[ifxmips-dsl-api] fix firmware handling
[openwrt.git] / target / linux / brcm-2.4 / files / arch / mips / bcm947xx / bcmsrom.c
1 /*
2 * Routines to access SPROM and to parse SROM/CIS variables.
3 *
4 * Copyright 2007, Broadcom Corporation
5 * All Rights Reserved.
6 *
7 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
8 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
9 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
10 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
11 */
12
13 #include <typedefs.h>
14 #include <bcmdefs.h>
15 #include <osl.h>
16 #include <stdarg.h>
17 #include <sbchipc.h>
18 #include <bcmdevs.h>
19 #include <bcmendian.h>
20 #include <sbpcmcia.h>
21 #include <pcicfg.h>
22 #include <sbconfig.h>
23 #include <sbutils.h>
24 #include <bcmsrom.h>
25 #include <bcmnvram.h>
26 #include "utils.h"
27
28 /* debug/trace */
29 #if defined(WLTEST)
30 #define BS_ERROR(args) printf args
31 #else
32 #define BS_ERROR(args)
33 #endif
34
35 #define WRITE_ENABLE_DELAY 500 /* 500 ms after write enable/disable toggle */
36 #define WRITE_WORD_DELAY 20 /* 20 ms between each word write */
37
38 typedef struct varbuf
39 {
40 char *buf; /* pointer to current position */
41 unsigned int size; /* current (residual) size in bytes */
42 } varbuf_t;
43
44 static int initvars_srom_sb (sb_t * sbh, osl_t * osh, void *curmap,
45 char **vars, uint * count);
46 static void _initvars_srom_pci (uint8 sromrev, uint16 * srom, uint off,
47 varbuf_t * b);
48 static int initvars_srom_pci (sb_t * sbh, void *curmap, char **vars,
49 uint * count);
50 static int initvars_cis_pcmcia (sb_t * sbh, osl_t * osh, char **vars,
51 uint * count);
52 #if !defined(BCMUSBDEV) && !defined(BCMSDIODEV)
53 static int initvars_flash_sb (sb_t * sbh, char **vars, uint * count);
54 #endif /* !BCMUSBDEV && !BCMSDIODEV */
55 static int sprom_cmd_pcmcia (osl_t * osh, uint8 cmd);
56 static int sprom_read_pcmcia (osl_t * osh, uint16 addr, uint16 * data);
57 static int sprom_write_pcmcia (osl_t * osh, uint16 addr, uint16 data);
58 static int sprom_read_pci (osl_t * osh, uint16 * sprom, uint wordoff,
59 uint16 * buf, uint nwords, bool check_crc);
60
61 static int initvars_table (osl_t * osh, char *start, char *end, char **vars,
62 uint * count);
63 static int initvars_flash (sb_t * sbh, osl_t * osh, char **vp, uint len);
64
65 #ifdef BCMUSBDEV
66 static int get_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
67 uint boff, uint16 * srom, uint bsz);
68 static int set_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
69 uint boff, uint16 * srom, uint bsz);
70 static uint srom_size (sb_t * sbh, osl_t * osh);
71 #endif /* def BCMUSBDEV */
72
73 /* Initialization of varbuf structure */
74 static void
75 varbuf_init (varbuf_t * b, char *buf, uint size)
76 {
77 b->size = size;
78 b->buf = buf;
79 }
80
81 /* append a null terminated var=value string */
82 static int
83 varbuf_append (varbuf_t * b, const char *fmt, ...)
84 {
85 va_list ap;
86 int r;
87
88 if (b->size < 2)
89 return 0;
90
91 va_start (ap, fmt);
92 r = vsnprintf (b->buf, b->size, fmt, ap);
93 va_end (ap);
94
95 /* C99 snprintf behavior returns r >= size on overflow,
96 * others return -1 on overflow.
97 * All return -1 on format error.
98 * We need to leave room for 2 null terminations, one for the current var
99 * string, and one for final null of the var table. So check that the
100 * strlen written, r, leaves room for 2 chars.
101 */
102 if ((r == -1) || (r > (int) (b->size - 2)))
103 {
104 b->size = 0;
105 return 0;
106 }
107
108 /* skip over this string's null termination */
109 r++;
110 b->size -= r;
111 b->buf += r;
112
113 return r;
114 }
115
116 /*
117 * Initialize local vars from the right source for this platform.
118 * Return 0 on success, nonzero on error.
119 */
120 int
121 BCMINITFN (srom_var_init) (sb_t * sbh, uint bustype, void *curmap,
122 osl_t * osh, char **vars, uint * count)
123 {
124 ASSERT (bustype == BUSTYPE (bustype));
125 if (vars == NULL || count == NULL)
126 return (0);
127
128 *vars = NULL;
129 *count = 0;
130
131 switch (BUSTYPE (bustype))
132 {
133 case SB_BUS:
134 case JTAG_BUS:
135 return initvars_srom_sb (sbh, osh, curmap, vars, count);
136
137 case PCI_BUS:
138 ASSERT (curmap); /* can not be NULL */
139 return initvars_srom_pci (sbh, curmap, vars, count);
140
141 case PCMCIA_BUS:
142 return initvars_cis_pcmcia (sbh, osh, vars, count);
143
144
145 default:
146 ASSERT (0);
147 }
148 return (-1);
149 }
150
151 /* support only 16-bit word read from srom */
152 int
153 srom_read (sb_t * sbh, uint bustype, void *curmap, osl_t * osh,
154 uint byteoff, uint nbytes, uint16 * buf)
155 {
156 void *srom;
157 uint i, off, nw;
158
159 ASSERT (bustype == BUSTYPE (bustype));
160
161 /* check input - 16-bit access only */
162 if (byteoff & 1 || nbytes & 1 || (byteoff + nbytes) > (SPROM_SIZE * 2))
163 return 1;
164
165 off = byteoff / 2;
166 nw = nbytes / 2;
167
168 if (BUSTYPE (bustype) == PCI_BUS)
169 {
170 if (!curmap)
171 return 1;
172 srom = (uchar *) curmap + PCI_BAR0_SPROM_OFFSET;
173 if (sprom_read_pci (osh, srom, off, buf, nw, FALSE))
174 return 1;
175 }
176 else if (BUSTYPE (bustype) == PCMCIA_BUS)
177 {
178 for (i = 0; i < nw; i++)
179 {
180 if (sprom_read_pcmcia
181 (osh, (uint16) (off + i), (uint16 *) (buf + i)))
182 return 1;
183 }
184 }
185 else if (BUSTYPE (bustype) == SB_BUS)
186 {
187 #ifdef BCMUSBDEV
188 if (SPROMBUS == PCMCIA_BUS)
189 {
190 uint origidx;
191 void *regs;
192 int rc;
193 bool wasup;
194
195 origidx = sb_coreidx (sbh);
196 regs = sb_setcore (sbh, SB_PCMCIA, 0);
197 ASSERT (regs != NULL);
198
199 if (!(wasup = sb_iscoreup (sbh)))
200 sb_core_reset (sbh, 0, 0);
201
202 rc = get_sb_pcmcia_srom (sbh, osh, regs, byteoff, buf, nbytes);
203
204 if (!wasup)
205 sb_core_disable (sbh, 0);
206
207 sb_setcoreidx (sbh, origidx);
208 return rc;
209 }
210 #endif /* def BCMUSBDEV */
211
212 return 1;
213 }
214 else
215 {
216 return 1;
217 }
218
219 return 0;
220 }
221
222 /* support only 16-bit word write into srom */
223 int
224 srom_write (sb_t * sbh, uint bustype, void *curmap, osl_t * osh,
225 uint byteoff, uint nbytes, uint16 * buf)
226 {
227 uint16 *srom;
228 uint i, nw, crc_range;
229 uint16 image[SPROM_SIZE];
230 uint8 crc;
231 volatile uint32 val32;
232
233 ASSERT (bustype == BUSTYPE (bustype));
234
235 /* check input - 16-bit access only */
236 if ((byteoff & 1) || (nbytes & 1))
237 return 1;
238
239 if (byteoff == 0x55aa)
240 {
241 /* Erase request */
242 crc_range = 0;
243 memset ((void *) image, 0xff, nbytes);
244 nw = nbytes / 2;
245 }
246 else if ((byteoff == 0) &&
247 ((nbytes == SPROM_SIZE * 2) ||
248 (nbytes == (SPROM_CRC_RANGE * 2)) ||
249 (nbytes == (SROM4_WORDS * 2))))
250 {
251 /* Are we writing the whole thing at once? */
252 crc_range = nbytes;
253 bcopy ((void *) buf, (void *) image, nbytes);
254 nw = nbytes / 2;
255 }
256 else
257 {
258 if ((byteoff + nbytes) > (SPROM_SIZE * 2))
259 return 1;
260
261 if (BUSTYPE (bustype) == PCMCIA_BUS)
262 {
263 crc_range = SPROM_SIZE * 2;
264 }
265 else
266 {
267 crc_range = SPROM_CRC_RANGE * 2; /* Tentative */
268 }
269
270 nw = crc_range / 2;
271 /* read first 64 words from srom */
272 if (srom_read (sbh, bustype, curmap, osh, 0, crc_range, image))
273 return 1;
274 if (image[SROM4_SIGN] == SROM4_SIGNATURE)
275 {
276 nw = SROM4_WORDS;
277 crc_range = nw * 2;
278 if (srom_read (sbh, bustype, curmap, osh, 0, crc_range, image))
279 return 1;
280 }
281 /* make changes */
282 bcopy ((void *) buf, (void *) &image[byteoff / 2], nbytes);
283 }
284
285 if (crc_range)
286 {
287 /* calculate crc */
288 htol16_buf (image, crc_range);
289 crc = ~hndcrc8 ((uint8 *) image, crc_range - 1, 0xff);
290 ltoh16_buf (image, crc_range);
291 image[nw - 1] = (crc << 8) | (image[nw - 1] & 0xff);
292 }
293
294 if (BUSTYPE (bustype) == PCI_BUS)
295 {
296 srom = (uint16 *) ((uchar *) curmap + PCI_BAR0_SPROM_OFFSET);
297 /* enable writes to the SPROM */
298 val32 = OSL_PCI_READ_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32));
299 val32 |= SPROM_WRITEEN;
300 OSL_PCI_WRITE_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32), val32);
301 bcm_mdelay (WRITE_ENABLE_DELAY);
302 /* write srom */
303 for (i = 0; i < nw; i++)
304 {
305 W_REG (osh, &srom[i], image[i]);
306 bcm_mdelay (WRITE_WORD_DELAY);
307 }
308 /* disable writes to the SPROM */
309 OSL_PCI_WRITE_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32), val32 &
310 ~SPROM_WRITEEN);
311 }
312 else if (BUSTYPE (bustype) == PCMCIA_BUS)
313 {
314 /* enable writes to the SPROM */
315 if (sprom_cmd_pcmcia (osh, SROM_WEN))
316 return 1;
317 bcm_mdelay (WRITE_ENABLE_DELAY);
318 /* write srom */
319 for (i = 0; i < nw; i++)
320 {
321 sprom_write_pcmcia (osh, (uint16) (i), image[i]);
322 bcm_mdelay (WRITE_WORD_DELAY);
323 }
324 /* disable writes to the SPROM */
325 if (sprom_cmd_pcmcia (osh, SROM_WDS))
326 return 1;
327 }
328 else if (BUSTYPE (bustype) == SB_BUS)
329 {
330 #ifdef BCMUSBDEV
331 if (SPROMBUS == PCMCIA_BUS)
332 {
333 uint origidx;
334 void *regs;
335 int rc;
336 bool wasup;
337
338 origidx = sb_coreidx (sbh);
339 regs = sb_setcore (sbh, SB_PCMCIA, 0);
340 ASSERT (regs != NULL);
341
342 if (!(wasup = sb_iscoreup (sbh)))
343 sb_core_reset (sbh, 0, 0);
344
345 rc = set_sb_pcmcia_srom (sbh, osh, regs, byteoff, buf, nbytes);
346
347 if (!wasup)
348 sb_core_disable (sbh, 0);
349
350 sb_setcoreidx (sbh, origidx);
351 return rc;
352 }
353 #endif /* def BCMUSBDEV */
354 return 1;
355 }
356 else
357 {
358 return 1;
359 }
360
361 bcm_mdelay (WRITE_ENABLE_DELAY);
362 return 0;
363 }
364
365 #ifdef BCMUSBDEV
366 #define SB_PCMCIA_READ(osh, regs, fcr) \
367 R_REG(osh, (volatile uint8 *)(regs) + 0x600 + (fcr) - 0x700 / 2)
368 #define SB_PCMCIA_WRITE(osh, regs, fcr, v) \
369 W_REG(osh, (volatile uint8 *)(regs) + 0x600 + (fcr) - 0x700 / 2, v)
370
371 /* set PCMCIA srom command register */
372 static int
373 srom_cmd_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint8 cmd)
374 {
375 uint8 status = 0;
376 uint wait_cnt = 0;
377
378 /* write srom command register */
379 SB_PCMCIA_WRITE (osh, pcmregs, SROM_CS, cmd);
380
381 /* wait status */
382 while (++wait_cnt < 1000000)
383 {
384 status = SB_PCMCIA_READ (osh, pcmregs, SROM_CS);
385 if (status & SROM_DONE)
386 return 0;
387 OSL_DELAY (1);
388 }
389
390 BS_ERROR (("sr_cmd: Give up after %d tries, stat = 0x%x\n", wait_cnt,
391 status));
392 return 1;
393 }
394
395 /* read a word from the PCMCIA srom over SB */
396 static int
397 srom_read_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint16 addr, uint16 * data)
398 {
399 uint8 addr_l, addr_h, data_l, data_h;
400
401 addr_l = (uint8) ((addr * 2) & 0xff);
402 addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
403
404 /* set address */
405 SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRH, addr_h);
406 SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRL, addr_l);
407
408 /* do read */
409 if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_READ))
410 return 1;
411
412 /* read data */
413 data_h = SB_PCMCIA_READ (osh, pcmregs, SROM_DATAH);
414 data_l = SB_PCMCIA_READ (osh, pcmregs, SROM_DATAL);
415 *data = ((uint16) data_h << 8) | data_l;
416
417 return 0;
418 }
419
420 /* write a word to the PCMCIA srom over SB */
421 static int
422 srom_write_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint16 addr, uint16 data)
423 {
424 uint8 addr_l, addr_h, data_l, data_h;
425 int rc;
426
427 addr_l = (uint8) ((addr * 2) & 0xff);
428 addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
429
430 /* set address */
431 SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRH, addr_h);
432 SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRL, addr_l);
433
434 data_l = (uint8) (data & 0xff);
435 data_h = (uint8) ((data >> 8) & 0xff);
436
437 /* write data */
438 SB_PCMCIA_WRITE (osh, pcmregs, SROM_DATAH, data_h);
439 SB_PCMCIA_WRITE (osh, pcmregs, SROM_DATAL, data_l);
440
441 /* do write */
442 rc = srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WRITE);
443 OSL_DELAY (20000);
444 return rc;
445 }
446
447 /*
448 * Read the srom for the pcmcia-srom over sb case.
449 * Return 0 on success, nonzero on error.
450 */
451 static int
452 get_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
453 uint boff, uint16 * srom, uint bsz)
454 {
455 uint i, nw, woff, wsz;
456 int err = 0;
457
458 /* read must be at word boundary */
459 ASSERT ((boff & 1) == 0 && (bsz & 1) == 0);
460
461 /* read sprom size and validate the parms */
462 if ((nw = srom_size (sbh, osh)) == 0)
463 {
464 BS_ERROR (("get_sb_pcmcia_srom: sprom size unknown\n"));
465 err = -1;
466 goto out;
467 }
468 if (boff + bsz > 2 * nw)
469 {
470 BS_ERROR (("get_sb_pcmcia_srom: sprom size exceeded\n"));
471 err = -2;
472 goto out;
473 }
474
475 /* read in sprom contents */
476 for (woff = boff / 2, wsz = bsz / 2, i = 0;
477 woff < nw && i < wsz; woff++, i++)
478 {
479 if (srom_read_sb_pcmcia (osh, pcmregs, (uint16) woff, &srom[i]))
480 {
481 BS_ERROR (("get_sb_pcmcia_srom: sprom read failed\n"));
482 err = -3;
483 goto out;
484 }
485 }
486
487 out:
488 return err;
489 }
490
491 /*
492 * Write the srom for the pcmcia-srom over sb case.
493 * Return 0 on success, nonzero on error.
494 */
495 static int
496 set_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
497 uint boff, uint16 * srom, uint bsz)
498 {
499 uint i, nw, woff, wsz;
500 uint16 word;
501 uint8 crc;
502 int err = 0;
503
504 /* write must be at word boundary */
505 ASSERT ((boff & 1) == 0 && (bsz & 1) == 0);
506
507 /* read sprom size and validate the parms */
508 if ((nw = srom_size (sbh, osh)) == 0)
509 {
510 BS_ERROR (("set_sb_pcmcia_srom: sprom size unknown\n"));
511 err = -1;
512 goto out;
513 }
514 if (boff + bsz > 2 * nw)
515 {
516 BS_ERROR (("set_sb_pcmcia_srom: sprom size exceeded\n"));
517 err = -2;
518 goto out;
519 }
520
521 /* enable write */
522 if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WEN))
523 {
524 BS_ERROR (("set_sb_pcmcia_srom: sprom wen failed\n"));
525 err = -3;
526 goto out;
527 }
528
529 /* write buffer to sprom */
530 for (woff = boff / 2, wsz = bsz / 2, i = 0;
531 woff < nw && i < wsz; woff++, i++)
532 {
533 if (srom_write_sb_pcmcia (osh, pcmregs, (uint16) woff, srom[i]))
534 {
535 BS_ERROR (("set_sb_pcmcia_srom: sprom write failed\n"));
536 err = -4;
537 goto out;
538 }
539 }
540
541 /* fix crc */
542 crc = 0xff;
543 for (woff = 0; woff < nw; woff++)
544 {
545 if (srom_read_sb_pcmcia (osh, pcmregs, (uint16) woff, &word))
546 {
547 BS_ERROR (("set_sb_pcmcia_srom: sprom fix crc read failed\n"));
548 err = -5;
549 goto out;
550 }
551 word = htol16 (word);
552 crc = hndcrc8 ((uint8 *) & word, woff != nw - 1 ? 2 : 1, crc);
553 }
554 word = (~crc << 8) + (ltoh16 (word) & 0xff);
555 if (srom_write_sb_pcmcia (osh, pcmregs, (uint16) (woff - 1), word))
556 {
557 BS_ERROR (("set_sb_pcmcia_srom: sprom fix crc write failed\n"));
558 err = -6;
559 goto out;
560 }
561
562 /* disable write */
563 if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WDS))
564 {
565 BS_ERROR (("set_sb_pcmcia_srom: sprom wds failed\n"));
566 err = -7;
567 goto out;
568 }
569
570 out:
571 return err;
572 }
573 #endif /* def BCMUSBDEV */
574
575 int
576 srom_parsecis (osl_t * osh, uint8 * pcis[], uint ciscnt, char **vars,
577 uint * count)
578 {
579 char eabuf[32];
580 char *base;
581 varbuf_t b;
582 uint8 *cis, tup, tlen, sromrev = 1;
583 int i, j;
584 uint varsize;
585 bool ag_init = FALSE;
586 uint32 w32;
587 uint funcid;
588 uint cisnum;
589 int32 boardnum = -1;
590
591 ASSERT (vars);
592 ASSERT (count);
593
594 base = MALLOC (osh, MAXSZ_NVRAM_VARS);
595 ASSERT (base);
596 if (!base)
597 return -2;
598
599 varbuf_init (&b, base, MAXSZ_NVRAM_VARS);
600
601 eabuf[0] = '\0';
602 for (cisnum = 0; cisnum < ciscnt; cisnum++)
603 {
604 cis = *pcis++;
605 i = 0;
606 funcid = 0;
607 do
608 {
609 tup = cis[i++];
610 tlen = cis[i++];
611 if ((i + tlen) >= CIS_SIZE)
612 break;
613
614 switch (tup)
615 {
616 case CISTPL_VERS_1:
617 /* assume the strings are good if the version field checks out */
618 if (((cis[i + 1] << 8) + cis[i]) >= 0x0008)
619 {
620 varbuf_append (&b, "manf=%s", &cis[i + 2]);
621 varbuf_append (&b, "productname=%s",
622 &cis[i + 3 + strlen ((char *) &cis[i + 2])]);
623 break;
624 }
625
626 case CISTPL_MANFID:
627 varbuf_append (&b, "manfid=0x%x", (cis[i + 1] << 8) + cis[i]);
628 varbuf_append (&b, "prodid=0x%x",
629 (cis[i + 3] << 8) + cis[i + 2]);
630 break;
631
632 case CISTPL_FUNCID:
633 funcid = cis[i];
634 break;
635
636 case CISTPL_FUNCE:
637 switch (funcid)
638 {
639 default:
640 /* set macaddr if HNBU_MACADDR not seen yet */
641 if (eabuf[0] == '\0' && cis[i] == LAN_NID)
642 {
643 ASSERT (cis[i + 1] == ETHER_ADDR_LEN);
644 bcm_ether_ntoa ((struct ether_addr *) &cis[i + 2],
645 eabuf);
646 }
647 /* set boardnum if HNBU_BOARDNUM not seen yet */
648 if (boardnum == -1)
649 boardnum = (cis[i + 6] << 8) + cis[i + 7];
650 break;
651 }
652 break;
653
654 case CISTPL_CFTABLE:
655 varbuf_append (&b, "regwindowsz=%d",
656 (cis[i + 7] << 8) | cis[i + 6]);
657 break;
658
659 case CISTPL_BRCM_HNBU:
660 switch (cis[i])
661 {
662 case HNBU_SROMREV:
663 sromrev = cis[i + 1];
664 varbuf_append (&b, "sromrev=%d", sromrev);
665 break;
666
667 case HNBU_CHIPID:
668 varbuf_append (&b, "vendid=0x%x", (cis[i + 2] << 8) +
669 cis[i + 1]);
670 varbuf_append (&b, "devid=0x%x", (cis[i + 4] << 8) +
671 cis[i + 3]);
672 if (tlen >= 7)
673 {
674 varbuf_append (&b, "chiprev=%d",
675 (cis[i + 6] << 8) + cis[i + 5]);
676 }
677 if (tlen >= 9)
678 {
679 varbuf_append (&b, "subvendid=0x%x",
680 (cis[i + 8] << 8) + cis[i + 7]);
681 }
682 if (tlen >= 11)
683 {
684 varbuf_append (&b, "subdevid=0x%x",
685 (cis[i + 10] << 8) + cis[i + 9]);
686 /* subdevid doubles for boardtype */
687 varbuf_append (&b, "boardtype=0x%x",
688 (cis[i + 10] << 8) + cis[i + 9]);
689 }
690 break;
691
692 case HNBU_BOARDREV:
693 varbuf_append (&b, "boardrev=0x%x", cis[i + 1]);
694 break;
695
696 case HNBU_AA:
697 varbuf_append (&b, "aa2g=%d", cis[i + 1]);
698 break;
699
700 case HNBU_AG:
701 varbuf_append (&b, "ag0=%d", cis[i + 1]);
702 ag_init = TRUE;
703 break;
704
705 case HNBU_ANT5G:
706 varbuf_append (&b, "aa5g=%d", cis[i + 1]);
707 varbuf_append (&b, "ag1=%d", cis[i + 2]);
708 break;
709
710 case HNBU_CC:
711 ASSERT (sromrev == 1);
712 varbuf_append (&b, "cc=%d", cis[i + 1]);
713 break;
714
715 case HNBU_PAPARMS:
716 if (tlen == 2)
717 {
718 ASSERT (sromrev == 1);
719 varbuf_append (&b, "pa0maxpwr=%d", cis[i + 1]);
720 }
721 else if (tlen >= 9)
722 {
723 if (tlen == 10)
724 {
725 ASSERT (sromrev >= 2);
726 varbuf_append (&b, "opo=%d", cis[i + 9]);
727 }
728 else
729 ASSERT (tlen == 9);
730
731 for (j = 0; j < 3; j++)
732 {
733 varbuf_append (&b, "pa0b%d=%d", j,
734 (cis[i + (j * 2) + 2] << 8) +
735 cis[i + (j * 2) + 1]);
736 }
737 varbuf_append (&b, "pa0itssit=%d", cis[i + 7]);
738 varbuf_append (&b, "pa0maxpwr=%d", cis[i + 8]);
739 }
740 else
741 ASSERT (tlen >= 9);
742 break;
743
744 case HNBU_PAPARMS5G:
745 ASSERT ((sromrev == 2) || (sromrev == 3));
746 for (j = 0; j < 3; j++)
747 {
748 varbuf_append (&b, "pa1b%d=%d", j,
749 (cis[i + (j * 2) + 2] << 8) +
750 cis[i + (j * 2) + 1]);
751 }
752 for (j = 3; j < 6; j++)
753 {
754 varbuf_append (&b, "pa1lob%d=%d", j - 3,
755 (cis[i + (j * 2) + 2] << 8) +
756 cis[i + (j * 2) + 1]);
757 }
758 for (j = 6; j < 9; j++)
759 {
760 varbuf_append (&b, "pa1hib%d=%d", j - 6,
761 (cis[i + (j * 2) + 2] << 8) +
762 cis[i + (j * 2) + 1]);
763 }
764 varbuf_append (&b, "pa1itssit=%d", cis[i + 19]);
765 varbuf_append (&b, "pa1maxpwr=%d", cis[i + 20]);
766 varbuf_append (&b, "pa1lomaxpwr=%d", cis[i + 21]);
767 varbuf_append (&b, "pa1himaxpwr=%d", cis[i + 22]);
768 break;
769
770 case HNBU_OEM:
771 ASSERT (sromrev == 1);
772 varbuf_append (&b, "oem=%02x%02x%02x%02x%02x%02x%02x%02x",
773 cis[i + 1], cis[i + 2],
774 cis[i + 3], cis[i + 4],
775 cis[i + 5], cis[i + 6],
776 cis[i + 7], cis[i + 8]);
777 break;
778
779 case HNBU_BOARDFLAGS:
780 w32 = (cis[i + 2] << 8) + cis[i + 1];
781 if (tlen == 5)
782 w32 |= (cis[i + 4] << 24) + (cis[i + 3] << 16);
783 varbuf_append (&b, "boardflags=0x%x", w32);
784 break;
785
786 case HNBU_LEDS:
787 if (cis[i + 1] != 0xff)
788 {
789 varbuf_append (&b, "ledbh0=%d", cis[i + 1]);
790 }
791 if (cis[i + 2] != 0xff)
792 {
793 varbuf_append (&b, "ledbh1=%d", cis[i + 2]);
794 }
795 if (cis[i + 3] != 0xff)
796 {
797 varbuf_append (&b, "ledbh2=%d", cis[i + 3]);
798 }
799 if (cis[i + 4] != 0xff)
800 {
801 varbuf_append (&b, "ledbh3=%d", cis[i + 4]);
802 }
803 break;
804
805 case HNBU_CCODE:
806 ASSERT (sromrev > 1);
807 if ((cis[i + 1] == 0) || (cis[i + 2] == 0))
808 varbuf_append (&b, "ccode=");
809 else
810 varbuf_append (&b, "ccode=%c%c", cis[i + 1], cis[i + 2]);
811 varbuf_append (&b, "cctl=0x%x", cis[i + 3]);
812 break;
813
814 case HNBU_CCKPO:
815 ASSERT (sromrev > 2);
816 varbuf_append (&b, "cckpo=0x%x",
817 (cis[i + 2] << 8) | cis[i + 1]);
818 break;
819
820 case HNBU_OFDMPO:
821 ASSERT (sromrev > 2);
822 varbuf_append (&b, "ofdmpo=0x%x",
823 (cis[i + 4] << 24) |
824 (cis[i + 3] << 16) |
825 (cis[i + 2] << 8) | cis[i + 1]);
826 break;
827
828 case HNBU_RDLID:
829 varbuf_append (&b, "rdlid=0x%x",
830 (cis[i + 2] << 8) | cis[i + 1]);
831 break;
832
833 case HNBU_RDLRNDIS:
834 varbuf_append (&b, "rdlrndis=%d", cis[i + 1]);
835 break;
836
837 case HNBU_RDLRWU:
838 varbuf_append (&b, "rdlrwu=%d", cis[i + 1]);
839 break;
840
841 case HNBU_RDLSN:
842 varbuf_append (&b, "rdlsn=%d",
843 (cis[i + 2] << 8) | cis[i + 1]);
844 break;
845
846 case HNBU_XTALFREQ:
847 varbuf_append (&b, "xtalfreq=%d",
848 (cis[i + 4] << 24) |
849 (cis[i + 3] << 16) |
850 (cis[i + 2] << 8) | cis[i + 1]);
851 break;
852
853 case HNBU_RSSISMBXA2G:
854 ASSERT (sromrev == 3);
855 varbuf_append (&b, "rssismf2g=%d", cis[i + 1] & 0xf);
856 varbuf_append (&b, "rssismc2g=%d", (cis[i + 1] >> 4) & 0xf);
857 varbuf_append (&b, "rssisav2g=%d", cis[i + 2] & 0x7);
858 varbuf_append (&b, "bxa2g=%d", (cis[i + 2] >> 3) & 0x3);
859 break;
860
861 case HNBU_RSSISMBXA5G:
862 ASSERT (sromrev == 3);
863 varbuf_append (&b, "rssismf5g=%d", cis[i + 1] & 0xf);
864 varbuf_append (&b, "rssismc5g=%d", (cis[i + 1] >> 4) & 0xf);
865 varbuf_append (&b, "rssisav5g=%d", cis[i + 2] & 0x7);
866 varbuf_append (&b, "bxa5g=%d", (cis[i + 2] >> 3) & 0x3);
867 break;
868
869 case HNBU_TRI2G:
870 ASSERT (sromrev == 3);
871 varbuf_append (&b, "tri2g=%d", cis[i + 1]);
872 break;
873
874 case HNBU_TRI5G:
875 ASSERT (sromrev == 3);
876 varbuf_append (&b, "tri5gl=%d", cis[i + 1]);
877 varbuf_append (&b, "tri5g=%d", cis[i + 2]);
878 varbuf_append (&b, "tri5gh=%d", cis[i + 3]);
879 break;
880
881 case HNBU_RXPO2G:
882 ASSERT (sromrev == 3);
883 varbuf_append (&b, "rxpo2g=%d", cis[i + 1]);
884 break;
885
886 case HNBU_RXPO5G:
887 ASSERT (sromrev == 3);
888 varbuf_append (&b, "rxpo5g=%d", cis[i + 1]);
889 break;
890
891 case HNBU_BOARDNUM:
892 boardnum = (cis[i + 2] << 8) + cis[i + 1];
893 break;
894
895 case HNBU_MACADDR:
896 bcm_ether_ntoa ((struct ether_addr *) &cis[i + 1], eabuf);
897 break;
898
899 case HNBU_BOARDTYPE:
900 varbuf_append (&b, "boardtype=0x%x",
901 (cis[i + 2] << 8) + cis[i + 1]);
902 break;
903
904 #if defined(BCMCCISSR3)
905 case HNBU_SROM3SWRGN:
906 {
907 uint16 srom[35];
908 uint8 srev = cis[i + 1 + 70];
909 ASSERT (srev == 3);
910 /* make tuple value 16-bit aligned and parse it */
911 bcopy (&cis[i + 1], srom, sizeof (srom));
912 _initvars_srom_pci (srev, srom, SROM3_SWRGN_OFF, &b);
913 /* create extra variables */
914 varbuf_append (&b, "vendid=0x%x",
915 (cis[i + 1 + 73] << 8) + cis[i + 1 + 72]);
916 varbuf_append (&b, "devid=0x%x",
917 (cis[i + 1 + 75] << 8) + cis[i + 1 + 74]);
918 varbuf_append (&b, "xtalfreq=%d",
919 (cis[i + 1 + 77] << 8) + cis[i + 1 + 76]);
920 /* 2.4G antenna gain is included in SROM */
921 ag_init = TRUE;
922 /* Ethernet MAC address is included in SROM */
923 eabuf[0] = 0;
924 boardnum = -1;
925 break;
926 }
927 #endif
928 }
929 break;
930 }
931 i += tlen;
932 }
933 while (tup != CISTPL_END);
934 }
935
936 if (boardnum != -1)
937 {
938 varbuf_append (&b, "boardnum=%d", boardnum);
939 }
940
941 if (eabuf[0])
942 {
943 varbuf_append (&b, "macaddr=%s", eabuf);
944 }
945
946 /* if there is no antenna gain field, set default */
947 if (ag_init == FALSE)
948 {
949 varbuf_append (&b, "ag0=%d", 0xff);
950 }
951
952 /* final nullbyte terminator */
953 ASSERT (b.size >= 1);
954 *b.buf++ = '\0';
955 varsize = (uint) (b.buf - base);
956 ASSERT (varsize < MAXSZ_NVRAM_VARS);
957 if (varsize < MAXSZ_NVRAM_VARS)
958 {
959 char *new_buf;
960 new_buf = (char *) MALLOC (osh, varsize);
961 ASSERT (new_buf);
962 if (new_buf)
963 {
964 bcopy (base, new_buf, varsize);
965 MFREE (osh, base, MAXSZ_NVRAM_VARS);
966 base = new_buf;
967 }
968 }
969
970 *vars = base;
971 *count = varsize;
972
973 return (0);
974 }
975
976
977 /* set PCMCIA sprom command register */
978 static int
979 sprom_cmd_pcmcia (osl_t * osh, uint8 cmd)
980 {
981 uint8 status = 0;
982 uint wait_cnt = 1000;
983
984 /* write sprom command register */
985 OSL_PCMCIA_WRITE_ATTR (osh, SROM_CS, &cmd, 1);
986
987 /* wait status */
988 while (wait_cnt--)
989 {
990 OSL_PCMCIA_READ_ATTR (osh, SROM_CS, &status, 1);
991 if (status & SROM_DONE)
992 return 0;
993 }
994
995 return 1;
996 }
997
998 /* read a word from the PCMCIA srom */
999 static int
1000 sprom_read_pcmcia (osl_t * osh, uint16 addr, uint16 * data)
1001 {
1002 uint8 addr_l, addr_h, data_l, data_h;
1003
1004 addr_l = (uint8) ((addr * 2) & 0xff);
1005 addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
1006
1007 /* set address */
1008 OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRH, &addr_h, 1);
1009 OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRL, &addr_l, 1);
1010
1011 /* do read */
1012 if (sprom_cmd_pcmcia (osh, SROM_READ))
1013 return 1;
1014
1015 /* read data */
1016 data_h = data_l = 0;
1017 OSL_PCMCIA_READ_ATTR (osh, SROM_DATAH, &data_h, 1);
1018 OSL_PCMCIA_READ_ATTR (osh, SROM_DATAL, &data_l, 1);
1019
1020 *data = (data_h << 8) | data_l;
1021 return 0;
1022 }
1023
1024 /* write a word to the PCMCIA srom */
1025 static int
1026 sprom_write_pcmcia (osl_t * osh, uint16 addr, uint16 data)
1027 {
1028 uint8 addr_l, addr_h, data_l, data_h;
1029
1030 addr_l = (uint8) ((addr * 2) & 0xff);
1031 addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
1032 data_l = (uint8) (data & 0xff);
1033 data_h = (uint8) ((data >> 8) & 0xff);
1034
1035 /* set address */
1036 OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRH, &addr_h, 1);
1037 OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRL, &addr_l, 1);
1038
1039 /* write data */
1040 OSL_PCMCIA_WRITE_ATTR (osh, SROM_DATAH, &data_h, 1);
1041 OSL_PCMCIA_WRITE_ATTR (osh, SROM_DATAL, &data_l, 1);
1042
1043 /* do write */
1044 return sprom_cmd_pcmcia (osh, SROM_WRITE);
1045 }
1046
1047 /*
1048 * Read in and validate sprom.
1049 * Return 0 on success, nonzero on error.
1050 */
1051 static int
1052 sprom_read_pci (osl_t * osh, uint16 * sprom, uint wordoff, uint16 * buf,
1053 uint nwords, bool check_crc)
1054 {
1055 int err = 0;
1056 uint i;
1057
1058 /* read the sprom */
1059 for (i = 0; i < nwords; i++)
1060 {
1061 #ifdef BCMQT
1062 buf[i] = R_REG (osh, &sprom[wordoff + i]);
1063 #endif
1064 buf[i] = R_REG (osh, &sprom[wordoff + i]);
1065 }
1066
1067 if (check_crc)
1068 {
1069 if (buf[0] == 0xffff)
1070 {
1071 /* The hardware thinks that an srom that starts with 0xffff
1072 * is blank, regardless of the rest of the content, so declare
1073 * it bad.
1074 */
1075 BS_ERROR (("%s: buf[0] = 0x%x, returning bad-crc\n", __FUNCTION__,
1076 buf[0]));
1077 return 1;
1078 }
1079
1080 /* fixup the endianness so crc8 will pass */
1081 htol16_buf (buf, nwords * 2);
1082 if (hndcrc8 ((uint8 *) buf, nwords * 2, 0xff) != 0x9f)
1083 err = 1;
1084 /* now correct the endianness of the byte array */
1085 ltoh16_buf (buf, nwords * 2);
1086 }
1087
1088 return err;
1089 }
1090
1091 /*
1092 * Create variable table from memory.
1093 * Return 0 on success, nonzero on error.
1094 */
1095 static int
1096 BCMINITFN (initvars_table) (osl_t * osh, char *start, char *end, char **vars,
1097 uint * count)
1098 {
1099 int c = (int) (end - start);
1100
1101 /* do it only when there is more than just the null string */
1102 if (c > 1)
1103 {
1104 char *vp = MALLOC (osh, c);
1105 ASSERT (vp);
1106 if (!vp)
1107 return BCME_NOMEM;
1108 bcopy (start, vp, c);
1109 *vars = vp;
1110 *count = c;
1111 }
1112 else
1113 {
1114 *vars = NULL;
1115 *count = 0;
1116 }
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * Find variables with <devpath> from flash. 'base' points to the beginning
1123 * of the table upon enter and to the end of the table upon exit when success.
1124 * Return 0 on success, nonzero on error.
1125 */
1126 static int
1127 initvars_flash (sb_t * sbh, osl_t * osh, char **base, uint len)
1128 {
1129 char *vp = *base;
1130 char *flash;
1131 int err;
1132 char *s;
1133 uint l, dl, copy_len;
1134 char devpath[SB_DEVPATH_BUFSZ];
1135
1136 /* allocate memory and read in flash */
1137 if (!(flash = MALLOC (osh, NVRAM_SPACE)))
1138 return BCME_NOMEM;
1139 if ((err = nvram_getall (flash, NVRAM_SPACE)))
1140 goto exit;
1141
1142 sb_devpath (sbh, devpath, sizeof (devpath));
1143
1144 /* grab vars with the <devpath> prefix in name */
1145 dl = strlen (devpath);
1146 for (s = flash; s && *s; s += l + 1)
1147 {
1148 l = strlen (s);
1149
1150 /* skip non-matching variable */
1151 if (strncmp (s, devpath, dl))
1152 continue;
1153
1154 /* is there enough room to copy? */
1155 copy_len = l - dl + 1;
1156 if (len < copy_len)
1157 {
1158 err = BCME_BUFTOOSHORT;
1159 goto exit;
1160 }
1161
1162 /* no prefix, just the name=value */
1163 strncpy (vp, &s[dl], copy_len);
1164 vp += copy_len;
1165 len -= copy_len;
1166 }
1167
1168 /* add null string as terminator */
1169 if (len < 1)
1170 {
1171 err = BCME_BUFTOOSHORT;
1172 goto exit;
1173 }
1174 *vp++ = '\0';
1175
1176 *base = vp;
1177
1178 exit:MFREE (osh, flash, NVRAM_SPACE);
1179 return err;
1180 }
1181
1182 #if !defined(BCMUSBDEV) && !defined(BCMSDIODEV)
1183 /*
1184 * Initialize nonvolatile variable table from flash.
1185 * Return 0 on success, nonzero on error.
1186 */
1187 static int
1188 initvars_flash_sb (sb_t * sbh, char **vars, uint * count)
1189 {
1190 osl_t *osh = sb_osh (sbh);
1191 char *vp, *base;
1192 int err;
1193
1194 ASSERT (vars);
1195 ASSERT (count);
1196
1197 base = vp = MALLOC (osh, MAXSZ_NVRAM_VARS);
1198 ASSERT (vp);
1199 if (!vp)
1200 return BCME_NOMEM;
1201
1202 if ((err = initvars_flash (sbh, osh, &vp, MAXSZ_NVRAM_VARS)) == 0)
1203 err = initvars_table (osh, base, vp, vars, count);
1204
1205 MFREE (osh, base, MAXSZ_NVRAM_VARS);
1206
1207 return err;
1208 }
1209 #endif /* !BCMUSBDEV && !BCMSDIODEV */
1210
1211 #ifdef WLTEST
1212 char mfgsromvars[256];
1213 char *defaultsromvars = "il0macaddr=00:11:22:33:44:51\0"
1214 "et0macaddr=00:11:22:33:44:52\0"
1215 "et1macaddr=00:11:22:33:44:53\0"
1216 "boardtype=0xffff\0"
1217 "boardrev=0x10\0" "boardflags=8\0" "sromrev=2\0" "aa2g=3\0" "\0";
1218 #define MFGSROM_DEFVARSLEN 149 /* default srom len */
1219 #endif /* WL_TEST */
1220
1221 /*
1222 * Initialize nonvolatile variable table from sprom.
1223 * Return 0 on success, nonzero on error.
1224 */
1225
1226 typedef struct
1227 {
1228 const char *name;
1229 uint32 revmask;
1230 uint32 flags;
1231 uint16 off;
1232 uint16 mask;
1233 } sromvar_t;
1234
1235 #define SRFL_MORE 1 /* value continues as described by the next entry */
1236 #define SRFL_NOFFS 2 /* value bits can't be all one's */
1237 #define SRFL_PRHEX 4 /* value is in hexdecimal format */
1238 #define SRFL_PRSIGN 8 /* value is in signed decimal format */
1239 #define SRFL_CCODE 0x10 /* value is in country code format */
1240 #define SRFL_ETHADDR 0x20 /* value is an Ethernet address */
1241 #define SRFL_LEDDC 0x40 /* value is an LED duty cycle */
1242
1243 /* Assumptions:
1244 * - Ethernet address spins across 3 consective words
1245 *
1246 * Table rules:
1247 * - Add multiple entries next to each other if a value spins across multiple words
1248 * (even multiple fields in the same word) with each entry except the last having
1249 * it's SRFL_MORE bit set.
1250 * - Ethernet address entry does not follow above rule and must not have SRFL_MORE
1251 * bit set. Its SRFL_ETHADDR bit implies it takes multiple words.
1252 * - The last entry's name field must be NULL to indicate the end of the table. Other
1253 * entries must have non-NULL name.
1254 */
1255
1256 static const sromvar_t pci_sromvars[] = {
1257 {"boardrev", 0x0000000e, SRFL_PRHEX, SROM_AABREV, SROM_BR_MASK},
1258 {"boardrev", 0x000000f0, SRFL_PRHEX, SROM4_BREV, 0xffff},
1259 {"boardrev", 0xffffff00, SRFL_PRHEX, SROM8_BREV, 0xffff},
1260 {"boardflags", 0x00000002, SRFL_PRHEX, SROM_BFL, 0xffff},
1261 {"boardflags", 0x00000004, SRFL_PRHEX | SRFL_MORE, SROM_BFL, 0xffff},
1262 {"", 0, 0, SROM_BFL2, 0xffff},
1263 {"boardflags", 0x00000008, SRFL_PRHEX | SRFL_MORE, SROM_BFL, 0xffff},
1264 {"", 0, 0, SROM3_BFL2, 0xffff},
1265 {"boardflags", 0x00000010, SRFL_PRHEX | SRFL_MORE, SROM4_BFL0, 0xffff},
1266 {"", 0, 0, SROM4_BFL1, 0xffff},
1267 {"boardflags", 0x000000e0, SRFL_PRHEX | SRFL_MORE, SROM5_BFL0, 0xffff},
1268 {"", 0, 0, SROM5_BFL1, 0xffff},
1269 {"boardflags", 0xffffff00, SRFL_PRHEX | SRFL_MORE, SROM8_BFL0, 0xffff},
1270 {"", 0, 0, SROM8_BFL1, 0xffff},
1271 {"boardflags2", 0x00000010, SRFL_PRHEX | SRFL_MORE, SROM4_BFL2, 0xffff},
1272 {"", 0, 0, SROM4_BFL3, 0xffff},
1273 {"boardflags2", 0x000000e0, SRFL_PRHEX | SRFL_MORE, SROM5_BFL2, 0xffff},
1274 {"", 0, 0, SROM5_BFL3, 0xffff},
1275 {"boardflags2", 0xffffff00, SRFL_PRHEX | SRFL_MORE, SROM8_BFL2, 0xffff},
1276 {"", 0, 0, SROM8_BFL3, 0xffff},
1277 {"boardtype", 0xfffffffc, SRFL_PRHEX, SROM_SSID, 0xffff},
1278 {"boardnum", 0x00000006, 0, SROM_MACLO_IL0, 0xffff},
1279 {"boardnum", 0x00000008, 0, SROM3_MACLO, 0xffff},
1280 {"boardnum", 0x00000010, 0, SROM4_MACLO, 0xffff},
1281 {"boardnum", 0x000000e0, 0, SROM5_MACLO, 0xffff},
1282 {"boardnum", 0xffffff00, 0, SROM8_MACLO, 0xffff},
1283 {"cc", 0x00000002, 0, SROM_AABREV, SROM_CC_MASK},
1284 {"regrev", 0x00000008, 0, SROM_OPO, 0xff00},
1285 {"regrev", 0x00000010, 0, SROM4_REGREV, 0xff},
1286 {"regrev", 0x000000e0, 0, SROM5_REGREV, 0xff},
1287 {"regrev", 0xffffff00, 0, SROM8_REGREV, 0xff},
1288 {"ledbh0", 0x0000000e, SRFL_NOFFS, SROM_LEDBH10, 0xff},
1289 {"ledbh1", 0x0000000e, SRFL_NOFFS, SROM_LEDBH10, 0xff00},
1290 {"ledbh2", 0x0000000e, SRFL_NOFFS, SROM_LEDBH32, 0xff},
1291 {"ledbh3", 0x0000000e, SRFL_NOFFS, SROM_LEDBH32, 0xff00},
1292 {"ledbh0", 0x00000010, SRFL_NOFFS, SROM4_LEDBH10, 0xff},
1293 {"ledbh1", 0x00000010, SRFL_NOFFS, SROM4_LEDBH10, 0xff00},
1294 {"ledbh2", 0x00000010, SRFL_NOFFS, SROM4_LEDBH32, 0xff},
1295 {"ledbh3", 0x00000010, SRFL_NOFFS, SROM4_LEDBH32, 0xff00},
1296 {"ledbh0", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH10, 0xff},
1297 {"ledbh1", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH10, 0xff00},
1298 {"ledbh2", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH32, 0xff},
1299 {"ledbh3", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH32, 0xff00},
1300 {"ledbh0", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH10, 0xff},
1301 {"ledbh1", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH10, 0xff00},
1302 {"ledbh2", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH32, 0xff},
1303 {"ledbh3", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH32, 0xff00},
1304 {"pa0b0", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB0, 0xffff},
1305 {"pa0b1", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB1, 0xffff},
1306 {"pa0b2", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB2, 0xffff},
1307 {"pa0itssit", 0x0000000e, 0, SROM_ITT, 0xff},
1308 {"pa0maxpwr", 0x0000000e, 0, SROM_WL10MAXP, 0xff},
1309 {"pa0b0", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB0, 0xffff},
1310 {"pa0b1", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB1, 0xffff},
1311 {"pa0b2", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB2, 0xffff},
1312 {"pa0itssit", 0xffffff00, 0, SROM8_W0_ITTMAXP, 0xff00},
1313 {"pa0maxpwr", 0xffffff00, 0, SROM8_W0_ITTMAXP, 0xff},
1314 {"opo", 0x0000000c, 0, SROM_OPO, 0xff},
1315 {"opo", 0xffffff00, 0, SROM8_2G_OFDMPO, 0xff},
1316 {"aa2g", 0x0000000e, 0, SROM_AABREV, SROM_AA0_MASK},
1317 {"aa2g", 0x000000f0, 0, SROM4_AA, 0xff},
1318 {"aa2g", 0xffffff00, 0, SROM8_AA, 0xff},
1319 {"aa5g", 0x0000000e, 0, SROM_AABREV, SROM_AA1_MASK},
1320 {"aa5g", 0x000000f0, 0, SROM4_AA, 0xff00},
1321 {"aa5g", 0xffffff00, 0, SROM8_AA, 0xff00},
1322 {"ag0", 0x0000000e, 0, SROM_AG10, 0xff},
1323 {"ag1", 0x0000000e, 0, SROM_AG10, 0xff00},
1324 {"ag0", 0x000000f0, 0, SROM4_AG10, 0xff},
1325 {"ag1", 0x000000f0, 0, SROM4_AG10, 0xff00},
1326 {"ag2", 0x000000f0, 0, SROM4_AG32, 0xff},
1327 {"ag3", 0x000000f0, 0, SROM4_AG32, 0xff00},
1328 {"ag0", 0xffffff00, 0, SROM8_AG10, 0xff},
1329 {"ag1", 0xffffff00, 0, SROM8_AG10, 0xff00},
1330 {"ag2", 0xffffff00, 0, SROM8_AG32, 0xff},
1331 {"ag3", 0xffffff00, 0, SROM8_AG32, 0xff00},
1332 {"pa1b0", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB0, 0xffff},
1333 {"pa1b1", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB1, 0xffff},
1334 {"pa1b2", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB2, 0xffff},
1335 {"pa1lob0", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB0, 0xffff},
1336 {"pa1lob1", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB1, 0xffff},
1337 {"pa1lob2", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB2, 0xffff},
1338 {"pa1hib0", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB0, 0xffff},
1339 {"pa1hib1", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB1, 0xffff},
1340 {"pa1hib2", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB2, 0xffff},
1341 {"pa1itssit", 0x0000000e, 0, SROM_ITT, 0xff00},
1342 {"pa1maxpwr", 0x0000000e, 0, SROM_WL10MAXP, 0xff00},
1343 {"pa1lomaxpwr", 0x0000000c, 0, SROM_WL1LHMAXP, 0xff00},
1344 {"pa1himaxpwr", 0x0000000c, 0, SROM_WL1LHMAXP, 0xff},
1345 {"pa1b0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0, 0xffff},
1346 {"pa1b1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1, 0xffff},
1347 {"pa1b2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2, 0xffff},
1348 {"pa1lob0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0_LC, 0xffff},
1349 {"pa1lob1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1_LC, 0xffff},
1350 {"pa1lob2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2_LC, 0xffff},
1351 {"pa1hib0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0_HC, 0xffff},
1352 {"pa1hib1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1_HC, 0xffff},
1353 {"pa1hib2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2_HC, 0xffff},
1354 {"pa1itssit", 0xffffff00, 0, SROM8_W1_ITTMAXP, 0xff00},
1355 {"pa1maxpwr", 0xffffff00, 0, SROM8_W1_ITTMAXP, 0xff},
1356 {"pa1lomaxpwr", 0xffffff00, 0, SROM8_W1_MAXP_LCHC, 0xff00},
1357 {"pa1himaxpwr", 0xffffff00, 0, SROM8_W1_MAXP_LCHC, 0xff},
1358 {"bxa2g", 0x00000008, 0, SROM_BXARSSI2G, 0x1800},
1359 {"rssisav2g", 0x00000008, 0, SROM_BXARSSI2G, 0x0700},
1360 {"rssismc2g", 0x00000008, 0, SROM_BXARSSI2G, 0x00f0},
1361 {"rssismf2g", 0x00000008, 0, SROM_BXARSSI2G, 0x000f},
1362 {"bxa2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x1800},
1363 {"rssisav2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x0700},
1364 {"rssismc2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x00f0},
1365 {"rssismf2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x000f},
1366 {"bxa5g", 0x00000008, 0, SROM_BXARSSI5G, 0x1800},
1367 {"rssisav5g", 0x00000008, 0, SROM_BXARSSI5G, 0x0700},
1368 {"rssismc5g", 0x00000008, 0, SROM_BXARSSI5G, 0x00f0},
1369 {"rssismf5g", 0x00000008, 0, SROM_BXARSSI5G, 0x000f},
1370 {"bxa5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x1800},
1371 {"rssisav5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x0700},
1372 {"rssismc5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x00f0},
1373 {"rssismf5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x000f},
1374 {"tri2g", 0x00000008, 0, SROM_TRI52G, 0xff},
1375 {"tri5g", 0x00000008, 0, SROM_TRI52G, 0xff00},
1376 {"tri5gl", 0x00000008, 0, SROM_TRI5GHL, 0xff},
1377 {"tri5gh", 0x00000008, 0, SROM_TRI5GHL, 0xff00},
1378 {"tri2g", 0xffffff00, 0, SROM8_TRI52G, 0xff},
1379 {"tri5g", 0xffffff00, 0, SROM8_TRI52G, 0xff00},
1380 {"tri5gl", 0xffffff00, 0, SROM8_TRI5GHL, 0xff},
1381 {"tri5gh", 0xffffff00, 0, SROM8_TRI5GHL, 0xff00},
1382 {"rxpo2g", 0x00000008, SRFL_PRSIGN, SROM_RXPO52G, 0xff},
1383 {"rxpo5g", 0x00000008, SRFL_PRSIGN, SROM_RXPO52G, 0xff00},
1384 {"rxpo2g", 0xffffff00, SRFL_PRSIGN, SROM8_RXPO52G, 0xff},
1385 {"rxpo5g", 0xffffff00, SRFL_PRSIGN, SROM8_RXPO52G, 0xff00},
1386 {"txchain", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_TXCHAIN_MASK},
1387 {"rxchain", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_RXCHAIN_MASK},
1388 {"antswitch", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_SWITCH_MASK},
1389 {"txchain", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_TXCHAIN_MASK},
1390 {"rxchain", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_RXCHAIN_MASK},
1391 {"antswitch", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_SWITCH_MASK},
1392 {"txpid2ga0", 0x000000f0, 0, SROM4_TXPID2G, 0xff},
1393 {"txpid2ga1", 0x000000f0, 0, SROM4_TXPID2G, 0xff00},
1394 {"txpid2ga2", 0x000000f0, 0, SROM4_TXPID2G + 1, 0xff},
1395 {"txpid2ga3", 0x000000f0, 0, SROM4_TXPID2G + 1, 0xff00},
1396 {"txpid5ga0", 0x000000f0, 0, SROM4_TXPID5G, 0xff},
1397 {"txpid5ga1", 0x000000f0, 0, SROM4_TXPID5G, 0xff00},
1398 {"txpid5ga2", 0x000000f0, 0, SROM4_TXPID5G + 1, 0xff},
1399 {"txpid5ga3", 0x000000f0, 0, SROM4_TXPID5G + 1, 0xff00},
1400 {"txpid5gla0", 0x000000f0, 0, SROM4_TXPID5GL, 0xff},
1401 {"txpid5gla1", 0x000000f0, 0, SROM4_TXPID5GL, 0xff00},
1402 {"txpid5gla2", 0x000000f0, 0, SROM4_TXPID5GL + 1, 0xff},
1403 {"txpid5gla3", 0x000000f0, 0, SROM4_TXPID5GL + 1, 0xff00},
1404 {"txpid5gha0", 0x000000f0, 0, SROM4_TXPID5GH, 0xff},
1405 {"txpid5gha1", 0x000000f0, 0, SROM4_TXPID5GH, 0xff00},
1406 {"txpid5gha2", 0x000000f0, 0, SROM4_TXPID5GH + 1, 0xff},
1407 {"txpid5gha3", 0x000000f0, 0, SROM4_TXPID5GH + 1, 0xff00},
1408 {"cck2gpo", 0x000000f0, 0, SROM4_2G_CCKPO, 0xffff},
1409 {"cck2gpo", 0xffffff00, 0, SROM8_2G_CCKPO, 0xffff},
1410 {"ofdm2gpo", 0x000000f0, SRFL_MORE, SROM4_2G_OFDMPO, 0xffff},
1411 {"", 0, 0, SROM4_2G_OFDMPO + 1, 0xffff},
1412 {"ofdm5gpo", 0x000000f0, SRFL_MORE, SROM4_5G_OFDMPO, 0xffff},
1413 {"", 0, 0, SROM4_5G_OFDMPO + 1, 0xffff},
1414 {"ofdm5glpo", 0x000000f0, SRFL_MORE, SROM4_5GL_OFDMPO, 0xffff},
1415 {"", 0, 0, SROM4_5GL_OFDMPO + 1, 0xffff},
1416 {"ofdm5ghpo", 0x000000f0, SRFL_MORE, SROM4_5GH_OFDMPO, 0xffff},
1417 {"", 0, 0, SROM4_5GH_OFDMPO + 1, 0xffff},
1418 {"ofdm2gpo", 0xffffff00, SRFL_MORE, SROM8_2G_OFDMPO, 0xffff},
1419 {"", 0, 0, SROM8_2G_OFDMPO + 1, 0xffff},
1420 {"ofdm5gpo", 0xffffff00, SRFL_MORE, SROM8_5G_OFDMPO, 0xffff},
1421 {"", 0, 0, SROM8_5G_OFDMPO + 1, 0xffff},
1422 {"ofdm5glpo", 0xffffff00, SRFL_MORE, SROM8_5GL_OFDMPO, 0xffff},
1423 {"", 0, 0, SROM8_5GL_OFDMPO + 1, 0xffff},
1424 {"ofdm5ghpo", 0xffffff00, SRFL_MORE, SROM8_5GH_OFDMPO, 0xffff},
1425 {"", 0, 0, SROM8_5GH_OFDMPO + 1, 0xffff},
1426 {"mcs2gpo0", 0x000000f0, 0, SROM4_2G_MCSPO, 0xffff},
1427 {"mcs2gpo1", 0x000000f0, 0, SROM4_2G_MCSPO + 1, 0xffff},
1428 {"mcs2gpo2", 0x000000f0, 0, SROM4_2G_MCSPO + 2, 0xffff},
1429 {"mcs2gpo3", 0x000000f0, 0, SROM4_2G_MCSPO + 3, 0xffff},
1430 {"mcs2gpo4", 0x000000f0, 0, SROM4_2G_MCSPO + 4, 0xffff},
1431 {"mcs2gpo5", 0x000000f0, 0, SROM4_2G_MCSPO + 5, 0xffff},
1432 {"mcs2gpo6", 0x000000f0, 0, SROM4_2G_MCSPO + 6, 0xffff},
1433 {"mcs2gpo7", 0x000000f0, 0, SROM4_2G_MCSPO + 7, 0xffff},
1434 {"mcs5gpo0", 0x000000f0, 0, SROM4_5G_MCSPO, 0xffff},
1435 {"mcs5gpo1", 0x000000f0, 0, SROM4_5G_MCSPO + 1, 0xffff},
1436 {"mcs5gpo2", 0x000000f0, 0, SROM4_5G_MCSPO + 2, 0xffff},
1437 {"mcs5gpo3", 0x000000f0, 0, SROM4_5G_MCSPO + 3, 0xffff},
1438 {"mcs5gpo4", 0x000000f0, 0, SROM4_5G_MCSPO + 4, 0xffff},
1439 {"mcs5gpo5", 0x000000f0, 0, SROM4_5G_MCSPO + 5, 0xffff},
1440 {"mcs5gpo6", 0x000000f0, 0, SROM4_5G_MCSPO + 6, 0xffff},
1441 {"mcs5gpo7", 0x000000f0, 0, SROM4_5G_MCSPO + 7, 0xffff},
1442 {"mcs5glpo0", 0x000000f0, 0, SROM4_5GL_MCSPO, 0xffff},
1443 {"mcs5glpo1", 0x000000f0, 0, SROM4_5GL_MCSPO + 1, 0xffff},
1444 {"mcs5glpo2", 0x000000f0, 0, SROM4_5GL_MCSPO + 2, 0xffff},
1445 {"mcs5glpo3", 0x000000f0, 0, SROM4_5GL_MCSPO + 3, 0xffff},
1446 {"mcs5glpo4", 0x000000f0, 0, SROM4_5GL_MCSPO + 4, 0xffff},
1447 {"mcs5glpo5", 0x000000f0, 0, SROM4_5GL_MCSPO + 5, 0xffff},
1448 {"mcs5glpo6", 0x000000f0, 0, SROM4_5GL_MCSPO + 6, 0xffff},
1449 {"mcs5glpo7", 0x000000f0, 0, SROM4_5GL_MCSPO + 7, 0xffff},
1450 {"mcs5ghpo0", 0x000000f0, 0, SROM4_5GH_MCSPO, 0xffff},
1451 {"mcs5ghpo1", 0x000000f0, 0, SROM4_5GH_MCSPO + 1, 0xffff},
1452 {"mcs5ghpo2", 0x000000f0, 0, SROM4_5GH_MCSPO + 2, 0xffff},
1453 {"mcs5ghpo3", 0x000000f0, 0, SROM4_5GH_MCSPO + 3, 0xffff},
1454 {"mcs5ghpo4", 0x000000f0, 0, SROM4_5GH_MCSPO + 4, 0xffff},
1455 {"mcs5ghpo5", 0x000000f0, 0, SROM4_5GH_MCSPO + 5, 0xffff},
1456 {"mcs5ghpo6", 0x000000f0, 0, SROM4_5GH_MCSPO + 6, 0xffff},
1457 {"mcs5ghpo7", 0x000000f0, 0, SROM4_5GH_MCSPO + 7, 0xffff},
1458 {"mcs2gpo0", 0xffffff00, 0, SROM8_2G_MCSPO, 0xffff},
1459 {"mcs2gpo1", 0xffffff00, 0, SROM8_2G_MCSPO + 1, 0xffff},
1460 {"mcs2gpo2", 0xffffff00, 0, SROM8_2G_MCSPO + 2, 0xffff},
1461 {"mcs2gpo3", 0xffffff00, 0, SROM8_2G_MCSPO + 3, 0xffff},
1462 {"mcs2gpo4", 0xffffff00, 0, SROM8_2G_MCSPO + 4, 0xffff},
1463 {"mcs2gpo5", 0xffffff00, 0, SROM8_2G_MCSPO + 5, 0xffff},
1464 {"mcs2gpo6", 0xffffff00, 0, SROM8_2G_MCSPO + 6, 0xffff},
1465 {"mcs2gpo7", 0xffffff00, 0, SROM8_2G_MCSPO + 7, 0xffff},
1466 {"mcs5gpo0", 0xffffff00, 0, SROM8_5G_MCSPO, 0xffff},
1467 {"mcs5gpo1", 0xffffff00, 0, SROM8_5G_MCSPO + 1, 0xffff},
1468 {"mcs5gpo2", 0xffffff00, 0, SROM8_5G_MCSPO + 2, 0xffff},
1469 {"mcs5gpo3", 0xffffff00, 0, SROM8_5G_MCSPO + 3, 0xffff},
1470 {"mcs5gpo4", 0xffffff00, 0, SROM8_5G_MCSPO + 4, 0xffff},
1471 {"mcs5gpo5", 0xffffff00, 0, SROM8_5G_MCSPO + 5, 0xffff},
1472 {"mcs5gpo6", 0xffffff00, 0, SROM8_5G_MCSPO + 6, 0xffff},
1473 {"mcs5gpo7", 0xffffff00, 0, SROM8_5G_MCSPO + 7, 0xffff},
1474 {"mcs5glpo0", 0xffffff00, 0, SROM8_5GL_MCSPO, 0xffff},
1475 {"mcs5glpo1", 0xffffff00, 0, SROM8_5GL_MCSPO + 1, 0xffff},
1476 {"mcs5glpo2", 0xffffff00, 0, SROM8_5GL_MCSPO + 2, 0xffff},
1477 {"mcs5glpo3", 0xffffff00, 0, SROM8_5GL_MCSPO + 3, 0xffff},
1478 {"mcs5glpo4", 0xffffff00, 0, SROM8_5GL_MCSPO + 4, 0xffff},
1479 {"mcs5glpo5", 0xffffff00, 0, SROM8_5GL_MCSPO + 5, 0xffff},
1480 {"mcs5glpo6", 0xffffff00, 0, SROM8_5GL_MCSPO + 6, 0xffff},
1481 {"mcs5glpo7", 0xffffff00, 0, SROM8_5GL_MCSPO + 7, 0xffff},
1482 {"mcs5ghpo0", 0xffffff00, 0, SROM8_5GH_MCSPO, 0xffff},
1483 {"mcs5ghpo1", 0xffffff00, 0, SROM8_5GH_MCSPO + 1, 0xffff},
1484 {"mcs5ghpo2", 0xffffff00, 0, SROM8_5GH_MCSPO + 2, 0xffff},
1485 {"mcs5ghpo3", 0xffffff00, 0, SROM8_5GH_MCSPO + 3, 0xffff},
1486 {"mcs5ghpo4", 0xffffff00, 0, SROM8_5GH_MCSPO + 4, 0xffff},
1487 {"mcs5ghpo5", 0xffffff00, 0, SROM8_5GH_MCSPO + 5, 0xffff},
1488 {"mcs5ghpo6", 0xffffff00, 0, SROM8_5GH_MCSPO + 6, 0xffff},
1489 {"mcs5ghpo7", 0xffffff00, 0, SROM8_5GH_MCSPO + 7, 0xffff},
1490 {"cddpo", 0x000000f0, 0, SROM4_CDDPO, 0xffff},
1491 {"stbcpo", 0x000000f0, 0, SROM4_STBCPO, 0xffff},
1492 {"bw40po", 0x000000f0, 0, SROM4_BW40PO, 0xffff},
1493 {"bwduppo", 0x000000f0, 0, SROM4_BWDUPPO, 0xffff},
1494 {"cddpo", 0xffffff00, 0, SROM8_CDDPO, 0xffff},
1495 {"stbcpo", 0xffffff00, 0, SROM8_STBCPO, 0xffff},
1496 {"bw40po", 0xffffff00, 0, SROM8_BW40PO, 0xffff},
1497 {"bwduppo", 0xffffff00, 0, SROM8_BWDUPPO, 0xffff},
1498 {"ccode", 0x0000000f, SRFL_CCODE, SROM_CCODE, 0xffff},
1499 {"ccode", 0x00000010, SRFL_CCODE, SROM4_CCODE, 0xffff},
1500 {"ccode", 0x000000e0, SRFL_CCODE, SROM5_CCODE, 0xffff},
1501 {"ccode", 0xffffff00, SRFL_CCODE, SROM8_CCODE, 0xffff},
1502 {"macaddr", 0xffffff00, SRFL_ETHADDR, SROM8_MACHI, 0xffff},
1503 {"macaddr", 0x000000e0, SRFL_ETHADDR, SROM5_MACHI, 0xffff},
1504 {"macaddr", 0x00000010, SRFL_ETHADDR, SROM4_MACHI, 0xffff},
1505 {"macaddr", 0x00000008, SRFL_ETHADDR, SROM3_MACHI, 0xffff},
1506 {"il0macaddr", 0x00000007, SRFL_ETHADDR, SROM_MACHI_IL0, 0xffff},
1507 {"et1macaddr", 0x00000007, SRFL_ETHADDR, SROM_MACHI_ET1, 0xffff},
1508 {"leddc", 0xffffff00, SRFL_NOFFS | SRFL_LEDDC, SROM8_LEDDC, 0xffff},
1509 {"leddc", 0x000000e0, SRFL_NOFFS | SRFL_LEDDC, SROM5_LEDDC, 0xffff},
1510 {"leddc", 0x00000010, SRFL_NOFFS | SRFL_LEDDC, SROM4_LEDDC, 0xffff},
1511 {"leddc", 0x00000008, SRFL_NOFFS | SRFL_LEDDC, SROM3_LEDDC, 0xffff},
1512 {NULL, 0, 0, 0, 0}
1513 };
1514
1515 static const sromvar_t perpath_pci_sromvars[] = {
1516 {"maxp2ga", 0x000000f0, 0, SROM4_2G_ITT_MAXP, 0xff},
1517 {"itt2ga", 0x000000f0, 0, SROM4_2G_ITT_MAXP, 0xff00},
1518 {"itt5ga", 0x000000f0, 0, SROM4_5G_ITT_MAXP, 0xff00},
1519 {"pa2gw0a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA, 0xffff},
1520 {"pa2gw1a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 1, 0xffff},
1521 {"pa2gw2a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 2, 0xffff},
1522 {"pa2gw3a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 3, 0xffff},
1523 {"maxp5ga", 0x000000f0, 0, SROM4_5G_ITT_MAXP, 0xff},
1524 {"maxp5gha", 0x000000f0, 0, SROM4_5GLH_MAXP, 0xff},
1525 {"maxp5gla", 0x000000f0, 0, SROM4_5GLH_MAXP, 0xff00},
1526 {"pa5gw0a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA, 0xffff},
1527 {"pa5gw1a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 1, 0xffff},
1528 {"pa5gw2a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 2, 0xffff},
1529 {"pa5gw3a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 3, 0xffff},
1530 {"pa5glw0a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA, 0xffff},
1531 {"pa5glw1a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 1, 0xffff},
1532 {"pa5glw2a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 2, 0xffff},
1533 {"pa5glw3a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 3, 0xffff},
1534 {"pa5ghw0a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA, 0xffff},
1535 {"pa5ghw1a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 1, 0xffff},
1536 {"pa5ghw2a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 2, 0xffff},
1537 {"pa5ghw3a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 3, 0xffff},
1538 {"maxp2ga", 0xffffff00, 0, SROM8_2G_ITT_MAXP, 0xff},
1539 {"itt2ga", 0xffffff00, 0, SROM8_2G_ITT_MAXP, 0xff00},
1540 {"itt5ga", 0xffffff00, 0, SROM8_5G_ITT_MAXP, 0xff00},
1541 {"pa2gw0a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA, 0xffff},
1542 {"pa2gw1a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA + 1, 0xffff},
1543 {"pa2gw2a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA + 2, 0xffff},
1544 {"maxp5ga", 0xffffff00, 0, SROM8_5G_ITT_MAXP, 0xff},
1545 {"maxp5gha", 0xffffff00, 0, SROM8_5GLH_MAXP, 0xff},
1546 {"maxp5gla", 0xffffff00, 0, SROM8_5GLH_MAXP, 0xff00},
1547 {"pa5gw0a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA, 0xffff},
1548 {"pa5gw1a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA + 1, 0xffff},
1549 {"pa5gw2a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA + 2, 0xffff},
1550 {"pa5glw0a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA, 0xffff},
1551 {"pa5glw1a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA + 1, 0xffff},
1552 {"pa5glw2a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA + 2, 0xffff},
1553 {"pa5ghw0a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA, 0xffff},
1554 {"pa5ghw1a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA + 1, 0xffff},
1555 {"pa5ghw2a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA + 2, 0xffff},
1556 {NULL, 0, 0, 0, 0}
1557 };
1558
1559 /* Parse SROM and create name=value pairs. 'srom' points to
1560 * the SROM word array. 'off' specifies the offset of the
1561 * first word 'srom' points to, which should be either 0 or
1562 * SROM3_SWRG_OFF (full SROM or software region).
1563 */
1564
1565 static uint
1566 mask_shift (uint16 mask)
1567 {
1568 uint i;
1569 for (i = 0; i < (sizeof (mask) << 3); i++)
1570 {
1571 if (mask & (1 << i))
1572 return i;
1573 }
1574 ASSERT (mask);
1575 return 0;
1576 }
1577
1578 static uint
1579 mask_width (uint16 mask)
1580 {
1581 int i;
1582 for (i = (sizeof (mask) << 3) - 1; i >= 0; i--)
1583 {
1584 if (mask & (1 << i))
1585 return (uint) (i - mask_shift (mask) + 1);
1586 }
1587 ASSERT (mask);
1588 return 0;
1589 }
1590
1591 #ifdef BCMDBG_ASSERT
1592 static bool
1593 mask_valid (uint16 mask)
1594 {
1595 uint shift = mask_shift (mask);
1596 uint width = mask_width (mask);
1597 return mask == ((~0 << shift) & ~(~0 << (shift + width)));
1598 }
1599 #endif
1600
1601 static void
1602 _initvars_srom_pci (uint8 sromrev, uint16 * srom, uint off, varbuf_t * b)
1603 {
1604 uint16 w;
1605 uint32 val;
1606 const sromvar_t *srv;
1607 uint width;
1608 uint flags;
1609 uint32 sr = (1 << sromrev);
1610
1611 varbuf_append (b, "sromrev=%d", sromrev);
1612
1613 for (srv = pci_sromvars; srv->name != NULL; srv++)
1614 {
1615 const char *name;
1616
1617 if ((srv->revmask & sr) == 0)
1618 continue;
1619
1620 if (srv->off < off)
1621 continue;
1622
1623 flags = srv->flags;
1624 name = srv->name;
1625
1626 if (flags & SRFL_ETHADDR)
1627 {
1628 char eabuf[ETHER_ADDR_STR_LEN];
1629 struct ether_addr ea;
1630
1631 ea.octet[0] = (srom[srv->off - off] >> 8) & 0xff;
1632 ea.octet[1] = srom[srv->off - off] & 0xff;
1633 ea.octet[2] = (srom[srv->off + 1 - off] >> 8) & 0xff;
1634 ea.octet[3] = srom[srv->off + 1 - off] & 0xff;
1635 ea.octet[4] = (srom[srv->off + 2 - off] >> 8) & 0xff;
1636 ea.octet[5] = srom[srv->off + 2 - off] & 0xff;
1637 bcm_ether_ntoa (&ea, eabuf);
1638
1639 varbuf_append (b, "%s=%s", name, eabuf);
1640 }
1641 else
1642 {
1643 ASSERT (mask_valid (srv->mask));
1644 ASSERT (mask_width (srv->mask));
1645
1646 w = srom[srv->off - off];
1647 val = (w & srv->mask) >> mask_shift (srv->mask);
1648 width = mask_width (srv->mask);
1649
1650 while (srv->flags & SRFL_MORE)
1651 {
1652 srv++;
1653 ASSERT (srv->name);
1654
1655 if (srv->off == 0 || srv->off < off)
1656 continue;
1657
1658 ASSERT (mask_valid (srv->mask));
1659 ASSERT (mask_width (srv->mask));
1660
1661 w = srom[srv->off - off];
1662 val += ((w & srv->mask) >> mask_shift (srv->mask)) << width;
1663 width += mask_width (srv->mask);
1664 }
1665
1666 if ((flags & SRFL_NOFFS) && ((int) val == (1 << width) - 1))
1667 continue;
1668
1669 if (flags & SRFL_CCODE)
1670 {
1671 if (val == 0)
1672 varbuf_append (b, "ccode=");
1673 else
1674 varbuf_append (b, "ccode=%c%c", (val >> 8), (val & 0xff));
1675 }
1676 /* LED Powersave duty cycle has to be scaled:
1677 *(oncount >> 24) (offcount >> 8)
1678 */
1679 else if (flags & SRFL_LEDDC)
1680 {
1681 uint32 w32 = (((val >> 8) & 0xff) << 24) | /* oncount */
1682 (((val & 0xff)) << 8); /* offcount */
1683 varbuf_append (b, "leddc=%d", w32);
1684 }
1685 else if (flags & SRFL_PRHEX)
1686 varbuf_append (b, "%s=0x%x", name, val);
1687 else if ((flags & SRFL_PRSIGN) && (val & (1 << (width - 1))))
1688 varbuf_append (b, "%s=%d", name, (int) (val | (~0 << width)));
1689 else
1690 varbuf_append (b, "%s=%u", name, val);
1691 }
1692 }
1693
1694 if (sromrev >= 4)
1695 {
1696 /* Do per-path variables */
1697 uint p, pb, psz;
1698
1699 if (sromrev >= 8)
1700 {
1701 pb = SROM8_PATH0;
1702 psz = SROM8_PATH1 - SROM8_PATH0;
1703 }
1704 else
1705 {
1706 pb = SROM4_PATH0;
1707 psz = SROM4_PATH1 - SROM4_PATH0;
1708 }
1709
1710 for (p = 0; p < MAX_PATH; p++)
1711 {
1712 for (srv = perpath_pci_sromvars; srv->name != NULL; srv++)
1713 {
1714 if ((srv->revmask & sr) == 0)
1715 continue;
1716
1717 if (pb + srv->off < off)
1718 continue;
1719
1720 w = srom[pb + srv->off - off];
1721 ASSERT (mask_valid (srv->mask));
1722 val = (w & srv->mask) >> mask_shift (srv->mask);
1723 width = mask_width (srv->mask);
1724
1725 /* Cheating: no per-path var is more than 1 word */
1726
1727 if ((srv->flags & SRFL_NOFFS)
1728 && ((int) val == (1 << width) - 1))
1729 continue;
1730
1731 if (srv->flags & SRFL_PRHEX)
1732 varbuf_append (b, "%s%d=0x%x", srv->name, p, val);
1733 else
1734 varbuf_append (b, "%s%d=%d", srv->name, p, val);
1735 }
1736 pb += psz;
1737 }
1738 }
1739 }
1740
1741 static int
1742 initvars_srom_pci (sb_t * sbh, void *curmap, char **vars, uint * count)
1743 {
1744 uint16 *srom;
1745 uint8 sromrev = 0;
1746 uint32 sr;
1747 varbuf_t b;
1748 char *vp, *base = NULL;
1749 osl_t *osh = sb_osh (sbh);
1750 bool flash = FALSE;
1751 char *value;
1752 int err;
1753
1754 /*
1755 * Apply CRC over SROM content regardless SROM is present or not,
1756 * and use variable <devpath>sromrev's existance in flash to decide
1757 * if we should return an error when CRC fails or read SROM variables
1758 * from flash.
1759 */
1760 srom = MALLOC (osh, SROM_MAX);
1761 ASSERT (srom);
1762 if (!srom)
1763 return -2;
1764
1765 err =
1766 sprom_read_pci (osh, (void *) ((int8 *) curmap + PCI_BAR0_SPROM_OFFSET),
1767 0, srom, SROM_WORDS, TRUE);
1768
1769 if ((srom[SROM4_SIGN] == SROM4_SIGNATURE) ||
1770 ((sbh->buscoretype == SB_PCIE) && (sbh->buscorerev >= 6)))
1771 {
1772 /* sromrev >= 4, read more */
1773 err =
1774 sprom_read_pci (osh,
1775 (void *) ((int8 *) curmap + PCI_BAR0_SPROM_OFFSET), 0,
1776 srom, SROM4_WORDS, TRUE);
1777 sromrev = srom[SROM4_CRCREV] & 0xff;
1778 }
1779 else if (err == 0)
1780 {
1781 /* srom is good and is rev < 4 */
1782 /* top word of sprom contains version and crc8 */
1783 sromrev = srom[SROM_CRCREV] & 0xff;
1784 /* bcm4401 sroms misprogrammed */
1785 if (sromrev == 0x10)
1786 sromrev = 1;
1787 }
1788
1789 if (err)
1790 {
1791 #ifdef WLTEST
1792 uint32 val;
1793
1794 BS_ERROR (("SROM Crc Error, so see if we could use a default\n"));
1795 val = OSL_PCI_READ_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32));
1796 if (val & SPROM_OTPIN_USE)
1797 {
1798 BS_ERROR (("srom crc failed with OTP, use default vars....\n"));
1799 vp = base = mfgsromvars;
1800 if (sb_chip (sbh) == BCM4311_CHIP_ID)
1801 {
1802 const char *devid = "devid=0x4311";
1803 const size_t devid_strlen = strlen (devid);
1804 BS_ERROR (("setting the devid to be 4311\n"));
1805 bcopy (devid, vp, devid_strlen + 1);
1806 vp += devid_strlen + 1;
1807 }
1808 bcopy (defaultsromvars, vp, MFGSROM_DEFVARSLEN);
1809 vp += MFGSROM_DEFVARSLEN;
1810 goto varsdone;
1811 }
1812 else
1813 {
1814 #endif /* WLTEST */
1815 BS_ERROR (("srom crc failed with SPROM....\n"));
1816 if (!(value = sb_getdevpathvar (sbh, "sromrev")))
1817 {
1818 err = -1;
1819 goto errout;
1820 }
1821 sromrev = (uint8) simple_strtoul (value, NULL, 0);
1822 flash = TRUE;
1823 #ifdef WLTEST
1824 }
1825 #endif /* WLTEST */
1826 }
1827
1828 /* Bitmask for the sromrev */
1829 sr = 1 << sromrev;
1830
1831 /* srom version check
1832 * Current valid versions: 1, 2, 3, 4, 5, 8
1833 */
1834 if ((sr & 0x13e) == 0)
1835 {
1836 err = -2;
1837 goto errout;
1838 }
1839
1840 ASSERT (vars);
1841 ASSERT (count);
1842
1843 base = vp = MALLOC (osh, MAXSZ_NVRAM_VARS);
1844 ASSERT (vp);
1845 if (!vp)
1846 {
1847 err = -2;
1848 goto errout;
1849 }
1850
1851 /* read variables from flash */
1852 if (flash)
1853 {
1854 if ((err = initvars_flash (sbh, osh, &vp, MAXSZ_NVRAM_VARS)))
1855 goto errout;
1856 goto varsdone;
1857 }
1858
1859 varbuf_init (&b, base, MAXSZ_NVRAM_VARS);
1860
1861 /* parse SROM into name=value pairs. */
1862 _initvars_srom_pci (sromrev, srom, 0, &b);
1863
1864 /* final nullbyte terminator */
1865 ASSERT (b.size >= 1);
1866 vp = b.buf;
1867 *vp++ = '\0';
1868
1869 ASSERT ((vp - base) <= MAXSZ_NVRAM_VARS);
1870
1871 varsdone:
1872 err = initvars_table (osh, base, vp, vars, count);
1873
1874 errout:
1875 #ifdef WLTEST
1876 if (base && (base != mfgsromvars))
1877 #else
1878 if (base)
1879 #endif
1880 MFREE (osh, base, MAXSZ_NVRAM_VARS);
1881
1882 MFREE (osh, srom, SROM_MAX);
1883 return err;
1884 }
1885
1886 /*
1887 * Read the cis and call parsecis to initialize the vars.
1888 * Return 0 on success, nonzero on error.
1889 */
1890 static int
1891 initvars_cis_pcmcia (sb_t * sbh, osl_t * osh, char **vars, uint * count)
1892 {
1893 uint8 *cis = NULL;
1894 int rc;
1895 uint data_sz;
1896
1897 data_sz = (sb_pcmciarev (sbh) == 1) ? (SPROM_SIZE * 2) : CIS_SIZE;
1898
1899 if ((cis = MALLOC (osh, data_sz)) == NULL)
1900 return (-2);
1901
1902 if (sb_pcmciarev (sbh) == 1)
1903 {
1904 if (srom_read
1905 (sbh, PCMCIA_BUS, (void *) NULL, osh, 0, data_sz, (uint16 *) cis))
1906 {
1907 MFREE (osh, cis, data_sz);
1908 return (-1);
1909 }
1910 /* fix up endianess for 16-bit data vs 8-bit parsing */
1911 htol16_buf ((uint16 *) cis, data_sz);
1912 }
1913 else
1914 OSL_PCMCIA_READ_ATTR (osh, 0, cis, data_sz);
1915
1916 rc = srom_parsecis (osh, &cis, 1, vars, count);
1917
1918 MFREE (osh, cis, data_sz);
1919
1920 return (rc);
1921 }
1922
1923
1924 static int
1925 BCMINITFN (initvars_srom_sb) (sb_t * sbh, osl_t * osh, void *curmap,
1926 char **vars, uint * varsz)
1927 {
1928 #if defined(BCMSDIODEV)
1929 /* CIS is read and supplied by the host */
1930 return BCME_OK;
1931 #elif defined(BCMUSBDEV)
1932 static bool srvars = FALSE; /* Use OTP/SPROM as global variables */
1933
1934 int sel = 0; /* where to read the srom. 0 - nowhere, 1 - otp, 2 - sprom */
1935 uint sz = 0; /* srom size in bytes */
1936 void *oh = NULL;
1937 int rc = BCME_OK;
1938
1939 /* Bail out if we've dealt with OTP/SPROM before! */
1940 if (srvars)
1941 return 0;
1942
1943 #if defined(BCM4328)
1944 if (sbh->chip == BCM4328_CHIP_ID)
1945 {
1946 /* Access the SPROM if it is present */
1947 if ((sz = srom_size (sbh, osh)) != 0)
1948 {
1949 sz <<= 1;
1950 sel = 2;
1951 }
1952 }
1953 #endif
1954 #if defined(BCM4325)
1955 if (sbh->chip == BCM4325_CHIP_ID)
1956 {
1957 uint32 cst = sbh->chipst & CST4325_SPROM_OTP_SEL_MASK;
1958
1959 /* Access OTP if it is present, powered on, and programmed */
1960 if ((oh = otp_init (sbh)) != NULL && (otp_status (oh) & OTPS_GUP_SW))
1961 {
1962 sz = otp_size (oh);
1963 sel = 1;
1964 }
1965 /* Access the SPROM if it is present and allow to be accessed */
1966 else if ((cst == CST4325_OTP_PWRDN || cst == CST4325_SPROM_SEL) &&
1967 (sz = srom_size (sbh, osh)) != 0)
1968 {
1969 sz <<= 1;
1970 sel = 2;
1971 }
1972 }
1973 #endif /* BCM4325 */
1974
1975 /* Read CIS in OTP/SPROM */
1976 if (sel != 0)
1977 {
1978 uint16 *srom;
1979 uint8 *body = NULL;
1980
1981 ASSERT (sz);
1982
1983 /* Allocate memory */
1984 if ((srom = (uint16 *) MALLOC (osh, sz)) == NULL)
1985 return BCME_NOMEM;
1986
1987 /* Read CIS */
1988 switch (sel)
1989 {
1990 case 1:
1991 rc = otp_read_region (oh, OTP_SW_RGN, srom, sz);
1992 body = (uint8 *) srom;
1993 break;
1994 case 2:
1995 rc = srom_read (sbh, SB_BUS, curmap, osh, 0, sz, srom);
1996 /* sprom has 8 byte h/w header */
1997 body = (uint8 *) srom + SBSDIO_SPROM_CIS_OFFSET;
1998 break;
1999 default:
2000 /* impossible to come here */
2001 ASSERT (0);
2002 break;
2003 }
2004
2005 /* Parse CIS */
2006 if (rc == BCME_OK)
2007 {
2008 uint i, tpls = 0xffffffff;
2009 /* # sdiod fns + common + extra */
2010 uint8 *cis[SBSDIO_NUM_FUNCTION + 2];
2011 uint ciss = 0;
2012
2013 /* each word is in host endian */
2014 htol16_buf ((uint8 *) srom, sz);
2015
2016 ASSERT (body);
2017
2018 /* count cis tuple chains */
2019 for (i = 0; i < sz && ciss < ARRAYSIZE (cis) && tpls != 0; i++)
2020 {
2021 cis[ciss++] = &body[i];
2022 for (tpls = 0; i < sz - 1; tpls++)
2023 {
2024 if (body[i++] == CISTPL_END)
2025 break;
2026 i += body[i] + 1;
2027 }
2028 }
2029
2030 /* call parser routine only when there are tuple chains */
2031 if (ciss > 1)
2032 rc = srom_parsecis (osh, cis, ciss, vars, varsz);
2033 }
2034
2035 /* Clean up */
2036 MFREE (osh, srom, sz);
2037
2038 /* Make SROM variables global */
2039 if (rc == BCME_OK)
2040 {
2041 rc = nvram_append ((void *) sbh, *vars, *varsz);
2042 srvars = TRUE;
2043
2044 /* Tell the caller there is no individual SROM variables */
2045 *vars = NULL;
2046 *varsz = 0;
2047 }
2048 }
2049
2050 return rc;
2051 #else /* !BCMUSBDEV && !BCMSDIODEV */
2052 /* Search flash nvram section for srom variables */
2053 return initvars_flash_sb (sbh, vars, varsz);
2054 #endif /* !BCMUSBDEV && !BCMSDIODEV */
2055 }
2056
2057 #ifdef BCMUSBDEV
2058 /* Return sprom size in 16-bit words */
2059 static uint
2060 srom_size (sb_t * sbh, osl_t * osh)
2061 {
2062 uint size = 0;
2063 if (SPROMBUS == PCMCIA_BUS)
2064 {
2065 uint32 origidx;
2066 sdpcmd_regs_t *pcmregs;
2067 bool wasup;
2068
2069 origidx = sb_coreidx (sbh);
2070 pcmregs = sb_setcore (sbh, SB_PCMCIA, 0);
2071 ASSERT (pcmregs);
2072
2073 if (!(wasup = sb_iscoreup (sbh)))
2074 sb_core_reset (sbh, 0, 0);
2075
2076 /* not worry about earlier core revs */
2077 if (sb_corerev (sbh) < 8)
2078 goto done;
2079
2080 /* SPROM is accessible only in PCMCIA mode unless there is SDIO clock */
2081 if (!(R_REG (osh, &pcmregs->corestatus) & CS_PCMCIAMODE))
2082 goto done;
2083
2084 switch (SB_PCMCIA_READ (osh, pcmregs, SROM_INFO) & SRI_SZ_MASK)
2085 {
2086 case 1:
2087 size = 256; /* SROM_INFO == 1 means 4kbit */
2088 break;
2089 case 2:
2090 size = 1024; /* SROM_INFO == 2 means 16kbit */
2091 break;
2092 default:
2093 break;
2094 }
2095
2096 done:
2097 if (!wasup)
2098 sb_core_disable (sbh, 0);
2099
2100 sb_setcoreidx (sbh, origidx);
2101 }
2102 return size;
2103 }
2104 #endif /* def BCMUSBDEV */
This page took 0.21167 seconds and 5 git commands to generate.