static void talitos_error(unsigned long data)
7008 +{
7009 + struct device *dev = (struct device *)data;
7010 + struct talitos_private *priv = dev_get_drvdata(dev);
7011 + unsigned int timeout = TALITOS_TIMEOUT;
7012 + int ch, error, reset_dev = 0, reset_ch = 0;
7013 + u32 isr, isr_lo, v, v_lo;
7014 +
7015 + isr = in_be32(priv->reg + TALITOS_ISR);
7016 + isr_lo = in_be32(priv->reg + TALITOS_ISR_LO);
7017 +
7018 + for (ch = 0; ch < priv->num_channels; ch++) {
7019 + /* skip channels without errors */
7020 + if (!(isr & (1 << (ch * 2 + 1))))
7021 + continue;
7022 +
7023 + error = -EINVAL;
7024 +
7025 + v = in_be32(priv->reg + TALITOS_CCPSR(ch));
7026 + v_lo = in_be32(priv->reg + TALITOS_CCPSR_LO(ch));
7027 +
7028 + if (v_lo & TALITOS_CCPSR_LO_DOF) {
7029 + dev_err(dev, "double fetch fifo overflow error\n");
7030 + error = -EAGAIN;
7031 + reset_ch = 1;
7032 + }
7033 + if (v_lo & TALITOS_CCPSR_LO_SOF) {
7034 + /* h/w dropped descriptor */
7035 + dev_err(dev, "single fetch fifo overflow error\n");
7036 + error = -EAGAIN;
7037 + }
7038 + if (v_lo & TALITOS_CCPSR_LO_MDTE)
7039 + dev_err(dev, "master data transfer error\n");
7040 + if (v_lo & TALITOS_CCPSR_LO_SGDLZ)
7041 + dev_err(dev, "s/g data length zero error\n");
7042 + if (v_lo & TALITOS_CCPSR_LO_FPZ)
7043 + dev_err(dev, "fetch pointer zero error\n");
7044 + if (v_lo & TALITOS_CCPSR_LO_IDH)
7045 + dev_err(dev, "illegal descriptor header error\n");
7046 + if (v_lo & TALITOS_CCPSR_LO_IEU)
7047 + dev_err(dev, "invalid execution unit error\n");
7048 + if (v_lo & TALITOS_CCPSR_LO_EU)
7049 + report_eu_error(dev, ch, current_desc(dev, ch));
7050 + if (v_lo & TALITOS_CCPSR_LO_GB)
7051 + dev_err(dev, "gather boundary error\n");
7052 + if (v_lo & TALITOS_CCPSR_LO_GRL)
7053 + dev_err(dev, "gather return/length error\n");
7054 + if (v_lo & TALITOS_CCPSR_LO_SB)
7055 + dev_err(dev, "scatter boundary error\n");
7056 + if (v_lo & TALITOS_CCPSR_LO_SRL)
7057 + dev_err(dev, "scatter return/length error\n");
7058 +
7059 + flush_channel(dev, ch, error, reset_ch);
7060 +
7061 + if (reset_ch) {
7062 + reset_channel(dev, ch);
7063 + } else {
7064 + setbits32(priv->reg + TALITOS_CCCR(ch),
7065 + TALITOS_CCCR_CONT);
7066 + setbits32(priv->reg + TALITOS_CCCR_LO(ch), 0);
7067 + while ((in_be32(priv->reg + TALITOS_CCCR(ch)) &
7068 + TALITOS_CCCR_CONT) && --timeout)
7069 + cpu_relax();
7070 + if (timeout == 0) {
7071 + dev_err(dev, "failed to restart channel %d\n",
7072 + ch);
7073 + reset_dev = 1;
7074 + }
7075 + }
7076 + }
7077 + if (reset_dev || isr & ~TALITOS_ISR_CHERR || isr_lo) {
7078 + dev_err(dev, "done overflow, internal time out, or rngu error: "
7079 + "ISR 0x%08x_%08x\n", isr, isr_lo);
7080 +
7081 + /* purge request queues */
7082 + for (ch = 0; ch < priv->num_channels; ch++)
7083 + flush_channel(dev, ch, -EIO, 1);
7084 +
7085 + /* reset and reinitialize the device */
7086 + init_device(dev);
7087 + }
7088 +}
7089 +
7090 +static irqreturn_t talitos_interrupt(int irq, void *data)
7091 +{
7092 + struct device *dev = data;
7093 + struct talitos_private *priv = dev_get_drvdata(dev);
7094 + u32 isr, isr_lo;
7095 +
7096 + isr = in_be32(priv->reg + TALITOS_ISR);
7097 + isr_lo = in_be32(priv->reg + TALITOS_ISR_LO);
7098 +
7099 + /* ack */
7100 + out_be32(priv->reg + TALITOS_ICR, isr);
7101 + out_be32(priv->reg + TALITOS_ICR_LO, isr_lo);
7102 +
7103 + if (unlikely((isr & ~TALITOS_ISR_CHDONE) || isr_lo))
7104 + talitos_error((unsigned long)data);
7105 + else
7106 + if (likely(isr & TALITOS_ISR_CHDONE))
7107 + tasklet_schedule(&priv->done_task);
7108 +
7109 + return (isr || isr_lo) ? IRQ_HANDLED : IRQ_NONE;
7110 +}
7111 +
7112 +/*
7113 + * hwrng
7114 + */
7115 +static int talitos_rng_data_present(struct hwrng *rng, int wait)
7116 +{
7117 + struct device *dev = (struct device *)rng->priv;
7118 + struct talitos_private *priv = dev_get_drvdata(dev);
7119 + u32 ofl;
7120 + int i;
7121 +
7122 + for (i = 0; i < 20; i++) {
7123 + ofl = in_be32(priv->reg + TALITOS_RNGUSR_LO) &
7124 + TALITOS_RNGUSR_LO_OFL;
7125 + if (ofl || !wait)
7126 + break;
7127 + udelay(10);
7128 + }
7129 +
7130 + return !!ofl;
7131 +}
7132 +
7133 +static int talitos_rng_data_read(struct hwrng *rng, u32 *data)
7134 +{
7135 + struct device *dev = (struct device *)rng->priv;
7136 + struct talitos_private *priv = dev_get_drvdata(dev);
7137 +
7138 + /* rng fifo requires 64-bit accesses */
7139 + *data = in_be32(priv->reg + TALITOS_RNGU_FIFO);
7140 + *data = in_be32(priv->reg + TALITOS_RNGU_FIFO_LO);
7141 +
7142 + return sizeof(u32);
7143 +}
7144 +
7145 +static int talitos_rng_init(struct hwrng *rng)
7146 +{
7147 + struct device *dev = (struct device *)rng->priv;
7148 + struct talitos_private *priv = dev_get_drvdata(dev);
7149 + unsigned int timeout = TALITOS_TIMEOUT;
7150 +
7151 + setbits32(priv->reg + TALITOS_RNGURCR_LO, TALITOS_RNGURCR_LO_SR);
7152 + while (!(in_be32(priv->reg + TALITOS_RNGUSR_LO) & TALITOS_RNGUSR_LO_RD)
7153 + && --timeout)
7154 + cpu_relax();
7155 + if (timeout == 0) {
7156 + dev_err(dev, "failed to reset rng hw\n");
7157 + return -ENODEV;
7158 + }
7159 +
7160 + /* start generating */
7161 + setbits32(priv->reg + TALITOS_RNGUDSR_LO, 0);
7162 +
7163 + return 0;
7164 +}
7165 +
7166 +static int talitos_register_rng(struct device *dev)
7167 +{
7168 + struct talitos_private *priv = dev_get_drvdata(dev);
7169 +
7170 + priv->rng.name = dev_driver_string(dev),
7171 + priv->rng.init = talitos_rng_init,
7172 + priv->rng.data_present = talitos_rng_data_present,
7173 + priv->rng.data_read = talitos_rng_data_read,
7174 + priv->rng.priv = (unsigned long)dev;
7175 +
7176 + return hwrng_register(&priv->rng);
7177 +}
7178 +
7179 +static void talitos_unregister_rng(struct device *dev)
7180 +{
7181 + struct talitos_private *priv = dev_get_drvdata(dev);
7182 +
7183 + hwrng_unregister(&priv->rng);
7184 +}
7185 +
7186 +/*
7187 + * crypto alg
7188 + */
7189 +#define TALITOS_CRA_PRIORITY 3000
7190 +#define TALITOS_MAX_KEY_SIZE 64
7191 +#define TALITOS_MAX_IV_LENGTH 16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
7192 +
7193 +#define MD5_DIGEST_SIZE 16
7194 +
7195 +struct talitos_ctx {
7196 + struct device *dev;
7197 + __be32 desc_hdr_template;
7198 + u8 key[TALITOS_MAX_KEY_SIZE];
7199 + u8 iv[TALITOS_MAX_IV_LENGTH];
7200 + unsigned int keylen;
7201 + unsigned int enckeylen;
7202 + unsigned int authkeylen;
7203 + unsigned int authsize;
7204 +};
7205 +
7206 +static int aead_authenc_setauthsize(struct crypto_aead *authenc,
7207 + unsigned int authsize)
7208 +{
7209 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7210 +
7211 + ctx->authsize = authsize;
7212 +
7213 + return 0;
7214 +}
7215 +
7216 +static int aead_authenc_setkey(struct crypto_aead *authenc,
7217 + const u8 *key, unsigned int keylen)
7218 +{
7219 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7220 + struct rtattr *rta = (void *)key;
7221 + struct crypto_authenc_key_param *param;
7222 + unsigned int authkeylen;
7223 + unsigned int enckeylen;
7224 +
7225 + if (!RTA_OK(rta, keylen))
7226 + goto badkey;
7227 +
7228 + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
7229 + goto badkey;
7230 +
7231 + if (RTA_PAYLOAD(rta) < sizeof(*param))
7232 + goto badkey;
7233 +
7234 + param = RTA_DATA(rta);
7235 + enckeylen = be32_to_cpu(param->enckeylen);
7236 +
7237 + key += RTA_ALIGN(rta->rta_len);
7238 + keylen -= RTA_ALIGN(rta->rta_len);
7239 +
7240 + if (keylen < enckeylen)
7241 + goto badkey;
7242 +
7243 + authkeylen = keylen - enckeylen;
7244 +
7245 + if (keylen > TALITOS_MAX_KEY_SIZE)
7246 + goto badkey;
7247 +
7248 + memcpy(&ctx->key, key, keylen);
7249 +
7250 + ctx->keylen = keylen;
7251 + ctx->enckeylen = enckeylen;
7252 + ctx->authkeylen = authkeylen;
7253 +
7254 + return 0;
7255 +
7256 +badkey:
7257 + crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN);
7258 + return -EINVAL;
7259 +}
7260 +
7261 +/*
7262 + * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
7263 + * @src_nents: number of segments in input scatterlist
7264 + * @dst_nents: number of segments in output scatterlist
7265 + * @dma_len: length of dma mapped link_tbl space
7266 + * @dma_link_tbl: bus physical address of link_tbl
7267 + * @desc: h/w descriptor
7268 + * @link_tbl: input and output h/w link tables (if {src,dst}_nents > 1)
7269 + *
7270 + * if decrypting (with authcheck), or either one of src_nents or dst_nents
7271 + * is greater than 1, an integrity check value is concatenated to the end
7272 + * of link_tbl data
7273 + */
7274 +struct ipsec_esp_edesc {
7275 + int src_nents;
7276 + int dst_nents;
7277 + int dma_len;
7278 + dma_addr_t dma_link_tbl;
7279 + struct talitos_desc desc;
7280 + struct talitos_ptr link_tbl[0];
7281 +};
7282 +
7283 +static void ipsec_esp_unmap(struct device *dev,
7284 + struct ipsec_esp_edesc *edesc,
7285 + struct aead_request *areq)
7286 +{
7287 + unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6], DMA_FROM_DEVICE);
7288 + unmap_single_talitos_ptr(dev, &edesc->desc.ptr[3], DMA_TO_DEVICE);
7289 + unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE);
7290 + unmap_single_talitos_ptr(dev, &edesc->desc.ptr[0], DMA_TO_DEVICE);
7291 +
7292 + dma_unmap_sg(dev, areq->assoc, 1, DMA_TO_DEVICE);
7293 +
7294 + if (areq->src != areq->dst) {
7295 + dma_unmap_sg(dev, areq->src, edesc->src_nents ? : 1,
7296 + DMA_TO_DEVICE);
7297 + dma_unmap_sg(dev, areq->dst, edesc->dst_nents ? : 1,
7298 + DMA_FROM_DEVICE);
7299 + } else {
7300 + dma_unmap_sg(dev, areq->src, edesc->src_nents ? : 1,
7301 + DMA_BIDIRECTIONAL);
7302 + }
7303 +
7304 + if (edesc->dma_len)
7305 + dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
7306 + DMA_BIDIRECTIONAL);
7307 +}
7308 +
7309 +/*
7310 + * ipsec_esp descriptor callbacks
7311 + */
7312 +static void ipsec_esp_encrypt_done(struct device *dev,
7313 + struct talitos_desc *desc, void *context,
7314 + int err)
7315 +{
7316 + struct aead_request *areq = context;
7317 + struct ipsec_esp_edesc *edesc =
7318 + container_of(desc, struct ipsec_esp_edesc, desc);
7319 + struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
7320 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7321 + struct scatterlist *sg;
7322 + void *icvdata;
7323 +
7324 + ipsec_esp_unmap(dev, edesc, areq);
7325 +
7326 + /* copy the generated ICV to dst */
7327 + if (edesc->dma_len) {
7328 + icvdata = &edesc->link_tbl[edesc->src_nents +
7329 + edesc->dst_nents + 1];
7330 + sg = sg_last(areq->dst, edesc->dst_nents);
7331 + memcpy((char *)sg_virt(sg) + sg->length - ctx->authsize,
7332 + icvdata, ctx->authsize);
7333 + }
7334 +
7335 + kfree(edesc);
7336 +
7337 + aead_request_complete(areq, err);
7338 +}
7339 +
7340 +static void ipsec_esp_decrypt_done(struct device *dev,
7341 + struct talitos_desc *desc, void *context,
7342 + int err)
7343 +{
7344 + struct aead_request *req = context;
7345 + struct ipsec_esp_edesc *edesc =
7346 + container_of(desc, struct ipsec_esp_edesc, desc);
7347 + struct crypto_aead *authenc = crypto_aead_reqtfm(req);
7348 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7349 + struct scatterlist *sg;
7350 + void *icvdata;
7351 +
7352 + ipsec_esp_unmap(dev, edesc, req);
7353 +
7354 + if (!err) {
7355 + /* auth check */
7356 + if (edesc->dma_len)
7357 + icvdata = &edesc->link_tbl[edesc->src_nents +
7358 + edesc->dst_nents + 1];
7359 + else
7360 + icvdata = &edesc->link_tbl[0];
7361 +
7362 + sg = sg_last(req->dst, edesc->dst_nents ? : 1);
7363 + err = memcmp(icvdata, (char *)sg_virt(sg) + sg->length -
7364 + ctx->authsize, ctx->authsize) ? -EBADMSG : 0;
7365 + }
7366 +
7367 + kfree(edesc);
7368 +
7369 + aead_request_complete(req, err);
7370 +}
7371 +
7372 +/*
7373 + * convert scatterlist to SEC h/w link table format
7374 + * stop at cryptlen bytes
7375 + */
7376 +static int sg_to_link_tbl(struct scatterlist *sg, int sg_count,
7377 + int cryptlen, struct talitos_ptr *link_tbl_ptr)
7378 +{
7379 + int n_sg = sg_count;
7380 +
7381 + while (n_sg--) {
7382 + link_tbl_ptr->ptr = cpu_to_be32(sg_dma_address(sg));
7383 + link_tbl_ptr->len = cpu_to_be16(sg_dma_len(sg));
7384 + link_tbl_ptr->j_extent = 0;
7385 + link_tbl_ptr++;
7386 + cryptlen -= sg_dma_len(sg);
7387 + sg = sg_next(sg);
7388 + }
7389 +
7390 + /* adjust (decrease) last one (or two) entry's len to cryptlen */
7391 + link_tbl_ptr--;
7392 + while (link_tbl_ptr->len <= (-cryptlen)) {
7393 + /* Empty this entry, and move to previous one */
7394 + cryptlen += be16_to_cpu(link_tbl_ptr->len);
7395 + link_tbl_ptr->len = 0;
7396 + sg_count--;
7397 + link_tbl_ptr--;
7398 + }
7399 + link_tbl_ptr->len = cpu_to_be16(be16_to_cpu(link_tbl_ptr->len)
7400 + + cryptlen);
7401 +
7402 + /* tag end of link table */
7403 + link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
7404 +
7405 + return sg_count;
7406 +}
7407 +
7408 +/*
7409 + * fill in and submit ipsec_esp descriptor
7410 + */
7411 +static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
7412 + u8 *giv, u64 seq,
7413 + void (*callback) (struct device *dev,
7414 + struct talitos_desc *desc,
7415 + void *context, int error))
7416 +{
7417 + struct crypto_aead *aead = crypto_aead_reqtfm(areq);
7418 + struct talitos_ctx *ctx = crypto_aead_ctx(aead);
7419 + struct device *dev = ctx->dev;
7420 + struct talitos_desc *desc = &edesc->desc;
7421 + unsigned int cryptlen = areq->cryptlen;
7422 + unsigned int authsize = ctx->authsize;
7423 + unsigned int ivsize;
7424 + int sg_count;
7425 +
7426 + /* hmac key */
7427 + map_single_talitos_ptr(dev, &desc->ptr[0], ctx->authkeylen, &ctx->key,
7428 + 0, DMA_TO_DEVICE);
7429 + /* hmac data */
7430 + map_single_talitos_ptr(dev, &desc->ptr[1], sg_virt(areq->src) -
7431 + sg_virt(areq->assoc), sg_virt(areq->assoc), 0,
7432 + DMA_TO_DEVICE);
7433 + /* cipher iv */
7434 + ivsize = crypto_aead_ivsize(aead);
7435 + map_single_talitos_ptr(dev, &desc->ptr[2], ivsize, giv ?: areq->iv, 0,
7436 + DMA_TO_DEVICE);
7437 +
7438 + /* cipher key */
7439 + map_single_talitos_ptr(dev, &desc->ptr[3], ctx->enckeylen,
7440 + (char *)&ctx->key + ctx->authkeylen, 0,
7441 + DMA_TO_DEVICE);
7442 +
7443 + /*
7444 + * cipher in
7445 + * map and adjust cipher len to aead request cryptlen.
7446 + * extent is bytes of HMAC postpended to ciphertext,
7447 + * typically 12 for ipsec
7448 + */
7449 + desc->ptr[4].len = cpu_to_be16(cryptlen);
7450 + desc->ptr[4].j_extent = authsize;
7451 +
7452 + if (areq->src == areq->dst)
7453 + sg_count = dma_map_sg(dev, areq->src, edesc->src_nents ? : 1,
7454 + DMA_BIDIRECTIONAL);
7455 + else
7456 + sg_count = dma_map_sg(dev, areq->src, edesc->src_nents ? : 1,
7457 + DMA_TO_DEVICE);
7458 +
7459 + if (sg_count == 1) {
7460 + desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->src));
7461 + } else {
7462 + sg_count = sg_to_link_tbl(areq->src, sg_count, cryptlen,
7463 + &edesc->link_tbl[0]);
7464 + if (sg_count > 1) {
7465 + desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP;
7466 + desc->ptr[4].ptr = cpu_to_be32(edesc->dma_link_tbl);
7467 + dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
7468 + edesc->dma_len, DMA_BIDIRECTIONAL);
7469 + } else {
7470 + /* Only one segment now, so no link tbl needed */
7471 + desc->ptr[4].ptr = cpu_to_be32(sg_dma_address(areq->src));
7472 + }
7473 + }
7474 +
7475 + /* cipher out */
7476 + desc->ptr[5].len = cpu_to_be16(cryptlen);
7477 + desc->ptr[5].j_extent = authsize;
7478 +
7479 + if (areq->src != areq->dst) {
7480 + sg_count = dma_map_sg(dev, areq->dst, edesc->dst_nents ? : 1,
7481 + DMA_FROM_DEVICE);
7482 + }
7483 +
7484 + if (sg_count == 1) {
7485 + desc->ptr[5].ptr = cpu_to_be32(sg_dma_address(areq->dst));
7486 + } else {
7487 + struct talitos_ptr *link_tbl_ptr =
7488 + &edesc->link_tbl[edesc->src_nents];
7489 + struct scatterlist *sg;
7490 +
7491 + desc->ptr[5].ptr = cpu_to_be32((struct talitos_ptr *)
7492 + edesc->dma_link_tbl +
7493 + edesc->src_nents);
7494 + if (areq->src == areq->dst) {
7495 + memcpy(link_tbl_ptr, &edesc->link_tbl[0],
7496 + edesc->src_nents * sizeof(struct talitos_ptr));
7497 + } else {
7498 + sg_count = sg_to_link_tbl(areq->dst, sg_count, cryptlen,
7499 + link_tbl_ptr);
7500 + }
7501 + link_tbl_ptr += sg_count - 1;
7502 +
7503 + /* handle case where sg_last contains the ICV exclusively */
7504 + sg = sg_last(areq->dst, edesc->dst_nents);
7505 + if (sg->length == ctx->authsize)
7506 + link_tbl_ptr--;
7507 +
7508 + link_tbl_ptr->j_extent = 0;
7509 + link_tbl_ptr++;
7510 + link_tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN;
7511 + link_tbl_ptr->len = cpu_to_be16(authsize);
7512 +
7513 + /* icv data follows link tables */
7514 + link_tbl_ptr->ptr = cpu_to_be32((struct talitos_ptr *)
7515 + edesc->dma_link_tbl +
7516 + edesc->src_nents +
7517 + edesc->dst_nents + 1);
7518 +
7519 + desc->ptr[5].j_extent |= DESC_PTR_LNKTBL_JUMP;
7520 + dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl,
7521 + edesc->dma_len, DMA_BIDIRECTIONAL);
7522 + }
7523 +
7524 + /* iv out */
7525 + map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv, 0,
7526 + DMA_FROM_DEVICE);
7527 +
7528 + return talitos_submit(dev, desc, callback, areq);
7529 +}
7530 +
7531 +
7532 +/*
7533 + * derive number of elements in scatterlist
7534 + */
7535 +static int sg_count(struct scatterlist *sg_list, int nbytes)
7536 +{
7537 + struct scatterlist *sg = sg_list;
7538 + int sg_nents = 0;
7539 +
7540 + while (nbytes) {
7541 + sg_nents++;
7542 + nbytes -= sg->length;
7543 + sg = sg_next(sg);
7544 + }
7545 +
7546 + return sg_nents;
7547 +}
7548 +
7549 +/*
7550 + * allocate and map the ipsec_esp extended descriptor
7551 + */
7552 +static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
7553 + int icv_stashing)
7554 +{
7555 + struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
7556 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7557 + struct ipsec_esp_edesc *edesc;
7558 + int src_nents, dst_nents, alloc_len, dma_len;
7559 +
7560 + if (areq->cryptlen + ctx->authsize > TALITOS_MAX_DATA_LEN) {
7561 + dev_err(ctx->dev, "cryptlen exceeds h/w max limit\n");
7562 + return ERR_PTR(-EINVAL);
7563 + }
7564 +
7565 + src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize);
7566 + src_nents = (src_nents == 1) ? 0 : src_nents;
7567 +
7568 + if (areq->dst == areq->src) {
7569 + dst_nents = src_nents;
7570 + } else {
7571 + dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize);
7572 + dst_nents = (dst_nents == 1) ? 0 : src_nents;
7573 + }
7574 +
7575 + /*
7576 + * allocate space for base edesc plus the link tables,
7577 + * allowing for a separate entry for the generated ICV (+ 1),
7578 + * and the ICV data itself
7579 + */
7580 + alloc_len = sizeof(struct ipsec_esp_edesc);
7581 + if (src_nents || dst_nents) {
7582 + dma_len = (src_nents + dst_nents + 1) *
7583 + sizeof(struct talitos_ptr) + ctx->authsize;
7584 + alloc_len += dma_len;
7585 + } else {
7586 + dma_len = 0;
7587 + alloc_len += icv_stashing ? ctx->authsize : 0;
7588 + }
7589 +
7590 + edesc = kmalloc(alloc_len, GFP_DMA);
7591 + if (!edesc) {
7592 + dev_err(ctx->dev, "could not allocate edescriptor\n");
7593 + return ERR_PTR(-ENOMEM);
7594 + }
7595 +
7596 + edesc->src_nents = src_nents;
7597 + edesc->dst_nents = dst_nents;
7598 + edesc->dma_len = dma_len;
7599 + edesc->dma_link_tbl = dma_map_single(ctx->dev, &edesc->link_tbl[0],
7600 + edesc->dma_len, DMA_BIDIRECTIONAL);
7601 +
7602 + return edesc;
7603 +}
7604 +
7605 +static int aead_authenc_encrypt(struct aead_request *req)
7606 +{
7607 + struct crypto_aead *authenc = crypto_aead_reqtfm(req);
7608 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7609 + struct ipsec_esp_edesc *edesc;
7610 +
7611 + /* allocate extended descriptor */
7612 + edesc = ipsec_esp_edesc_alloc(req, 0);
7613 + if (IS_ERR(edesc))
7614 + return PTR_ERR(edesc);
7615 +
7616 + /* set encrypt */
7617 + edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
7618 +
7619 + return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_encrypt_done);
7620 +}
7621 +
7622 +static int aead_authenc_decrypt(struct aead_request *req)
7623 +{
7624 + struct crypto_aead *authenc = crypto_aead_reqtfm(req);
7625 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7626 + unsigned int authsize = ctx->authsize;
7627 + struct ipsec_esp_edesc *edesc;
7628 + struct scatterlist *sg;
7629 + void *icvdata;
7630 +
7631 + req->cryptlen -= authsize;
7632 +
7633 + /* allocate extended descriptor */
7634 + edesc = ipsec_esp_edesc_alloc(req, 1);
7635 + if (IS_ERR(edesc))
7636 + return PTR_ERR(edesc);
7637 +
7638 + /* stash incoming ICV for later cmp with ICV generated by the h/w */
7639 + if (edesc->dma_len)
7640 + icvdata = &edesc->link_tbl[edesc->src_nents +
7641 + edesc->dst_nents + 1];
7642 + else
7643 + icvdata = &edesc->link_tbl[0];
7644 +
7645 + sg = sg_last(req->src, edesc->src_nents ? : 1);
7646 +
7647 + memcpy(icvdata, (char *)sg_virt(sg) + sg->length - ctx->authsize,
7648 + ctx->authsize);
7649 +
7650 + /* decrypt */
7651 + edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
7652 +
7653 + return ipsec_esp(edesc, req, NULL, 0, ipsec_esp_decrypt_done);
7654 +}
7655 +
7656 +static int aead_authenc_givencrypt(
7657 + struct aead_givcrypt_request *req)
7658 +{
7659 + struct aead_request *areq = &req->areq;
7660 + struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
7661 + struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
7662 + struct ipsec_esp_edesc *edesc;
7663 +
7664 + /* allocate extended descriptor */
7665 + edesc = ipsec_esp_edesc_alloc(areq, 0);
7666 + if (IS_ERR(edesc))
7667 + return PTR_ERR(edesc);
7668 +
7669 + /* set encrypt */
7670 + edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
7671 +
7672 + memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
7673 +
7674 + return ipsec_esp(edesc, areq, req->giv, req->seq,
7675 + ipsec_esp_encrypt_done);
7676 +}
7677 +
7678 +struct talitos_alg_template {
7679 + char name[CRYPTO_MAX_ALG_NAME];
7680 + char driver_name[CRYPTO_MAX_ALG_NAME];
7681 + unsigned int blocksize;
7682 + struct aead_alg aead;
7683 + struct device *dev;
7684 + __be32 desc_hdr_template;
7685 +};
7686 +
7687 +static struct talitos_alg_template driver_algs[] = {
7688 + /* single-pass ipsec_esp descriptor */
7689 + {
7690 + .name = "authenc(hmac(sha1),cbc(aes))",
7691 + .driver_name = "authenc-hmac-sha1-cbc-aes-talitos",
7692 + .blocksize = AES_BLOCK_SIZE,
7693 + .aead = {
7694 + .setkey = aead_authenc_setkey,
7695 + .setauthsize = aead_authenc_setauthsize,
7696 + .encrypt = aead_authenc_encrypt,
7697 + .decrypt = aead_authenc_decrypt,
7698 + .givencrypt = aead_authenc_givencrypt,
7699 + .geniv = "<built-in>",
7700 + .ivsize = AES_BLOCK_SIZE,
7701 + .maxauthsize = SHA1_DIGEST_SIZE,
7702 + },
7703 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7704 + DESC_HDR_SEL0_AESU |
7705 + DESC_HDR_MODE0_AESU_CBC |
7706 + DESC_HDR_SEL1_MDEUA |
7707 + DESC_HDR_MODE1_MDEU_INIT |
7708 + DESC_HDR_MODE1_MDEU_PAD |
7709 + DESC_HDR_MODE1_MDEU_SHA1_HMAC,
7710 + },
7711 + {
7712 + .name = "authenc(hmac(sha1),cbc(des3_ede))",
7713 + .driver_name = "authenc-hmac-sha1-cbc-3des-talitos",
7714 + .blocksize = DES3_EDE_BLOCK_SIZE,
7715 + .aead = {
7716 + .setkey = aead_authenc_setkey,
7717 + .setauthsize = aead_authenc_setauthsize,
7718 + .encrypt = aead_authenc_encrypt,
7719 + .decrypt = aead_authenc_decrypt,
7720 + .givencrypt = aead_authenc_givencrypt,
7721 + .geniv = "<built-in>",
7722 + .ivsize = DES3_EDE_BLOCK_SIZE,
7723 + .maxauthsize = SHA1_DIGEST_SIZE,
7724 + },
7725 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7726 + DESC_HDR_SEL0_DEU |
7727 + DESC_HDR_MODE0_DEU_CBC |
7728 + DESC_HDR_MODE0_DEU_3DES |
7729 + DESC_HDR_SEL1_MDEUA |
7730 + DESC_HDR_MODE1_MDEU_INIT |
7731 + DESC_HDR_MODE1_MDEU_PAD |
7732 + DESC_HDR_MODE1_MDEU_SHA1_HMAC,
7733 + },
7734 + {
7735 + .name = "authenc(hmac(sha256),cbc(aes))",
7736 + .driver_name = "authenc-hmac-sha256-cbc-aes-talitos",
7737 + .blocksize = AES_BLOCK_SIZE,
7738 + .aead = {
7739 + .setkey = aead_authenc_setkey,
7740 + .setauthsize = aead_authenc_setauthsize,
7741 + .encrypt = aead_authenc_encrypt,
7742 + .decrypt = aead_authenc_decrypt,
7743 + .givencrypt = aead_authenc_givencrypt,
7744 + .geniv = "<built-in>",
7745 + .ivsize = AES_BLOCK_SIZE,
7746 + .maxauthsize = SHA256_DIGEST_SIZE,
7747 + },
7748 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7749 + DESC_HDR_SEL0_AESU |
7750 + DESC_HDR_MODE0_AESU_CBC |
7751 + DESC_HDR_SEL1_MDEUA |
7752 + DESC_HDR_MODE1_MDEU_INIT |
7753 + DESC_HDR_MODE1_MDEU_PAD |
7754 + DESC_HDR_MODE1_MDEU_SHA256_HMAC,
7755 + },
7756 + {
7757 + .name = "authenc(hmac(sha256),cbc(des3_ede))",
7758 + .driver_name = "authenc-hmac-sha256-cbc-3des-talitos",
7759 + .blocksize = DES3_EDE_BLOCK_SIZE,
7760 + .aead = {
7761 + .setkey = aead_authenc_setkey,
7762 + .setauthsize = aead_authenc_setauthsize,
7763 + .encrypt = aead_authenc_encrypt,
7764 + .decrypt = aead_authenc_decrypt,
7765 + .givencrypt = aead_authenc_givencrypt,
7766 + .geniv = "<built-in>",
7767 + .ivsize = DES3_EDE_BLOCK_SIZE,
7768 + .maxauthsize = SHA256_DIGEST_SIZE,
7769 + },
7770 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7771 + DESC_HDR_SEL0_DEU |
7772 + DESC_HDR_MODE0_DEU_CBC |
7773 + DESC_HDR_MODE0_DEU_3DES |
7774 + DESC_HDR_SEL1_MDEUA |
7775 + DESC_HDR_MODE1_MDEU_INIT |
7776 + DESC_HDR_MODE1_MDEU_PAD |
7777 + DESC_HDR_MODE1_MDEU_SHA256_HMAC,
7778 + },
7779 + {
7780 + .name = "authenc(hmac(md5),cbc(aes))",
7781 + .driver_name = "authenc-hmac-md5-cbc-aes-talitos",
7782 + .blocksize = AES_BLOCK_SIZE,
7783 + .aead = {
7784 + .setkey = aead_authenc_setkey,
7785 + .setauthsize = aead_authenc_setauthsize,
7786 + .encrypt = aead_authenc_encrypt,
7787 + .decrypt = aead_authenc_decrypt,
7788 + .givencrypt = aead_authenc_givencrypt,
7789 + .geniv = "<built-in>",
7790 + .ivsize = AES_BLOCK_SIZE,
7791 + .maxauthsize = MD5_DIGEST_SIZE,
7792 + },
7793 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7794 + DESC_HDR_SEL0_AESU |
7795 + DESC_HDR_MODE0_AESU_CBC |
7796 + DESC_HDR_SEL1_MDEUA |
7797 + DESC_HDR_MODE1_MDEU_INIT |
7798 + DESC_HDR_MODE1_MDEU_PAD |
7799 + DESC_HDR_MODE1_MDEU_MD5_HMAC,
7800 + },
7801 + {
7802 + .name = "authenc(hmac(md5),cbc(des3_ede))",
7803 + .driver_name = "authenc-hmac-md5-cbc-3des-talitos",
7804 + .blocksize = DES3_EDE_BLOCK_SIZE,
7805 + .aead = {
7806 + .setkey = aead_authenc_setkey,
7807 + .setauthsize = aead_authenc_setauthsize,
7808 + .encrypt = aead_authenc_encrypt,
7809 + .decrypt = aead_authenc_decrypt,
7810 + .givencrypt = aead_authenc_givencrypt,
7811 + .geniv = "<built-in>",
7812 + .ivsize = DES3_EDE_BLOCK_SIZE,
7813 + .maxauthsize = MD5_DIGEST_SIZE,
7814 + },
7815 + .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
7816 + DESC_HDR_SEL0_DEU |
7817 + DESC_HDR_MODE0_DEU_CBC |
7818 + DESC_HDR_MODE0_DEU_3DES |
7819 + DESC_HDR_SEL1_MDEUA |
7820 + DESC_HDR_MODE1_MDEU_INIT |
7821 + DESC_HDR_MODE1_MDEU_PAD |
7822 + DESC_HDR_MODE1_MDEU_MD5_HMAC,
7823 + }
7824 +};
7825 +
7826 +struct talitos_crypto_alg {
7827 + struct list_head entry;
7828 + struct device *dev;
7829 + __be32 desc_hdr_template;
7830 + struct crypto_alg crypto_alg;
7831 +};
7832 +
7833 +static int talitos_cra_init(struct crypto_tfm *tfm)
7834 +{
7835 + struct crypto_alg *alg = tfm->__crt_alg;
7836 + struct talitos_crypto_alg *talitos_alg =
7837 + container_of(alg, struct talitos_crypto_alg, crypto_alg);
7838 + struct talitos_ctx *ctx = crypto_tfm_ctx(tfm);
7839 +
7840 + /* update context with ptr to dev */
7841 + ctx->dev = talitos_alg->dev;
7842 + /* copy descriptor header template value */
7843 + ctx->desc_hdr_template = talitos_alg->desc_hdr_template;
7844 +
7845 + /* random first IV */
7846 + get_random_bytes(ctx->iv, TALITOS_MAX_IV_LENGTH);
7847 +
7848 + return 0;
7849 +}
7850 +
7851 +/*
7852 + * given the alg's descriptor header template, determine whether descriptor
7853 + * type and primary/secondary execution units required match the hw
7854 + * capabilities description provided in the device tree node.
7855 + */
7856 +static int hw_supports(struct device *dev, __be32 desc_hdr_template)
7857 +{
7858 + struct talitos_private *priv = dev_get_drvdata(dev);
7859 + int ret;
7860 +
7861 + ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) &&
7862 + (1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units);
7863 +
7864 + if (SECONDARY_EU(desc_hdr_template))
7865 + ret = ret && (1 << SECONDARY_EU(desc_hdr_template)
7866 + & priv->exec_units);
7867 +
7868 + return ret;
7869 +}
7870 +
7871 +static int __devexit talitos_remove(struct of_device *ofdev)
7872 +{
7873 + struct device *dev = &ofdev->dev;
7874 + struct talitos_private *priv = dev_get_drvdata(dev);
7875 + struct talitos_crypto_alg *t_alg, *n;
7876 + int i;
7877 +
7878 + list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
7879 + crypto_unregister_alg(&t_alg->crypto_alg);
7880 + list_del(&t_alg->entry);
7881 + kfree(t_alg);
7882 + }
7883 +
7884 + if (hw_supports(dev, DESC_HDR_SEL0_RNG))
7885 + talitos_unregister_rng(dev);
7886 +
7887 + kfree(priv->tail);
7888 + kfree(priv->head);
7889 +
7890 + if (priv->fifo)
7891 + for (i = 0; i < priv->num_channels; i++)
7892 + kfree(priv->fifo[i]);
7893 +
7894 + kfree(priv->fifo);
7895 + kfree(priv->head_lock);
7896 + kfree(priv->tail_lock);
7897 +
7898 + if (priv->irq != NO_IRQ) {
7899 + free_irq(priv->irq, dev);
7900 + irq_dispose_mapping(priv->irq);
7901 + }
7902 +
7903 + tasklet_kill(&priv->done_task);
7904 + tasklet_kill(&priv->error_task);
7905 +
7906 + iounmap(priv->reg);
7907 +
7908 + dev_set_drvdata(dev, NULL);
7909 +
7910 + kfree(priv);
7911 +
7912 + return 0;
7913 +}
7914 +
7915 +static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev,
7916 + struct talitos_alg_template
7917 + *template)
7918 +{
7919 + struct talitos_crypto_alg *t_alg;
7920 + struct crypto_alg *alg;
7921 +
7922 + t_alg = kzalloc(sizeof(struct talitos_crypto_alg), GFP_KERNEL);
7923 + if (!t_alg)
7924 + return ERR_PTR(-ENOMEM);
7925 +
7926 + alg = &t_alg->crypto_alg;
7927 +
7928 + snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
7929 + snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
7930 + template->driver_name);
7931 + alg->cra_module = THIS_MODULE;
7932 + alg->cra_init = talitos_cra_init;
7933 + alg->cra_priority = TALITOS_CRA_PRIORITY;
7934 + alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
7935 + alg->cra_blocksize = template->blocksize;
7936 + alg->cra_alignmask = 0;
7937 + alg->cra_type = &crypto_aead_type;
7938 + alg->cra_ctxsize = sizeof(struct talitos_ctx);
7939 + alg->cra_u.aead = template->aead;
7940 +
7941 + t_alg->desc_hdr_template = template->desc_hdr_template;
7942 + t_alg->dev = dev;
7943 +
7944 + return t_alg;
7945 +}
7946 +
7947 +static int talitos_probe(struct of_device *ofdev,
7948 + const struct of_device_id *match)
7949 +{
7950 + struct device *dev = &ofdev->dev;
7951 + struct device_node *np = ofdev->node;
7952 + struct talitos_private *priv;
7953 + const unsigned int *prop;
7954 + int i, err;
7955 +
7956 + priv = kzalloc(sizeof(struct talitos_private), GFP_KERNEL);
7957 + if (!priv)
7958 + return -ENOMEM;
7959 +
7960 + dev_set_drvdata(dev, priv);
7961 +
7962 + priv->ofdev = ofdev;
7963 +
7964 + tasklet_init(&priv->done_task, talitos_done, (unsigned long)dev);
7965 + tasklet_init(&priv->error_task, talitos_error, (unsigned long)dev);
7966 +
7967 + priv->irq = irq_of_parse_and_map(np, 0);
7968 +
7969 + if (priv->irq == NO_IRQ) {
7970 + dev_err(dev, "failed to map irq\n");
7971 + err = -EINVAL;
7972 + goto err_out;
7973 + }
7974 +
7975 + /* get the irq line */
7976 + err = request_irq(priv->irq, talitos_interrupt, 0,
7977 + dev_driver_string(dev), dev);
7978 + if (err) {
7979 + dev_err(dev, "failed to request irq %d\n", priv->irq);
7980 + irq_dispose_mapping(priv->irq);
7981 + priv->irq = NO_IRQ;
7982 + goto err_out;
7983 + }
7984 +
7985 + priv->reg = of_iomap(np, 0);
7986 + if (!priv->reg) {
7987 + dev_err(dev, "failed to of_iomap\n");
7988 + err = -ENOMEM;
7989 + goto err_out;
7990 + }
7991 +
7992 + /* get SEC version capabilities from device tree */
7993 + prop = of_get_property(np, "fsl,num-channels", NULL);
7994 + if (prop)
7995 + priv->num_channels = *prop;
7996 +
7997 + prop = of_get_property(np, "fsl,channel-fifo-len", NULL);
7998 + if (prop)
7999 + priv->chfifo_len = *prop;
8000 +
8001 + prop = of_get_property(np, "fsl,exec-units-mask", NULL);
8002 + if (prop)
8003 + priv->exec_units = *prop;
8004 +
8005 + prop = of_get_property(np, "fsl,descriptor-types-mask", NULL);
8006 + if (prop)
8007 + priv->desc_types = *prop;
8008 +
8009 + if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len ||
8010 + !priv->exec_units || !priv->desc_types) {
8011 + dev_err(dev, "invalid property data in device tree node\n");
8012 + err = -EINVAL;
8013 + goto err_out;
8014 + }
8015 +
8016 + of_node_put(np);
8017 + np = NULL;
8018 +
8019 + priv->head_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels,
8020 + GFP_KERNEL);
8021 + priv->tail_lock = kmalloc(sizeof(spinlock_t) * priv->num_channels,
8022 + GFP_KERNEL);
8023 + if (!priv->head_lock || !priv->tail_lock) {
8024 + dev_err(dev, "failed to allocate fifo locks\n");
8025 + err = -ENOMEM;
8026 + goto err_out;
8027 + }
8028 +
8029 + for (i = 0; i < priv->num_channels; i++) {
8030 + spin_lock_init(&priv->head_lock[i]);
8031 + spin_lock_init(&priv->tail_lock[i]);
8032 + }
8033 +
8034 + priv->fifo = kmalloc(sizeof(struct talitos_request *) *
8035 + priv->num_channels, GFP_KERNEL);
8036 + if (!priv->fifo) {
8037 + dev_err(dev, "failed to allocate request fifo\n");
8038 + err = -ENOMEM;
8039 + goto err_out;
8040 + }
8041 +
8042 + priv->fifo_len = roundup_pow_of_two(priv->chfifo_len);
8043 +
8044 + for (i = 0; i < priv->num_channels; i++) {
8045 + priv->fifo[i] = kzalloc(sizeof(struct talitos_request) *
8046 + priv->fifo_len, GFP_KERNEL);
8047 + if (!priv->fifo[i]) {
8048 + dev_err(dev, "failed to allocate request fifo %d\n", i);
8049 + err = -ENOMEM;
8050 + goto err_out;
8051 + }
8052 + }
8053 +
8054 + priv->head = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL);
8055 + priv->tail = kzalloc(sizeof(int) * priv->num_channels, GFP_KERNEL);
8056 + if (!priv->head || !priv->tail) {
8057 + dev_err(dev, "failed to allocate request index space\n");
8058 + err = -ENOMEM;
8059 + goto err_out;
8060 + }
8061 +
8062 + /* reset and initialize the h/w */
8063 + err = init_device(dev);
8064 + if (err) {
8065 + dev_err(dev, "failed to initialize device\n");
8066 + goto err_out;
8067 + }
8068 +
8069 + /* register the RNG, if available */
8070 + if (hw_supports(dev, DESC_HDR_SEL0_RNG)) {
8071 + err = talitos_register_rng(dev);
8072 + if (err) {
8073 + dev_err(dev, "failed to register hwrng: %d\n", err);
8074 + goto err_out;
8075 + } else
8076 + dev_info(dev, "hwrng\n");
8077 + }
8078 +
8079 + /* register crypto algorithms the device supports */
8080 + INIT_LIST_HEAD(&priv->alg_list);
8081 +
8082 + for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
8083 + if (hw_supports(dev, driver_algs[i].desc_hdr_template)) {
8084 + struct talitos_crypto_alg *t_alg;
8085 +
8086 + t_alg = talitos_alg_alloc(dev, &driver_algs[i]);
8087 + if (IS_ERR(t_alg)) {
8088 + err = PTR_ERR(t_alg);
8089 + goto err_out;
8090 + }
8091 +
8092 + err = crypto_register_alg(&t_alg->crypto_alg);
8093 + if (err) {
8094 + dev_err(dev, "%s alg registration failed\n",
8095 + t_alg->crypto_alg.cra_driver_name);
8096 + kfree(t_alg);
8097 + } else {
8098 + list_add_tail(&t_alg->entry, &priv->alg_list);
8099 + dev_info(dev, "%s\n",
8100 + t_alg->crypto_alg.cra_driver_name);
8101 + }
8102 + }
8103 + }
8104 +
8105 + return 0;
8106 +
8107 +err_out:
8108 + talitos_remove(ofdev);
8109 + if (np)
8110 + of_node_put(np);
8111 +
8112 + return err;
8113 +}
8114 +
8115 +static struct of_device_id talitos_match[] = {
8116 + {
8117 + .compatible = "fsl,sec2.0",
8118 + },
8119 + {},
8120 +};
8121 +MODULE_DEVICE_TABLE(of, talitos_match);
8122 +
8123 +static struct of_platform_driver talitos_driver = {
8124 + .name = "talitos",
8125 + .match_table = talitos_match,
8126 + .probe = talitos_probe,
8127 + .remove = __devexit_p(talitos_remove),
8128 +};
8129 +
8130 +static int __init talitos_init(void)
8131 +{
8132 + return of_register_platform_driver(&talitos_driver);
8133 +}
8134 +module_init(talitos_init);
8135 +
8136 +static void __exit talitos_exit(void)
8137 +{
8138 + of_unregister_platform_driver(&talitos_driver);
8139 +}
8140 +module_exit(talitos_exit);
8141 +
8142 +MODULE_LICENSE("GPL");
8143 +MODULE_AUTHOR("Kim Phillips <kim.phillips@freescale.com>");
8144 +MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");
8145 --- /dev/null
8146 +++ b/drivers/crypto/talitos.h
8147 @@ -0,0 +1,199 @@
8148 +/*
8149 + * Freescale SEC (talitos) device register and descriptor header defines
8150 + *
8151 + * Copyright (c) 2006-2008 Freescale Semiconductor, Inc.
8152 + *
8153 + * Redistribution and use in source and binary forms, with or without
8154 + * modification, are permitted provided that the following conditions
8155 + * are met:
8156 + *
8157 + * 1. Redistributions of source code must retain the above copyright
8158 + * notice, this list of conditions and the following disclaimer.
8159 + * 2. Redistributions in binary form must reproduce the above copyright
8160 + * notice, this list of conditions and the following disclaimer in the
8161 + * documentation and/or other materials provided with the distribution.
8162 + * 3. The name of the author may not be used to endorse or promote products
8163 + * derived from this software without specific prior written permission.
8164 + *
8165 + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
8166 + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
8167 + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
8168 + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
8169 + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
8170 + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
8171 + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
8172 + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
8173 + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
8174 + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8175 + *
8176 + */
8177 +
8178 +/*
8179 + * TALITOS_xxx_LO addresses point to the low data bits (32-63) of the register
8180 + */
8181 +
8182 +/* global register offset addresses */
8183 +#define TALITOS_MCR 0x1030 /* master control register */
8184 +#define TALITOS_MCR_LO 0x1038
8185 +#define TALITOS_MCR_SWR 0x1 /* s/w reset */
8186 +#define TALITOS_IMR 0x1008 /* interrupt mask register */
8187 +#define TALITOS_IMR_INIT 0x10fff /* enable channel IRQs */
8188 +#define TALITOS_IMR_LO 0x100C
8189 +#define TALITOS_IMR_LO_INIT 0x20000 /* allow RNGU error IRQs */
8190 +#define TALITOS_ISR 0x1010 /* interrupt status register */
8191 +#define TALITOS_ISR_CHERR 0xaa /* channel errors mask */
8192 +#define TALITOS_ISR_CHDONE 0x55 /* channel done mask */
8193 +#define TALITOS_ISR_LO 0x1014
8194 +#define TALITOS_ICR 0x1018 /* interrupt clear register */
8195 +#define TALITOS_ICR_LO 0x101C
8196 +
8197 +/* channel register address stride */
8198 +#define TALITOS_CH_STRIDE 0x100
8199 +
8200 +/* channel configuration register */
8201 +#define TALITOS_CCCR(ch) (ch * TALITOS_CH_STRIDE + 0x1108)
8202 +#define TALITOS_CCCR_CONT 0x2 /* channel continue */
8203 +#define TALITOS_CCCR_RESET 0x1 /* channel reset */
8204 +#define TALITOS_CCCR_LO(ch) (ch * TALITOS_CH_STRIDE + 0x110c)
8205 +#define TALITOS_CCCR_LO_CDWE 0x10 /* chan. done writeback enab. */
8206 +#define TALITOS_CCCR_LO_NT 0x4 /* notification type */
8207 +#define TALITOS_CCCR_LO_CDIE 0x2 /* channel done IRQ enable */
8208 +
8209 +/* CCPSR: channel pointer status register */
8210 +#define TALITOS_CCPSR(ch) (ch * TALITOS_CH_STRIDE + 0x1110)
8211 +#define TALITOS_CCPSR_LO(ch) (ch * TALITOS_CH_STRIDE + 0x1114)
8212 +#define TALITOS_CCPSR_LO_DOF 0x8000 /* double FF write oflow error */
8213 +#define TALITOS_CCPSR_LO_SOF 0x4000 /* single FF write oflow error */
8214 +#define TALITOS_CCPSR_LO_MDTE 0x2000 /* master data transfer error */
8215 +#define TALITOS_CCPSR_LO_SGDLZ 0x1000 /* s/g data len zero error */
8216 +#define TALITOS_CCPSR_LO_FPZ 0x0800 /* fetch ptr zero error */
8217 +#define TALITOS_CCPSR_LO_IDH 0x0400 /* illegal desc hdr error */
8218 +#define TALITOS_CCPSR_LO_IEU 0x0200 /* invalid EU error */
8219 +#define TALITOS_CCPSR_LO_EU 0x0100 /* EU error detected */
8220 +#define TALITOS_CCPSR_LO_GB 0x0080 /* gather boundary error */
8221 +#define TALITOS_CCPSR_LO_GRL 0x0040 /* gather return/length error */
8222 +#define TALITOS_CCPSR_LO_SB 0x0020 /* scatter boundary error */
8223 +#define TALITOS_CCPSR_LO_SRL 0x0010 /* scatter return/length error */
8224 +
8225 +/* channel fetch fifo register */
8226 +#define TALITOS_FF(ch) (ch * TALITOS_CH_STRIDE + 0x1148)
8227 +#define TALITOS_FF_LO(ch) (ch * TALITOS_CH_STRIDE + 0x114c)
8228 +
8229 +/* current descriptor pointer register */
8230 +#define TALITOS_CDPR(ch) (ch * TALITOS_CH_STRIDE + 0x1140)
8231 +#define TALITOS_CDPR_LO(ch) (ch * TALITOS_CH_STRIDE + 0x1144)
8232 +
8233 +/* descriptor buffer register */
8234 +#define TALITOS_DESCBUF(ch) (ch * TALITOS_CH_STRIDE + 0x1180)
8235 +#define TALITOS_DESCBUF_LO(ch) (ch * TALITOS_CH_STRIDE + 0x1184)
8236 +
8237 +/* gather link table */
8238 +#define TALITOS_GATHER(ch) (ch * TALITOS_CH_STRIDE + 0x11c0)
8239 +#define TALITOS_GATHER_LO(ch) (ch * TALITOS_CH_STRIDE + 0x11c4)
8240 +
8241 +/* scatter link table */
8242 +#define TALITOS_SCATTER(ch) (ch * TALITOS_CH_STRIDE + 0x11e0)
8243 +#define TALITOS_SCATTER_LO(ch) (ch * TALITOS_CH_STRIDE + 0x11e4)
8244 +
8245 +/* execution unit interrupt status registers */
8246 +#define TALITOS_DEUISR 0x2030 /* DES unit */
8247 +#define TALITOS_DEUISR_LO 0x2034
8248 +#define TALITOS_AESUISR 0x4030 /* AES unit */
8249 +#define TALITOS_AESUISR_LO 0x4034
8250 +#define TALITOS_MDEUISR 0x6030 /* message digest unit */
8251 +#define TALITOS_MDEUISR_LO 0x6034
8252 +#define TALITOS_AFEUISR 0x8030 /* arc4 unit */
8253 +#define TALITOS_AFEUISR_LO 0x8034
8254 +#define TALITOS_RNGUISR 0xa030 /* random number unit */
8255 +#define TALITOS_RNGUISR_LO 0xa034
8256 +#define TALITOS_RNGUSR 0xa028 /* rng status */
8257 +#define TALITOS_RNGUSR_LO 0xa02c
8258 +#define TALITOS_RNGUSR_LO_RD 0x1 /* reset done */
8259 +#define TALITOS_RNGUSR_LO_OFL 0xff0000/* output FIFO length */
8260 +#define TALITOS_RNGUDSR 0xa010 /* data size */
8261 +#define TALITOS_RNGUDSR_LO 0xa014
8262 +#define TALITOS_RNGU_FIFO 0xa800 /* output FIFO */
8263 +#define TALITOS_RNGU_FIFO_LO 0xa804 /* output FIFO */
8264 +#define TALITOS_RNGURCR 0xa018 /* reset control */
8265 +#define TALITOS_RNGURCR_LO 0xa01c
8266 +#define TALITOS_RNGURCR_LO_SR 0x1 /* software reset */
8267 +#define TALITOS_PKEUISR 0xc030 /* public key unit */
8268 +#define TALITOS_PKEUISR_LO 0xc034
8269 +#define TALITOS_KEUISR 0xe030 /* kasumi unit */
8270 +#define TALITOS_KEUISR_LO 0xe034
8271 +#define TALITOS_CRCUISR 0xf030 /* cyclic redundancy check unit*/
8272 +#define TALITOS_CRCUISR_LO 0xf034
8273 +
8274 +/*
8275 + * talitos descriptor header (hdr) bits
8276 + */
8277 +
8278 +/* written back when done */
8279 +#define DESC_HDR_DONE __constant_cpu_to_be32(0xff000000)
8280 +
8281 +/* primary execution unit select */
8282 +#define DESC_HDR_SEL0_MASK __constant_cpu_to_be32(0xf0000000)
8283 +#define DESC_HDR_SEL0_AFEU __constant_cpu_to_be32(0x10000000)
8284 +#define DESC_HDR_SEL0_DEU __constant_cpu_to_be32(0x20000000)
8285 +#define DESC_HDR_SEL0_MDEUA __constant_cpu_to_be32(0x30000000)
8286 +#define DESC_HDR_SEL0_MDEUB __constant_cpu_to_be32(0xb0000000)
8287 +#define DESC_HDR_SEL0_RNG __constant_cpu_to_be32(0x40000000)
8288 +#define DESC_HDR_SEL0_PKEU __constant_cpu_to_be32(0x50000000)
8289 +#define DESC_HDR_SEL0_AESU __constant_cpu_to_be32(0x60000000)
8290 +#define DESC_HDR_SEL0_KEU __constant_cpu_to_be32(0x70000000)
8291 +#define DESC_HDR_SEL0_CRCU __constant_cpu_to_be32(0x80000000)
8292 +
8293 +/* primary execution unit mode (MODE0) and derivatives */
8294 +#define DESC_HDR_MODE0_ENCRYPT __constant_cpu_to_be32(0x00100000)
8295 +#define DESC_HDR_MODE0_AESU_CBC __constant_cpu_to_be32(0x00200000)
8296 +#define DESC_HDR_MODE0_DEU_CBC __constant_cpu_to_be32(0x00400000)
8297 +#define DESC_HDR_MODE0_DEU_3DES __constant_cpu_to_be32(0x00200000)
8298 +#define DESC_HDR_MODE0_MDEU_INIT __constant_cpu_to_be32(0x01000000)
8299 +#define DESC_HDR_MODE0_MDEU_HMAC __constant_cpu_to_be32(0x00800000)
8300 +#define DESC_HDR_MODE0_MDEU_PAD __constant_cpu_to_be32(0x00400000)
8301 +#define DESC_HDR_MODE0_MDEU_MD5 __constant_cpu_to_be32(0x00200000)
8302 +#define DESC_HDR_MODE0_MDEU_SHA256 __constant_cpu_to_be32(0x00100000)
8303 +#define DESC_HDR_MODE0_MDEU_SHA1 __constant_cpu_to_be32(0x00000000)
8304 +#define DESC_HDR_MODE0_MDEU_MD5_HMAC (DESC_HDR_MODE0_MDEU_MD5 | \
8305 + DESC_HDR_MODE0_MDEU_HMAC)
8306 +#define DESC_HDR_MODE0_MDEU_SHA256_HMAC (DESC_HDR_MODE0_MDEU_SHA256 | \
8307 + DESC_HDR_MODE0_MDEU_HMAC)
8308 +#define DESC_HDR_MODE0_MDEU_SHA1_HMAC (DESC_HDR_MODE0_MDEU_SHA1 | \
8309 + DESC_HDR_MODE0_MDEU_HMAC)
8310 +
8311 +/* secondary execution unit select (SEL1) */
8312 +#define DESC_HDR_SEL1_MASK __constant_cpu_to_be32(0x000f0000)
8313 +#define DESC_HDR_SEL1_MDEUA __constant_cpu_to_be32(0x00030000)
8314 +#define DESC_HDR_SEL1_MDEUB __constant_cpu_to_be32(0x000b0000)
8315 +#define DESC_HDR_SEL1_CRCU __constant_cpu_to_be32(0x00080000)
8316 +
8317 +/* secondary execution unit mode (MODE1) and derivatives */
8318 +#define DESC_HDR_MODE1_MDEU_INIT __constant_cpu_to_be32(0x00001000)
8319 +#define DESC_HDR_MODE1_MDEU_HMAC __constant_cpu_to_be32(0x00000800)
8320 +#define DESC_HDR_MODE1_MDEU_PAD __constant_cpu_to_be32(0x00000400)
8321 +#define DESC_HDR_MODE1_MDEU_MD5 __constant_cpu_to_be32(0x00000200)
8322 +#define DESC_HDR_MODE1_MDEU_SHA256 __constant_cpu_to_be32(0x00000100)
8323 +#define DESC_HDR_MODE1_MDEU_SHA1 __constant_cpu_to_be32(0x00000000)
8324 +#define DESC_HDR_MODE1_MDEU_MD5_HMAC (DESC_HDR_MODE1_MDEU_MD5 | \
8325 + DESC_HDR_MODE1_MDEU_HMAC)
8326 +#define DESC_HDR_MODE1_MDEU_SHA256_HMAC (DESC_HDR_MODE1_MDEU_SHA256 | \
8327 + DESC_HDR_MODE1_MDEU_HMAC)
8328 +#define DESC_HDR_MODE1_MDEU_SHA1_HMAC (DESC_HDR_MODE1_MDEU_SHA1 | \
8329 + DESC_HDR_MODE1_MDEU_HMAC)
8330 +
8331 +/* direction of overall data flow (DIR) */
8332 +#define DESC_HDR_DIR_INBOUND __constant_cpu_to_be32(0x00000002)
8333 +
8334 +/* request done notification (DN) */
8335 +#define DESC_HDR_DONE_NOTIFY __constant_cpu_to_be32(0x00000001)
8336 +
8337 +/* descriptor types */
8338 +#define DESC_HDR_TYPE_AESU_CTR_NONSNOOP __constant_cpu_to_be32(0 << 3)
8339 +#define DESC_HDR_TYPE_IPSEC_ESP __constant_cpu_to_be32(1 << 3)
8340 +#define DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU __constant_cpu_to_be32(2 << 3)
8341 +#define DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU __constant_cpu_to_be32(4 << 3)
8342 +
8343 +/* link table extent field bits */
8344 +#define DESC_PTR_LNKTBL_JUMP 0x80
8345 +#define DESC_PTR_LNKTBL_RETURN 0x02
8346 +#define DESC_PTR_LNKTBL_NEXT 0x01
8347 --- /dev/null
8348 +++ b/include/crypto/hash.h
8349 @@ -0,0 +1,154 @@
8350 +/*
8351 + * Hash: Hash algorithms under the crypto API
8352 + *
8353 + * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
8354 + *
8355 + * This program is free software; you can redistribute it and/or modify it
8356 + * under the terms of the GNU General Public License as published by the Free
8357 + * Software Foundation; either version 2 of the License, or (at your option)
8358 + * any later version.
8359 + *
8360 + */
8361 +
8362 +#ifndef _CRYPTO_HASH_H
8363 +#define _CRYPTO_HASH_H
8364 +
8365 +#include <linux/crypto.h>
8366 +
8367 +struct crypto_ahash {
8368 + struct crypto_tfm base;
8369 +};
8370 +
8371 +static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
8372 +{
8373 + return (struct crypto_ahash *)tfm;
8374 +}
8375 +
8376 +static inline struct crypto_ahash *crypto_alloc_ahash(const char *alg_name,
8377 + u32 type, u32 mask)
8378 +{
8379 + type &= ~CRYPTO_ALG_TYPE_MASK;
8380 + mask &= ~CRYPTO_ALG_TYPE_MASK;
8381 + type |= CRYPTO_ALG_TYPE_AHASH;
8382 + mask |= CRYPTO_ALG_TYPE_AHASH_MASK;
8383 +
8384 + return __crypto_ahash_cast(crypto_alloc_base(alg_name, type, mask));
8385 +}
8386 +
8387 +static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
8388 +{
8389 + return &tfm->base;
8390 +}
8391 +
8392 +static inline void crypto_free_ahash(struct crypto_ahash *tfm)
8393 +{
8394 + crypto_free_tfm(crypto_ahash_tfm(tfm));
8395 +}
8396 +
8397 +static inline unsigned int crypto_ahash_alignmask(
8398 + struct crypto_ahash *tfm)
8399 +{
8400 + return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
8401 +}
8402 +
8403 +static inline struct ahash_tfm *crypto_ahash_crt(struct crypto_ahash *tfm)
8404 +{
8405 + return &crypto_ahash_tfm(tfm)->crt_ahash;
8406 +}
8407 +
8408 +static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
8409 +{
8410 + return crypto_ahash_crt(tfm)->digestsize;
8411 +}
8412 +
8413 +static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
8414 +{
8415 + return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
8416 +}
8417 +
8418 +static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
8419 +{
8420 + crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
8421 +}
8422 +
8423 +static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
8424 +{
8425 + crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
8426 +}
8427 +
8428 +static inline struct crypto_ahash *crypto_ahash_reqtfm(
8429 + struct ahash_request *req)
8430 +{
8431 + return __crypto_ahash_cast(req->base.tfm);
8432 +}
8433 +
8434 +static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
8435 +{
8436 + return crypto_ahash_crt(tfm)->reqsize;
8437 +}
8438 +
8439 +static inline int crypto_ahash_setkey(struct crypto_ahash *tfm,
8440 + const u8 *key, unsigned int keylen)
8441 +{
8442 + struct ahash_tfm *crt = crypto_ahash_crt(tfm);
8443 +
8444 + return crt->setkey(tfm, key, keylen);
8445 +}
8446 +
8447 +static inline int crypto_ahash_digest(struct ahash_request *req)
8448 +{
8449 + struct ahash_tfm *crt = crypto_ahash_crt(crypto_ahash_reqtfm(req));
8450 + return crt->digest(req);
8451 +}
8452 +
8453 +static inline void ahash_request_set_tfm(struct ahash_request *req,
8454 + struct crypto_ahash *tfm)
8455 +{
8456 + req->base.tfm = crypto_ahash_tfm(tfm);
8457 +}
8458 +
8459 +static inline struct ahash_request *ahash_request_alloc(
8460 + struct crypto_ahash *tfm, gfp_t gfp)
8461 +{
8462 + struct ahash_request *req;
8463 +
8464 + req = kmalloc(sizeof(struct ahash_request) +
8465 + crypto_ahash_reqsize(tfm), gfp);
8466 +
8467 + if (likely(req))
8468 + ahash_request_set_tfm(req, tfm);
8469 +
8470 + return req;
8471 +}
8472 +
8473 +static inline void ahash_request_free(struct ahash_request *req)
8474 +{
8475 + kfree(req);
8476 +}
8477 +
8478 +static inline struct ahash_request *ahash_request_cast(
8479 + struct crypto_async_request *req)
8480 +{
8481 + return container_of(req, struct ahash_request, base);
8482 +}
8483 +
8484 +static inline void ahash_request_set_callback(struct ahash_request *req,
8485 + u32 flags,
8486 + crypto_completion_t complete,
8487 + void *data)
8488 +{
8489 + req->base.complete = complete;
8490 + req->base.data = data;
8491 + req->base.flags = flags;
8492 +}
8493 +
8494 +static inline void ahash_request_set_crypt(struct ahash_request *req,
8495 + struct scatterlist *src, u8 *result,
8496 + unsigned int nbytes)
8497 +{
8498 + req->src = src;
8499 + req->nbytes = nbytes;
8500 + req->result = result;
8501 +}
8502 +
8503 +#endif /* _CRYPTO_HASH_H */
8504 --- /dev/null
8505 +++ b/include/crypto/internal/hash.h
8506 @@ -0,0 +1,78 @@
8507 +/*
8508 + * Hash algorithms.
8509 + *
8510 + * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
8511 + *
8512 + * This program is free software; you can redistribute it and/or modify it
8513 + * under the terms of the GNU General Public License as published by the Free
8514 + * Software Foundation; either version 2 of the License, or (at your option)
8515 + * any later version.
8516 + *
8517 + */
8518 +
8519 +#ifndef _CRYPTO_INTERNAL_HASH_H
8520 +#define _CRYPTO_INTERNAL_HASH_H
8521 +
8522 +#include <crypto/algapi.h>
8523 +#include <crypto/hash.h>
8524 +
8525 +struct ahash_request;
8526 +struct scatterlist;
8527 +
8528 +struct crypto_hash_walk {
8529 + char *data;
8530 +
8531 + unsigned int offset;
8532 + unsigned int alignmask;
8533 +
8534 + struct page *pg;
8535 + unsigned int entrylen;
8536 +
8537 + unsigned int total;
8538 + struct scatterlist *sg;
8539 +
8540 + unsigned int flags;
8541 +};
8542 +
8543 +extern const struct crypto_type crypto_ahash_type;
8544 +
8545 +int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err);
8546 +int crypto_hash_walk_first(struct ahash_request *req,
8547 + struct crypto_hash_walk *walk);
8548 +
8549 +static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm)
8550 +{
8551 + return crypto_tfm_ctx(&tfm->base);
8552 +}
8553 +
8554 +static inline struct ahash_alg *crypto_ahash_alg(
8555 + struct crypto_ahash *tfm)
8556 +{
8557 + return &crypto_ahash_tfm(tfm)->__crt_alg->cra_ahash;
8558 +}
8559 +
8560 +static inline int ahash_enqueue_request(struct crypto_queue *queue,
8561 + struct ahash_request *request)
8562 +{
8563 + return crypto_enqueue_request(queue, &request->base);
8564 +}
8565 +
8566 +static inline struct ahash_request *ahash_dequeue_request(
8567 + struct crypto_queue *queue)
8568 +{
8569 + return ahash_request_cast(crypto_dequeue_request(queue));
8570 +}
8571 +
8572 +static inline void *ahash_request_ctx(struct ahash_request *req)
8573 +{
8574 + return req->__ctx;
8575 +}
8576 +
8577 +static inline int ahash_tfm_in_queue(struct crypto_queue *queue,
8578 + struct crypto_ahash *tfm)
8579 +{
8580 + return crypto_tfm_in_queue(queue, crypto_ahash_tfm(tfm));
8581 +}
8582 +
8583 +#endif /* _CRYPTO_INTERNAL_HASH_H */
8584 +
8585 --- a/include/linux/crypto.h
8586 +++ b/include/linux/crypto.h
8587 @@ -30,15 +30,17 @@
8588 */
8589 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
8590 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
8591 -#define CRYPTO_ALG_TYPE_DIGEST 0x00000002
8592 -#define CRYPTO_ALG_TYPE_HASH 0x00000003
8593 +#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
8594 +#define CRYPTO_ALG_TYPE_AEAD 0x00000003
8595 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
8596 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
8597 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
8598 -#define CRYPTO_ALG_TYPE_COMPRESS 0x00000008
8599 -#define CRYPTO_ALG_TYPE_AEAD 0x00000009
8600 +#define CRYPTO_ALG_TYPE_DIGEST 0x00000008
8601 +#define CRYPTO_ALG_TYPE_HASH 0x00000009
8602 +#define CRYPTO_ALG_TYPE_AHASH 0x0000000a
8603
8604 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
8605 +#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
8606 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
8607
8608 #define CRYPTO_ALG_LARVAL 0x00000010
8609 @@ -102,6 +104,7 @@ struct crypto_async_request;
8610 struct crypto_aead;
8611 struct crypto_blkcipher;
8612 struct crypto_hash;
8613 +struct crypto_ahash;
8614 struct crypto_tfm;
8615 struct crypto_type;
8616 struct aead_givcrypt_request;
8617 @@ -131,6 +134,16 @@ struct ablkcipher_request {
8618 void *__ctx[] CRYPTO_MINALIGN_ATTR;
8619 };
8620
8621 +struct ahash_request {
8622 + struct crypto_async_request base;
8623 +
8624 + unsigned int nbytes;
8625 + struct scatterlist *src;
8626 + u8 *result;
8627 +
8628 + void *__ctx[] CRYPTO_MINALIGN_ATTR;
8629 +};
8630 +
8631 /**
8632 * struct aead_request - AEAD request
8633 * @base: Common attributes for async crypto requests
8634 @@ -195,6 +208,17 @@ struct ablkcipher_alg {
8635 unsigned int ivsize;
8636 };
8637
8638 +struct ahash_alg {
8639 + int (*init)(struct ahash_request *req);
8640 + int (*update)(struct ahash_request *req);
8641 + int (*final)(struct ahash_request *req);
8642 + int (*digest)(struct ahash_request *req);
8643 + int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
8644 + unsigned int keylen);
8645 +
8646 + unsigned int digestsize;
8647 +};
8648 +
8649 struct aead_alg {
8650 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
8651 unsigned int keylen);
8652 @@ -272,6 +296,7 @@ struct compress_alg {
8653 #define cra_cipher cra_u.cipher
8654 #define cra_digest cra_u.digest
8655 #define cra_hash cra_u.hash
8656 +#define cra_ahash cra_u.ahash
8657 #define cra_compress cra_u.compress
8658
8659 struct crypto_alg {
8660 @@ -298,6 +323,7 @@ struct crypto_alg {
8661 struct cipher_alg cipher;
8662 struct digest_alg digest;
8663 struct hash_alg hash;
8664 + struct ahash_alg ahash;
8665 struct compress_alg compress;
8666 } cra_u;
8667
8668 @@ -383,6 +409,18 @@ struct hash_tfm {
8669 unsigned int digestsize;
8670 };
8671
8672 +struct ahash_tfm {
8673 + int (*init)(struct ahash_request *req);
8674 + int (*update)(struct ahash_request *req);
8675 + int (*final)(struct ahash_request *req);
8676 + int (*digest)(struct ahash_request *req);
8677 + int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
8678 + unsigned int keylen);
8679 +
8680 + unsigned int digestsize;
8681 + unsigned int reqsize;
8682 +};
8683 +
8684 struct compress_tfm {
8685 int (*cot_compress)(struct crypto_tfm *tfm,
8686 const u8 *src, unsigned int slen,
8687 @@ -397,6 +435,7 @@ struct compress_tfm {
8688 #define crt_blkcipher crt_u.blkcipher
8689 #define crt_cipher crt_u.cipher
8690 #define crt_hash crt_u.hash
8691 +#define crt_ahash crt_u.ahash
8692 #define crt_compress crt_u.compress
8693
8694 struct crypto_tfm {
8695 @@ -409,6 +448,7 @@ struct crypto_tfm {
8696 struct blkcipher_tfm blkcipher;
8697 struct cipher_tfm cipher;
8698 struct hash_tfm hash;
8699 + struct ahash_tfm ahash;
8700 struct compress_tfm compress;
8701 } crt_u;
8702
This page took 0.459188 seconds and 5 git commands to generate.