+Index: linux-2.6.x/crypto/Kconfig
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/crypto/Kconfig,v
+retrieving revision 1.1.1.29
+diff -u -r1.1.1.29 Kconfig
+--- linux-2.6.x/crypto/Kconfig 10 Oct 2007 00:54:29 -0000 1.1.1.29
++++ linux-2.6.x/crypto/Kconfig 15 Dec 2007 11:08:08 -0000
+@@ -471,3 +471,6 @@
+ source "drivers/crypto/Kconfig"
+
+ endif # if CRYPTO
++
++source "crypto/ocf/Kconfig"
++
+Index: linux-2.6.x/crypto/Makefile
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/crypto/Makefile,v
+retrieving revision 1.1.1.23
+diff -u -r1.1.1.23 Makefile
+--- linux-2.6.x/crypto/Makefile 10 Oct 2007 00:54:29 -0000 1.1.1.23
++++ linux-2.6.x/crypto/Makefile 15 Dec 2007 11:08:08 -0000
+@@ -51,6 +51,8 @@
+
+ obj-$(CONFIG_CRYPTO_TEST) += tcrypt.o
+
++obj-$(CONFIG_OCF_OCF) += ocf/
++
+ #
+ # generic algorithms and the async_tx api
+ #
+Index: linux-2.6.x/drivers/char/random.c
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/drivers/char/random.c,v
+retrieving revision 1.1.1.41
+retrieving revision 1.6
+diff -u -r1.1.1.41 -r1.6
+--- linux-2.6.x/drivers/char/random.c 22 Apr 2008 01:36:57 -0000 1.1.1.41
++++ linux-2.6.x/drivers/char/random.c 22 Apr 2008 04:48:56 -0000 1.6
+@@ -129,6 +129,9 @@
+ * unsigned int value);
+ * void add_interrupt_randomness(int irq);
+ *
++ * void random_input_words(__u32 *buf, size_t wordcount, int ent_count)
++ * int random_input_wait(void);
++ *
+ * add_input_randomness() uses the input layer interrupt timing, as well as
+ * the event type information from the hardware.
+ *
+@@ -140,6 +143,13 @@
+ * a better measure, since the timing of the disk interrupts are more
+ * unpredictable.
+ *
++ * random_input_words() just provides a raw block of entropy to the input
++ * pool, such as from a hardware entropy generator.
++ *
++ * random_input_wait() suspends the caller until such time as the
++ * entropy pool falls below the write threshold, and returns a count of how
++ * much entropy (in bits) is needed to sustain the pool.
++ *
+ * All of these routines try to estimate how many bits of randomness a
+ * particular randomness source. They do this by keeping track of the
+ * first and second order deltas of the event timings.
+@@ -669,6 +679,61 @@
+ }
+ #endif
+
++/*
++ * random_input_words - add bulk entropy to pool
++ *
++ * @buf: buffer to add
++ * @wordcount: number of __u32 words to add
++ * @ent_count: total amount of entropy (in bits) to credit
++ *
++ * this provides bulk input of entropy to the input pool
++ *
++ */
++void random_input_words(__u32 *buf, size_t wordcount, int ent_count)
++{
++ add_entropy_words(&input_pool, buf, wordcount);
++
++ credit_entropy_store(&input_pool, ent_count);
++
++ DEBUG_ENT("crediting %d bits => %d\n",
++ ent_count, input_pool.entropy_count);
++ /*
++ * Wake up waiting processes if we have enough
++ * entropy.
++ */
++ if (input_pool.entropy_count >= random_read_wakeup_thresh)
++ wake_up_interruptible(&random_read_wait);
++}
++EXPORT_SYMBOL(random_input_words);
++
++/*
++ * random_input_wait - wait until random needs entropy
++ *
++ * this function sleeps until the /dev/random subsystem actually
++ * needs more entropy, and then return the amount of entropy
++ * that it would be nice to have added to the system.
++ */
++int random_input_wait(void)
++{
++ int count;
++
++ wait_event_interruptible(random_write_wait,
++ input_pool.entropy_count < random_write_wakeup_thresh);
++
++ count = random_write_wakeup_thresh - input_pool.entropy_count;
++
++ /* likely we got woken up due to a signal */
++ if (count <= 0) count = random_read_wakeup_thresh;
++
++ DEBUG_ENT("requesting %d bits from input_wait()er %d<%d\n",
++ count,
++ input_pool.entropy_count, random_write_wakeup_thresh);
++
++ return count;
++}
++EXPORT_SYMBOL(random_input_wait);
++
++
+ #define EXTRACT_SIZE 10
+
+ /*********************************************************************
+Index: linux-2.6.x/fs/fcntl.c
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/fs/fcntl.c,v
+retrieving revision 1.1.1.39
+retrieving revision 1.5
+diff -u -r1.1.1.39 -r1.5
+--- linux-2.6.x/fs/fcntl.c 22 Apr 2008 01:37:55 -0000 1.1.1.39
++++ linux-2.6.x/fs/fcntl.c 22 Apr 2008 04:49:02 -0000 1.5
+@@ -202,6 +202,7 @@
+ ret = dupfd(file, 0, 0);
+ return ret;
+ }
++EXPORT_SYMBOL(sys_dup);
+
+ #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | FASYNC | O_DIRECT | O_NOATIME)
+
+Index: linux-2.6.x/include/linux/miscdevice.h
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/include/linux/miscdevice.h,v
+retrieving revision 1.1.1.16
+retrieving revision 1.8
+diff -u -r1.1.1.16 -r1.8
+--- linux-2.6.x/include/linux/miscdevice.h 22 Apr 2008 01:36:52 -0000 1.1.1.16
++++ linux-2.6.x/include/linux/miscdevice.h 22 Apr 2008 04:49:10 -0000 1.8
+@@ -12,6 +12,7 @@
+ #define APOLLO_MOUSE_MINOR 7
+ #define PC110PAD_MINOR 9
+ /*#define ADB_MOUSE_MINOR 10 FIXME OBSOLETE */
++#define CRYPTODEV_MINOR 70 /* /dev/crypto */
+ #define WATCHDOG_MINOR 130 /* Watchdog timer */
+ #define TEMP_MINOR 131 /* Temperature Sensor */
+ #define RTC_MINOR 135
+Index: linux-2.6.x/include/linux/random.h
+===================================================================
+RCS file: /cvs/sw/linux-2.6.x/include/linux/random.h,v
+retrieving revision 1.1.1.12
+retrieving revision 1.5
+diff -u -r1.1.1.12 -r1.5
+--- linux-2.6.x/include/linux/random.h 26 Apr 2007 11:16:52 -0000 1.1.1.12
++++ linux-2.6.x/include/linux/random.h 22 May 2008 03:31:38 -0000 1.5
+@@ -8,6 +8,7 @@
+ #define _LINUX_RANDOM_H
+
+ #include <linux/ioctl.h>
++#include <linux/types.h> /* for __u32 in user space */
+
+ /* ioctl()'s for the random number generator */
+
+@@ -32,6 +33,30 @@
+ /* Clear the entropy pool and associated counters. (Superuser only.) */
+ #define RNDCLEARPOOL _IO( 'R', 0x06 )
+
++#ifdef CONFIG_FIPS_RNG
++
++/* Size of seed value - equal to AES blocksize */
++#define AES_BLOCK_SIZE_BYTES 16
++#define SEED_SIZE_BYTES AES_BLOCK_SIZE_BYTES
++/* Size of AES key */
++#define KEY_SIZE_BYTES 16
++
++/* ioctl() structure used by FIPS 140-2 Tests */
++struct rand_fips_test {
++ unsigned char key[KEY_SIZE_BYTES]; /* Input */
++ unsigned char datetime[SEED_SIZE_BYTES]; /* Input */
++ unsigned char seed[SEED_SIZE_BYTES]; /* Input */
++ unsigned char result[SEED_SIZE_BYTES]; /* Output */
++};
++
++/* FIPS 140-2 RNG Variable Seed Test. (Superuser only.) */
++#define RNDFIPSVST _IOWR('R', 0x10, struct rand_fips_test)
++
++/* FIPS 140-2 RNG Monte Carlo Test. (Superuser only.) */
++#define RNDFIPSMCT _IOWR('R', 0x11, struct rand_fips_test)
++
++#endif /* #ifdef CONFIG_FIPS_RNG */
++
+ struct rand_pool_info {
+ int entropy_count;
+ int buf_size;
+@@ -48,6 +73,10 @@
+ unsigned int value);
+ extern void add_interrupt_randomness(int irq);
+
++extern void random_input_words(__u32 *buf, size_t wordcount, int ent_count);
++extern int random_input_wait(void);
++#define HAS_RANDOM_INPUT_WAIT 1
++
+ extern void get_random_bytes(void *buf, int nbytes);
+ void generate_random_uuid(unsigned char uuid_out[16]);
+
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/Makefile 2007-07-25 11:02:33.000000000 +1000
+@@ -0,0 +1,13 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++obj-$(CONFIG_OCF_HIFN) += hifn7751.o
++obj-$(CONFIG_OCF_HIFNHIPP) += hifnHIPP.o
++
++obj ?= .
++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/Makefile 2007-07-25 11:02:33.000000000 +1000
+@@ -0,0 +1,12 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++obj-$(CONFIG_OCF_SAFE) += safe.o
++
++obj ?= .
++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/Makefile 2008-07-04 14:48:17.000000000 +1000
+@@ -0,0 +1,120 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++OCF_OBJS = crypto.o criov.o
++
++ifdef CONFIG_OCF_RANDOMHARVEST
++ OCF_OBJS += random.o
++endif
++
++ifdef CONFIG_OCF_FIPS
++ OCF_OBJS += rndtest.o
++endif
++
++# Add in autoconf.h to get #defines for CONFIG_xxx
++AUTOCONF_H=$(ROOTDIR)/modules/autoconf.h
++ifeq ($(AUTOCONF_H), $(wildcard $(AUTOCONF_H)))
++ EXTRA_CFLAGS += -include $(AUTOCONF_H)
++ export EXTRA_CFLAGS
++endif
++
++ifndef obj
++ obj ?= .
++ _obj = subdir
++ mod-subdirs := safe hifn ixp4xx talitos ocfnull
++ export-objs += crypto.o criov.o random.o
++ list-multi += ocf.o
++ _slash :=
++else
++ _obj = obj
++ _slash := /
++endif
++
++EXTRA_CFLAGS += -I$(obj)/.
++
++obj-$(CONFIG_OCF_OCF) += ocf.o
++obj-$(CONFIG_OCF_CRYPTODEV) += cryptodev.o
++obj-$(CONFIG_OCF_CRYPTOSOFT) += cryptosoft.o
++obj-$(CONFIG_OCF_BENCH) += ocf-bench.o
++
++$(_obj)-$(CONFIG_OCF_SAFE) += safe$(_slash)
++$(_obj)-$(CONFIG_OCF_HIFN) += hifn$(_slash)
++$(_obj)-$(CONFIG_OCF_IXP4XX) += ixp4xx$(_slash)
++$(_obj)-$(CONFIG_OCF_TALITOS) += talitos$(_slash)
++$(_obj)-$(CONFIG_OCF_PASEMI) += pasemi$(_slash)
++$(_obj)-$(CONFIG_OCF_OCFNULL) += ocfnull$(_slash)
++
++ocf-objs := $(OCF_OBJS)
++
++$(list-multi) dummy1: $(ocf-objs)
++ $(LD) -r -o $@ $(ocf-objs)
++
++.PHONY:
++clean:
++ rm -f *.o *.ko .*.o.flags .*.ko.cmd .*.o.cmd .*.mod.o.cmd *.mod.c
++ rm -f */*.o */*.ko */.*.o.cmd */.*.ko.cmd */.*.mod.o.cmd */*.mod.c */.*.o.flags
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
++#
++# release gen targets
++#
++
++.PHONY: patch
++patch:
++ REL=`date +%Y%m%d`; \
++ patch=ocf-linux-$$REL.patch; \
++ patch24=ocf-linux-24-$$REL.patch; \
++ patch26=ocf-linux-26-$$REL.patch; \
++ ( \
++ find . -name Makefile; \
++ find . -name Config.in; \
++ find . -name Kconfig; \
++ find . -name README; \
++ find . -name '*.[ch]' | grep -v '.mod.c'; \
++ ) | while read t; do \
++ diff -Nau /dev/null $$t | sed 's?^+++ \./?+++ linux/crypto/ocf/?'; \
++ done > $$patch; \
++ cat patches/linux-2.4.35-ocf.patch $$patch > $$patch24; \
++ cat patches/linux-2.6.25-ocf.patch $$patch > $$patch26
++
++.PHONY: tarball
++tarball:
++ REL=`date +%Y%m%d`; RELDIR=/tmp/ocf-linux-$$REL; \
++ CURDIR=`pwd`; \
++ rm -rf /tmp/ocf-linux-$$REL*; \
++ mkdir -p $$RELDIR/tools; \
++ cp README* $$RELDIR; \
++ cp patches/openss*.patch $$RELDIR; \
++ cp patches/crypto-tools.patch $$RELDIR; \
++ cp tools/[!C]* $$RELDIR/tools; \
++ cd ..; \
++ tar cvf $$RELDIR/ocf-linux.tar \
++ --exclude=CVS \
++ --exclude=.* \
++ --exclude=*.o \
++ --exclude=*.ko \
++ --exclude=*.mod.* \
++ --exclude=README* \
++ --exclude=ocf-*.patch \
++ --exclude=ocf/patches/openss*.patch \
++ --exclude=ocf/patches/crypto-tools.patch \
++ --exclude=ocf/tools \
++ ocf; \
++ gzip -9 $$RELDIR/ocf-linux.tar; \
++ cd /tmp; \
++ tar cvf ocf-linux-$$REL.tar ocf-linux-$$REL; \
++ gzip -9 ocf-linux-$$REL.tar; \
++ cd $$CURDIR/../../user; \
++ rm -rf /tmp/crypto-tools-$$REL*; \
++ tar cvf /tmp/crypto-tools-$$REL.tar \
++ --exclude=CVS \
++ --exclude=.* \
++ --exclude=*.o \
++ --exclude=cryptotest \
++ --exclude=cryptokeytest \
++ crypto-tools; \
++ gzip -9 /tmp/crypto-tools-$$REL.tar
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/talitos/Makefile 2007-07-25 11:02:33.000000000 +1000
+@@ -0,0 +1,12 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++obj-$(CONFIG_OCF_TALITOS) += talitos.o
++
++obj ?= .
++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ixp4xx/Makefile 2007-10-19 11:24:59.000000000 +1000
+@@ -0,0 +1,104 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++#
++# You will need to point this at your Intel ixp425 includes, this portion
++# of the Makefile only really works under SGLinux with the appropriate libs
++# installed. They can be downloaded from http://www.snapgear.org/
++#
++ifeq ($(CONFIG_CPU_IXP46X),y)
++IXPLATFORM = ixp46X
++else
++ifeq ($(CONFIG_CPU_IXP43X),y)
++IXPLATFORM = ixp43X
++else
++IXPLATFORM = ixp42X
++endif
++endif
++
++ifdef CONFIG_IXP400_LIB_2_4
++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.4/ixp400_xscale_sw
++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.4/ixp_osal
++endif
++ifdef CONFIG_IXP400_LIB_2_1
++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.1/ixp400_xscale_sw
++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.1/ixp_osal
++endif
++ifdef CONFIG_IXP400_LIB_2_0
++IX_XSCALE_SW = $(ROOTDIR)/modules/ixp425/ixp400-2.0/ixp400_xscale_sw
++OSAL_DIR = $(ROOTDIR)/modules/ixp425/ixp400-2.0/ixp_osal
++endif
++ifdef IX_XSCALE_SW
++ifdef CONFIG_IXP400_LIB_2_4
++IXP_CFLAGS = \
++ -I$(ROOTDIR)/. \
++ -I$(IX_XSCALE_SW)/src/include \
++ -I$(OSAL_DIR)/common/include/ \
++ -I$(OSAL_DIR)/common/include/modules/ \
++ -I$(OSAL_DIR)/common/include/modules/ddk/ \
++ -I$(OSAL_DIR)/common/include/modules/bufferMgt/ \
++ -I$(OSAL_DIR)/common/include/modules/ioMem/ \
++ -I$(OSAL_DIR)/common/os/linux/include/ \
++ -I$(OSAL_DIR)/common/os/linux/include/core/ \
++ -I$(OSAL_DIR)/common/os/linux/include/modules/ \
++ -I$(OSAL_DIR)/common/os/linux/include/modules/ddk/ \
++ -I$(OSAL_DIR)/common/os/linux/include/modules/bufferMgt/ \
++ -I$(OSAL_DIR)/common/os/linux/include/modules/ioMem/ \
++ -I$(OSAL_DIR)/platforms/$(IXPLATFORM)/include/ \
++ -I$(OSAL_DIR)/platforms/$(IXPLATFORM)/os/linux/include/ \
++ -DENABLE_IOMEM -DENABLE_BUFFERMGT -DENABLE_DDK \
++ -DUSE_IXP4XX_CRYPTO
++else
++IXP_CFLAGS = \
++ -I$(ROOTDIR)/. \
++ -I$(IX_XSCALE_SW)/src/include \
++ -I$(OSAL_DIR)/ \
++ -I$(OSAL_DIR)/os/linux/include/ \
++ -I$(OSAL_DIR)/os/linux/include/modules/ \
++ -I$(OSAL_DIR)/os/linux/include/modules/ioMem/ \
++ -I$(OSAL_DIR)/os/linux/include/modules/bufferMgt/ \
++ -I$(OSAL_DIR)/os/linux/include/core/ \
++ -I$(OSAL_DIR)/os/linux/include/platforms/ \
++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ \
++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ixp425 \
++ -I$(OSAL_DIR)/os/linux/include/platforms/ixp400/ixp465 \
++ -I$(OSAL_DIR)/os/linux/include/core/ \
++ -I$(OSAL_DIR)/include/ \
++ -I$(OSAL_DIR)/include/modules/ \
++ -I$(OSAL_DIR)/include/modules/bufferMgt/ \
++ -I$(OSAL_DIR)/include/modules/ioMem/ \
++ -I$(OSAL_DIR)/include/platforms/ \
++ -I$(OSAL_DIR)/include/platforms/ixp400/ \
++ -DUSE_IXP4XX_CRYPTO
++endif
++endif
++ifdef CONFIG_IXP400_LIB_1_4
++IXP_CFLAGS = \
++ -I$(ROOTDIR)/. \
++ -I$(ROOTDIR)/modules/ixp425/ixp400-1.4/ixp400_xscale_sw/src/include \
++ -I$(ROOTDIR)/modules/ixp425/ixp400-1.4/ixp400_xscale_sw/src/linux \
++ -DUSE_IXP4XX_CRYPTO
++endif
++ifndef IXPDIR
++IXPDIR = ixp-version-is-not-supported
++endif
++
++ifeq ($(CONFIG_CPU_IXP46X),y)
++IXP_CFLAGS += -D__ixp46X
++else
++ifeq ($(CONFIG_CPU_IXP43X),y)
++IXP_CFLAGS += -D__ixp43X
++else
++IXP_CFLAGS += -D__ixp42X
++endif
++endif
++
++obj-$(CONFIG_OCF_IXP4XX) += ixp4xx.o
++
++obj ?= .
++EXTRA_CFLAGS += $(IXP_CFLAGS) -I$(obj)/.. -I$(obj)/.
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ocfnull/Makefile 2007-07-25 11:02:33.000000000 +1000
+@@ -0,0 +1,12 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++obj-$(CONFIG_OCF_OCFNULL) += ocfnull.o
++
++obj ?= .
++EXTRA_CFLAGS += -I$(obj)/..
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/pasemi/Makefile 2007-12-12 11:36:18.000000000 +1000
+@@ -0,0 +1,12 @@
++# for SGlinux builds
++-include $(ROOTDIR)/modules/.config
++
++obj-$(CONFIG_OCF_PASEMI) += pasemi.o
++
++obj ?= .
++EXTRA_CFLAGS += -I$(obj)/.. -I$(obj)/
++
++ifdef TOPDIR
++-include $(TOPDIR)/Rules.make
++endif
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/Config.in 2008-06-23 10:09:55.000000000 +1000
+@@ -0,0 +1,32 @@
++#############################################################################
++
++mainmenu_option next_comment
++comment 'OCF Configuration'
++tristate 'OCF (Open Cryptograhic Framework)' CONFIG_OCF_OCF
++dep_mbool ' enable fips RNG checks (fips check on RNG data before use)' \
++ CONFIG_OCF_FIPS $CONFIG_OCF_OCF
++dep_mbool ' enable harvesting entropy for /dev/random' \
++ CONFIG_OCF_RANDOMHARVEST $CONFIG_OCF_OCF
++dep_tristate ' cryptodev (user space support)' \
++ CONFIG_OCF_CRYPTODEV $CONFIG_OCF_OCF
++dep_tristate ' cryptosoft (software crypto engine)' \
++ CONFIG_OCF_CRYPTOSOFT $CONFIG_OCF_OCF
++dep_tristate ' safenet (HW crypto engine)' \
++ CONFIG_OCF_SAFE $CONFIG_OCF_OCF
++dep_tristate ' IXP4xx (HW crypto engine)' \
++ CONFIG_OCF_IXP4XX $CONFIG_OCF_OCF
++dep_mbool ' Enable IXP4xx HW to perform SHA1 and MD5 hashing (very slow)' \
++ CONFIG_OCF_IXP4XX_SHA1_MD5 $CONFIG_OCF_IXP4XX
++dep_tristate ' hifn (HW crypto engine)' \
++ CONFIG_OCF_HIFN $CONFIG_OCF_OCF
++dep_tristate ' talitos (HW crypto engine)' \
++ CONFIG_OCF_TALITOS $CONFIG_OCF_OCF
++dep_tristate ' pasemi (HW crypto engine)' \
++ CONFIG_OCF_PASEMI $CONFIG_OCF_OCF
++dep_tristate ' ocfnull (does no crypto)' \
++ CONFIG_OCF_OCFNULL $CONFIG_OCF_OCF
++dep_tristate ' ocf-bench (HW crypto in-kernel benchmark)' \
++ CONFIG_OCF_BENCH $CONFIG_OCF_OCF
++endmenu
++
++#############################################################################
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/Kconfig 2008-06-23 10:10:33.000000000 +1000
+@@ -0,0 +1,95 @@
++menu "OCF Configuration"
++
++config OCF_OCF
++ tristate "OCF (Open Cryptograhic Framework)"
++ help
++ A linux port of the OpenBSD/FreeBSD crypto framework.
++
++config OCF_RANDOMHARVEST
++ bool "crypto random --- harvest entropy for /dev/random"
++ depends on OCF_OCF
++ help
++ Includes code to harvest random numbers from devices that support it.
++
++config OCF_FIPS
++ bool "enable fips RNG checks"
++ depends on OCF_OCF && OCF_RANDOMHARVEST
++ help
++ Run all RNG provided data through a fips check before
++ adding it /dev/random's entropy pool.
++
++config OCF_CRYPTODEV
++ tristate "cryptodev (user space support)"
++ depends on OCF_OCF
++ help
++ The user space API to access crypto hardware.
++
++config OCF_CRYPTOSOFT
++ tristate "cryptosoft (software crypto engine)"
++ depends on OCF_OCF
++ help
++ A software driver for the OCF framework that uses
++ the kernel CryptoAPI.
++
++config OCF_SAFE
++ tristate "safenet (HW crypto engine)"
++ depends on OCF_OCF
++ help
++ A driver for a number of the safenet Excel crypto accelerators.
++ Currently tested and working on the 1141 and 1741.
++
++config OCF_IXP4XX
++ tristate "IXP4xx (HW crypto engine)"
++ depends on OCF_OCF
++ help
++ XScale IXP4xx crypto accelerator driver. Requires the
++ Intel Access library.
++
++config OCF_IXP4XX_SHA1_MD5
++ bool "IXP4xx SHA1 and MD5 Hashing"
++ depends on OCF_IXP4XX
++ help
++ Allows the IXP4xx crypto accelerator to perform SHA1 and MD5 hashing.
++ Note: this is MUCH slower than using cryptosoft (software crypto engine).
++
++config OCF_HIFN
++ tristate "hifn (HW crypto engine)"
++ depends on OCF_OCF
++ help
++ OCF driver for various HIFN based crypto accelerators.
++ (7951, 7955, 7956, 7751, 7811)
++
++config OCF_HIFNHIPP
++ tristate "Hifn HIPP (HW packet crypto engine)"
++ depends on OCF_OCF
++ help
++ OCF driver for various HIFN (HIPP) based crypto accelerators
++ (7855)
++
++config OCF_TALITOS
++ tristate "talitos (HW crypto engine)"
++ depends on OCF_OCF
++ help
++ OCF driver for Freescale's security engine (SEC/talitos).
++
++config OCF_PASEMI
++ tristate "pasemi (HW crypto engine)"
++ depends on OCF_OCF && PPC_PASEMI
++ help
++ OCF driver for for PA Semi PWRficient DMA Engine
++
++config OCF_OCFNULL
++ tristate "ocfnull (fake crypto engine)"
++ depends on OCF_OCF
++ help
++ OCF driver for measuring ipsec overheads (does no crypto)
++
++config OCF_BENCH
++ tristate "ocf-bench (HW crypto in-kernel benchmark)"
++ depends on OCF_OCF
++ help
++ A very simple encryption test for the in-kernel interface
++ of OCF. Also includes code to benchmark the IXP Access library
++ for comparison.
++
++endmenu
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/README 2007-12-15 21:31:03.000000000 +1000
+@@ -0,0 +1,166 @@
++README - ocf-linux-20071215
++---------------------------
++
++This README provides instructions for getting ocf-linux compiled and
++operating in a generic linux environment. For other information you
++might like to visit the home page for this project:
++
++ http://ocf-linux.sourceforge.net/
++
++Adding OCF to linux
++-------------------
++
++ Not much in this file for now, just some notes. I usually build
++ the ocf support as modules but it can be built into the kernel as
++ well. To use it:
++
++ * mknod /dev/crypto c 10 70
++
++ * to add OCF to your kernel source, you have two options. Apply
++ the kernel specific patch:
++
++ cd linux-2.4*; gunzip < ocf-linux-24-XXXXXXXX.patch.gz | patch -p1
++ cd linux-2.6*; gunzip < ocf-linux-26-XXXXXXXX.patch.gz | patch -p1
++
++ if you do one of the above, then you can proceed to the next step,
++ or you can do the above process by hand with using the patches against
++ linux-2.4.35 and 2.6.23 to include the ocf code under crypto/ocf.
++ Here's how to add it:
++
++ for 2.4.35 (and later)
++
++ cd linux-2.4.35/crypto
++ tar xvzf ocf-linux.tar.gz
++ cd ..
++ patch -p1 < crypto/ocf/patches/linux-2.4.35-ocf.patch
++
++ for 2.6.23 (and later)
++
++ cd linux-2.6.23/crypto
++ tar xvzf ocf-linux.tar.gz
++ cd ..
++ patch -p1 < crypto/ocf/patches/linux-2.6.23-ocf.patch
++
++ It should be easy to take this patch and apply it to other more
++ recent versions of the kernels. The same patches should also work
++ relatively easily on kernels as old as 2.6.11 and 2.4.18.
++
++ * under 2.4 if you are on a non-x86 platform, you may need to:
++
++ cp linux-2.X.x/include/asm-i386/kmap_types.h linux-2.X.x/include/asm-YYY
++
++ so that you can build the kernel crypto support needed for the cryptosoft
++ driver.
++
++ * For simplicity you should enable all the crypto support in your kernel
++ except for the test driver. Likewise for the OCF options. Do not
++ enable OCF crypto drivers for HW that you do not have (for example
++ ixp4xx will not compile on non-Xscale systems).
++
++ * make sure that cryptodev.h (from ocf-linux.tar.gz) is installed as
++ crypto/cryptodev.h in an include directory that is used for building
++ applications for your platform. For example on a host system that
++ might be:
++
++ /usr/include/crypto/cryptodev.h
++
++ * patch your openssl-0.9.8g code with the openssl-0.9.8g.patch.
++ (NOTE: there is no longer a need to patch ssh). The patch is against:
++ openssl-0_9_8e
++
++ If you need a patch for an older version of openssl, you should look
++ to older OCF releases. This patch is unlikely to work on older
++ openssl versions.
++
++ openssl-0.9.8g.patch
++ - enables --with-cryptodev for non BSD systems
++ - adds -cpu option to openssl speed for calculating CPU load
++ under linux
++ - fixes null pointer in openssl speed multi thread output.
++ - fixes test keys to work with linux crypto's more stringent
++ key checking.
++ - adds MD5/SHA acceleration (Ronen Shitrit), only enabled
++ with the --with-cryptodev-digests option
++ - fixes bug in engine code caching.
++
++ * build crypto-tools-XXXXXXXX.tar.gz if you want to try some of the BSD
++ tools for testing OCF (ie., cryptotest).
++
++How to load the OCF drivers
++---------------------------
++
++ First insert the base modules:
++
++ insmod ocf
++ insmod cryptodev
++
++ You can then install the software OCF driver with:
++
++ insmod cryptosoft
++
++ and one or more of the OCF HW drivers with:
++
++ insmod safe
++ insmod hifn7751
++ insmod ixp4xx
++ ...
++
++ all the drivers take a debug option to enable verbose debug so that
++ you can see what is going on. For debug you load them as:
++
++ insmod ocf crypto_debug=1
++ insmod cryptodev cryptodev_debug=1
++ insmod cryptosoft swcr_debug=1
++
++ You may load more than one OCF crypto driver but then there is no guarantee
++ as to which will be used.
++
++ You can also enable debug at run time on 2.6 systems with the following:
++
++ echo 1 > /sys/module/ocf/parameters/crypto_debug
++ echo 1 > /sys/module/cryptodev/parameters/cryptodev_debug
++ echo 1 > /sys/module/cryptosoft/parameters/swcr_debug
++ echo 1 > /sys/module/hifn7751/parameters/hifn_debug
++ echo 1 > /sys/module/safe/parameters/safe_debug
++ echo 1 > /sys/module/ixp4xx/parameters/ixp_debug
++ ...
++
++Testing the OCF support
++-----------------------
++
++ run "cryptotest", it should do a short test for a couple of
++ des packets. If it does everything is working.
++
++ If this works, then ssh will use the driver when invoked as:
++
++ ssh -c 3des username@host
++
++ to see for sure that it is operating, enable debug as defined above.
++
++ To get a better idea of performance run:
++
++ cryptotest 100 4096
++
++ There are more options to cryptotest, see the help.
++
++ It is also possible to use openssl to test the speed of the crypto
++ drivers.
++
++ openssl speed -evp des -engine cryptodev -elapsed
++ openssl speed -evp des3 -engine cryptodev -elapsed
++ openssl speed -evp aes128 -engine cryptodev -elapsed
++
++ and multiple threads (10) with:
++
++ openssl speed -evp des -engine cryptodev -elapsed -multi 10
++ openssl speed -evp des3 -engine cryptodev -elapsed -multi 10
++ openssl speed -evp aes128 -engine cryptodev -elapsed -multi 10
++
++ for public key testing you can try:
++
++ cryptokeytest
++ openssl speed -engine cryptodev rsa -elapsed
++ openssl speed -engine cryptodev dsa -elapsed
++
++David McCullough
++david_mccullough@securecomputing.com
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifn7751reg.h 2007-06-20 09:15:58.000000000 +1000
+@@ -0,0 +1,540 @@
++/* $FreeBSD: src/sys/dev/hifn/hifn7751reg.h,v 1.7 2007/03/21 03:42:49 sam Exp $ */
++/* $OpenBSD: hifn7751reg.h,v 1.35 2002/04/08 17:49:42 jason Exp $ */
++
++/*-
++ * Invertex AEON / Hifn 7751 driver
++ * Copyright (c) 1999 Invertex Inc. All rights reserved.
++ * Copyright (c) 1999 Theo de Raadt
++ * Copyright (c) 2000-2001 Network Security Technologies, Inc.
++ * http://www.netsec.net
++ *
++ * Please send any comments, feedback, bug-fixes, or feature requests to
++ * software@invertex.com.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored in part by the Defense Advanced Research Projects
++ * Agency (DARPA) and Air Force Research Laboratory, Air Force
++ * Materiel Command, USAF, under agreement number F30602-01-2-0537.
++ *
++ */
++#ifndef __HIFN_H__
++#define __HIFN_H__
++
++/*
++ * Some PCI configuration space offset defines. The names were made
++ * identical to the names used by the Linux kernel.
++ */
++#define HIFN_BAR0 PCIR_BAR(0) /* PUC register map */
++#define HIFN_BAR1 PCIR_BAR(1) /* DMA register map */
++#define HIFN_TRDY_TIMEOUT 0x40
++#define HIFN_RETRY_TIMEOUT 0x41
++
++/*
++ * PCI vendor and device identifiers
++ * (the names are preserved from their OpenBSD source).
++ */
++#define PCI_VENDOR_HIFN 0x13a3 /* Hifn */
++#define PCI_PRODUCT_HIFN_7751 0x0005 /* 7751 */
++#define PCI_PRODUCT_HIFN_6500 0x0006 /* 6500 */
++#define PCI_PRODUCT_HIFN_7811 0x0007 /* 7811 */
++#define PCI_PRODUCT_HIFN_7855 0x001f /* 7855 */
++#define PCI_PRODUCT_HIFN_7951 0x0012 /* 7951 */
++#define PCI_PRODUCT_HIFN_7955 0x0020 /* 7954/7955 */
++#define PCI_PRODUCT_HIFN_7956 0x001d /* 7956 */
++
++#define PCI_VENDOR_INVERTEX 0x14e1 /* Invertex */
++#define PCI_PRODUCT_INVERTEX_AEON 0x0005 /* AEON */
++
++#define PCI_VENDOR_NETSEC 0x1660 /* NetSec */
++#define PCI_PRODUCT_NETSEC_7751 0x7751 /* 7751 */
++
++/*
++ * The values below should multiple of 4 -- and be large enough to handle
++ * any command the driver implements.
++ *
++ * MAX_COMMAND = base command + mac command + encrypt command +
++ * mac-key + rc4-key
++ * MAX_RESULT = base result + mac result + mac + encrypt result
++ *
++ *
++ */
++#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
++#define HIFN_MAX_RESULT (8 + 4 + 20 + 4)
++
++/*
++ * hifn_desc_t
++ *
++ * Holds an individual descriptor for any of the rings.
++ */
++typedef struct hifn_desc {
++ volatile u_int32_t l; /* length and status bits */
++ volatile u_int32_t p;
++} hifn_desc_t;
++
++/*
++ * Masks for the "length" field of struct hifn_desc.
++ */
++#define HIFN_D_LENGTH 0x0000ffff /* length bit mask */
++#define HIFN_D_MASKDONEIRQ 0x02000000 /* mask the done interrupt */
++#define HIFN_D_DESTOVER 0x04000000 /* destination overflow */
++#define HIFN_D_OVER 0x08000000 /* overflow */
++#define HIFN_D_LAST 0x20000000 /* last descriptor in chain */
++#define HIFN_D_JUMP 0x40000000 /* jump descriptor */
++#define HIFN_D_VALID 0x80000000 /* valid bit */
++
++
++/*
++ * Processing Unit Registers (offset from BASEREG0)
++ */
++#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
++#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
++#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
++#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
++#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
++#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
++#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
++#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
++#define HIFN_0_PUCTRL2 0x28 /* Processing Unit Control (2nd map) */
++#define HIFN_0_MUTE1 0x80
++#define HIFN_0_MUTE2 0x90
++#define HIFN_0_SPACESIZE 0x100 /* Register space size */
++
++/* Processing Unit Control Register (HIFN_0_PUCTRL) */
++#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
++#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
++#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
++#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
++#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
++
++/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
++#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
++#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
++#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
++#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
++#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
++#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
++#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
++#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
++#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
++#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
++
++/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
++#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
++#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
++#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
++#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
++#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
++#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
++#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
++#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
++#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
++#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
++#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
++#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
++#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
++#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
++#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
++#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
++#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
++#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
++#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
++#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
++#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
++#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
++#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
++
++/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
++#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
++#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
++#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
++#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
++#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
++#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
++#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
++#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
++#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
++#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
++
++/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
++#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
++#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
++#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
++#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
++#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
++#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
++#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
++#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
++#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
++#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
++#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
++#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
++#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
++#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
++#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
++#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
++#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
++
++/* FIFO Status Register (HIFN_0_FIFOSTAT) */
++#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
++#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
++
++/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
++#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as this value */
++
++/*
++ * DMA Interface Registers (offset from BASEREG1)
++ */
++#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
++#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
++#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
++#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
++#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
++#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
++#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
++#define HIFN_1_PLL 0x4c /* 7955/7956: PLL config */
++#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
++#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
++#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
++#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
++#define HIFN_1_DMA_CNFG2 0x6c /* 7955/7956: dma config #2 */
++#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
++#define HIFN_1_REVID 0x98 /* Revision ID */
++
++#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
++#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
++#define HIFN_1_PUB_OPLEN 0x304 /* 7951-compat Public Operand Length */
++#define HIFN_1_PUB_OP 0x308 /* 7951-compat Public Operand */
++#define HIFN_1_PUB_STATUS 0x30c /* 7951-compat Public Status */
++#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
++#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
++#define HIFN_1_RNG_DATA 0x318 /* RNG data */
++#define HIFN_1_PUB_MODE 0x320 /* PK mode */
++#define HIFN_1_PUB_FIFO_OPLEN 0x380 /* first element of oplen fifo */
++#define HIFN_1_PUB_FIFO_OP 0x384 /* first element of op fifo */
++#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
++#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
++
++/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
++#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
++#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
++#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
++#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
++#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
++#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
++#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
++#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
++#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
++#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
++#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
++#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
++#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
++#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
++#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
++#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
++#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
++#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
++#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
++#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
++#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
++#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
++#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
++#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
++#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
++#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
++#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
++#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
++#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
++#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
++#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
++#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
++#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
++#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
++#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
++#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
++#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
++#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
++
++/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
++#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
++#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
++#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
++#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
++#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
++#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
++#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
++#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
++#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
++#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
++#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
++#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
++#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
++#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
++#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
++#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
++#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
++#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
++#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
++#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
++#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
++#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
++
++/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
++#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
++#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
++#define HIFN_DMACNFG_UNLOCK 0x00000800
++#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
++#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
++#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
++#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
++#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
++
++/* DMA Configuration Register (HIFN_1_DMA_CNFG2) */
++#define HIFN_DMACNFG2_PKSWAP32 (1 << 19) /* swap the OPLEN/OP reg */
++#define HIFN_DMACNFG2_PKSWAP8 (1 << 18) /* swap the bits of OPLEN/OP */
++#define HIFN_DMACNFG2_BAR0_SWAP32 (1<<17) /* swap the bytes of BAR0 */
++#define HIFN_DMACNFG2_BAR1_SWAP8 (1<<16) /* swap the bits of BAR0 */
++#define HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT 12
++#define HIFN_DMACNFG2_INIT_READ_BURST_SHIFT 8
++#define HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT 4
++#define HIFN_DMACNFG2_TGT_READ_BURST_SHIFT 0
++
++/* 7811 RNG Enable Register (HIFN_1_7811_RNGENA) */
++#define HIFN_7811_RNGENA_ENA 0x00000001 /* enable RNG */
++
++/* 7811 RNG Config Register (HIFN_1_7811_RNGCFG) */
++#define HIFN_7811_RNGCFG_PRE1 0x00000f00 /* first prescalar */
++#define HIFN_7811_RNGCFG_OPRE 0x00000080 /* output prescalar */
++#define HIFN_7811_RNGCFG_DEFL 0x00000f80 /* 2 words/ 1/100 sec */
++
++/* 7811 RNG Status Register (HIFN_1_7811_RNGSTS) */
++#define HIFN_7811_RNGSTS_RDY 0x00004000 /* two numbers in FIFO */
++#define HIFN_7811_RNGSTS_UFL 0x00001000 /* rng underflow */
++
++/* 7811 MIPS Reset Register (HIFN_1_7811_MIPSRST) */
++#define HIFN_MIPSRST_BAR2SIZE 0xffff0000 /* sdram size */
++#define HIFN_MIPSRST_GPRAMINIT 0x00008000 /* gpram can be accessed */
++#define HIFN_MIPSRST_CRAMINIT 0x00004000 /* ctxram can be accessed */
++#define HIFN_MIPSRST_LED2 0x00000400 /* external LED2 */
++#define HIFN_MIPSRST_LED1 0x00000200 /* external LED1 */
++#define HIFN_MIPSRST_LED0 0x00000100 /* external LED0 */
++#define HIFN_MIPSRST_MIPSDIS 0x00000004 /* disable MIPS */
++#define HIFN_MIPSRST_MIPSRST 0x00000002 /* warm reset MIPS */
++#define HIFN_MIPSRST_MIPSCOLD 0x00000001 /* cold reset MIPS */
++
++/* Public key reset register (HIFN_1_PUB_RESET) */
++#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
++
++/* Public operation register (HIFN_1_PUB_OP) */
++#define HIFN_PUBOP_AOFFSET 0x0000003e /* A offset */
++#define HIFN_PUBOP_BOFFSET 0x00000fc0 /* B offset */
++#define HIFN_PUBOP_MOFFSET 0x0003f000 /* M offset */
++#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
++#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
++#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
++#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
++#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
++#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
++#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
++#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
++#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
++#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
++#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
++#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
++#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular Red */
++#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular Exp */
++
++/* Public operand length register (HIFN_1_PUB_OPLEN) */
++#define HIFN_PUBOPLEN_MODLEN 0x0000007f
++#define HIFN_PUBOPLEN_EXPLEN 0x0003ff80
++#define HIFN_PUBOPLEN_REDLEN 0x003c0000
++
++/* Public status register (HIFN_1_PUB_STATUS) */
++#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
++#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
++#define HIFN_PUBSTS_FIFO_EMPTY 0x00000100 /* fifo empty */
++#define HIFN_PUBSTS_FIFO_FULL 0x00000200 /* fifo full */
++#define HIFN_PUBSTS_FIFO_OVFL 0x00000400 /* fifo overflow */
++#define HIFN_PUBSTS_FIFO_WRITE 0x000f0000 /* fifo write */
++#define HIFN_PUBSTS_FIFO_READ 0x0f000000 /* fifo read */
++
++/* Public interrupt enable register (HIFN_1_PUB_IEN) */
++#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
++
++/* Random number generator config register (HIFN_1_RNG_CONFIG) */
++#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
++
++/*
++ * Register offsets in register set 1
++ */
++
++#define HIFN_UNLOCK_SECRET1 0xf4
++#define HIFN_UNLOCK_SECRET2 0xfc
++
++/*
++ * PLL config register
++ *
++ * This register is present only on 7954/7955/7956 parts. It must be
++ * programmed according to the bus interface method used by the h/w.
++ * Note that the parts require a stable clock. Since the PCI clock
++ * may vary the reference clock must usually be used. To avoid
++ * overclocking the core logic, setup must be done carefully, refer
++ * to the driver for details. The exact multiplier required varies
++ * by part and system configuration; refer to the Hifn documentation.
++ */
++#define HIFN_PLL_REF_SEL 0x00000001 /* REF/HBI clk selection */
++#define HIFN_PLL_BP 0x00000002 /* bypass (used during setup) */
++/* bit 2 reserved */
++#define HIFN_PLL_PK_CLK_SEL 0x00000008 /* public key clk select */
++#define HIFN_PLL_PE_CLK_SEL 0x00000010 /* packet engine clk select */
++/* bits 5-9 reserved */
++#define HIFN_PLL_MBSET 0x00000400 /* must be set to 1 */
++#define HIFN_PLL_ND 0x00003800 /* Fpll_ref multiplier select */
++#define HIFN_PLL_ND_SHIFT 11
++#define HIFN_PLL_ND_2 0x00000000 /* 2x */
++#define HIFN_PLL_ND_4 0x00000800 /* 4x */
++#define HIFN_PLL_ND_6 0x00001000 /* 6x */
++#define HIFN_PLL_ND_8 0x00001800 /* 8x */
++#define HIFN_PLL_ND_10 0x00002000 /* 10x */
++#define HIFN_PLL_ND_12 0x00002800 /* 12x */
++/* bits 14-15 reserved */
++#define HIFN_PLL_IS 0x00010000 /* charge pump current select */
++/* bits 17-31 reserved */
++
++/*
++ * Board configuration specifies only these bits.
++ */
++#define HIFN_PLL_CONFIG (HIFN_PLL_IS|HIFN_PLL_ND|HIFN_PLL_REF_SEL)
++
++/*
++ * Public Key Engine Mode Register
++ */
++#define HIFN_PKMODE_HOSTINVERT (1 << 0) /* HOST INVERT */
++#define HIFN_PKMODE_ENHANCED (1 << 1) /* Enable enhanced mode */
++
++
++/*********************************************************************
++ * Structs for board commands
++ *
++ *********************************************************************/
++
++/*
++ * Structure to help build up the command data structure.
++ */
++typedef struct hifn_base_command {
++ volatile u_int16_t masks;
++ volatile u_int16_t session_num;
++ volatile u_int16_t total_source_count;
++ volatile u_int16_t total_dest_count;
++} hifn_base_command_t;
++
++#define HIFN_BASE_CMD_MAC 0x0400
++#define HIFN_BASE_CMD_CRYPT 0x0800
++#define HIFN_BASE_CMD_DECODE 0x2000
++#define HIFN_BASE_CMD_SRCLEN_M 0xc000
++#define HIFN_BASE_CMD_SRCLEN_S 14
++#define HIFN_BASE_CMD_DSTLEN_M 0x3000
++#define HIFN_BASE_CMD_DSTLEN_S 12
++#define HIFN_BASE_CMD_LENMASK_HI 0x30000
++#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
++
++/*
++ * Structure to help build up the command data structure.
++ */
++typedef struct hifn_crypt_command {
++ volatile u_int16_t masks;
++ volatile u_int16_t header_skip;
++ volatile u_int16_t source_count;
++ volatile u_int16_t reserved;
++} hifn_crypt_command_t;
++
++#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
++#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
++#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
++#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
++#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
++#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
++#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
++#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
++#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
++#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
++#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
++#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
++#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
++
++#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
++#define HIFN_CRYPT_CMD_SRCLEN_S 14
++
++#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
++#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
++#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
++#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
++
++/*
++ * Structure to help build up the command data structure.
++ */
++typedef struct hifn_mac_command {
++ volatile u_int16_t masks;
++ volatile u_int16_t header_skip;
++ volatile u_int16_t source_count;
++ volatile u_int16_t reserved;
++} hifn_mac_command_t;
++
++#define HIFN_MAC_CMD_ALG_MASK 0x0001
++#define HIFN_MAC_CMD_ALG_SHA1 0x0000
++#define HIFN_MAC_CMD_ALG_MD5 0x0001
++#define HIFN_MAC_CMD_MODE_MASK 0x000c
++#define HIFN_MAC_CMD_MODE_HMAC 0x0000
++#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
++#define HIFN_MAC_CMD_MODE_HASH 0x0008
++#define HIFN_MAC_CMD_MODE_FULL 0x0004
++#define HIFN_MAC_CMD_TRUNC 0x0010
++#define HIFN_MAC_CMD_RESULT 0x0020
++#define HIFN_MAC_CMD_APPEND 0x0040
++#define HIFN_MAC_CMD_SRCLEN_M 0xc000
++#define HIFN_MAC_CMD_SRCLEN_S 14
++
++/*
++ * MAC POS IPsec initiates authentication after encryption on encodes
++ * and before decryption on decodes.
++ */
++#define HIFN_MAC_CMD_POS_IPSEC 0x0200
++#define HIFN_MAC_CMD_NEW_KEY 0x0800
++
++/*
++ * The poll frequency and poll scalar defines are unshifted values used
++ * to set fields in the DMA Configuration Register.
++ */
++#ifndef HIFN_POLL_FREQUENCY
++#define HIFN_POLL_FREQUENCY 0x1
++#endif
++
++#ifndef HIFN_POLL_SCALAR
++#define HIFN_POLL_SCALAR 0x0
++#endif
++
++#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
++#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
++#endif /* __HIFN_H__ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifn7751var.h 2007-06-20 09:22:39.000000000 +1000
+@@ -0,0 +1,369 @@
++/* $FreeBSD: src/sys/dev/hifn/hifn7751var.h,v 1.9 2007/03/21 03:42:49 sam Exp $ */
++/* $OpenBSD: hifn7751var.h,v 1.42 2002/04/08 17:49:42 jason Exp $ */
++
++/*-
++ * Invertex AEON / Hifn 7751 driver
++ * Copyright (c) 1999 Invertex Inc. All rights reserved.
++ * Copyright (c) 1999 Theo de Raadt
++ * Copyright (c) 2000-2001 Network Security Technologies, Inc.
++ * http://www.netsec.net
++ *
++ * Please send any comments, feedback, bug-fixes, or feature requests to
++ * software@invertex.com.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored in part by the Defense Advanced Research Projects
++ * Agency (DARPA) and Air Force Research Laboratory, Air Force
++ * Materiel Command, USAF, under agreement number F30602-01-2-0537.
++ *
++ */
++
++#ifndef __HIFN7751VAR_H__
++#define __HIFN7751VAR_H__
++
++#ifdef __KERNEL__
++
++/*
++ * Some configurable values for the driver. By default command+result
++ * descriptor rings are the same size. The src+dst descriptor rings
++ * are sized at 3.5x the number of potential commands. Slower parts
++ * (e.g. 7951) tend to run out of src descriptors; faster parts (7811)
++ * src+cmd/result descriptors. It's not clear that increasing the size
++ * of the descriptor rings helps performance significantly as other
++ * factors tend to come into play (e.g. copying misaligned packets).
++ */
++#define HIFN_D_CMD_RSIZE 24 /* command descriptors */
++#define HIFN_D_SRC_RSIZE ((HIFN_D_CMD_RSIZE * 7) / 2) /* source descriptors */
++#define HIFN_D_RES_RSIZE HIFN_D_CMD_RSIZE /* result descriptors */
++#define HIFN_D_DST_RSIZE HIFN_D_SRC_RSIZE /* destination descriptors */
++
++/*
++ * Length values for cryptography
++ */
++#define HIFN_DES_KEY_LENGTH 8
++#define HIFN_3DES_KEY_LENGTH 24
++#define HIFN_MAX_CRYPT_KEY_LENGTH HIFN_3DES_KEY_LENGTH
++#define HIFN_IV_LENGTH 8
++#define HIFN_AES_IV_LENGTH 16
++#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
++
++/*
++ * Length values for authentication
++ */
++#define HIFN_MAC_KEY_LENGTH 64
++#define HIFN_MD5_LENGTH 16
++#define HIFN_SHA1_LENGTH 20
++#define HIFN_MAC_TRUNC_LENGTH 12
++
++#define MAX_SCATTER 64
++
++/*
++ * Data structure to hold all 4 rings and any other ring related data.
++ */
++struct hifn_dma {
++ /*
++ * Descriptor rings. We add +1 to the size to accomidate the
++ * jump descriptor.
++ */
++ struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
++ struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
++ struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
++ struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
++
++ struct hifn_command *hifn_commands[HIFN_D_RES_RSIZE];
++
++ u_char command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
++ u_char result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
++ u_int32_t slop[HIFN_D_CMD_RSIZE];
++
++ u_int64_t test_src, test_dst;
++
++ /*
++ * Our current positions for insertion and removal from the desriptor
++ * rings.
++ */
++ int cmdi, srci, dsti, resi;
++ volatile int cmdu, srcu, dstu, resu;
++ int cmdk, srck, dstk, resk;
++};
++
++struct hifn_session {
++ int hs_used;
++ int hs_mlen;
++ u_int8_t hs_iv[HIFN_MAX_IV_LENGTH];
++};
++
++#define HIFN_RING_SYNC(sc, r, i, f) \
++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */
++
++#define HIFN_CMDR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), cmdr, (i), (f))
++#define HIFN_RESR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), resr, (i), (f))
++#define HIFN_SRCR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), srcr, (i), (f))
++#define HIFN_DSTR_SYNC(sc, i, f) HIFN_RING_SYNC((sc), dstr, (i), (f))
++
++#define HIFN_CMD_SYNC(sc, i, f) \
++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */
++
++#define HIFN_RES_SYNC(sc, i, f) \
++ /* DAVIDM bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_dmamap, (f)) */
++
++typedef int bus_size_t;
++
++/*
++ * Holds data specific to a single HIFN board.
++ */
++struct hifn_softc {
++ softc_device_decl sc_dev;
++
++ struct pci_dev *sc_pcidev; /* PCI device pointer */
++ spinlock_t sc_mtx; /* per-instance lock */
++
++ int sc_num; /* for multiple devs */
++
++ ocf_iomem_t sc_bar0;
++ bus_size_t sc_bar0_lastreg;/* bar0 last reg written */
++ ocf_iomem_t sc_bar1;
++ bus_size_t sc_bar1_lastreg;/* bar1 last reg written */
++
++ int sc_irq;
++
++ u_int32_t sc_dmaier;
++ u_int32_t sc_drammodel; /* 1=dram, 0=sram */
++ u_int32_t sc_pllconfig; /* 7954/7955/7956 PLL config */
++
++ struct hifn_dma *sc_dma;
++ dma_addr_t sc_dma_physaddr;/* physical address of sc_dma */
++
++ int sc_dmansegs;
++ int32_t sc_cid;
++ int sc_maxses;
++ int sc_nsessions;
++ struct hifn_session *sc_sessions;
++ int sc_ramsize;
++ int sc_flags;
++#define HIFN_HAS_RNG 0x1 /* includes random number generator */
++#define HIFN_HAS_PUBLIC 0x2 /* includes public key support */
++#define HIFN_HAS_AES 0x4 /* includes AES support */
++#define HIFN_IS_7811 0x8 /* Hifn 7811 part */
++#define HIFN_IS_7956 0x10 /* Hifn 7956/7955 don't have SDRAM */
++
++ struct timer_list sc_tickto; /* for managing DMA */
++
++ int sc_rngfirst;
++ int sc_rnghz; /* RNG polling frequency */
++
++ int sc_c_busy; /* command ring busy */
++ int sc_s_busy; /* source data ring busy */
++ int sc_d_busy; /* destination data ring busy */
++ int sc_r_busy; /* result ring busy */
++ int sc_active; /* for initial countdown */
++ int sc_needwakeup; /* ops q'd wating on resources */
++ int sc_curbatch; /* # ops submitted w/o int */
++ int sc_suspended;
++#ifdef HIFN_VULCANDEV
++ struct cdev *sc_pkdev;
++#endif
++};
++
++#define HIFN_LOCK(_sc) spin_lock_irqsave(&(_sc)->sc_mtx, l_flags)
++#define HIFN_UNLOCK(_sc) spin_unlock_irqrestore(&(_sc)->sc_mtx, l_flags)
++
++/*
++ * hifn_command_t
++ *
++ * This is the control structure used to pass commands to hifn_encrypt().
++ *
++ * flags
++ * -----
++ * Flags is the bitwise "or" values for command configuration. A single
++ * encrypt direction needs to be set:
++ *
++ * HIFN_ENCODE or HIFN_DECODE
++ *
++ * To use cryptography, a single crypto algorithm must be included:
++ *
++ * HIFN_CRYPT_3DES or HIFN_CRYPT_DES
++ *
++ * To use authentication is used, a single MAC algorithm must be included:
++ *
++ * HIFN_MAC_MD5 or HIFN_MAC_SHA1
++ *
++ * By default MD5 uses a 16 byte hash and SHA-1 uses a 20 byte hash.
++ * If the value below is set, hash values are truncated or assumed
++ * truncated to 12 bytes:
++ *
++ * HIFN_MAC_TRUNC
++ *
++ * Keys for encryption and authentication can be sent as part of a command,
++ * or the last key value used with a particular session can be retrieved
++ * and used again if either of these flags are not specified.
++ *
++ * HIFN_CRYPT_NEW_KEY, HIFN_MAC_NEW_KEY
++ *
++ * session_num
++ * -----------
++ * A number between 0 and 2048 (for DRAM models) or a number between
++ * 0 and 768 (for SRAM models). Those who don't want to use session
++ * numbers should leave value at zero and send a new crypt key and/or
++ * new MAC key on every command. If you use session numbers and
++ * don't send a key with a command, the last key sent for that same
++ * session number will be used.
++ *
++ * Warning: Using session numbers and multiboard at the same time
++ * is currently broken.
++ *
++ * mbuf
++ * ----
++ * Either fill in the mbuf pointer and npa=0 or
++ * fill packp[] and packl[] and set npa to > 0
++ *
++ * mac_header_skip
++ * ---------------
++ * The number of bytes of the source_buf that are skipped over before
++ * authentication begins. This must be a number between 0 and 2^16-1
++ * and can be used by IPsec implementers to skip over IP headers.
++ * *** Value ignored if authentication not used ***
++ *
++ * crypt_header_skip
++ * -----------------
++ * The number of bytes of the source_buf that are skipped over before
++ * the cryptographic operation begins. This must be a number between 0
++ * and 2^16-1. For IPsec, this number will always be 8 bytes larger
++ * than the auth_header_skip (to skip over the ESP header).
++ * *** Value ignored if cryptography not used ***
++ *
++ */
++struct hifn_operand {
++ union {
++ struct sk_buff *skb;
++ struct uio *io;
++ unsigned char *buf;
++ } u;
++ void *map;
++ bus_size_t mapsize;
++ int nsegs;
++ struct {
++ dma_addr_t ds_addr;
++ int ds_len;
++ } segs[MAX_SCATTER];
++};
++
++struct hifn_command {
++ u_int16_t session_num;
++ u_int16_t base_masks, cry_masks, mac_masks;
++ u_int8_t iv[HIFN_MAX_IV_LENGTH], *ck, mac[HIFN_MAC_KEY_LENGTH];
++ int cklen;
++ int sloplen, slopidx;
++
++ struct hifn_operand src;
++ struct hifn_operand dst;
++
++ struct hifn_softc *softc;
++ struct cryptop *crp;
++ struct cryptodesc *enccrd, *maccrd;
++};
++
++#define src_skb src.u.skb
++#define src_io src.u.io
++#define src_map src.map
++#define src_mapsize src.mapsize
++#define src_segs src.segs
++#define src_nsegs src.nsegs
++#define src_buf src.u.buf
++
++#define dst_skb dst.u.skb
++#define dst_io dst.u.io
++#define dst_map dst.map
++#define dst_mapsize dst.mapsize
++#define dst_segs dst.segs
++#define dst_nsegs dst.nsegs
++#define dst_buf dst.u.buf
++
++/*
++ * Return values for hifn_crypto()
++ */
++#define HIFN_CRYPTO_SUCCESS 0
++#define HIFN_CRYPTO_BAD_INPUT (-1)
++#define HIFN_CRYPTO_RINGS_FULL (-2)
++
++/**************************************************************************
++ *
++ * Function: hifn_crypto
++ *
++ * Purpose: Called by external drivers to begin an encryption on the
++ * HIFN board.
++ *
++ * Blocking/Non-blocking Issues
++ * ============================
++ * The driver cannot block in hifn_crypto (no calls to tsleep) currently.
++ * hifn_crypto() returns HIFN_CRYPTO_RINGS_FULL if there is not enough
++ * room in any of the rings for the request to proceed.
++ *
++ * Return Values
++ * =============
++ * 0 for success, negative values on error
++ *
++ * Defines for negative error codes are:
++ *
++ * HIFN_CRYPTO_BAD_INPUT : The passed in command had invalid settings.
++ * HIFN_CRYPTO_RINGS_FULL : All DMA rings were full and non-blocking
++ * behaviour was requested.
++ *
++ *************************************************************************/
++
++/*
++ * Convert back and forth from 'sid' to 'card' and 'session'
++ */
++#define HIFN_CARD(sid) (((sid) & 0xf0000000) >> 28)
++#define HIFN_SESSION(sid) ((sid) & 0x000007ff)
++#define HIFN_SID(crd,ses) (((crd) << 28) | ((ses) & 0x7ff))
++
++#endif /* _KERNEL */
++
++struct hifn_stats {
++ u_int64_t hst_ibytes;
++ u_int64_t hst_obytes;
++ u_int32_t hst_ipackets;
++ u_int32_t hst_opackets;
++ u_int32_t hst_invalid;
++ u_int32_t hst_nomem; /* malloc or one of hst_nomem_* */
++ u_int32_t hst_abort;
++ u_int32_t hst_noirq; /* IRQ for no reason */
++ u_int32_t hst_totbatch; /* ops submitted w/o interrupt */
++ u_int32_t hst_maxbatch; /* max ops submitted together */
++ u_int32_t hst_unaligned; /* unaligned src caused copy */
++ /*
++ * The following divides hst_nomem into more specific buckets.
++ */
++ u_int32_t hst_nomem_map; /* bus_dmamap_create failed */
++ u_int32_t hst_nomem_load; /* bus_dmamap_load_* failed */
++ u_int32_t hst_nomem_mbuf; /* MGET* failed */
++ u_int32_t hst_nomem_mcl; /* MCLGET* failed */
++ u_int32_t hst_nomem_cr; /* out of command/result descriptor */
++ u_int32_t hst_nomem_sd; /* out of src/dst descriptors */
++};
++
++#endif /* __HIFN7751VAR_H__ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifn7751.c 2008-02-14 14:59:01.000000000 +1000
+@@ -0,0 +1,2970 @@
++/* $OpenBSD: hifn7751.c,v 1.120 2002/05/17 00:33:34 deraadt Exp $ */
++
++/*-
++ * Invertex AEON / Hifn 7751 driver
++ * Copyright (c) 1999 Invertex Inc. All rights reserved.
++ * Copyright (c) 1999 Theo de Raadt
++ * Copyright (c) 2000-2001 Network Security Technologies, Inc.
++ * http://www.netsec.net
++ * Copyright (c) 2003 Hifn Inc.
++ *
++ * This driver is based on a previous driver by Invertex, for which they
++ * requested: Please send any comments, feedback, bug-fixes, or feature
++ * requests to software@invertex.com.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored in part by the Defense Advanced Research Projects
++ * Agency (DARPA) and Air Force Research Laboratory, Air Force
++ * Materiel Command, USAF, under agreement number F30602-01-2-0537.
++ *
++ *
++__FBSDID("$FreeBSD: src/sys/dev/hifn/hifn7751.c,v 1.40 2007/03/21 03:42:49 sam Exp $");
++ */
++
++/*
++ * Driver for various Hifn encryption processors.
++ */
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++#include <linux/random.h>
++#include <linux/version.h>
++#include <linux/skbuff.h>
++#include <asm/io.h>
++
++#include <cryptodev.h>
++#include <uio.h>
++#include <hifn/hifn7751reg.h>
++#include <hifn/hifn7751var.h>
++
++#if 1
++#define DPRINTF(a...) if (hifn_debug) { \
++ printk("%s: ", sc ? \
++ device_get_nameunit(sc->sc_dev) : "hifn"); \
++ printk(a); \
++ } else
++#else
++#define DPRINTF(a...)
++#endif
++
++static inline int
++pci_get_revid(struct pci_dev *dev)
++{
++ u8 rid = 0;
++ pci_read_config_byte(dev, PCI_REVISION_ID, &rid);
++ return rid;
++}
++
++static struct hifn_stats hifnstats;
++
++#define debug hifn_debug
++int hifn_debug = 0;
++module_param(hifn_debug, int, 0644);
++MODULE_PARM_DESC(hifn_debug, "Enable debug");
++
++int hifn_maxbatch = 1;
++module_param(hifn_maxbatch, int, 0644);
++MODULE_PARM_DESC(hifn_maxbatch, "max ops to batch w/o interrupt");
++
++#ifdef MODULE_PARM
++char *hifn_pllconfig = NULL;
++MODULE_PARM(hifn_pllconfig, "s");
++#else
++char hifn_pllconfig[32]; /* This setting is RO after loading */
++module_param_string(hifn_pllconfig, hifn_pllconfig, 32, 0444);
++#endif
++MODULE_PARM_DESC(hifn_pllconfig, "PLL config, ie., pci66, ext33, ...");
++
++#ifdef HIFN_VULCANDEV
++#include <sys/conf.h>
++#include <sys/uio.h>
++
++static struct cdevsw vulcanpk_cdevsw; /* forward declaration */
++#endif
++
++/*
++ * Prototypes and count for the pci_device structure
++ */
++static int hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent);
++static void hifn_remove(struct pci_dev *dev);
++
++static int hifn_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int hifn_freesession(device_t, u_int64_t);
++static int hifn_process(device_t, struct cryptop *, int);
++
++static device_method_t hifn_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, hifn_newsession),
++ DEVMETHOD(cryptodev_freesession,hifn_freesession),
++ DEVMETHOD(cryptodev_process, hifn_process),
++};
++
++static void hifn_reset_board(struct hifn_softc *, int);
++static void hifn_reset_puc(struct hifn_softc *);
++static void hifn_puc_wait(struct hifn_softc *);
++static int hifn_enable_crypto(struct hifn_softc *);
++static void hifn_set_retry(struct hifn_softc *sc);
++static void hifn_init_dma(struct hifn_softc *);
++static void hifn_init_pci_registers(struct hifn_softc *);
++static int hifn_sramsize(struct hifn_softc *);
++static int hifn_dramsize(struct hifn_softc *);
++static int hifn_ramtype(struct hifn_softc *);
++static void hifn_sessions(struct hifn_softc *);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++static irqreturn_t hifn_intr(int irq, void *arg);
++#else
++static irqreturn_t hifn_intr(int irq, void *arg, struct pt_regs *regs);
++#endif
++static u_int hifn_write_command(struct hifn_command *, u_int8_t *);
++static u_int32_t hifn_next_signature(u_int32_t a, u_int cnt);
++static void hifn_callback(struct hifn_softc *, struct hifn_command *, u_int8_t *);
++static int hifn_crypto(struct hifn_softc *, struct hifn_command *, struct cryptop *, int);
++static int hifn_readramaddr(struct hifn_softc *, int, u_int8_t *);
++static int hifn_writeramaddr(struct hifn_softc *, int, u_int8_t *);
++static int hifn_dmamap_load_src(struct hifn_softc *, struct hifn_command *);
++static int hifn_dmamap_load_dst(struct hifn_softc *, struct hifn_command *);
++static int hifn_init_pubrng(struct hifn_softc *);
++static void hifn_tick(unsigned long arg);
++static void hifn_abort(struct hifn_softc *);
++static void hifn_alloc_slot(struct hifn_softc *, int *, int *, int *, int *);
++
++static void hifn_write_reg_0(struct hifn_softc *, bus_size_t, u_int32_t);
++static void hifn_write_reg_1(struct hifn_softc *, bus_size_t, u_int32_t);
++
++#ifdef CONFIG_OCF_RANDOMHARVEST
++static int hifn_read_random(void *arg, u_int32_t *buf, int len);
++#endif
++
++#define HIFN_MAX_CHIPS 8
++static struct hifn_softc *hifn_chip_idx[HIFN_MAX_CHIPS];
++
++static __inline u_int32_t
++READ_REG_0(struct hifn_softc *sc, bus_size_t reg)
++{
++ u_int32_t v = readl(sc->sc_bar0 + reg);
++ sc->sc_bar0_lastreg = (bus_size_t) -1;
++ return (v);
++}
++#define WRITE_REG_0(sc, reg, val) hifn_write_reg_0(sc, reg, val)
++
++static __inline u_int32_t
++READ_REG_1(struct hifn_softc *sc, bus_size_t reg)
++{
++ u_int32_t v = readl(sc->sc_bar1 + reg);
++ sc->sc_bar1_lastreg = (bus_size_t) -1;
++ return (v);
++}
++#define WRITE_REG_1(sc, reg, val) hifn_write_reg_1(sc, reg, val)
++
++/*
++ * map in a given buffer (great on some arches :-)
++ */
++
++static int
++pci_map_uio(struct hifn_softc *sc, struct hifn_operand *buf, struct uio *uio)
++{
++ struct iovec *iov = uio->uio_iov;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ buf->mapsize = 0;
++ for (buf->nsegs = 0; buf->nsegs < uio->uio_iovcnt; ) {
++ buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev,
++ iov->iov_base, iov->iov_len,
++ PCI_DMA_BIDIRECTIONAL);
++ buf->segs[buf->nsegs].ds_len = iov->iov_len;
++ buf->mapsize += iov->iov_len;
++ iov++;
++ buf->nsegs++;
++ }
++ /* identify this buffer by the first segment */
++ buf->map = (void *) buf->segs[0].ds_addr;
++ return(0);
++}
++
++/*
++ * map in a given sk_buff
++ */
++
++static int
++pci_map_skb(struct hifn_softc *sc,struct hifn_operand *buf,struct sk_buff *skb)
++{
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ buf->mapsize = 0;
++
++ buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev,
++ skb->data, skb_headlen(skb), PCI_DMA_BIDIRECTIONAL);
++ buf->segs[0].ds_len = skb_headlen(skb);
++ buf->mapsize += buf->segs[0].ds_len;
++
++ buf->nsegs = 1;
++
++ for (i = 0; i < skb_shinfo(skb)->nr_frags; ) {
++ buf->segs[buf->nsegs].ds_len = skb_shinfo(skb)->frags[i].size;
++ buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev,
++ page_address(skb_shinfo(skb)->frags[i].page) +
++ skb_shinfo(skb)->frags[i].page_offset,
++ buf->segs[buf->nsegs].ds_len, PCI_DMA_BIDIRECTIONAL);
++ buf->mapsize += buf->segs[buf->nsegs].ds_len;
++ buf->nsegs++;
++ }
++
++ /* identify this buffer by the first segment */
++ buf->map = (void *) buf->segs[0].ds_addr;
++ return(0);
++}
++
++/*
++ * map in a given contiguous buffer
++ */
++
++static int
++pci_map_buf(struct hifn_softc *sc,struct hifn_operand *buf, void *b, int len)
++{
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ buf->mapsize = 0;
++ buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev,
++ b, len, PCI_DMA_BIDIRECTIONAL);
++ buf->segs[0].ds_len = len;
++ buf->mapsize += buf->segs[0].ds_len;
++ buf->nsegs = 1;
++
++ /* identify this buffer by the first segment */
++ buf->map = (void *) buf->segs[0].ds_addr;
++ return(0);
++}
++
++#if 0 /* not needed at this time */
++static void
++pci_sync_iov(struct hifn_softc *sc, struct hifn_operand *buf)
++{
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ for (i = 0; i < buf->nsegs; i++)
++ pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
++}
++#endif
++
++static void
++pci_unmap_buf(struct hifn_softc *sc, struct hifn_operand *buf)
++{
++ int i;
++ DPRINTF("%s()\n", __FUNCTION__);
++ for (i = 0; i < buf->nsegs; i++) {
++ pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
++ buf->segs[i].ds_addr = 0;
++ buf->segs[i].ds_len = 0;
++ }
++ buf->nsegs = 0;
++ buf->mapsize = 0;
++ buf->map = 0;
++}
++
++static const char*
++hifn_partname(struct hifn_softc *sc)
++{
++ /* XXX sprintf numbers when not decoded */
++ switch (pci_get_vendor(sc->sc_pcidev)) {
++ case PCI_VENDOR_HIFN:
++ switch (pci_get_device(sc->sc_pcidev)) {
++ case PCI_PRODUCT_HIFN_6500: return "Hifn 6500";
++ case PCI_PRODUCT_HIFN_7751: return "Hifn 7751";
++ case PCI_PRODUCT_HIFN_7811: return "Hifn 7811";
++ case PCI_PRODUCT_HIFN_7951: return "Hifn 7951";
++ case PCI_PRODUCT_HIFN_7955: return "Hifn 7955";
++ case PCI_PRODUCT_HIFN_7956: return "Hifn 7956";
++ }
++ return "Hifn unknown-part";
++ case PCI_VENDOR_INVERTEX:
++ switch (pci_get_device(sc->sc_pcidev)) {
++ case PCI_PRODUCT_INVERTEX_AEON: return "Invertex AEON";
++ }
++ return "Invertex unknown-part";
++ case PCI_VENDOR_NETSEC:
++ switch (pci_get_device(sc->sc_pcidev)) {
++ case PCI_PRODUCT_NETSEC_7751: return "NetSec 7751";
++ }
++ return "NetSec unknown-part";
++ }
++ return "Unknown-vendor unknown-part";
++}
++
++static u_int
++checkmaxmin(struct pci_dev *dev, const char *what, u_int v, u_int min, u_int max)
++{
++ struct hifn_softc *sc = pci_get_drvdata(dev);
++ if (v > max) {
++ device_printf(sc->sc_dev, "Warning, %s %u out of range, "
++ "using max %u\n", what, v, max);
++ v = max;
++ } else if (v < min) {
++ device_printf(sc->sc_dev, "Warning, %s %u out of range, "
++ "using min %u\n", what, v, min);
++ v = min;
++ }
++ return v;
++}
++
++/*
++ * Select PLL configuration for 795x parts. This is complicated in
++ * that we cannot determine the optimal parameters without user input.
++ * The reference clock is derived from an external clock through a
++ * multiplier. The external clock is either the host bus (i.e. PCI)
++ * or an external clock generator. When using the PCI bus we assume
++ * the clock is either 33 or 66 MHz; for an external source we cannot
++ * tell the speed.
++ *
++ * PLL configuration is done with a string: "pci" for PCI bus, or "ext"
++ * for an external source, followed by the frequency. We calculate
++ * the appropriate multiplier and PLL register contents accordingly.
++ * When no configuration is given we default to "pci66" since that
++ * always will allow the card to work. If a card is using the PCI
++ * bus clock and in a 33MHz slot then it will be operating at half
++ * speed until the correct information is provided.
++ *
++ * We use a default setting of "ext66" because according to Mike Ham
++ * of HiFn, almost every board in existence has an external crystal
++ * populated at 66Mhz. Using PCI can be a problem on modern motherboards,
++ * because PCI33 can have clocks from 0 to 33Mhz, and some have
++ * non-PCI-compliant spread-spectrum clocks, which can confuse the pll.
++ */
++static void
++hifn_getpllconfig(struct pci_dev *dev, u_int *pll)
++{
++ const char *pllspec = hifn_pllconfig;
++ u_int freq, mul, fl, fh;
++ u_int32_t pllconfig;
++ char *nxt;
++
++ if (pllspec == NULL)
++ pllspec = "ext66";
++ fl = 33, fh = 66;
++ pllconfig = 0;
++ if (strncmp(pllspec, "ext", 3) == 0) {
++ pllspec += 3;
++ pllconfig |= HIFN_PLL_REF_SEL;
++ switch (pci_get_device(dev)) {
++ case PCI_PRODUCT_HIFN_7955:
++ case PCI_PRODUCT_HIFN_7956:
++ fl = 20, fh = 100;
++ break;
++#ifdef notyet
++ case PCI_PRODUCT_HIFN_7954:
++ fl = 20, fh = 66;
++ break;
++#endif
++ }
++ } else if (strncmp(pllspec, "pci", 3) == 0)
++ pllspec += 3;
++ freq = strtoul(pllspec, &nxt, 10);
++ if (nxt == pllspec)
++ freq = 66;
++ else
++ freq = checkmaxmin(dev, "frequency", freq, fl, fh);
++ /*
++ * Calculate multiplier. We target a Fck of 266 MHz,
++ * allowing only even values, possibly rounded down.
++ * Multipliers > 8 must set the charge pump current.
++ */
++ mul = checkmaxmin(dev, "PLL divisor", (266 / freq) &~ 1, 2, 12);
++ pllconfig |= (mul / 2 - 1) << HIFN_PLL_ND_SHIFT;
++ if (mul > 8)
++ pllconfig |= HIFN_PLL_IS;
++ *pll = pllconfig;
++}
++
++/*
++ * Attach an interface that successfully probed.
++ */
++static int
++hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent)
++{
++ struct hifn_softc *sc = NULL;
++ char rbase;
++ u_int16_t ena, rev;
++ int rseg, rc;
++ unsigned long mem_start, mem_len;
++ static int num_chips = 0;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (pci_enable_device(dev) < 0)
++ return(-ENODEV);
++
++ if (pci_set_mwi(dev))
++ return(-ENODEV);
++
++ if (!dev->irq) {
++ printk("hifn: found device with no IRQ assigned. check BIOS settings!");
++ pci_disable_device(dev);
++ return(-ENODEV);
++ }
++
++ sc = (struct hifn_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
++ if (!sc)
++ return(-ENOMEM);
++ memset(sc, 0, sizeof(*sc));
++
++ softc_device_init(sc, "hifn", num_chips, hifn_methods);
++
++ sc->sc_pcidev = dev;
++ sc->sc_irq = -1;
++ sc->sc_cid = -1;
++ sc->sc_num = num_chips++;
++ if (sc->sc_num < HIFN_MAX_CHIPS)
++ hifn_chip_idx[sc->sc_num] = sc;
++
++ pci_set_drvdata(sc->sc_pcidev, sc);
++
++ spin_lock_init(&sc->sc_mtx);
++
++ /* XXX handle power management */
++
++ /*
++ * The 7951 and 795x have a random number generator and
++ * public key support; note this.
++ */
++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
++ (pci_get_device(dev) == PCI_PRODUCT_HIFN_7951 ||
++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7956))
++ sc->sc_flags = HIFN_HAS_RNG | HIFN_HAS_PUBLIC;
++ /*
++ * The 7811 has a random number generator and
++ * we also note it's identity 'cuz of some quirks.
++ */
++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7811)
++ sc->sc_flags |= HIFN_IS_7811 | HIFN_HAS_RNG;
++
++ /*
++ * The 795x parts support AES.
++ */
++ if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
++ (pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
++ pci_get_device(dev) == PCI_PRODUCT_HIFN_7956)) {
++ sc->sc_flags |= HIFN_IS_7956 | HIFN_HAS_AES;
++ /*
++ * Select PLL configuration. This depends on the
++ * bus and board design and must be manually configured
++ * if the default setting is unacceptable.
++ */
++ hifn_getpllconfig(dev, &sc->sc_pllconfig);
++ }
++
++ /*
++ * Setup PCI resources. Note that we record the bus
++ * tag and handle for each register mapping, this is
++ * used by the READ_REG_0, WRITE_REG_0, READ_REG_1,
++ * and WRITE_REG_1 macros throughout the driver.
++ */
++ mem_start = pci_resource_start(sc->sc_pcidev, 0);
++ mem_len = pci_resource_len(sc->sc_pcidev, 0);
++ sc->sc_bar0 = (ocf_iomem_t) ioremap(mem_start, mem_len);
++ if (!sc->sc_bar0) {
++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", 0);
++ goto fail;
++ }
++ sc->sc_bar0_lastreg = (bus_size_t) -1;
++
++ mem_start = pci_resource_start(sc->sc_pcidev, 1);
++ mem_len = pci_resource_len(sc->sc_pcidev, 1);
++ sc->sc_bar1 = (ocf_iomem_t) ioremap(mem_start, mem_len);
++ if (!sc->sc_bar1) {
++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", 1);
++ goto fail;
++ }
++ sc->sc_bar1_lastreg = (bus_size_t) -1;
++
++ /* fix up the bus size */
++ if (pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
++ device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
++ goto fail;
++ }
++ if (pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK)) {
++ device_printf(sc->sc_dev,
++ "No usable consistent DMA configuration, aborting.\n");
++ goto fail;
++ }
++
++ hifn_set_retry(sc);
++
++ /*
++ * Setup the area where the Hifn DMA's descriptors
++ * and associated data structures.
++ */
++ sc->sc_dma = (struct hifn_dma *) pci_alloc_consistent(dev,
++ sizeof(*sc->sc_dma),
++ &sc->sc_dma_physaddr);
++ if (!sc->sc_dma) {
++ device_printf(sc->sc_dev, "cannot alloc sc_dma\n");
++ goto fail;
++ }
++ bzero(sc->sc_dma, sizeof(*sc->sc_dma));
++
++ /*
++ * Reset the board and do the ``secret handshake''
++ * to enable the crypto support. Then complete the
++ * initialization procedure by setting up the interrupt
++ * and hooking in to the system crypto support so we'll
++ * get used for system services like the crypto device,
++ * IPsec, RNG device, etc.
++ */
++ hifn_reset_board(sc, 0);
++
++ if (hifn_enable_crypto(sc) != 0) {
++ device_printf(sc->sc_dev, "crypto enabling failed\n");
++ goto fail;
++ }
++ hifn_reset_puc(sc);
++
++ hifn_init_dma(sc);
++ hifn_init_pci_registers(sc);
++
++ pci_set_master(sc->sc_pcidev);
++
++ /* XXX can't dynamically determine ram type for 795x; force dram */
++ if (sc->sc_flags & HIFN_IS_7956)
++ sc->sc_drammodel = 1;
++ else if (hifn_ramtype(sc))
++ goto fail;
++
++ if (sc->sc_drammodel == 0)
++ hifn_sramsize(sc);
++ else
++ hifn_dramsize(sc);
++
++ /*
++ * Workaround for NetSec 7751 rev A: half ram size because two
++ * of the address lines were left floating
++ */
++ if (pci_get_vendor(dev) == PCI_VENDOR_NETSEC &&
++ pci_get_device(dev) == PCI_PRODUCT_NETSEC_7751 &&
++ pci_get_revid(dev) == 0x61) /*XXX???*/
++ sc->sc_ramsize >>= 1;
++
++ /*
++ * Arrange the interrupt line.
++ */
++ rc = request_irq(dev->irq, hifn_intr, IRQF_SHARED, "hifn", sc);
++ if (rc) {
++ device_printf(sc->sc_dev, "could not map interrupt: %d\n", rc);
++ goto fail;
++ }
++ sc->sc_irq = dev->irq;
++
++ hifn_sessions(sc);
++
++ /*
++ * NB: Keep only the low 16 bits; this masks the chip id
++ * from the 7951.
++ */
++ rev = READ_REG_1(sc, HIFN_1_REVID) & 0xffff;
++
++ rseg = sc->sc_ramsize / 1024;
++ rbase = 'K';
++ if (sc->sc_ramsize >= (1024 * 1024)) {
++ rbase = 'M';
++ rseg /= 1024;
++ }
++ device_printf(sc->sc_dev, "%s, rev %u, %d%cB %cram",
++ hifn_partname(sc), rev,
++ rseg, rbase, sc->sc_drammodel ? 'd' : 's');
++ if (sc->sc_flags & HIFN_IS_7956)
++ printf(", pll=0x%x<%s clk, %ux mult>",
++ sc->sc_pllconfig,
++ sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci",
++ 2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11));
++ printf("\n");
++
++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE);
++ if (sc->sc_cid < 0) {
++ device_printf(sc->sc_dev, "could not get crypto driver id\n");
++ goto fail;
++ }
++
++ WRITE_REG_0(sc, HIFN_0_PUCNFG,
++ READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID);
++ ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
++
++ switch (ena) {
++ case HIFN_PUSTAT_ENA_2:
++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0);
++ if (sc->sc_flags & HIFN_HAS_AES)
++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
++ /*FALLTHROUGH*/
++ case HIFN_PUSTAT_ENA_1:
++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
++ break;
++ }
++
++ if (sc->sc_flags & (HIFN_HAS_PUBLIC | HIFN_HAS_RNG))
++ hifn_init_pubrng(sc);
++
++ init_timer(&sc->sc_tickto);
++ sc->sc_tickto.function = hifn_tick;
++ sc->sc_tickto.data = (unsigned long) sc->sc_num;
++ mod_timer(&sc->sc_tickto, jiffies + HZ);
++
++ return (0);
++
++fail:
++ if (sc->sc_cid >= 0)
++ crypto_unregister_all(sc->sc_cid);
++ if (sc->sc_irq != -1)
++ free_irq(sc->sc_irq, sc);
++ if (sc->sc_dma) {
++ /* Turn off DMA polling */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++
++ pci_free_consistent(sc->sc_pcidev,
++ sizeof(*sc->sc_dma),
++ sc->sc_dma, sc->sc_dma_physaddr);
++ }
++ kfree(sc);
++ return (-ENXIO);
++}
++
++/*
++ * Detach an interface that successfully probed.
++ */
++static void
++hifn_remove(struct pci_dev *dev)
++{
++ struct hifn_softc *sc = pci_get_drvdata(dev);
++ unsigned long l_flags;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ KASSERT(sc != NULL, ("hifn_detach: null software carrier!"));
++
++ /* disable interrupts */
++ HIFN_LOCK(sc);
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, 0);
++ HIFN_UNLOCK(sc);
++
++ /*XXX other resources */
++ del_timer_sync(&sc->sc_tickto);
++
++ /* Turn off DMA polling */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++
++ crypto_unregister_all(sc->sc_cid);
++
++ free_irq(sc->sc_irq, sc);
++
++ pci_free_consistent(sc->sc_pcidev, sizeof(*sc->sc_dma),
++ sc->sc_dma, sc->sc_dma_physaddr);
++}
++
++
++static int
++hifn_init_pubrng(struct hifn_softc *sc)
++{
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if ((sc->sc_flags & HIFN_IS_7811) == 0) {
++ /* Reset 7951 public key/rng engine */
++ WRITE_REG_1(sc, HIFN_1_PUB_RESET,
++ READ_REG_1(sc, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET);
++
++ for (i = 0; i < 100; i++) {
++ DELAY(1000);
++ if ((READ_REG_1(sc, HIFN_1_PUB_RESET) &
++ HIFN_PUBRST_RESET) == 0)
++ break;
++ }
++
++ if (i == 100) {
++ device_printf(sc->sc_dev, "public key init failed\n");
++ return (1);
++ }
++ }
++
++ /* Enable the rng, if available */
++#ifdef CONFIG_OCF_RANDOMHARVEST
++ if (sc->sc_flags & HIFN_HAS_RNG) {
++ if (sc->sc_flags & HIFN_IS_7811) {
++ u_int32_t r;
++ r = READ_REG_1(sc, HIFN_1_7811_RNGENA);
++ if (r & HIFN_7811_RNGENA_ENA) {
++ r &= ~HIFN_7811_RNGENA_ENA;
++ WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
++ }
++ WRITE_REG_1(sc, HIFN_1_7811_RNGCFG,
++ HIFN_7811_RNGCFG_DEFL);
++ r |= HIFN_7811_RNGENA_ENA;
++ WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
++ } else
++ WRITE_REG_1(sc, HIFN_1_RNG_CONFIG,
++ READ_REG_1(sc, HIFN_1_RNG_CONFIG) |
++ HIFN_RNGCFG_ENA);
++
++ sc->sc_rngfirst = 1;
++ crypto_rregister(sc->sc_cid, hifn_read_random, sc);
++ }
++#endif
++
++ /* Enable public key engine, if available */
++ if (sc->sc_flags & HIFN_HAS_PUBLIC) {
++ WRITE_REG_1(sc, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
++ sc->sc_dmaier |= HIFN_DMAIER_PUBDONE;
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
++#ifdef HIFN_VULCANDEV
++ sc->sc_pkdev = make_dev(&vulcanpk_cdevsw, 0,
++ UID_ROOT, GID_WHEEL, 0666,
++ "vulcanpk");
++ sc->sc_pkdev->si_drv1 = sc;
++#endif
++ }
++
++ return (0);
++}
++
++#ifdef CONFIG_OCF_RANDOMHARVEST
++static int
++hifn_read_random(void *arg, u_int32_t *buf, int len)
++{
++ struct hifn_softc *sc = (struct hifn_softc *) arg;
++ u_int32_t sts;
++ int i, rc = 0;
++
++ if (len <= 0)
++ return rc;
++
++ if (sc->sc_flags & HIFN_IS_7811) {
++ /* ONLY VALID ON 7811!!!! */
++ for (i = 0; i < 5; i++) {
++ sts = READ_REG_1(sc, HIFN_1_7811_RNGSTS);
++ if (sts & HIFN_7811_RNGSTS_UFL) {
++ device_printf(sc->sc_dev,
++ "RNG underflow: disabling\n");
++ /* DAVIDM perhaps return -1 */
++ break;
++ }
++ if ((sts & HIFN_7811_RNGSTS_RDY) == 0)
++ break;
++
++ /*
++ * There are at least two words in the RNG FIFO
++ * at this point.
++ */
++ if (rc < len)
++ buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
++ if (rc < len)
++ buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
++ }
++ } else
++ buf[rc++] = READ_REG_1(sc, HIFN_1_RNG_DATA);
++
++ /* NB: discard first data read */
++ if (sc->sc_rngfirst) {
++ sc->sc_rngfirst = 0;
++ rc = 0;
++ }
++
++ return(rc);
++}
++#endif /* CONFIG_OCF_RANDOMHARVEST */
++
++static void
++hifn_puc_wait(struct hifn_softc *sc)
++{
++ int i;
++ int reg = HIFN_0_PUCTRL;
++
++ if (sc->sc_flags & HIFN_IS_7956) {
++ reg = HIFN_0_PUCTRL2;
++ }
++
++ for (i = 5000; i > 0; i--) {
++ DELAY(1);
++ if (!(READ_REG_0(sc, reg) & HIFN_PUCTRL_RESET))
++ break;
++ }
++ if (!i)
++ device_printf(sc->sc_dev, "proc unit did not reset(0x%x)\n",
++ READ_REG_0(sc, HIFN_0_PUCTRL));
++}
++
++/*
++ * Reset the processing unit.
++ */
++static void
++hifn_reset_puc(struct hifn_softc *sc)
++{
++ /* Reset processing unit */
++ int reg = HIFN_0_PUCTRL;
++
++ if (sc->sc_flags & HIFN_IS_7956) {
++ reg = HIFN_0_PUCTRL2;
++ }
++ WRITE_REG_0(sc, reg, HIFN_PUCTRL_DMAENA);
++
++ hifn_puc_wait(sc);
++}
++
++/*
++ * Set the Retry and TRDY registers; note that we set them to
++ * zero because the 7811 locks up when forced to retry (section
++ * 3.6 of "Specification Update SU-0014-04". Not clear if we
++ * should do this for all Hifn parts, but it doesn't seem to hurt.
++ */
++static void
++hifn_set_retry(struct hifn_softc *sc)
++{
++ DPRINTF("%s()\n", __FUNCTION__);
++ /* NB: RETRY only responds to 8-bit reads/writes */
++ pci_write_config_byte(sc->sc_pcidev, HIFN_RETRY_TIMEOUT, 0);
++ pci_write_config_dword(sc->sc_pcidev, HIFN_TRDY_TIMEOUT, 0);
++}
++
++/*
++ * Resets the board. Values in the regesters are left as is
++ * from the reset (i.e. initial values are assigned elsewhere).
++ */
++static void
++hifn_reset_board(struct hifn_softc *sc, int full)
++{
++ u_int32_t reg;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ /*
++ * Set polling in the DMA configuration register to zero. 0x7 avoids
++ * resetting the board and zeros out the other fields.
++ */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++
++ /*
++ * Now that polling has been disabled, we have to wait 1 ms
++ * before resetting the board.
++ */
++ DELAY(1000);
++
++ /* Reset the DMA unit */
++ if (full) {
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
++ DELAY(1000);
++ } else {
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG,
++ HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET);
++ hifn_reset_puc(sc);
++ }
++
++ KASSERT(sc->sc_dma != NULL, ("hifn_reset_board: null DMA tag!"));
++ bzero(sc->sc_dma, sizeof(*sc->sc_dma));
++
++ /* Bring dma unit out of reset */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++
++ hifn_puc_wait(sc);
++ hifn_set_retry(sc);
++
++ if (sc->sc_flags & HIFN_IS_7811) {
++ for (reg = 0; reg < 1000; reg++) {
++ if (READ_REG_1(sc, HIFN_1_7811_MIPSRST) &
++ HIFN_MIPSRST_CRAMINIT)
++ break;
++ DELAY(1000);
++ }
++ if (reg == 1000)
++ device_printf(sc->sc_dev, ": cram init timeout\n");
++ } else {
++ /* set up DMA configuration register #2 */
++ /* turn off all PK and BAR0 swaps */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG2,
++ (3 << HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT)|
++ (3 << HIFN_DMACNFG2_INIT_READ_BURST_SHIFT)|
++ (2 << HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT)|
++ (2 << HIFN_DMACNFG2_TGT_READ_BURST_SHIFT));
++ }
++}
++
++static u_int32_t
++hifn_next_signature(u_int32_t a, u_int cnt)
++{
++ int i;
++ u_int32_t v;
++
++ for (i = 0; i < cnt; i++) {
++
++ /* get the parity */
++ v = a & 0x80080125;
++ v ^= v >> 16;
++ v ^= v >> 8;
++ v ^= v >> 4;
++ v ^= v >> 2;
++ v ^= v >> 1;
++
++ a = (v & 1) ^ (a << 1);
++ }
++
++ return a;
++}
++
++
++/*
++ * Checks to see if crypto is already enabled. If crypto isn't enable,
++ * "hifn_enable_crypto" is called to enable it. The check is important,
++ * as enabling crypto twice will lock the board.
++ */
++static int
++hifn_enable_crypto(struct hifn_softc *sc)
++{
++ u_int32_t dmacfg, ramcfg, encl, addr, i;
++ char offtbl[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
++ 0x00, 0x00, 0x00, 0x00 };
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG);
++ dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG);
++
++ /*
++ * The RAM config register's encrypt level bit needs to be set before
++ * every read performed on the encryption level register.
++ */
++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
++
++ encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
++
++ /*
++ * Make sure we don't re-unlock. Two unlocks kills chip until the
++ * next reboot.
++ */
++ if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) {
++#ifdef HIFN_DEBUG
++ if (hifn_debug)
++ device_printf(sc->sc_dev,
++ "Strong crypto already enabled!\n");
++#endif
++ goto report;
++ }
++
++ if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) {
++#ifdef HIFN_DEBUG
++ if (hifn_debug)
++ device_printf(sc->sc_dev,
++ "Unknown encryption level 0x%x\n", encl);
++#endif
++ return 1;
++ }
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK |
++ HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++ DELAY(1000);
++ addr = READ_REG_1(sc, HIFN_UNLOCK_SECRET1);
++ DELAY(1000);
++ WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, 0);
++ DELAY(1000);
++
++ for (i = 0; i <= 12; i++) {
++ addr = hifn_next_signature(addr, offtbl[i] + 0x101);
++ WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, addr);
++
++ DELAY(1000);
++ }
++
++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
++ encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
++
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2)
++ device_printf(sc->sc_dev, "Engine is permanently "
++ "locked until next system reset!\n");
++ else
++ device_printf(sc->sc_dev, "Engine enabled "
++ "successfully!\n");
++ }
++#endif
++
++report:
++ WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
++
++ switch (encl) {
++ case HIFN_PUSTAT_ENA_1:
++ case HIFN_PUSTAT_ENA_2:
++ break;
++ case HIFN_PUSTAT_ENA_0:
++ default:
++ device_printf(sc->sc_dev, "disabled\n");
++ break;
++ }
++
++ return 0;
++}
++
++/*
++ * Give initial values to the registers listed in the "Register Space"
++ * section of the HIFN Software Development reference manual.
++ */
++static void
++hifn_init_pci_registers(struct hifn_softc *sc)
++{
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /* write fixed values needed by the Initialization registers */
++ WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
++ WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
++ WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
++
++ /* write all 4 ring address registers */
++ WRITE_REG_1(sc, HIFN_1_DMA_CRAR, sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, cmdr[0]));
++ WRITE_REG_1(sc, HIFN_1_DMA_SRAR, sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, srcr[0]));
++ WRITE_REG_1(sc, HIFN_1_DMA_DRAR, sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, dstr[0]));
++ WRITE_REG_1(sc, HIFN_1_DMA_RRAR, sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, resr[0]));
++
++ DELAY(2000);
++
++ /* write status register */
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR,
++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
++ HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
++ HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
++ HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
++ HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
++ HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
++ HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
++ HIFN_DMACSR_S_WAIT |
++ HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
++ HIFN_DMACSR_C_WAIT |
++ HIFN_DMACSR_ENGINE |
++ ((sc->sc_flags & HIFN_HAS_PUBLIC) ?
++ HIFN_DMACSR_PUBDONE : 0) |
++ ((sc->sc_flags & HIFN_IS_7811) ?
++ HIFN_DMACSR_ILLW | HIFN_DMACSR_ILLR : 0));
++
++ sc->sc_d_busy = sc->sc_r_busy = sc->sc_s_busy = sc->sc_c_busy = 0;
++ sc->sc_dmaier |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
++ HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
++ HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
++ ((sc->sc_flags & HIFN_IS_7811) ?
++ HIFN_DMAIER_ILLW | HIFN_DMAIER_ILLR : 0);
++ sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
++
++
++ if (sc->sc_flags & HIFN_IS_7956) {
++ u_int32_t pll;
++
++ WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
++ HIFN_PUCNFG_TCALLPHASES |
++ HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32);
++
++ /* turn off the clocks and insure bypass is set */
++ pll = READ_REG_1(sc, HIFN_1_PLL);
++ pll = (pll &~ (HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL))
++ | HIFN_PLL_BP | HIFN_PLL_MBSET;
++ WRITE_REG_1(sc, HIFN_1_PLL, pll);
++ DELAY(10*1000); /* 10ms */
++
++ /* change configuration */
++ pll = (pll &~ HIFN_PLL_CONFIG) | sc->sc_pllconfig;
++ WRITE_REG_1(sc, HIFN_1_PLL, pll);
++ DELAY(10*1000); /* 10ms */
++
++ /* disable bypass */
++ pll &= ~HIFN_PLL_BP;
++ WRITE_REG_1(sc, HIFN_1_PLL, pll);
++ /* enable clocks with new configuration */
++ pll |= HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL;
++ WRITE_REG_1(sc, HIFN_1_PLL, pll);
++ } else {
++ WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
++ HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
++ HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
++ (sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM));
++ }
++
++ WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
++ ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
++ ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
++}
++
++/*
++ * The maximum number of sessions supported by the card
++ * is dependent on the amount of context ram, which
++ * encryption algorithms are enabled, and how compression
++ * is configured. This should be configured before this
++ * routine is called.
++ */
++static void
++hifn_sessions(struct hifn_softc *sc)
++{
++ u_int32_t pucnfg;
++ int ctxsize;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG);
++
++ if (pucnfg & HIFN_PUCNFG_COMPSING) {
++ if (pucnfg & HIFN_PUCNFG_ENCCNFG)
++ ctxsize = 128;
++ else
++ ctxsize = 512;
++ /*
++ * 7955/7956 has internal context memory of 32K
++ */
++ if (sc->sc_flags & HIFN_IS_7956)
++ sc->sc_maxses = 32768 / ctxsize;
++ else
++ sc->sc_maxses = 1 +
++ ((sc->sc_ramsize - 32768) / ctxsize);
++ } else
++ sc->sc_maxses = sc->sc_ramsize / 16384;
++
++ if (sc->sc_maxses > 2048)
++ sc->sc_maxses = 2048;
++}
++
++/*
++ * Determine ram type (sram or dram). Board should be just out of a reset
++ * state when this is called.
++ */
++static int
++hifn_ramtype(struct hifn_softc *sc)
++{
++ u_int8_t data[8], dataexpect[8];
++ int i;
++
++ for (i = 0; i < sizeof(data); i++)
++ data[i] = dataexpect[i] = 0x55;
++ if (hifn_writeramaddr(sc, 0, data))
++ return (-1);
++ if (hifn_readramaddr(sc, 0, data))
++ return (-1);
++ if (bcmp(data, dataexpect, sizeof(data)) != 0) {
++ sc->sc_drammodel = 1;
++ return (0);
++ }
++
++ for (i = 0; i < sizeof(data); i++)
++ data[i] = dataexpect[i] = 0xaa;
++ if (hifn_writeramaddr(sc, 0, data))
++ return (-1);
++ if (hifn_readramaddr(sc, 0, data))
++ return (-1);
++ if (bcmp(data, dataexpect, sizeof(data)) != 0) {
++ sc->sc_drammodel = 1;
++ return (0);
++ }
++
++ return (0);
++}
++
++#define HIFN_SRAM_MAX (32 << 20)
++#define HIFN_SRAM_STEP_SIZE 16384
++#define HIFN_SRAM_GRANULARITY (HIFN_SRAM_MAX / HIFN_SRAM_STEP_SIZE)
++
++static int
++hifn_sramsize(struct hifn_softc *sc)
++{
++ u_int32_t a;
++ u_int8_t data[8];
++ u_int8_t dataexpect[sizeof(data)];
++ int32_t i;
++
++ for (i = 0; i < sizeof(data); i++)
++ data[i] = dataexpect[i] = i ^ 0x5a;
++
++ for (i = HIFN_SRAM_GRANULARITY - 1; i >= 0; i--) {
++ a = i * HIFN_SRAM_STEP_SIZE;
++ bcopy(&i, data, sizeof(i));
++ hifn_writeramaddr(sc, a, data);
++ }
++
++ for (i = 0; i < HIFN_SRAM_GRANULARITY; i++) {
++ a = i * HIFN_SRAM_STEP_SIZE;
++ bcopy(&i, dataexpect, sizeof(i));
++ if (hifn_readramaddr(sc, a, data) < 0)
++ return (0);
++ if (bcmp(data, dataexpect, sizeof(data)) != 0)
++ return (0);
++ sc->sc_ramsize = a + HIFN_SRAM_STEP_SIZE;
++ }
++
++ return (0);
++}
++
++/*
++ * XXX For dram boards, one should really try all of the
++ * HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG
++ * is already set up correctly.
++ */
++static int
++hifn_dramsize(struct hifn_softc *sc)
++{
++ u_int32_t cnfg;
++
++ if (sc->sc_flags & HIFN_IS_7956) {
++ /*
++ * 7955/7956 have a fixed internal ram of only 32K.
++ */
++ sc->sc_ramsize = 32768;
++ } else {
++ cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) &
++ HIFN_PUCNFG_DRAMMASK;
++ sc->sc_ramsize = 1 << ((cnfg >> 13) + 18);
++ }
++ return (0);
++}
++
++static void
++hifn_alloc_slot(struct hifn_softc *sc, int *cmdp, int *srcp, int *dstp, int *resp)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (dma->cmdi == HIFN_D_CMD_RSIZE) {
++ dma->cmdi = 0;
++ dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ }
++ *cmdp = dma->cmdi++;
++ dma->cmdk = dma->cmdi;
++
++ if (dma->srci == HIFN_D_SRC_RSIZE) {
++ dma->srci = 0;
++ dma->srcr[HIFN_D_SRC_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->srcr[HIFN_D_SRC_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ }
++ *srcp = dma->srci++;
++ dma->srck = dma->srci;
++
++ if (dma->dsti == HIFN_D_DST_RSIZE) {
++ dma->dsti = 0;
++ dma->dstr[HIFN_D_DST_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->dstr[HIFN_D_DST_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_DSTR_SYNC(sc, HIFN_D_DST_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ }
++ *dstp = dma->dsti++;
++ dma->dstk = dma->dsti;
++
++ if (dma->resi == HIFN_D_RES_RSIZE) {
++ dma->resi = 0;
++ dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ }
++ *resp = dma->resi++;
++ dma->resk = dma->resi;
++}
++
++static int
++hifn_writeramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ hifn_base_command_t wc;
++ const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
++ int r, cmdi, resi, srci, dsti;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ wc.masks = htole16(3 << 13);
++ wc.session_num = htole16(addr >> 14);
++ wc.total_source_count = htole16(8);
++ wc.total_dest_count = htole16(addr & 0x3fff);
++
++ hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR,
++ HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
++ HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
++
++ /* build write command */
++ bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
++ *(hifn_base_command_t *)dma->command_bufs[cmdi] = wc;
++ bcopy(data, &dma->test_src, sizeof(dma->test_src));
++
++ dma->srcr[srci].p = htole32(sc->sc_dma_physaddr
++ + offsetof(struct hifn_dma, test_src));
++ dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr
++ + offsetof(struct hifn_dma, test_dst));
++
++ dma->cmdr[cmdi].l = htole32(16 | masks);
++ dma->srcr[srci].l = htole32(8 | masks);
++ dma->dstr[dsti].l = htole32(4 | masks);
++ dma->resr[resi].l = htole32(4 | masks);
++
++ for (r = 10000; r >= 0; r--) {
++ DELAY(10);
++ if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
++ break;
++ }
++ if (r == 0) {
++ device_printf(sc->sc_dev, "writeramaddr -- "
++ "result[%d](addr %d) still valid\n", resi, addr);
++ r = -1;
++ return (-1);
++ } else
++ r = 0;
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR,
++ HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
++
++ return (r);
++}
++
++static int
++hifn_readramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ hifn_base_command_t rc;
++ const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
++ int r, cmdi, srci, dsti, resi;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ rc.masks = htole16(2 << 13);
++ rc.session_num = htole16(addr >> 14);
++ rc.total_source_count = htole16(addr & 0x3fff);
++ rc.total_dest_count = htole16(8);
++
++ hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR,
++ HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
++ HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
++
++ bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
++ *(hifn_base_command_t *)dma->command_bufs[cmdi] = rc;
++
++ dma->srcr[srci].p = htole32(sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, test_src));
++ dma->test_src = 0;
++ dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, test_dst));
++ dma->test_dst = 0;
++ dma->cmdr[cmdi].l = htole32(8 | masks);
++ dma->srcr[srci].l = htole32(8 | masks);
++ dma->dstr[dsti].l = htole32(8 | masks);
++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT | masks);
++
++ for (r = 10000; r >= 0; r--) {
++ DELAY(10);
++ if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
++ break;
++ }
++ if (r == 0) {
++ device_printf(sc->sc_dev, "readramaddr -- "
++ "result[%d](addr %d) still valid\n", resi, addr);
++ r = -1;
++ } else {
++ r = 0;
++ bcopy(&dma->test_dst, data, sizeof(dma->test_dst));
++ }
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR,
++ HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
++ HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
++
++ return (r);
++}
++
++/*
++ * Initialize the descriptor rings.
++ */
++static void
++hifn_init_dma(struct hifn_softc *sc)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ hifn_set_retry(sc);
++
++ /* initialize static pointer values */
++ for (i = 0; i < HIFN_D_CMD_RSIZE; i++)
++ dma->cmdr[i].p = htole32(sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, command_bufs[i][0]));
++ for (i = 0; i < HIFN_D_RES_RSIZE; i++)
++ dma->resr[i].p = htole32(sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, result_bufs[i][0]));
++
++ dma->cmdr[HIFN_D_CMD_RSIZE].p =
++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, cmdr[0]));
++ dma->srcr[HIFN_D_SRC_RSIZE].p =
++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, srcr[0]));
++ dma->dstr[HIFN_D_DST_RSIZE].p =
++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, dstr[0]));
++ dma->resr[HIFN_D_RES_RSIZE].p =
++ htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, resr[0]));
++
++ dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
++ dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
++ dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
++}
++
++/*
++ * Writes out the raw command buffer space. Returns the
++ * command buffer size.
++ */
++static u_int
++hifn_write_command(struct hifn_command *cmd, u_int8_t *buf)
++{
++ struct hifn_softc *sc = NULL;
++ u_int8_t *buf_pos;
++ hifn_base_command_t *base_cmd;
++ hifn_mac_command_t *mac_cmd;
++ hifn_crypt_command_t *cry_cmd;
++ int using_mac, using_crypt, len, ivlen;
++ u_int32_t dlen, slen;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ buf_pos = buf;
++ using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC;
++ using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT;
++
++ base_cmd = (hifn_base_command_t *)buf_pos;
++ base_cmd->masks = htole16(cmd->base_masks);
++ slen = cmd->src_mapsize;
++ if (cmd->sloplen)
++ dlen = cmd->dst_mapsize - cmd->sloplen + sizeof(u_int32_t);
++ else
++ dlen = cmd->dst_mapsize;
++ base_cmd->total_source_count = htole16(slen & HIFN_BASE_CMD_LENMASK_LO);
++ base_cmd->total_dest_count = htole16(dlen & HIFN_BASE_CMD_LENMASK_LO);
++ dlen >>= 16;
++ slen >>= 16;
++ base_cmd->session_num = htole16(
++ ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
++ ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
++ buf_pos += sizeof(hifn_base_command_t);
++
++ if (using_mac) {
++ mac_cmd = (hifn_mac_command_t *)buf_pos;
++ dlen = cmd->maccrd->crd_len;
++ mac_cmd->source_count = htole16(dlen & 0xffff);
++ dlen >>= 16;
++ mac_cmd->masks = htole16(cmd->mac_masks |
++ ((dlen << HIFN_MAC_CMD_SRCLEN_S) & HIFN_MAC_CMD_SRCLEN_M));
++ mac_cmd->header_skip = htole16(cmd->maccrd->crd_skip);
++ mac_cmd->reserved = 0;
++ buf_pos += sizeof(hifn_mac_command_t);
++ }
++
++ if (using_crypt) {
++ cry_cmd = (hifn_crypt_command_t *)buf_pos;
++ dlen = cmd->enccrd->crd_len;
++ cry_cmd->source_count = htole16(dlen & 0xffff);
++ dlen >>= 16;
++ cry_cmd->masks = htole16(cmd->cry_masks |
++ ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M));
++ cry_cmd->header_skip = htole16(cmd->enccrd->crd_skip);
++ cry_cmd->reserved = 0;
++ buf_pos += sizeof(hifn_crypt_command_t);
++ }
++
++ if (using_mac && cmd->mac_masks & HIFN_MAC_CMD_NEW_KEY) {
++ bcopy(cmd->mac, buf_pos, HIFN_MAC_KEY_LENGTH);
++ buf_pos += HIFN_MAC_KEY_LENGTH;
++ }
++
++ if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_KEY) {
++ switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
++ case HIFN_CRYPT_CMD_ALG_3DES:
++ bcopy(cmd->ck, buf_pos, HIFN_3DES_KEY_LENGTH);
++ buf_pos += HIFN_3DES_KEY_LENGTH;
++ break;
++ case HIFN_CRYPT_CMD_ALG_DES:
++ bcopy(cmd->ck, buf_pos, HIFN_DES_KEY_LENGTH);
++ buf_pos += HIFN_DES_KEY_LENGTH;
++ break;
++ case HIFN_CRYPT_CMD_ALG_RC4:
++ len = 256;
++ do {
++ int clen;
++
++ clen = MIN(cmd->cklen, len);
++ bcopy(cmd->ck, buf_pos, clen);
++ len -= clen;
++ buf_pos += clen;
++ } while (len > 0);
++ bzero(buf_pos, 4);
++ buf_pos += 4;
++ break;
++ case HIFN_CRYPT_CMD_ALG_AES:
++ /*
++ * AES keys are variable 128, 192 and
++ * 256 bits (16, 24 and 32 bytes).
++ */
++ bcopy(cmd->ck, buf_pos, cmd->cklen);
++ buf_pos += cmd->cklen;
++ break;
++ }
++ }
++
++ if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_IV) {
++ switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
++ case HIFN_CRYPT_CMD_ALG_AES:
++ ivlen = HIFN_AES_IV_LENGTH;
++ break;
++ default:
++ ivlen = HIFN_IV_LENGTH;
++ break;
++ }
++ bcopy(cmd->iv, buf_pos, ivlen);
++ buf_pos += ivlen;
++ }
++
++ if ((cmd->base_masks & (HIFN_BASE_CMD_MAC|HIFN_BASE_CMD_CRYPT)) == 0) {
++ bzero(buf_pos, 8);
++ buf_pos += 8;
++ }
++
++ return (buf_pos - buf);
++}
++
++static int
++hifn_dmamap_aligned(struct hifn_operand *op)
++{
++ struct hifn_softc *sc = NULL;
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ for (i = 0; i < op->nsegs; i++) {
++ if (op->segs[i].ds_addr & 3)
++ return (0);
++ if ((i != (op->nsegs - 1)) && (op->segs[i].ds_len & 3))
++ return (0);
++ }
++ return (1);
++}
++
++static __inline int
++hifn_dmamap_dstwrap(struct hifn_softc *sc, int idx)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++
++ if (++idx == HIFN_D_DST_RSIZE) {
++ dma->dstr[idx].l = htole32(HIFN_D_VALID | HIFN_D_JUMP |
++ HIFN_D_MASKDONEIRQ);
++ HIFN_DSTR_SYNC(sc, idx,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ idx = 0;
++ }
++ return (idx);
++}
++
++static int
++hifn_dmamap_load_dst(struct hifn_softc *sc, struct hifn_command *cmd)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ struct hifn_operand *dst = &cmd->dst;
++ u_int32_t p, l;
++ int idx, used = 0, i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ idx = dma->dsti;
++ for (i = 0; i < dst->nsegs - 1; i++) {
++ dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
++ dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ | dst->segs[i].ds_len);
++ wmb();
++ dma->dstr[idx].l |= htole32(HIFN_D_VALID);
++ HIFN_DSTR_SYNC(sc, idx,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ used++;
++
++ idx = hifn_dmamap_dstwrap(sc, idx);
++ }
++
++ if (cmd->sloplen == 0) {
++ p = dst->segs[i].ds_addr;
++ l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
++ dst->segs[i].ds_len;
++ } else {
++ p = sc->sc_dma_physaddr +
++ offsetof(struct hifn_dma, slop[cmd->slopidx]);
++ l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
++ sizeof(u_int32_t);
++
++ if ((dst->segs[i].ds_len - cmd->sloplen) != 0) {
++ dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
++ dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ |
++ (dst->segs[i].ds_len - cmd->sloplen));
++ wmb();
++ dma->dstr[idx].l |= htole32(HIFN_D_VALID);
++ HIFN_DSTR_SYNC(sc, idx,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ used++;
++
++ idx = hifn_dmamap_dstwrap(sc, idx);
++ }
++ }
++ dma->dstr[idx].p = htole32(p);
++ dma->dstr[idx].l = htole32(l);
++ wmb();
++ dma->dstr[idx].l |= htole32(HIFN_D_VALID);
++ HIFN_DSTR_SYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ used++;
++
++ idx = hifn_dmamap_dstwrap(sc, idx);
++
++ dma->dsti = idx;
++ dma->dstu += used;
++ return (idx);
++}
++
++static __inline int
++hifn_dmamap_srcwrap(struct hifn_softc *sc, int idx)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++
++ if (++idx == HIFN_D_SRC_RSIZE) {
++ dma->srcr[idx].l = htole32(HIFN_D_VALID |
++ HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
++ HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ idx = 0;
++ }
++ return (idx);
++}
++
++static int
++hifn_dmamap_load_src(struct hifn_softc *sc, struct hifn_command *cmd)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ struct hifn_operand *src = &cmd->src;
++ int idx, i;
++ u_int32_t last = 0;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ idx = dma->srci;
++ for (i = 0; i < src->nsegs; i++) {
++ if (i == src->nsegs - 1)
++ last = HIFN_D_LAST;
++
++ dma->srcr[idx].p = htole32(src->segs[i].ds_addr);
++ dma->srcr[idx].l = htole32(src->segs[i].ds_len |
++ HIFN_D_MASKDONEIRQ | last);
++ wmb();
++ dma->srcr[idx].l |= htole32(HIFN_D_VALID);
++ HIFN_SRCR_SYNC(sc, idx,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++
++ idx = hifn_dmamap_srcwrap(sc, idx);
++ }
++ dma->srci = idx;
++ dma->srcu += src->nsegs;
++ return (idx);
++}
++
++
++static int
++hifn_crypto(
++ struct hifn_softc *sc,
++ struct hifn_command *cmd,
++ struct cryptop *crp,
++ int hint)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ u_int32_t cmdlen, csr;
++ int cmdi, resi, err = 0;
++ unsigned long l_flags;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /*
++ * need 1 cmd, and 1 res
++ *
++ * NB: check this first since it's easy.
++ */
++ HIFN_LOCK(sc);
++ if ((dma->cmdu + 1) > HIFN_D_CMD_RSIZE ||
++ (dma->resu + 1) > HIFN_D_RES_RSIZE) {
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ device_printf(sc->sc_dev,
++ "cmd/result exhaustion, cmdu %u resu %u\n",
++ dma->cmdu, dma->resu);
++ }
++#endif
++ hifnstats.hst_nomem_cr++;
++ sc->sc_needwakeup |= CRYPTO_SYMQ;
++ HIFN_UNLOCK(sc);
++ return (ERESTART);
++ }
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ if (pci_map_skb(sc, &cmd->src, cmd->src_skb)) {
++ hifnstats.hst_nomem_load++;
++ err = ENOMEM;
++ goto err_srcmap1;
++ }
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ if (pci_map_uio(sc, &cmd->src, cmd->src_io)) {
++ hifnstats.hst_nomem_load++;
++ err = ENOMEM;
++ goto err_srcmap1;
++ }
++ } else {
++ if (pci_map_buf(sc, &cmd->src, cmd->src_buf, crp->crp_ilen)) {
++ hifnstats.hst_nomem_load++;
++ err = ENOMEM;
++ goto err_srcmap1;
++ }
++ }
++
++ if (hifn_dmamap_aligned(&cmd->src)) {
++ cmd->sloplen = cmd->src_mapsize & 3;
++ cmd->dst = cmd->src;
++ } else {
++ if (crp->crp_flags & CRYPTO_F_IOV) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto err_srcmap;
++ } else if (crp->crp_flags & CRYPTO_F_SKBUF) {
++#ifdef NOTYET
++ int totlen, len;
++ struct mbuf *m, *m0, *mlast;
++
++ KASSERT(cmd->dst_m == cmd->src_m,
++ ("hifn_crypto: dst_m initialized improperly"));
++ hifnstats.hst_unaligned++;
++ /*
++ * Source is not aligned on a longword boundary.
++ * Copy the data to insure alignment. If we fail
++ * to allocate mbufs or clusters while doing this
++ * we return ERESTART so the operation is requeued
++ * at the crypto later, but only if there are
++ * ops already posted to the hardware; otherwise we
++ * have no guarantee that we'll be re-entered.
++ */
++ totlen = cmd->src_mapsize;
++ if (cmd->src_m->m_flags & M_PKTHDR) {
++ len = MHLEN;
++ MGETHDR(m0, M_DONTWAIT, MT_DATA);
++ if (m0 && !m_dup_pkthdr(m0, cmd->src_m, M_DONTWAIT)) {
++ m_free(m0);
++ m0 = NULL;
++ }
++ } else {
++ len = MLEN;
++ MGET(m0, M_DONTWAIT, MT_DATA);
++ }
++ if (m0 == NULL) {
++ hifnstats.hst_nomem_mbuf++;
++ err = dma->cmdu ? ERESTART : ENOMEM;
++ goto err_srcmap;
++ }
++ if (totlen >= MINCLSIZE) {
++ MCLGET(m0, M_DONTWAIT);
++ if ((m0->m_flags & M_EXT) == 0) {
++ hifnstats.hst_nomem_mcl++;
++ err = dma->cmdu ? ERESTART : ENOMEM;
++ m_freem(m0);
++ goto err_srcmap;
++ }
++ len = MCLBYTES;
++ }
++ totlen -= len;
++ m0->m_pkthdr.len = m0->m_len = len;
++ mlast = m0;
++
++ while (totlen > 0) {
++ MGET(m, M_DONTWAIT, MT_DATA);
++ if (m == NULL) {
++ hifnstats.hst_nomem_mbuf++;
++ err = dma->cmdu ? ERESTART : ENOMEM;
++ m_freem(m0);
++ goto err_srcmap;
++ }
++ len = MLEN;
++ if (totlen >= MINCLSIZE) {
++ MCLGET(m, M_DONTWAIT);
++ if ((m->m_flags & M_EXT) == 0) {
++ hifnstats.hst_nomem_mcl++;
++ err = dma->cmdu ? ERESTART : ENOMEM;
++ mlast->m_next = m;
++ m_freem(m0);
++ goto err_srcmap;
++ }
++ len = MCLBYTES;
++ }
++
++ m->m_len = len;
++ m0->m_pkthdr.len += len;
++ totlen -= len;
++
++ mlast->m_next = m;
++ mlast = m;
++ }
++ cmd->dst_m = m0;
++#else
++ device_printf(sc->sc_dev,
++ "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
++ __FILE__, __LINE__);
++ err = EINVAL;
++ goto err_srcmap;
++#endif
++ } else {
++ device_printf(sc->sc_dev,
++ "%s,%d: unaligned contig buffers not implemented\n",
++ __FILE__, __LINE__);
++ err = EINVAL;
++ goto err_srcmap;
++ }
++ }
++
++ if (cmd->dst_map == NULL) {
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ if (pci_map_skb(sc, &cmd->dst, cmd->dst_skb)) {
++ hifnstats.hst_nomem_map++;
++ err = ENOMEM;
++ goto err_dstmap1;
++ }
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ if (pci_map_uio(sc, &cmd->dst, cmd->dst_io)) {
++ hifnstats.hst_nomem_load++;
++ err = ENOMEM;
++ goto err_dstmap1;
++ }
++ } else {
++ if (pci_map_buf(sc, &cmd->dst, cmd->dst_buf, crp->crp_ilen)) {
++ hifnstats.hst_nomem_load++;
++ err = ENOMEM;
++ goto err_dstmap1;
++ }
++ }
++ }
++
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ device_printf(sc->sc_dev,
++ "Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n",
++ READ_REG_1(sc, HIFN_1_DMA_CSR),
++ READ_REG_1(sc, HIFN_1_DMA_IER),
++ dma->cmdu, dma->srcu, dma->dstu, dma->resu,
++ cmd->src_nsegs, cmd->dst_nsegs);
++ }
++#endif
++
++#if 0
++ if (cmd->src_map == cmd->dst_map) {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
++ } else {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_PREWRITE);
++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
++ BUS_DMASYNC_PREREAD);
++ }
++#endif
++
++ /*
++ * need N src, and N dst
++ */
++ if ((dma->srcu + cmd->src_nsegs) > HIFN_D_SRC_RSIZE ||
++ (dma->dstu + cmd->dst_nsegs + 1) > HIFN_D_DST_RSIZE) {
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ device_printf(sc->sc_dev,
++ "src/dst exhaustion, srcu %u+%u dstu %u+%u\n",
++ dma->srcu, cmd->src_nsegs,
++ dma->dstu, cmd->dst_nsegs);
++ }
++#endif
++ hifnstats.hst_nomem_sd++;
++ err = ERESTART;
++ goto err_dstmap;
++ }
++
++ if (dma->cmdi == HIFN_D_CMD_RSIZE) {
++ dma->cmdi = 0;
++ dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ }
++ cmdi = dma->cmdi++;
++ cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
++ HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE);
++
++ /* .p for command/result already set */
++ dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_LAST |
++ HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->cmdr[cmdi].l |= htole32(HIFN_D_VALID);
++ HIFN_CMDR_SYNC(sc, cmdi,
++ BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
++ dma->cmdu++;
++
++ /*
++ * We don't worry about missing an interrupt (which a "command wait"
++ * interrupt salvages us from), unless there is more than one command
++ * in the queue.
++ */
++ if (dma->cmdu > 1) {
++ sc->sc_dmaier |= HIFN_DMAIER_C_WAIT;
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
++ }
++
++ hifnstats.hst_ipackets++;
++ hifnstats.hst_ibytes += cmd->src_mapsize;
++
++ hifn_dmamap_load_src(sc, cmd);
++
++ /*
++ * Unlike other descriptors, we don't mask done interrupt from
++ * result descriptor.
++ */
++#ifdef HIFN_DEBUG
++ if (hifn_debug)
++ device_printf(sc->sc_dev, "load res\n");
++#endif
++ if (dma->resi == HIFN_D_RES_RSIZE) {
++ dma->resi = 0;
++ dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID);
++ HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ }
++ resi = dma->resi++;
++ KASSERT(dma->hifn_commands[resi] == NULL,
++ ("hifn_crypto: command slot %u busy", resi));
++ dma->hifn_commands[resi] = cmd;
++ HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD);
++ if ((hint & CRYPTO_HINT_MORE) && sc->sc_curbatch < hifn_maxbatch) {
++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
++ HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
++ wmb();
++ dma->resr[resi].l |= htole32(HIFN_D_VALID);
++ sc->sc_curbatch++;
++ if (sc->sc_curbatch > hifnstats.hst_maxbatch)
++ hifnstats.hst_maxbatch = sc->sc_curbatch;
++ hifnstats.hst_totbatch++;
++ } else {
++ dma->resr[resi].l = htole32(HIFN_MAX_RESULT | HIFN_D_LAST);
++ wmb();
++ dma->resr[resi].l |= htole32(HIFN_D_VALID);
++ sc->sc_curbatch = 0;
++ }
++ HIFN_RESR_SYNC(sc, resi,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ dma->resu++;
++
++ if (cmd->sloplen)
++ cmd->slopidx = resi;
++
++ hifn_dmamap_load_dst(sc, cmd);
++
++ csr = 0;
++ if (sc->sc_c_busy == 0) {
++ csr |= HIFN_DMACSR_C_CTRL_ENA;
++ sc->sc_c_busy = 1;
++ }
++ if (sc->sc_s_busy == 0) {
++ csr |= HIFN_DMACSR_S_CTRL_ENA;
++ sc->sc_s_busy = 1;
++ }
++ if (sc->sc_r_busy == 0) {
++ csr |= HIFN_DMACSR_R_CTRL_ENA;
++ sc->sc_r_busy = 1;
++ }
++ if (sc->sc_d_busy == 0) {
++ csr |= HIFN_DMACSR_D_CTRL_ENA;
++ sc->sc_d_busy = 1;
++ }
++ if (csr)
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, csr);
++
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ device_printf(sc->sc_dev, "command: stat %8x ier %8x\n",
++ READ_REG_1(sc, HIFN_1_DMA_CSR),
++ READ_REG_1(sc, HIFN_1_DMA_IER));
++ }
++#endif
++
++ sc->sc_active = 5;
++ HIFN_UNLOCK(sc);
++ KASSERT(err == 0, ("hifn_crypto: success with error %u", err));
++ return (err); /* success */
++
++err_dstmap:
++ if (cmd->src_map != cmd->dst_map)
++ pci_unmap_buf(sc, &cmd->dst);
++err_dstmap1:
++err_srcmap:
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ if (cmd->src_skb != cmd->dst_skb)
++#ifdef NOTYET
++ m_freem(cmd->dst_m);
++#else
++ device_printf(sc->sc_dev,
++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
++ __FILE__, __LINE__);
++#endif
++ }
++ pci_unmap_buf(sc, &cmd->src);
++err_srcmap1:
++ HIFN_UNLOCK(sc);
++ return (err);
++}
++
++static void
++hifn_tick(unsigned long arg)
++{
++ struct hifn_softc *sc;
++ unsigned long l_flags;
++
++ if (arg >= HIFN_MAX_CHIPS)
++ return;
++ sc = hifn_chip_idx[arg];
++ if (!sc)
++ return;
++
++ HIFN_LOCK(sc);
++ if (sc->sc_active == 0) {
++ struct hifn_dma *dma = sc->sc_dma;
++ u_int32_t r = 0;
++
++ if (dma->cmdu == 0 && sc->sc_c_busy) {
++ sc->sc_c_busy = 0;
++ r |= HIFN_DMACSR_C_CTRL_DIS;
++ }
++ if (dma->srcu == 0 && sc->sc_s_busy) {
++ sc->sc_s_busy = 0;
++ r |= HIFN_DMACSR_S_CTRL_DIS;
++ }
++ if (dma->dstu == 0 && sc->sc_d_busy) {
++ sc->sc_d_busy = 0;
++ r |= HIFN_DMACSR_D_CTRL_DIS;
++ }
++ if (dma->resu == 0 && sc->sc_r_busy) {
++ sc->sc_r_busy = 0;
++ r |= HIFN_DMACSR_R_CTRL_DIS;
++ }
++ if (r)
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, r);
++ } else
++ sc->sc_active--;
++ HIFN_UNLOCK(sc);
++ mod_timer(&sc->sc_tickto, jiffies + HZ);
++}
++
++static irqreturn_t
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++hifn_intr(int irq, void *arg)
++#else
++hifn_intr(int irq, void *arg, struct pt_regs *regs)
++#endif
++{
++ struct hifn_softc *sc = arg;
++ struct hifn_dma *dma;
++ u_int32_t dmacsr, restart;
++ int i, u;
++ unsigned long l_flags;
++
++ dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR);
++
++ /* Nothing in the DMA unit interrupted */
++ if ((dmacsr & sc->sc_dmaier) == 0)
++ return IRQ_NONE;
++
++ HIFN_LOCK(sc);
++
++ dma = sc->sc_dma;
++
++#ifdef HIFN_DEBUG
++ if (hifn_debug) {
++ device_printf(sc->sc_dev,
++ "irq: stat %08x ien %08x damier %08x i %d/%d/%d/%d k %d/%d/%d/%d u %d/%d/%d/%d\n",
++ dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER), sc->sc_dmaier,
++ dma->cmdi, dma->srci, dma->dsti, dma->resi,
++ dma->cmdk, dma->srck, dma->dstk, dma->resk,
++ dma->cmdu, dma->srcu, dma->dstu, dma->resu);
++ }
++#endif
++
++ WRITE_REG_1(sc, HIFN_1_DMA_CSR, dmacsr & sc->sc_dmaier);
++
++ if ((sc->sc_flags & HIFN_HAS_PUBLIC) &&
++ (dmacsr & HIFN_DMACSR_PUBDONE))
++ WRITE_REG_1(sc, HIFN_1_PUB_STATUS,
++ READ_REG_1(sc, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
++
++ restart = dmacsr & (HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_OVER);
++ if (restart)
++ device_printf(sc->sc_dev, "overrun %x\n", dmacsr);
++
++ if (sc->sc_flags & HIFN_IS_7811) {
++ if (dmacsr & HIFN_DMACSR_ILLR)
++ device_printf(sc->sc_dev, "illegal read\n");
++ if (dmacsr & HIFN_DMACSR_ILLW)
++ device_printf(sc->sc_dev, "illegal write\n");
++ }
++
++ restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
++ HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
++ if (restart) {
++ device_printf(sc->sc_dev, "abort, resetting.\n");
++ hifnstats.hst_abort++;
++ hifn_abort(sc);
++ HIFN_UNLOCK(sc);
++ return IRQ_HANDLED;
++ }
++
++ if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
++ /*
++ * If no slots to process and we receive a "waiting on
++ * command" interrupt, we disable the "waiting on command"
++ * (by clearing it).
++ */
++ sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
++ }
++
++ /* clear the rings */
++ i = dma->resk; u = dma->resu;
++ while (u != 0) {
++ HIFN_RESR_SYNC(sc, i,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++ if (dma->resr[i].l & htole32(HIFN_D_VALID)) {
++ HIFN_RESR_SYNC(sc, i,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ break;
++ }
++
++ if (i != HIFN_D_RES_RSIZE) {
++ struct hifn_command *cmd;
++ u_int8_t *macbuf = NULL;
++
++ HIFN_RES_SYNC(sc, i, BUS_DMASYNC_POSTREAD);
++ cmd = dma->hifn_commands[i];
++ KASSERT(cmd != NULL,
++ ("hifn_intr: null command slot %u", i));
++ dma->hifn_commands[i] = NULL;
++
++ if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
++ macbuf = dma->result_bufs[i];
++ macbuf += 12;
++ }
++
++ hifn_callback(sc, cmd, macbuf);
++ hifnstats.hst_opackets++;
++ u--;
++ }
++
++ if (++i == (HIFN_D_RES_RSIZE + 1))
++ i = 0;
++ }
++ dma->resk = i; dma->resu = u;
++
++ i = dma->srck; u = dma->srcu;
++ while (u != 0) {
++ if (i == HIFN_D_SRC_RSIZE)
++ i = 0;
++ HIFN_SRCR_SYNC(sc, i,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++ if (dma->srcr[i].l & htole32(HIFN_D_VALID)) {
++ HIFN_SRCR_SYNC(sc, i,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ break;
++ }
++ i++, u--;
++ }
++ dma->srck = i; dma->srcu = u;
++
++ i = dma->cmdk; u = dma->cmdu;
++ while (u != 0) {
++ HIFN_CMDR_SYNC(sc, i,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++ if (dma->cmdr[i].l & htole32(HIFN_D_VALID)) {
++ HIFN_CMDR_SYNC(sc, i,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++ break;
++ }
++ if (i != HIFN_D_CMD_RSIZE) {
++ u--;
++ HIFN_CMD_SYNC(sc, i, BUS_DMASYNC_POSTWRITE);
++ }
++ if (++i == (HIFN_D_CMD_RSIZE + 1))
++ i = 0;
++ }
++ dma->cmdk = i; dma->cmdu = u;
++
++ HIFN_UNLOCK(sc);
++
++ if (sc->sc_needwakeup) { /* XXX check high watermark */
++ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
++#ifdef HIFN_DEBUG
++ if (hifn_debug)
++ device_printf(sc->sc_dev,
++ "wakeup crypto (%x) u %d/%d/%d/%d\n",
++ sc->sc_needwakeup,
++ dma->cmdu, dma->srcu, dma->dstu, dma->resu);
++#endif
++ sc->sc_needwakeup &= ~wakeup;
++ crypto_unblock(sc->sc_cid, wakeup);
++ }
++
++ return IRQ_HANDLED;
++}
++
++/*
++ * Allocate a new 'session' and return an encoded session id. 'sidp'
++ * contains our registration id, and should contain an encoded session
++ * id on successful allocation.
++ */
++static int
++hifn_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
++{
++ struct hifn_softc *sc = device_get_softc(dev);
++ struct cryptoini *c;
++ int mac = 0, cry = 0, sesn;
++ struct hifn_session *ses = NULL;
++ unsigned long l_flags;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ KASSERT(sc != NULL, ("hifn_newsession: null softc"));
++ if (sidp == NULL || cri == NULL || sc == NULL) {
++ DPRINTF("%s,%d: %s - EINVAL\n", __FILE__, __LINE__, __FUNCTION__);
++ return (EINVAL);
++ }
++
++ HIFN_LOCK(sc);
++ if (sc->sc_sessions == NULL) {
++ ses = sc->sc_sessions = (struct hifn_session *)kmalloc(sizeof(*ses),
++ SLAB_ATOMIC);
++ if (ses == NULL) {
++ HIFN_UNLOCK(sc);
++ return (ENOMEM);
++ }
++ sesn = 0;
++ sc->sc_nsessions = 1;
++ } else {
++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
++ if (!sc->sc_sessions[sesn].hs_used) {
++ ses = &sc->sc_sessions[sesn];
++ break;
++ }
++ }
++
++ if (ses == NULL) {
++ sesn = sc->sc_nsessions;
++ ses = (struct hifn_session *)kmalloc((sesn + 1) * sizeof(*ses),
++ SLAB_ATOMIC);
++ if (ses == NULL) {
++ HIFN_UNLOCK(sc);
++ return (ENOMEM);
++ }
++ bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
++ bzero(sc->sc_sessions, sesn * sizeof(*ses));
++ kfree(sc->sc_sessions);
++ sc->sc_sessions = ses;
++ ses = &sc->sc_sessions[sesn];
++ sc->sc_nsessions++;
++ }
++ }
++ HIFN_UNLOCK(sc);
++
++ bzero(ses, sizeof(*ses));
++ ses->hs_used = 1;
++
++ for (c = cri; c != NULL; c = c->cri_next) {
++ switch (c->cri_alg) {
++ case CRYPTO_MD5:
++ case CRYPTO_SHA1:
++ case CRYPTO_MD5_HMAC:
++ case CRYPTO_SHA1_HMAC:
++ if (mac) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++ mac = 1;
++ ses->hs_mlen = c->cri_mlen;
++ if (ses->hs_mlen == 0) {
++ switch (c->cri_alg) {
++ case CRYPTO_MD5:
++ case CRYPTO_MD5_HMAC:
++ ses->hs_mlen = 16;
++ break;
++ case CRYPTO_SHA1:
++ case CRYPTO_SHA1_HMAC:
++ ses->hs_mlen = 20;
++ break;
++ }
++ }
++ break;
++ case CRYPTO_DES_CBC:
++ case CRYPTO_3DES_CBC:
++ case CRYPTO_AES_CBC:
++ /* XXX this may read fewer, does it matter? */
++ read_random(ses->hs_iv,
++ c->cri_alg == CRYPTO_AES_CBC ?
++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
++ /*FALLTHROUGH*/
++ case CRYPTO_ARC4:
++ if (cry) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++ cry = 1;
++ break;
++ default:
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++ }
++ if (mac == 0 && cry == 0) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++
++ *sidp = HIFN_SID(device_get_unit(sc->sc_dev), sesn);
++
++ return (0);
++}
++
++/*
++ * Deallocate a session.
++ * XXX this routine should run a zero'd mac/encrypt key into context ram.
++ * XXX to blow away any keys already stored there.
++ */
++static int
++hifn_freesession(device_t dev, u_int64_t tid)
++{
++ struct hifn_softc *sc = device_get_softc(dev);
++ int session, error;
++ u_int32_t sid = CRYPTO_SESID2LID(tid);
++ unsigned long l_flags;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ KASSERT(sc != NULL, ("hifn_freesession: null softc"));
++ if (sc == NULL) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++
++ HIFN_LOCK(sc);
++ session = HIFN_SESSION(sid);
++ if (session < sc->sc_nsessions) {
++ bzero(&sc->sc_sessions[session], sizeof(struct hifn_session));
++ error = 0;
++ } else {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ error = EINVAL;
++ }
++ HIFN_UNLOCK(sc);
++
++ return (error);
++}
++
++static int
++hifn_process(device_t dev, struct cryptop *crp, int hint)
++{
++ struct hifn_softc *sc = device_get_softc(dev);
++ struct hifn_command *cmd = NULL;
++ int session, err, ivlen;
++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (crp == NULL || crp->crp_callback == NULL) {
++ hifnstats.hst_invalid++;
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ return (EINVAL);
++ }
++ session = HIFN_SESSION(crp->crp_sid);
++
++ if (sc == NULL || session >= sc->sc_nsessions) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto errout;
++ }
++
++ cmd = kmalloc(sizeof(struct hifn_command), SLAB_ATOMIC);
++ if (cmd == NULL) {
++ hifnstats.hst_nomem++;
++ err = ENOMEM;
++ goto errout;
++ }
++ memset(cmd, 0, sizeof(*cmd));
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ cmd->src_skb = (struct sk_buff *)crp->crp_buf;
++ cmd->dst_skb = (struct sk_buff *)crp->crp_buf;
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ cmd->src_io = (struct uio *)crp->crp_buf;
++ cmd->dst_io = (struct uio *)crp->crp_buf;
++ } else {
++ cmd->src_buf = crp->crp_buf;
++ cmd->dst_buf = crp->crp_buf;
++ }
++
++ crd1 = crp->crp_desc;
++ if (crd1 == NULL) {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto errout;
++ }
++ crd2 = crd1->crd_next;
++
++ if (crd2 == NULL) {
++ if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1 ||
++ crd1->crd_alg == CRYPTO_MD5) {
++ maccrd = crd1;
++ enccrd = NULL;
++ } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC ||
++ crd1->crd_alg == CRYPTO_ARC4) {
++ if ((crd1->crd_flags & CRD_F_ENCRYPT) == 0)
++ cmd->base_masks |= HIFN_BASE_CMD_DECODE;
++ maccrd = NULL;
++ enccrd = crd1;
++ } else {
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto errout;
++ }
++ } else {
++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_MD5 ||
++ crd1->crd_alg == CRYPTO_SHA1) &&
++ (crd2->crd_alg == CRYPTO_DES_CBC ||
++ crd2->crd_alg == CRYPTO_3DES_CBC ||
++ crd2->crd_alg == CRYPTO_AES_CBC ||
++ crd2->crd_alg == CRYPTO_ARC4) &&
++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
++ cmd->base_masks = HIFN_BASE_CMD_DECODE;
++ maccrd = crd1;
++ enccrd = crd2;
++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_ARC4 ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC) &&
++ (crd2->crd_alg == CRYPTO_MD5_HMAC ||
++ crd2->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd2->crd_alg == CRYPTO_MD5 ||
++ crd2->crd_alg == CRYPTO_SHA1) &&
++ (crd1->crd_flags & CRD_F_ENCRYPT)) {
++ enccrd = crd1;
++ maccrd = crd2;
++ } else {
++ /*
++ * We cannot order the 7751 as requested
++ */
++ DPRINTF("%s,%d: %s %d,%d,%d - EINVAL\n",__FILE__,__LINE__,__FUNCTION__, crd1->crd_alg, crd2->crd_alg, crd1->crd_flags & CRD_F_ENCRYPT);
++ err = EINVAL;
++ goto errout;
++ }
++ }
++
++ if (enccrd) {
++ cmd->enccrd = enccrd;
++ cmd->base_masks |= HIFN_BASE_CMD_CRYPT;
++ switch (enccrd->crd_alg) {
++ case CRYPTO_ARC4:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_RC4;
++ break;
++ case CRYPTO_DES_CBC:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_DES |
++ HIFN_CRYPT_CMD_MODE_CBC |
++ HIFN_CRYPT_CMD_NEW_IV;
++ break;
++ case CRYPTO_3DES_CBC:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_3DES |
++ HIFN_CRYPT_CMD_MODE_CBC |
++ HIFN_CRYPT_CMD_NEW_IV;
++ break;
++ case CRYPTO_AES_CBC:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_AES |
++ HIFN_CRYPT_CMD_MODE_CBC |
++ HIFN_CRYPT_CMD_NEW_IV;
++ break;
++ default:
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto errout;
++ }
++ if (enccrd->crd_alg != CRYPTO_ARC4) {
++ ivlen = ((enccrd->crd_alg == CRYPTO_AES_CBC) ?
++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
++ if (enccrd->crd_flags & CRD_F_ENCRYPT) {
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ bcopy(enccrd->crd_iv, cmd->iv, ivlen);
++ else
++ bcopy(sc->sc_sessions[session].hs_iv,
++ cmd->iv, ivlen);
++
++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT)
++ == 0) {
++ crypto_copyback(crp->crp_flags,
++ crp->crp_buf, enccrd->crd_inject,
++ ivlen, cmd->iv);
++ }
++ } else {
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ bcopy(enccrd->crd_iv, cmd->iv, ivlen);
++ else {
++ crypto_copydata(crp->crp_flags,
++ crp->crp_buf, enccrd->crd_inject,
++ ivlen, cmd->iv);
++ }
++ }
++ }
++
++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
++ cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
++ cmd->ck = enccrd->crd_key;
++ cmd->cklen = enccrd->crd_klen >> 3;
++ cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
++
++ /*
++ * Need to specify the size for the AES key in the masks.
++ */
++ if ((cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) ==
++ HIFN_CRYPT_CMD_ALG_AES) {
++ switch (cmd->cklen) {
++ case 16:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_128;
++ break;
++ case 24:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_192;
++ break;
++ case 32:
++ cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_256;
++ break;
++ default:
++ DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
++ err = EINVAL;
++ goto errout;
++ }
++ }
++ }
++
++ if (maccrd) {
++ cmd->maccrd = maccrd;
++ cmd->base_masks |= HIFN_BASE_CMD_MAC;
++
++ switch (maccrd->crd_alg) {
++ case CRYPTO_MD5:
++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
++ HIFN_MAC_CMD_POS_IPSEC;
++ break;
++ case CRYPTO_MD5_HMAC:
++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
++ HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
++ break;
++ case CRYPTO_SHA1:
++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
++ HIFN_MAC_CMD_POS_IPSEC;
++ break;
++ case CRYPTO_SHA1_HMAC:
++ cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
++ HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
++ HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
++ break;
++ }
++
++ if (maccrd->crd_alg == CRYPTO_SHA1_HMAC ||
++ maccrd->crd_alg == CRYPTO_MD5_HMAC) {
++ cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY;
++ bcopy(maccrd->crd_key, cmd->mac, maccrd->crd_klen >> 3);
++ bzero(cmd->mac + (maccrd->crd_klen >> 3),
++ HIFN_MAC_KEY_LENGTH - (maccrd->crd_klen >> 3));
++ }
++ }
++
++ cmd->crp = crp;
++ cmd->session_num = session;
++ cmd->softc = sc;
++
++ err = hifn_crypto(sc, cmd, crp, hint);
++ if (!err) {
++ return 0;
++ } else if (err == ERESTART) {
++ /*
++ * There weren't enough resources to dispatch the request
++ * to the part. Notify the caller so they'll requeue this
++ * request and resubmit it again soon.
++ */
++#ifdef HIFN_DEBUG
++ if (hifn_debug)
++ device_printf(sc->sc_dev, "requeue request\n");
++#endif
++ kfree(cmd);
++ sc->sc_needwakeup |= CRYPTO_SYMQ;
++ return (err);
++ }
++
++errout:
++ if (cmd != NULL)
++ kfree(cmd);
++ if (err == EINVAL)
++ hifnstats.hst_invalid++;
++ else
++ hifnstats.hst_nomem++;
++ crp->crp_etype = err;
++ crypto_done(crp);
++ return (err);
++}
++
++static void
++hifn_abort(struct hifn_softc *sc)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ struct hifn_command *cmd;
++ struct cryptop *crp;
++ int i, u;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ i = dma->resk; u = dma->resu;
++ while (u != 0) {
++ cmd = dma->hifn_commands[i];
++ KASSERT(cmd != NULL, ("hifn_abort: null command slot %u", i));
++ dma->hifn_commands[i] = NULL;
++ crp = cmd->crp;
++
++ if ((dma->resr[i].l & htole32(HIFN_D_VALID)) == 0) {
++ /* Salvage what we can. */
++ u_int8_t *macbuf;
++
++ if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
++ macbuf = dma->result_bufs[i];
++ macbuf += 12;
++ } else
++ macbuf = NULL;
++ hifnstats.hst_opackets++;
++ hifn_callback(sc, cmd, macbuf);
++ } else {
++#if 0
++ if (cmd->src_map == cmd->dst_map) {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
++ } else {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_POSTWRITE);
++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
++ BUS_DMASYNC_POSTREAD);
++ }
++#endif
++
++ if (cmd->src_skb != cmd->dst_skb) {
++#ifdef NOTYET
++ m_freem(cmd->src_m);
++ crp->crp_buf = (caddr_t)cmd->dst_m;
++#else
++ device_printf(sc->sc_dev,
++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
++ __FILE__, __LINE__);
++#endif
++ }
++
++ /* non-shared buffers cannot be restarted */
++ if (cmd->src_map != cmd->dst_map) {
++ /*
++ * XXX should be EAGAIN, delayed until
++ * after the reset.
++ */
++ crp->crp_etype = ENOMEM;
++ pci_unmap_buf(sc, &cmd->dst);
++ } else
++ crp->crp_etype = ENOMEM;
++
++ pci_unmap_buf(sc, &cmd->src);
++
++ kfree(cmd);
++ if (crp->crp_etype != EAGAIN)
++ crypto_done(crp);
++ }
++
++ if (++i == HIFN_D_RES_RSIZE)
++ i = 0;
++ u--;
++ }
++ dma->resk = i; dma->resu = u;
++
++ hifn_reset_board(sc, 1);
++ hifn_init_dma(sc);
++ hifn_init_pci_registers(sc);
++}
++
++static void
++hifn_callback(struct hifn_softc *sc, struct hifn_command *cmd, u_int8_t *macbuf)
++{
++ struct hifn_dma *dma = sc->sc_dma;
++ struct cryptop *crp = cmd->crp;
++ struct cryptodesc *crd;
++ int i, u, ivlen;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++#if 0
++ if (cmd->src_map == cmd->dst_map) {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
++ } else {
++ bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
++ BUS_DMASYNC_POSTWRITE);
++ bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
++ BUS_DMASYNC_POSTREAD);
++ }
++#endif
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ if (cmd->src_skb != cmd->dst_skb) {
++#ifdef NOTYET
++ crp->crp_buf = (caddr_t)cmd->dst_m;
++ totlen = cmd->src_mapsize;
++ for (m = cmd->dst_m; m != NULL; m = m->m_next) {
++ if (totlen < m->m_len) {
++ m->m_len = totlen;
++ totlen = 0;
++ } else
++ totlen -= m->m_len;
++ }
++ cmd->dst_m->m_pkthdr.len = cmd->src_m->m_pkthdr.len;
++ m_freem(cmd->src_m);
++#else
++ device_printf(sc->sc_dev,
++ "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
++ __FILE__, __LINE__);
++#endif
++ }
++ }
++
++ if (cmd->sloplen != 0) {
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ cmd->src_mapsize - cmd->sloplen, cmd->sloplen,
++ (caddr_t)&dma->slop[cmd->slopidx]);
++ }
++
++ i = dma->dstk; u = dma->dstu;
++ while (u != 0) {
++ if (i == HIFN_D_DST_RSIZE)
++ i = 0;
++#if 0
++ bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++#endif
++ if (dma->dstr[i].l & htole32(HIFN_D_VALID)) {
++#if 0
++ bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
++ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
++#endif
++ break;
++ }
++ i++, u--;
++ }
++ dma->dstk = i; dma->dstu = u;
++
++ hifnstats.hst_obytes += cmd->dst_mapsize;
++
++ if ((cmd->base_masks & (HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE)) ==
++ HIFN_BASE_CMD_CRYPT) {
++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
++ if (crd->crd_alg != CRYPTO_DES_CBC &&
++ crd->crd_alg != CRYPTO_3DES_CBC &&
++ crd->crd_alg != CRYPTO_AES_CBC)
++ continue;
++ ivlen = ((crd->crd_alg == CRYPTO_AES_CBC) ?
++ HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ crd->crd_skip + crd->crd_len - ivlen, ivlen,
++ cmd->softc->sc_sessions[cmd->session_num].hs_iv);
++ break;
++ }
++ }
++
++ if (macbuf != NULL) {
++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
++ int len;
++
++ if (crd->crd_alg != CRYPTO_MD5 &&
++ crd->crd_alg != CRYPTO_SHA1 &&
++ crd->crd_alg != CRYPTO_MD5_HMAC &&
++ crd->crd_alg != CRYPTO_SHA1_HMAC) {
++ continue;
++ }
++ len = cmd->softc->sc_sessions[cmd->session_num].hs_mlen;
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject, len, macbuf);
++ break;
++ }
++ }
++
++ if (cmd->src_map != cmd->dst_map)
++ pci_unmap_buf(sc, &cmd->dst);
++ pci_unmap_buf(sc, &cmd->src);
++ kfree(cmd);
++ crypto_done(crp);
++}
++
++/*
++ * 7811 PB3 rev/2 parts lock-up on burst writes to Group 0
++ * and Group 1 registers; avoid conditions that could create
++ * burst writes by doing a read in between the writes.
++ *
++ * NB: The read we interpose is always to the same register;
++ * we do this because reading from an arbitrary (e.g. last)
++ * register may not always work.
++ */
++static void
++hifn_write_reg_0(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
++{
++ if (sc->sc_flags & HIFN_IS_7811) {
++ if (sc->sc_bar0_lastreg == reg - 4)
++ readl(sc->sc_bar0 + HIFN_0_PUCNFG);
++ sc->sc_bar0_lastreg = reg;
++ }
++ writel(val, sc->sc_bar0 + reg);
++}
++
++static void
++hifn_write_reg_1(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
++{
++ if (sc->sc_flags & HIFN_IS_7811) {
++ if (sc->sc_bar1_lastreg == reg - 4)
++ readl(sc->sc_bar1 + HIFN_1_REVID);
++ sc->sc_bar1_lastreg = reg;
++ }
++ writel(val, sc->sc_bar1 + reg);
++}
++
++
++static struct pci_device_id hifn_pci_tbl[] = {
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7951,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7955,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7956,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_NETSEC, PCI_PRODUCT_NETSEC_7751,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_INVERTEX, PCI_PRODUCT_INVERTEX_AEON,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7811,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ /*
++ * Other vendors share this PCI ID as well, such as
++ * http://www.powercrypt.com, and obviously they also
++ * use the same key.
++ */
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7751,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { 0, 0, 0, 0, 0, 0, }
++};
++MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
++
++static struct pci_driver hifn_driver = {
++ .name = "hifn",
++ .id_table = hifn_pci_tbl,
++ .probe = hifn_probe,
++ .remove = hifn_remove,
++ /* add PM stuff here one day */
++};
++
++static int __init hifn_init (void)
++{
++ struct hifn_softc *sc = NULL;
++ int rc;
++
++ DPRINTF("%s(%p)\n", __FUNCTION__, hifn_init);
++
++ rc = pci_register_driver(&hifn_driver);
++ pci_register_driver_compat(&hifn_driver, rc);
++
++ return rc;
++}
++
++static void __exit hifn_exit (void)
++{
++ pci_unregister_driver(&hifn_driver);
++}
++
++module_init(hifn_init);
++module_exit(hifn_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("OCF driver for hifn PCI crypto devices");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifnHIPP.c 2007-07-25 14:36:45.000000000 +1000
+@@ -0,0 +1,420 @@
++/*-
++ * Driver for Hifn HIPP-I/II chipset
++ * Copyright (c) 2006 Michael Richardson <mcr@xelerance.com>
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored by Hifn Inc.
++ *
++ */
++
++/*
++ * Driver for various Hifn encryption processors.
++ */
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++#include <linux/random.h>
++#include <linux/version.h>
++#include <linux/skbuff.h>
++#include <linux/uio.h>
++#include <linux/sysfs.h>
++#include <linux/miscdevice.h>
++#include <asm/io.h>
++
++#include <cryptodev.h>
++
++#include "hifnHIPPreg.h"
++#include "hifnHIPPvar.h"
++
++#if 1
++#define DPRINTF(a...) if (hipp_debug) { \
++ printk("%s: ", sc ? \
++ device_get_nameunit(sc->sc_dev) : "hifn"); \
++ printk(a); \
++ } else
++#else
++#define DPRINTF(a...)
++#endif
++
++typedef int bus_size_t;
++
++static inline int
++pci_get_revid(struct pci_dev *dev)
++{
++ u8 rid = 0;
++ pci_read_config_byte(dev, PCI_REVISION_ID, &rid);
++ return rid;
++}
++
++#define debug hipp_debug
++int hipp_debug = 0;
++module_param(hipp_debug, int, 0644);
++MODULE_PARM_DESC(hipp_debug, "Enable debug");
++
++int hipp_maxbatch = 1;
++module_param(hipp_maxbatch, int, 0644);
++MODULE_PARM_DESC(hipp_maxbatch, "max ops to batch w/o interrupt");
++
++static int hipp_probe(struct pci_dev *dev, const struct pci_device_id *ent);
++static void hipp_remove(struct pci_dev *dev);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++static irqreturn_t hipp_intr(int irq, void *arg);
++#else
++static irqreturn_t hipp_intr(int irq, void *arg, struct pt_regs *regs);
++#endif
++
++static int hipp_num_chips = 0;
++static struct hipp_softc *hipp_chip_idx[HIPP_MAX_CHIPS];
++
++static int hipp_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int hipp_freesession(device_t, u_int64_t);
++static int hipp_process(device_t, struct cryptop *, int);
++
++static device_method_t hipp_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, hipp_newsession),
++ DEVMETHOD(cryptodev_freesession,hipp_freesession),
++ DEVMETHOD(cryptodev_process, hipp_process),
++};
++
++static __inline u_int32_t
++READ_REG(struct hipp_softc *sc, unsigned int barno, bus_size_t reg)
++{
++ u_int32_t v = readl(sc->sc_bar[barno] + reg);
++ //sc->sc_bar0_lastreg = (bus_size_t) -1;
++ return (v);
++}
++static __inline void
++WRITE_REG(struct hipp_softc *sc, unsigned int barno, bus_size_t reg, u_int32_t val)
++{
++ writel(val, sc->sc_bar[barno] + reg);
++}
++
++#define READ_REG_0(sc, reg) READ_REG(sc, 0, reg)
++#define WRITE_REG_0(sc, reg, val) WRITE_REG(sc,0, reg, val)
++#define READ_REG_1(sc, reg) READ_REG(sc, 1, reg)
++#define WRITE_REG_1(sc, reg, val) WRITE_REG(sc,1, reg, val)
++
++static int
++hipp_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
++{
++ return EINVAL;
++}
++
++static int
++hipp_freesession(device_t dev, u_int64_t tid)
++{
++ return EINVAL;
++}
++
++static int
++hipp_process(device_t dev, struct cryptop *crp, int hint)
++{
++ return EINVAL;
++}
++
++static const char*
++hipp_partname(struct hipp_softc *sc, char buf[128], size_t blen)
++{
++ char *n = NULL;
++
++ switch (pci_get_vendor(sc->sc_pcidev)) {
++ case PCI_VENDOR_HIFN:
++ switch (pci_get_device(sc->sc_pcidev)) {
++ case PCI_PRODUCT_HIFN_7855: n = "Hifn 7855";
++ case PCI_PRODUCT_HIFN_8155: n = "Hifn 8155";
++ case PCI_PRODUCT_HIFN_6500: n = "Hifn 6500";
++ }
++ }
++
++ if(n==NULL) {
++ snprintf(buf, blen, "VID=%02x,PID=%02x",
++ pci_get_vendor(sc->sc_pcidev),
++ pci_get_device(sc->sc_pcidev));
++ } else {
++ buf[0]='\0';
++ strncat(buf, n, blen);
++ }
++ return buf;
++}
++
++struct hipp_fs_entry {
++ struct attribute attr;
++ /* other stuff */
++};
++
++
++static ssize_t
++cryptoid_show(struct device *dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct hipp_softc *sc;
++
++ sc = pci_get_drvdata(to_pci_dev (dev));
++ return sprintf (buf, "%d\n", sc->sc_cid);
++}
++
++struct device_attribute hipp_dev_cryptoid = __ATTR_RO(cryptoid);
++
++/*
++ * Attach an interface that successfully probed.
++ */
++static int
++hipp_probe(struct pci_dev *dev, const struct pci_device_id *ent)
++{
++ struct hipp_softc *sc = NULL;
++ int i;
++ //char rbase;
++ //u_int16_t ena;
++ int rev;
++ //int rseg;
++ int rc;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (pci_enable_device(dev) < 0)
++ return(-ENODEV);
++
++ if (pci_set_mwi(dev))
++ return(-ENODEV);
++
++ if (!dev->irq) {
++ printk("hifn: found device with no IRQ assigned. check BIOS settings!");
++ pci_disable_device(dev);
++ return(-ENODEV);
++ }
++
++ sc = (struct hipp_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
++ if (!sc)
++ return(-ENOMEM);
++ memset(sc, 0, sizeof(*sc));
++
++ softc_device_init(sc, "hifn-hipp", hipp_num_chips, hipp_methods);
++
++ sc->sc_pcidev = dev;
++ sc->sc_irq = -1;
++ sc->sc_cid = -1;
++ sc->sc_num = hipp_num_chips++;
++
++ if (sc->sc_num < HIPP_MAX_CHIPS)
++ hipp_chip_idx[sc->sc_num] = sc;
++
++ pci_set_drvdata(sc->sc_pcidev, sc);
++
++ spin_lock_init(&sc->sc_mtx);
++
++ /*
++ * Setup PCI resources.
++ * The READ_REG_0, WRITE_REG_0, READ_REG_1,
++ * and WRITE_REG_1 macros throughout the driver are used
++ * to permit better debugging.
++ */
++ for(i=0; i<4; i++) {
++ unsigned long mem_start, mem_len;
++ mem_start = pci_resource_start(sc->sc_pcidev, i);
++ mem_len = pci_resource_len(sc->sc_pcidev, i);
++ sc->sc_barphy[i] = (caddr_t)mem_start;
++ sc->sc_bar[i] = (ocf_iomem_t) ioremap(mem_start, mem_len);
++ if (!sc->sc_bar[i]) {
++ device_printf(sc->sc_dev, "cannot map bar%d register space\n", i);
++ goto fail;
++ }
++ }
++
++ //hipp_reset_board(sc, 0);
++ pci_set_master(sc->sc_pcidev);
++
++ /*
++ * Arrange the interrupt line.
++ */
++ rc = request_irq(dev->irq, hipp_intr, IRQF_SHARED, "hifn", sc);
++ if (rc) {
++ device_printf(sc->sc_dev, "could not map interrupt: %d\n", rc);
++ goto fail;
++ }
++ sc->sc_irq = dev->irq;
++
++ rev = READ_REG_1(sc, HIPP_1_REVID) & 0xffff;
++
++ {
++ char b[32];
++ device_printf(sc->sc_dev, "%s, rev %u",
++ hipp_partname(sc, b, sizeof(b)), rev);
++ }
++
++#if 0
++ if (sc->sc_flags & HIFN_IS_7956)
++ printf(", pll=0x%x<%s clk, %ux mult>",
++ sc->sc_pllconfig,
++ sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci",
++ 2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11));
++#endif
++ printf("\n");
++
++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE);
++ if (sc->sc_cid < 0) {
++ device_printf(sc->sc_dev, "could not get crypto driver id\n");
++ goto fail;
++ }
++
++#if 0 /* cannot work with a non-GPL module */
++ /* make a sysfs entry to let the world know what entry we got */
++ sysfs_create_file(&sc->sc_pcidev->dev.kobj, &hipp_dev_cryptoid.attr);
++#endif
++
++#if 0
++ init_timer(&sc->sc_tickto);
++ sc->sc_tickto.function = hifn_tick;
++ sc->sc_tickto.data = (unsigned long) sc->sc_num;
++ mod_timer(&sc->sc_tickto, jiffies + HZ);
++#endif
++
++#if 0 /* no code here yet ?? */
++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
++#endif
++
++ return (0);
++
++fail:
++ if (sc->sc_cid >= 0)
++ crypto_unregister_all(sc->sc_cid);
++ if (sc->sc_irq != -1)
++ free_irq(sc->sc_irq, sc);
++
++#if 0
++ if (sc->sc_dma) {
++ /* Turn off DMA polling */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++
++ pci_free_consistent(sc->sc_pcidev,
++ sizeof(*sc->sc_dma),
++ sc->sc_dma, sc->sc_dma_physaddr);
++ }
++#endif
++ kfree(sc);
++ return (-ENXIO);
++}
++
++/*
++ * Detach an interface that successfully probed.
++ */
++static void
++hipp_remove(struct pci_dev *dev)
++{
++ struct hipp_softc *sc = pci_get_drvdata(dev);
++ unsigned long l_flags;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /* disable interrupts */
++ HIPP_LOCK(sc);
++
++#if 0
++ WRITE_REG_1(sc, HIFN_1_DMA_IER, 0);
++ HIFN_UNLOCK(sc);
++
++ /*XXX other resources */
++ del_timer_sync(&sc->sc_tickto);
++
++ /* Turn off DMA polling */
++ WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
++ HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
++#endif
++
++ crypto_unregister_all(sc->sc_cid);
++
++ free_irq(sc->sc_irq, sc);
++
++#if 0
++ pci_free_consistent(sc->sc_pcidev, sizeof(*sc->sc_dma),
++ sc->sc_dma, sc->sc_dma_physaddr);
++#endif
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++static irqreturn_t hipp_intr(int irq, void *arg)
++#else
++static irqreturn_t hipp_intr(int irq, void *arg, struct pt_regs *regs)
++#endif
++{
++ struct hipp_softc *sc = arg;
++
++ sc = sc; /* shut up compiler */
++
++ return IRQ_HANDLED;
++}
++
++static struct pci_device_id hipp_pci_tbl[] = {
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7855,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_8155,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++};
++MODULE_DEVICE_TABLE(pci, hipp_pci_tbl);
++
++static struct pci_driver hipp_driver = {
++ .name = "hipp",
++ .id_table = hipp_pci_tbl,
++ .probe = hipp_probe,
++ .remove = hipp_remove,
++ /* add PM stuff here one day */
++};
++
++static int __init hipp_init (void)
++{
++ struct hipp_softc *sc = NULL;
++ int rc;
++
++ DPRINTF("%s(%p)\n", __FUNCTION__, hipp_init);
++
++ rc = pci_register_driver(&hipp_driver);
++ pci_register_driver_compat(&hipp_driver, rc);
++
++ return rc;
++}
++
++static void __exit hipp_exit (void)
++{
++ pci_unregister_driver(&hipp_driver);
++}
++
++module_init(hipp_init);
++module_exit(hipp_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("Michael Richardson <mcr@xelerance.com>");
++MODULE_DESCRIPTION("OCF driver for hifn HIPP-I/II PCI crypto devices");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifnHIPPreg.h 2007-07-25 10:11:22.000000000 +1000
+@@ -0,0 +1,46 @@
++/*-
++ * Hifn HIPP-I/HIPP-II (7855/8155) driver.
++ * Copyright (c) 2006 Michael Richardson <mcr@xelerance.com>
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored by Hifn inc.
++ *
++ */
++
++#ifndef __HIFNHIPP_H__
++#define __HIFNHIPP_H__
++
++/*
++ * PCI vendor and device identifiers
++ */
++#define PCI_VENDOR_HIFN 0x13a3 /* Hifn */
++#define PCI_PRODUCT_HIFN_6500 0x0006 /* 6500 */
++#define PCI_PRODUCT_HIFN_7855 0x001f /* 7855 */
++#define PCI_PRODUCT_HIFN_8155 0x999 /* XXX 8155 */
++
++#define HIPP_1_REVID 0x01 /* BOGUS */
++
++#endif /* __HIPP_H__ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/hifn/hifnHIPPvar.h 2007-07-25 13:47:04.000000000 +1000
+@@ -0,0 +1,93 @@
++/*
++ * Hifn HIPP-I/HIPP-II (7855/8155) driver.
++ * Copyright (c) 2006 Michael Richardson <mcr@xelerance.com> *
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored by Hifn inc.
++ *
++ */
++
++#ifndef __HIFNHIPPVAR_H__
++#define __HIFNHIPPVAR_H__
++
++#define HIPP_MAX_CHIPS 8
++
++/*
++ * Holds data specific to a single Hifn HIPP-I board.
++ */
++struct hipp_softc {
++ softc_device_decl sc_dev;
++
++ struct pci_dev *sc_pcidev; /* device backpointer */
++ ocf_iomem_t sc_bar[5];
++ caddr_t sc_barphy[5]; /* physical address */
++ int sc_num; /* for multiple devs */
++ spinlock_t sc_mtx; /* per-instance lock */
++ int32_t sc_cid;
++ int sc_irq;
++
++#if 0
++
++ u_int32_t sc_dmaier;
++ u_int32_t sc_drammodel; /* 1=dram, 0=sram */
++ u_int32_t sc_pllconfig; /* 7954/7955/7956 PLL config */
++
++ struct hifn_dma *sc_dma;
++ dma_addr_t sc_dma_physaddr;/* physical address of sc_dma */
++
++ int sc_dmansegs;
++ int sc_maxses;
++ int sc_nsessions;
++ struct hifn_session *sc_sessions;
++ int sc_ramsize;
++ int sc_flags;
++#define HIFN_HAS_RNG 0x1 /* includes random number generator */
++#define HIFN_HAS_PUBLIC 0x2 /* includes public key support */
++#define HIFN_HAS_AES 0x4 /* includes AES support */
++#define HIFN_IS_7811 0x8 /* Hifn 7811 part */
++#define HIFN_IS_7956 0x10 /* Hifn 7956/7955 don't have SDRAM */
++
++ struct timer_list sc_tickto; /* for managing DMA */
++
++ int sc_rngfirst;
++ int sc_rnghz; /* RNG polling frequency */
++
++ int sc_c_busy; /* command ring busy */
++ int sc_s_busy; /* source data ring busy */
++ int sc_d_busy; /* destination data ring busy */
++ int sc_r_busy; /* result ring busy */
++ int sc_active; /* for initial countdown */
++ int sc_needwakeup; /* ops q'd wating on resources */
++ int sc_curbatch; /* # ops submitted w/o int */
++ int sc_suspended;
++ struct miscdevice sc_miscdev;
++#endif
++};
++
++#define HIPP_LOCK(_sc) spin_lock_irqsave(&(_sc)->sc_mtx, l_flags)
++#define HIPP_UNLOCK(_sc) spin_unlock_irqrestore(&(_sc)->sc_mtx, l_flags)
++
++#endif /* __HIFNHIPPVAR_H__ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/md5.c 2005-05-20 10:30:52.000000000 +1000
+@@ -0,0 +1,308 @@
++/* $KAME: md5.c,v 1.5 2000/11/08 06:13:08 itojun Exp $ */
++/*
++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. Neither the name of the project nor the names of its contributors
++ * may be used to endorse or promote products derived from this software
++ * without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ */
++
++#if 0
++#include <sys/cdefs.h>
++__FBSDID("$FreeBSD: src/sys/crypto/md5.c,v 1.9 2004/01/27 19:49:19 des Exp $");
++
++#include <sys/types.h>
++#include <sys/cdefs.h>
++#include <sys/time.h>
++#include <sys/systm.h>
++#include <crypto/md5.h>
++#endif
++
++#define SHIFT(X, s) (((X) << (s)) | ((X) >> (32 - (s))))
++
++#define F(X, Y, Z) (((X) & (Y)) | ((~X) & (Z)))
++#define G(X, Y, Z) (((X) & (Z)) | ((Y) & (~Z)))
++#define H(X, Y, Z) ((X) ^ (Y) ^ (Z))
++#define I(X, Y, Z) ((Y) ^ ((X) | (~Z)))
++
++#define ROUND1(a, b, c, d, k, s, i) { \
++ (a) = (a) + F((b), (c), (d)) + X[(k)] + T[(i)]; \
++ (a) = SHIFT((a), (s)); \
++ (a) = (b) + (a); \
++}
++
++#define ROUND2(a, b, c, d, k, s, i) { \
++ (a) = (a) + G((b), (c), (d)) + X[(k)] + T[(i)]; \
++ (a) = SHIFT((a), (s)); \
++ (a) = (b) + (a); \
++}
++
++#define ROUND3(a, b, c, d, k, s, i) { \
++ (a) = (a) + H((b), (c), (d)) + X[(k)] + T[(i)]; \
++ (a) = SHIFT((a), (s)); \
++ (a) = (b) + (a); \
++}
++
++#define ROUND4(a, b, c, d, k, s, i) { \
++ (a) = (a) + I((b), (c), (d)) + X[(k)] + T[(i)]; \
++ (a) = SHIFT((a), (s)); \
++ (a) = (b) + (a); \
++}
++
++#define Sa 7
++#define Sb 12
++#define Sc 17
++#define Sd 22
++
++#define Se 5
++#define Sf 9
++#define Sg 14
++#define Sh 20
++
++#define Si 4
++#define Sj 11
++#define Sk 16
++#define Sl 23
++
++#define Sm 6
++#define Sn 10
++#define So 15
++#define Sp 21
++
++#define MD5_A0 0x67452301
++#define MD5_B0 0xefcdab89
++#define MD5_C0 0x98badcfe
++#define MD5_D0 0x10325476
++
++/* Integer part of 4294967296 times abs(sin(i)), where i is in radians. */
++static const u_int32_t T[65] = {
++ 0,
++ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
++ 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
++ 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
++ 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
++
++ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
++ 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
++ 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
++ 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
++
++ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
++ 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
++ 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
++ 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
++
++ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
++ 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
++ 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
++ 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391,
++};
++
++static const u_int8_t md5_paddat[MD5_BUFLEN] = {
++ 0x80, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0,
++};
++
++static void md5_calc(u_int8_t *, md5_ctxt *);
++
++void md5_init(ctxt)
++ md5_ctxt *ctxt;
++{
++ ctxt->md5_n = 0;
++ ctxt->md5_i = 0;
++ ctxt->md5_sta = MD5_A0;
++ ctxt->md5_stb = MD5_B0;
++ ctxt->md5_stc = MD5_C0;
++ ctxt->md5_std = MD5_D0;
++ bzero(ctxt->md5_buf, sizeof(ctxt->md5_buf));
++}
++
++void md5_loop(ctxt, input, len)
++ md5_ctxt *ctxt;
++ u_int8_t *input;
++ u_int len; /* number of bytes */
++{
++ u_int gap, i;
++
++ ctxt->md5_n += len * 8; /* byte to bit */
++ gap = MD5_BUFLEN - ctxt->md5_i;
++
++ if (len >= gap) {
++ bcopy((void *)input, (void *)(ctxt->md5_buf + ctxt->md5_i),
++ gap);
++ md5_calc(ctxt->md5_buf, ctxt);
++
++ for (i = gap; i + MD5_BUFLEN <= len; i += MD5_BUFLEN) {
++ md5_calc((u_int8_t *)(input + i), ctxt);
++ }
++
++ ctxt->md5_i = len - i;
++ bcopy((void *)(input + i), (void *)ctxt->md5_buf, ctxt->md5_i);
++ } else {
++ bcopy((void *)input, (void *)(ctxt->md5_buf + ctxt->md5_i),
++ len);
++ ctxt->md5_i += len;
++ }
++}
++
++void md5_pad(ctxt)
++ md5_ctxt *ctxt;
++{
++ u_int gap;
++
++ /* Don't count up padding. Keep md5_n. */
++ gap = MD5_BUFLEN - ctxt->md5_i;
++ if (gap > 8) {
++ bcopy(md5_paddat,
++ (void *)(ctxt->md5_buf + ctxt->md5_i),
++ gap - sizeof(ctxt->md5_n));
++ } else {
++ /* including gap == 8 */
++ bcopy(md5_paddat, (void *)(ctxt->md5_buf + ctxt->md5_i),
++ gap);
++ md5_calc(ctxt->md5_buf, ctxt);
++ bcopy((md5_paddat + gap),
++ (void *)ctxt->md5_buf,
++ MD5_BUFLEN - sizeof(ctxt->md5_n));
++ }
++
++ /* 8 byte word */
++#if BYTE_ORDER == LITTLE_ENDIAN
++ bcopy(&ctxt->md5_n8[0], &ctxt->md5_buf[56], 8);
++#endif
++#if BYTE_ORDER == BIG_ENDIAN
++ ctxt->md5_buf[56] = ctxt->md5_n8[7];
++ ctxt->md5_buf[57] = ctxt->md5_n8[6];
++ ctxt->md5_buf[58] = ctxt->md5_n8[5];
++ ctxt->md5_buf[59] = ctxt->md5_n8[4];
++ ctxt->md5_buf[60] = ctxt->md5_n8[3];
++ ctxt->md5_buf[61] = ctxt->md5_n8[2];
++ ctxt->md5_buf[62] = ctxt->md5_n8[1];
++ ctxt->md5_buf[63] = ctxt->md5_n8[0];
++#endif
++
++ md5_calc(ctxt->md5_buf, ctxt);
++}
++
++void md5_result(digest, ctxt)
++ u_int8_t *digest;
++ md5_ctxt *ctxt;
++{
++ /* 4 byte words */
++#if BYTE_ORDER == LITTLE_ENDIAN
++ bcopy(&ctxt->md5_st8[0], digest, 16);
++#endif
++#if BYTE_ORDER == BIG_ENDIAN
++ digest[ 0] = ctxt->md5_st8[ 3]; digest[ 1] = ctxt->md5_st8[ 2];
++ digest[ 2] = ctxt->md5_st8[ 1]; digest[ 3] = ctxt->md5_st8[ 0];
++ digest[ 4] = ctxt->md5_st8[ 7]; digest[ 5] = ctxt->md5_st8[ 6];
++ digest[ 6] = ctxt->md5_st8[ 5]; digest[ 7] = ctxt->md5_st8[ 4];
++ digest[ 8] = ctxt->md5_st8[11]; digest[ 9] = ctxt->md5_st8[10];
++ digest[10] = ctxt->md5_st8[ 9]; digest[11] = ctxt->md5_st8[ 8];
++ digest[12] = ctxt->md5_st8[15]; digest[13] = ctxt->md5_st8[14];
++ digest[14] = ctxt->md5_st8[13]; digest[15] = ctxt->md5_st8[12];
++#endif
++}
++
++static void md5_calc(b64, ctxt)
++ u_int8_t *b64;
++ md5_ctxt *ctxt;
++{
++ u_int32_t A = ctxt->md5_sta;
++ u_int32_t B = ctxt->md5_stb;
++ u_int32_t C = ctxt->md5_stc;
++ u_int32_t D = ctxt->md5_std;
++#if BYTE_ORDER == LITTLE_ENDIAN
++ u_int32_t *X = (u_int32_t *)b64;
++#endif
++#if BYTE_ORDER == BIG_ENDIAN
++ /* 4 byte words */
++ /* what a brute force but fast! */
++ u_int32_t X[16];
++ u_int8_t *y = (u_int8_t *)X;
++ y[ 0] = b64[ 3]; y[ 1] = b64[ 2]; y[ 2] = b64[ 1]; y[ 3] = b64[ 0];
++ y[ 4] = b64[ 7]; y[ 5] = b64[ 6]; y[ 6] = b64[ 5]; y[ 7] = b64[ 4];
++ y[ 8] = b64[11]; y[ 9] = b64[10]; y[10] = b64[ 9]; y[11] = b64[ 8];
++ y[12] = b64[15]; y[13] = b64[14]; y[14] = b64[13]; y[15] = b64[12];
++ y[16] = b64[19]; y[17] = b64[18]; y[18] = b64[17]; y[19] = b64[16];
++ y[20] = b64[23]; y[21] = b64[22]; y[22] = b64[21]; y[23] = b64[20];
++ y[24] = b64[27]; y[25] = b64[26]; y[26] = b64[25]; y[27] = b64[24];
++ y[28] = b64[31]; y[29] = b64[30]; y[30] = b64[29]; y[31] = b64[28];
++ y[32] = b64[35]; y[33] = b64[34]; y[34] = b64[33]; y[35] = b64[32];
++ y[36] = b64[39]; y[37] = b64[38]; y[38] = b64[37]; y[39] = b64[36];
++ y[40] = b64[43]; y[41] = b64[42]; y[42] = b64[41]; y[43] = b64[40];
++ y[44] = b64[47]; y[45] = b64[46]; y[46] = b64[45]; y[47] = b64[44];
++ y[48] = b64[51]; y[49] = b64[50]; y[50] = b64[49]; y[51] = b64[48];
++ y[52] = b64[55]; y[53] = b64[54]; y[54] = b64[53]; y[55] = b64[52];
++ y[56] = b64[59]; y[57] = b64[58]; y[58] = b64[57]; y[59] = b64[56];
++ y[60] = b64[63]; y[61] = b64[62]; y[62] = b64[61]; y[63] = b64[60];
++#endif
++
++ ROUND1(A, B, C, D, 0, Sa, 1); ROUND1(D, A, B, C, 1, Sb, 2);
++ ROUND1(C, D, A, B, 2, Sc, 3); ROUND1(B, C, D, A, 3, Sd, 4);
++ ROUND1(A, B, C, D, 4, Sa, 5); ROUND1(D, A, B, C, 5, Sb, 6);
++ ROUND1(C, D, A, B, 6, Sc, 7); ROUND1(B, C, D, A, 7, Sd, 8);
++ ROUND1(A, B, C, D, 8, Sa, 9); ROUND1(D, A, B, C, 9, Sb, 10);
++ ROUND1(C, D, A, B, 10, Sc, 11); ROUND1(B, C, D, A, 11, Sd, 12);
++ ROUND1(A, B, C, D, 12, Sa, 13); ROUND1(D, A, B, C, 13, Sb, 14);
++ ROUND1(C, D, A, B, 14, Sc, 15); ROUND1(B, C, D, A, 15, Sd, 16);
++
++ ROUND2(A, B, C, D, 1, Se, 17); ROUND2(D, A, B, C, 6, Sf, 18);
++ ROUND2(C, D, A, B, 11, Sg, 19); ROUND2(B, C, D, A, 0, Sh, 20);
++ ROUND2(A, B, C, D, 5, Se, 21); ROUND2(D, A, B, C, 10, Sf, 22);
++ ROUND2(C, D, A, B, 15, Sg, 23); ROUND2(B, C, D, A, 4, Sh, 24);
++ ROUND2(A, B, C, D, 9, Se, 25); ROUND2(D, A, B, C, 14, Sf, 26);
++ ROUND2(C, D, A, B, 3, Sg, 27); ROUND2(B, C, D, A, 8, Sh, 28);
++ ROUND2(A, B, C, D, 13, Se, 29); ROUND2(D, A, B, C, 2, Sf, 30);
++ ROUND2(C, D, A, B, 7, Sg, 31); ROUND2(B, C, D, A, 12, Sh, 32);
++
++ ROUND3(A, B, C, D, 5, Si, 33); ROUND3(D, A, B, C, 8, Sj, 34);
++ ROUND3(C, D, A, B, 11, Sk, 35); ROUND3(B, C, D, A, 14, Sl, 36);
++ ROUND3(A, B, C, D, 1, Si, 37); ROUND3(D, A, B, C, 4, Sj, 38);
++ ROUND3(C, D, A, B, 7, Sk, 39); ROUND3(B, C, D, A, 10, Sl, 40);
++ ROUND3(A, B, C, D, 13, Si, 41); ROUND3(D, A, B, C, 0, Sj, 42);
++ ROUND3(C, D, A, B, 3, Sk, 43); ROUND3(B, C, D, A, 6, Sl, 44);
++ ROUND3(A, B, C, D, 9, Si, 45); ROUND3(D, A, B, C, 12, Sj, 46);
++ ROUND3(C, D, A, B, 15, Sk, 47); ROUND3(B, C, D, A, 2, Sl, 48);
++
++ ROUND4(A, B, C, D, 0, Sm, 49); ROUND4(D, A, B, C, 7, Sn, 50);
++ ROUND4(C, D, A, B, 14, So, 51); ROUND4(B, C, D, A, 5, Sp, 52);
++ ROUND4(A, B, C, D, 12, Sm, 53); ROUND4(D, A, B, C, 3, Sn, 54);
++ ROUND4(C, D, A, B, 10, So, 55); ROUND4(B, C, D, A, 1, Sp, 56);
++ ROUND4(A, B, C, D, 8, Sm, 57); ROUND4(D, A, B, C, 15, Sn, 58);
++ ROUND4(C, D, A, B, 6, So, 59); ROUND4(B, C, D, A, 13, Sp, 60);
++ ROUND4(A, B, C, D, 4, Sm, 61); ROUND4(D, A, B, C, 11, Sn, 62);
++ ROUND4(C, D, A, B, 2, So, 63); ROUND4(B, C, D, A, 9, Sp, 64);
++
++ ctxt->md5_sta += A;
++ ctxt->md5_stb += B;
++ ctxt->md5_stc += C;
++ ctxt->md5_std += D;
++}
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/md5.h 2005-05-20 10:30:52.000000000 +1000
+@@ -0,0 +1,76 @@
++/* $FreeBSD: src/sys/crypto/md5.h,v 1.4 2002/03/20 05:13:50 alfred Exp $ */
++/* $KAME: md5.h,v 1.4 2000/03/27 04:36:22 sumikawa Exp $ */
++
++/*
++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. Neither the name of the project nor the names of its contributors
++ * may be used to endorse or promote products derived from this software
++ * without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ */
++
++#ifndef _NETINET6_MD5_H_
++#define _NETINET6_MD5_H_
++
++#define MD5_BUFLEN 64
++
++typedef struct {
++ union {
++ u_int32_t md5_state32[4];
++ u_int8_t md5_state8[16];
++ } md5_st;
++
++#define md5_sta md5_st.md5_state32[0]
++#define md5_stb md5_st.md5_state32[1]
++#define md5_stc md5_st.md5_state32[2]
++#define md5_std md5_st.md5_state32[3]
++#define md5_st8 md5_st.md5_state8
++
++ union {
++ u_int64_t md5_count64;
++ u_int8_t md5_count8[8];
++ } md5_count;
++#define md5_n md5_count.md5_count64
++#define md5_n8 md5_count.md5_count8
++
++ u_int md5_i;
++ u_int8_t md5_buf[MD5_BUFLEN];
++} md5_ctxt;
++
++extern void md5_init(md5_ctxt *);
++extern void md5_loop(md5_ctxt *, u_int8_t *, u_int);
++extern void md5_pad(md5_ctxt *);
++extern void md5_result(u_int8_t *, md5_ctxt *);
++
++/* compatibility */
++#define MD5_CTX md5_ctxt
++#define MD5Init(x) md5_init((x))
++#define MD5Update(x, y, z) md5_loop((x), (y), (z))
++#define MD5Final(x, y) \
++do { \
++ md5_pad((y)); \
++ md5_result((x), (y)); \
++} while (0)
++
++#endif /* ! _NETINET6_MD5_H_*/
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/safe.c 2007-07-27 11:34:59.000000000 +1000
+@@ -0,0 +1,2288 @@
++/*-
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2004-2007 David McCullough
++ * The license and original author are listed below.
++ *
++ * Copyright (c) 2003 Sam Leffler, Errno Consulting
++ * Copyright (c) 2003 Global Technology Associates, Inc.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ *
++__FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $");
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++#include <linux/random.h>
++#include <linux/version.h>
++#include <linux/skbuff.h>
++#include <asm/io.h>
++
++/*
++ * SafeNet SafeXcel-1141 hardware crypto accelerator
++ */
++
++#include <cryptodev.h>
++#include <uio.h>
++#include <safe/safereg.h>
++#include <safe/safevar.h>
++
++#if 1
++#define DPRINTF(a) do { \
++ if (debug) { \
++ printk("%s: ", sc ? \
++ device_get_nameunit(sc->sc_dev) : "safe"); \
++ printk a; \
++ } \
++ } while (0)
++#else
++#define DPRINTF(a)
++#endif
++
++/*
++ * until we find a cleaner way, include the BSD md5/sha1 code
++ * here
++ */
++#define HMAC_HACK 1
++#ifdef HMAC_HACK
++#define LITTLE_ENDIAN 1234
++#define BIG_ENDIAN 4321
++#ifdef __LITTLE_ENDIAN
++#define BYTE_ORDER LITTLE_ENDIAN
++#endif
++#ifdef __BIG_ENDIAN
++#define BYTE_ORDER BIG_ENDIAN
++#endif
++#include <safe/md5.h>
++#include <safe/md5.c>
++#include <safe/sha1.h>
++#include <safe/sha1.c>
++
++u_int8_t hmac_ipad_buffer[64] = {
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
++ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
++};
++
++u_int8_t hmac_opad_buffer[64] = {
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
++ 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C
++};
++#endif /* HMAC_HACK */
++
++/* add proc entry for this */
++struct safe_stats safestats;
++
++#define debug safe_debug
++int safe_debug = 0;
++module_param(safe_debug, int, 0644);
++MODULE_PARM_DESC(safe_debug, "Enable debug");
++
++static void safe_callback(struct safe_softc *, struct safe_ringentry *);
++static void safe_feed(struct safe_softc *, struct safe_ringentry *);
++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
++static void safe_rng_init(struct safe_softc *);
++int safe_rngbufsize = 8; /* 32 bytes each read */
++module_param(safe_rngbufsize, int, 0644);
++MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)");
++int safe_rngmaxalarm = 8; /* max alarms before reset */
++module_param(safe_rngmaxalarm, int, 0644);
++MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset");
++#endif /* SAFE_NO_RNG */
++
++static void safe_totalreset(struct safe_softc *sc);
++static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op);
++static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op);
++static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re);
++static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint);
++static int safe_kstart(struct safe_softc *sc);
++static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr);
++static void safe_kfeed(struct safe_softc *sc);
++static void safe_kpoll(unsigned long arg);
++static void safe_kload_reg(struct safe_softc *sc, u_int32_t off,
++ u_int32_t len, struct crparam *n);
++
++static int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int safe_freesession(device_t, u_int64_t);
++static int safe_process(device_t, struct cryptop *, int);
++
++static device_method_t safe_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, safe_newsession),
++ DEVMETHOD(cryptodev_freesession,safe_freesession),
++ DEVMETHOD(cryptodev_process, safe_process),
++ DEVMETHOD(cryptodev_kprocess, safe_kprocess),
++};
++
++#define READ_REG(sc,r) readl((sc)->sc_base_addr + (r))
++#define WRITE_REG(sc,r,val) writel((val), (sc)->sc_base_addr + (r))
++
++#define SAFE_MAX_CHIPS 8
++static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS];
++
++/*
++ * split our buffers up into safe DMAable byte fragments to avoid lockup
++ * bug in 1141 HW on rev 1.0.
++ */
++
++static int
++pci_map_linear(
++ struct safe_softc *sc,
++ struct safe_operand *buf,
++ void *addr,
++ int len)
++{
++ dma_addr_t tmp;
++ int chunk, tlen = len;
++
++ tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL);
++
++ buf->mapsize += len;
++ while (len > 0) {
++ chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len;
++ buf->segs[buf->nsegs].ds_addr = tmp;
++ buf->segs[buf->nsegs].ds_len = chunk;
++ buf->segs[buf->nsegs].ds_tlen = tlen;
++ buf->nsegs++;
++ tmp += chunk;
++ len -= chunk;
++ tlen = 0;
++ }
++ return 0;
++}
++
++/*
++ * map in a given uio buffer (great on some arches :-)
++ */
++
++static int
++pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio)
++{
++ struct iovec *iov = uio->uio_iov;
++ int n;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ buf->mapsize = 0;
++ buf->nsegs = 0;
++
++ for (n = 0; n < uio->uio_iovcnt; n++) {
++ pci_map_linear(sc, buf, iov->iov_base, iov->iov_len);
++ iov++;
++ }
++
++ /* identify this buffer by the first segment */
++ buf->map = (void *) buf->segs[0].ds_addr;
++ return(0);
++}
++
++/*
++ * map in a given sk_buff
++ */
++
++static int
++pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb)
++{
++ int i;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ buf->mapsize = 0;
++ buf->nsegs = 0;
++
++ pci_map_linear(sc, buf, skb->data, skb_headlen(skb));
++
++ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
++ pci_map_linear(sc, buf,
++ page_address(skb_shinfo(skb)->frags[i].page) +
++ skb_shinfo(skb)->frags[i].page_offset,
++ skb_shinfo(skb)->frags[i].size);
++ }
++
++ /* identify this buffer by the first segment */
++ buf->map = (void *) buf->segs[0].ds_addr;
++ return(0);
++}
++
++
++#if 0 /* not needed at this time */
++static void
++pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf)
++{
++ int i;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++ for (i = 0; i < buf->nsegs; i++)
++ pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
++ buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
++}
++#endif
++
++static void
++pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf)
++{
++ int i;
++ DPRINTF(("%s()\n", __FUNCTION__));
++ for (i = 0; i < buf->nsegs; i++) {
++ if (buf->segs[i].ds_tlen) {
++ DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
++ pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
++ buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL);
++ DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
++ }
++ buf->segs[i].ds_addr = 0;
++ buf->segs[i].ds_len = 0;
++ buf->segs[i].ds_tlen = 0;
++ }
++ buf->nsegs = 0;
++ buf->mapsize = 0;
++ buf->map = 0;
++}
++
++
++/*
++ * SafeXcel Interrupt routine
++ */
++static irqreturn_t
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++safe_intr(int irq, void *arg)
++#else
++safe_intr(int irq, void *arg, struct pt_regs *regs)
++#endif
++{
++ struct safe_softc *sc = arg;
++ int stat;
++ unsigned long flags;
++
++ stat = READ_REG(sc, SAFE_HM_STAT);
++
++ DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat));
++
++ if (stat == 0) /* shared irq, not for us */
++ return IRQ_NONE;
++
++ WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
++
++ if ((stat & SAFE_INT_PE_DDONE)) {
++ /*
++ * Descriptor(s) done; scan the ring and
++ * process completed operations.
++ */
++ spin_lock_irqsave(&sc->sc_ringmtx, flags);
++ while (sc->sc_back != sc->sc_front) {
++ struct safe_ringentry *re = sc->sc_back;
++
++#ifdef SAFE_DEBUG
++ if (debug) {
++ safe_dump_ringstate(sc, __func__);
++ safe_dump_request(sc, __func__, re);
++ }
++#endif
++ /*
++ * safe_process marks ring entries that were allocated
++ * but not used with a csr of zero. This insures the
++ * ring front pointer never needs to be set backwards
++ * in the event that an entry is allocated but not used
++ * because of a setup error.
++ */
++ DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr));
++ if (re->re_desc.d_csr != 0) {
++ if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) {
++ DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__));
++ break;
++ }
++ if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) {
++ DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__));
++ break;
++ }
++ sc->sc_nqchip--;
++ safe_callback(sc, re);
++ }
++ if (++(sc->sc_back) == sc->sc_ringtop)
++ sc->sc_back = sc->sc_ring;
++ }
++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
++ }
++
++ /*
++ * Check to see if we got any DMA Error
++ */
++ if (stat & SAFE_INT_PE_ERROR) {
++ printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev),
++ (int)READ_REG(sc, SAFE_PE_DMASTAT));
++ safestats.st_dmaerr++;
++ safe_totalreset(sc);
++#if 0
++ safe_feed(sc);
++#endif
++ }
++
++ if (sc->sc_needwakeup) { /* XXX check high watermark */
++ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
++ DPRINTF(("%s: wakeup crypto %x\n", __func__,
++ sc->sc_needwakeup));
++ sc->sc_needwakeup &= ~wakeup;
++ crypto_unblock(sc->sc_cid, wakeup);
++ }
++
++ return IRQ_HANDLED;
++}
++
++/*
++ * safe_feed() - post a request to chip
++ */
++static void
++safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
++{
++ DPRINTF(("%s()\n", __FUNCTION__));
++#ifdef SAFE_DEBUG
++ if (debug) {
++ safe_dump_ringstate(sc, __func__);
++ safe_dump_request(sc, __func__, re);
++ }
++#endif
++ sc->sc_nqchip++;
++ if (sc->sc_nqchip > safestats.st_maxqchip)
++ safestats.st_maxqchip = sc->sc_nqchip;
++ /* poke h/w to check descriptor ring, any value can be written */
++ WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
++}
++
++#define N(a) (sizeof(a) / sizeof (a[0]))
++static void
++safe_setup_enckey(struct safe_session *ses, caddr_t key)
++{
++ int i;
++
++ bcopy(key, ses->ses_key, ses->ses_klen / 8);
++
++ /* PE is little-endian, insure proper byte order */
++ for (i = 0; i < N(ses->ses_key); i++)
++ ses->ses_key[i] = htole32(ses->ses_key[i]);
++}
++
++static void
++safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
++{
++#ifdef HMAC_HACK
++ MD5_CTX md5ctx;
++ SHA1_CTX sha1ctx;
++ int i;
++
++
++ for (i = 0; i < klen; i++)
++ key[i] ^= HMAC_IPAD_VAL;
++
++ if (algo == CRYPTO_MD5_HMAC) {
++ MD5Init(&md5ctx);
++ MD5Update(&md5ctx, key, klen);
++ MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
++ bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
++ } else {
++ SHA1Init(&sha1ctx);
++ SHA1Update(&sha1ctx, key, klen);
++ SHA1Update(&sha1ctx, hmac_ipad_buffer,
++ SHA1_HMAC_BLOCK_LEN - klen);
++ bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
++ }
++
++ for (i = 0; i < klen; i++)
++ key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
++
++ if (algo == CRYPTO_MD5_HMAC) {
++ MD5Init(&md5ctx);
++ MD5Update(&md5ctx, key, klen);
++ MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
++ bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
++ } else {
++ SHA1Init(&sha1ctx);
++ SHA1Update(&sha1ctx, key, klen);
++ SHA1Update(&sha1ctx, hmac_opad_buffer,
++ SHA1_HMAC_BLOCK_LEN - klen);
++ bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
++ }
++
++ for (i = 0; i < klen; i++)
++ key[i] ^= HMAC_OPAD_VAL;
++
++#if 0
++ /*
++ * this code prevents SHA working on a BE host,
++ * so it is obviously wrong. I think the byte
++ * swap setup we do with the chip fixes this for us
++ */
++
++ /* PE is little-endian, insure proper byte order */
++ for (i = 0; i < N(ses->ses_hminner); i++) {
++ ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
++ ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
++ }
++#endif
++#else /* HMAC_HACK */
++ printk("safe: md5/sha not implemented\n");
++#endif /* HMAC_HACK */
++}
++#undef N
++
++/*
++ * Allocate a new 'session' and return an encoded session id. 'sidp'
++ * contains our registration id, and should contain an encoded session
++ * id on successful allocation.
++ */
++static int
++safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
++{
++ struct safe_softc *sc = device_get_softc(dev);
++ struct cryptoini *c, *encini = NULL, *macini = NULL;
++ struct safe_session *ses = NULL;
++ int sesn;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (sidp == NULL || cri == NULL || sc == NULL)
++ return (EINVAL);
++
++ for (c = cri; c != NULL; c = c->cri_next) {
++ if (c->cri_alg == CRYPTO_MD5_HMAC ||
++ c->cri_alg == CRYPTO_SHA1_HMAC ||
++ c->cri_alg == CRYPTO_NULL_HMAC) {
++ if (macini)
++ return (EINVAL);
++ macini = c;
++ } else if (c->cri_alg == CRYPTO_DES_CBC ||
++ c->cri_alg == CRYPTO_3DES_CBC ||
++ c->cri_alg == CRYPTO_AES_CBC ||
++ c->cri_alg == CRYPTO_NULL_CBC) {
++ if (encini)
++ return (EINVAL);
++ encini = c;
++ } else
++ return (EINVAL);
++ }
++ if (encini == NULL && macini == NULL)
++ return (EINVAL);
++ if (encini) { /* validate key length */
++ switch (encini->cri_alg) {
++ case CRYPTO_DES_CBC:
++ if (encini->cri_klen != 64)
++ return (EINVAL);
++ break;
++ case CRYPTO_3DES_CBC:
++ if (encini->cri_klen != 192)
++ return (EINVAL);
++ break;
++ case CRYPTO_AES_CBC:
++ if (encini->cri_klen != 128 &&
++ encini->cri_klen != 192 &&
++ encini->cri_klen != 256)
++ return (EINVAL);
++ break;
++ }
++ }
++
++ if (sc->sc_sessions == NULL) {
++ ses = sc->sc_sessions = (struct safe_session *)
++ kmalloc(sizeof(struct safe_session), SLAB_ATOMIC);
++ if (ses == NULL)
++ return (ENOMEM);
++ memset(ses, 0, sizeof(struct safe_session));
++ sesn = 0;
++ sc->sc_nsessions = 1;
++ } else {
++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
++ if (sc->sc_sessions[sesn].ses_used == 0) {
++ ses = &sc->sc_sessions[sesn];
++ break;
++ }
++ }
++
++ if (ses == NULL) {
++ sesn = sc->sc_nsessions;
++ ses = (struct safe_session *)
++ kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC);
++ if (ses == NULL)
++ return (ENOMEM);
++ memset(ses, 0, (sesn + 1) * sizeof(struct safe_session));
++ bcopy(sc->sc_sessions, ses, sesn *
++ sizeof(struct safe_session));
++ bzero(sc->sc_sessions, sesn *
++ sizeof(struct safe_session));
++ kfree(sc->sc_sessions);
++ sc->sc_sessions = ses;
++ ses = &sc->sc_sessions[sesn];
++ sc->sc_nsessions++;
++ }
++ }
++
++ bzero(ses, sizeof(struct safe_session));
++ ses->ses_used = 1;
++
++ if (encini) {
++ /* get an IV */
++ /* XXX may read fewer than requested */
++ read_random(ses->ses_iv, sizeof(ses->ses_iv));
++
++ ses->ses_klen = encini->cri_klen;
++ if (encini->cri_key != NULL)
++ safe_setup_enckey(ses, encini->cri_key);
++ }
++
++ if (macini) {
++ ses->ses_mlen = macini->cri_mlen;
++ if (ses->ses_mlen == 0) {
++ if (macini->cri_alg == CRYPTO_MD5_HMAC)
++ ses->ses_mlen = MD5_HASH_LEN;
++ else
++ ses->ses_mlen = SHA1_HASH_LEN;
++ }
++
++ if (macini->cri_key != NULL) {
++ safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
++ macini->cri_klen / 8);
++ }
++ }
++
++ *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
++ return (0);
++}
++
++/*
++ * Deallocate a session.
++ */
++static int
++safe_freesession(device_t dev, u_int64_t tid)
++{
++ struct safe_softc *sc = device_get_softc(dev);
++ int session, ret;
++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (sc == NULL)
++ return (EINVAL);
++
++ session = SAFE_SESSION(sid);
++ if (session < sc->sc_nsessions) {
++ bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
++ ret = 0;
++ } else
++ ret = EINVAL;
++ return (ret);
++}
++
++
++static int
++safe_process(device_t dev, struct cryptop *crp, int hint)
++{
++ struct safe_softc *sc = device_get_softc(dev);
++ int err = 0, i, nicealign, uniform;
++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
++ int bypass, oplen, ivsize;
++ caddr_t iv;
++ int16_t coffset;
++ struct safe_session *ses;
++ struct safe_ringentry *re;
++ struct safe_sarec *sa;
++ struct safe_pdesc *pd;
++ u_int32_t cmd0, cmd1, staterec;
++ unsigned long flags;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
++ safestats.st_invalid++;
++ return (EINVAL);
++ }
++ if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
++ safestats.st_badsession++;
++ return (EINVAL);
++ }
++
++ spin_lock_irqsave(&sc->sc_ringmtx, flags);
++ if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
++ safestats.st_ringfull++;
++ sc->sc_needwakeup |= CRYPTO_SYMQ;
++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
++ return (ERESTART);
++ }
++ re = sc->sc_front;
++
++ staterec = re->re_sa.sa_staterec; /* save */
++ /* NB: zero everything but the PE descriptor */
++ bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
++ re->re_sa.sa_staterec = staterec; /* restore */
++
++ re->re_crp = crp;
++ re->re_sesn = SAFE_SESSION(crp->crp_sid);
++
++ re->re_src.nsegs = 0;
++ re->re_dst.nsegs = 0;
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ re->re_src_skb = (struct sk_buff *)crp->crp_buf;
++ re->re_dst_skb = (struct sk_buff *)crp->crp_buf;
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ re->re_src_io = (struct uio *)crp->crp_buf;
++ re->re_dst_io = (struct uio *)crp->crp_buf;
++ } else {
++ safestats.st_badflags++;
++ err = EINVAL;
++ goto errout; /* XXX we don't handle contiguous blocks! */
++ }
++
++ sa = &re->re_sa;
++ ses = &sc->sc_sessions[re->re_sesn];
++
++ crd1 = crp->crp_desc;
++ if (crd1 == NULL) {
++ safestats.st_nodesc++;
++ err = EINVAL;
++ goto errout;
++ }
++ crd2 = crd1->crd_next;
++
++ cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
++ cmd1 = 0;
++ if (crd2 == NULL) {
++ if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_NULL_HMAC) {
++ maccrd = crd1;
++ enccrd = NULL;
++ cmd0 |= SAFE_SA_CMD0_OP_HASH;
++ } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC ||
++ crd1->crd_alg == CRYPTO_NULL_CBC) {
++ maccrd = NULL;
++ enccrd = crd1;
++ cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
++ } else {
++ safestats.st_badalg++;
++ err = EINVAL;
++ goto errout;
++ }
++ } else {
++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_NULL_HMAC) &&
++ (crd2->crd_alg == CRYPTO_DES_CBC ||
++ crd2->crd_alg == CRYPTO_3DES_CBC ||
++ crd2->crd_alg == CRYPTO_AES_CBC ||
++ crd2->crd_alg == CRYPTO_NULL_CBC) &&
++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
++ maccrd = crd1;
++ enccrd = crd2;
++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC ||
++ crd1->crd_alg == CRYPTO_NULL_CBC) &&
++ (crd2->crd_alg == CRYPTO_MD5_HMAC ||
++ crd2->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd2->crd_alg == CRYPTO_NULL_HMAC) &&
++ (crd1->crd_flags & CRD_F_ENCRYPT)) {
++ enccrd = crd1;
++ maccrd = crd2;
++ } else {
++ safestats.st_badalg++;
++ err = EINVAL;
++ goto errout;
++ }
++ cmd0 |= SAFE_SA_CMD0_OP_BOTH;
++ }
++
++ if (enccrd) {
++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
++ safe_setup_enckey(ses, enccrd->crd_key);
++
++ if (enccrd->crd_alg == CRYPTO_DES_CBC) {
++ cmd0 |= SAFE_SA_CMD0_DES;
++ cmd1 |= SAFE_SA_CMD1_CBC;
++ ivsize = 2*sizeof(u_int32_t);
++ } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
++ cmd0 |= SAFE_SA_CMD0_3DES;
++ cmd1 |= SAFE_SA_CMD1_CBC;
++ ivsize = 2*sizeof(u_int32_t);
++ } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
++ cmd0 |= SAFE_SA_CMD0_AES;
++ cmd1 |= SAFE_SA_CMD1_CBC;
++ if (ses->ses_klen == 128)
++ cmd1 |= SAFE_SA_CMD1_AES128;
++ else if (ses->ses_klen == 192)
++ cmd1 |= SAFE_SA_CMD1_AES192;
++ else
++ cmd1 |= SAFE_SA_CMD1_AES256;
++ ivsize = 4*sizeof(u_int32_t);
++ } else {
++ cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
++ ivsize = 0;
++ }
++
++ /*
++ * Setup encrypt/decrypt state. When using basic ops
++ * we can't use an inline IV because hash/crypt offset
++ * must be from the end of the IV to the start of the
++ * crypt data and this leaves out the preceding header
++ * from the hash calculation. Instead we place the IV
++ * in the state record and set the hash/crypt offset to
++ * copy both the header+IV.
++ */
++ if (enccrd->crd_flags & CRD_F_ENCRYPT) {
++ cmd0 |= SAFE_SA_CMD0_OUTBOUND;
++
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ iv = enccrd->crd_iv;
++ else
++ iv = (caddr_t) ses->ses_iv;
++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize, iv);
++ }
++ bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
++ /* make iv LE */
++ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
++ re->re_sastate.sa_saved_iv[i] =
++ cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
++ cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
++ re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
++ } else {
++ cmd0 |= SAFE_SA_CMD0_INBOUND;
++
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
++ bcopy(enccrd->crd_iv,
++ re->re_sastate.sa_saved_iv, ivsize);
++ } else {
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize,
++ (caddr_t)re->re_sastate.sa_saved_iv);
++ }
++ /* make iv LE */
++ for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
++ re->re_sastate.sa_saved_iv[i] =
++ cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
++ cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
++ }
++ /*
++ * For basic encryption use the zero pad algorithm.
++ * This pads results to an 8-byte boundary and
++ * suppresses padding verification for inbound (i.e.
++ * decrypt) operations.
++ *
++ * NB: Not sure if the 8-byte pad boundary is a problem.
++ */
++ cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
++
++ /* XXX assert key bufs have the same size */
++ bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
++ }
++
++ if (maccrd) {
++ if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
++ safe_setup_mackey(ses, maccrd->crd_alg,
++ maccrd->crd_key, maccrd->crd_klen / 8);
++ }
++
++ if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
++ cmd0 |= SAFE_SA_CMD0_MD5;
++ cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
++ } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
++ cmd0 |= SAFE_SA_CMD0_SHA1;
++ cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
++ } else {
++ cmd0 |= SAFE_SA_CMD0_HASH_NULL;
++ }
++ /*
++ * Digest data is loaded from the SA and the hash
++ * result is saved to the state block where we
++ * retrieve it for return to the caller.
++ */
++ /* XXX assert digest bufs have the same size */
++ bcopy(ses->ses_hminner, sa->sa_indigest,
++ sizeof(sa->sa_indigest));
++ bcopy(ses->ses_hmouter, sa->sa_outdigest,
++ sizeof(sa->sa_outdigest));
++
++ cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
++ re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
++ }
++
++ if (enccrd && maccrd) {
++ /*
++ * The offset from hash data to the start of
++ * crypt data is the difference in the skips.
++ */
++ bypass = maccrd->crd_skip;
++ coffset = enccrd->crd_skip - maccrd->crd_skip;
++ if (coffset < 0) {
++ DPRINTF(("%s: hash does not precede crypt; "
++ "mac skip %u enc skip %u\n",
++ __func__, maccrd->crd_skip, enccrd->crd_skip));
++ safestats.st_skipmismatch++;
++ err = EINVAL;
++ goto errout;
++ }
++ oplen = enccrd->crd_skip + enccrd->crd_len;
++ if (maccrd->crd_skip + maccrd->crd_len != oplen) {
++ DPRINTF(("%s: hash amount %u != crypt amount %u\n",
++ __func__, maccrd->crd_skip + maccrd->crd_len,
++ oplen));
++ safestats.st_lenmismatch++;
++ err = EINVAL;
++ goto errout;
++ }
++#ifdef SAFE_DEBUG
++ if (debug) {
++ printf("mac: skip %d, len %d, inject %d\n",
++ maccrd->crd_skip, maccrd->crd_len,
++ maccrd->crd_inject);
++ printf("enc: skip %d, len %d, inject %d\n",
++ enccrd->crd_skip, enccrd->crd_len,
++ enccrd->crd_inject);
++ printf("bypass %d coffset %d oplen %d\n",
++ bypass, coffset, oplen);
++ }
++#endif
++ if (coffset & 3) { /* offset must be 32-bit aligned */
++ DPRINTF(("%s: coffset %u misaligned\n",
++ __func__, coffset));
++ safestats.st_coffmisaligned++;
++ err = EINVAL;
++ goto errout;
++ }
++ coffset >>= 2;
++ if (coffset > 255) { /* offset must be <256 dwords */
++ DPRINTF(("%s: coffset %u too big\n",
++ __func__, coffset));
++ safestats.st_cofftoobig++;
++ err = EINVAL;
++ goto errout;
++ }
++ /*
++ * Tell the hardware to copy the header to the output.
++ * The header is defined as the data from the end of
++ * the bypass to the start of data to be encrypted.
++ * Typically this is the inline IV. Note that you need
++ * to do this even if src+dst are the same; it appears
++ * that w/o this bit the crypted data is written
++ * immediately after the bypass data.
++ */
++ cmd1 |= SAFE_SA_CMD1_HDRCOPY;
++ /*
++ * Disable IP header mutable bit handling. This is
++ * needed to get correct HMAC calculations.
++ */
++ cmd1 |= SAFE_SA_CMD1_MUTABLE;
++ } else {
++ if (enccrd) {
++ bypass = enccrd->crd_skip;
++ oplen = bypass + enccrd->crd_len;
++ } else {
++ bypass = maccrd->crd_skip;
++ oplen = bypass + maccrd->crd_len;
++ }
++ coffset = 0;
++ }
++ /* XXX verify multiple of 4 when using s/g */
++ if (bypass > 96) { /* bypass offset must be <= 96 bytes */
++ DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
++ safestats.st_bypasstoobig++;
++ err = EINVAL;
++ goto errout;
++ }
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) {
++ safestats.st_noload++;
++ err = ENOMEM;
++ goto errout;
++ }
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ if (pci_map_uio(sc, &re->re_src, re->re_src_io)) {
++ safestats.st_noload++;
++ err = ENOMEM;
++ goto errout;
++ }
++ }
++ nicealign = safe_dmamap_aligned(sc, &re->re_src);
++ uniform = safe_dmamap_uniform(sc, &re->re_src);
++
++ DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
++ nicealign, uniform, re->re_src.nsegs));
++ if (re->re_src.nsegs > 1) {
++ re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
++ ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
++ for (i = 0; i < re->re_src_nsegs; i++) {
++ /* NB: no need to check if there's space */
++ pd = sc->sc_spfree;
++ if (++(sc->sc_spfree) == sc->sc_springtop)
++ sc->sc_spfree = sc->sc_spring;
++
++ KASSERT((pd->pd_flags&3) == 0 ||
++ (pd->pd_flags&3) == SAFE_PD_DONE,
++ ("bogus source particle descriptor; flags %x",
++ pd->pd_flags));
++ pd->pd_addr = re->re_src_segs[i].ds_addr;
++ pd->pd_size = re->re_src_segs[i].ds_len;
++ pd->pd_flags = SAFE_PD_READY;
++ }
++ cmd0 |= SAFE_SA_CMD0_IGATHER;
++ } else {
++ /*
++ * No need for gather, reference the operand directly.
++ */
++ re->re_desc.d_src = re->re_src_segs[0].ds_addr;
++ }
++
++ if (enccrd == NULL && maccrd != NULL) {
++ /*
++ * Hash op; no destination needed.
++ */
++ } else {
++ if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) {
++ if (!nicealign) {
++ safestats.st_iovmisaligned++;
++ err = EINVAL;
++ goto errout;
++ }
++ if (uniform != 1) {
++ device_printf(sc->sc_dev, "!uniform source\n");
++ if (!uniform) {
++ /*
++ * There's no way to handle the DMA
++ * requirements with this uio. We
++ * could create a separate DMA area for
++ * the result and then copy it back,
++ * but for now we just bail and return
++ * an error. Note that uio requests
++ * > SAFE_MAX_DSIZE are handled because
++ * the DMA map and segment list for the
++ * destination wil result in a
++ * destination particle list that does
++ * the necessary scatter DMA.
++ */
++ safestats.st_iovnotuniform++;
++ err = EINVAL;
++ goto errout;
++ }
++ } else
++ re->re_dst = re->re_src;
++ } else {
++ safestats.st_badflags++;
++ err = EINVAL;
++ goto errout;
++ }
++
++ if (re->re_dst.nsegs > 1) {
++ re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
++ ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
++ for (i = 0; i < re->re_dst_nsegs; i++) {
++ pd = sc->sc_dpfree;
++ KASSERT((pd->pd_flags&3) == 0 ||
++ (pd->pd_flags&3) == SAFE_PD_DONE,
++ ("bogus dest particle descriptor; flags %x",
++ pd->pd_flags));
++ if (++(sc->sc_dpfree) == sc->sc_dpringtop)
++ sc->sc_dpfree = sc->sc_dpring;
++ pd->pd_addr = re->re_dst_segs[i].ds_addr;
++ pd->pd_flags = SAFE_PD_READY;
++ }
++ cmd0 |= SAFE_SA_CMD0_OSCATTER;
++ } else {
++ /*
++ * No need for scatter, reference the operand directly.
++ */
++ re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
++ }
++ }
++
++ /*
++ * All done with setup; fillin the SA command words
++ * and the packet engine descriptor. The operation
++ * is now ready for submission to the hardware.
++ */
++ sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
++ sa->sa_cmd1 = cmd1
++ | (coffset << SAFE_SA_CMD1_OFFSET_S)
++ | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
++ | SAFE_SA_CMD1_SRPCI
++ ;
++ /*
++ * NB: the order of writes is important here. In case the
++ * chip is scanning the ring because of an outstanding request
++ * it might nab this one too. In that case we need to make
++ * sure the setup is complete before we write the length
++ * field of the descriptor as it signals the descriptor is
++ * ready for processing.
++ */
++ re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
++ if (maccrd)
++ re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
++ wmb();
++ re->re_desc.d_len = oplen
++ | SAFE_PE_LEN_READY
++ | (bypass << SAFE_PE_LEN_BYPASS_S)
++ ;
++
++ safestats.st_ipackets++;
++ safestats.st_ibytes += oplen;
++
++ if (++(sc->sc_front) == sc->sc_ringtop)
++ sc->sc_front = sc->sc_ring;
++
++ /* XXX honor batching */
++ safe_feed(sc, re);
++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
++ return (0);
++
++errout:
++ if (re->re_src.map != re->re_dst.map)
++ pci_unmap_operand(sc, &re->re_dst);
++ if (re->re_src.map)
++ pci_unmap_operand(sc, &re->re_src);
++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
++ if (err != ERESTART) {
++ crp->crp_etype = err;
++ crypto_done(crp);
++ } else {
++ sc->sc_needwakeup |= CRYPTO_SYMQ;
++ }
++ return (err);
++}
++
++static void
++safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
++{
++ struct cryptop *crp = (struct cryptop *)re->re_crp;
++ struct cryptodesc *crd;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ safestats.st_opackets++;
++ safestats.st_obytes += re->re_dst.mapsize;
++
++ if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
++ device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
++ re->re_desc.d_csr,
++ re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
++ safestats.st_peoperr++;
++ crp->crp_etype = EIO; /* something more meaningful? */
++ }
++
++ if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map)
++ pci_unmap_operand(sc, &re->re_dst);
++ pci_unmap_operand(sc, &re->re_src);
++
++ /*
++ * If result was written to a differet mbuf chain, swap
++ * it in as the return value and reclaim the original.
++ */
++ if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) {
++ device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n");
++ /* kfree_skb(skb) */
++ /* crp->crp_buf = (caddr_t)re->re_dst_skb */
++ return;
++ }
++
++ if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
++ /* copy out IV for future use */
++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
++ int i;
++ int ivsize;
++
++ if (crd->crd_alg == CRYPTO_DES_CBC ||
++ crd->crd_alg == CRYPTO_3DES_CBC) {
++ ivsize = 2*sizeof(u_int32_t);
++ } else if (crd->crd_alg == CRYPTO_AES_CBC) {
++ ivsize = 4*sizeof(u_int32_t);
++ } else
++ continue;
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ crd->crd_skip + crd->crd_len - ivsize, ivsize,
++ (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
++ for (i = 0;
++ i < ivsize/sizeof(sc->sc_sessions[re->re_sesn].ses_iv[0]);
++ i++)
++ sc->sc_sessions[re->re_sesn].ses_iv[i] =
++ cpu_to_le32(sc->sc_sessions[re->re_sesn].ses_iv[i]);
++ break;
++ }
++ }
++
++ if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
++ /* copy out ICV result */
++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
++ if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
++ crd->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd->crd_alg == CRYPTO_NULL_HMAC))
++ continue;
++ if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
++ /*
++ * SHA-1 ICV's are byte-swapped; fix 'em up
++ * before copy them to their destination.
++ */
++ re->re_sastate.sa_saved_indigest[0] =
++ cpu_to_be32(re->re_sastate.sa_saved_indigest[0]);
++ re->re_sastate.sa_saved_indigest[1] =
++ cpu_to_be32(re->re_sastate.sa_saved_indigest[1]);
++ re->re_sastate.sa_saved_indigest[2] =
++ cpu_to_be32(re->re_sastate.sa_saved_indigest[2]);
++ } else {
++ re->re_sastate.sa_saved_indigest[0] =
++ cpu_to_le32(re->re_sastate.sa_saved_indigest[0]);
++ re->re_sastate.sa_saved_indigest[1] =
++ cpu_to_le32(re->re_sastate.sa_saved_indigest[1]);
++ re->re_sastate.sa_saved_indigest[2] =
++ cpu_to_le32(re->re_sastate.sa_saved_indigest[2]);
++ }
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject,
++ sc->sc_sessions[re->re_sesn].ses_mlen,
++ (caddr_t)re->re_sastate.sa_saved_indigest);
++ break;
++ }
++ }
++ crypto_done(crp);
++}
++
++
++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
++#define SAFE_RNG_MAXWAIT 1000
++
++static void
++safe_rng_init(struct safe_softc *sc)
++{
++ u_int32_t w, v;
++ int i;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ WRITE_REG(sc, SAFE_RNG_CTRL, 0);
++ /* use default value according to the manual */
++ WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
++
++ /*
++ * There is a bug in rev 1.0 of the 1140 that when the RNG
++ * is brought out of reset the ready status flag does not
++ * work until the RNG has finished its internal initialization.
++ *
++ * So in order to determine the device is through its
++ * initialization we must read the data register, using the
++ * status reg in the read in case it is initialized. Then read
++ * the data register until it changes from the first read.
++ * Once it changes read the data register until it changes
++ * again. At this time the RNG is considered initialized.
++ * This could take between 750ms - 1000ms in time.
++ */
++ i = 0;
++ w = READ_REG(sc, SAFE_RNG_OUT);
++ do {
++ v = READ_REG(sc, SAFE_RNG_OUT);
++ if (v != w) {
++ w = v;
++ break;
++ }
++ DELAY(10);
++ } while (++i < SAFE_RNG_MAXWAIT);
++
++ /* Wait Until data changes again */
++ i = 0;
++ do {
++ v = READ_REG(sc, SAFE_RNG_OUT);
++ if (v != w)
++ break;
++ DELAY(10);
++ } while (++i < SAFE_RNG_MAXWAIT);
++}
++
++static __inline void
++safe_rng_disable_short_cycle(struct safe_softc *sc)
++{
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ WRITE_REG(sc, SAFE_RNG_CTRL,
++ READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
++}
++
++static __inline void
++safe_rng_enable_short_cycle(struct safe_softc *sc)
++{
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ WRITE_REG(sc, SAFE_RNG_CTRL,
++ READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
++}
++
++static __inline u_int32_t
++safe_rng_read(struct safe_softc *sc)
++{
++ int i;
++
++ i = 0;
++ while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
++ ;
++ return READ_REG(sc, SAFE_RNG_OUT);
++}
++
++static int
++safe_read_random(void *arg, u_int32_t *buf, int maxwords)
++{
++ struct safe_softc *sc = (struct safe_softc *) arg;
++ int i, rc;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ safestats.st_rng++;
++ /*
++ * Fetch the next block of data.
++ */
++ if (maxwords > safe_rngbufsize)
++ maxwords = safe_rngbufsize;
++ if (maxwords > SAFE_RNG_MAXBUFSIZ)
++ maxwords = SAFE_RNG_MAXBUFSIZ;
++retry:
++ /* read as much as we can */
++ for (rc = 0; rc < maxwords; rc++) {
++ if (READ_REG(sc, SAFE_RNG_STAT) != 0)
++ break;
++ buf[rc] = READ_REG(sc, SAFE_RNG_OUT);
++ }
++ if (rc == 0)
++ return 0;
++ /*
++ * Check the comparator alarm count and reset the h/w if
++ * it exceeds our threshold. This guards against the
++ * hardware oscillators resonating with external signals.
++ */
++ if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
++ u_int32_t freq_inc, w;
++
++ DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
++ (unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
++ safestats.st_rngalarm++;
++ safe_rng_enable_short_cycle(sc);
++ freq_inc = 18;
++ for (i = 0; i < 64; i++) {
++ w = READ_REG(sc, SAFE_RNG_CNFG);
++ freq_inc = ((w + freq_inc) & 0x3fL);
++ w = ((w & ~0x3fL) | freq_inc);
++ WRITE_REG(sc, SAFE_RNG_CNFG, w);
++
++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
++
++ (void) safe_rng_read(sc);
++ DELAY(25);
++
++ if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
++ safe_rng_disable_short_cycle(sc);
++ goto retry;
++ }
++ freq_inc = 1;
++ }
++ safe_rng_disable_short_cycle(sc);
++ } else
++ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
++
++ return(rc);
++}
++#endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */
++
++
++/*
++ * Resets the board. Values in the regesters are left as is
++ * from the reset (i.e. initial values are assigned elsewhere).
++ */
++static void
++safe_reset_board(struct safe_softc *sc)
++{
++ u_int32_t v;
++ /*
++ * Reset the device. The manual says no delay
++ * is needed between marking and clearing reset.
++ */
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ v = READ_REG(sc, SAFE_PE_DMACFG) &~
++ (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
++ SAFE_PE_DMACFG_SGRESET);
++ WRITE_REG(sc, SAFE_PE_DMACFG, v
++ | SAFE_PE_DMACFG_PERESET
++ | SAFE_PE_DMACFG_PDRRESET
++ | SAFE_PE_DMACFG_SGRESET);
++ WRITE_REG(sc, SAFE_PE_DMACFG, v);
++}
++
++/*
++ * Initialize registers we need to touch only once.
++ */
++static void
++safe_init_board(struct safe_softc *sc)
++{
++ u_int32_t v, dwords;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ v = READ_REG(sc, SAFE_PE_DMACFG);
++ v &=~ ( SAFE_PE_DMACFG_PEMODE
++ | SAFE_PE_DMACFG_FSENA /* failsafe enable */
++ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
++ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
++ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
++ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
++ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
++ | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
++ );
++ v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
++ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
++ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
++ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
++ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
++ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
++#if 0
++ | SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
++#endif
++ ;
++ WRITE_REG(sc, SAFE_PE_DMACFG, v);
++
++#ifdef __BIG_ENDIAN
++ /* tell the safenet that we are 4321 and not 1234 */
++ WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b);
++#endif
++
++ if (sc->sc_chiprev == SAFE_REV(1,0)) {
++ /*
++ * Avoid large PCI DMA transfers. Rev 1.0 has a bug where
++ * "target mode transfers" done while the chip is DMA'ing
++ * >1020 bytes cause the hardware to lockup. To avoid this
++ * we reduce the max PCI transfer size and use small source
++ * particle descriptors (<= 256 bytes).
++ */
++ WRITE_REG(sc, SAFE_DMA_CFG, 256);
++ device_printf(sc->sc_dev,
++ "Reduce max DMA size to %u words for rev %u.%u WAR\n",
++ (unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff),
++ (unsigned) SAFE_REV_MAJ(sc->sc_chiprev),
++ (unsigned) SAFE_REV_MIN(sc->sc_chiprev));
++ sc->sc_max_dsize = 256;
++ } else {
++ sc->sc_max_dsize = SAFE_MAX_DSIZE;
++ }
++
++ /* NB: operands+results are overlaid */
++ WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
++ WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
++ /*
++ * Configure ring entry size and number of items in the ring.
++ */
++ KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
++ ("PE ring entry not 32-bit aligned!"));
++ dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
++ WRITE_REG(sc, SAFE_PE_RINGCFG,
++ (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
++ WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
++
++ WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
++ WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
++ WRITE_REG(sc, SAFE_PE_PARTSIZE,
++ (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
++ /*
++ * NB: destination particles are fixed size. We use
++ * an mbuf cluster and require all results go to
++ * clusters or smaller.
++ */
++ WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize);
++
++ /* it's now safe to enable PE mode, do it */
++ WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
++
++ /*
++ * Configure hardware to use level-triggered interrupts and
++ * to interrupt after each descriptor is processed.
++ */
++ WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
++ WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff);
++ WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
++ WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
++}
++
++
++/*
++ * Clean up after a chip crash.
++ * It is assumed that the caller in splimp()
++ */
++static void
++safe_cleanchip(struct safe_softc *sc)
++{
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (sc->sc_nqchip != 0) {
++ struct safe_ringentry *re = sc->sc_back;
++
++ while (re != sc->sc_front) {
++ if (re->re_desc.d_csr != 0)
++ safe_free_entry(sc, re);
++ if (++re == sc->sc_ringtop)
++ re = sc->sc_ring;
++ }
++ sc->sc_back = re;
++ sc->sc_nqchip = 0;
++ }
++}
++
++/*
++ * free a safe_q
++ * It is assumed that the caller is within splimp().
++ */
++static int
++safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
++{
++ struct cryptop *crp;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ /*
++ * Free header MCR
++ */
++ if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb))
++#ifdef NOTYET
++ m_freem(re->re_dst_m);
++#else
++ printk("%s,%d: SKB not supported\n", __FILE__, __LINE__);
++#endif
++
++ crp = (struct cryptop *)re->re_crp;
++
++ re->re_desc.d_csr = 0;
++
++ crp->crp_etype = EFAULT;
++ crypto_done(crp);
++ return(0);
++}
++
++/*
++ * Routine to reset the chip and clean up.
++ * It is assumed that the caller is in splimp()
++ */
++static void
++safe_totalreset(struct safe_softc *sc)
++{
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ safe_reset_board(sc);
++ safe_init_board(sc);
++ safe_cleanchip(sc);
++}
++
++/*
++ * Is the operand suitable aligned for direct DMA. Each
++ * segment must be aligned on a 32-bit boundary and all
++ * but the last segment must be a multiple of 4 bytes.
++ */
++static int
++safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op)
++{
++ int i;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ for (i = 0; i < op->nsegs; i++) {
++ if (op->segs[i].ds_addr & 3)
++ return (0);
++ if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
++ return (0);
++ }
++ return (1);
++}
++
++/*
++ * Is the operand suitable for direct DMA as the destination
++ * of an operation. The hardware requires that each ``particle''
++ * but the last in an operation result have the same size. We
++ * fix that size at SAFE_MAX_DSIZE bytes. This routine returns
++ * 0 if some segment is not a multiple of of this size, 1 if all
++ * segments are exactly this size, or 2 if segments are at worst
++ * a multple of this size.
++ */
++static int
++safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op)
++{
++ int result = 1;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (op->nsegs > 0) {
++ int i;
++
++ for (i = 0; i < op->nsegs-1; i++) {
++ if (op->segs[i].ds_len % sc->sc_max_dsize)
++ return (0);
++ if (op->segs[i].ds_len != sc->sc_max_dsize)
++ result = 2;
++ }
++ }
++ return (result);
++}
++
++static int
++safe_kprocess(device_t dev, struct cryptkop *krp, int hint)
++{
++ struct safe_softc *sc = device_get_softc(dev);
++ struct safe_pkq *q;
++ unsigned long flags;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (sc == NULL) {
++ krp->krp_status = EINVAL;
++ goto err;
++ }
++
++ if (krp->krp_op != CRK_MOD_EXP) {
++ krp->krp_status = EOPNOTSUPP;
++ goto err;
++ }
++
++ q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
++ if (q == NULL) {
++ krp->krp_status = ENOMEM;
++ goto err;
++ }
++ memset(q, 0, sizeof(*q));
++ q->pkq_krp = krp;
++ INIT_LIST_HEAD(&q->pkq_list);
++
++ spin_lock_irqsave(&sc->sc_pkmtx, flags);
++ list_add_tail(&q->pkq_list, &sc->sc_pkq);
++ safe_kfeed(sc);
++ spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
++ return (0);
++
++err:
++ crypto_kdone(krp);
++ return (0);
++}
++
++#define SAFE_CRK_PARAM_BASE 0
++#define SAFE_CRK_PARAM_EXP 1
++#define SAFE_CRK_PARAM_MOD 2
++
++static int
++safe_kstart(struct safe_softc *sc)
++{
++ struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp;
++ int exp_bits, mod_bits, base_bits;
++ u_int32_t op, a_off, b_off, c_off, d_off;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (krp->krp_iparams < 3 || krp->krp_oparams != 1) {
++ krp->krp_status = EINVAL;
++ return (1);
++ }
++
++ base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]);
++ if (base_bits > 2048)
++ goto too_big;
++ if (base_bits <= 0) /* 5. base not zero */
++ goto too_small;
++
++ exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]);
++ if (exp_bits > 2048)
++ goto too_big;
++ if (exp_bits <= 0) /* 1. exponent word length > 0 */
++ goto too_small; /* 4. exponent not zero */
++
++ mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]);
++ if (mod_bits > 2048)
++ goto too_big;
++ if (mod_bits <= 32) /* 2. modulus word length > 1 */
++ goto too_small; /* 8. MSW of modulus != zero */
++ if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */
++ goto too_small;
++ if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0)
++ goto bad_domain; /* 6. modulus is odd */
++ if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits)
++ goto too_small; /* make sure result will fit */
++
++ /* 7. modulus > base */
++ if (mod_bits < base_bits)
++ goto too_small;
++ if (mod_bits == base_bits) {
++ u_int8_t *basep, *modp;
++ int i;
++
++ basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p +
++ ((base_bits + 7) / 8) - 1;
++ modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p +
++ ((mod_bits + 7) / 8) - 1;
++
++ for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) {
++ if (*modp < *basep)
++ goto too_small;
++ if (*modp > *basep)
++ break;
++ }
++ }
++
++ /* And on the 9th step, he rested. */
++
++ WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32);
++ WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32);
++ if (mod_bits > 1024) {
++ op = SAFE_PK_FUNC_EXP4;
++ a_off = 0x000;
++ b_off = 0x100;
++ c_off = 0x200;
++ d_off = 0x300;
++ } else {
++ op = SAFE_PK_FUNC_EXP16;
++ a_off = 0x000;
++ b_off = 0x080;
++ c_off = 0x100;
++ d_off = 0x180;
++ }
++ sc->sc_pk_reslen = b_off - a_off;
++ sc->sc_pk_resoff = d_off;
++
++ /* A is exponent, B is modulus, C is base, D is result */
++ safe_kload_reg(sc, a_off, b_off - a_off,
++ &krp->krp_param[SAFE_CRK_PARAM_EXP]);
++ WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2);
++ safe_kload_reg(sc, b_off, b_off - a_off,
++ &krp->krp_param[SAFE_CRK_PARAM_MOD]);
++ WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2);
++ safe_kload_reg(sc, c_off, b_off - a_off,
++ &krp->krp_param[SAFE_CRK_PARAM_BASE]);
++ WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2);
++ WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2);
++
++ WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN);
++
++ return (0);
++
++too_big:
++ krp->krp_status = E2BIG;
++ return (1);
++too_small:
++ krp->krp_status = ERANGE;
++ return (1);
++bad_domain:
++ krp->krp_status = EDOM;
++ return (1);
++}
++
++static int
++safe_ksigbits(struct safe_softc *sc, struct crparam *cr)
++{
++ u_int plen = (cr->crp_nbits + 7) / 8;
++ int i, sig = plen * 8;
++ u_int8_t c, *p = cr->crp_p;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ for (i = plen - 1; i >= 0; i--) {
++ c = p[i];
++ if (c != 0) {
++ while ((c & 0x80) == 0) {
++ sig--;
++ c <<= 1;
++ }
++ break;
++ }
++ sig -= 8;
++ }
++ return (sig);
++}
++
++static void
++safe_kfeed(struct safe_softc *sc)
++{
++ struct safe_pkq *q, *tmp;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL)
++ return;
++ if (sc->sc_pkq_cur != NULL)
++ return;
++ list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) {
++ sc->sc_pkq_cur = q;
++ list_del(&q->pkq_list);
++ if (safe_kstart(sc) != 0) {
++ crypto_kdone(q->pkq_krp);
++ kfree(q);
++ sc->sc_pkq_cur = NULL;
++ } else {
++ /* op started, start polling */
++ mod_timer(&sc->sc_pkto, jiffies + 1);
++ break;
++ }
++ }
++}
++
++static void
++safe_kpoll(unsigned long arg)
++{
++ struct safe_softc *sc = NULL;
++ struct safe_pkq *q;
++ struct crparam *res;
++ int i;
++ u_int32_t buf[64];
++ unsigned long flags;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (arg >= SAFE_MAX_CHIPS)
++ return;
++ sc = safe_chip_idx[arg];
++ if (!sc) {
++ DPRINTF(("%s() - bad callback\n", __FUNCTION__));
++ return;
++ }
++
++ spin_lock_irqsave(&sc->sc_pkmtx, flags);
++ if (sc->sc_pkq_cur == NULL)
++ goto out;
++ if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) {
++ /* still running, check back later */
++ mod_timer(&sc->sc_pkto, jiffies + 1);
++ goto out;
++ }
++
++ q = sc->sc_pkq_cur;
++ res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams];
++ bzero(buf, sizeof(buf));
++ bzero(res->crp_p, (res->crp_nbits + 7) / 8);
++ for (i = 0; i < sc->sc_pk_reslen >> 2; i++)
++ buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START +
++ sc->sc_pk_resoff + (i << 2)));
++ bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8);
++ /*
++ * reduce the bits that need copying if possible
++ */
++ res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8);
++ res->crp_nbits = safe_ksigbits(sc, res);
++
++ for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4)
++ WRITE_REG(sc, i, 0);
++
++ crypto_kdone(q->pkq_krp);
++ kfree(q);
++ sc->sc_pkq_cur = NULL;
++
++ safe_kfeed(sc);
++out:
++ spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
++}
++
++static void
++safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len,
++ struct crparam *n)
++{
++ u_int32_t buf[64], i;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ bzero(buf, sizeof(buf));
++ bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8);
++
++ for (i = 0; i < len >> 2; i++)
++ WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2),
++ cpu_to_le32(buf[i]));
++}
++
++#ifdef SAFE_DEBUG
++static void
++safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
++{
++ printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
++ , tag
++ , READ_REG(sc, SAFE_DMA_ENDIAN)
++ , READ_REG(sc, SAFE_DMA_SRCADDR)
++ , READ_REG(sc, SAFE_DMA_DSTADDR)
++ , READ_REG(sc, SAFE_DMA_STAT)
++ );
++}
++
++static void
++safe_dump_intrstate(struct safe_softc *sc, const char *tag)
++{
++ printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
++ , tag
++ , READ_REG(sc, SAFE_HI_CFG)
++ , READ_REG(sc, SAFE_HI_MASK)
++ , READ_REG(sc, SAFE_HI_DESC_CNT)
++ , READ_REG(sc, SAFE_HU_STAT)
++ , READ_REG(sc, SAFE_HM_STAT)
++ );
++}
++
++static void
++safe_dump_ringstate(struct safe_softc *sc, const char *tag)
++{
++ u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
++
++ /* NB: assume caller has lock on ring */
++ printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
++ tag,
++ estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
++ (unsigned long)(sc->sc_back - sc->sc_ring),
++ (unsigned long)(sc->sc_front - sc->sc_ring));
++}
++
++static void
++safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
++{
++ int ix, nsegs;
++
++ ix = re - sc->sc_ring;
++ printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
++ , tag
++ , re, ix
++ , re->re_desc.d_csr
++ , re->re_desc.d_src
++ , re->re_desc.d_dst
++ , re->re_desc.d_sa
++ , re->re_desc.d_len
++ );
++ if (re->re_src.nsegs > 1) {
++ ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
++ sizeof(struct safe_pdesc);
++ for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
++ printf(" spd[%u] %p: %p size %u flags %x"
++ , ix, &sc->sc_spring[ix]
++ , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
++ , sc->sc_spring[ix].pd_size
++ , sc->sc_spring[ix].pd_flags
++ );
++ if (sc->sc_spring[ix].pd_size == 0)
++ printf(" (zero!)");
++ printf("\n");
++ if (++ix == SAFE_TOTAL_SPART)
++ ix = 0;
++ }
++ }
++ if (re->re_dst.nsegs > 1) {
++ ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
++ sizeof(struct safe_pdesc);
++ for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
++ printf(" dpd[%u] %p: %p flags %x\n"
++ , ix, &sc->sc_dpring[ix]
++ , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
++ , sc->sc_dpring[ix].pd_flags
++ );
++ if (++ix == SAFE_TOTAL_DPART)
++ ix = 0;
++ }
++ }
++ printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
++ re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
++ printf("sa: key %x %x %x %x %x %x %x %x\n"
++ , re->re_sa.sa_key[0]
++ , re->re_sa.sa_key[1]
++ , re->re_sa.sa_key[2]
++ , re->re_sa.sa_key[3]
++ , re->re_sa.sa_key[4]
++ , re->re_sa.sa_key[5]
++ , re->re_sa.sa_key[6]
++ , re->re_sa.sa_key[7]
++ );
++ printf("sa: indigest %x %x %x %x %x\n"
++ , re->re_sa.sa_indigest[0]
++ , re->re_sa.sa_indigest[1]
++ , re->re_sa.sa_indigest[2]
++ , re->re_sa.sa_indigest[3]
++ , re->re_sa.sa_indigest[4]
++ );
++ printf("sa: outdigest %x %x %x %x %x\n"
++ , re->re_sa.sa_outdigest[0]
++ , re->re_sa.sa_outdigest[1]
++ , re->re_sa.sa_outdigest[2]
++ , re->re_sa.sa_outdigest[3]
++ , re->re_sa.sa_outdigest[4]
++ );
++ printf("sr: iv %x %x %x %x\n"
++ , re->re_sastate.sa_saved_iv[0]
++ , re->re_sastate.sa_saved_iv[1]
++ , re->re_sastate.sa_saved_iv[2]
++ , re->re_sastate.sa_saved_iv[3]
++ );
++ printf("sr: hashbc %u indigest %x %x %x %x %x\n"
++ , re->re_sastate.sa_saved_hashbc
++ , re->re_sastate.sa_saved_indigest[0]
++ , re->re_sastate.sa_saved_indigest[1]
++ , re->re_sastate.sa_saved_indigest[2]
++ , re->re_sastate.sa_saved_indigest[3]
++ , re->re_sastate.sa_saved_indigest[4]
++ );
++}
++
++static void
++safe_dump_ring(struct safe_softc *sc, const char *tag)
++{
++ unsigned long flags;
++
++ spin_lock_irqsave(&sc->sc_ringmtx, flags);
++ printf("\nSafeNet Ring State:\n");
++ safe_dump_intrstate(sc, tag);
++ safe_dump_dmastatus(sc, tag);
++ safe_dump_ringstate(sc, tag);
++ if (sc->sc_nqchip) {
++ struct safe_ringentry *re = sc->sc_back;
++ do {
++ safe_dump_request(sc, tag, re);
++ if (++re == sc->sc_ringtop)
++ re = sc->sc_ring;
++ } while (re != sc->sc_front);
++ }
++ spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
++}
++#endif /* SAFE_DEBUG */
++
++
++static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent)
++{
++ struct safe_softc *sc = NULL;
++ u32 mem_start, mem_len, cmd;
++ int i, rc, devinfo;
++ dma_addr_t raddr;
++ static int num_chips = 0;
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ if (pci_enable_device(dev) < 0)
++ return(-ENODEV);
++
++ if (!dev->irq) {
++ printk("safe: found device with no IRQ assigned. check BIOS settings!");
++ pci_disable_device(dev);
++ return(-ENODEV);
++ }
++
++ if (pci_set_mwi(dev)) {
++ printk("safe: pci_set_mwi failed!");
++ return(-ENODEV);
++ }
++
++ sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
++ if (!sc)
++ return(-ENOMEM);
++ memset(sc, 0, sizeof(*sc));
++
++ softc_device_init(sc, "safe", num_chips, safe_methods);
++
++ sc->sc_irq = -1;
++ sc->sc_cid = -1;
++ sc->sc_pcidev = dev;
++ if (num_chips < SAFE_MAX_CHIPS) {
++ safe_chip_idx[device_get_unit(sc->sc_dev)] = sc;
++ num_chips++;
++ }
++
++ INIT_LIST_HEAD(&sc->sc_pkq);
++ spin_lock_init(&sc->sc_pkmtx);
++
++ pci_set_drvdata(sc->sc_pcidev, sc);
++
++ /* we read its hardware registers as memory */
++ mem_start = pci_resource_start(sc->sc_pcidev, 0);
++ mem_len = pci_resource_len(sc->sc_pcidev, 0);
++
++ sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len);
++ if (!sc->sc_base_addr) {
++ device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n",
++ mem_start, mem_start + mem_len - 1);
++ goto out;
++ }
++
++ /* fix up the bus size */
++ if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
++ device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
++ goto out;
++ }
++ if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
++ device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n");
++ goto out;
++ }
++
++ pci_set_master(sc->sc_pcidev);
++
++ pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd);
++
++ if (!(cmd & PCI_COMMAND_MEMORY)) {
++ device_printf(sc->sc_dev, "failed to enable memory mapping\n");
++ goto out;
++ }
++
++ if (!(cmd & PCI_COMMAND_MASTER)) {
++ device_printf(sc->sc_dev, "failed to enable bus mastering\n");
++ goto out;
++ }
++
++ rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc);
++ if (rc) {
++ device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq);
++ goto out;
++ }
++ sc->sc_irq = dev->irq;
++
++ sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
++ (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
++
++ /*
++ * Allocate packet engine descriptors.
++ */
++ sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
++ &sc->sc_ringalloc.dma_paddr);
++ if (!sc->sc_ringalloc.dma_vaddr) {
++ device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n");
++ goto out;
++ }
++
++ /*
++ * Hookup the static portion of all our data structures.
++ */
++ sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
++ sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
++ sc->sc_front = sc->sc_ring;
++ sc->sc_back = sc->sc_ring;
++ raddr = sc->sc_ringalloc.dma_paddr;
++ bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
++ for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
++ struct safe_ringentry *re = &sc->sc_ring[i];
++
++ re->re_desc.d_sa = raddr +
++ offsetof(struct safe_ringentry, re_sa);
++ re->re_sa.sa_staterec = raddr +
++ offsetof(struct safe_ringentry, re_sastate);
++
++ raddr += sizeof (struct safe_ringentry);
++ }
++ spin_lock_init(&sc->sc_ringmtx);
++
++ /*
++ * Allocate scatter and gather particle descriptors.
++ */
++ sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
++ &sc->sc_spalloc.dma_paddr);
++ if (!sc->sc_spalloc.dma_vaddr) {
++ device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n");
++ goto out;
++ }
++ sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
++ sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
++ sc->sc_spfree = sc->sc_spring;
++ bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
++
++ sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
++ &sc->sc_dpalloc.dma_paddr);
++ if (!sc->sc_dpalloc.dma_vaddr) {
++ device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n");
++ goto out;
++ }
++ sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
++ sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
++ sc->sc_dpfree = sc->sc_dpring;
++ bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
++
++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
++ if (sc->sc_cid < 0) {
++ device_printf(sc->sc_dev, "could not get crypto driver id\n");
++ goto out;
++ }
++
++ printf("%s:", device_get_nameunit(sc->sc_dev));
++
++ devinfo = READ_REG(sc, SAFE_DEVINFO);
++ if (devinfo & SAFE_DEVINFO_RNG) {
++ sc->sc_flags |= SAFE_FLAGS_RNG;
++ printf(" rng");
++ }
++ if (devinfo & SAFE_DEVINFO_PKEY) {
++ printf(" key");
++ sc->sc_flags |= SAFE_FLAGS_KEY;
++ crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
++#if 0
++ crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
++#endif
++ init_timer(&sc->sc_pkto);
++ sc->sc_pkto.function = safe_kpoll;
++ sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev);
++ }
++ if (devinfo & SAFE_DEVINFO_DES) {
++ printf(" des/3des");
++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
++ }
++ if (devinfo & SAFE_DEVINFO_AES) {
++ printf(" aes");
++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
++ }
++ if (devinfo & SAFE_DEVINFO_MD5) {
++ printf(" md5");
++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
++ }
++ if (devinfo & SAFE_DEVINFO_SHA1) {
++ printf(" sha1");
++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
++ }
++ printf(" null");
++ crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
++ /* XXX other supported algorithms */
++ printf("\n");
++
++ safe_reset_board(sc); /* reset h/w */
++ safe_init_board(sc); /* init h/w */
++
++#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
++ if (sc->sc_flags & SAFE_FLAGS_RNG) {
++ safe_rng_init(sc);
++ crypto_rregister(sc->sc_cid, safe_read_random, sc);
++ }
++#endif /* SAFE_NO_RNG */
++
++ return (0);
++
++out:
++ if (sc->sc_cid >= 0)
++ crypto_unregister_all(sc->sc_cid);
++ if (sc->sc_irq != -1)
++ free_irq(sc->sc_irq, sc);
++ if (sc->sc_ringalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
++ sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
++ if (sc->sc_spalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
++ sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
++ if (sc->sc_dpalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
++ sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
++ kfree(sc);
++ return(-ENODEV);
++}
++
++static void safe_remove(struct pci_dev *dev)
++{
++ struct safe_softc *sc = pci_get_drvdata(dev);
++
++ DPRINTF(("%s()\n", __FUNCTION__));
++
++ /* XXX wait/abort active ops */
++
++ WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
++
++ del_timer_sync(&sc->sc_pkto);
++
++ crypto_unregister_all(sc->sc_cid);
++
++ safe_cleanchip(sc);
++
++ if (sc->sc_irq != -1)
++ free_irq(sc->sc_irq, sc);
++ if (sc->sc_ringalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
++ sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
++ if (sc->sc_spalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
++ sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
++ if (sc->sc_dpalloc.dma_vaddr)
++ pci_free_consistent(sc->sc_pcidev,
++ SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
++ sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
++ sc->sc_irq = -1;
++ sc->sc_ringalloc.dma_vaddr = NULL;
++ sc->sc_spalloc.dma_vaddr = NULL;
++ sc->sc_dpalloc.dma_vaddr = NULL;
++}
++
++static struct pci_device_id safe_pci_tbl[] = {
++ { PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
++ { },
++};
++MODULE_DEVICE_TABLE(pci, safe_pci_tbl);
++
++static struct pci_driver safe_driver = {
++ .name = "safe",
++ .id_table = safe_pci_tbl,
++ .probe = safe_probe,
++ .remove = safe_remove,
++ /* add PM stuff here one day */
++};
++
++static int __init safe_init (void)
++{
++ struct safe_softc *sc = NULL;
++ int rc;
++
++ DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init));
++
++ rc = pci_register_driver(&safe_driver);
++ pci_register_driver_compat(&safe_driver, rc);
++
++ return rc;
++}
++
++static void __exit safe_exit (void)
++{
++ pci_unregister_driver(&safe_driver);
++}
++
++module_init(safe_init);
++module_exit(safe_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/sha1.c 2005-05-20 10:30:53.000000000 +1000
+@@ -0,0 +1,279 @@
++/* $KAME: sha1.c,v 1.5 2000/11/08 06:13:08 itojun Exp $ */
++/*
++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. Neither the name of the project nor the names of its contributors
++ * may be used to endorse or promote products derived from this software
++ * without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ */
++
++/*
++ * FIPS pub 180-1: Secure Hash Algorithm (SHA-1)
++ * based on: http://csrc.nist.gov/fips/fip180-1.txt
++ * implemented by Jun-ichiro itojun Itoh <itojun@itojun.org>
++ */
++
++#if 0
++#include <sys/cdefs.h>
++__FBSDID("$FreeBSD: src/sys/crypto/sha1.c,v 1.9 2003/06/10 21:36:57 obrien Exp $");
++
++#include <sys/types.h>
++#include <sys/cdefs.h>
++#include <sys/time.h>
++#include <sys/systm.h>
++
++#include <crypto/sha1.h>
++#endif
++
++/* sanity check */
++#if BYTE_ORDER != BIG_ENDIAN
++# if BYTE_ORDER != LITTLE_ENDIAN
++# define unsupported 1
++# endif
++#endif
++
++#ifndef unsupported
++
++/* constant table */
++static u_int32_t _K[] = { 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 };
++#define K(t) _K[(t) / 20]
++
++#define F0(b, c, d) (((b) & (c)) | ((~(b)) & (d)))
++#define F1(b, c, d) (((b) ^ (c)) ^ (d))
++#define F2(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
++#define F3(b, c, d) (((b) ^ (c)) ^ (d))
++
++#define S(n, x) (((x) << (n)) | ((x) >> (32 - n)))
++
++#undef H
++#define H(n) (ctxt->h.b32[(n)])
++#define COUNT (ctxt->count)
++#define BCOUNT (ctxt->c.b64[0] / 8)
++#define W(n) (ctxt->m.b32[(n)])
++
++#define PUTBYTE(x) { \
++ ctxt->m.b8[(COUNT % 64)] = (x); \
++ COUNT++; \
++ COUNT %= 64; \
++ ctxt->c.b64[0] += 8; \
++ if (COUNT % 64 == 0) \
++ sha1_step(ctxt); \
++ }
++
++#define PUTPAD(x) { \
++ ctxt->m.b8[(COUNT % 64)] = (x); \
++ COUNT++; \
++ COUNT %= 64; \
++ if (COUNT % 64 == 0) \
++ sha1_step(ctxt); \
++ }
++
++static void sha1_step(struct sha1_ctxt *);
++
++static void
++sha1_step(ctxt)
++ struct sha1_ctxt *ctxt;
++{
++ u_int32_t a, b, c, d, e;
++ size_t t, s;
++ u_int32_t tmp;
++
++#if BYTE_ORDER == LITTLE_ENDIAN
++ struct sha1_ctxt tctxt;
++ bcopy(&ctxt->m.b8[0], &tctxt.m.b8[0], 64);
++ ctxt->m.b8[0] = tctxt.m.b8[3]; ctxt->m.b8[1] = tctxt.m.b8[2];
++ ctxt->m.b8[2] = tctxt.m.b8[1]; ctxt->m.b8[3] = tctxt.m.b8[0];
++ ctxt->m.b8[4] = tctxt.m.b8[7]; ctxt->m.b8[5] = tctxt.m.b8[6];
++ ctxt->m.b8[6] = tctxt.m.b8[5]; ctxt->m.b8[7] = tctxt.m.b8[4];
++ ctxt->m.b8[8] = tctxt.m.b8[11]; ctxt->m.b8[9] = tctxt.m.b8[10];
++ ctxt->m.b8[10] = tctxt.m.b8[9]; ctxt->m.b8[11] = tctxt.m.b8[8];
++ ctxt->m.b8[12] = tctxt.m.b8[15]; ctxt->m.b8[13] = tctxt.m.b8[14];
++ ctxt->m.b8[14] = tctxt.m.b8[13]; ctxt->m.b8[15] = tctxt.m.b8[12];
++ ctxt->m.b8[16] = tctxt.m.b8[19]; ctxt->m.b8[17] = tctxt.m.b8[18];
++ ctxt->m.b8[18] = tctxt.m.b8[17]; ctxt->m.b8[19] = tctxt.m.b8[16];
++ ctxt->m.b8[20] = tctxt.m.b8[23]; ctxt->m.b8[21] = tctxt.m.b8[22];
++ ctxt->m.b8[22] = tctxt.m.b8[21]; ctxt->m.b8[23] = tctxt.m.b8[20];
++ ctxt->m.b8[24] = tctxt.m.b8[27]; ctxt->m.b8[25] = tctxt.m.b8[26];
++ ctxt->m.b8[26] = tctxt.m.b8[25]; ctxt->m.b8[27] = tctxt.m.b8[24];
++ ctxt->m.b8[28] = tctxt.m.b8[31]; ctxt->m.b8[29] = tctxt.m.b8[30];
++ ctxt->m.b8[30] = tctxt.m.b8[29]; ctxt->m.b8[31] = tctxt.m.b8[28];
++ ctxt->m.b8[32] = tctxt.m.b8[35]; ctxt->m.b8[33] = tctxt.m.b8[34];
++ ctxt->m.b8[34] = tctxt.m.b8[33]; ctxt->m.b8[35] = tctxt.m.b8[32];
++ ctxt->m.b8[36] = tctxt.m.b8[39]; ctxt->m.b8[37] = tctxt.m.b8[38];
++ ctxt->m.b8[38] = tctxt.m.b8[37]; ctxt->m.b8[39] = tctxt.m.b8[36];
++ ctxt->m.b8[40] = tctxt.m.b8[43]; ctxt->m.b8[41] = tctxt.m.b8[42];
++ ctxt->m.b8[42] = tctxt.m.b8[41]; ctxt->m.b8[43] = tctxt.m.b8[40];
++ ctxt->m.b8[44] = tctxt.m.b8[47]; ctxt->m.b8[45] = tctxt.m.b8[46];
++ ctxt->m.b8[46] = tctxt.m.b8[45]; ctxt->m.b8[47] = tctxt.m.b8[44];
++ ctxt->m.b8[48] = tctxt.m.b8[51]; ctxt->m.b8[49] = tctxt.m.b8[50];
++ ctxt->m.b8[50] = tctxt.m.b8[49]; ctxt->m.b8[51] = tctxt.m.b8[48];
++ ctxt->m.b8[52] = tctxt.m.b8[55]; ctxt->m.b8[53] = tctxt.m.b8[54];
++ ctxt->m.b8[54] = tctxt.m.b8[53]; ctxt->m.b8[55] = tctxt.m.b8[52];
++ ctxt->m.b8[56] = tctxt.m.b8[59]; ctxt->m.b8[57] = tctxt.m.b8[58];
++ ctxt->m.b8[58] = tctxt.m.b8[57]; ctxt->m.b8[59] = tctxt.m.b8[56];
++ ctxt->m.b8[60] = tctxt.m.b8[63]; ctxt->m.b8[61] = tctxt.m.b8[62];
++ ctxt->m.b8[62] = tctxt.m.b8[61]; ctxt->m.b8[63] = tctxt.m.b8[60];
++#endif
++
++ a = H(0); b = H(1); c = H(2); d = H(3); e = H(4);
++
++ for (t = 0; t < 20; t++) {
++ s = t & 0x0f;
++ if (t >= 16) {
++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
++ }
++ tmp = S(5, a) + F0(b, c, d) + e + W(s) + K(t);
++ e = d; d = c; c = S(30, b); b = a; a = tmp;
++ }
++ for (t = 20; t < 40; t++) {
++ s = t & 0x0f;
++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
++ tmp = S(5, a) + F1(b, c, d) + e + W(s) + K(t);
++ e = d; d = c; c = S(30, b); b = a; a = tmp;
++ }
++ for (t = 40; t < 60; t++) {
++ s = t & 0x0f;
++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
++ tmp = S(5, a) + F2(b, c, d) + e + W(s) + K(t);
++ e = d; d = c; c = S(30, b); b = a; a = tmp;
++ }
++ for (t = 60; t < 80; t++) {
++ s = t & 0x0f;
++ W(s) = S(1, W((s+13) & 0x0f) ^ W((s+8) & 0x0f) ^ W((s+2) & 0x0f) ^ W(s));
++ tmp = S(5, a) + F3(b, c, d) + e + W(s) + K(t);
++ e = d; d = c; c = S(30, b); b = a; a = tmp;
++ }
++
++ H(0) = H(0) + a;
++ H(1) = H(1) + b;
++ H(2) = H(2) + c;
++ H(3) = H(3) + d;
++ H(4) = H(4) + e;
++
++ bzero(&ctxt->m.b8[0], 64);
++}
++
++/*------------------------------------------------------------*/
++
++void
++sha1_init(ctxt)
++ struct sha1_ctxt *ctxt;
++{
++ bzero(ctxt, sizeof(struct sha1_ctxt));
++ H(0) = 0x67452301;
++ H(1) = 0xefcdab89;
++ H(2) = 0x98badcfe;
++ H(3) = 0x10325476;
++ H(4) = 0xc3d2e1f0;
++}
++
++void
++sha1_pad(ctxt)
++ struct sha1_ctxt *ctxt;
++{
++ size_t padlen; /*pad length in bytes*/
++ size_t padstart;
++
++ PUTPAD(0x80);
++
++ padstart = COUNT % 64;
++ padlen = 64 - padstart;
++ if (padlen < 8) {
++ bzero(&ctxt->m.b8[padstart], padlen);
++ COUNT += padlen;
++ COUNT %= 64;
++ sha1_step(ctxt);
++ padstart = COUNT % 64; /* should be 0 */
++ padlen = 64 - padstart; /* should be 64 */
++ }
++ bzero(&ctxt->m.b8[padstart], padlen - 8);
++ COUNT += (padlen - 8);
++ COUNT %= 64;
++#if BYTE_ORDER == BIG_ENDIAN
++ PUTPAD(ctxt->c.b8[0]); PUTPAD(ctxt->c.b8[1]);
++ PUTPAD(ctxt->c.b8[2]); PUTPAD(ctxt->c.b8[3]);
++ PUTPAD(ctxt->c.b8[4]); PUTPAD(ctxt->c.b8[5]);
++ PUTPAD(ctxt->c.b8[6]); PUTPAD(ctxt->c.b8[7]);
++#else
++ PUTPAD(ctxt->c.b8[7]); PUTPAD(ctxt->c.b8[6]);
++ PUTPAD(ctxt->c.b8[5]); PUTPAD(ctxt->c.b8[4]);
++ PUTPAD(ctxt->c.b8[3]); PUTPAD(ctxt->c.b8[2]);
++ PUTPAD(ctxt->c.b8[1]); PUTPAD(ctxt->c.b8[0]);
++#endif
++}
++
++void
++sha1_loop(ctxt, input, len)
++ struct sha1_ctxt *ctxt;
++ const u_int8_t *input;
++ size_t len;
++{
++ size_t gaplen;
++ size_t gapstart;
++ size_t off;
++ size_t copysiz;
++
++ off = 0;
++
++ while (off < len) {
++ gapstart = COUNT % 64;
++ gaplen = 64 - gapstart;
++
++ copysiz = (gaplen < len - off) ? gaplen : len - off;
++ bcopy(&input[off], &ctxt->m.b8[gapstart], copysiz);
++ COUNT += copysiz;
++ COUNT %= 64;
++ ctxt->c.b64[0] += copysiz * 8;
++ if (COUNT % 64 == 0)
++ sha1_step(ctxt);
++ off += copysiz;
++ }
++}
++
++void
++sha1_result(ctxt, digest0)
++ struct sha1_ctxt *ctxt;
++ caddr_t digest0;
++{
++ u_int8_t *digest;
++
++ digest = (u_int8_t *)digest0;
++ sha1_pad(ctxt);
++#if BYTE_ORDER == BIG_ENDIAN
++ bcopy(&ctxt->h.b8[0], digest, 20);
++#else
++ digest[0] = ctxt->h.b8[3]; digest[1] = ctxt->h.b8[2];
++ digest[2] = ctxt->h.b8[1]; digest[3] = ctxt->h.b8[0];
++ digest[4] = ctxt->h.b8[7]; digest[5] = ctxt->h.b8[6];
++ digest[6] = ctxt->h.b8[5]; digest[7] = ctxt->h.b8[4];
++ digest[8] = ctxt->h.b8[11]; digest[9] = ctxt->h.b8[10];
++ digest[10] = ctxt->h.b8[9]; digest[11] = ctxt->h.b8[8];
++ digest[12] = ctxt->h.b8[15]; digest[13] = ctxt->h.b8[14];
++ digest[14] = ctxt->h.b8[13]; digest[15] = ctxt->h.b8[12];
++ digest[16] = ctxt->h.b8[19]; digest[17] = ctxt->h.b8[18];
++ digest[18] = ctxt->h.b8[17]; digest[19] = ctxt->h.b8[16];
++#endif
++}
++
++#endif /*unsupported*/
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/sha1.h 2005-05-20 10:30:53.000000000 +1000
+@@ -0,0 +1,72 @@
++/* $FreeBSD: src/sys/crypto/sha1.h,v 1.8 2002/03/20 05:13:50 alfred Exp $ */
++/* $KAME: sha1.h,v 1.5 2000/03/27 04:36:23 sumikawa Exp $ */
++
++/*
++ * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. Neither the name of the project nor the names of its contributors
++ * may be used to endorse or promote products derived from this software
++ * without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ */
++/*
++ * FIPS pub 180-1: Secure Hash Algorithm (SHA-1)
++ * based on: http://csrc.nist.gov/fips/fip180-1.txt
++ * implemented by Jun-ichiro itojun Itoh <itojun@itojun.org>
++ */
++
++#ifndef _NETINET6_SHA1_H_
++#define _NETINET6_SHA1_H_
++
++struct sha1_ctxt {
++ union {
++ u_int8_t b8[20];
++ u_int32_t b32[5];
++ } h;
++ union {
++ u_int8_t b8[8];
++ u_int64_t b64[1];
++ } c;
++ union {
++ u_int8_t b8[64];
++ u_int32_t b32[16];
++ } m;
++ u_int8_t count;
++};
++
++#ifdef __KERNEL__
++extern void sha1_init(struct sha1_ctxt *);
++extern void sha1_pad(struct sha1_ctxt *);
++extern void sha1_loop(struct sha1_ctxt *, const u_int8_t *, size_t);
++extern void sha1_result(struct sha1_ctxt *, caddr_t);
++
++/* compatibilty with other SHA1 source codes */
++typedef struct sha1_ctxt SHA1_CTX;
++#define SHA1Init(x) sha1_init((x))
++#define SHA1Update(x, y, z) sha1_loop((x), (y), (z))
++#define SHA1Final(x, y) sha1_result((y), (x))
++#endif /* __KERNEL__ */
++
++#define SHA1_RESULTLEN (160/8)
++
++#endif /*_NETINET6_SHA1_H_*/
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/safereg.h 2005-03-16 15:19:57.000000000 +1000
+@@ -0,0 +1,421 @@
++/*-
++ * Copyright (c) 2003 Sam Leffler, Errno Consulting
++ * Copyright (c) 2003 Global Technology Associates, Inc.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ *
++ * $FreeBSD: src/sys/dev/safe/safereg.h,v 1.1 2003/07/21 21:46:07 sam Exp $
++ */
++#ifndef _SAFE_SAFEREG_H_
++#define _SAFE_SAFEREG_H_
++
++/*
++ * Register definitions for SafeNet SafeXcel-1141 crypto device.
++ * Definitions from revision 1.3 (Nov 6 2002) of the User's Manual.
++ */
++
++#define BS_BAR 0x10 /* DMA base address register */
++#define BS_TRDY_TIMEOUT 0x40 /* TRDY timeout */
++#define BS_RETRY_TIMEOUT 0x41 /* DMA retry timeout */
++
++#define PCI_VENDOR_SAFENET 0x16ae /* SafeNet, Inc. */
++
++/* SafeNet */
++#define PCI_PRODUCT_SAFEXCEL 0x1141 /* 1141 */
++
++#define SAFE_PE_CSR 0x0000 /* Packet Enginge Ctrl/Status */
++#define SAFE_PE_SRC 0x0004 /* Packet Engine Source */
++#define SAFE_PE_DST 0x0008 /* Packet Engine Destination */
++#define SAFE_PE_SA 0x000c /* Packet Engine SA */
++#define SAFE_PE_LEN 0x0010 /* Packet Engine Length */
++#define SAFE_PE_DMACFG 0x0040 /* Packet Engine DMA Configuration */
++#define SAFE_PE_DMASTAT 0x0044 /* Packet Engine DMA Status */
++#define SAFE_PE_PDRBASE 0x0048 /* Packet Engine Descriptor Ring Base */
++#define SAFE_PE_RDRBASE 0x004c /* Packet Engine Result Ring Base */
++#define SAFE_PE_RINGCFG 0x0050 /* Packet Engine Ring Configuration */
++#define SAFE_PE_RINGPOLL 0x0054 /* Packet Engine Ring Poll */
++#define SAFE_PE_IRNGSTAT 0x0058 /* Packet Engine Internal Ring Status */
++#define SAFE_PE_ERNGSTAT 0x005c /* Packet Engine External Ring Status */
++#define SAFE_PE_IOTHRESH 0x0060 /* Packet Engine I/O Threshold */
++#define SAFE_PE_GRNGBASE 0x0064 /* Packet Engine Gather Ring Base */
++#define SAFE_PE_SRNGBASE 0x0068 /* Packet Engine Scatter Ring Base */
++#define SAFE_PE_PARTSIZE 0x006c /* Packet Engine Particlar Ring Size */
++#define SAFE_PE_PARTCFG 0x0070 /* Packet Engine Particle Ring Config */
++#define SAFE_CRYPTO_CTRL 0x0080 /* Crypto Control */
++#define SAFE_DEVID 0x0084 /* Device ID */
++#define SAFE_DEVINFO 0x0088 /* Device Info */
++#define SAFE_HU_STAT 0x00a0 /* Host Unmasked Status */
++#define SAFE_HM_STAT 0x00a4 /* Host Masked Status (read-only) */
++#define SAFE_HI_CLR 0x00a4 /* Host Clear Interrupt (write-only) */
++#define SAFE_HI_MASK 0x00a8 /* Host Mask Control */
++#define SAFE_HI_CFG 0x00ac /* Interrupt Configuration */
++#define SAFE_HI_RD_DESCR 0x00b4 /* Force Descriptor Read */
++#define SAFE_HI_DESC_CNT 0x00b8 /* Host Descriptor Done Count */
++#define SAFE_DMA_ENDIAN 0x00c0 /* Master Endian Status */
++#define SAFE_DMA_SRCADDR 0x00c4 /* DMA Source Address Status */
++#define SAFE_DMA_DSTADDR 0x00c8 /* DMA Destination Address Status */
++#define SAFE_DMA_STAT 0x00cc /* DMA Current Status */
++#define SAFE_DMA_CFG 0x00d4 /* DMA Configuration/Status */
++#define SAFE_ENDIAN 0x00e0 /* Endian Configuration */
++#define SAFE_PK_A_ADDR 0x0800 /* Public Key A Address */
++#define SAFE_PK_B_ADDR 0x0804 /* Public Key B Address */
++#define SAFE_PK_C_ADDR 0x0808 /* Public Key C Address */
++#define SAFE_PK_D_ADDR 0x080c /* Public Key D Address */
++#define SAFE_PK_A_LEN 0x0810 /* Public Key A Length */
++#define SAFE_PK_B_LEN 0x0814 /* Public Key B Length */
++#define SAFE_PK_SHIFT 0x0818 /* Public Key Shift */
++#define SAFE_PK_FUNC 0x081c /* Public Key Function */
++#define SAFE_PK_RAM_START 0x1000 /* Public Key RAM start address */
++#define SAFE_PK_RAM_END 0x1fff /* Public Key RAM end address */
++
++#define SAFE_RNG_OUT 0x0100 /* RNG Output */
++#define SAFE_RNG_STAT 0x0104 /* RNG Status */
++#define SAFE_RNG_CTRL 0x0108 /* RNG Control */
++#define SAFE_RNG_A 0x010c /* RNG A */
++#define SAFE_RNG_B 0x0110 /* RNG B */
++#define SAFE_RNG_X_LO 0x0114 /* RNG X [31:0] */
++#define SAFE_RNG_X_MID 0x0118 /* RNG X [63:32] */
++#define SAFE_RNG_X_HI 0x011c /* RNG X [80:64] */
++#define SAFE_RNG_X_CNTR 0x0120 /* RNG Counter */
++#define SAFE_RNG_ALM_CNT 0x0124 /* RNG Alarm Count */
++#define SAFE_RNG_CNFG 0x0128 /* RNG Configuration */
++#define SAFE_RNG_LFSR1_LO 0x012c /* RNG LFSR1 [31:0] */
++#define SAFE_RNG_LFSR1_HI 0x0130 /* RNG LFSR1 [47:32] */
++#define SAFE_RNG_LFSR2_LO 0x0134 /* RNG LFSR1 [31:0] */
++#define SAFE_RNG_LFSR2_HI 0x0138 /* RNG LFSR1 [47:32] */
++
++#define SAFE_PE_CSR_READY 0x00000001 /* ready for processing */
++#define SAFE_PE_CSR_DONE 0x00000002 /* h/w completed processing */
++#define SAFE_PE_CSR_LOADSA 0x00000004 /* load SA digests */
++#define SAFE_PE_CSR_HASHFINAL 0x00000010 /* do hash pad & write result */
++#define SAFE_PE_CSR_SABUSID 0x000000c0 /* bus id for SA */
++#define SAFE_PE_CSR_SAPCI 0x00000040 /* PCI bus id for SA */
++#define SAFE_PE_CSR_NXTHDR 0x0000ff00 /* next hdr value for IPsec */
++#define SAFE_PE_CSR_FPAD 0x0000ff00 /* fixed pad for basic ops */
++#define SAFE_PE_CSR_STATUS 0x00ff0000 /* operation result status */
++#define SAFE_PE_CSR_AUTH_FAIL 0x00010000 /* ICV mismatch (inbound) */
++#define SAFE_PE_CSR_PAD_FAIL 0x00020000 /* pad verify fail (inbound) */
++#define SAFE_PE_CSR_SEQ_FAIL 0x00040000 /* sequence number (inbound) */
++#define SAFE_PE_CSR_XERROR 0x00080000 /* extended error follows */
++#define SAFE_PE_CSR_XECODE 0x00f00000 /* extended error code */
++#define SAFE_PE_CSR_XECODE_S 20
++#define SAFE_PE_CSR_XECODE_BADCMD 0 /* invalid command */
++#define SAFE_PE_CSR_XECODE_BADALG 1 /* invalid algorithm */
++#define SAFE_PE_CSR_XECODE_ALGDIS 2 /* algorithm disabled */
++#define SAFE_PE_CSR_XECODE_ZEROLEN 3 /* zero packet length */
++#define SAFE_PE_CSR_XECODE_DMAERR 4 /* bus DMA error */
++#define SAFE_PE_CSR_XECODE_PIPEABORT 5 /* secondary bus DMA error */
++#define SAFE_PE_CSR_XECODE_BADSPI 6 /* IPsec SPI mismatch */
++#define SAFE_PE_CSR_XECODE_TIMEOUT 10 /* failsafe timeout */
++#define SAFE_PE_CSR_PAD 0xff000000 /* ESP padding control/status */
++#define SAFE_PE_CSR_PAD_MIN 0x00000000 /* minimum IPsec padding */
++#define SAFE_PE_CSR_PAD_16 0x08000000 /* pad to 16-byte boundary */
++#define SAFE_PE_CSR_PAD_32 0x10000000 /* pad to 32-byte boundary */
++#define SAFE_PE_CSR_PAD_64 0x20000000 /* pad to 64-byte boundary */
++#define SAFE_PE_CSR_PAD_128 0x40000000 /* pad to 128-byte boundary */
++#define SAFE_PE_CSR_PAD_256 0x80000000 /* pad to 256-byte boundary */
++
++/*
++ * Check the CSR to see if the PE has returned ownership to
++ * the host. Note that before processing a descriptor this
++ * must be done followed by a check of the SAFE_PE_LEN register
++ * status bits to avoid premature processing of a descriptor
++ * on its way back to the host.
++ */
++#define SAFE_PE_CSR_IS_DONE(_csr) \
++ (((_csr) & (SAFE_PE_CSR_READY | SAFE_PE_CSR_DONE)) == SAFE_PE_CSR_DONE)
++
++#define SAFE_PE_LEN_LENGTH 0x000fffff /* total length (bytes) */
++#define SAFE_PE_LEN_READY 0x00400000 /* ready for processing */
++#define SAFE_PE_LEN_DONE 0x00800000 /* h/w completed processing */
++#define SAFE_PE_LEN_BYPASS 0xff000000 /* bypass offset (bytes) */
++#define SAFE_PE_LEN_BYPASS_S 24
++
++#define SAFE_PE_LEN_IS_DONE(_len) \
++ (((_len) & (SAFE_PE_LEN_READY | SAFE_PE_LEN_DONE)) == SAFE_PE_LEN_DONE)
++
++/* NB: these apply to HU_STAT, HM_STAT, HI_CLR, and HI_MASK */
++#define SAFE_INT_PE_CDONE 0x00000002 /* PE context done */
++#define SAFE_INT_PE_DDONE 0x00000008 /* PE descriptor done */
++#define SAFE_INT_PE_ERROR 0x00000010 /* PE error */
++#define SAFE_INT_PE_ODONE 0x00000020 /* PE operation done */
++
++#define SAFE_HI_CFG_PULSE 0x00000001 /* use pulse interrupt */
++#define SAFE_HI_CFG_LEVEL 0x00000000 /* use level interrupt */
++#define SAFE_HI_CFG_AUTOCLR 0x00000002 /* auto-clear pulse interrupt */
++
++#define SAFE_ENDIAN_PASS 0x000000e4 /* straight pass-thru */
++#define SAFE_ENDIAN_SWAB 0x0000001b /* swap bytes in 32-bit word */
++
++#define SAFE_PE_DMACFG_PERESET 0x00000001 /* reset packet engine */
++#define SAFE_PE_DMACFG_PDRRESET 0x00000002 /* reset PDR counters/ptrs */
++#define SAFE_PE_DMACFG_SGRESET 0x00000004 /* reset scatter/gather cache */
++#define SAFE_PE_DMACFG_FSENA 0x00000008 /* enable failsafe reset */
++#define SAFE_PE_DMACFG_PEMODE 0x00000100 /* packet engine mode */
++#define SAFE_PE_DMACFG_SAPREC 0x00000200 /* SA precedes packet */
++#define SAFE_PE_DMACFG_PKFOLL 0x00000400 /* packet follows descriptor */
++#define SAFE_PE_DMACFG_GPRBID 0x00003000 /* gather particle ring busid */
++#define SAFE_PE_DMACFG_GPRPCI 0x00001000 /* PCI gather particle ring */
++#define SAFE_PE_DMACFG_SPRBID 0x0000c000 /* scatter part. ring busid */
++#define SAFE_PE_DMACFG_SPRPCI 0x00004000 /* PCI scatter part. ring */
++#define SAFE_PE_DMACFG_ESDESC 0x00010000 /* endian swap descriptors */
++#define SAFE_PE_DMACFG_ESSA 0x00020000 /* endian swap SA data */
++#define SAFE_PE_DMACFG_ESPACKET 0x00040000 /* endian swap packet data */
++#define SAFE_PE_DMACFG_ESPDESC 0x00080000 /* endian swap particle desc. */
++#define SAFE_PE_DMACFG_NOPDRUP 0x00100000 /* supp. PDR ownership update */
++#define SAFE_PD_EDMACFG_PCIMODE 0x01000000 /* PCI target mode */
++
++#define SAFE_PE_DMASTAT_PEIDONE 0x00000001 /* PE core input done */
++#define SAFE_PE_DMASTAT_PEODONE 0x00000002 /* PE core output done */
++#define SAFE_PE_DMASTAT_ENCDONE 0x00000004 /* encryption done */
++#define SAFE_PE_DMASTAT_IHDONE 0x00000008 /* inner hash done */
++#define SAFE_PE_DMASTAT_OHDONE 0x00000010 /* outer hash (HMAC) done */
++#define SAFE_PE_DMASTAT_PADFLT 0x00000020 /* crypto pad fault */
++#define SAFE_PE_DMASTAT_ICVFLT 0x00000040 /* ICV fault */
++#define SAFE_PE_DMASTAT_SPIMIS 0x00000080 /* SPI mismatch */
++#define SAFE_PE_DMASTAT_CRYPTO 0x00000100 /* crypto engine timeout */
++#define SAFE_PE_DMASTAT_CQACT 0x00000200 /* command queue active */
++#define SAFE_PE_DMASTAT_IRACT 0x00000400 /* input request active */
++#define SAFE_PE_DMASTAT_ORACT 0x00000800 /* output request active */
++#define SAFE_PE_DMASTAT_PEISIZE 0x003ff000 /* PE input size:32-bit words */
++#define SAFE_PE_DMASTAT_PEOSIZE 0xffc00000 /* PE out. size:32-bit words */
++
++#define SAFE_PE_RINGCFG_SIZE 0x000003ff /* ring size (descriptors) */
++#define SAFE_PE_RINGCFG_OFFSET 0xffff0000 /* offset btw desc's (dwords) */
++#define SAFE_PE_RINGCFG_OFFSET_S 16
++
++#define SAFE_PE_RINGPOLL_POLL 0x00000fff /* polling frequency/divisor */
++#define SAFE_PE_RINGPOLL_RETRY 0x03ff0000 /* polling frequency/divisor */
++#define SAFE_PE_RINGPOLL_CONT 0x80000000 /* continuously poll */
++
++#define SAFE_PE_IRNGSTAT_CQAVAIL 0x00000001 /* command queue available */
++
++#define SAFE_PE_ERNGSTAT_NEXT 0x03ff0000 /* index of next packet desc. */
++#define SAFE_PE_ERNGSTAT_NEXT_S 16
++
++#define SAFE_PE_IOTHRESH_INPUT 0x000003ff /* input threshold (dwords) */
++#define SAFE_PE_IOTHRESH_OUTPUT 0x03ff0000 /* output threshold (dwords) */
++
++#define SAFE_PE_PARTCFG_SIZE 0x0000ffff /* scatter particle size */
++#define SAFE_PE_PARTCFG_GBURST 0x00030000 /* gather particle burst */
++#define SAFE_PE_PARTCFG_GBURST_2 0x00000000
++#define SAFE_PE_PARTCFG_GBURST_4 0x00010000
++#define SAFE_PE_PARTCFG_GBURST_8 0x00020000
++#define SAFE_PE_PARTCFG_GBURST_16 0x00030000
++#define SAFE_PE_PARTCFG_SBURST 0x000c0000 /* scatter particle burst */
++#define SAFE_PE_PARTCFG_SBURST_2 0x00000000
++#define SAFE_PE_PARTCFG_SBURST_4 0x00040000
++#define SAFE_PE_PARTCFG_SBURST_8 0x00080000
++#define SAFE_PE_PARTCFG_SBURST_16 0x000c0000
++
++#define SAFE_PE_PARTSIZE_SCAT 0xffff0000 /* scatter particle ring size */
++#define SAFE_PE_PARTSIZE_GATH 0x0000ffff /* gather particle ring size */
++
++#define SAFE_CRYPTO_CTRL_3DES 0x00000001 /* enable 3DES support */
++#define SAFE_CRYPTO_CTRL_PKEY 0x00010000 /* enable public key support */
++#define SAFE_CRYPTO_CTRL_RNG 0x00020000 /* enable RNG support */
++
++#define SAFE_DEVINFO_REV_MIN 0x0000000f /* minor rev for chip */
++#define SAFE_DEVINFO_REV_MAJ 0x000000f0 /* major rev for chip */
++#define SAFE_DEVINFO_REV_MAJ_S 4
++#define SAFE_DEVINFO_DES 0x00000100 /* DES/3DES support present */
++#define SAFE_DEVINFO_ARC4 0x00000200 /* ARC4 support present */
++#define SAFE_DEVINFO_AES 0x00000400 /* AES support present */
++#define SAFE_DEVINFO_MD5 0x00001000 /* MD5 support present */
++#define SAFE_DEVINFO_SHA1 0x00002000 /* SHA-1 support present */
++#define SAFE_DEVINFO_RIPEMD 0x00004000 /* RIPEMD support present */
++#define SAFE_DEVINFO_DEFLATE 0x00010000 /* Deflate support present */
++#define SAFE_DEVINFO_SARAM 0x00100000 /* on-chip SA RAM present */
++#define SAFE_DEVINFO_EMIBUS 0x00200000 /* EMI bus present */
++#define SAFE_DEVINFO_PKEY 0x00400000 /* public key support present */
++#define SAFE_DEVINFO_RNG 0x00800000 /* RNG present */
++
++#define SAFE_REV(_maj, _min) (((_maj) << SAFE_DEVINFO_REV_MAJ_S) | (_min))
++#define SAFE_REV_MAJ(_chiprev) \
++ (((_chiprev) & SAFE_DEVINFO_REV_MAJ) >> SAFE_DEVINFO_REV_MAJ_S)
++#define SAFE_REV_MIN(_chiprev) ((_chiprev) & SAFE_DEVINFO_REV_MIN)
++
++#define SAFE_PK_FUNC_MULT 0x00000001 /* Multiply function */
++#define SAFE_PK_FUNC_SQUARE 0x00000004 /* Square function */
++#define SAFE_PK_FUNC_ADD 0x00000010 /* Add function */
++#define SAFE_PK_FUNC_SUB 0x00000020 /* Subtract function */
++#define SAFE_PK_FUNC_LSHIFT 0x00000040 /* Left-shift function */
++#define SAFE_PK_FUNC_RSHIFT 0x00000080 /* Right-shift function */
++#define SAFE_PK_FUNC_DIV 0x00000100 /* Divide function */
++#define SAFE_PK_FUNC_CMP 0x00000400 /* Compare function */
++#define SAFE_PK_FUNC_COPY 0x00000800 /* Copy function */
++#define SAFE_PK_FUNC_EXP16 0x00002000 /* Exponentiate (4-bit ACT) */
++#define SAFE_PK_FUNC_EXP4 0x00004000 /* Exponentiate (2-bit ACT) */
++#define SAFE_PK_FUNC_RUN 0x00008000 /* start/status */
++
++#define SAFE_RNG_STAT_BUSY 0x00000001 /* busy, data not valid */
++
++#define SAFE_RNG_CTRL_PRE_LFSR 0x00000001 /* enable output pre-LFSR */
++#define SAFE_RNG_CTRL_TST_MODE 0x00000002 /* enable test mode */
++#define SAFE_RNG_CTRL_TST_RUN 0x00000004 /* start test state machine */
++#define SAFE_RNG_CTRL_ENA_RING1 0x00000008 /* test entropy oscillator #1 */
++#define SAFE_RNG_CTRL_ENA_RING2 0x00000010 /* test entropy oscillator #2 */
++#define SAFE_RNG_CTRL_DIS_ALARM 0x00000020 /* disable RNG alarm reports */
++#define SAFE_RNG_CTRL_TST_CLOCK 0x00000040 /* enable test clock */
++#define SAFE_RNG_CTRL_SHORTEN 0x00000080 /* shorten state timers */
++#define SAFE_RNG_CTRL_TST_ALARM 0x00000100 /* simulate alarm state */
++#define SAFE_RNG_CTRL_RST_LFSR 0x00000200 /* reset LFSR */
++
++/*
++ * Packet engine descriptor. Note that d_csr is a copy of the
++ * SAFE_PE_CSR register and all definitions apply, and d_len
++ * is a copy of the SAFE_PE_LEN register and all definitions apply.
++ * d_src and d_len may point directly to contiguous data or to a
++ * list of ``particle descriptors'' when using scatter/gather i/o.
++ */
++struct safe_desc {
++ u_int32_t d_csr; /* per-packet control/status */
++ u_int32_t d_src; /* source address */
++ u_int32_t d_dst; /* destination address */
++ u_int32_t d_sa; /* SA address */
++ u_int32_t d_len; /* length, bypass, status */
++};
++
++/*
++ * Scatter/Gather particle descriptor.
++ *
++ * NB: scatter descriptors do not specify a size; this is fixed
++ * by the setting of the SAFE_PE_PARTCFG register.
++ */
++struct safe_pdesc {
++ u_int32_t pd_addr; /* particle address */
++#ifdef __BIG_ENDIAN
++ u_int16_t pd_flags; /* control word */
++ u_int16_t pd_size; /* particle size (bytes) */
++#else
++ u_int16_t pd_flags; /* control word */
++ u_int16_t pd_size; /* particle size (bytes) */
++#endif
++};
++
++#define SAFE_PD_READY 0x0001 /* ready for processing */
++#define SAFE_PD_DONE 0x0002 /* h/w completed processing */
++
++/*
++ * Security Association (SA) Record (Rev 1). One of these is
++ * required for each operation processed by the packet engine.
++ */
++struct safe_sarec {
++ u_int32_t sa_cmd0;
++ u_int32_t sa_cmd1;
++ u_int32_t sa_resv0;
++ u_int32_t sa_resv1;
++ u_int32_t sa_key[8]; /* DES/3DES/AES key */
++ u_int32_t sa_indigest[5]; /* inner digest */
++ u_int32_t sa_outdigest[5]; /* outer digest */
++ u_int32_t sa_spi; /* SPI */
++ u_int32_t sa_seqnum; /* sequence number */
++ u_int32_t sa_seqmask[2]; /* sequence number mask */
++ u_int32_t sa_resv2;
++ u_int32_t sa_staterec; /* address of state record */
++ u_int32_t sa_resv3[2];
++ u_int32_t sa_samgmt0; /* SA management field 0 */
++ u_int32_t sa_samgmt1; /* SA management field 0 */
++};
++
++#define SAFE_SA_CMD0_OP 0x00000007 /* operation code */
++#define SAFE_SA_CMD0_OP_CRYPT 0x00000000 /* encrypt/decrypt (basic) */
++#define SAFE_SA_CMD0_OP_BOTH 0x00000001 /* encrypt-hash/hash-decrypto */
++#define SAFE_SA_CMD0_OP_HASH 0x00000003 /* hash (outbound-only) */
++#define SAFE_SA_CMD0_OP_ESP 0x00000000 /* ESP in/out (proto) */
++#define SAFE_SA_CMD0_OP_AH 0x00000001 /* AH in/out (proto) */
++#define SAFE_SA_CMD0_INBOUND 0x00000008 /* inbound operation */
++#define SAFE_SA_CMD0_OUTBOUND 0x00000000 /* outbound operation */
++#define SAFE_SA_CMD0_GROUP 0x00000030 /* operation group */
++#define SAFE_SA_CMD0_BASIC 0x00000000 /* basic operation */
++#define SAFE_SA_CMD0_PROTO 0x00000010 /* protocol/packet operation */
++#define SAFE_SA_CMD0_BUNDLE 0x00000020 /* bundled operation (resvd) */
++#define SAFE_SA_CMD0_PAD 0x000000c0 /* crypto pad method */
++#define SAFE_SA_CMD0_PAD_IPSEC 0x00000000 /* IPsec padding */
++#define SAFE_SA_CMD0_PAD_PKCS7 0x00000040 /* PKCS#7 padding */
++#define SAFE_SA_CMD0_PAD_CONS 0x00000080 /* constant padding */
++#define SAFE_SA_CMD0_PAD_ZERO 0x000000c0 /* zero padding */
++#define SAFE_SA_CMD0_CRYPT_ALG 0x00000f00 /* symmetric crypto algorithm */
++#define SAFE_SA_CMD0_DES 0x00000000 /* DES crypto algorithm */
++#define SAFE_SA_CMD0_3DES 0x00000100 /* 3DES crypto algorithm */
++#define SAFE_SA_CMD0_AES 0x00000300 /* AES crypto algorithm */
++#define SAFE_SA_CMD0_CRYPT_NULL 0x00000f00 /* null crypto algorithm */
++#define SAFE_SA_CMD0_HASH_ALG 0x0000f000 /* hash algorithm */
++#define SAFE_SA_CMD0_MD5 0x00000000 /* MD5 hash algorithm */
++#define SAFE_SA_CMD0_SHA1 0x00001000 /* SHA-1 hash algorithm */
++#define SAFE_SA_CMD0_HASH_NULL 0x0000f000 /* null hash algorithm */
++#define SAFE_SA_CMD0_HDR_PROC 0x00080000 /* header processing */
++#define SAFE_SA_CMD0_IBUSID 0x00300000 /* input bus id */
++#define SAFE_SA_CMD0_IPCI 0x00100000 /* PCI input bus id */
++#define SAFE_SA_CMD0_OBUSID 0x00c00000 /* output bus id */
++#define SAFE_SA_CMD0_OPCI 0x00400000 /* PCI output bus id */
++#define SAFE_SA_CMD0_IVLD 0x03000000 /* IV loading */
++#define SAFE_SA_CMD0_IVLD_NONE 0x00000000 /* IV no load (reuse) */
++#define SAFE_SA_CMD0_IVLD_IBUF 0x01000000 /* IV load from input buffer */
++#define SAFE_SA_CMD0_IVLD_STATE 0x02000000 /* IV load from state */
++#define SAFE_SA_CMD0_HSLD 0x0c000000 /* hash state loading */
++#define SAFE_SA_CMD0_HSLD_SA 0x00000000 /* hash state load from SA */
++#define SAFE_SA_CMD0_HSLD_STATE 0x08000000 /* hash state load from state */
++#define SAFE_SA_CMD0_HSLD_NONE 0x0c000000 /* hash state no load */
++#define SAFE_SA_CMD0_SAVEIV 0x10000000 /* save IV */
++#define SAFE_SA_CMD0_SAVEHASH 0x20000000 /* save hash state */
++#define SAFE_SA_CMD0_IGATHER 0x40000000 /* input gather */
++#define SAFE_SA_CMD0_OSCATTER 0x80000000 /* output scatter */
++
++#define SAFE_SA_CMD1_HDRCOPY 0x00000002 /* copy header to output */
++#define SAFE_SA_CMD1_PAYCOPY 0x00000004 /* copy payload to output */
++#define SAFE_SA_CMD1_PADCOPY 0x00000008 /* copy pad to output */
++#define SAFE_SA_CMD1_IPV4 0x00000000 /* IPv4 protocol */
++#define SAFE_SA_CMD1_IPV6 0x00000010 /* IPv6 protocol */
++#define SAFE_SA_CMD1_MUTABLE 0x00000020 /* mutable bit processing */
++#define SAFE_SA_CMD1_SRBUSID 0x000000c0 /* state record bus id */
++#define SAFE_SA_CMD1_SRPCI 0x00000040 /* state record from PCI */
++#define SAFE_SA_CMD1_CRMODE 0x00000300 /* crypto mode */
++#define SAFE_SA_CMD1_ECB 0x00000000 /* ECB crypto mode */
++#define SAFE_SA_CMD1_CBC 0x00000100 /* CBC crypto mode */
++#define SAFE_SA_CMD1_OFB 0x00000200 /* OFB crypto mode */
++#define SAFE_SA_CMD1_CFB 0x00000300 /* CFB crypto mode */
++#define SAFE_SA_CMD1_CRFEEDBACK 0x00000c00 /* crypto feedback mode */
++#define SAFE_SA_CMD1_64BIT 0x00000000 /* 64-bit crypto feedback */
++#define SAFE_SA_CMD1_8BIT 0x00000400 /* 8-bit crypto feedback */
++#define SAFE_SA_CMD1_1BIT 0x00000800 /* 1-bit crypto feedback */
++#define SAFE_SA_CMD1_128BIT 0x00000c00 /* 128-bit crypto feedback */
++#define SAFE_SA_CMD1_OPTIONS 0x00001000 /* HMAC/options mutable bit */
++#define SAFE_SA_CMD1_HMAC SAFE_SA_CMD1_OPTIONS
++#define SAFE_SA_CMD1_SAREV1 0x00008000 /* SA Revision 1 */
++#define SAFE_SA_CMD1_OFFSET 0x00ff0000 /* hash/crypto offset(dwords) */
++#define SAFE_SA_CMD1_OFFSET_S 16
++#define SAFE_SA_CMD1_AESKEYLEN 0x0f000000 /* AES key length */
++#define SAFE_SA_CMD1_AES128 0x02000000 /* 128-bit AES key */
++#define SAFE_SA_CMD1_AES192 0x03000000 /* 192-bit AES key */
++#define SAFE_SA_CMD1_AES256 0x04000000 /* 256-bit AES key */
++
++/*
++ * Security Associate State Record (Rev 1).
++ */
++struct safe_sastate {
++ u_int32_t sa_saved_iv[4]; /* saved IV (DES/3DES/AES) */
++ u_int32_t sa_saved_hashbc; /* saved hash byte count */
++ u_int32_t sa_saved_indigest[5]; /* saved inner digest */
++};
++#endif /* _SAFE_SAFEREG_H_ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/safe/safevar.h 2007-07-03 09:46:58.000000000 +1000
+@@ -0,0 +1,230 @@
++/*-
++ * The linux port of this code done by David McCullough
++ * Copyright (C) 2004-2007 David McCullough <david_mccullough@securecomputing.com>
++ * The license and original author are listed below.
++ *
++ * Copyright (c) 2003 Sam Leffler, Errno Consulting
++ * Copyright (c) 2003 Global Technology Associates, Inc.
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ *
++ * $FreeBSD: src/sys/dev/safe/safevar.h,v 1.2 2006/05/17 18:34:26 pjd Exp $
++ */
++#ifndef _SAFE_SAFEVAR_H_
++#define _SAFE_SAFEVAR_H_
++
++/* Maximum queue length */
++#ifndef SAFE_MAX_NQUEUE
++#define SAFE_MAX_NQUEUE 60
++#endif
++
++#define SAFE_MAX_PART 64 /* Maximum scatter/gather depth */
++#define SAFE_DMA_BOUNDARY 0 /* No boundary for source DMA ops */
++#define SAFE_MAX_DSIZE 2048 /* MCLBYTES Fixed scatter particle size */
++#define SAFE_MAX_SSIZE 0x0ffff /* Maximum gather particle size */
++#define SAFE_MAX_DMA 0xfffff /* Maximum PE operand size (20 bits) */
++/* total src+dst particle descriptors */
++#define SAFE_TOTAL_DPART (SAFE_MAX_NQUEUE * SAFE_MAX_PART)
++#define SAFE_TOTAL_SPART (SAFE_MAX_NQUEUE * SAFE_MAX_PART)
++
++#define SAFE_RNG_MAXBUFSIZ 128 /* 32-bit words */
++
++#define SAFE_CARD(sid) (((sid) & 0xf0000000) >> 28)
++#define SAFE_SESSION(sid) ( (sid) & 0x0fffffff)
++#define SAFE_SID(crd, sesn) (((crd) << 28) | ((sesn) & 0x0fffffff))
++
++#define SAFE_DEF_RTY 0xff /* PCI Retry Timeout */
++#define SAFE_DEF_TOUT 0xff /* PCI TRDY Timeout */
++#define SAFE_DEF_CACHELINE 0x01 /* Cache Line setting */
++
++#ifdef __KERNEL__
++/*
++ * State associated with the allocation of each chunk
++ * of memory setup for DMA.
++ */
++struct safe_dma_alloc {
++ dma_addr_t dma_paddr;
++ void *dma_vaddr;
++};
++
++/*
++ * Cryptographic operand state. One of these exists for each
++ * source and destination operand passed in from the crypto
++ * subsystem. When possible source and destination operands
++ * refer to the same memory. More often they are distinct.
++ * We track the virtual address of each operand as well as
++ * where each is mapped for DMA.
++ */
++struct safe_operand {
++ union {
++ struct sk_buff *skb;
++ struct uio *io;
++ } u;
++ void *map;
++ int mapsize; /* total number of bytes in segs */
++ struct {
++ dma_addr_t ds_addr;
++ int ds_len;
++ int ds_tlen;
++ } segs[SAFE_MAX_PART];
++ int nsegs;
++};
++
++/*
++ * Packet engine ring entry and cryptographic operation state.
++ * The packet engine requires a ring of descriptors that contain
++ * pointers to various cryptographic state. However the ring
++ * configuration register allows you to specify an arbitrary size
++ * for ring entries. We use this feature to collect most of the
++ * state for each cryptographic request into one spot. Other than
++ * ring entries only the ``particle descriptors'' (scatter/gather
++ * lists) and the actual operand data are kept separate. The
++ * particle descriptors must also be organized in rings. The
++ * operand data can be located aribtrarily (modulo alignment constraints).
++ *
++ * Note that the descriptor ring is mapped onto the PCI bus so
++ * the hardware can DMA data. This means the entire ring must be
++ * contiguous.
++ */
++struct safe_ringentry {
++ struct safe_desc re_desc; /* command descriptor */
++ struct safe_sarec re_sa; /* SA record */
++ struct safe_sastate re_sastate; /* SA state record */
++
++ struct cryptop *re_crp; /* crypto operation */
++
++ struct safe_operand re_src; /* source operand */
++ struct safe_operand re_dst; /* destination operand */
++
++ int re_sesn; /* crypto session ID */
++ int re_flags;
++#define SAFE_QFLAGS_COPYOUTIV 0x1 /* copy back on completion */
++#define SAFE_QFLAGS_COPYOUTICV 0x2 /* copy back on completion */
++};
++
++#define re_src_skb re_src.u.skb
++#define re_src_io re_src.u.io
++#define re_src_map re_src.map
++#define re_src_nsegs re_src.nsegs
++#define re_src_segs re_src.segs
++#define re_src_mapsize re_src.mapsize
++
++#define re_dst_skb re_dst.u.skb
++#define re_dst_io re_dst.u.io
++#define re_dst_map re_dst.map
++#define re_dst_nsegs re_dst.nsegs
++#define re_dst_segs re_dst.segs
++#define re_dst_mapsize re_dst.mapsize
++
++struct rndstate_test;
++
++struct safe_session {
++ u_int32_t ses_used;
++ u_int32_t ses_klen; /* key length in bits */
++ u_int32_t ses_key[8]; /* DES/3DES/AES key */
++ u_int32_t ses_mlen; /* hmac length in bytes */
++ u_int32_t ses_hminner[5]; /* hmac inner state */
++ u_int32_t ses_hmouter[5]; /* hmac outer state */
++ u_int32_t ses_iv[4]; /* DES/3DES/AES iv */
++};
++
++struct safe_pkq {
++ struct list_head pkq_list;
++ struct cryptkop *pkq_krp;
++};
++
++struct safe_softc {
++ softc_device_decl sc_dev;
++ u32 sc_irq;
++
++ struct pci_dev *sc_pcidev;
++ ocf_iomem_t sc_base_addr;
++
++ u_int sc_chiprev; /* major/minor chip revision */
++ int sc_flags; /* device specific flags */
++#define SAFE_FLAGS_KEY 0x01 /* has key accelerator */
++#define SAFE_FLAGS_RNG 0x02 /* hardware rng */
++ int sc_suspended;
++ int sc_needwakeup; /* notify crypto layer */
++ int32_t sc_cid; /* crypto tag */
++
++ struct safe_dma_alloc sc_ringalloc; /* PE ring allocation state */
++ struct safe_ringentry *sc_ring; /* PE ring */
++ struct safe_ringentry *sc_ringtop; /* PE ring top */
++ struct safe_ringentry *sc_front; /* next free entry */
++ struct safe_ringentry *sc_back; /* next pending entry */
++ int sc_nqchip; /* # passed to chip */
++ spinlock_t sc_ringmtx; /* PE ring lock */
++ struct safe_pdesc *sc_spring; /* src particle ring */
++ struct safe_pdesc *sc_springtop; /* src particle ring top */
++ struct safe_pdesc *sc_spfree; /* next free src particle */
++ struct safe_dma_alloc sc_spalloc; /* src particle ring state */
++ struct safe_pdesc *sc_dpring; /* dest particle ring */
++ struct safe_pdesc *sc_dpringtop; /* dest particle ring top */
++ struct safe_pdesc *sc_dpfree; /* next free dest particle */
++ struct safe_dma_alloc sc_dpalloc; /* dst particle ring state */
++ int sc_nsessions; /* # of sessions */
++ struct safe_session *sc_sessions; /* sessions */
++
++ struct timer_list sc_pkto; /* PK polling */
++ spinlock_t sc_pkmtx; /* PK lock */
++ struct list_head sc_pkq; /* queue of PK requests */
++ struct safe_pkq *sc_pkq_cur; /* current processing request */
++ u_int32_t sc_pk_reslen, sc_pk_resoff;
++
++ int sc_max_dsize; /* maximum safe DMA size */
++};
++#endif /* __KERNEL__ */
++
++struct safe_stats {
++ u_int64_t st_ibytes;
++ u_int64_t st_obytes;
++ u_int32_t st_ipackets;
++ u_int32_t st_opackets;
++ u_int32_t st_invalid; /* invalid argument */
++ u_int32_t st_badsession; /* invalid session id */
++ u_int32_t st_badflags; /* flags indicate !(mbuf | uio) */
++ u_int32_t st_nodesc; /* op submitted w/o descriptors */
++ u_int32_t st_badalg; /* unsupported algorithm */
++ u_int32_t st_ringfull; /* PE descriptor ring full */
++ u_int32_t st_peoperr; /* PE marked error */
++ u_int32_t st_dmaerr; /* PE DMA error */
++ u_int32_t st_bypasstoobig; /* bypass > 96 bytes */
++ u_int32_t st_skipmismatch; /* enc part begins before auth part */
++ u_int32_t st_lenmismatch; /* enc length different auth length */
++ u_int32_t st_coffmisaligned; /* crypto offset not 32-bit aligned */
++ u_int32_t st_cofftoobig; /* crypto offset > 255 words */
++ u_int32_t st_iovmisaligned; /* iov op not aligned */
++ u_int32_t st_iovnotuniform; /* iov op not suitable */
++ u_int32_t st_unaligned; /* unaligned src caused copy */
++ u_int32_t st_notuniform; /* non-uniform src caused copy */
++ u_int32_t st_nomap; /* bus_dmamap_create failed */
++ u_int32_t st_noload; /* bus_dmamap_load_* failed */
++ u_int32_t st_nombuf; /* MGET* failed */
++ u_int32_t st_nomcl; /* MCLGET* failed */
++ u_int32_t st_maxqchip; /* max mcr1 ops out for processing */
++ u_int32_t st_rng; /* RNG requests */
++ u_int32_t st_rngalarm; /* RNG alarm requests */
++ u_int32_t st_noicvcopy; /* ICV data copies suppressed */
++};
++#endif /* _SAFE_SAFEVAR_H_ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/crypto.c 2008-07-03 10:58:33.000000000 +1000
+@@ -0,0 +1,1741 @@
++/*-
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ * The license and original author are listed below.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
++ *
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ */
++
++#if 0
++#include <sys/cdefs.h>
++__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
++#endif
++
++/*
++ * Cryptographic Subsystem.
++ *
++ * This code is derived from the Openbsd Cryptographic Framework (OCF)
++ * that has the copyright shown below. Very little of the original
++ * code remains.
++ */
++/*-
++ * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
++ *
++ * This code was written by Angelos D. Keromytis in Athens, Greece, in
++ * February 2000. Network Security Technologies Inc. (NSTI) kindly
++ * supported the development of this code.
++ *
++ * Copyright (c) 2000, 2001 Angelos D. Keromytis
++ *
++ * Permission to use, copy, and modify this software with or without fee
++ * is hereby granted, provided that this entire notice is included in
++ * all source code copies of any software which is or includes a copy or
++ * modification of this software.
++ *
++ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
++ * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
++ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
++ * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
++ * PURPOSE.
++ *
++__FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
++ */
++
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/spinlock.h>
++#include <linux/version.h>
++#include <cryptodev.h>
++
++/*
++ * keep track of whether or not we have been initialised, a big
++ * issue if we are linked into the kernel and a driver gets started before
++ * us
++ */
++static int crypto_initted = 0;
++
++/*
++ * Crypto drivers register themselves by allocating a slot in the
++ * crypto_drivers table with crypto_get_driverid() and then registering
++ * each algorithm they support with crypto_register() and crypto_kregister().
++ */
++
++/*
++ * lock on driver table
++ * we track its state as spin_is_locked does not do anything on non-SMP boxes
++ */
++static spinlock_t crypto_drivers_lock;
++static int crypto_drivers_locked; /* for non-SMP boxes */
++
++#define CRYPTO_DRIVER_LOCK() \
++ ({ \
++ spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
++ crypto_drivers_locked = 1; \
++ dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
++ })
++#define CRYPTO_DRIVER_UNLOCK() \
++ ({ \
++ dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
++ crypto_drivers_locked = 0; \
++ spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
++ })
++#define CRYPTO_DRIVER_ASSERT() \
++ ({ \
++ if (!crypto_drivers_locked) { \
++ dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
++ } \
++ })
++
++/*
++ * Crypto device/driver capabilities structure.
++ *
++ * Synchronization:
++ * (d) - protected by CRYPTO_DRIVER_LOCK()
++ * (q) - protected by CRYPTO_Q_LOCK()
++ * Not tagged fields are read-only.
++ */
++struct cryptocap {
++ device_t cc_dev; /* (d) device/driver */
++ u_int32_t cc_sessions; /* (d) # of sessions */
++ u_int32_t cc_koperations; /* (d) # os asym operations */
++ /*
++ * Largest possible operator length (in bits) for each type of
++ * encryption algorithm. XXX not used
++ */
++ u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
++ u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
++ u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
++
++ int cc_flags; /* (d) flags */
++#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
++ int cc_qblocked; /* (q) symmetric q blocked */
++ int cc_kqblocked; /* (q) asymmetric q blocked */
++};
++static struct cryptocap *crypto_drivers = NULL;
++static int crypto_drivers_num = 0;
++
++/*
++ * There are two queues for crypto requests; one for symmetric (e.g.
++ * cipher) operations and one for asymmetric (e.g. MOD)operations.
++ * A single mutex is used to lock access to both queues. We could
++ * have one per-queue but having one simplifies handling of block/unblock
++ * operations.
++ */
++static int crp_sleep = 0;
++static LIST_HEAD(crp_q); /* request queues */
++static LIST_HEAD(crp_kq);
++
++static spinlock_t crypto_q_lock;
++
++int crypto_all_qblocked = 0; /* protect with Q_LOCK */
++module_param(crypto_all_qblocked, int, 0444);
++MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
++
++int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
++module_param(crypto_all_kqblocked, int, 0444);
++MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
++
++#define CRYPTO_Q_LOCK() \
++ ({ \
++ spin_lock_irqsave(&crypto_q_lock, q_flags); \
++ dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
++ })
++#define CRYPTO_Q_UNLOCK() \
++ ({ \
++ dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
++ spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
++ })
++
++/*
++ * There are two queues for processing completed crypto requests; one
++ * for the symmetric and one for the asymmetric ops. We only need one
++ * but have two to avoid type futzing (cryptop vs. cryptkop). A single
++ * mutex is used to lock access to both queues. Note that this lock
++ * must be separate from the lock on request queues to insure driver
++ * callbacks don't generate lock order reversals.
++ */
++static LIST_HEAD(crp_ret_q); /* callback queues */
++static LIST_HEAD(crp_ret_kq);
++
++static spinlock_t crypto_ret_q_lock;
++#define CRYPTO_RETQ_LOCK() \
++ ({ \
++ spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
++ dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
++ })
++#define CRYPTO_RETQ_UNLOCK() \
++ ({ \
++ dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
++ spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
++ })
++#define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
++static kmem_cache_t *cryptop_zone;
++static kmem_cache_t *cryptodesc_zone;
++#else
++static struct kmem_cache *cryptop_zone;
++static struct kmem_cache *cryptodesc_zone;
++#endif
++
++#define debug crypto_debug
++int crypto_debug = 0;
++module_param(crypto_debug, int, 0644);
++MODULE_PARM_DESC(crypto_debug, "Enable debug");
++EXPORT_SYMBOL(crypto_debug);
++
++/*
++ * Maximum number of outstanding crypto requests before we start
++ * failing requests. We need this to prevent DOS when too many
++ * requests are arriving for us to keep up. Otherwise we will
++ * run the system out of memory. Since crypto is slow, we are
++ * usually the bottleneck that needs to say, enough is enough.
++ *
++ * We cannot print errors when this condition occurs, we are already too
++ * slow, printing anything will just kill us
++ */
++
++static int crypto_q_cnt = 0;
++module_param(crypto_q_cnt, int, 0444);
++MODULE_PARM_DESC(crypto_q_cnt,
++ "Current number of outstanding crypto requests");
++
++static int crypto_q_max = 1000;
++module_param(crypto_q_max, int, 0644);
++MODULE_PARM_DESC(crypto_q_max,
++ "Maximum number of outstanding crypto requests");
++
++#define bootverbose crypto_verbose
++static int crypto_verbose = 0;
++module_param(crypto_verbose, int, 0644);
++MODULE_PARM_DESC(crypto_verbose,
++ "Enable verbose crypto startup");
++
++int crypto_usercrypto = 1; /* userland may do crypto reqs */
++module_param(crypto_usercrypto, int, 0644);
++MODULE_PARM_DESC(crypto_usercrypto,
++ "Enable/disable user-mode access to crypto support");
++
++int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
++module_param(crypto_userasymcrypto, int, 0644);
++MODULE_PARM_DESC(crypto_userasymcrypto,
++ "Enable/disable user-mode access to asymmetric crypto support");
++
++int crypto_devallowsoft = 0; /* only use hardware crypto */
++module_param(crypto_devallowsoft, int, 0644);
++MODULE_PARM_DESC(crypto_devallowsoft,
++ "Enable/disable use of software crypto support");
++
++static pid_t cryptoproc = (pid_t) -1;
++static struct completion cryptoproc_exited;
++static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
++static pid_t cryptoretproc = (pid_t) -1;
++static struct completion cryptoretproc_exited;
++static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
++
++static int crypto_proc(void *arg);
++static int crypto_ret_proc(void *arg);
++static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
++static int crypto_kinvoke(struct cryptkop *krp, int flags);
++static void crypto_exit(void);
++static int crypto_init(void);
++
++static struct cryptostats cryptostats;
++
++static struct cryptocap *
++crypto_checkdriver(u_int32_t hid)
++{
++ if (crypto_drivers == NULL)
++ return NULL;
++ return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
++}
++
++/*
++ * Compare a driver's list of supported algorithms against another
++ * list; return non-zero if all algorithms are supported.
++ */
++static int
++driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
++{
++ const struct cryptoini *cr;
++
++ /* See if all the algorithms are supported. */
++ for (cr = cri; cr; cr = cr->cri_next)
++ if (cap->cc_alg[cr->cri_alg] == 0)
++ return 0;
++ return 1;
++}
++
++/*
++ * Select a driver for a new session that supports the specified
++ * algorithms and, optionally, is constrained according to the flags.
++ * The algorithm we use here is pretty stupid; just use the
++ * first driver that supports all the algorithms we need. If there
++ * are multiple drivers we choose the driver with the fewest active
++ * sessions. We prefer hardware-backed drivers to software ones.
++ *
++ * XXX We need more smarts here (in real life too, but that's
++ * XXX another story altogether).
++ */
++static struct cryptocap *
++crypto_select_driver(const struct cryptoini *cri, int flags)
++{
++ struct cryptocap *cap, *best;
++ int match, hid;
++
++ CRYPTO_DRIVER_ASSERT();
++
++ /*
++ * Look first for hardware crypto devices if permitted.
++ */
++ if (flags & CRYPTOCAP_F_HARDWARE)
++ match = CRYPTOCAP_F_HARDWARE;
++ else
++ match = CRYPTOCAP_F_SOFTWARE;
++ best = NULL;
++again:
++ for (hid = 0; hid < crypto_drivers_num; hid++) {
++ cap = &crypto_drivers[hid];
++ /*
++ * If it's not initialized, is in the process of
++ * going away, or is not appropriate (hardware
++ * or software based on match), then skip.
++ */
++ if (cap->cc_dev == NULL ||
++ (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
++ (cap->cc_flags & match) == 0)
++ continue;
++
++ /* verify all the algorithms are supported. */
++ if (driver_suitable(cap, cri)) {
++ if (best == NULL ||
++ cap->cc_sessions < best->cc_sessions)
++ best = cap;
++ }
++ }
++ if (best != NULL)
++ return best;
++ if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
++ /* sort of an Algol 68-style for loop */
++ match = CRYPTOCAP_F_SOFTWARE;
++ goto again;
++ }
++ return best;
++}
++
++/*
++ * Create a new session. The crid argument specifies a crypto
++ * driver to use or constraints on a driver to select (hardware
++ * only, software only, either). Whatever driver is selected
++ * must be capable of the requested crypto algorithms.
++ */
++int
++crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
++{
++ struct cryptocap *cap;
++ u_int32_t hid, lid;
++ int err;
++ unsigned long d_flags;
++
++ CRYPTO_DRIVER_LOCK();
++ if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
++ /*
++ * Use specified driver; verify it is capable.
++ */
++ cap = crypto_checkdriver(crid);
++ if (cap != NULL && !driver_suitable(cap, cri))
++ cap = NULL;
++ } else {
++ /*
++ * No requested driver; select based on crid flags.
++ */
++ cap = crypto_select_driver(cri, crid);
++ /*
++ * if NULL then can't do everything in one session.
++ * XXX Fix this. We need to inject a "virtual" session
++ * XXX layer right about here.
++ */
++ }
++ if (cap != NULL) {
++ /* Call the driver initialization routine. */
++ hid = cap - crypto_drivers;
++ lid = hid; /* Pass the driver ID. */
++ cap->cc_sessions++;
++ CRYPTO_DRIVER_UNLOCK();
++ err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
++ CRYPTO_DRIVER_LOCK();
++ if (err == 0) {
++ (*sid) = (cap->cc_flags & 0xff000000)
++ | (hid & 0x00ffffff);
++ (*sid) <<= 32;
++ (*sid) |= (lid & 0xffffffff);
++ } else
++ cap->cc_sessions--;
++ } else
++ err = EINVAL;
++ CRYPTO_DRIVER_UNLOCK();
++ return err;
++}
++
++static void
++crypto_remove(struct cryptocap *cap)
++{
++ CRYPTO_DRIVER_ASSERT();
++ if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
++ bzero(cap, sizeof(*cap));
++}
++
++/*
++ * Delete an existing session (or a reserved session on an unregistered
++ * driver).
++ */
++int
++crypto_freesession(u_int64_t sid)
++{
++ struct cryptocap *cap;
++ u_int32_t hid;
++ int err = 0;
++ unsigned long d_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++ CRYPTO_DRIVER_LOCK();
++
++ if (crypto_drivers == NULL) {
++ err = EINVAL;
++ goto done;
++ }
++
++ /* Determine two IDs. */
++ hid = CRYPTO_SESID2HID(sid);
++
++ if (hid >= crypto_drivers_num) {
++ dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
++ err = ENOENT;
++ goto done;
++ }
++ cap = &crypto_drivers[hid];
++
++ if (cap->cc_dev) {
++ CRYPTO_DRIVER_UNLOCK();
++ /* Call the driver cleanup routine, if available, unlocked. */
++ err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
++ CRYPTO_DRIVER_LOCK();
++ }
++
++ if (cap->cc_sessions)
++ cap->cc_sessions--;
++
++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
++ crypto_remove(cap);
++
++done:
++ CRYPTO_DRIVER_UNLOCK();
++ return err;
++}
++
++/*
++ * Return an unused driver id. Used by drivers prior to registering
++ * support for the algorithms they handle.
++ */
++int32_t
++crypto_get_driverid(device_t dev, int flags)
++{
++ struct cryptocap *newdrv;
++ int i;
++ unsigned long d_flags;
++
++ if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
++ printf("%s: no flags specified when registering driver\n",
++ device_get_nameunit(dev));
++ return -1;
++ }
++
++ CRYPTO_DRIVER_LOCK();
++
++ for (i = 0; i < crypto_drivers_num; i++) {
++ if (crypto_drivers[i].cc_dev == NULL &&
++ (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
++ break;
++ }
++ }
++
++ /* Out of entries, allocate some more. */
++ if (i == crypto_drivers_num) {
++ /* Be careful about wrap-around. */
++ if (2 * crypto_drivers_num <= crypto_drivers_num) {
++ CRYPTO_DRIVER_UNLOCK();
++ printk("crypto: driver count wraparound!\n");
++ return -1;
++ }
++
++ newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
++ GFP_KERNEL);
++ if (newdrv == NULL) {
++ CRYPTO_DRIVER_UNLOCK();
++ printk("crypto: no space to expand driver table!\n");
++ return -1;
++ }
++
++ memcpy(newdrv, crypto_drivers,
++ crypto_drivers_num * sizeof(struct cryptocap));
++ memset(&newdrv[crypto_drivers_num], 0,
++ crypto_drivers_num * sizeof(struct cryptocap));
++
++ crypto_drivers_num *= 2;
++
++ kfree(crypto_drivers);
++ crypto_drivers = newdrv;
++ }
++
++ /* NB: state is zero'd on free */
++ crypto_drivers[i].cc_sessions = 1; /* Mark */
++ crypto_drivers[i].cc_dev = dev;
++ crypto_drivers[i].cc_flags = flags;
++ if (bootverbose)
++ printf("crypto: assign %s driver id %u, flags %u\n",
++ device_get_nameunit(dev), i, flags);
++
++ CRYPTO_DRIVER_UNLOCK();
++
++ return i;
++}
++
++/*
++ * Lookup a driver by name. We match against the full device
++ * name and unit, and against just the name. The latter gives
++ * us a simple widlcarding by device name. On success return the
++ * driver/hardware identifier; otherwise return -1.
++ */
++int
++crypto_find_driver(const char *match)
++{
++ int i, len = strlen(match);
++ unsigned long d_flags;
++
++ CRYPTO_DRIVER_LOCK();
++ for (i = 0; i < crypto_drivers_num; i++) {
++ device_t dev = crypto_drivers[i].cc_dev;
++ if (dev == NULL ||
++ (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
++ continue;
++ if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
++ strncmp(match, device_get_name(dev), len) == 0)
++ break;
++ }
++ CRYPTO_DRIVER_UNLOCK();
++ return i < crypto_drivers_num ? i : -1;
++}
++
++/*
++ * Return the device_t for the specified driver or NULL
++ * if the driver identifier is invalid.
++ */
++device_t
++crypto_find_device_byhid(int hid)
++{
++ struct cryptocap *cap = crypto_checkdriver(hid);
++ return cap != NULL ? cap->cc_dev : NULL;
++}
++
++/*
++ * Return the device/driver capabilities.
++ */
++int
++crypto_getcaps(int hid)
++{
++ struct cryptocap *cap = crypto_checkdriver(hid);
++ return cap != NULL ? cap->cc_flags : 0;
++}
++
++/*
++ * Register support for a key-related algorithm. This routine
++ * is called once for each algorithm supported a driver.
++ */
++int
++crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
++{
++ struct cryptocap *cap;
++ int err;
++ unsigned long d_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++ CRYPTO_DRIVER_LOCK();
++
++ cap = crypto_checkdriver(driverid);
++ if (cap != NULL &&
++ (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
++ /*
++ * XXX Do some performance testing to determine placing.
++ * XXX We probably need an auxiliary data structure that
++ * XXX describes relative performances.
++ */
++
++ cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
++ if (bootverbose)
++ printf("crypto: %s registers key alg %u flags %u\n"
++ , device_get_nameunit(cap->cc_dev)
++ , kalg
++ , flags
++ );
++ err = 0;
++ } else
++ err = EINVAL;
++
++ CRYPTO_DRIVER_UNLOCK();
++ return err;
++}
++
++/*
++ * Register support for a non-key-related algorithm. This routine
++ * is called once for each such algorithm supported by a driver.
++ */
++int
++crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
++ u_int32_t flags)
++{
++ struct cryptocap *cap;
++ int err;
++ unsigned long d_flags;
++
++ dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
++ driverid, alg, maxoplen, flags);
++
++ CRYPTO_DRIVER_LOCK();
++
++ cap = crypto_checkdriver(driverid);
++ /* NB: algorithms are in the range [1..max] */
++ if (cap != NULL &&
++ (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
++ /*
++ * XXX Do some performance testing to determine placing.
++ * XXX We probably need an auxiliary data structure that
++ * XXX describes relative performances.
++ */
++
++ cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
++ cap->cc_max_op_len[alg] = maxoplen;
++ if (bootverbose)
++ printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
++ , device_get_nameunit(cap->cc_dev)
++ , alg
++ , flags
++ , maxoplen
++ );
++ cap->cc_sessions = 0; /* Unmark */
++ err = 0;
++ } else
++ err = EINVAL;
++
++ CRYPTO_DRIVER_UNLOCK();
++ return err;
++}
++
++static void
++driver_finis(struct cryptocap *cap)
++{
++ u_int32_t ses, kops;
++
++ CRYPTO_DRIVER_ASSERT();
++
++ ses = cap->cc_sessions;
++ kops = cap->cc_koperations;
++ bzero(cap, sizeof(*cap));
++ if (ses != 0 || kops != 0) {
++ /*
++ * If there are pending sessions,
++ * just mark as invalid.
++ */
++ cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
++ cap->cc_sessions = ses;
++ cap->cc_koperations = kops;
++ }
++}
++
++/*
++ * Unregister a crypto driver. If there are pending sessions using it,
++ * leave enough information around so that subsequent calls using those
++ * sessions will correctly detect the driver has been unregistered and
++ * reroute requests.
++ */
++int
++crypto_unregister(u_int32_t driverid, int alg)
++{
++ struct cryptocap *cap;
++ int i, err;
++ unsigned long d_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++ CRYPTO_DRIVER_LOCK();
++
++ cap = crypto_checkdriver(driverid);
++ if (cap != NULL &&
++ (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
++ cap->cc_alg[alg] != 0) {
++ cap->cc_alg[alg] = 0;
++ cap->cc_max_op_len[alg] = 0;
++
++ /* Was this the last algorithm ? */
++ for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
++ if (cap->cc_alg[i] != 0)
++ break;
++
++ if (i == CRYPTO_ALGORITHM_MAX + 1)
++ driver_finis(cap);
++ err = 0;
++ } else
++ err = EINVAL;
++ CRYPTO_DRIVER_UNLOCK();
++ return err;
++}
++
++/*
++ * Unregister all algorithms associated with a crypto driver.
++ * If there are pending sessions using it, leave enough information
++ * around so that subsequent calls using those sessions will
++ * correctly detect the driver has been unregistered and reroute
++ * requests.
++ */
++int
++crypto_unregister_all(u_int32_t driverid)
++{
++ struct cryptocap *cap;
++ int err;
++ unsigned long d_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++ CRYPTO_DRIVER_LOCK();
++ cap = crypto_checkdriver(driverid);
++ if (cap != NULL) {
++ driver_finis(cap);
++ err = 0;
++ } else
++ err = EINVAL;
++ CRYPTO_DRIVER_UNLOCK();
++
++ return err;
++}
++
++/*
++ * Clear blockage on a driver. The what parameter indicates whether
++ * the driver is now ready for cryptop's and/or cryptokop's.
++ */
++int
++crypto_unblock(u_int32_t driverid, int what)
++{
++ struct cryptocap *cap;
++ int err;
++ unsigned long q_flags;
++
++ CRYPTO_Q_LOCK();
++ cap = crypto_checkdriver(driverid);
++ if (cap != NULL) {
++ if (what & CRYPTO_SYMQ) {
++ cap->cc_qblocked = 0;
++ crypto_all_qblocked = 0;
++ }
++ if (what & CRYPTO_ASYMQ) {
++ cap->cc_kqblocked = 0;
++ crypto_all_kqblocked = 0;
++ }
++ if (crp_sleep)
++ wake_up_interruptible(&cryptoproc_wait);
++ err = 0;
++ } else
++ err = EINVAL;
++ CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
++
++ return err;
++}
++
++/*
++ * Add a crypto request to a queue, to be processed by the kernel thread.
++ */
++int
++crypto_dispatch(struct cryptop *crp)
++{
++ struct cryptocap *cap;
++ int result = -1;
++ unsigned long q_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ cryptostats.cs_ops++;
++
++ CRYPTO_Q_LOCK();
++ if (crypto_q_cnt >= crypto_q_max) {
++ CRYPTO_Q_UNLOCK();
++ cryptostats.cs_drops++;
++ return ENOMEM;
++ }
++ crypto_q_cnt++;
++
++ /*
++ * Caller marked the request to be processed immediately; dispatch
++ * it directly to the driver unless the driver is currently blocked.
++ */
++ if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
++ int hid = CRYPTO_SESID2HID(crp->crp_sid);
++ cap = crypto_checkdriver(hid);
++ /* Driver cannot disappear when there is an active session. */
++ KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
++ if (!cap->cc_qblocked) {
++ crypto_all_qblocked = 0;
++ crypto_drivers[hid].cc_qblocked = 1;
++ CRYPTO_Q_UNLOCK();
++ result = crypto_invoke(cap, crp, 0);
++ CRYPTO_Q_LOCK();
++ if (result != ERESTART)
++ crypto_drivers[hid].cc_qblocked = 0;
++ }
++ }
++ if (result == ERESTART) {
++ /*
++ * The driver ran out of resources, mark the
++ * driver ``blocked'' for cryptop's and put
++ * the request back in the queue. It would
++ * best to put the request back where we got
++ * it but that's hard so for now we put it
++ * at the front. This should be ok; putting
++ * it at the end does not work.
++ */
++ list_add(&crp->crp_next, &crp_q);
++ cryptostats.cs_blocks++;
++ } else if (result == -1) {
++ TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
++ }
++ if (crp_sleep)
++ wake_up_interruptible(&cryptoproc_wait);
++ CRYPTO_Q_UNLOCK();
++ return 0;
++}
++
++/*
++ * Add an asymetric crypto request to a queue,
++ * to be processed by the kernel thread.
++ */
++int
++crypto_kdispatch(struct cryptkop *krp)
++{
++ int error;
++ unsigned long q_flags;
++
++ cryptostats.cs_kops++;
++
++ error = crypto_kinvoke(krp, krp->krp_crid);
++ if (error == ERESTART) {
++ CRYPTO_Q_LOCK();
++ TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
++ if (crp_sleep)
++ wake_up_interruptible(&cryptoproc_wait);
++ CRYPTO_Q_UNLOCK();
++ error = 0;
++ }
++ return error;
++}
++
++/*
++ * Verify a driver is suitable for the specified operation.
++ */
++static __inline int
++kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
++{
++ return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
++}
++
++/*
++ * Select a driver for an asym operation. The driver must
++ * support the necessary algorithm. The caller can constrain
++ * which device is selected with the flags parameter. The
++ * algorithm we use here is pretty stupid; just use the first
++ * driver that supports the algorithms we need. If there are
++ * multiple suitable drivers we choose the driver with the
++ * fewest active operations. We prefer hardware-backed
++ * drivers to software ones when either may be used.
++ */
++static struct cryptocap *
++crypto_select_kdriver(const struct cryptkop *krp, int flags)
++{
++ struct cryptocap *cap, *best, *blocked;
++ int match, hid;
++
++ CRYPTO_DRIVER_ASSERT();
++
++ /*
++ * Look first for hardware crypto devices if permitted.
++ */
++ if (flags & CRYPTOCAP_F_HARDWARE)
++ match = CRYPTOCAP_F_HARDWARE;
++ else
++ match = CRYPTOCAP_F_SOFTWARE;
++ best = NULL;
++ blocked = NULL;
++again:
++ for (hid = 0; hid < crypto_drivers_num; hid++) {
++ cap = &crypto_drivers[hid];
++ /*
++ * If it's not initialized, is in the process of
++ * going away, or is not appropriate (hardware
++ * or software based on match), then skip.
++ */
++ if (cap->cc_dev == NULL ||
++ (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
++ (cap->cc_flags & match) == 0)
++ continue;
++
++ /* verify all the algorithms are supported. */
++ if (kdriver_suitable(cap, krp)) {
++ if (best == NULL ||
++ cap->cc_koperations < best->cc_koperations)
++ best = cap;
++ }
++ }
++ if (best != NULL)
++ return best;
++ if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
++ /* sort of an Algol 68-style for loop */
++ match = CRYPTOCAP_F_SOFTWARE;
++ goto again;
++ }
++ return best;
++}
++
++/*
++ * Dispatch an assymetric crypto request.
++ */
++static int
++crypto_kinvoke(struct cryptkop *krp, int crid)
++{
++ struct cryptocap *cap = NULL;
++ int error;
++ unsigned long d_flags;
++
++ KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
++ KASSERT(krp->krp_callback != NULL,
++ ("%s: krp->crp_callback == NULL", __func__));
++
++ CRYPTO_DRIVER_LOCK();
++ if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
++ cap = crypto_checkdriver(crid);
++ if (cap != NULL) {
++ /*
++ * Driver present, it must support the necessary
++ * algorithm and, if s/w drivers are excluded,
++ * it must be registered as hardware-backed.
++ */
++ if (!kdriver_suitable(cap, krp) ||
++ (!crypto_devallowsoft &&
++ (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
++ cap = NULL;
++ }
++ } else {
++ /*
++ * No requested driver; select based on crid flags.
++ */
++ if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
++ crid &= ~CRYPTOCAP_F_SOFTWARE;
++ cap = crypto_select_kdriver(krp, crid);
++ }
++ if (cap != NULL && !cap->cc_kqblocked) {
++ krp->krp_hid = cap - crypto_drivers;
++ cap->cc_koperations++;
++ CRYPTO_DRIVER_UNLOCK();
++ error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
++ CRYPTO_DRIVER_LOCK();
++ if (error == ERESTART) {
++ cap->cc_koperations--;
++ CRYPTO_DRIVER_UNLOCK();
++ return (error);
++ }
++ /* return the actual device used */
++ krp->krp_crid = krp->krp_hid;
++ } else {
++ /*
++ * NB: cap is !NULL if device is blocked; in
++ * that case return ERESTART so the operation
++ * is resubmitted if possible.
++ */
++ error = (cap == NULL) ? ENODEV : ERESTART;
++ }
++ CRYPTO_DRIVER_UNLOCK();
++
++ if (error) {
++ krp->krp_status = error;
++ crypto_kdone(krp);
++ }
++ return 0;
++}
++
++
++/*
++ * Dispatch a crypto request to the appropriate crypto devices.
++ */
++static int
++crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
++{
++ KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
++ KASSERT(crp->crp_callback != NULL,
++ ("%s: crp->crp_callback == NULL", __func__));
++ KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
++
++ dprintk("%s()\n", __FUNCTION__);
++
++#ifdef CRYPTO_TIMING
++ if (crypto_timing)
++ crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
++#endif
++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
++ struct cryptodesc *crd;
++ u_int64_t nid;
++
++ /*
++ * Driver has unregistered; migrate the session and return
++ * an error to the caller so they'll resubmit the op.
++ *
++ * XXX: What if there are more already queued requests for this
++ * session?
++ */
++ crypto_freesession(crp->crp_sid);
++
++ for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
++ crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
++
++ /* XXX propagate flags from initial session? */
++ if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
++ CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
++ crp->crp_sid = nid;
++
++ crp->crp_etype = EAGAIN;
++ crypto_done(crp);
++ return 0;
++ } else {
++ /*
++ * Invoke the driver to process the request.
++ */
++ return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
++ }
++}
++
++/*
++ * Release a set of crypto descriptors.
++ */
++void
++crypto_freereq(struct cryptop *crp)
++{
++ struct cryptodesc *crd;
++
++ if (crp == NULL)
++ return;
++
++#ifdef DIAGNOSTIC
++ {
++ struct cryptop *crp2;
++ unsigned long q_flags;
++
++ CRYPTO_Q_LOCK();
++ TAILQ_FOREACH(crp2, &crp_q, crp_next) {
++ KASSERT(crp2 != crp,
++ ("Freeing cryptop from the crypto queue (%p).",
++ crp));
++ }
++ CRYPTO_Q_UNLOCK();
++ CRYPTO_RETQ_LOCK();
++ TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
++ KASSERT(crp2 != crp,
++ ("Freeing cryptop from the return queue (%p).",
++ crp));
++ }
++ CRYPTO_RETQ_UNLOCK();
++ }
++#endif
++
++ while ((crd = crp->crp_desc) != NULL) {
++ crp->crp_desc = crd->crd_next;
++ kmem_cache_free(cryptodesc_zone, crd);
++ }
++ kmem_cache_free(cryptop_zone, crp);
++}
++
++/*
++ * Acquire a set of crypto descriptors.
++ */
++struct cryptop *
++crypto_getreq(int num)
++{
++ struct cryptodesc *crd;
++ struct cryptop *crp;
++
++ crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
++ if (crp != NULL) {
++ memset(crp, 0, sizeof(*crp));
++ INIT_LIST_HEAD(&crp->crp_next);
++ init_waitqueue_head(&crp->crp_waitq);
++ while (num--) {
++ crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
++ if (crd == NULL) {
++ crypto_freereq(crp);
++ return NULL;
++ }
++ memset(crd, 0, sizeof(*crd));
++ crd->crd_next = crp->crp_desc;
++ crp->crp_desc = crd;
++ }
++ }
++ return crp;
++}
++
++/*
++ * Invoke the callback on behalf of the driver.
++ */
++void
++crypto_done(struct cryptop *crp)
++{
++ unsigned long q_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
++ crp->crp_flags |= CRYPTO_F_DONE;
++ CRYPTO_Q_LOCK();
++ crypto_q_cnt--;
++ CRYPTO_Q_UNLOCK();
++ } else
++ printk("crypto: crypto_done op already done, flags 0x%x",
++ crp->crp_flags);
++ if (crp->crp_etype != 0)
++ cryptostats.cs_errs++;
++ /*
++ * CBIMM means unconditionally do the callback immediately;
++ * CBIFSYNC means do the callback immediately only if the
++ * operation was done synchronously. Both are used to avoid
++ * doing extraneous context switches; the latter is mostly
++ * used with the software crypto driver.
++ */
++ if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
++ ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
++ (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
++ /*
++ * Do the callback directly. This is ok when the
++ * callback routine does very little (e.g. the
++ * /dev/crypto callback method just does a wakeup).
++ */
++ crp->crp_callback(crp);
++ } else {
++ unsigned long r_flags;
++ /*
++ * Normal case; queue the callback for the thread.
++ */
++ CRYPTO_RETQ_LOCK();
++ if (CRYPTO_RETQ_EMPTY())
++ wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
++ TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
++ CRYPTO_RETQ_UNLOCK();
++ }
++}
++
++/*
++ * Invoke the callback on behalf of the driver.
++ */
++void
++crypto_kdone(struct cryptkop *krp)
++{
++ struct cryptocap *cap;
++ unsigned long d_flags;
++
++ if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
++ printk("crypto: crypto_kdone op already done, flags 0x%x",
++ krp->krp_flags);
++ krp->krp_flags |= CRYPTO_KF_DONE;
++ if (krp->krp_status != 0)
++ cryptostats.cs_kerrs++;
++
++ CRYPTO_DRIVER_LOCK();
++ /* XXX: What if driver is loaded in the meantime? */
++ if (krp->krp_hid < crypto_drivers_num) {
++ cap = &crypto_drivers[krp->krp_hid];
++ cap->cc_koperations--;
++ KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
++ if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
++ crypto_remove(cap);
++ }
++ CRYPTO_DRIVER_UNLOCK();
++
++ /*
++ * CBIMM means unconditionally do the callback immediately;
++ * This is used to avoid doing extraneous context switches
++ */
++ if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
++ /*
++ * Do the callback directly. This is ok when the
++ * callback routine does very little (e.g. the
++ * /dev/crypto callback method just does a wakeup).
++ */
++ krp->krp_callback(krp);
++ } else {
++ unsigned long r_flags;
++ /*
++ * Normal case; queue the callback for the thread.
++ */
++ CRYPTO_RETQ_LOCK();
++ if (CRYPTO_RETQ_EMPTY())
++ wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
++ TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
++ CRYPTO_RETQ_UNLOCK();
++ }
++}
++
++int
++crypto_getfeat(int *featp)
++{
++ int hid, kalg, feat = 0;
++ unsigned long d_flags;
++
++ CRYPTO_DRIVER_LOCK();
++ for (hid = 0; hid < crypto_drivers_num; hid++) {
++ const struct cryptocap *cap = &crypto_drivers[hid];
++
++ if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
++ !crypto_devallowsoft) {
++ continue;
++ }
++ for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
++ if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
++ feat |= 1 << kalg;
++ }
++ CRYPTO_DRIVER_UNLOCK();
++ *featp = feat;
++ return (0);
++}
++
++/*
++ * Crypto thread, dispatches crypto requests.
++ */
++static int
++crypto_proc(void *arg)
++{
++ struct cryptop *crp, *submit;
++ struct cryptkop *krp, *krpp;
++ struct cryptocap *cap;
++ u_int32_t hid;
++ int result, hint;
++ unsigned long q_flags;
++
++ ocf_daemonize("crypto");
++
++ CRYPTO_Q_LOCK();
++ for (;;) {
++ /*
++ * we need to make sure we don't get into a busy loop with nothing
++ * to do, the two crypto_all_*blocked vars help us find out when
++ * we are all full and can do nothing on any driver or Q. If so we
++ * wait for an unblock.
++ */
++ crypto_all_qblocked = !list_empty(&crp_q);
++
++ /*
++ * Find the first element in the queue that can be
++ * processed and look-ahead to see if multiple ops
++ * are ready for the same driver.
++ */
++ submit = NULL;
++ hint = 0;
++ list_for_each_entry(crp, &crp_q, crp_next) {
++ hid = CRYPTO_SESID2HID(crp->crp_sid);
++ cap = crypto_checkdriver(hid);
++ /*
++ * Driver cannot disappear when there is an active
++ * session.
++ */
++ KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
++ __func__, __LINE__));
++ if (cap == NULL || cap->cc_dev == NULL) {
++ /* Op needs to be migrated, process it. */
++ if (submit == NULL)
++ submit = crp;
++ break;
++ }
++ if (!cap->cc_qblocked) {
++ if (submit != NULL) {
++ /*
++ * We stop on finding another op,
++ * regardless whether its for the same
++ * driver or not. We could keep
++ * searching the queue but it might be
++ * better to just use a per-driver
++ * queue instead.
++ */
++ if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
++ hint = CRYPTO_HINT_MORE;
++ break;
++ } else {
++ submit = crp;
++ if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
++ break;
++ /* keep scanning for more are q'd */
++ }
++ }
++ }
++ if (submit != NULL) {
++ hid = CRYPTO_SESID2HID(submit->crp_sid);
++ crypto_all_qblocked = 0;
++ list_del(&submit->crp_next);
++ crypto_drivers[hid].cc_qblocked = 1;
++ cap = crypto_checkdriver(hid);
++ CRYPTO_Q_UNLOCK();
++ KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
++ __func__, __LINE__));
++ result = crypto_invoke(cap, submit, hint);
++ CRYPTO_Q_LOCK();
++ if (result == ERESTART) {
++ /*
++ * The driver ran out of resources, mark the
++ * driver ``blocked'' for cryptop's and put
++ * the request back in the queue. It would
++ * best to put the request back where we got
++ * it but that's hard so for now we put it
++ * at the front. This should be ok; putting
++ * it at the end does not work.
++ */
++ /* XXX validate sid again? */
++ list_add(&submit->crp_next, &crp_q);
++ cryptostats.cs_blocks++;
++ } else
++ crypto_drivers[hid].cc_qblocked=0;
++ }
++
++ crypto_all_kqblocked = !list_empty(&crp_kq);
++
++ /* As above, but for key ops */
++ krp = NULL;
++ list_for_each_entry(krpp, &crp_kq, krp_next) {
++ cap = crypto_checkdriver(krpp->krp_hid);
++ if (cap == NULL || cap->cc_dev == NULL) {
++ /*
++ * Operation needs to be migrated, invalidate
++ * the assigned device so it will reselect a
++ * new one below. Propagate the original
++ * crid selection flags if supplied.
++ */
++ krp->krp_hid = krp->krp_crid &
++ (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
++ if (krp->krp_hid == 0)
++ krp->krp_hid =
++ CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
++ break;
++ }
++ if (!cap->cc_kqblocked) {
++ krp = krpp;
++ break;
++ }
++ }
++ if (krp != NULL) {
++ crypto_all_kqblocked = 0;
++ list_del(&krp->krp_next);
++ crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
++ CRYPTO_Q_UNLOCK();
++ result = crypto_kinvoke(krp, krp->krp_hid);
++ CRYPTO_Q_LOCK();
++ if (result == ERESTART) {
++ /*
++ * The driver ran out of resources, mark the
++ * driver ``blocked'' for cryptkop's and put
++ * the request back in the queue. It would
++ * best to put the request back where we got
++ * it but that's hard so for now we put it
++ * at the front. This should be ok; putting
++ * it at the end does not work.
++ */
++ /* XXX validate sid again? */
++ list_add(&krp->krp_next, &crp_kq);
++ cryptostats.cs_kblocks++;
++ } else
++ crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
++ }
++
++ if (submit == NULL && krp == NULL) {
++ /*
++ * Nothing more to be processed. Sleep until we're
++ * woken because there are more ops to process.
++ * This happens either by submission or by a driver
++ * becoming unblocked and notifying us through
++ * crypto_unblock. Note that when we wakeup we
++ * start processing each queue again from the
++ * front. It's not clear that it's important to
++ * preserve this ordering since ops may finish
++ * out of order if dispatched to different devices
++ * and some become blocked while others do not.
++ */
++ dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
++ __FUNCTION__,
++ list_empty(&crp_q), crypto_all_qblocked,
++ list_empty(&crp_kq), crypto_all_kqblocked);
++ CRYPTO_Q_UNLOCK();
++ crp_sleep = 1;
++ wait_event_interruptible(cryptoproc_wait,
++ !(list_empty(&crp_q) || crypto_all_qblocked) ||
++ !(list_empty(&crp_kq) || crypto_all_kqblocked) ||
++ cryptoproc == (pid_t) -1);
++ crp_sleep = 0;
++ if (signal_pending (current)) {
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_lock_irq(¤t->sigmask_lock);
++#endif
++ flush_signals(current);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_unlock_irq(¤t->sigmask_lock);
++#endif
++ }
++ CRYPTO_Q_LOCK();
++ dprintk("%s - awake\n", __FUNCTION__);
++ if (cryptoproc == (pid_t) -1)
++ break;
++ cryptostats.cs_intrs++;
++ }
++ }
++ CRYPTO_Q_UNLOCK();
++ complete_and_exit(&cryptoproc_exited, 0);
++}
++
++/*
++ * Crypto returns thread, does callbacks for processed crypto requests.
++ * Callbacks are done here, rather than in the crypto drivers, because
++ * callbacks typically are expensive and would slow interrupt handling.
++ */
++static int
++crypto_ret_proc(void *arg)
++{
++ struct cryptop *crpt;
++ struct cryptkop *krpt;
++ unsigned long r_flags;
++
++ ocf_daemonize("crypto_ret");
++
++ CRYPTO_RETQ_LOCK();
++ for (;;) {
++ /* Harvest return q's for completed ops */
++ crpt = NULL;
++ if (!list_empty(&crp_ret_q))
++ crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
++ if (crpt != NULL)
++ list_del(&crpt->crp_next);
++
++ krpt = NULL;
++ if (!list_empty(&crp_ret_kq))
++ krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
++ if (krpt != NULL)
++ list_del(&krpt->krp_next);
++
++ if (crpt != NULL || krpt != NULL) {
++ CRYPTO_RETQ_UNLOCK();
++ /*
++ * Run callbacks unlocked.
++ */
++ if (crpt != NULL)
++ crpt->crp_callback(crpt);
++ if (krpt != NULL)
++ krpt->krp_callback(krpt);
++ CRYPTO_RETQ_LOCK();
++ } else {
++ /*
++ * Nothing more to be processed. Sleep until we're
++ * woken because there are more returns to process.
++ */
++ dprintk("%s - sleeping\n", __FUNCTION__);
++ CRYPTO_RETQ_UNLOCK();
++ wait_event_interruptible(cryptoretproc_wait,
++ cryptoretproc == (pid_t) -1 ||
++ !list_empty(&crp_ret_q) ||
++ !list_empty(&crp_ret_kq));
++ if (signal_pending (current)) {
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_lock_irq(¤t->sigmask_lock);
++#endif
++ flush_signals(current);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_unlock_irq(¤t->sigmask_lock);
++#endif
++ }
++ CRYPTO_RETQ_LOCK();
++ dprintk("%s - awake\n", __FUNCTION__);
++ if (cryptoretproc == (pid_t) -1) {
++ dprintk("%s - EXITING!\n", __FUNCTION__);
++ break;
++ }
++ cryptostats.cs_rets++;
++ }
++ }
++ CRYPTO_RETQ_UNLOCK();
++ complete_and_exit(&cryptoretproc_exited, 0);
++}
++
++
++#if 0 /* should put this into /proc or something */
++static void
++db_show_drivers(void)
++{
++ int hid;
++
++ db_printf("%12s %4s %4s %8s %2s %2s\n"
++ , "Device"
++ , "Ses"
++ , "Kops"
++ , "Flags"
++ , "QB"
++ , "KB"
++ );
++ for (hid = 0; hid < crypto_drivers_num; hid++) {
++ const struct cryptocap *cap = &crypto_drivers[hid];
++ if (cap->cc_dev == NULL)
++ continue;
++ db_printf("%-12s %4u %4u %08x %2u %2u\n"
++ , device_get_nameunit(cap->cc_dev)
++ , cap->cc_sessions
++ , cap->cc_koperations
++ , cap->cc_flags
++ , cap->cc_qblocked
++ , cap->cc_kqblocked
++ );
++ }
++}
++
++DB_SHOW_COMMAND(crypto, db_show_crypto)
++{
++ struct cryptop *crp;
++
++ db_show_drivers();
++ db_printf("\n");
++
++ db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
++ "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
++ "Desc", "Callback");
++ TAILQ_FOREACH(crp, &crp_q, crp_next) {
++ db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
++ , (int) CRYPTO_SESID2HID(crp->crp_sid)
++ , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
++ , crp->crp_ilen, crp->crp_olen
++ , crp->crp_etype
++ , crp->crp_flags
++ , crp->crp_desc
++ , crp->crp_callback
++ );
++ }
++ if (!TAILQ_EMPTY(&crp_ret_q)) {
++ db_printf("\n%4s %4s %4s %8s\n",
++ "HID", "Etype", "Flags", "Callback");
++ TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
++ db_printf("%4u %4u %04x %8p\n"
++ , (int) CRYPTO_SESID2HID(crp->crp_sid)
++ , crp->crp_etype
++ , crp->crp_flags
++ , crp->crp_callback
++ );
++ }
++ }
++}
++
++DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
++{
++ struct cryptkop *krp;
++
++ db_show_drivers();
++ db_printf("\n");
++
++ db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
++ "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
++ TAILQ_FOREACH(krp, &crp_kq, krp_next) {
++ db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
++ , krp->krp_op
++ , krp->krp_status
++ , krp->krp_iparams, krp->krp_oparams
++ , krp->krp_crid, krp->krp_hid
++ , krp->krp_callback
++ );
++ }
++ if (!TAILQ_EMPTY(&crp_ret_q)) {
++ db_printf("%4s %5s %8s %4s %8s\n",
++ "Op", "Status", "CRID", "HID", "Callback");
++ TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
++ db_printf("%4u %5u %08x %4u %8p\n"
++ , krp->krp_op
++ , krp->krp_status
++ , krp->krp_crid, krp->krp_hid
++ , krp->krp_callback
++ );
++ }
++ }
++}
++#endif
++
++
++static int
++crypto_init(void)
++{
++ int error;
++
++ dprintk("%s(0x%x)\n", __FUNCTION__, (int) crypto_init);
++
++ if (crypto_initted)
++ return 0;
++ crypto_initted = 1;
++
++ spin_lock_init(&crypto_drivers_lock);
++ spin_lock_init(&crypto_q_lock);
++ spin_lock_init(&crypto_ret_q_lock);
++
++ cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
++ 0, SLAB_HWCACHE_ALIGN, NULL
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
++ , NULL
++#endif
++ );
++
++ cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
++ 0, SLAB_HWCACHE_ALIGN, NULL
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
++ , NULL
++#endif
++ );
++
++ if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
++ printk("crypto: crypto_init cannot setup crypto zones\n");
++ error = ENOMEM;
++ goto bad;
++ }
++
++ crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
++ crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
++ GFP_KERNEL);
++ if (crypto_drivers == NULL) {
++ printk("crypto: crypto_init cannot setup crypto drivers\n");
++ error = ENOMEM;
++ goto bad;
++ }
++
++ memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
++
++ init_completion(&cryptoproc_exited);
++ init_completion(&cryptoretproc_exited);
++
++ cryptoproc = 0; /* to avoid race condition where proc runs first */
++ cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES);
++ if (cryptoproc < 0) {
++ error = cryptoproc;
++ printk("crypto: crypto_init cannot start crypto thread; error %d",
++ error);
++ goto bad;
++ }
++
++ cryptoretproc = 0; /* to avoid race condition where proc runs first */
++ cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES);
++ if (cryptoretproc < 0) {
++ error = cryptoretproc;
++ printk("crypto: crypto_init cannot start cryptoret thread; error %d",
++ error);
++ goto bad;
++ }
++
++ return 0;
++bad:
++ crypto_exit();
++ return error;
++}
++
++
++static void
++crypto_exit(void)
++{
++ pid_t p;
++ unsigned long d_flags;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ /*
++ * Terminate any crypto threads.
++ */
++
++ CRYPTO_DRIVER_LOCK();
++ p = cryptoproc;
++ cryptoproc = (pid_t) -1;
++ kill_proc(p, SIGTERM, 1);
++ wake_up_interruptible(&cryptoproc_wait);
++ CRYPTO_DRIVER_UNLOCK();
++
++ wait_for_completion(&cryptoproc_exited);
++
++ CRYPTO_DRIVER_LOCK();
++ p = cryptoretproc;
++ cryptoretproc = (pid_t) -1;
++ kill_proc(p, SIGTERM, 1);
++ wake_up_interruptible(&cryptoretproc_wait);
++ CRYPTO_DRIVER_UNLOCK();
++
++ wait_for_completion(&cryptoretproc_exited);
++
++ /* XXX flush queues??? */
++
++ /*
++ * Reclaim dynamically allocated resources.
++ */
++ if (crypto_drivers != NULL)
++ kfree(crypto_drivers);
++
++ if (cryptodesc_zone != NULL)
++ kmem_cache_destroy(cryptodesc_zone);
++ if (cryptop_zone != NULL)
++ kmem_cache_destroy(cryptop_zone);
++}
++
++
++EXPORT_SYMBOL(crypto_newsession);
++EXPORT_SYMBOL(crypto_freesession);
++EXPORT_SYMBOL(crypto_get_driverid);
++EXPORT_SYMBOL(crypto_kregister);
++EXPORT_SYMBOL(crypto_register);
++EXPORT_SYMBOL(crypto_unregister);
++EXPORT_SYMBOL(crypto_unregister_all);
++EXPORT_SYMBOL(crypto_unblock);
++EXPORT_SYMBOL(crypto_dispatch);
++EXPORT_SYMBOL(crypto_kdispatch);
++EXPORT_SYMBOL(crypto_freereq);
++EXPORT_SYMBOL(crypto_getreq);
++EXPORT_SYMBOL(crypto_done);
++EXPORT_SYMBOL(crypto_kdone);
++EXPORT_SYMBOL(crypto_getfeat);
++EXPORT_SYMBOL(crypto_userasymcrypto);
++EXPORT_SYMBOL(crypto_getcaps);
++EXPORT_SYMBOL(crypto_find_driver);
++EXPORT_SYMBOL(crypto_find_device_byhid);
++
++module_init(crypto_init);
++module_exit(crypto_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/criov.c 2007-07-18 13:01:47.000000000 +1000
+@@ -0,0 +1,215 @@
++/* $OpenBSD: criov.c,v 1.9 2002/01/29 15:48:29 jason Exp $ */
++
++/*
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ * The license and original author are listed below.
++ *
++ * Copyright (c) 1999 Theo de Raadt
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++__FBSDID("$FreeBSD: src/sys/opencrypto/criov.c,v 1.5 2006/06/04 22:15:13 pjd Exp $");
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/slab.h>
++#include <linux/uio.h>
++#include <linux/skbuff.h>
++#include <linux/kernel.h>
++#include <linux/mm.h>
++#include <asm/io.h>
++
++#include <uio.h>
++#include <cryptodev.h>
++
++/*
++ * This macro is only for avoiding code duplication, as we need to skip
++ * given number of bytes in the same way in three functions below.
++ */
++#define CUIO_SKIP() do { \
++ KASSERT(off >= 0, ("%s: off %d < 0", __func__, off)); \
++ KASSERT(len >= 0, ("%s: len %d < 0", __func__, len)); \
++ while (off > 0) { \
++ KASSERT(iol >= 0, ("%s: empty in skip", __func__)); \
++ if (off < iov->iov_len) \
++ break; \
++ off -= iov->iov_len; \
++ iol--; \
++ iov++; \
++ } \
++} while (0)
++
++void
++cuio_copydata(struct uio* uio, int off, int len, caddr_t cp)
++{
++ struct iovec *iov = uio->uio_iov;
++ int iol = uio->uio_iovcnt;
++ unsigned count;
++
++ CUIO_SKIP();
++ while (len > 0) {
++ KASSERT(iol >= 0, ("%s: empty", __func__));
++ count = min((int)(iov->iov_len - off), len);
++ memcpy(cp, ((caddr_t)iov->iov_base) + off, count);
++ len -= count;
++ cp += count;
++ off = 0;
++ iol--;
++ iov++;
++ }
++}
++
++void
++cuio_copyback(struct uio* uio, int off, int len, caddr_t cp)
++{
++ struct iovec *iov = uio->uio_iov;
++ int iol = uio->uio_iovcnt;
++ unsigned count;
++
++ CUIO_SKIP();
++ while (len > 0) {
++ KASSERT(iol >= 0, ("%s: empty", __func__));
++ count = min((int)(iov->iov_len - off), len);
++ memcpy(((caddr_t)iov->iov_base) + off, cp, count);
++ len -= count;
++ cp += count;
++ off = 0;
++ iol--;
++ iov++;
++ }
++}
++
++/*
++ * Return a pointer to iov/offset of location in iovec list.
++ */
++struct iovec *
++cuio_getptr(struct uio *uio, int loc, int *off)
++{
++ struct iovec *iov = uio->uio_iov;
++ int iol = uio->uio_iovcnt;
++
++ while (loc >= 0) {
++ /* Normal end of search */
++ if (loc < iov->iov_len) {
++ *off = loc;
++ return (iov);
++ }
++
++ loc -= iov->iov_len;
++ if (iol == 0) {
++ if (loc == 0) {
++ /* Point at the end of valid data */
++ *off = iov->iov_len;
++ return (iov);
++ } else
++ return (NULL);
++ } else {
++ iov++, iol--;
++ }
++ }
++
++ return (NULL);
++}
++
++EXPORT_SYMBOL(cuio_copyback);
++EXPORT_SYMBOL(cuio_copydata);
++EXPORT_SYMBOL(cuio_getptr);
++
++
++static void
++skb_copy_bits_back(struct sk_buff *skb, int offset, caddr_t cp, int len)
++{
++ int i;
++ if (offset < skb_headlen(skb)) {
++ memcpy(skb->data + offset, cp, min_t(int, skb_headlen(skb), len));
++ len -= skb_headlen(skb);
++ cp += skb_headlen(skb);
++ }
++ offset -= skb_headlen(skb);
++ for (i = 0; len > 0 && i < skb_shinfo(skb)->nr_frags; i++) {
++ if (offset < skb_shinfo(skb)->frags[i].size) {
++ memcpy(page_address(skb_shinfo(skb)->frags[i].page) +
++ skb_shinfo(skb)->frags[i].page_offset,
++ cp, min_t(int, skb_shinfo(skb)->frags[i].size, len));
++ len -= skb_shinfo(skb)->frags[i].size;
++ cp += skb_shinfo(skb)->frags[i].size;
++ }
++ offset -= skb_shinfo(skb)->frags[i].size;
++ }
++}
++
++void
++crypto_copyback(int flags, caddr_t buf, int off, int size, caddr_t in)
++{
++
++ if ((flags & CRYPTO_F_SKBUF) != 0)
++ skb_copy_bits_back((struct sk_buff *)buf, off, in, size);
++ else if ((flags & CRYPTO_F_IOV) != 0)
++ cuio_copyback((struct uio *)buf, off, size, in);
++ else
++ bcopy(in, buf + off, size);
++}
++
++void
++crypto_copydata(int flags, caddr_t buf, int off, int size, caddr_t out)
++{
++
++ if ((flags & CRYPTO_F_SKBUF) != 0)
++ skb_copy_bits((struct sk_buff *)buf, off, out, size);
++ else if ((flags & CRYPTO_F_IOV) != 0)
++ cuio_copydata((struct uio *)buf, off, size, out);
++ else
++ bcopy(buf + off, out, size);
++}
++
++int
++crypto_apply(int flags, caddr_t buf, int off, int len,
++ int (*f)(void *, void *, u_int), void *arg)
++{
++#if 0
++ int error;
++
++ if ((flags & CRYPTO_F_SKBUF) != 0)
++ error = XXXXXX((struct mbuf *)buf, off, len, f, arg);
++ else if ((flags & CRYPTO_F_IOV) != 0)
++ error = cuio_apply((struct uio *)buf, off, len, f, arg);
++ else
++ error = (*f)(arg, buf + off, len);
++ return (error);
++#else
++ KASSERT(0, ("crypto_apply not implemented!\n"));
++#endif
++ return 0;
++}
++
++EXPORT_SYMBOL(crypto_copyback);
++EXPORT_SYMBOL(crypto_copydata);
++EXPORT_SYMBOL(crypto_apply);
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/uio.h 2007-07-03 09:52:33.000000000 +1000
+@@ -0,0 +1,54 @@
++#ifndef _OCF_UIO_H_
++#define _OCF_UIO_H_
++
++#include <linux/uio.h>
++
++/*
++ * The linux uio.h doesn't have all we need. To be fully api compatible
++ * with the BSD cryptodev, we need to keep this around. Perhaps this can
++ * be moved back into the linux/uio.h
++ *
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ * ---------------------------------------------------------------------------
++ */
++
++struct uio {
++ struct iovec *uio_iov;
++ int uio_iovcnt;
++ off_t uio_offset;
++ int uio_resid;
++#if 0
++ enum uio_seg uio_segflg;
++ enum uio_rw uio_rw;
++ struct thread *uio_td;
++#endif
++};
++
++#endif
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/talitos/talitos.c 2008-04-01 15:48:31.000000000 +1000
+@@ -0,0 +1,1359 @@
++/*
++ * crypto/ocf/talitos/talitos.c
++ *
++ * An OCF-Linux module that uses Freescale's SEC to do the crypto.
++ * Based on crypto/ocf/hifn and crypto/ocf/safe OCF drivers
++ *
++ * Copyright (c) 2006 Freescale Semiconductor, Inc.
++ *
++ * This code written by Kim A. B. Phillips <kim.phillips@freescale.com>
++ * some code copied from files with the following:
++ * Copyright (C) 2004-2007 David McCullough <david_mccullough@securecomputing.com
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * ---------------------------------------------------------------------------
++ *
++ * NOTES:
++ *
++ * The Freescale SEC (also known as 'talitos') resides on the
++ * internal bus, and runs asynchronous to the processor core. It has
++ * a wide gamut of cryptographic acceleration features, including single-
++ * pass IPsec (also known as algorithm chaining). To properly utilize
++ * all of the SEC's performance enhancing features, further reworking
++ * of higher level code (framework, applications) will be necessary.
++ *
++ * The following table shows which SEC version is present in which devices:
++ *
++ * Devices SEC version
++ *
++ * 8272, 8248 SEC 1.0
++ * 885, 875 SEC 1.2
++ * 8555E, 8541E SEC 2.0
++ * 8349E SEC 2.01
++ * 8548E SEC 2.1
++ *
++ * The following table shows the features offered by each SEC version:
++ *
++ * Max. chan-
++ * version Bus I/F Clock nels DEU AESU AFEU MDEU PKEU RNG KEU
++ *
++ * SEC 1.0 internal 64b 100MHz 4 1 1 1 1 1 1 0
++ * SEC 1.2 internal 32b 66MHz 1 1 1 0 1 0 0 0
++ * SEC 2.0 internal 64b 166MHz 4 1 1 1 1 1 1 0
++ * SEC 2.01 internal 64b 166MHz 4 1 1 1 1 1 1 0
++ * SEC 2.1 internal 64b 333MHz 4 1 1 1 1 1 1 1
++ *
++ * Each execution unit in the SEC has two modes of execution; channel and
++ * slave/debug. This driver employs the channel infrastructure in the
++ * device for convenience. Only the RNG is directly accessed due to the
++ * convenience of its random fifo pool. The relationship between the
++ * channels and execution units is depicted in the following diagram:
++ *
++ * ------- ------------
++ * ---| ch0 |---| |
++ * ------- | |
++ * | |------+-------+-------+-------+------------
++ * ------- | | | | | | |
++ * ---| ch1 |---| | | | | | |
++ * ------- | | ------ ------ ------ ------ ------
++ * |controller| |DEU | |AESU| |MDEU| |PKEU| ... |RNG |
++ * ------- | | ------ ------ ------ ------ ------
++ * ---| ch2 |---| | | | | | |
++ * ------- | | | | | | |
++ * | |------+-------+-------+-------+------------
++ * ------- | |
++ * ---| ch3 |---| |
++ * ------- ------------
++ *
++ * Channel ch0 may drive an aes operation to the aes unit (AESU),
++ * and, at the same time, ch1 may drive a message digest operation
++ * to the mdeu. Each channel has an input descriptor FIFO, and the
++ * FIFO can contain, e.g. on the 8541E, up to 24 entries, before a
++ * a buffer overrun error is triggered. The controller is responsible
++ * for fetching the data from descriptor pointers, and passing the
++ * data to the appropriate EUs. The controller also writes the
++ * cryptographic operation's result to memory. The SEC notifies
++ * completion by triggering an interrupt and/or setting the 1st byte
++ * of the hdr field to 0xff.
++ *
++ * TODO:
++ * o support more algorithms
++ * o support more versions of the SEC
++ * o add support for linux 2.4
++ * o scatter-gather (sg) support
++ * o add support for public key ops (PKEU)
++ * o add statistics
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++#include <linux/random.h>
++#include <linux/skbuff.h>
++#include <asm/scatterlist.h>
++#include <linux/dma-mapping.h> /* dma_map_single() */
++#include <linux/moduleparam.h>
++
++#include <linux/version.h>
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15)
++#include <linux/platform_device.h>
++#endif
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++#include <linux/of_platform.h>
++#endif
++
++#include <cryptodev.h>
++#include <uio.h>
++
++#define DRV_NAME "talitos"
++
++#include "talitos_dev.h"
++#include "talitos_soft.h"
++
++#define read_random(p,l) get_random_bytes(p,l)
++
++const char talitos_driver_name[] = "Talitos OCF";
++const char talitos_driver_version[] = "0.2";
++
++static int talitos_newsession(device_t dev, u_int32_t *sidp,
++ struct cryptoini *cri);
++static int talitos_freesession(device_t dev, u_int64_t tid);
++static int talitos_process(device_t dev, struct cryptop *crp, int hint);
++static void dump_talitos_status(struct talitos_softc *sc);
++static int talitos_submit(struct talitos_softc *sc, struct talitos_desc *td,
++ int chsel);
++static void talitos_doneprocessing(struct talitos_softc *sc);
++static void talitos_init_device(struct talitos_softc *sc);
++static void talitos_reset_device_master(struct talitos_softc *sc);
++static void talitos_reset_device(struct talitos_softc *sc);
++static void talitos_errorprocessing(struct talitos_softc *sc);
++#ifdef CONFIG_PPC_MERGE
++static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match);
++static int talitos_remove(struct of_device *ofdev);
++#else
++static int talitos_probe(struct platform_device *pdev);
++static int talitos_remove(struct platform_device *pdev);
++#endif
++#ifdef CONFIG_OCF_RANDOMHARVEST
++static int talitos_read_random(void *arg, u_int32_t *buf, int maxwords);
++static void talitos_rng_init(struct talitos_softc *sc);
++#endif
++
++static device_method_t talitos_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, talitos_newsession),
++ DEVMETHOD(cryptodev_freesession,talitos_freesession),
++ DEVMETHOD(cryptodev_process, talitos_process),
++};
++
++#define debug talitos_debug
++int talitos_debug = 0;
++module_param(talitos_debug, int, 0644);
++MODULE_PARM_DESC(talitos_debug, "Enable debug");
++
++static inline void talitos_write(volatile unsigned *addr, u32 val)
++{
++ out_be32(addr, val);
++}
++
++static inline u32 talitos_read(volatile unsigned *addr)
++{
++ u32 val;
++ val = in_be32(addr);
++ return val;
++}
++
++static void dump_talitos_status(struct talitos_softc *sc)
++{
++ unsigned int v, v_hi, i, *ptr;
++ v = talitos_read(sc->sc_base_addr + TALITOS_MCR);
++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_MCR_HI);
++ printk(KERN_INFO "%s: MCR 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), v, v_hi);
++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR);
++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI);
++ printk(KERN_INFO "%s: IMR 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), v, v_hi);
++ v = talitos_read(sc->sc_base_addr + TALITOS_ISR);
++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI);
++ printk(KERN_INFO "%s: ISR 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), v, v_hi);
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CDPR);
++ v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CDPR_HI);
++ printk(KERN_INFO "%s: CDPR ch%d 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), i, v, v_hi);
++ }
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CCPSR);
++ v_hi = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CCPSR_HI);
++ printk(KERN_INFO "%s: CCPSR ch%d 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), i, v, v_hi);
++ }
++ ptr = sc->sc_base_addr + TALITOS_CH_DESCBUF;
++ for (i = 0; i < 16; i++) {
++ v = talitos_read(ptr++); v_hi = talitos_read(ptr++);
++ printk(KERN_INFO "%s: DESCBUF ch0 0x%08x_%08x (tdp%02d)\n",
++ device_get_nameunit(sc->sc_cdev), v, v_hi, i);
++ }
++ return;
++}
++
++
++#ifdef CONFIG_OCF_RANDOMHARVEST
++/*
++ * pull random numbers off the RNG FIFO, not exceeding amount available
++ */
++static int
++talitos_read_random(void *arg, u_int32_t *buf, int maxwords)
++{
++ struct talitos_softc *sc = (struct talitos_softc *) arg;
++ int rc;
++ u_int32_t v;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /* check for things like FIFO underflow */
++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI);
++ if (unlikely(v)) {
++ printk(KERN_ERR "%s: RNGISR_HI error %08x\n",
++ device_get_nameunit(sc->sc_cdev), v);
++ return 0;
++ }
++ /*
++ * OFL is number of available 64-bit words,
++ * shift and convert to a 32-bit word count
++ */
++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI);
++ v = (v & TALITOS_RNGSR_HI_OFL) >> (16 - 1);
++ if (maxwords > v)
++ maxwords = v;
++ for (rc = 0; rc < maxwords; rc++) {
++ buf[rc] = talitos_read(sc->sc_base_addr +
++ TALITOS_RNG_FIFO + rc*sizeof(u_int32_t));
++ }
++ if (maxwords & 1) {
++ /*
++ * RNG will complain with an AE in the RNGISR
++ * if we don't complete the pairs of 32-bit reads
++ * to its 64-bit register based FIFO
++ */
++ v = talitos_read(sc->sc_base_addr +
++ TALITOS_RNG_FIFO + rc*sizeof(u_int32_t));
++ }
++
++ return rc;
++}
++
++static void
++talitos_rng_init(struct talitos_softc *sc)
++{
++ u_int32_t v;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ /* reset RNG EU */
++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGRCR_HI);
++ v |= TALITOS_RNGRCR_HI_SR;
++ talitos_write(sc->sc_base_addr + TALITOS_RNGRCR_HI, v);
++ while ((talitos_read(sc->sc_base_addr + TALITOS_RNGSR_HI)
++ & TALITOS_RNGSR_HI_RD) == 0)
++ cpu_relax();
++ /*
++ * we tell the RNG to start filling the RNG FIFO
++ * by writing the RNGDSR
++ */
++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGDSR_HI);
++ talitos_write(sc->sc_base_addr + TALITOS_RNGDSR_HI, v);
++ /*
++ * 64 bits of data will be pushed onto the FIFO every
++ * 256 SEC cycles until the FIFO is full. The RNG then
++ * attempts to keep the FIFO full.
++ */
++ v = talitos_read(sc->sc_base_addr + TALITOS_RNGISR_HI);
++ if (v) {
++ printk(KERN_ERR "%s: RNGISR_HI error %08x\n",
++ device_get_nameunit(sc->sc_cdev), v);
++ return;
++ }
++ /*
++ * n.b. we need to add a FIPS test here - if the RNG is going
++ * to fail, it's going to fail at reset time
++ */
++ return;
++}
++#endif /* CONFIG_OCF_RANDOMHARVEST */
++
++/*
++ * Generate a new software session.
++ */
++static int
++talitos_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
++{
++ struct cryptoini *c, *encini = NULL, *macini = NULL;
++ struct talitos_softc *sc = device_get_softc(dev);
++ struct talitos_session *ses = NULL;
++ int sesn;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ if (sidp == NULL || cri == NULL || sc == NULL) {
++ DPRINTF("%s,%d - EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++ for (c = cri; c != NULL; c = c->cri_next) {
++ if (c->cri_alg == CRYPTO_MD5 ||
++ c->cri_alg == CRYPTO_MD5_HMAC ||
++ c->cri_alg == CRYPTO_SHA1 ||
++ c->cri_alg == CRYPTO_SHA1_HMAC ||
++ c->cri_alg == CRYPTO_NULL_HMAC) {
++ if (macini)
++ return EINVAL;
++ macini = c;
++ } else if (c->cri_alg == CRYPTO_DES_CBC ||
++ c->cri_alg == CRYPTO_3DES_CBC ||
++ c->cri_alg == CRYPTO_AES_CBC ||
++ c->cri_alg == CRYPTO_NULL_CBC) {
++ if (encini)
++ return EINVAL;
++ encini = c;
++ } else {
++ DPRINTF("UNKNOWN c->cri_alg %d\n", encini->cri_alg);
++ return EINVAL;
++ }
++ }
++ if (encini == NULL && macini == NULL)
++ return EINVAL;
++ if (encini) {
++ /* validate key length */
++ switch (encini->cri_alg) {
++ case CRYPTO_DES_CBC:
++ if (encini->cri_klen != 64)
++ return EINVAL;
++ break;
++ case CRYPTO_3DES_CBC:
++ if (encini->cri_klen != 192) {
++ return EINVAL;
++ }
++ break;
++ case CRYPTO_AES_CBC:
++ if (encini->cri_klen != 128 &&
++ encini->cri_klen != 192 &&
++ encini->cri_klen != 256)
++ return EINVAL;
++ break;
++ default:
++ DPRINTF("UNKNOWN encini->cri_alg %d\n",
++ encini->cri_alg);
++ return EINVAL;
++ }
++ }
++
++ if (sc->sc_sessions == NULL) {
++ ses = sc->sc_sessions = (struct talitos_session *)
++ kmalloc(sizeof(struct talitos_session), SLAB_ATOMIC);
++ if (ses == NULL)
++ return ENOMEM;
++ memset(ses, 0, sizeof(struct talitos_session));
++ sesn = 0;
++ sc->sc_nsessions = 1;
++ } else {
++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
++ if (sc->sc_sessions[sesn].ses_used == 0) {
++ ses = &sc->sc_sessions[sesn];
++ break;
++ }
++ }
++
++ if (ses == NULL) {
++ /* allocating session */
++ sesn = sc->sc_nsessions;
++ ses = (struct talitos_session *) kmalloc(
++ (sesn + 1) * sizeof(struct talitos_session),
++ SLAB_ATOMIC);
++ if (ses == NULL)
++ return ENOMEM;
++ memset(ses, 0,
++ (sesn + 1) * sizeof(struct talitos_session));
++ memcpy(ses, sc->sc_sessions,
++ sesn * sizeof(struct talitos_session));
++ memset(sc->sc_sessions, 0,
++ sesn * sizeof(struct talitos_session));
++ kfree(sc->sc_sessions);
++ sc->sc_sessions = ses;
++ ses = &sc->sc_sessions[sesn];
++ sc->sc_nsessions++;
++ }
++ }
++
++ ses->ses_used = 1;
++
++ if (encini) {
++ /* get an IV */
++ /* XXX may read fewer than requested */
++ read_random(ses->ses_iv, sizeof(ses->ses_iv));
++
++ ses->ses_klen = (encini->cri_klen + 7) / 8;
++ memcpy(ses->ses_key, encini->cri_key, ses->ses_klen);
++ if (macini) {
++ /* doing hash on top of cipher */
++ ses->ses_hmac_len = (macini->cri_klen + 7) / 8;
++ memcpy(ses->ses_hmac, macini->cri_key,
++ ses->ses_hmac_len);
++ }
++ } else if (macini) {
++ /* doing hash */
++ ses->ses_klen = (macini->cri_klen + 7) / 8;
++ memcpy(ses->ses_key, macini->cri_key, ses->ses_klen);
++ }
++
++ /* back compat way of determining MSC result len */
++ if (macini) {
++ ses->ses_mlen = macini->cri_mlen;
++ if (ses->ses_mlen == 0) {
++ if (macini->cri_alg == CRYPTO_MD5_HMAC)
++ ses->ses_mlen = MD5_HASH_LEN;
++ else
++ ses->ses_mlen = SHA1_HASH_LEN;
++ }
++ }
++
++ /* really should make up a template td here,
++ * and only fill things like i/o and direction in process() */
++
++ /* assign session ID */
++ *sidp = TALITOS_SID(sc->sc_num, sesn);
++ return 0;
++}
++
++/*
++ * Deallocate a session.
++ */
++static int
++talitos_freesession(device_t dev, u_int64_t tid)
++{
++ struct talitos_softc *sc = device_get_softc(dev);
++ int session, ret;
++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
++
++ if (sc == NULL)
++ return EINVAL;
++ session = TALITOS_SESSION(sid);
++ if (session < sc->sc_nsessions) {
++ memset(&sc->sc_sessions[session], 0,
++ sizeof(sc->sc_sessions[session]));
++ ret = 0;
++ } else
++ ret = EINVAL;
++ return ret;
++}
++
++/*
++ * launch device processing - it will come back with done notification
++ * in the form of an interrupt and/or HDR_DONE_BITS in header
++ */
++static int
++talitos_submit(
++ struct talitos_softc *sc,
++ struct talitos_desc *td,
++ int chsel)
++{
++ u_int32_t v;
++
++ v = dma_map_single(NULL, td, sizeof(*td), DMA_TO_DEVICE);
++ talitos_write(sc->sc_base_addr +
++ chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF, 0);
++ talitos_write(sc->sc_base_addr +
++ chsel*TALITOS_CH_OFFSET + TALITOS_CH_FF_HI, v);
++ return 0;
++}
++
++static int
++talitos_process(device_t dev, struct cryptop *crp, int hint)
++{
++ int i, err = 0, ivsize;
++ struct talitos_softc *sc = device_get_softc(dev);
++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
++ caddr_t iv;
++ struct talitos_session *ses;
++ struct talitos_desc *td;
++ unsigned long flags;
++ /* descriptor mappings */
++ int hmac_key, hmac_data, cipher_iv, cipher_key,
++ in_fifo, out_fifo, cipher_iv_out;
++ static int chsel = -1;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
++ return EINVAL;
++ }
++ crp->crp_etype = 0;
++ if (TALITOS_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
++ return EINVAL;
++ }
++
++ ses = &sc->sc_sessions[TALITOS_SESSION(crp->crp_sid)];
++
++ /* enter the channel scheduler */
++ spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags);
++
++ /* reuse channel that already had/has requests for the required EU */
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ if (sc->sc_chnlastalg[i] == crp->crp_desc->crd_alg)
++ break;
++ }
++ if (i == sc->sc_num_channels) {
++ /*
++ * haven't seen this algo the last sc_num_channels or more
++ * use round robin in this case
++ * nb: sc->sc_num_channels must be power of 2
++ */
++ chsel = (chsel + 1) & (sc->sc_num_channels - 1);
++ } else {
++ /*
++ * matches channel with same target execution unit;
++ * use same channel in this case
++ */
++ chsel = i;
++ }
++ sc->sc_chnlastalg[chsel] = crp->crp_desc->crd_alg;
++
++ /* release the channel scheduler lock */
++ spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags);
++
++ /* acquire the selected channel fifo lock */
++ spin_lock_irqsave(&sc->sc_chnfifolock[chsel], flags);
++
++ /* find and reserve next available descriptor-cryptop pair */
++ for (i = 0; i < sc->sc_chfifo_len; i++) {
++ if (sc->sc_chnfifo[chsel][i].cf_desc.hdr == 0) {
++ /*
++ * ensure correct descriptor formation by
++ * avoiding inadvertently setting "optional" entries
++ * e.g. not using "optional" dptr2 for MD/HMAC descs
++ */
++ memset(&sc->sc_chnfifo[chsel][i].cf_desc,
++ 0, sizeof(*td));
++ /* reserve it with done notification request bit */
++ sc->sc_chnfifo[chsel][i].cf_desc.hdr |=
++ TALITOS_DONE_NOTIFY;
++ break;
++ }
++ }
++ spin_unlock_irqrestore(&sc->sc_chnfifolock[chsel], flags);
++
++ if (i == sc->sc_chfifo_len) {
++ /* fifo full */
++ err = ERESTART;
++ goto errout;
++ }
++
++ td = &sc->sc_chnfifo[chsel][i].cf_desc;
++ sc->sc_chnfifo[chsel][i].cf_crp = crp;
++
++ crd1 = crp->crp_desc;
++ if (crd1 == NULL) {
++ err = EINVAL;
++ goto errout;
++ }
++ crd2 = crd1->crd_next;
++ /* prevent compiler warning */
++ hmac_key = 0;
++ hmac_data = 0;
++ if (crd2 == NULL) {
++ td->hdr |= TD_TYPE_COMMON_NONSNOOP_NO_AFEU;
++ /* assign descriptor dword ptr mappings for this desc. type */
++ cipher_iv = 1;
++ cipher_key = 2;
++ in_fifo = 3;
++ cipher_iv_out = 5;
++ if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1 ||
++ crd1->crd_alg == CRYPTO_MD5) {
++ out_fifo = 5;
++ maccrd = crd1;
++ enccrd = NULL;
++ } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC ||
++ crd1->crd_alg == CRYPTO_ARC4) {
++ out_fifo = 4;
++ maccrd = NULL;
++ enccrd = crd1;
++ } else {
++ DPRINTF("UNKNOWN crd1->crd_alg %d\n", crd1->crd_alg);
++ err = EINVAL;
++ goto errout;
++ }
++ } else {
++ if (sc->sc_desc_types & TALITOS_HAS_DT_IPSEC_ESP) {
++ td->hdr |= TD_TYPE_IPSEC_ESP;
++ } else {
++ DPRINTF("unimplemented: multiple descriptor ipsec\n");
++ err = EINVAL;
++ goto errout;
++ }
++ /* assign descriptor dword ptr mappings for this desc. type */
++ hmac_key = 0;
++ hmac_data = 1;
++ cipher_iv = 2;
++ cipher_key = 3;
++ in_fifo = 4;
++ out_fifo = 5;
++ cipher_iv_out = 6;
++ if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
++ crd1->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd1->crd_alg == CRYPTO_MD5 ||
++ crd1->crd_alg == CRYPTO_SHA1) &&
++ (crd2->crd_alg == CRYPTO_DES_CBC ||
++ crd2->crd_alg == CRYPTO_3DES_CBC ||
++ crd2->crd_alg == CRYPTO_AES_CBC ||
++ crd2->crd_alg == CRYPTO_ARC4) &&
++ ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
++ maccrd = crd1;
++ enccrd = crd2;
++ } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
++ crd1->crd_alg == CRYPTO_ARC4 ||
++ crd1->crd_alg == CRYPTO_3DES_CBC ||
++ crd1->crd_alg == CRYPTO_AES_CBC) &&
++ (crd2->crd_alg == CRYPTO_MD5_HMAC ||
++ crd2->crd_alg == CRYPTO_SHA1_HMAC ||
++ crd2->crd_alg == CRYPTO_MD5 ||
++ crd2->crd_alg == CRYPTO_SHA1) &&
++ (crd1->crd_flags & CRD_F_ENCRYPT)) {
++ enccrd = crd1;
++ maccrd = crd2;
++ } else {
++ /* We cannot order the SEC as requested */
++ printk("%s: cannot do the order\n",
++ device_get_nameunit(sc->sc_cdev));
++ err = EINVAL;
++ goto errout;
++ }
++ }
++ /* assign in_fifo and out_fifo based on input/output struct type */
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ /* using SKB buffers */
++ struct sk_buff *skb = (struct sk_buff *)crp->crp_buf;
++ if (skb_shinfo(skb)->nr_frags) {
++ printk("%s: skb frags unimplemented\n",
++ device_get_nameunit(sc->sc_cdev));
++ err = EINVAL;
++ goto errout;
++ }
++ td->ptr[in_fifo].ptr = dma_map_single(NULL, skb->data,
++ skb->len, DMA_TO_DEVICE);
++ td->ptr[in_fifo].len = skb->len;
++ td->ptr[out_fifo].ptr = dma_map_single(NULL, skb->data,
++ skb->len, DMA_TO_DEVICE);
++ td->ptr[out_fifo].len = skb->len;
++ td->ptr[hmac_data].ptr = dma_map_single(NULL, skb->data,
++ skb->len, DMA_TO_DEVICE);
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ /* using IOV buffers */
++ struct uio *uiop = (struct uio *)crp->crp_buf;
++ if (uiop->uio_iovcnt > 1) {
++ printk("%s: iov frags unimplemented\n",
++ device_get_nameunit(sc->sc_cdev));
++ err = EINVAL;
++ goto errout;
++ }
++ td->ptr[in_fifo].ptr = dma_map_single(NULL,
++ uiop->uio_iov->iov_base, crp->crp_ilen, DMA_TO_DEVICE);
++ td->ptr[in_fifo].len = crp->crp_ilen;
++ /* crp_olen is never set; always use crp_ilen */
++ td->ptr[out_fifo].ptr = dma_map_single(NULL,
++ uiop->uio_iov->iov_base,
++ crp->crp_ilen, DMA_TO_DEVICE);
++ td->ptr[out_fifo].len = crp->crp_ilen;
++ } else {
++ /* using contig buffers */
++ td->ptr[in_fifo].ptr = dma_map_single(NULL,
++ crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE);
++ td->ptr[in_fifo].len = crp->crp_ilen;
++ td->ptr[out_fifo].ptr = dma_map_single(NULL,
++ crp->crp_buf, crp->crp_ilen, DMA_TO_DEVICE);
++ td->ptr[out_fifo].len = crp->crp_ilen;
++ }
++ if (enccrd) {
++ switch (enccrd->crd_alg) {
++ case CRYPTO_3DES_CBC:
++ td->hdr |= TALITOS_MODE0_DEU_3DES;
++ /* FALLTHROUGH */
++ case CRYPTO_DES_CBC:
++ td->hdr |= TALITOS_SEL0_DEU
++ | TALITOS_MODE0_DEU_CBC;
++ if (enccrd->crd_flags & CRD_F_ENCRYPT)
++ td->hdr |= TALITOS_MODE0_DEU_ENC;
++ ivsize = 2*sizeof(u_int32_t);
++ DPRINTF("%cDES ses %d ch %d len %d\n",
++ (td->hdr & TALITOS_MODE0_DEU_3DES)?'3':'1',
++ (u32)TALITOS_SESSION(crp->crp_sid),
++ chsel, td->ptr[in_fifo].len);
++ break;
++ case CRYPTO_AES_CBC:
++ td->hdr |= TALITOS_SEL0_AESU
++ | TALITOS_MODE0_AESU_CBC;
++ if (enccrd->crd_flags & CRD_F_ENCRYPT)
++ td->hdr |= TALITOS_MODE0_AESU_ENC;
++ ivsize = 4*sizeof(u_int32_t);
++ DPRINTF("AES ses %d ch %d len %d\n",
++ (u32)TALITOS_SESSION(crp->crp_sid),
++ chsel, td->ptr[in_fifo].len);
++ break;
++ default:
++ printk("%s: unimplemented enccrd->crd_alg %d\n",
++ device_get_nameunit(sc->sc_cdev), enccrd->crd_alg);
++ err = EINVAL;
++ goto errout;
++ }
++ /*
++ * Setup encrypt/decrypt state. When using basic ops
++ * we can't use an inline IV because hash/crypt offset
++ * must be from the end of the IV to the start of the
++ * crypt data and this leaves out the preceding header
++ * from the hash calculation. Instead we place the IV
++ * in the state record and set the hash/crypt offset to
++ * copy both the header+IV.
++ */
++ if (enccrd->crd_flags & CRD_F_ENCRYPT) {
++ td->hdr |= TALITOS_DIR_OUTBOUND;
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ iv = enccrd->crd_iv;
++ else
++ iv = (caddr_t) ses->ses_iv;
++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize, iv);
++ }
++ } else {
++ td->hdr |= TALITOS_DIR_INBOUND;
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
++ iv = enccrd->crd_iv;
++ bcopy(enccrd->crd_iv, iv, ivsize);
++ } else {
++ iv = (caddr_t) ses->ses_iv;
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize, iv);
++ }
++ }
++ td->ptr[cipher_iv].ptr = dma_map_single(NULL, iv, ivsize,
++ DMA_TO_DEVICE);
++ td->ptr[cipher_iv].len = ivsize;
++ /*
++ * we don't need the cipher iv out length/pointer
++ * field to do ESP IPsec. Therefore we set the len field as 0,
++ * which tells the SEC not to do anything with this len/ptr
++ * field. Previously, when length/pointer as pointing to iv,
++ * it gave us corruption of packets.
++ */
++ td->ptr[cipher_iv_out].len = 0;
++ }
++ if (enccrd && maccrd) {
++ /* this is ipsec only for now */
++ td->hdr |= TALITOS_SEL1_MDEU
++ | TALITOS_MODE1_MDEU_INIT
++ | TALITOS_MODE1_MDEU_PAD;
++ switch (maccrd->crd_alg) {
++ case CRYPTO_MD5:
++ td->hdr |= TALITOS_MODE1_MDEU_MD5;
++ break;
++ case CRYPTO_MD5_HMAC:
++ td->hdr |= TALITOS_MODE1_MDEU_MD5_HMAC;
++ break;
++ case CRYPTO_SHA1:
++ td->hdr |= TALITOS_MODE1_MDEU_SHA1;
++ break;
++ case CRYPTO_SHA1_HMAC:
++ td->hdr |= TALITOS_MODE1_MDEU_SHA1_HMAC;
++ break;
++ default:
++ /* We cannot order the SEC as requested */
++ printk("%s: cannot do the order\n",
++ device_get_nameunit(sc->sc_cdev));
++ err = EINVAL;
++ goto errout;
++ }
++ if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) ||
++ (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) {
++ /*
++ * The offset from hash data to the start of
++ * crypt data is the difference in the skips.
++ */
++ /* ipsec only for now */
++ td->ptr[hmac_key].ptr = dma_map_single(NULL,
++ ses->ses_hmac, ses->ses_hmac_len, DMA_TO_DEVICE);
++ td->ptr[hmac_key].len = ses->ses_hmac_len;
++ td->ptr[in_fifo].ptr += enccrd->crd_skip;
++ td->ptr[in_fifo].len = enccrd->crd_len;
++ td->ptr[out_fifo].ptr += enccrd->crd_skip;
++ td->ptr[out_fifo].len = enccrd->crd_len;
++ /* bytes of HMAC to postpend to ciphertext */
++ td->ptr[out_fifo].extent = ses->ses_mlen;
++ td->ptr[hmac_data].ptr += maccrd->crd_skip;
++ td->ptr[hmac_data].len = enccrd->crd_skip - maccrd->crd_skip;
++ }
++ if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
++ printk("%s: CRD_F_KEY_EXPLICIT unimplemented\n",
++ device_get_nameunit(sc->sc_cdev));
++ }
++ }
++ if (!enccrd && maccrd) {
++ /* single MD5 or SHA */
++ td->hdr |= TALITOS_SEL0_MDEU
++ | TALITOS_MODE0_MDEU_INIT
++ | TALITOS_MODE0_MDEU_PAD;
++ switch (maccrd->crd_alg) {
++ case CRYPTO_MD5:
++ td->hdr |= TALITOS_MODE0_MDEU_MD5;
++ DPRINTF("MD5 ses %d ch %d len %d\n",
++ (u32)TALITOS_SESSION(crp->crp_sid),
++ chsel, td->ptr[in_fifo].len);
++ break;
++ case CRYPTO_MD5_HMAC:
++ td->hdr |= TALITOS_MODE0_MDEU_MD5_HMAC;
++ break;
++ case CRYPTO_SHA1:
++ td->hdr |= TALITOS_MODE0_MDEU_SHA1;
++ DPRINTF("SHA1 ses %d ch %d len %d\n",
++ (u32)TALITOS_SESSION(crp->crp_sid),
++ chsel, td->ptr[in_fifo].len);
++ break;
++ case CRYPTO_SHA1_HMAC:
++ td->hdr |= TALITOS_MODE0_MDEU_SHA1_HMAC;
++ break;
++ default:
++ /* We cannot order the SEC as requested */
++ DPRINTF("cannot do the order\n");
++ err = EINVAL;
++ goto errout;
++ }
++
++ if (crp->crp_flags & CRYPTO_F_IOV)
++ td->ptr[out_fifo].ptr += maccrd->crd_inject;
++
++ if ((maccrd->crd_alg == CRYPTO_MD5_HMAC) ||
++ (maccrd->crd_alg == CRYPTO_SHA1_HMAC)) {
++ td->ptr[hmac_key].ptr = dma_map_single(NULL,
++ ses->ses_hmac, ses->ses_hmac_len,
++ DMA_TO_DEVICE);
++ td->ptr[hmac_key].len = ses->ses_hmac_len;
++ }
++ }
++ else {
++ /* using process key (session data has duplicate) */
++ td->ptr[cipher_key].ptr = dma_map_single(NULL,
++ enccrd->crd_key, (enccrd->crd_klen + 7) / 8,
++ DMA_TO_DEVICE);
++ td->ptr[cipher_key].len = (enccrd->crd_klen + 7) / 8;
++ }
++ /* descriptor complete - GO! */
++ return talitos_submit(sc, td, chsel);
++
++errout:
++ if (err != ERESTART) {
++ crp->crp_etype = err;
++ crypto_done(crp);
++ }
++ return err;
++}
++
++/* go through all channels descriptors, notifying OCF what has
++ * _and_hasn't_ successfully completed and reset the device
++ * (otherwise it's up to decoding desc hdrs!)
++ */
++static void talitos_errorprocessing(struct talitos_softc *sc)
++{
++ unsigned long flags;
++ int i, j;
++
++ /* disable further scheduling until under control */
++ spin_lock_irqsave(&sc->sc_chnfifolock[sc->sc_num_channels], flags);
++
++ if (debug) dump_talitos_status(sc);
++ /* go through descriptors, try and salvage those successfully done,
++ * and EIO those that weren't
++ */
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ spin_lock_irqsave(&sc->sc_chnfifolock[i], flags);
++ for (j = 0; j < sc->sc_chfifo_len; j++) {
++ if (sc->sc_chnfifo[i][j].cf_desc.hdr) {
++ if ((sc->sc_chnfifo[i][j].cf_desc.hdr
++ & TALITOS_HDR_DONE_BITS)
++ != TALITOS_HDR_DONE_BITS) {
++ /* this one didn't finish */
++ /* signify in crp->etype */
++ sc->sc_chnfifo[i][j].cf_crp->crp_etype
++ = EIO;
++ }
++ } else
++ continue; /* free entry */
++ /* either way, notify ocf */
++ crypto_done(sc->sc_chnfifo[i][j].cf_crp);
++ /* and tag it available again
++ *
++ * memset to ensure correct descriptor formation by
++ * avoiding inadvertently setting "optional" entries
++ * e.g. not using "optional" dptr2 MD/HMAC processing
++ */
++ memset(&sc->sc_chnfifo[i][j].cf_desc,
++ 0, sizeof(struct talitos_desc));
++ }
++ spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags);
++ }
++ /* reset and initialize the SEC h/w device */
++ talitos_reset_device(sc);
++ talitos_init_device(sc);
++#ifdef CONFIG_OCF_RANDOMHARVEST
++ if (sc->sc_exec_units & TALITOS_HAS_EU_RNG)
++ talitos_rng_init(sc);
++#endif
++
++ /* Okay. Stand by. */
++ spin_unlock_irqrestore(&sc->sc_chnfifolock[sc->sc_num_channels], flags);
++
++ return;
++}
++
++/* go through all channels descriptors, notifying OCF what's been done */
++static void talitos_doneprocessing(struct talitos_softc *sc)
++{
++ unsigned long flags;
++ int i, j;
++
++ /* go through descriptors looking for done bits */
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ spin_lock_irqsave(&sc->sc_chnfifolock[i], flags);
++ for (j = 0; j < sc->sc_chfifo_len; j++) {
++ /* descriptor has done bits set? */
++ if ((sc->sc_chnfifo[i][j].cf_desc.hdr
++ & TALITOS_HDR_DONE_BITS)
++ == TALITOS_HDR_DONE_BITS) {
++ /* notify ocf */
++ crypto_done(sc->sc_chnfifo[i][j].cf_crp);
++ /* and tag it available again
++ *
++ * memset to ensure correct descriptor formation by
++ * avoiding inadvertently setting "optional" entries
++ * e.g. not using "optional" dptr2 MD/HMAC processing
++ */
++ memset(&sc->sc_chnfifo[i][j].cf_desc,
++ 0, sizeof(struct talitos_desc));
++ }
++ }
++ spin_unlock_irqrestore(&sc->sc_chnfifolock[i], flags);
++ }
++ return;
++}
++
++static irqreturn_t
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
++talitos_intr(int irq, void *arg)
++#else
++talitos_intr(int irq, void *arg, struct pt_regs *regs)
++#endif
++{
++ struct talitos_softc *sc = arg;
++ u_int32_t v, v_hi;
++
++ /* ack */
++ v = talitos_read(sc->sc_base_addr + TALITOS_ISR);
++ v_hi = talitos_read(sc->sc_base_addr + TALITOS_ISR_HI);
++ talitos_write(sc->sc_base_addr + TALITOS_ICR, v);
++ talitos_write(sc->sc_base_addr + TALITOS_ICR_HI, v_hi);
++
++ if (unlikely(v & TALITOS_ISR_ERROR)) {
++ /* Okay, Houston, we've had a problem here. */
++ printk(KERN_DEBUG "%s: got error interrupt - ISR 0x%08x_%08x\n",
++ device_get_nameunit(sc->sc_cdev), v, v_hi);
++ talitos_errorprocessing(sc);
++ } else
++ if (likely(v & TALITOS_ISR_DONE)) {
++ talitos_doneprocessing(sc);
++ }
++ return IRQ_HANDLED;
++}
++
++/*
++ * Initialize registers we need to touch only once.
++ */
++static void
++talitos_init_device(struct talitos_softc *sc)
++{
++ u_int32_t v;
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /* init all channels */
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ v = talitos_read(sc->sc_base_addr +
++ i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI);
++ v |= TALITOS_CH_CCCR_HI_CDWE
++ | TALITOS_CH_CCCR_HI_CDIE; /* invoke interrupt if done */
++ talitos_write(sc->sc_base_addr +
++ i*TALITOS_CH_OFFSET + TALITOS_CH_CCCR_HI, v);
++ }
++ /* enable all interrupts */
++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR);
++ v |= TALITOS_IMR_ALL;
++ talitos_write(sc->sc_base_addr + TALITOS_IMR, v);
++ v = talitos_read(sc->sc_base_addr + TALITOS_IMR_HI);
++ v |= TALITOS_IMR_HI_ERRONLY;
++ talitos_write(sc->sc_base_addr + TALITOS_IMR_HI, v);
++ return;
++}
++
++/*
++ * set the master reset bit on the device.
++ */
++static void
++talitos_reset_device_master(struct talitos_softc *sc)
++{
++ u_int32_t v;
++
++ /* Reset the device by writing 1 to MCR:SWR and waiting 'til cleared */
++ v = talitos_read(sc->sc_base_addr + TALITOS_MCR);
++ talitos_write(sc->sc_base_addr + TALITOS_MCR, v | TALITOS_MCR_SWR);
++
++ while (talitos_read(sc->sc_base_addr + TALITOS_MCR) & TALITOS_MCR_SWR)
++ cpu_relax();
++
++ return;
++}
++
++/*
++ * Resets the device. Values in the registers are left as is
++ * from the reset (i.e. initial values are assigned elsewhere).
++ */
++static void
++talitos_reset_device(struct talitos_softc *sc)
++{
++ u_int32_t v;
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ /*
++ * Master reset
++ * errata documentation: warning: certain SEC interrupts
++ * are not fully cleared by writing the MCR:SWR bit,
++ * set bit twice to completely reset
++ */
++ talitos_reset_device_master(sc); /* once */
++ talitos_reset_device_master(sc); /* and once again */
++
++ /* reset all channels */
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ v = talitos_read(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CCCR);
++ talitos_write(sc->sc_base_addr + i*TALITOS_CH_OFFSET +
++ TALITOS_CH_CCCR, v | TALITOS_CH_CCCR_RESET);
++ }
++}
++
++/* Set up the crypto device structure, private data,
++ * and anything else we need before we start */
++#ifdef CONFIG_PPC_MERGE
++static int talitos_probe(struct of_device *ofdev, const struct of_device_id *match)
++#else
++static int talitos_probe(struct platform_device *pdev)
++#endif
++{
++ struct talitos_softc *sc = NULL;
++ struct resource *r;
++#ifdef CONFIG_PPC_MERGE
++ struct device *device = &ofdev->dev;
++ struct device_node *np = ofdev->node;
++ const unsigned int *prop;
++ int err;
++ struct resource res;
++#endif
++ static int num_chips = 0;
++ int rc;
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ sc = (struct talitos_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
++ if (!sc)
++ return -ENOMEM;
++ memset(sc, 0, sizeof(*sc));
++
++ softc_device_init(sc, DRV_NAME, num_chips, talitos_methods);
++
++ sc->sc_irq = -1;
++ sc->sc_cid = -1;
++#ifndef CONFIG_PPC_MERGE
++ sc->sc_dev = pdev;
++#endif
++ sc->sc_num = num_chips++;
++
++#ifdef CONFIG_PPC_MERGE
++ dev_set_drvdata(device, sc);
++#else
++ platform_set_drvdata(sc->sc_dev, sc);
++#endif
++
++ /* get the irq line */
++#ifdef CONFIG_PPC_MERGE
++ err = of_address_to_resource(np, 0, &res);
++ if (err)
++ return -EINVAL;
++ r = &res;
++
++ sc->sc_irq = irq_of_parse_and_map(np, 0);
++#else
++ /* get a pointer to the register memory */
++ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++
++ sc->sc_irq = platform_get_irq(pdev, 0);
++#endif
++ rc = request_irq(sc->sc_irq, talitos_intr, 0,
++ device_get_nameunit(sc->sc_cdev), sc);
++ if (rc) {
++ printk(KERN_ERR "%s: failed to hook irq %d\n",
++ device_get_nameunit(sc->sc_cdev), sc->sc_irq);
++ sc->sc_irq = -1;
++ goto out;
++ }
++
++ sc->sc_base_addr = (ocf_iomem_t) ioremap(r->start, (r->end - r->start));
++ if (!sc->sc_base_addr) {
++ printk(KERN_ERR "%s: failed to ioremap\n",
++ device_get_nameunit(sc->sc_cdev));
++ goto out;
++ }
++
++ /* figure out our SEC's properties and capabilities */
++ sc->sc_chiprev = (u64)talitos_read(sc->sc_base_addr + TALITOS_ID) << 32
++ | talitos_read(sc->sc_base_addr + TALITOS_ID_HI);
++ DPRINTF("sec id 0x%llx\n", sc->sc_chiprev);
++
++#ifdef CONFIG_PPC_MERGE
++ /* get SEC properties from device tree, defaulting to SEC 2.0 */
++
++ prop = of_get_property(np, "num-channels", NULL);
++ sc->sc_num_channels = prop ? *prop : TALITOS_NCHANNELS_SEC_2_0;
++
++ prop = of_get_property(np, "channel-fifo-len", NULL);
++ sc->sc_chfifo_len = prop ? *prop : TALITOS_CHFIFOLEN_SEC_2_0;
++
++ prop = of_get_property(np, "exec-units-mask", NULL);
++ sc->sc_exec_units = prop ? *prop : TALITOS_HAS_EUS_SEC_2_0;
++
++ prop = of_get_property(np, "descriptor-types-mask", NULL);
++ sc->sc_desc_types = prop ? *prop : TALITOS_HAS_DESCTYPES_SEC_2_0;
++#else
++ /* bulk should go away with openfirmware flat device tree support */
++ if (sc->sc_chiprev & TALITOS_ID_SEC_2_0) {
++ sc->sc_num_channels = TALITOS_NCHANNELS_SEC_2_0;
++ sc->sc_chfifo_len = TALITOS_CHFIFOLEN_SEC_2_0;
++ sc->sc_exec_units = TALITOS_HAS_EUS_SEC_2_0;
++ sc->sc_desc_types = TALITOS_HAS_DESCTYPES_SEC_2_0;
++ } else {
++ printk(KERN_ERR "%s: failed to id device\n",
++ device_get_nameunit(sc->sc_cdev));
++ goto out;
++ }
++#endif
++
++ /* + 1 is for the meta-channel lock used by the channel scheduler */
++ sc->sc_chnfifolock = (spinlock_t *) kmalloc(
++ (sc->sc_num_channels + 1) * sizeof(spinlock_t), GFP_KERNEL);
++ if (!sc->sc_chnfifolock)
++ goto out;
++ for (i = 0; i < sc->sc_num_channels + 1; i++) {
++ spin_lock_init(&sc->sc_chnfifolock[i]);
++ }
++
++ sc->sc_chnlastalg = (int *) kmalloc(
++ sc->sc_num_channels * sizeof(int), GFP_KERNEL);
++ if (!sc->sc_chnlastalg)
++ goto out;
++ memset(sc->sc_chnlastalg, 0, sc->sc_num_channels * sizeof(int));
++
++ sc->sc_chnfifo = (struct desc_cryptop_pair **) kmalloc(
++ sc->sc_num_channels * sizeof(struct desc_cryptop_pair *),
++ GFP_KERNEL);
++ if (!sc->sc_chnfifo)
++ goto out;
++ for (i = 0; i < sc->sc_num_channels; i++) {
++ sc->sc_chnfifo[i] = (struct desc_cryptop_pair *) kmalloc(
++ sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair),
++ GFP_KERNEL);
++ if (!sc->sc_chnfifo[i])
++ goto out;
++ memset(sc->sc_chnfifo[i], 0,
++ sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair));
++ }
++
++ /* reset and initialize the SEC h/w device */
++ talitos_reset_device(sc);
++ talitos_init_device(sc);
++
++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE);
++ if (sc->sc_cid < 0) {
++ printk(KERN_ERR "%s: could not get crypto driver id\n",
++ device_get_nameunit(sc->sc_cdev));
++ goto out;
++ }
++
++ /* register algorithms with the framework */
++ printk("%s:", device_get_nameunit(sc->sc_cdev));
++
++ if (sc->sc_exec_units & TALITOS_HAS_EU_RNG) {
++ printk(" rng");
++#ifdef CONFIG_OCF_RANDOMHARVEST
++ talitos_rng_init(sc);
++ crypto_rregister(sc->sc_cid, talitos_read_random, sc);
++#endif
++ }
++ if (sc->sc_exec_units & TALITOS_HAS_EU_DEU) {
++ printk(" des/3des");
++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
++ }
++ if (sc->sc_exec_units & TALITOS_HAS_EU_AESU) {
++ printk(" aes");
++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
++ }
++ if (sc->sc_exec_units & TALITOS_HAS_EU_MDEU) {
++ printk(" md5");
++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
++ /* HMAC support only with IPsec for now */
++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
++ printk(" sha1");
++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
++ /* HMAC support only with IPsec for now */
++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
++ }
++ printk("\n");
++ return 0;
++
++out:
++#ifndef CONFIG_PPC_MERGE
++ talitos_remove(pdev);
++#endif
++ return -ENOMEM;
++}
++
++#ifdef CONFIG_PPC_MERGE
++static int talitos_remove(struct of_device *ofdev)
++#else
++static int talitos_remove(struct platform_device *pdev)
++#endif
++{
++#ifdef CONFIG_PPC_MERGE
++ struct talitos_softc *sc = dev_get_drvdata(&ofdev->dev);
++#else
++ struct talitos_softc *sc = platform_get_drvdata(pdev);
++#endif
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ if (sc->sc_cid >= 0)
++ crypto_unregister_all(sc->sc_cid);
++ if (sc->sc_chnfifo) {
++ for (i = 0; i < sc->sc_num_channels; i++)
++ if (sc->sc_chnfifo[i])
++ kfree(sc->sc_chnfifo[i]);
++ kfree(sc->sc_chnfifo);
++ }
++ if (sc->sc_chnlastalg)
++ kfree(sc->sc_chnlastalg);
++ if (sc->sc_chnfifolock)
++ kfree(sc->sc_chnfifolock);
++ if (sc->sc_irq != -1)
++ free_irq(sc->sc_irq, sc);
++ if (sc->sc_base_addr)
++ iounmap((void *) sc->sc_base_addr);
++ kfree(sc);
++ return 0;
++}
++
++#ifdef CONFIG_PPC_MERGE
++static struct of_device_id talitos_match[] = {
++ {
++ .type = "crypto",
++ .compatible = "talitos",
++ },
++ {},
++};
++
++MODULE_DEVICE_TABLE(of, talitos_match);
++
++static struct of_platform_driver talitos_driver = {
++ .name = DRV_NAME,
++ .match_table = talitos_match,
++ .probe = talitos_probe,
++ .remove = talitos_remove,
++};
++
++static int __init talitos_init(void)
++{
++ return of_register_platform_driver(&talitos_driver);
++}
++
++static void __exit talitos_exit(void)
++{
++ of_unregister_platform_driver(&talitos_driver);
++}
++#else
++/* Structure for a platform device driver */
++static struct platform_driver talitos_driver = {
++ .probe = talitos_probe,
++ .remove = talitos_remove,
++ .driver = {
++ .name = "fsl-sec2",
++ }
++};
++
++static int __init talitos_init(void)
++{
++ return platform_driver_register(&talitos_driver);
++}
++
++static void __exit talitos_exit(void)
++{
++ platform_driver_unregister(&talitos_driver);
++}
++#endif
++
++module_init(talitos_init);
++module_exit(talitos_exit);
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("kim.phillips@freescale.com");
++MODULE_DESCRIPTION("OCF driver for Freescale SEC (talitos)");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/talitos/talitos_soft.h 2007-07-20 11:47:16.000000000 +1000
+@@ -0,0 +1,77 @@
++/*
++ * Freescale SEC data structures for integration with ocf-linux
++ *
++ * Copyright (c) 2006 Freescale Semiconductor, Inc.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ */
++
++/*
++ * paired descriptor and associated crypto operation
++ */
++struct desc_cryptop_pair {
++ struct talitos_desc cf_desc; /* descriptor ptr */
++ struct cryptop *cf_crp; /* cryptop ptr */
++};
++
++/*
++ * Holds data specific to a single talitos device.
++ */
++struct talitos_softc {
++ softc_device_decl sc_cdev;
++ struct platform_device *sc_dev; /* device backpointer */
++ ocf_iomem_t sc_base_addr;
++ int sc_irq;
++ int sc_num; /* if we have multiple chips */
++ int32_t sc_cid; /* crypto tag */
++ u64 sc_chiprev; /* major/minor chip revision */
++ int sc_nsessions;
++ struct talitos_session *sc_sessions;
++ int sc_num_channels;/* number of crypto channels */
++ int sc_chfifo_len; /* channel fetch fifo len */
++ int sc_exec_units; /* execution units mask */
++ int sc_desc_types; /* descriptor types mask */
++ /*
++ * mutual exclusion for intra-channel resources, e.g. fetch fifos
++ * the last entry is a meta-channel lock used by the channel scheduler
++ */
++ spinlock_t *sc_chnfifolock;
++ /* sc_chnlastalgo contains last algorithm for that channel */
++ int *sc_chnlastalg;
++ /* sc_chnfifo holds pending descriptor--crypto operation pairs */
++ struct desc_cryptop_pair **sc_chnfifo;
++};
++
++struct talitos_session {
++ u_int32_t ses_used;
++ u_int32_t ses_klen; /* key length in bits */
++ u_int32_t ses_key[8]; /* DES/3DES/AES key */
++ u_int32_t ses_hmac[5]; /* hmac inner state */
++ u_int32_t ses_hmac_len; /* hmac length */
++ u_int32_t ses_iv[4]; /* DES/3DES/AES iv */
++ u_int32_t ses_mlen; /* desired hash result len (12=ipsec or 16) */
++};
++
++#define TALITOS_SESSION(sid) ((sid) & 0x0fffffff)
++#define TALITOS_SID(crd, sesn) (((crd) << 28) | ((sesn) & 0x0fffffff))
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/talitos/talitos_dev.h 2007-11-23 07:31:44.000000000 +1000
+@@ -0,0 +1,277 @@
++/*
++ * Freescale SEC (talitos) device dependent data structures
++ *
++ * Copyright (c) 2006 Freescale Semiconductor, Inc.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ */
++
++/* device ID register values */
++#define TALITOS_ID_SEC_2_0 0x40
++#define TALITOS_ID_SEC_2_1 0x40 /* cross ref with IP block revision reg */
++
++/*
++ * following num_channels, channel-fifo-depth, exec-unit-mask, and
++ * descriptor-types-mask are for forward-compatibility with openfirmware
++ * flat device trees
++ */
++
++/*
++ * num_channels : the number of channels available in each SEC version.
++ */
++
++/* n.b. this driver requires these values be a power of 2 */
++#define TALITOS_NCHANNELS_SEC_1_0 4
++#define TALITOS_NCHANNELS_SEC_1_2 1
++#define TALITOS_NCHANNELS_SEC_2_0 4
++#define TALITOS_NCHANNELS_SEC_2_01 4
++#define TALITOS_NCHANNELS_SEC_2_1 4
++#define TALITOS_NCHANNELS_SEC_2_4 4
++
++/*
++ * channel-fifo-depth : The number of descriptor
++ * pointers a channel fetch fifo can hold.
++ */
++#define TALITOS_CHFIFOLEN_SEC_1_0 1
++#define TALITOS_CHFIFOLEN_SEC_1_2 1
++#define TALITOS_CHFIFOLEN_SEC_2_0 24
++#define TALITOS_CHFIFOLEN_SEC_2_01 24
++#define TALITOS_CHFIFOLEN_SEC_2_1 24
++#define TALITOS_CHFIFOLEN_SEC_2_4 24
++
++/*
++ * exec-unit-mask : The bitmask representing what Execution Units (EUs)
++ * are available. EU information should be encoded following the SEC's
++ * EU_SEL0 bitfield documentation, i.e. as follows:
++ *
++ * bit 31 = set if SEC permits no-EU selection (should be always set)
++ * bit 30 = set if SEC has the ARC4 EU (AFEU)
++ * bit 29 = set if SEC has the des/3des EU (DEU)
++ * bit 28 = set if SEC has the message digest EU (MDEU)
++ * bit 27 = set if SEC has the random number generator EU (RNG)
++ * bit 26 = set if SEC has the public key EU (PKEU)
++ * bit 25 = set if SEC has the aes EU (AESU)
++ * bit 24 = set if SEC has the Kasumi EU (KEU)
++ *
++ */
++#define TALITOS_HAS_EU_NONE (1<<0)
++#define TALITOS_HAS_EU_AFEU (1<<1)
++#define TALITOS_HAS_EU_DEU (1<<2)
++#define TALITOS_HAS_EU_MDEU (1<<3)
++#define TALITOS_HAS_EU_RNG (1<<4)
++#define TALITOS_HAS_EU_PKEU (1<<5)
++#define TALITOS_HAS_EU_AESU (1<<6)
++#define TALITOS_HAS_EU_KEU (1<<7)
++
++/* the corresponding masks for each SEC version */
++#define TALITOS_HAS_EUS_SEC_1_0 0x7f
++#define TALITOS_HAS_EUS_SEC_1_2 0x4d
++#define TALITOS_HAS_EUS_SEC_2_0 0x7f
++#define TALITOS_HAS_EUS_SEC_2_01 0x7f
++#define TALITOS_HAS_EUS_SEC_2_1 0xff
++#define TALITOS_HAS_EUS_SEC_2_4 0x7f
++
++/*
++ * descriptor-types-mask : The bitmask representing what descriptors
++ * are available. Descriptor type information should be encoded
++ * following the SEC's Descriptor Header Dword DESC_TYPE field
++ * documentation, i.e. as follows:
++ *
++ * bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type
++ * bit 1 = set if SEC supports the ipsec_esp descriptor type
++ * bit 2 = set if SEC supports the common_nonsnoop desc. type
++ * bit 3 = set if SEC supports the 802.11i AES ccmp desc. type
++ * bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type
++ * bit 5 = set if SEC supports the srtp descriptor type
++ * bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type
++ * bit 7 = set if SEC supports the pkeu_assemble descriptor type
++ * bit 8 = set if SEC supports the aesu_key_expand_output desc.type
++ * bit 9 = set if SEC supports the pkeu_ptmul descriptor type
++ * bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
++ * bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
++ *
++ * ..and so on and so forth.
++ */
++#define TALITOS_HAS_DT_AESU_CTR_NONSNOOP (1<<0)
++#define TALITOS_HAS_DT_IPSEC_ESP (1<<1)
++#define TALITOS_HAS_DT_COMMON_NONSNOOP (1<<2)
++
++/* the corresponding masks for each SEC version */
++#define TALITOS_HAS_DESCTYPES_SEC_2_0 0x01010ebf
++#define TALITOS_HAS_DESCTYPES_SEC_2_1 0x012b0ebf
++
++/*
++ * a TALITOS_xxx_HI address points to the low data bits (32-63) of the register
++ */
++
++/* global register offset addresses */
++#define TALITOS_ID 0x1020
++#define TALITOS_ID_HI 0x1024
++#define TALITOS_MCR 0x1030 /* master control register */
++#define TALITOS_MCR_HI 0x1038 /* master control register */
++#define TALITOS_MCR_SWR 0x1
++#define TALITOS_IMR 0x1008 /* interrupt mask register */
++#define TALITOS_IMR_ALL 0x00010fff /* enable all interrupts mask */
++#define TALITOS_IMR_ERRONLY 0x00010aaa /* enable error interrupts */
++#define TALITOS_IMR_HI 0x100C /* interrupt mask register */
++#define TALITOS_IMR_HI_ALL 0x00323333 /* enable all interrupts mask */
++#define TALITOS_IMR_HI_ERRONLY 0x00222222 /* enable error interrupts */
++#define TALITOS_ISR 0x1010 /* interrupt status register */
++#define TALITOS_ISR_ERROR 0x00010faa /* errors mask */
++#define TALITOS_ISR_DONE 0x00000055 /* channel(s) done mask */
++#define TALITOS_ISR_HI 0x1014 /* interrupt status register */
++#define TALITOS_ICR 0x1018 /* interrupt clear register */
++#define TALITOS_ICR_HI 0x101C /* interrupt clear register */
++
++/* channel register address stride */
++#define TALITOS_CH_OFFSET 0x100
++
++/* channel register offset addresses and bits */
++#define TALITOS_CH_CCCR 0x1108 /* Crypto-Channel Config Register */
++#define TALITOS_CH_CCCR_RESET 0x1 /* Channel Reset bit */
++#define TALITOS_CH_CCCR_HI 0x110c /* Crypto-Channel Config Register */
++#define TALITOS_CH_CCCR_HI_CDWE 0x10 /* Channel done writeback enable bit */
++#define TALITOS_CH_CCCR_HI_NT 0x4 /* Notification type bit */
++#define TALITOS_CH_CCCR_HI_CDIE 0x2 /* Channel Done Interrupt Enable bit */
++#define TALITOS_CH_CCPSR 0x1110 /* Crypto-Channel Pointer Status Reg */
++#define TALITOS_CH_CCPSR_HI 0x1114 /* Crypto-Channel Pointer Status Reg */
++#define TALITOS_CH_FF 0x1148 /* Fetch FIFO */
++#define TALITOS_CH_FF_HI 0x114c /* Fetch FIFO's FETCH_ADRS */
++#define TALITOS_CH_CDPR 0x1140 /* Crypto-Channel Pointer Status Reg */
++#define TALITOS_CH_CDPR_HI 0x1144 /* Crypto-Channel Pointer Status Reg */
++#define TALITOS_CH_DESCBUF 0x1180 /* (thru 11bf) Crypto-Channel
++ * Descriptor Buffer (debug) */
++
++/* execution unit register offset addresses and bits */
++#define TALITOS_DEUSR 0x2028 /* DEU status register */
++#define TALITOS_DEUSR_HI 0x202c /* DEU status register */
++#define TALITOS_DEUISR 0x2030 /* DEU interrupt status register */
++#define TALITOS_DEUISR_HI 0x2034 /* DEU interrupt status register */
++#define TALITOS_DEUICR 0x2038 /* DEU interrupt control register */
++#define TALITOS_DEUICR_HI 0x203c /* DEU interrupt control register */
++#define TALITOS_AESUISR 0x4030 /* AESU interrupt status register */
++#define TALITOS_AESUISR_HI 0x4034 /* AESU interrupt status register */
++#define TALITOS_AESUICR 0x4038 /* AESU interrupt control register */
++#define TALITOS_AESUICR_HI 0x403c /* AESU interrupt control register */
++#define TALITOS_MDEUISR 0x6030 /* MDEU interrupt status register */
++#define TALITOS_MDEUISR_HI 0x6034 /* MDEU interrupt status register */
++#define TALITOS_RNGSR 0xa028 /* RNG status register */
++#define TALITOS_RNGSR_HI 0xa02c /* RNG status register */
++#define TALITOS_RNGSR_HI_RD 0x1 /* RNG Reset done */
++#define TALITOS_RNGSR_HI_OFL 0xff0000/* number of dwords in RNG output FIFO*/
++#define TALITOS_RNGDSR 0xa010 /* RNG data size register */
++#define TALITOS_RNGDSR_HI 0xa014 /* RNG data size register */
++#define TALITOS_RNG_FIFO 0xa800 /* RNG FIFO - pool of random numbers */
++#define TALITOS_RNGISR 0xa030 /* RNG Interrupt status register */
++#define TALITOS_RNGISR_HI 0xa034 /* RNG Interrupt status register */
++#define TALITOS_RNGRCR 0xa018 /* RNG Reset control register */
++#define TALITOS_RNGRCR_HI 0xa01c /* RNG Reset control register */
++#define TALITOS_RNGRCR_HI_SR 0x1 /* RNG RNGRCR:Software Reset */
++
++/* descriptor pointer entry */
++struct talitos_desc_ptr {
++ u16 len; /* length */
++ u8 extent; /* jump (to s/g link table) and extent */
++ u8 res; /* reserved */
++ u32 ptr; /* pointer */
++};
++
++/* descriptor */
++struct talitos_desc {
++ u32 hdr; /* header */
++ u32 res; /* reserved */
++ struct talitos_desc_ptr ptr[7]; /* ptr/len pair array */
++};
++
++/* talitos descriptor header (hdr) bits */
++
++/* primary execution unit select */
++#define TALITOS_SEL0_AFEU 0x10000000
++#define TALITOS_SEL0_DEU 0x20000000
++#define TALITOS_SEL0_MDEU 0x30000000
++#define TALITOS_SEL0_RNG 0x40000000
++#define TALITOS_SEL0_PKEU 0x50000000
++#define TALITOS_SEL0_AESU 0x60000000
++
++/* primary execution unit mode (MODE0) and derivatives */
++#define TALITOS_MODE0_AESU_CBC 0x00200000
++#define TALITOS_MODE0_AESU_ENC 0x00100000
++#define TALITOS_MODE0_DEU_CBC 0x00400000
++#define TALITOS_MODE0_DEU_3DES 0x00200000
++#define TALITOS_MODE0_DEU_ENC 0x00100000
++#define TALITOS_MODE0_MDEU_INIT 0x01000000 /* init starting regs */
++#define TALITOS_MODE0_MDEU_HMAC 0x00800000
++#define TALITOS_MODE0_MDEU_PAD 0x00400000 /* PD */
++#define TALITOS_MODE0_MDEU_MD5 0x00200000
++#define TALITOS_MODE0_MDEU_SHA256 0x00100000
++#define TALITOS_MODE0_MDEU_SHA1 0x00000000 /* SHA-160 */
++#define TALITOS_MODE0_MDEU_MD5_HMAC \
++ (TALITOS_MODE0_MDEU_MD5 | TALITOS_MODE0_MDEU_HMAC)
++#define TALITOS_MODE0_MDEU_SHA256_HMAC \
++ (TALITOS_MODE0_MDEU_SHA256 | TALITOS_MODE0_MDEU_HMAC)
++#define TALITOS_MODE0_MDEU_SHA1_HMAC \
++ (TALITOS_MODE0_MDEU_SHA1 | TALITOS_MODE0_MDEU_HMAC)
++
++/* secondary execution unit select (SEL1) */
++/* it's MDEU or nothing */
++#define TALITOS_SEL1_MDEU 0x00030000
++
++/* secondary execution unit mode (MODE1) and derivatives */
++#define TALITOS_MODE1_MDEU_INIT 0x00001000 /* init starting regs */
++#define TALITOS_MODE1_MDEU_HMAC 0x00000800
++#define TALITOS_MODE1_MDEU_PAD 0x00000400 /* PD */
++#define TALITOS_MODE1_MDEU_MD5 0x00000200
++#define TALITOS_MODE1_MDEU_SHA256 0x00000100
++#define TALITOS_MODE1_MDEU_SHA1 0x00000000 /* SHA-160 */
++#define TALITOS_MODE1_MDEU_MD5_HMAC \
++ (TALITOS_MODE1_MDEU_MD5 | TALITOS_MODE1_MDEU_HMAC)
++#define TALITOS_MODE1_MDEU_SHA256_HMAC \
++ (TALITOS_MODE1_MDEU_SHA256 | TALITOS_MODE1_MDEU_HMAC)
++#define TALITOS_MODE1_MDEU_SHA1_HMAC \
++ (TALITOS_MODE1_MDEU_SHA1 | TALITOS_MODE1_MDEU_HMAC)
++
++/* direction of overall data flow (DIR) */
++#define TALITOS_DIR_OUTBOUND 0x00000000
++#define TALITOS_DIR_INBOUND 0x00000002
++
++/* done notification (DN) */
++#define TALITOS_DONE_NOTIFY 0x00000001
++
++/* descriptor types */
++/* odd numbers here are valid on SEC2 and greater only (e.g. ipsec_esp) */
++#define TD_TYPE_AESU_CTR_NONSNOOP (0 << 3)
++#define TD_TYPE_IPSEC_ESP (1 << 3)
++#define TD_TYPE_COMMON_NONSNOOP_NO_AFEU (2 << 3)
++#define TD_TYPE_HMAC_SNOOP_NO_AFEU (4 << 3)
++
++#define TALITOS_HDR_DONE_BITS 0xff000000
++
++#define DPRINTF(a...) do { \
++ if (debug) { \
++ printk("%s: ", sc ? \
++ device_get_nameunit(sc->sc_cdev) : "talitos"); \
++ printk(a); \
++ } \
++ } while (0)
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/random.c 2007-12-04 13:56:03.000000000 +1000
+@@ -0,0 +1,317 @@
++/*
++ * A system independant way of adding entropy to the kernels pool
++ * this way the drivers can focus on the real work and we can take
++ * care of pushing it to the appropriate place in the kernel.
++ *
++ * This should be fast and callable from timers/interrupts
++ *
++ * Written by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/spinlock.h>
++#include <linux/version.h>
++#include <linux/unistd.h>
++#include <linux/poll.h>
++#include <linux/random.h>
++#include <cryptodev.h>
++
++#ifdef CONFIG_OCF_FIPS
++#include "rndtest.h"
++#endif
++
++#ifndef HAS_RANDOM_INPUT_WAIT
++#error "Please do not enable OCF_RANDOMHARVEST unless you have applied patches"
++#endif
++
++/*
++ * a hack to access the debug levels from the crypto driver
++ */
++extern int crypto_debug;
++#define debug crypto_debug
++
++/*
++ * a list of all registered random providers
++ */
++static LIST_HEAD(random_ops);
++static int started = 0;
++static int initted = 0;
++
++struct random_op {
++ struct list_head random_list;
++ u_int32_t driverid;
++ int (*read_random)(void *arg, u_int32_t *buf, int len);
++ void *arg;
++};
++
++static int random_proc(void *arg);
++
++static pid_t randomproc = (pid_t) -1;
++static spinlock_t random_lock;
++
++/*
++ * just init the spin locks
++ */
++static int
++crypto_random_init(void)
++{
++ spin_lock_init(&random_lock);
++ initted = 1;
++ return(0);
++}
++
++/*
++ * Add the given random reader to our list (if not present)
++ * and start the thread (if not already started)
++ *
++ * we have to assume that driver id is ok for now
++ */
++int
++crypto_rregister(
++ u_int32_t driverid,
++ int (*read_random)(void *arg, u_int32_t *buf, int len),
++ void *arg)
++{
++ unsigned long flags;
++ int ret = 0;
++ struct random_op *rops, *tmp;
++
++ dprintk("%s,%d: %s(0x%x, %p, %p)\n", __FILE__, __LINE__,
++ __FUNCTION__, driverid, read_random, arg);
++
++ if (!initted)
++ crypto_random_init();
++
++#if 0
++ struct cryptocap *cap;
++
++ cap = crypto_checkdriver(driverid);
++ if (!cap)
++ return EINVAL;
++#endif
++
++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) {
++ if (rops->driverid == driverid && rops->read_random == read_random)
++ return EEXIST;
++ }
++
++ rops = (struct random_op *) kmalloc(sizeof(*rops), GFP_KERNEL);
++ if (!rops)
++ return ENOMEM;
++
++ rops->driverid = driverid;
++ rops->read_random = read_random;
++ rops->arg = arg;
++
++ spin_lock_irqsave(&random_lock, flags);
++ list_add_tail(&rops->random_list, &random_ops);
++ if (!started) {
++ randomproc = kernel_thread(random_proc, NULL, CLONE_FS|CLONE_FILES);
++ if (randomproc < 0) {
++ ret = randomproc;
++ printk("crypto: crypto_rregister cannot start random thread; "
++ "error %d", ret);
++ } else
++ started = 1;
++ }
++ spin_unlock_irqrestore(&random_lock, flags);
++
++ return ret;
++}
++EXPORT_SYMBOL(crypto_rregister);
++
++int
++crypto_runregister_all(u_int32_t driverid)
++{
++ struct random_op *rops, *tmp;
++ unsigned long flags;
++
++ dprintk("%s,%d: %s(0x%x)\n", __FILE__, __LINE__, __FUNCTION__, driverid);
++
++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) {
++ if (rops->driverid == driverid) {
++ list_del(&rops->random_list);
++ kfree(rops);
++ }
++ }
++
++ spin_lock_irqsave(&random_lock, flags);
++ if (list_empty(&random_ops) && started)
++ kill_proc(randomproc, SIGKILL, 1);
++ spin_unlock_irqrestore(&random_lock, flags);
++ return(0);
++}
++EXPORT_SYMBOL(crypto_runregister_all);
++
++/*
++ * while we can add entropy to random.c continue to read random data from
++ * the drivers and push it to random.
++ */
++static int
++random_proc(void *arg)
++{
++ int n;
++ int wantcnt;
++ int bufcnt = 0;
++ int retval = 0;
++ int *buf = NULL;
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ daemonize();
++ spin_lock_irq(¤t->sigmask_lock);
++ sigemptyset(¤t->blocked);
++ recalc_sigpending(current);
++ spin_unlock_irq(¤t->sigmask_lock);
++ sprintf(current->comm, "ocf-random");
++#else
++ daemonize("ocf-random");
++ allow_signal(SIGKILL);
++#endif
++
++ (void) get_fs();
++ set_fs(get_ds());
++
++#ifdef CONFIG_OCF_FIPS
++#define NUM_INT (RNDTEST_NBYTES/sizeof(int))
++#else
++#define NUM_INT 32
++#endif
++
++ /*
++ * some devices can transferr their RNG data direct into memory,
++ * so make sure it is device friendly
++ */
++ buf = kmalloc(NUM_INT * sizeof(int), GFP_DMA);
++ if (NULL == buf) {
++ printk("crypto: RNG could not allocate memory\n");
++ retval = -ENOMEM;
++ goto bad_alloc;
++ }
++
++ wantcnt = NUM_INT; /* start by adding some entropy */
++
++ /*
++ * its possible due to errors or driver removal that we no longer
++ * have anything to do, if so exit or we will consume all the CPU
++ * doing nothing
++ */
++ while (!list_empty(&random_ops)) {
++ struct random_op *rops, *tmp;
++
++#ifdef CONFIG_OCF_FIPS
++ if (wantcnt)
++ wantcnt = NUM_INT; /* FIPs mode can do 20000 bits or none */
++#endif
++
++ /* see if we can get enough entropy to make the world
++ * a better place.
++ */
++ while (bufcnt < wantcnt && bufcnt < NUM_INT) {
++ list_for_each_entry_safe(rops, tmp, &random_ops, random_list) {
++
++ n = (*rops->read_random)(rops->arg, &buf[bufcnt],
++ NUM_INT - bufcnt);
++
++ /* on failure remove the random number generator */
++ if (n == -1) {
++ list_del(&rops->random_list);
++ printk("crypto: RNG (driverid=0x%x) failed, disabling\n",
++ rops->driverid);
++ kfree(rops);
++ } else if (n > 0)
++ bufcnt += n;
++ }
++ /* give up CPU for a bit, just in case as this is a loop */
++ schedule();
++ }
++
++
++#ifdef CONFIG_OCF_FIPS
++ if (bufcnt > 0 && rndtest_buf((unsigned char *) &buf[0])) {
++ dprintk("crypto: buffer had fips errors, discarding\n");
++ bufcnt = 0;
++ }
++#endif
++
++ /*
++ * if we have a certified buffer, we can send some data
++ * to /dev/random and move along
++ */
++ if (bufcnt > 0) {
++ /* add what we have */
++ random_input_words(buf, bufcnt, bufcnt*sizeof(int)*8);
++ bufcnt = 0;
++ }
++
++ /* give up CPU for a bit so we don't hog while filling */
++ schedule();
++
++ /* wait for needing more */
++ wantcnt = random_input_wait();
++
++ if (wantcnt <= 0)
++ wantcnt = 0; /* try to get some info again */
++ else
++ /* round up to one word or we can loop forever */
++ wantcnt = (wantcnt + (sizeof(int)*8)) / (sizeof(int)*8);
++ if (wantcnt > NUM_INT) {
++ wantcnt = NUM_INT;
++ }
++
++ if (signal_pending(current)) {
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_lock_irq(¤t->sigmask_lock);
++#endif
++ flush_signals(current);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++ spin_unlock_irq(¤t->sigmask_lock);
++#endif
++ }
++ }
++
++ kfree(buf);
++
++bad_alloc:
++ spin_lock_irq(&random_lock);
++ randomproc = (pid_t) -1;
++ started = 0;
++ spin_unlock_irq(&random_lock);
++
++ return retval;
++}
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ocf-bench.c 2007-07-23 22:26:12.000000000 +1000
+@@ -0,0 +1,436 @@
++/*
++ * A loadable module that benchmarks the OCF crypto speed from kernel space.
++ *
++ * Copyright (C) 2004-2007 David McCullough <david_mccullough@securecomputing.com>
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ */
++
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/wait.h>
++#include <linux/sched.h>
++#include <linux/spinlock.h>
++#include <linux/version.h>
++#include <linux/interrupt.h>
++#include <cryptodev.h>
++
++#ifdef I_HAVE_AN_XSCALE_WITH_INTEL_SDK
++#define BENCH_IXP_ACCESS_LIB 1
++#endif
++#ifdef BENCH_IXP_ACCESS_LIB
++#include <IxTypes.h>
++#include <IxOsBuffMgt.h>
++#include <IxNpeDl.h>
++#include <IxCryptoAcc.h>
++#include <IxQMgr.h>
++#include <IxOsServices.h>
++#include <IxOsCacheMMU.h>
++#endif
++
++/*
++ * support for access lib version 1.4
++ */
++#ifndef IX_MBUF_PRIV
++#define IX_MBUF_PRIV(x) ((x)->priv)
++#endif
++
++/*
++ * the number of simultaneously active requests
++ */
++static int request_q_len = 20;
++module_param(request_q_len, int, 0);
++MODULE_PARM_DESC(request_q_len, "Number of outstanding requests");
++/*
++ * how many requests we want to have processed
++ */
++static int request_num = 1024;
++module_param(request_num, int, 0);
++MODULE_PARM_DESC(request_num, "run for at least this many requests");
++/*
++ * the size of each request
++ */
++static int request_size = 1500;
++module_param(request_size, int, 0);
++MODULE_PARM_DESC(request_size, "size of each request");
++
++/*
++ * a structure for each request
++ */
++typedef struct {
++ struct work_struct work;
++#ifdef BENCH_IXP_ACCESS_LIB
++ IX_MBUF mbuf;
++#endif
++ unsigned char *buffer;
++} request_t;
++
++static request_t *requests;
++
++static int outstanding;
++static int total;
++
++/*************************************************************************/
++/*
++ * OCF benchmark routines
++ */
++
++static uint64_t ocf_cryptoid;
++static int ocf_init(void);
++static int ocf_cb(struct cryptop *crp);
++static void ocf_request(void *arg);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void ocf_request_wq(struct work_struct *work);
++#endif
++
++static int
++ocf_init(void)
++{
++ int error;
++ struct cryptoini crie, cria;
++ struct cryptodesc crda, crde;
++
++ memset(&crie, 0, sizeof(crie));
++ memset(&cria, 0, sizeof(cria));
++ memset(&crde, 0, sizeof(crde));
++ memset(&crda, 0, sizeof(crda));
++
++ cria.cri_alg = CRYPTO_SHA1_HMAC;
++ cria.cri_klen = 20 * 8;
++ cria.cri_key = "0123456789abcdefghij";
++
++ crie.cri_alg = CRYPTO_3DES_CBC;
++ crie.cri_klen = 24 * 8;
++ crie.cri_key = "0123456789abcdefghijklmn";
++
++ crie.cri_next = &cria;
++
++ error = crypto_newsession(&ocf_cryptoid, &crie, 0);
++ if (error) {
++ printk("crypto_newsession failed %d\n", error);
++ return -1;
++ }
++ return 0;
++}
++
++static int
++ocf_cb(struct cryptop *crp)
++{
++ request_t *r = (request_t *) crp->crp_opaque;
++
++ if (crp->crp_etype)
++ printk("Error in OCF processing: %d\n", crp->crp_etype);
++ total++;
++ crypto_freereq(crp);
++ crp = NULL;
++
++ if (total > request_num) {
++ outstanding--;
++ return 0;
++ }
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++ INIT_WORK(&r->work, ocf_request_wq);
++#else
++ INIT_WORK(&r->work, ocf_request, r);
++#endif
++ schedule_work(&r->work);
++ return 0;
++}
++
++
++static void
++ocf_request(void *arg)
++{
++ request_t *r = arg;
++ struct cryptop *crp = crypto_getreq(2);
++ struct cryptodesc *crde, *crda;
++
++ if (!crp) {
++ outstanding--;
++ return;
++ }
++
++ crde = crp->crp_desc;
++ crda = crde->crd_next;
++
++ crda->crd_skip = 0;
++ crda->crd_flags = 0;
++ crda->crd_len = request_size;
++ crda->crd_inject = request_size;
++ crda->crd_alg = CRYPTO_SHA1_HMAC;
++ crda->crd_key = "0123456789abcdefghij";
++ crda->crd_klen = 20 * 8;
++
++ crde->crd_skip = 0;
++ crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_ENCRYPT;
++ crde->crd_len = request_size;
++ crde->crd_inject = request_size;
++ crde->crd_alg = CRYPTO_3DES_CBC;
++ crde->crd_key = "0123456789abcdefghijklmn";
++ crde->crd_klen = 24 * 8;
++
++ crp->crp_ilen = request_size + 64;
++ crp->crp_flags = CRYPTO_F_CBIMM;
++ crp->crp_buf = (caddr_t) r->buffer;
++ crp->crp_callback = ocf_cb;
++ crp->crp_sid = ocf_cryptoid;
++ crp->crp_opaque = (caddr_t) r;
++ crypto_dispatch(crp);
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void
++ocf_request_wq(struct work_struct *work)
++{
++ request_t *r = container_of(work, request_t, work);
++ ocf_request(r);
++}
++#endif
++
++/*************************************************************************/
++#ifdef BENCH_IXP_ACCESS_LIB
++/*************************************************************************/
++/*
++ * CryptoAcc benchmark routines
++ */
++
++static IxCryptoAccCtx ixp_ctx;
++static UINT32 ixp_ctx_id;
++static IX_MBUF ixp_pri;
++static IX_MBUF ixp_sec;
++static int ixp_registered = 0;
++
++static void ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp,
++ IxCryptoAccStatus status);
++static void ixp_perform_cb(UINT32 ctx_id, IX_MBUF *sbufp, IX_MBUF *dbufp,
++ IxCryptoAccStatus status);
++static void ixp_request(void *arg);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void ixp_request_wq(struct work_struct *work);
++#endif
++
++static int
++ixp_init(void)
++{
++ IxCryptoAccStatus status;
++
++ ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_3DES;
++ ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
++ ixp_ctx.cipherCtx.cipherKeyLen = 24;
++ ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64;
++ ixp_ctx.cipherCtx.cipherInitialVectorLen = IX_CRYPTO_ACC_DES_IV_64;
++ memcpy(ixp_ctx.cipherCtx.key.cipherKey, "0123456789abcdefghijklmn", 24);
++
++ ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_SHA1;
++ ixp_ctx.authCtx.authDigestLen = 12;
++ ixp_ctx.authCtx.aadLen = 0;
++ ixp_ctx.authCtx.authKeyLen = 20;
++ memcpy(ixp_ctx.authCtx.key.authKey, "0123456789abcdefghij", 20);
++
++ ixp_ctx.useDifferentSrcAndDestMbufs = 0;
++ ixp_ctx.operation = IX_CRYPTO_ACC_OP_ENCRYPT_AUTH ;
++
++ IX_MBUF_MLEN(&ixp_pri) = IX_MBUF_PKT_LEN(&ixp_pri) = 128;
++ IX_MBUF_MDATA(&ixp_pri) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
++ IX_MBUF_MLEN(&ixp_sec) = IX_MBUF_PKT_LEN(&ixp_sec) = 128;
++ IX_MBUF_MDATA(&ixp_sec) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
++
++ status = ixCryptoAccCtxRegister(&ixp_ctx, &ixp_pri, &ixp_sec,
++ ixp_register_cb, ixp_perform_cb, &ixp_ctx_id);
++
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status) {
++ while (!ixp_registered)
++ schedule();
++ return ixp_registered < 0 ? -1 : 0;
++ }
++
++ printk("ixp: ixCryptoAccCtxRegister failed %d\n", status);
++ return -1;
++}
++
++static void
++ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, IxCryptoAccStatus status)
++{
++ if (bufp) {
++ IX_MBUF_MLEN(bufp) = IX_MBUF_PKT_LEN(bufp) = 0;
++ kfree(IX_MBUF_MDATA(bufp));
++ IX_MBUF_MDATA(bufp) = NULL;
++ }
++
++ if (IX_CRYPTO_ACC_STATUS_WAIT == status)
++ return;
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
++ ixp_registered = 1;
++ else
++ ixp_registered = -1;
++}
++
++static void
++ixp_perform_cb(
++ UINT32 ctx_id,
++ IX_MBUF *sbufp,
++ IX_MBUF *dbufp,
++ IxCryptoAccStatus status)
++{
++ request_t *r = NULL;
++
++ total++;
++ if (total > request_num) {
++ outstanding--;
++ return;
++ }
++
++ if (!sbufp || !(r = IX_MBUF_PRIV(sbufp))) {
++ printk("crappo %p %p\n", sbufp, r);
++ outstanding--;
++ return;
++ }
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++ INIT_WORK(&r->work, ixp_request_wq);
++#else
++ INIT_WORK(&r->work, ixp_request, r);
++#endif
++ schedule_work(&r->work);
++}
++
++static void
++ixp_request(void *arg)
++{
++ request_t *r = arg;
++ IxCryptoAccStatus status;
++
++ memset(&r->mbuf, 0, sizeof(r->mbuf));
++ IX_MBUF_MLEN(&r->mbuf) = IX_MBUF_PKT_LEN(&r->mbuf) = request_size + 64;
++ IX_MBUF_MDATA(&r->mbuf) = r->buffer;
++ IX_MBUF_PRIV(&r->mbuf) = r;
++ status = ixCryptoAccAuthCryptPerform(ixp_ctx_id, &r->mbuf, NULL,
++ 0, request_size, 0, request_size, request_size, r->buffer);
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS != status) {
++ printk("status1 = %d\n", status);
++ outstanding--;
++ return;
++ }
++ return;
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void
++ixp_request_wq(struct work_struct *work)
++{
++ request_t *r = container_of(work, request_t, work);
++ ixp_request(r);
++}
++#endif
++
++/*************************************************************************/
++#endif /* BENCH_IXP_ACCESS_LIB */
++/*************************************************************************/
++
++int
++ocfbench_init(void)
++{
++ int i, jstart, jstop;
++
++ printk("Crypto Speed tests\n");
++
++ requests = kmalloc(sizeof(request_t) * request_q_len, GFP_KERNEL);
++ if (!requests) {
++ printk("malloc failed\n");
++ return -EINVAL;
++ }
++
++ for (i = 0; i < request_q_len; i++) {
++ /* +64 for return data */
++ requests[i].buffer = kmalloc(request_size + 128, GFP_DMA);
++ if (!requests[i].buffer) {
++ printk("malloc failed\n");
++ return -EINVAL;
++ }
++ memset(requests[i].buffer, '0' + i, request_size + 128);
++ }
++
++ /*
++ * OCF benchmark
++ */
++ printk("OCF: testing ...\n");
++ ocf_init();
++ total = outstanding = 0;
++ jstart = jiffies;
++ for (i = 0; i < request_q_len; i++) {
++ outstanding++;
++ ocf_request(&requests[i]);
++ }
++ while (outstanding > 0)
++ schedule();
++ jstop = jiffies;
++
++ printk("OCF: %d requests of %d bytes in %d jiffies\n", total, request_size,
++ jstop - jstart);
++
++#ifdef BENCH_IXP_ACCESS_LIB
++ /*
++ * IXP benchmark
++ */
++ printk("IXP: testing ...\n");
++ ixp_init();
++ total = outstanding = 0;
++ jstart = jiffies;
++ for (i = 0; i < request_q_len; i++) {
++ outstanding++;
++ ixp_request(&requests[i]);
++ }
++ while (outstanding > 0)
++ schedule();
++ jstop = jiffies;
++
++ printk("IXP: %d requests of %d bytes in %d jiffies\n", total, request_size,
++ jstop - jstart);
++#endif /* BENCH_IXP_ACCESS_LIB */
++
++ for (i = 0; i < request_q_len; i++)
++ kfree(requests[i].buffer);
++ kfree(requests);
++ return -EINVAL; /* always fail to load so it can be re-run quickly ;-) */
++}
++
++static void __exit ocfbench_exit(void)
++{
++}
++
++module_init(ocfbench_init);
++module_exit(ocfbench_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("Benchmark various in-kernel crypto speeds");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ixp4xx/ixp4xx.c 2008-07-03 10:28:05.000000000 +1000
+@@ -0,0 +1,1328 @@
++/*
++ * An OCF module that uses Intels IXP CryptACC API to do the crypto.
++ * This driver requires the IXP400 Access Library that is available
++ * from Intel in order to operate (or compile).
++ *
++ * Written by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/sched.h>
++#include <linux/wait.h>
++#include <linux/crypto.h>
++#include <linux/interrupt.h>
++#include <asm/scatterlist.h>
++
++#include <IxTypes.h>
++#include <IxOsBuffMgt.h>
++#include <IxNpeDl.h>
++#include <IxCryptoAcc.h>
++#include <IxQMgr.h>
++#include <IxOsServices.h>
++#include <IxOsCacheMMU.h>
++
++#include <cryptodev.h>
++#include <uio.h>
++
++#ifndef IX_MBUF_PRIV
++#define IX_MBUF_PRIV(x) ((x)->priv)
++#endif
++
++struct ixp_data;
++
++struct ixp_q {
++ struct list_head ixp_q_list;
++ struct ixp_data *ixp_q_data;
++ struct cryptop *ixp_q_crp;
++ struct cryptodesc *ixp_q_ccrd;
++ struct cryptodesc *ixp_q_acrd;
++ IX_MBUF ixp_q_mbuf;
++ UINT8 *ixp_hash_dest; /* Location for hash in client buffer */
++ UINT8 *ixp_hash_src; /* Location of hash in internal buffer */
++ unsigned char ixp_q_iv_data[IX_CRYPTO_ACC_MAX_CIPHER_IV_LENGTH];
++ unsigned char *ixp_q_iv;
++};
++
++struct ixp_data {
++ int ixp_registered; /* is the context registered */
++ int ixp_crd_flags; /* detect direction changes */
++
++ int ixp_cipher_alg;
++ int ixp_auth_alg;
++
++ UINT32 ixp_ctx_id;
++ UINT32 ixp_hash_key_id; /* used when hashing */
++ IxCryptoAccCtx ixp_ctx;
++ IX_MBUF ixp_pri_mbuf;
++ IX_MBUF ixp_sec_mbuf;
++
++ struct work_struct ixp_pending_work;
++ struct work_struct ixp_registration_work;
++ struct list_head ixp_q; /* unprocessed requests */
++};
++
++#ifdef __ixp46X
++
++#define MAX_IOP_SIZE 64 /* words */
++#define MAX_OOP_SIZE 128
++
++#define MAX_PARAMS 3
++
++struct ixp_pkq {
++ struct list_head pkq_list;
++ struct cryptkop *pkq_krp;
++
++ IxCryptoAccPkeEauInOperands pkq_op;
++ IxCryptoAccPkeEauOpResult pkq_result;
++
++ UINT32 pkq_ibuf0[MAX_IOP_SIZE];
++ UINT32 pkq_ibuf1[MAX_IOP_SIZE];
++ UINT32 pkq_ibuf2[MAX_IOP_SIZE];
++ UINT32 pkq_obuf[MAX_OOP_SIZE];
++};
++
++static LIST_HEAD(ixp_pkq); /* current PK wait list */
++static struct ixp_pkq *ixp_pk_cur;
++static spinlock_t ixp_pkq_lock;
++
++#endif /* __ixp46X */
++
++static int ixp_blocked = 0;
++
++static int32_t ixp_id = -1;
++static struct ixp_data **ixp_sessions = NULL;
++static u_int32_t ixp_sesnum = 0;
++
++static int ixp_process(device_t, struct cryptop *, int);
++static int ixp_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int ixp_freesession(device_t, u_int64_t);
++#ifdef __ixp46X
++static int ixp_kprocess(device_t, struct cryptkop *krp, int hint);
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
++static kmem_cache_t *qcache;
++#else
++static struct kmem_cache *qcache;
++#endif
++
++#define debug ixp_debug
++static int ixp_debug = 0;
++module_param(ixp_debug, int, 0644);
++MODULE_PARM_DESC(ixp_debug, "Enable debug");
++
++static int ixp_init_crypto = 1;
++module_param(ixp_init_crypto, int, 0444); /* RO after load/boot */
++MODULE_PARM_DESC(ixp_init_crypto, "Call ixCryptoAccInit (default is 1)");
++
++static void ixp_process_pending(void *arg);
++static void ixp_registration(void *arg);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void ixp_process_pending_wq(struct work_struct *work);
++static void ixp_registration_wq(struct work_struct *work);
++#endif
++
++/*
++ * dummy device structure
++ */
++
++static struct {
++ softc_device_decl sc_dev;
++} ixpdev;
++
++static device_method_t ixp_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, ixp_newsession),
++ DEVMETHOD(cryptodev_freesession,ixp_freesession),
++ DEVMETHOD(cryptodev_process, ixp_process),
++#ifdef __ixp46X
++ DEVMETHOD(cryptodev_kprocess, ixp_kprocess),
++#endif
++};
++
++/*
++ * Generate a new software session.
++ */
++static int
++ixp_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri)
++{
++ struct ixp_data *ixp;
++ u_int32_t i;
++#define AUTH_LEN(cri, def) \
++ (cri->cri_mlen ? cri->cri_mlen : (def))
++
++ dprintk("%s():alg %d\n", __FUNCTION__,cri->cri_alg);
++ if (sid == NULL || cri == NULL) {
++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ if (ixp_sessions) {
++ for (i = 1; i < ixp_sesnum; i++)
++ if (ixp_sessions[i] == NULL)
++ break;
++ } else
++ i = 1; /* NB: to silence compiler warning */
++
++ if (ixp_sessions == NULL || i == ixp_sesnum) {
++ struct ixp_data **ixpd;
++
++ if (ixp_sessions == NULL) {
++ i = 1; /* We leave ixp_sessions[0] empty */
++ ixp_sesnum = CRYPTO_SW_SESSIONS;
++ } else
++ ixp_sesnum *= 2;
++
++ ixpd = kmalloc(ixp_sesnum * sizeof(struct ixp_data *), SLAB_ATOMIC);
++ if (ixpd == NULL) {
++ /* Reset session number */
++ if (ixp_sesnum == CRYPTO_SW_SESSIONS)
++ ixp_sesnum = 0;
++ else
++ ixp_sesnum /= 2;
++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++ memset(ixpd, 0, ixp_sesnum * sizeof(struct ixp_data *));
++
++ /* Copy existing sessions */
++ if (ixp_sessions) {
++ memcpy(ixpd, ixp_sessions,
++ (ixp_sesnum / 2) * sizeof(struct ixp_data *));
++ kfree(ixp_sessions);
++ }
++
++ ixp_sessions = ixpd;
++ }
++
++ ixp_sessions[i] = (struct ixp_data *) kmalloc(sizeof(struct ixp_data),
++ SLAB_ATOMIC);
++ if (ixp_sessions[i] == NULL) {
++ ixp_freesession(NULL, i);
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++
++ *sid = i;
++
++ ixp = ixp_sessions[i];
++ memset(ixp, 0, sizeof(*ixp));
++
++ ixp->ixp_cipher_alg = -1;
++ ixp->ixp_auth_alg = -1;
++ ixp->ixp_ctx_id = -1;
++ INIT_LIST_HEAD(&ixp->ixp_q);
++
++ ixp->ixp_ctx.useDifferentSrcAndDestMbufs = 0;
++
++ while (cri) {
++ switch (cri->cri_alg) {
++ case CRYPTO_DES_CBC:
++ ixp->ixp_cipher_alg = cri->cri_alg;
++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_DES;
++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64;
++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen =
++ IX_CRYPTO_ACC_DES_IV_64;
++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
++ cri->cri_key, (cri->cri_klen + 7) / 8);
++ break;
++
++ case CRYPTO_3DES_CBC:
++ ixp->ixp_cipher_alg = cri->cri_alg;
++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_3DES;
++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64;
++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen =
++ IX_CRYPTO_ACC_DES_IV_64;
++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
++ cri->cri_key, (cri->cri_klen + 7) / 8);
++ break;
++
++ case CRYPTO_RIJNDAEL128_CBC:
++ ixp->ixp_cipher_alg = cri->cri_alg;
++ ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_AES;
++ ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
++ ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
++ ixp->ixp_ctx.cipherCtx.cipherBlockLen = 16;
++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen = 16;
++ memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
++ cri->cri_key, (cri->cri_klen + 7) / 8);
++ break;
++
++ case CRYPTO_MD5:
++ case CRYPTO_MD5_HMAC:
++ ixp->ixp_auth_alg = cri->cri_alg;
++ ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_MD5;
++ ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, MD5_HASH_LEN);
++ ixp->ixp_ctx.authCtx.aadLen = 0;
++ /* Only MD5_HMAC needs a key */
++ if (cri->cri_alg == CRYPTO_MD5_HMAC) {
++ ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8;
++ if (ixp->ixp_ctx.authCtx.authKeyLen >
++ sizeof(ixp->ixp_ctx.authCtx.key.authKey)) {
++ printk(
++ "ixp4xx: Invalid key length for MD5_HMAC - %d bits\n",
++ cri->cri_klen);
++ ixp_freesession(NULL, i);
++ return EINVAL;
++ }
++ memcpy(ixp->ixp_ctx.authCtx.key.authKey,
++ cri->cri_key, (cri->cri_klen + 7) / 8);
++ }
++ break;
++
++ case CRYPTO_SHA1:
++ case CRYPTO_SHA1_HMAC:
++ ixp->ixp_auth_alg = cri->cri_alg;
++ ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_SHA1;
++ ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, SHA1_HASH_LEN);
++ ixp->ixp_ctx.authCtx.aadLen = 0;
++ /* Only SHA1_HMAC needs a key */
++ if (cri->cri_alg == CRYPTO_SHA1_HMAC) {
++ ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8;
++ if (ixp->ixp_ctx.authCtx.authKeyLen >
++ sizeof(ixp->ixp_ctx.authCtx.key.authKey)) {
++ printk(
++ "ixp4xx: Invalid key length for SHA1_HMAC - %d bits\n",
++ cri->cri_klen);
++ ixp_freesession(NULL, i);
++ return EINVAL;
++ }
++ memcpy(ixp->ixp_ctx.authCtx.key.authKey,
++ cri->cri_key, (cri->cri_klen + 7) / 8);
++ }
++ break;
++
++ default:
++ printk("ixp: unknown algo 0x%x\n", cri->cri_alg);
++ ixp_freesession(NULL, i);
++ return EINVAL;
++ }
++ cri = cri->cri_next;
++ }
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++ INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending_wq);
++ INIT_WORK(&ixp->ixp_registration_work, ixp_registration_wq);
++#else
++ INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending, ixp);
++ INIT_WORK(&ixp->ixp_registration_work, ixp_registration, ixp);
++#endif
++
++ return 0;
++}
++
++
++/*
++ * Free a session.
++ */
++static int
++ixp_freesession(device_t dev, u_int64_t tid)
++{
++ u_int32_t sid = CRYPTO_SESID2LID(tid);
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (sid > ixp_sesnum || ixp_sessions == NULL ||
++ ixp_sessions[sid] == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ /* Silently accept and return */
++ if (sid == 0)
++ return 0;
++
++ if (ixp_sessions[sid]) {
++ if (ixp_sessions[sid]->ixp_ctx_id != -1) {
++ ixCryptoAccCtxUnregister(ixp_sessions[sid]->ixp_ctx_id);
++ ixp_sessions[sid]->ixp_ctx_id = -1;
++ }
++
++ flush_scheduled_work();
++
++ kfree(ixp_sessions[sid]);
++ }
++ ixp_sessions[sid] = NULL;
++ if (ixp_blocked) {
++ ixp_blocked = 0;
++ crypto_unblock(ixp_id, CRYPTO_SYMQ);
++ }
++ return 0;
++}
++
++
++/*
++ * callback for when hash processing is complete
++ */
++
++static void
++ixp_hash_perform_cb(
++ UINT32 hash_key_id,
++ IX_MBUF *bufp,
++ IxCryptoAccStatus status)
++{
++ struct ixp_q *q;
++
++ dprintk("%s(%u, %p, 0x%x)\n", __FUNCTION__, hash_key_id, bufp, status);
++
++ if (bufp == NULL) {
++ printk("ixp: NULL buf in %s\n", __FUNCTION__);
++ return;
++ }
++
++ q = IX_MBUF_PRIV(bufp);
++ if (q == NULL) {
++ printk("ixp: NULL priv in %s\n", __FUNCTION__);
++ return;
++ }
++
++ if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ /* On success, need to copy hash back into original client buffer */
++ memcpy(q->ixp_hash_dest, q->ixp_hash_src,
++ (q->ixp_q_data->ixp_auth_alg == CRYPTO_SHA1) ?
++ SHA1_HASH_LEN : MD5_HASH_LEN);
++ }
++ else {
++ printk("ixp: hash perform failed status=%d\n", status);
++ q->ixp_q_crp->crp_etype = EINVAL;
++ }
++
++ /* Free internal buffer used for hashing */
++ kfree(IX_MBUF_MDATA(&q->ixp_q_mbuf));
++
++ crypto_done(q->ixp_q_crp);
++ kmem_cache_free(qcache, q);
++}
++
++/*
++ * setup a request and perform it
++ */
++static void
++ixp_q_process(struct ixp_q *q)
++{
++ IxCryptoAccStatus status;
++ struct ixp_data *ixp = q->ixp_q_data;
++ int auth_off = 0;
++ int auth_len = 0;
++ int crypt_off = 0;
++ int crypt_len = 0;
++ int icv_off = 0;
++ char *crypt_func;
++
++ dprintk("%s(%p)\n", __FUNCTION__, q);
++
++ if (q->ixp_q_ccrd) {
++ if (q->ixp_q_ccrd->crd_flags & CRD_F_IV_EXPLICIT) {
++ q->ixp_q_iv = q->ixp_q_ccrd->crd_iv;
++ } else {
++ q->ixp_q_iv = q->ixp_q_iv_data;
++ crypto_copydata(q->ixp_q_crp->crp_flags, q->ixp_q_crp->crp_buf,
++ q->ixp_q_ccrd->crd_inject,
++ ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen,
++ (caddr_t) q->ixp_q_iv);
++ }
++
++ if (q->ixp_q_acrd) {
++ auth_off = q->ixp_q_acrd->crd_skip;
++ auth_len = q->ixp_q_acrd->crd_len;
++ icv_off = q->ixp_q_acrd->crd_inject;
++ }
++
++ crypt_off = q->ixp_q_ccrd->crd_skip;
++ crypt_len = q->ixp_q_ccrd->crd_len;
++ } else { /* if (q->ixp_q_acrd) */
++ auth_off = q->ixp_q_acrd->crd_skip;
++ auth_len = q->ixp_q_acrd->crd_len;
++ icv_off = q->ixp_q_acrd->crd_inject;
++ }
++
++ if (q->ixp_q_crp->crp_flags & CRYPTO_F_SKBUF) {
++ struct sk_buff *skb = (struct sk_buff *) q->ixp_q_crp->crp_buf;
++ if (skb_shinfo(skb)->nr_frags) {
++ /*
++ * DAVIDM fix this limitation one day by using
++ * a buffer pool and chaining, it is not currently
++ * needed for current user/kernel space acceleration
++ */
++ printk("ixp: Cannot handle fragmented skb's yet !\n");
++ q->ixp_q_crp->crp_etype = ENOENT;
++ goto done;
++ }
++ IX_MBUF_MLEN(&q->ixp_q_mbuf) =
++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = skb->len;
++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = skb->data;
++ } else if (q->ixp_q_crp->crp_flags & CRYPTO_F_IOV) {
++ struct uio *uiop = (struct uio *) q->ixp_q_crp->crp_buf;
++ if (uiop->uio_iovcnt != 1) {
++ /*
++ * DAVIDM fix this limitation one day by using
++ * a buffer pool and chaining, it is not currently
++ * needed for current user/kernel space acceleration
++ */
++ printk("ixp: Cannot handle more than 1 iovec yet !\n");
++ q->ixp_q_crp->crp_etype = ENOENT;
++ goto done;
++ }
++ IX_MBUF_MLEN(&q->ixp_q_mbuf) =
++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_len;
++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_base;
++ } else /* contig buffer */ {
++ IX_MBUF_MLEN(&q->ixp_q_mbuf) =
++ IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_ilen;
++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_buf;
++ }
++
++ IX_MBUF_PRIV(&q->ixp_q_mbuf) = q;
++
++ if (ixp->ixp_auth_alg == CRYPTO_SHA1 || ixp->ixp_auth_alg == CRYPTO_MD5) {
++ /*
++ * For SHA1 and MD5 hash, need to create an internal buffer that is big
++ * enough to hold the original data + the appropriate padding for the
++ * hash algorithm.
++ */
++ UINT8 *tbuf = NULL;
++
++ IX_MBUF_MLEN(&q->ixp_q_mbuf) = IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) =
++ ((IX_MBUF_MLEN(&q->ixp_q_mbuf) * 8) + 72 + 511) / 8;
++ tbuf = kmalloc(IX_MBUF_MLEN(&q->ixp_q_mbuf), SLAB_ATOMIC);
++
++ if (IX_MBUF_MDATA(&q->ixp_q_mbuf) == NULL) {
++ printk("ixp: kmalloc(%u, SLAB_ATOMIC) failed\n",
++ IX_MBUF_MLEN(&q->ixp_q_mbuf));
++ q->ixp_q_crp->crp_etype = ENOMEM;
++ goto done;
++ }
++ memcpy(tbuf, &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off], auth_len);
++
++ /* Set location in client buffer to copy hash into */
++ q->ixp_hash_dest =
++ &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off + auth_len];
++
++ IX_MBUF_MDATA(&q->ixp_q_mbuf) = tbuf;
++
++ /* Set location in internal buffer for where hash starts */
++ q->ixp_hash_src = &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_len];
++
++ crypt_func = "ixCryptoAccHashPerform";
++ status = ixCryptoAccHashPerform(ixp->ixp_ctx.authCtx.authAlgo,
++ &q->ixp_q_mbuf, ixp_hash_perform_cb, 0, auth_len, auth_len,
++ &ixp->ixp_hash_key_id);
++ }
++ else {
++ crypt_func = "ixCryptoAccAuthCryptPerform";
++ status = ixCryptoAccAuthCryptPerform(ixp->ixp_ctx_id, &q->ixp_q_mbuf,
++ NULL, auth_off, auth_len, crypt_off, crypt_len, icv_off,
++ q->ixp_q_iv);
++ }
++
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
++ return;
++
++ if (IX_CRYPTO_ACC_STATUS_QUEUE_FULL == status) {
++ q->ixp_q_crp->crp_etype = ENOMEM;
++ goto done;
++ }
++
++ printk("ixp: %s failed %u\n", crypt_func, status);
++ q->ixp_q_crp->crp_etype = EINVAL;
++
++done:
++ crypto_done(q->ixp_q_crp);
++ kmem_cache_free(qcache, q);
++}
++
++
++/*
++ * because we cannot process the Q from the Register callback
++ * we do it here on a task Q.
++ */
++
++static void
++ixp_process_pending(void *arg)
++{
++ struct ixp_data *ixp = arg;
++ struct ixp_q *q = NULL;
++
++ dprintk("%s(%p)\n", __FUNCTION__, arg);
++
++ if (!ixp)
++ return;
++
++ while (!list_empty(&ixp->ixp_q)) {
++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
++ list_del(&q->ixp_q_list);
++ ixp_q_process(q);
++ }
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void
++ixp_process_pending_wq(struct work_struct *work)
++{
++ struct ixp_data *ixp = container_of(work, struct ixp_data,
++ ixp_pending_work);
++ ixp_process_pending(ixp);
++}
++#endif
++
++/*
++ * callback for when context registration is complete
++ */
++
++static void
++ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, IxCryptoAccStatus status)
++{
++ int i;
++ struct ixp_data *ixp;
++ struct ixp_q *q;
++
++ dprintk("%s(%d, %p, %d)\n", __FUNCTION__, ctx_id, bufp, status);
++
++ /*
++ * free any buffer passed in to this routine
++ */
++ if (bufp) {
++ IX_MBUF_MLEN(bufp) = IX_MBUF_PKT_LEN(bufp) = 0;
++ kfree(IX_MBUF_MDATA(bufp));
++ IX_MBUF_MDATA(bufp) = NULL;
++ }
++
++ for (i = 0; i < ixp_sesnum; i++) {
++ ixp = ixp_sessions[i];
++ if (ixp && ixp->ixp_ctx_id == ctx_id)
++ break;
++ }
++ if (i >= ixp_sesnum) {
++ printk("ixp: invalid context id %d\n", ctx_id);
++ return;
++ }
++
++ if (IX_CRYPTO_ACC_STATUS_WAIT == status) {
++ /* this is normal to free the first of two buffers */
++ dprintk("ixp: register not finished yet.\n");
++ return;
++ }
++
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS != status) {
++ printk("ixp: register failed 0x%x\n", status);
++ while (!list_empty(&ixp->ixp_q)) {
++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
++ list_del(&q->ixp_q_list);
++ q->ixp_q_crp->crp_etype = EINVAL;
++ crypto_done(q->ixp_q_crp);
++ kmem_cache_free(qcache, q);
++ }
++ return;
++ }
++
++ /*
++ * we are now registered, we cannot start processing the Q here
++ * or we get strange errors with AES (DES/3DES seem to be ok).
++ */
++ ixp->ixp_registered = 1;
++ schedule_work(&ixp->ixp_pending_work);
++}
++
++
++/*
++ * callback for when data processing is complete
++ */
++
++static void
++ixp_perform_cb(
++ UINT32 ctx_id,
++ IX_MBUF *sbufp,
++ IX_MBUF *dbufp,
++ IxCryptoAccStatus status)
++{
++ struct ixp_q *q;
++
++ dprintk("%s(%d, %p, %p, 0x%x)\n", __FUNCTION__, ctx_id, sbufp,
++ dbufp, status);
++
++ if (sbufp == NULL) {
++ printk("ixp: NULL sbuf in ixp_perform_cb\n");
++ return;
++ }
++
++ q = IX_MBUF_PRIV(sbufp);
++ if (q == NULL) {
++ printk("ixp: NULL priv in ixp_perform_cb\n");
++ return;
++ }
++
++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ printk("ixp: perform failed status=%d\n", status);
++ q->ixp_q_crp->crp_etype = EINVAL;
++ }
++
++ crypto_done(q->ixp_q_crp);
++ kmem_cache_free(qcache, q);
++}
++
++
++/*
++ * registration is not callable at IRQ time, so we defer
++ * to a task queue, this routines completes the registration for us
++ * when the task queue runs
++ *
++ * Unfortunately this means we cannot tell OCF that the driver is blocked,
++ * we do that on the next request.
++ */
++
++static void
++ixp_registration(void *arg)
++{
++ struct ixp_data *ixp = arg;
++ struct ixp_q *q = NULL;
++ IX_MBUF *pri = NULL, *sec = NULL;
++ int status = IX_CRYPTO_ACC_STATUS_SUCCESS;
++
++ if (!ixp) {
++ printk("ixp: ixp_registration with no arg\n");
++ return;
++ }
++
++ if (ixp->ixp_ctx_id != -1) {
++ ixCryptoAccCtxUnregister(ixp->ixp_ctx_id);
++ ixp->ixp_ctx_id = -1;
++ }
++
++ if (list_empty(&ixp->ixp_q)) {
++ printk("ixp: ixp_registration with no Q\n");
++ return;
++ }
++
++ /*
++ * setup the primary and secondary buffers
++ */
++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
++ if (q->ixp_q_acrd) {
++ pri = &ixp->ixp_pri_mbuf;
++ sec = &ixp->ixp_sec_mbuf;
++ IX_MBUF_MLEN(pri) = IX_MBUF_PKT_LEN(pri) = 128;
++ IX_MBUF_MDATA(pri) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
++ IX_MBUF_MLEN(sec) = IX_MBUF_PKT_LEN(sec) = 128;
++ IX_MBUF_MDATA(sec) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
++ }
++
++ /* Only need to register if a crypt op or HMAC op */
++ if (!(ixp->ixp_auth_alg == CRYPTO_SHA1 ||
++ ixp->ixp_auth_alg == CRYPTO_MD5)) {
++ status = ixCryptoAccCtxRegister(
++ &ixp->ixp_ctx,
++ pri, sec,
++ ixp_register_cb,
++ ixp_perform_cb,
++ &ixp->ixp_ctx_id);
++ }
++ else {
++ /* Otherwise we start processing pending q */
++ schedule_work(&ixp->ixp_pending_work);
++ }
++
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
++ return;
++
++ if (IX_CRYPTO_ACC_STATUS_EXCEED_MAX_TUNNELS == status) {
++ printk("ixp: ixCryptoAccCtxRegister failed (out of tunnels)\n");
++ ixp_blocked = 1;
++ /* perhaps we should return EGAIN on queued ops ? */
++ return;
++ }
++
++ printk("ixp: ixCryptoAccCtxRegister failed %d\n", status);
++ ixp->ixp_ctx_id = -1;
++
++ /*
++ * everything waiting is toasted
++ */
++ while (!list_empty(&ixp->ixp_q)) {
++ q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
++ list_del(&q->ixp_q_list);
++ q->ixp_q_crp->crp_etype = ENOENT;
++ crypto_done(q->ixp_q_crp);
++ kmem_cache_free(qcache, q);
++ }
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++static void
++ixp_registration_wq(struct work_struct *work)
++{
++ struct ixp_data *ixp = container_of(work, struct ixp_data,
++ ixp_registration_work);
++ ixp_registration(ixp);
++}
++#endif
++
++/*
++ * Process a request.
++ */
++static int
++ixp_process(device_t dev, struct cryptop *crp, int hint)
++{
++ struct ixp_data *ixp;
++ unsigned int lid;
++ struct ixp_q *q = NULL;
++ int status;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ /* Sanity check */
++ if (crp == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ crp->crp_etype = 0;
++
++ if (ixp_blocked)
++ return ERESTART;
++
++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ crp->crp_etype = EINVAL;
++ goto done;
++ }
++
++ /*
++ * find the session we are using
++ */
++
++ lid = crp->crp_sid & 0xffffffff;
++ if (lid >= ixp_sesnum || lid == 0 || ixp_sessions == NULL ||
++ ixp_sessions[lid] == NULL) {
++ crp->crp_etype = ENOENT;
++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
++ goto done;
++ }
++ ixp = ixp_sessions[lid];
++
++ /*
++ * setup a new request ready for queuing
++ */
++ q = kmem_cache_alloc(qcache, SLAB_ATOMIC);
++ if (q == NULL) {
++ dprintk("%s,%d: ENOMEM\n", __FILE__, __LINE__);
++ crp->crp_etype = ENOMEM;
++ goto done;
++ }
++ /*
++ * save some cycles by only zeroing the important bits
++ */
++ memset(&q->ixp_q_mbuf, 0, sizeof(q->ixp_q_mbuf));
++ q->ixp_q_ccrd = NULL;
++ q->ixp_q_acrd = NULL;
++ q->ixp_q_crp = crp;
++ q->ixp_q_data = ixp;
++
++ /*
++ * point the cipher and auth descriptors appropriately
++ * check that we have something to do
++ */
++ if (crp->crp_desc->crd_alg == ixp->ixp_cipher_alg)
++ q->ixp_q_ccrd = crp->crp_desc;
++ else if (crp->crp_desc->crd_alg == ixp->ixp_auth_alg)
++ q->ixp_q_acrd = crp->crp_desc;
++ else {
++ crp->crp_etype = ENOENT;
++ dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__);
++ goto done;
++ }
++ if (crp->crp_desc->crd_next) {
++ if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_cipher_alg)
++ q->ixp_q_ccrd = crp->crp_desc->crd_next;
++ else if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_auth_alg)
++ q->ixp_q_acrd = crp->crp_desc->crd_next;
++ else {
++ crp->crp_etype = ENOENT;
++ dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__);
++ goto done;
++ }
++ }
++
++ /*
++ * If there is a direction change for this context then we mark it as
++ * unregistered and re-register is for the new direction. This is not
++ * a very expensive operation and currently only tends to happen when
++ * user-space application are doing benchmarks
++ *
++ * DM - we should be checking for pending requests before unregistering.
++ */
++ if (q->ixp_q_ccrd && ixp->ixp_registered &&
++ ixp->ixp_crd_flags != (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT)) {
++ dprintk("%s - detected direction change on session\n", __FUNCTION__);
++ ixp->ixp_registered = 0;
++ }
++
++ /*
++ * if we are registered, call straight into the perform code
++ */
++ if (ixp->ixp_registered) {
++ ixp_q_process(q);
++ return 0;
++ }
++
++ /*
++ * the only part of the context not set in newsession is the direction
++ * dependent parts
++ */
++ if (q->ixp_q_ccrd) {
++ ixp->ixp_crd_flags = (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT);
++ if (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT) {
++ ixp->ixp_ctx.operation = q->ixp_q_acrd ?
++ IX_CRYPTO_ACC_OP_ENCRYPT_AUTH : IX_CRYPTO_ACC_OP_ENCRYPT;
++ } else {
++ ixp->ixp_ctx.operation = q->ixp_q_acrd ?
++ IX_CRYPTO_ACC_OP_AUTH_DECRYPT : IX_CRYPTO_ACC_OP_DECRYPT;
++ }
++ } else {
++ /* q->ixp_q_acrd must be set if we are here */
++ ixp->ixp_ctx.operation = IX_CRYPTO_ACC_OP_AUTH_CALC;
++ }
++
++ status = list_empty(&ixp->ixp_q);
++ list_add_tail(&q->ixp_q_list, &ixp->ixp_q);
++ if (status)
++ schedule_work(&ixp->ixp_registration_work);
++ return 0;
++
++done:
++ if (q)
++ kmem_cache_free(qcache, q);
++ crypto_done(crp);
++ return 0;
++}
++
++
++#ifdef __ixp46X
++/*
++ * key processing support for the ixp465
++ */
++
++
++/*
++ * copy a BN (LE) into a buffer (BE) an fill out the op appropriately
++ * assume zeroed and only copy bits that are significant
++ */
++
++static int
++ixp_copy_ibuf(struct crparam *p, IxCryptoAccPkeEauOperand *op, UINT32 *buf)
++{
++ unsigned char *src = (unsigned char *) p->crp_p;
++ unsigned char *dst;
++ int len, bits = p->crp_nbits;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ if (bits > MAX_IOP_SIZE * sizeof(UINT32) * 8) {
++ dprintk("%s - ibuf too big (%d > %d)\n", __FUNCTION__,
++ bits, MAX_IOP_SIZE * sizeof(UINT32) * 8);
++ return -1;
++ }
++
++ len = (bits + 31) / 32; /* the number UINT32's needed */
++
++ dst = (unsigned char *) &buf[len];
++ dst--;
++
++ while (bits > 0) {
++ *dst-- = *src++;
++ bits -= 8;
++ }
++
++#if 0 /* no need to zero remaining bits as it is done during request alloc */
++ while (dst > (unsigned char *) buf)
++ *dst-- = '\0';
++#endif
++
++ op->pData = buf;
++ op->dataLen = len;
++ return 0;
++}
++
++/*
++ * copy out the result, be as forgiving as we can about small output buffers
++ */
++
++static int
++ixp_copy_obuf(struct crparam *p, IxCryptoAccPkeEauOpResult *op, UINT32 *buf)
++{
++ unsigned char *dst = (unsigned char *) p->crp_p;
++ unsigned char *src = (unsigned char *) buf;
++ int len, z, bits = p->crp_nbits;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ len = op->dataLen * sizeof(UINT32);
++
++ /* skip leading zeroes to be small buffer friendly */
++ z = 0;
++ while (z < len && src[z] == '\0')
++ z++;
++
++ src += len;
++ src--;
++ len -= z;
++
++ while (len > 0 && bits > 0) {
++ *dst++ = *src--;
++ len--;
++ bits -= 8;
++ }
++
++ while (bits > 0) {
++ *dst++ = '\0';
++ bits -= 8;
++ }
++
++ if (len > 0) {
++ dprintk("%s - obuf is %d (z=%d, ob=%d) bytes too small\n",
++ __FUNCTION__, len, z, p->crp_nbits / 8);
++ return -1;
++ }
++
++ return 0;
++}
++
++
++/*
++ * the parameter offsets for exp_mod
++ */
++
++#define IXP_PARAM_BASE 0
++#define IXP_PARAM_EXP 1
++#define IXP_PARAM_MOD 2
++#define IXP_PARAM_RES 3
++
++/*
++ * key processing complete callback, is also used to start processing
++ * by passing a NULL for pResult
++ */
++
++static void
++ixp_kperform_cb(
++ IxCryptoAccPkeEauOperation operation,
++ IxCryptoAccPkeEauOpResult *pResult,
++ BOOL carryOrBorrow,
++ IxCryptoAccStatus status)
++{
++ struct ixp_pkq *q, *tmp;
++ unsigned long flags;
++
++ dprintk("%s(0x%x, %p, %d, 0x%x)\n", __FUNCTION__, operation, pResult,
++ carryOrBorrow, status);
++
++ /* handle a completed request */
++ if (pResult) {
++ if (ixp_pk_cur && &ixp_pk_cur->pkq_result == pResult) {
++ q = ixp_pk_cur;
++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ dprintk("%s() - op failed 0x%x\n", __FUNCTION__, status);
++ q->pkq_krp->krp_status = ERANGE; /* could do better */
++ } else {
++ /* copy out the result */
++ if (ixp_copy_obuf(&q->pkq_krp->krp_param[IXP_PARAM_RES],
++ &q->pkq_result, q->pkq_obuf))
++ q->pkq_krp->krp_status = ERANGE;
++ }
++ crypto_kdone(q->pkq_krp);
++ kfree(q);
++ ixp_pk_cur = NULL;
++ } else
++ printk("%s - callback with invalid result pointer\n", __FUNCTION__);
++ }
++
++ spin_lock_irqsave(&ixp_pkq_lock, flags);
++ if (ixp_pk_cur || list_empty(&ixp_pkq)) {
++ spin_unlock_irqrestore(&ixp_pkq_lock, flags);
++ return;
++ }
++
++ list_for_each_entry_safe(q, tmp, &ixp_pkq, pkq_list) {
++
++ list_del(&q->pkq_list);
++ ixp_pk_cur = q;
++
++ spin_unlock_irqrestore(&ixp_pkq_lock, flags);
++
++ status = ixCryptoAccPkeEauPerform(
++ IX_CRYPTO_ACC_OP_EAU_MOD_EXP,
++ &q->pkq_op,
++ ixp_kperform_cb,
++ &q->pkq_result);
++
++ if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ dprintk("%s() - ixCryptoAccPkeEauPerform SUCCESS\n", __FUNCTION__);
++ return; /* callback will return here for callback */
++ } else if (status == IX_CRYPTO_ACC_STATUS_RETRY) {
++ printk("%s() - ixCryptoAccPkeEauPerform RETRY\n", __FUNCTION__);
++ } else {
++ printk("%s() - ixCryptoAccPkeEauPerform failed %d\n",
++ __FUNCTION__, status);
++ }
++ q->pkq_krp->krp_status = ERANGE; /* could do better */
++ crypto_kdone(q->pkq_krp);
++ kfree(q);
++ spin_lock_irqsave(&ixp_pkq_lock, flags);
++ }
++ spin_unlock_irqrestore(&ixp_pkq_lock, flags);
++}
++
++
++static int
++ixp_kprocess(device_t dev, struct cryptkop *krp, int hint)
++{
++ struct ixp_pkq *q;
++ int rc = 0;
++ unsigned long flags;
++
++ dprintk("%s l1=%d l2=%d l3=%d l4=%d\n", __FUNCTION__,
++ krp->krp_param[IXP_PARAM_BASE].crp_nbits,
++ krp->krp_param[IXP_PARAM_EXP].crp_nbits,
++ krp->krp_param[IXP_PARAM_MOD].crp_nbits,
++ krp->krp_param[IXP_PARAM_RES].crp_nbits);
++
++
++ if (krp->krp_op != CRK_MOD_EXP) {
++ krp->krp_status = EOPNOTSUPP;
++ goto err;
++ }
++
++ q = (struct ixp_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
++ if (q == NULL) {
++ krp->krp_status = ENOMEM;
++ goto err;
++ }
++
++ /*
++ * The PKE engine does not appear to zero the output buffer
++ * appropriately, so we need to do it all here.
++ */
++ memset(q, 0, sizeof(*q));
++
++ q->pkq_krp = krp;
++ INIT_LIST_HEAD(&q->pkq_list);
++
++ if (ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_BASE], &q->pkq_op.modExpOpr.M,
++ q->pkq_ibuf0))
++ rc = 1;
++ if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_EXP],
++ &q->pkq_op.modExpOpr.e, q->pkq_ibuf1))
++ rc = 2;
++ if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_MOD],
++ &q->pkq_op.modExpOpr.N, q->pkq_ibuf2))
++ rc = 3;
++
++ if (rc) {
++ kfree(q);
++ krp->krp_status = ERANGE;
++ goto err;
++ }
++
++ q->pkq_result.pData = q->pkq_obuf;
++ q->pkq_result.dataLen =
++ (krp->krp_param[IXP_PARAM_RES].crp_nbits + 31) / 32;
++
++ spin_lock_irqsave(&ixp_pkq_lock, flags);
++ list_add_tail(&q->pkq_list, &ixp_pkq);
++ spin_unlock_irqrestore(&ixp_pkq_lock, flags);
++
++ if (!ixp_pk_cur)
++ ixp_kperform_cb(0, NULL, 0, 0);
++ return (0);
++
++err:
++ crypto_kdone(krp);
++ return (0);
++}
++
++
++
++#ifdef CONFIG_OCF_RANDOMHARVEST
++/*
++ * We run the random number generator output through SHA so that it
++ * is FIPS compliant.
++ */
++
++static volatile int sha_done = 0;
++static unsigned char sha_digest[20];
++
++static void
++ixp_hash_cb(UINT8 *digest, IxCryptoAccStatus status)
++{
++ dprintk("%s(%p, %d)\n", __FUNCTION__, digest, status);
++ if (sha_digest != digest)
++ printk("digest error\n");
++ if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
++ sha_done = 1;
++ else
++ sha_done = -status;
++}
++
++static int
++ixp_read_random(void *arg, u_int32_t *buf, int maxwords)
++{
++ IxCryptoAccStatus status;
++ int i, n, rc;
++
++ dprintk("%s(%p, %d)\n", __FUNCTION__, buf, maxwords);
++ memset(buf, 0, maxwords * sizeof(*buf));
++ status = ixCryptoAccPkePseudoRandomNumberGet(maxwords, buf);
++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ dprintk("%s: ixCryptoAccPkePseudoRandomNumberGet failed %d\n",
++ __FUNCTION__, status);
++ return 0;
++ }
++
++ /*
++ * run the random data through SHA to make it look more random
++ */
++
++ n = sizeof(sha_digest); /* process digest bytes at a time */
++
++ rc = 0;
++ for (i = 0; i < maxwords; i += n / sizeof(*buf)) {
++ if ((maxwords - i) * sizeof(*buf) < n)
++ n = (maxwords - i) * sizeof(*buf);
++ sha_done = 0;
++ status = ixCryptoAccPkeHashPerform(IX_CRYPTO_ACC_AUTH_SHA1,
++ (UINT8 *) &buf[i], n, ixp_hash_cb, sha_digest);
++ if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
++ dprintk("ixCryptoAccPkeHashPerform failed %d\n", status);
++ return -EIO;
++ }
++ while (!sha_done)
++ schedule();
++ if (sha_done < 0) {
++ dprintk("ixCryptoAccPkeHashPerform failed CB %d\n", -sha_done);
++ return 0;
++ }
++ memcpy(&buf[i], sha_digest, n);
++ rc += n / sizeof(*buf);;
++ }
++
++ return rc;
++}
++#endif /* CONFIG_OCF_RANDOMHARVEST */
++
++#endif /* __ixp46X */
++
++
++
++/*
++ * our driver startup and shutdown routines
++ */
++
++static int
++ixp_init(void)
++{
++ dprintk("%s(%p)\n", __FUNCTION__, ixp_init);
++
++ if (ixp_init_crypto && ixCryptoAccInit() != IX_CRYPTO_ACC_STATUS_SUCCESS)
++ printk("ixCryptoAccInit failed, assuming already initialised!\n");
++
++ qcache = kmem_cache_create("ixp4xx_q", sizeof(struct ixp_q), 0,
++ SLAB_HWCACHE_ALIGN, NULL
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
++ , NULL
++#endif
++ );
++ if (!qcache) {
++ printk("failed to create Qcache\n");
++ return -ENOENT;
++ }
++
++ memset(&ixpdev, 0, sizeof(ixpdev));
++ softc_device_init(&ixpdev, "ixp4xx", 0, ixp_methods);
++
++ ixp_id = crypto_get_driverid(softc_get_device(&ixpdev),
++ CRYPTOCAP_F_HARDWARE);
++ if (ixp_id < 0)
++ panic("IXP/OCF crypto device cannot initialize!");
++
++#define REGISTER(alg) \
++ crypto_register(ixp_id,alg,0,0)
++
++ REGISTER(CRYPTO_DES_CBC);
++ REGISTER(CRYPTO_3DES_CBC);
++ REGISTER(CRYPTO_RIJNDAEL128_CBC);
++#ifdef CONFIG_OCF_IXP4XX_SHA1_MD5
++ REGISTER(CRYPTO_MD5);
++ REGISTER(CRYPTO_SHA1);
++#endif
++ REGISTER(CRYPTO_MD5_HMAC);
++ REGISTER(CRYPTO_SHA1_HMAC);
++#undef REGISTER
++
++#ifdef __ixp46X
++ spin_lock_init(&ixp_pkq_lock);
++ /*
++ * we do not enable the go fast options here as they can potentially
++ * allow timing based attacks
++ *
++ * http://www.openssl.org/news/secadv_20030219.txt
++ */
++ ixCryptoAccPkeEauExpConfig(0, 0);
++ crypto_kregister(ixp_id, CRK_MOD_EXP, 0);
++#ifdef CONFIG_OCF_RANDOMHARVEST
++ crypto_rregister(ixp_id, ixp_read_random, NULL);
++#endif
++#endif
++
++ return 0;
++}
++
++static void
++ixp_exit(void)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ crypto_unregister_all(ixp_id);
++ ixp_id = -1;
++ kmem_cache_destroy(qcache);
++ qcache = NULL;
++}
++
++module_init(ixp_init);
++module_exit(ixp_exit);
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("David McCullough <dmccullough@cyberguard.com>");
++MODULE_DESCRIPTION("ixp (OCF module for IXP4xx crypto)");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/cryptodev.c 2007-12-14 12:35:04.000000000 +1000
+@@ -0,0 +1,1048 @@
++/* $OpenBSD: cryptodev.c,v 1.52 2002/06/19 07:22:46 deraadt Exp $ */
++
++/*-
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ * The license and original author are listed below.
++ *
++ * Copyright (c) 2001 Theo de Raadt
++ * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored in part by the Defense Advanced Research Projects
++ * Agency (DARPA) and Air Force Research Laboratory, Air Force
++ * Materiel Command, USAF, under agreement number F30602-01-2-0537.
++ *
++__FBSDID("$FreeBSD: src/sys/opencrypto/cryptodev.c,v 1.34 2007/05/09 19:37:02 gnn Exp $");
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/types.h>
++#include <linux/time.h>
++#include <linux/delay.h>
++#include <linux/list.h>
++#include <linux/init.h>
++#include <linux/sched.h>
++#include <linux/unistd.h>
++#include <linux/module.h>
++#include <linux/wait.h>
++#include <linux/slab.h>
++#include <linux/fs.h>
++#include <linux/dcache.h>
++#include <linux/file.h>
++#include <linux/mount.h>
++#include <linux/miscdevice.h>
++#include <linux/version.h>
++#include <asm/uaccess.h>
++
++#include <cryptodev.h>
++#include <uio.h>
++
++extern asmlinkage long sys_dup(unsigned int fildes);
++
++#define debug cryptodev_debug
++int cryptodev_debug = 0;
++module_param(cryptodev_debug, int, 0644);
++MODULE_PARM_DESC(cryptodev_debug, "Enable cryptodev debug");
++
++struct csession_info {
++ u_int16_t blocksize;
++ u_int16_t minkey, maxkey;
++
++ u_int16_t keysize;
++ /* u_int16_t hashsize; */
++ u_int16_t authsize;
++ /* u_int16_t ctxsize; */
++};
++
++struct csession {
++ struct list_head list;
++ u_int64_t sid;
++ u_int32_t ses;
++
++ wait_queue_head_t waitq;
++
++ u_int32_t cipher;
++
++ u_int32_t mac;
++
++ caddr_t key;
++ int keylen;
++ u_char tmp_iv[EALG_MAX_BLOCK_LEN];
++
++ caddr_t mackey;
++ int mackeylen;
++
++ struct csession_info info;
++
++ struct iovec iovec;
++ struct uio uio;
++ int error;
++};
++
++struct fcrypt {
++ struct list_head csessions;
++ int sesn;
++};
++
++static struct csession *csefind(struct fcrypt *, u_int);
++static int csedelete(struct fcrypt *, struct csession *);
++static struct csession *cseadd(struct fcrypt *, struct csession *);
++static struct csession *csecreate(struct fcrypt *, u_int64_t,
++ struct cryptoini *crie, struct cryptoini *cria, struct csession_info *);
++static int csefree(struct csession *);
++
++static int cryptodev_op(struct csession *, struct crypt_op *);
++static int cryptodev_key(struct crypt_kop *);
++static int cryptodev_find(struct crypt_find_op *);
++
++static int cryptodev_cb(void *);
++static int cryptodev_open(struct inode *inode, struct file *filp);
++
++/*
++ * Check a crypto identifier to see if it requested
++ * a valid crid and it's capabilities match.
++ */
++static int
++checkcrid(int crid)
++{
++ int hid = crid & ~(CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE);
++ int typ = crid & (CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE);
++ int caps = 0;
++
++ /* if the user hasn't selected a driver, then just call newsession */
++ if (hid == 0 && typ != 0)
++ return 0;
++
++ caps = crypto_getcaps(hid);
++
++ /* didn't find anything with capabilities */
++ if (caps == 0) {
++ dprintk("%s: hid=%x typ=%x not matched\n", __FUNCTION__, hid, typ);
++ return EINVAL;
++ }
++
++ /* the user didn't specify SW or HW, so the driver is ok */
++ if (typ == 0)
++ return 0;
++
++ /* if the type specified didn't match */
++ if (typ != (caps & (CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_HARDWARE))) {
++ dprintk("%s: hid=%x typ=%x caps=%x not matched\n", __FUNCTION__,
++ hid, typ, caps);
++ return EINVAL;
++ }
++
++ return 0;
++}
++
++static int
++cryptodev_op(struct csession *cse, struct crypt_op *cop)
++{
++ struct cryptop *crp = NULL;
++ struct cryptodesc *crde = NULL, *crda = NULL;
++ int error = 0;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (cop->len > CRYPTO_MAX_DATA_LEN) {
++ dprintk("%s: %d > %d\n", __FUNCTION__, cop->len, CRYPTO_MAX_DATA_LEN);
++ return (E2BIG);
++ }
++
++ if (cse->info.blocksize && (cop->len % cse->info.blocksize) != 0) {
++ dprintk("%s: blocksize=%d len=%d\n", __FUNCTION__, cse->info.blocksize,
++ cop->len);
++ return (EINVAL);
++ }
++
++ cse->uio.uio_iov = &cse->iovec;
++ cse->uio.uio_iovcnt = 1;
++ cse->uio.uio_offset = 0;
++#if 0
++ cse->uio.uio_resid = cop->len;
++ cse->uio.uio_segflg = UIO_SYSSPACE;
++ cse->uio.uio_rw = UIO_WRITE;
++ cse->uio.uio_td = td;
++#endif
++ cse->uio.uio_iov[0].iov_len = cop->len;
++ if (cse->info.authsize)
++ cse->uio.uio_iov[0].iov_len += cse->info.authsize;
++ cse->uio.uio_iov[0].iov_base = kmalloc(cse->uio.uio_iov[0].iov_len,
++ GFP_KERNEL);
++
++ if (cse->uio.uio_iov[0].iov_base == NULL) {
++ dprintk("%s: iov_base kmalloc(%d) failed\n", __FUNCTION__,
++ cse->uio.uio_iov[0].iov_len);
++ return (ENOMEM);
++ }
++
++ crp = crypto_getreq((cse->info.blocksize != 0) + (cse->info.authsize != 0));
++ if (crp == NULL) {
++ dprintk("%s: ENOMEM\n", __FUNCTION__);
++ error = ENOMEM;
++ goto bail;
++ }
++
++ if (cse->info.authsize) {
++ crda = crp->crp_desc;
++ if (cse->info.blocksize)
++ crde = crda->crd_next;
++ } else {
++ if (cse->info.blocksize)
++ crde = crp->crp_desc;
++ else {
++ dprintk("%s: bad request\n", __FUNCTION__);
++ error = EINVAL;
++ goto bail;
++ }
++ }
++
++ if ((error = copy_from_user(cse->uio.uio_iov[0].iov_base, cop->src,
++ cop->len))) {
++ dprintk("%s: bad copy\n", __FUNCTION__);
++ goto bail;
++ }
++
++ if (crda) {
++ crda->crd_skip = 0;
++ crda->crd_len = cop->len;
++ crda->crd_inject = cop->len;
++
++ crda->crd_alg = cse->mac;
++ crda->crd_key = cse->mackey;
++ crda->crd_klen = cse->mackeylen * 8;
++ }
++
++ if (crde) {
++ if (cop->op == COP_ENCRYPT)
++ crde->crd_flags |= CRD_F_ENCRYPT;
++ else
++ crde->crd_flags &= ~CRD_F_ENCRYPT;
++ crde->crd_len = cop->len;
++ crde->crd_inject = 0;
++
++ crde->crd_alg = cse->cipher;
++ crde->crd_key = cse->key;
++ crde->crd_klen = cse->keylen * 8;
++ }
++
++ crp->crp_ilen = cse->uio.uio_iov[0].iov_len;
++ crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIMM
++ | (cop->flags & COP_F_BATCH);
++ crp->crp_buf = (caddr_t)&cse->uio;
++ crp->crp_callback = (int (*) (struct cryptop *)) cryptodev_cb;
++ crp->crp_sid = cse->sid;
++ crp->crp_opaque = (void *)cse;
++
++ if (cop->iv) {
++ if (crde == NULL) {
++ error = EINVAL;
++ dprintk("%s no crde\n", __FUNCTION__);
++ goto bail;
++ }
++ if (cse->cipher == CRYPTO_ARC4) { /* XXX use flag? */
++ error = EINVAL;
++ dprintk("%s arc4 with IV\n", __FUNCTION__);
++ goto bail;
++ }
++ if ((error = copy_from_user(cse->tmp_iv, cop->iv,
++ cse->info.blocksize))) {
++ dprintk("%s bad iv copy\n", __FUNCTION__);
++ goto bail;
++ }
++ memcpy(crde->crd_iv, cse->tmp_iv, cse->info.blocksize);
++ crde->crd_flags |= CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
++ crde->crd_skip = 0;
++ } else if (cse->cipher == CRYPTO_ARC4) { /* XXX use flag? */
++ crde->crd_skip = 0;
++ } else if (crde) {
++ crde->crd_flags |= CRD_F_IV_PRESENT;
++ crde->crd_skip = cse->info.blocksize;
++ crde->crd_len -= cse->info.blocksize;
++ }
++
++ if (cop->mac && crda == NULL) {
++ error = EINVAL;
++ dprintk("%s no crda\n", __FUNCTION__);
++ goto bail;
++ }
++
++ /*
++ * Let the dispatch run unlocked, then, interlock against the
++ * callback before checking if the operation completed and going
++ * to sleep. This insures drivers don't inherit our lock which
++ * results in a lock order reversal between crypto_dispatch forced
++ * entry and the crypto_done callback into us.
++ */
++ error = crypto_dispatch(crp);
++ if (error == 0) {
++ dprintk("%s about to WAIT\n", __FUNCTION__);
++ /*
++ * we really need to wait for driver to complete to maintain
++ * state, luckily interrupts will be remembered
++ */
++ do {
++ error = wait_event_interruptible(crp->crp_waitq,
++ ((crp->crp_flags & CRYPTO_F_DONE) != 0));
++ /*
++ * we can't break out of this loop or we will leave behind
++ * a huge mess, however, staying here means if your driver
++ * is broken user applications can hang and not be killed.
++ * The solution, fix your driver :-)
++ */
++ if (error) {
++ schedule();
++ error = 0;
++ }
++ } while ((crp->crp_flags & CRYPTO_F_DONE) == 0);
++ dprintk("%s finished WAITING error=%d\n", __FUNCTION__, error);
++ }
++
++ if (crp->crp_etype != 0) {
++ error = crp->crp_etype;
++ dprintk("%s error in crp processing\n", __FUNCTION__);
++ goto bail;
++ }
++
++ if (cse->error) {
++ error = cse->error;
++ dprintk("%s error in cse processing\n", __FUNCTION__);
++ goto bail;
++ }
++
++ if (cop->dst && (error = copy_to_user(cop->dst,
++ cse->uio.uio_iov[0].iov_base, cop->len))) {
++ dprintk("%s bad dst copy\n", __FUNCTION__);
++ goto bail;
++ }
++
++ if (cop->mac &&
++ (error=copy_to_user(cop->mac,
++ (caddr_t)cse->uio.uio_iov[0].iov_base + cop->len,
++ cse->info.authsize))) {
++ dprintk("%s bad mac copy\n", __FUNCTION__);
++ goto bail;
++ }
++
++bail:
++ if (crp)
++ crypto_freereq(crp);
++ if (cse->uio.uio_iov[0].iov_base)
++ kfree(cse->uio.uio_iov[0].iov_base);
++
++ return (error);
++}
++
++static int
++cryptodev_cb(void *op)
++{
++ struct cryptop *crp = (struct cryptop *) op;
++ struct csession *cse = (struct csession *)crp->crp_opaque;
++ int error;
++
++ dprintk("%s()\n", __FUNCTION__);
++ error = crp->crp_etype;
++ if (error == EAGAIN) {
++ crp->crp_flags &= ~CRYPTO_F_DONE;
++#ifdef NOTYET
++ /*
++ * DAVIDM I am fairly sure that we should turn this into a batch
++ * request to stop bad karma/lockup, revisit
++ */
++ crp->crp_flags |= CRYPTO_F_BATCH;
++#endif
++ return crypto_dispatch(crp);
++ }
++ if (error != 0 || (crp->crp_flags & CRYPTO_F_DONE)) {
++ cse->error = error;
++ wake_up_interruptible(&crp->crp_waitq);
++ }
++ return (0);
++}
++
++static int
++cryptodevkey_cb(void *op)
++{
++ struct cryptkop *krp = (struct cryptkop *) op;
++ dprintk("%s()\n", __FUNCTION__);
++ wake_up_interruptible(&krp->krp_waitq);
++ return (0);
++}
++
++static int
++cryptodev_key(struct crypt_kop *kop)
++{
++ struct cryptkop *krp = NULL;
++ int error = EINVAL;
++ int in, out, size, i;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (kop->crk_iparams + kop->crk_oparams > CRK_MAXPARAM) {
++ dprintk("%s params too big\n", __FUNCTION__);
++ return (EFBIG);
++ }
++
++ in = kop->crk_iparams;
++ out = kop->crk_oparams;
++ switch (kop->crk_op) {
++ case CRK_MOD_EXP:
++ if (in == 3 && out == 1)
++ break;
++ return (EINVAL);
++ case CRK_MOD_EXP_CRT:
++ if (in == 6 && out == 1)
++ break;
++ return (EINVAL);
++ case CRK_DSA_SIGN:
++ if (in == 5 && out == 2)
++ break;
++ return (EINVAL);
++ case CRK_DSA_VERIFY:
++ if (in == 7 && out == 0)
++ break;
++ return (EINVAL);
++ case CRK_DH_COMPUTE_KEY:
++ if (in == 3 && out == 1)
++ break;
++ return (EINVAL);
++ default:
++ return (EINVAL);
++ }
++
++ krp = (struct cryptkop *)kmalloc(sizeof *krp, GFP_KERNEL);
++ if (!krp)
++ return (ENOMEM);
++ bzero(krp, sizeof *krp);
++ krp->krp_op = kop->crk_op;
++ krp->krp_status = kop->crk_status;
++ krp->krp_iparams = kop->crk_iparams;
++ krp->krp_oparams = kop->crk_oparams;
++ krp->krp_crid = kop->crk_crid;
++ krp->krp_status = 0;
++ krp->krp_flags = CRYPTO_KF_CBIMM;
++ krp->krp_callback = (int (*) (struct cryptkop *)) cryptodevkey_cb;
++ init_waitqueue_head(&krp->krp_waitq);
++
++ for (i = 0; i < CRK_MAXPARAM; i++)
++ krp->krp_param[i].crp_nbits = kop->crk_param[i].crp_nbits;
++ for (i = 0; i < krp->krp_iparams + krp->krp_oparams; i++) {
++ size = (krp->krp_param[i].crp_nbits + 7) / 8;
++ if (size == 0)
++ continue;
++ krp->krp_param[i].crp_p = (caddr_t) kmalloc(size, GFP_KERNEL);
++ if (i >= krp->krp_iparams)
++ continue;
++ error = copy_from_user(krp->krp_param[i].crp_p,
++ kop->crk_param[i].crp_p, size);
++ if (error)
++ goto fail;
++ }
++
++ error = crypto_kdispatch(krp);
++ if (error)
++ goto fail;
++
++ do {
++ error = wait_event_interruptible(krp->krp_waitq,
++ ((krp->krp_flags & CRYPTO_KF_DONE) != 0));
++ /*
++ * we can't break out of this loop or we will leave behind
++ * a huge mess, however, staying here means if your driver
++ * is broken user applications can hang and not be killed.
++ * The solution, fix your driver :-)
++ */
++ if (error) {
++ schedule();
++ error = 0;
++ }
++ } while ((krp->krp_flags & CRYPTO_KF_DONE) == 0);
++
++ dprintk("%s finished WAITING error=%d\n", __FUNCTION__, error);
++
++ kop->crk_crid = krp->krp_crid; /* device that did the work */
++ if (krp->krp_status != 0) {
++ error = krp->krp_status;
++ goto fail;
++ }
++
++ for (i = krp->krp_iparams; i < krp->krp_iparams + krp->krp_oparams; i++) {
++ size = (krp->krp_param[i].crp_nbits + 7) / 8;
++ if (size == 0)
++ continue;
++ error = copy_to_user(kop->crk_param[i].crp_p, krp->krp_param[i].crp_p,
++ size);
++ if (error)
++ goto fail;
++ }
++
++fail:
++ if (krp) {
++ kop->crk_status = krp->krp_status;
++ for (i = 0; i < CRK_MAXPARAM; i++) {
++ if (krp->krp_param[i].crp_p)
++ kfree(krp->krp_param[i].crp_p);
++ }
++ kfree(krp);
++ }
++ return (error);
++}
++
++static int
++cryptodev_find(struct crypt_find_op *find)
++{
++ device_t dev;
++
++ if (find->crid != -1) {
++ dev = crypto_find_device_byhid(find->crid);
++ if (dev == NULL)
++ return (ENOENT);
++ strlcpy(find->name, device_get_nameunit(dev),
++ sizeof(find->name));
++ } else {
++ find->crid = crypto_find_driver(find->name);
++ if (find->crid == -1)
++ return (ENOENT);
++ }
++ return (0);
++}
++
++static struct csession *
++csefind(struct fcrypt *fcr, u_int ses)
++{
++ struct csession *cse;
++
++ dprintk("%s()\n", __FUNCTION__);
++ list_for_each_entry(cse, &fcr->csessions, list)
++ if (cse->ses == ses)
++ return (cse);
++ return (NULL);
++}
++
++static int
++csedelete(struct fcrypt *fcr, struct csession *cse_del)
++{
++ struct csession *cse;
++
++ dprintk("%s()\n", __FUNCTION__);
++ list_for_each_entry(cse, &fcr->csessions, list) {
++ if (cse == cse_del) {
++ list_del(&cse->list);
++ return (1);
++ }
++ }
++ return (0);
++}
++
++static struct csession *
++cseadd(struct fcrypt *fcr, struct csession *cse)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ list_add_tail(&cse->list, &fcr->csessions);
++ cse->ses = fcr->sesn++;
++ return (cse);
++}
++
++static struct csession *
++csecreate(struct fcrypt *fcr, u_int64_t sid, struct cryptoini *crie,
++ struct cryptoini *cria, struct csession_info *info)
++{
++ struct csession *cse;
++
++ dprintk("%s()\n", __FUNCTION__);
++ cse = (struct csession *) kmalloc(sizeof(struct csession), GFP_KERNEL);
++ if (cse == NULL)
++ return NULL;
++ memset(cse, 0, sizeof(struct csession));
++
++ INIT_LIST_HEAD(&cse->list);
++ init_waitqueue_head(&cse->waitq);
++
++ cse->key = crie->cri_key;
++ cse->keylen = crie->cri_klen/8;
++ cse->mackey = cria->cri_key;
++ cse->mackeylen = cria->cri_klen/8;
++ cse->sid = sid;
++ cse->cipher = crie->cri_alg;
++ cse->mac = cria->cri_alg;
++ cse->info = *info;
++ cseadd(fcr, cse);
++ return (cse);
++}
++
++static int
++csefree(struct csession *cse)
++{
++ int error;
++
++ dprintk("%s()\n", __FUNCTION__);
++ error = crypto_freesession(cse->sid);
++ if (cse->key)
++ kfree(cse->key);
++ if (cse->mackey)
++ kfree(cse->mackey);
++ kfree(cse);
++ return(error);
++}
++
++static int
++cryptodev_ioctl(
++ struct inode *inode,
++ struct file *filp,
++ unsigned int cmd,
++ unsigned long arg)
++{
++ struct cryptoini cria, crie;
++ struct fcrypt *fcr = filp->private_data;
++ struct csession *cse;
++ struct csession_info info;
++ struct session2_op sop;
++ struct crypt_op cop;
++ struct crypt_kop kop;
++ struct crypt_find_op fop;
++ u_int64_t sid;
++ u_int32_t ses;
++ int feat, fd, error = 0, crid;
++ mm_segment_t fs;
++
++ dprintk("%s(cmd=%x arg=%lx)\n", __FUNCTION__, cmd, arg);
++
++ switch (cmd) {
++
++ case CRIOGET: {
++ dprintk("%s(CRIOGET)\n", __FUNCTION__);
++ fs = get_fs();
++ set_fs(get_ds());
++ for (fd = 0; fd < files_fdtable(current->files)->max_fds; fd++)
++ if (files_fdtable(current->files)->fd[fd] == filp)
++ break;
++ fd = sys_dup(fd);
++ set_fs(fs);
++ put_user(fd, (int *) arg);
++ return IS_ERR_VALUE(fd) ? fd : 0;
++ }
++
++#define CIOCGSESSSTR (cmd == CIOCGSESSION ? "CIOCGSESSION" : "CIOCGSESSION2")
++ case CIOCGSESSION:
++ case CIOCGSESSION2:
++ dprintk("%s(%s)\n", __FUNCTION__, CIOCGSESSSTR);
++ memset(&crie, 0, sizeof(crie));
++ memset(&cria, 0, sizeof(cria));
++ memset(&info, 0, sizeof(info));
++ memset(&sop, 0, sizeof(sop));
++
++ if (copy_from_user(&sop, (void*)arg, (cmd == CIOCGSESSION) ?
++ sizeof(struct session_op) : sizeof(sop))) {
++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EFAULT;
++ goto bail;
++ }
++
++ switch (sop.cipher) {
++ case 0:
++ dprintk("%s(%s) - no cipher\n", __FUNCTION__, CIOCGSESSSTR);
++ break;
++ case CRYPTO_NULL_CBC:
++ info.blocksize = NULL_BLOCK_LEN;
++ info.minkey = NULL_MIN_KEY_LEN;
++ info.maxkey = NULL_MAX_KEY_LEN;
++ break;
++ case CRYPTO_DES_CBC:
++ info.blocksize = DES_BLOCK_LEN;
++ info.minkey = DES_MIN_KEY_LEN;
++ info.maxkey = DES_MAX_KEY_LEN;
++ break;
++ case CRYPTO_3DES_CBC:
++ info.blocksize = DES3_BLOCK_LEN;
++ info.minkey = DES3_MIN_KEY_LEN;
++ info.maxkey = DES3_MAX_KEY_LEN;
++ break;
++ case CRYPTO_BLF_CBC:
++ info.blocksize = BLOWFISH_BLOCK_LEN;
++ info.minkey = BLOWFISH_MIN_KEY_LEN;
++ info.maxkey = BLOWFISH_MAX_KEY_LEN;
++ break;
++ case CRYPTO_CAST_CBC:
++ info.blocksize = CAST128_BLOCK_LEN;
++ info.minkey = CAST128_MIN_KEY_LEN;
++ info.maxkey = CAST128_MAX_KEY_LEN;
++ break;
++ case CRYPTO_SKIPJACK_CBC:
++ info.blocksize = SKIPJACK_BLOCK_LEN;
++ info.minkey = SKIPJACK_MIN_KEY_LEN;
++ info.maxkey = SKIPJACK_MAX_KEY_LEN;
++ break;
++ case CRYPTO_AES_CBC:
++ info.blocksize = AES_BLOCK_LEN;
++ info.minkey = AES_MIN_KEY_LEN;
++ info.maxkey = AES_MAX_KEY_LEN;
++ break;
++ case CRYPTO_ARC4:
++ info.blocksize = ARC4_BLOCK_LEN;
++ info.minkey = ARC4_MIN_KEY_LEN;
++ info.maxkey = ARC4_MAX_KEY_LEN;
++ break;
++ case CRYPTO_CAMELLIA_CBC:
++ info.blocksize = CAMELLIA_BLOCK_LEN;
++ info.minkey = CAMELLIA_MIN_KEY_LEN;
++ info.maxkey = CAMELLIA_MAX_KEY_LEN;
++ break;
++ default:
++ dprintk("%s(%s) - bad cipher\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EINVAL;
++ goto bail;
++ }
++
++ switch (sop.mac) {
++ case 0:
++ dprintk("%s(%s) - no mac\n", __FUNCTION__, CIOCGSESSSTR);
++ break;
++ case CRYPTO_NULL_HMAC:
++ info.authsize = NULL_HASH_LEN;
++ break;
++ case CRYPTO_MD5:
++ info.authsize = MD5_HASH_LEN;
++ break;
++ case CRYPTO_SHA1:
++ info.authsize = SHA1_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_256:
++ info.authsize = SHA2_256_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_384:
++ info.authsize = SHA2_384_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_512:
++ info.authsize = SHA2_512_HASH_LEN;
++ break;
++ case CRYPTO_RIPEMD160:
++ info.authsize = RIPEMD160_HASH_LEN;
++ break;
++ case CRYPTO_MD5_HMAC:
++ info.authsize = MD5_HASH_LEN;
++ break;
++ case CRYPTO_SHA1_HMAC:
++ info.authsize = SHA1_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_256_HMAC:
++ info.authsize = SHA2_256_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_384_HMAC:
++ info.authsize = SHA2_384_HASH_LEN;
++ break;
++ case CRYPTO_SHA2_512_HMAC:
++ info.authsize = SHA2_512_HASH_LEN;
++ break;
++ case CRYPTO_RIPEMD160_HMAC:
++ info.authsize = RIPEMD160_HASH_LEN;
++ break;
++ default:
++ dprintk("%s(%s) - bad mac\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EINVAL;
++ goto bail;
++ }
++
++ if (info.blocksize) {
++ crie.cri_alg = sop.cipher;
++ crie.cri_klen = sop.keylen * 8;
++ if ((info.maxkey && sop.keylen > info.maxkey) ||
++ sop.keylen < info.minkey) {
++ dprintk("%s(%s) - bad key\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EINVAL;
++ goto bail;
++ }
++
++ crie.cri_key = (u_int8_t *) kmalloc(crie.cri_klen/8+1, GFP_KERNEL);
++ if (copy_from_user(crie.cri_key, sop.key,
++ crie.cri_klen/8)) {
++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EFAULT;
++ goto bail;
++ }
++ if (info.authsize)
++ crie.cri_next = &cria;
++ }
++
++ if (info.authsize) {
++ cria.cri_alg = sop.mac;
++ cria.cri_klen = sop.mackeylen * 8;
++ if ((info.maxkey && sop.mackeylen > info.maxkey) ||
++ sop.keylen < info.minkey) {
++ dprintk("%s(%s) - mackeylen %d\n", __FUNCTION__, CIOCGSESSSTR,
++ sop.mackeylen);
++ error = EINVAL;
++ goto bail;
++ }
++
++ if (cria.cri_klen) {
++ cria.cri_key = (u_int8_t *) kmalloc(cria.cri_klen/8,GFP_KERNEL);
++ if (copy_from_user(cria.cri_key, sop.mackey,
++ cria.cri_klen / 8)) {
++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EFAULT;
++ goto bail;
++ }
++ }
++ }
++
++ /* NB: CIOGSESSION2 has the crid */
++ if (cmd == CIOCGSESSION2) {
++ crid = sop.crid;
++ error = checkcrid(crid);
++ if (error) {
++ dprintk("%s(%s) - checkcrid %x\n", __FUNCTION__,
++ CIOCGSESSSTR, error);
++ goto bail;
++ }
++ } else {
++ /* allow either HW or SW to be used */
++ crid = CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE;
++ }
++ error = crypto_newsession(&sid, (info.blocksize ? &crie : &cria), crid);
++ if (error) {
++ dprintk("%s(%s) - newsession %d\n",__FUNCTION__,CIOCGSESSSTR,error);
++ goto bail;
++ }
++
++ cse = csecreate(fcr, sid, &crie, &cria, &info);
++ if (cse == NULL) {
++ crypto_freesession(sid);
++ error = EINVAL;
++ dprintk("%s(%s) - csecreate failed\n", __FUNCTION__, CIOCGSESSSTR);
++ goto bail;
++ }
++ sop.ses = cse->ses;
++
++ if (cmd == CIOCGSESSION2) {
++ /* return hardware/driver id */
++ sop.crid = CRYPTO_SESID2HID(cse->sid);
++ }
++
++ if (copy_to_user((void*)arg, &sop, (cmd == CIOCGSESSION) ?
++ sizeof(struct session_op) : sizeof(sop))) {
++ dprintk("%s(%s) - bad copy\n", __FUNCTION__, CIOCGSESSSTR);
++ error = EFAULT;
++ }
++bail:
++ if (error) {
++ dprintk("%s(%s) - bail %d\n", __FUNCTION__, CIOCGSESSSTR, error);
++ if (crie.cri_key)
++ kfree(crie.cri_key);
++ if (cria.cri_key)
++ kfree(cria.cri_key);
++ }
++ break;
++ case CIOCFSESSION:
++ dprintk("%s(CIOCFSESSION)\n", __FUNCTION__);
++ get_user(ses, (uint32_t*)arg);
++ cse = csefind(fcr, ses);
++ if (cse == NULL) {
++ error = EINVAL;
++ dprintk("%s(CIOCFSESSION) - Fail %d\n", __FUNCTION__, error);
++ break;
++ }
++ csedelete(fcr, cse);
++ error = csefree(cse);
++ break;
++ case CIOCCRYPT:
++ dprintk("%s(CIOCCRYPT)\n", __FUNCTION__);
++ if(copy_from_user(&cop, (void*)arg, sizeof(cop))) {
++ dprintk("%s(CIOCCRYPT) - bad copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ cse = csefind(fcr, cop.ses);
++ if (cse == NULL) {
++ error = EINVAL;
++ dprintk("%s(CIOCCRYPT) - Fail %d\n", __FUNCTION__, error);
++ break;
++ }
++ error = cryptodev_op(cse, &cop);
++ if(copy_to_user((void*)arg, &cop, sizeof(cop))) {
++ dprintk("%s(CIOCCRYPT) - bad return copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ break;
++ case CIOCKEY:
++ case CIOCKEY2:
++ dprintk("%s(CIOCKEY)\n", __FUNCTION__);
++ if (!crypto_userasymcrypto)
++ return (EPERM); /* XXX compat? */
++ if(copy_from_user(&kop, (void*)arg, sizeof(kop))) {
++ dprintk("%s(CIOCKEY) - bad copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ if (cmd == CIOCKEY) {
++ /* NB: crypto core enforces s/w driver use */
++ kop.crk_crid =
++ CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE;
++ }
++ error = cryptodev_key(&kop);
++ if(copy_to_user((void*)arg, &kop, sizeof(kop))) {
++ dprintk("%s(CIOCGKEY) - bad return copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ break;
++ case CIOCASYMFEAT:
++ dprintk("%s(CIOCASYMFEAT)\n", __FUNCTION__);
++ if (!crypto_userasymcrypto) {
++ /*
++ * NB: if user asym crypto operations are
++ * not permitted return "no algorithms"
++ * so well-behaved applications will just
++ * fallback to doing them in software.
++ */
++ feat = 0;
++ } else
++ error = crypto_getfeat(&feat);
++ if (!error) {
++ error = copy_to_user((void*)arg, &feat, sizeof(feat));
++ }
++ break;
++ case CIOCFINDDEV:
++ if (copy_from_user(&fop, (void*)arg, sizeof(fop))) {
++ dprintk("%s(CIOCFINDDEV) - bad copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ error = cryptodev_find(&fop);
++ if (copy_to_user((void*)arg, &fop, sizeof(fop))) {
++ dprintk("%s(CIOCFINDDEV) - bad return copy\n", __FUNCTION__);
++ error = EFAULT;
++ goto bail;
++ }
++ break;
++ default:
++ dprintk("%s(unknown ioctl 0x%x)\n", __FUNCTION__, cmd);
++ error = EINVAL;
++ break;
++ }
++ return(-error);
++}
++
++#ifdef HAVE_UNLOCKED_IOCTL
++static long
++cryptodev_unlocked_ioctl(
++ struct file *filp,
++ unsigned int cmd,
++ unsigned long arg)
++{
++ return cryptodev_ioctl(NULL, filp, cmd, arg);
++}
++#endif
++
++static int
++cryptodev_open(struct inode *inode, struct file *filp)
++{
++ struct fcrypt *fcr;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (filp->private_data) {
++ printk("cryptodev: Private data already exists !\n");
++ return(0);
++ }
++
++ fcr = kmalloc(sizeof(*fcr), GFP_KERNEL);
++ if (!fcr) {
++ dprintk("%s() - malloc failed\n", __FUNCTION__);
++ return(-ENOMEM);
++ }
++ memset(fcr, 0, sizeof(*fcr));
++
++ INIT_LIST_HEAD(&fcr->csessions);
++ filp->private_data = fcr;
++ return(0);
++}
++
++static int
++cryptodev_release(struct inode *inode, struct file *filp)
++{
++ struct fcrypt *fcr = filp->private_data;
++ struct csession *cse, *tmp;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (!filp) {
++ printk("cryptodev: No private data on release\n");
++ return(0);
++ }
++
++ list_for_each_entry_safe(cse, tmp, &fcr->csessions, list) {
++ list_del(&cse->list);
++ (void)csefree(cse);
++ }
++ filp->private_data = NULL;
++ kfree(fcr);
++ return(0);
++}
++
++static struct file_operations cryptodev_fops = {
++ .owner = THIS_MODULE,
++ .open = cryptodev_open,
++ .release = cryptodev_release,
++ .ioctl = cryptodev_ioctl,
++#ifdef HAVE_UNLOCKED_IOCTL
++ .unlocked_ioctl = cryptodev_unlocked_ioctl,
++#endif
++};
++
++static struct miscdevice cryptodev = {
++ .minor = CRYPTODEV_MINOR,
++ .name = "crypto",
++ .fops = &cryptodev_fops,
++};
++
++static int __init
++cryptodev_init(void)
++{
++ int rc;
++
++ dprintk("%s(%p)\n", __FUNCTION__, cryptodev_init);
++ rc = misc_register(&cryptodev);
++ if (rc) {
++ printk(KERN_ERR "cryptodev: registration of /dev/crypto failed\n");
++ return(rc);
++ }
++
++ return(0);
++}
++
++static void __exit
++cryptodev_exit(void)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ misc_deregister(&cryptodev);
++}
++
++module_init(cryptodev_init);
++module_exit(cryptodev_exit);
++
++MODULE_LICENSE("BSD");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("Cryptodev (user interface to OCF)");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/cryptodev.h 2007-09-26 22:15:05.000000000 +1000
+@@ -0,0 +1,478 @@
++/* $FreeBSD: src/sys/opencrypto/cryptodev.h,v 1.25 2007/05/09 19:37:02 gnn Exp $ */
++/* $OpenBSD: cryptodev.h,v 1.31 2002/06/11 11:14:29 beck Exp $ */
++
++/*-
++ * Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ * The license and original author are listed below.
++ *
++ * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
++ * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
++ *
++ * This code was written by Angelos D. Keromytis in Athens, Greece, in
++ * February 2000. Network Security Technologies Inc. (NSTI) kindly
++ * supported the development of this code.
++ *
++ * Copyright (c) 2000 Angelos D. Keromytis
++ *
++ * Permission to use, copy, and modify this software with or without fee
++ * is hereby granted, provided that this entire notice is included in
++ * all source code copies of any software which is or includes a copy or
++ * modification of this software.
++ *
++ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
++ * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
++ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
++ * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
++ * PURPOSE.
++ *
++ * Copyright (c) 2001 Theo de Raadt
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ *
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
++ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
++ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
++ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
++ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
++ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
++ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
++ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ *
++ * Effort sponsored in part by the Defense Advanced Research Projects
++ * Agency (DARPA) and Air Force Research Laboratory, Air Force
++ * Materiel Command, USAF, under agreement number F30602-01-2-0537.
++ *
++ */
++
++#ifndef _CRYPTO_CRYPTO_H_
++#define _CRYPTO_CRYPTO_H_
++
++/* Some initial values */
++#define CRYPTO_DRIVERS_INITIAL 4
++#define CRYPTO_SW_SESSIONS 32
++
++/* Hash values */
++#define NULL_HASH_LEN 0
++#define MD5_HASH_LEN 16
++#define SHA1_HASH_LEN 20
++#define RIPEMD160_HASH_LEN 20
++#define SHA2_256_HASH_LEN 32
++#define SHA2_384_HASH_LEN 48
++#define SHA2_512_HASH_LEN 64
++#define MD5_KPDK_HASH_LEN 16
++#define SHA1_KPDK_HASH_LEN 20
++/* Maximum hash algorithm result length */
++#define HASH_MAX_LEN SHA2_512_HASH_LEN /* Keep this updated */
++
++/* HMAC values */
++#define NULL_HMAC_BLOCK_LEN 1
++#define MD5_HMAC_BLOCK_LEN 64
++#define SHA1_HMAC_BLOCK_LEN 64
++#define RIPEMD160_HMAC_BLOCK_LEN 64
++#define SHA2_256_HMAC_BLOCK_LEN 64
++#define SHA2_384_HMAC_BLOCK_LEN 128
++#define SHA2_512_HMAC_BLOCK_LEN 128
++/* Maximum HMAC block length */
++#define HMAC_MAX_BLOCK_LEN SHA2_512_HMAC_BLOCK_LEN /* Keep this updated */
++#define HMAC_IPAD_VAL 0x36
++#define HMAC_OPAD_VAL 0x5C
++
++/* Encryption algorithm block sizes */
++#define NULL_BLOCK_LEN 1
++#define DES_BLOCK_LEN 8
++#define DES3_BLOCK_LEN 8
++#define BLOWFISH_BLOCK_LEN 8
++#define SKIPJACK_BLOCK_LEN 8
++#define CAST128_BLOCK_LEN 8
++#define RIJNDAEL128_BLOCK_LEN 16
++#define AES_BLOCK_LEN RIJNDAEL128_BLOCK_LEN
++#define CAMELLIA_BLOCK_LEN 16
++#define ARC4_BLOCK_LEN 1
++#define EALG_MAX_BLOCK_LEN AES_BLOCK_LEN /* Keep this updated */
++
++/* Encryption algorithm min and max key sizes */
++#define NULL_MIN_KEY_LEN 0
++#define NULL_MAX_KEY_LEN 0
++#define DES_MIN_KEY_LEN 8
++#define DES_MAX_KEY_LEN 8
++#define DES3_MIN_KEY_LEN 24
++#define DES3_MAX_KEY_LEN 24
++#define BLOWFISH_MIN_KEY_LEN 4
++#define BLOWFISH_MAX_KEY_LEN 56
++#define SKIPJACK_MIN_KEY_LEN 10
++#define SKIPJACK_MAX_KEY_LEN 10
++#define CAST128_MIN_KEY_LEN 5
++#define CAST128_MAX_KEY_LEN 16
++#define RIJNDAEL128_MIN_KEY_LEN 16
++#define RIJNDAEL128_MAX_KEY_LEN 32
++#define AES_MIN_KEY_LEN RIJNDAEL128_MIN_KEY_LEN
++#define AES_MAX_KEY_LEN RIJNDAEL128_MAX_KEY_LEN
++#define CAMELLIA_MIN_KEY_LEN 16
++#define CAMELLIA_MAX_KEY_LEN 32
++#define ARC4_MIN_KEY_LEN 1
++#define ARC4_MAX_KEY_LEN 256
++
++/* Max size of data that can be processed */
++#define CRYPTO_MAX_DATA_LEN 64*1024 - 1
++
++#define CRYPTO_ALGORITHM_MIN 1
++#define CRYPTO_DES_CBC 1
++#define CRYPTO_3DES_CBC 2
++#define CRYPTO_BLF_CBC 3
++#define CRYPTO_CAST_CBC 4
++#define CRYPTO_SKIPJACK_CBC 5
++#define CRYPTO_MD5_HMAC 6
++#define CRYPTO_SHA1_HMAC 7
++#define CRYPTO_RIPEMD160_HMAC 8
++#define CRYPTO_MD5_KPDK 9
++#define CRYPTO_SHA1_KPDK 10
++#define CRYPTO_RIJNDAEL128_CBC 11 /* 128 bit blocksize */
++#define CRYPTO_AES_CBC 11 /* 128 bit blocksize -- the same as above */
++#define CRYPTO_ARC4 12
++#define CRYPTO_MD5 13
++#define CRYPTO_SHA1 14
++#define CRYPTO_NULL_HMAC 15
++#define CRYPTO_NULL_CBC 16
++#define CRYPTO_DEFLATE_COMP 17 /* Deflate compression algorithm */
++#define CRYPTO_SHA2_256_HMAC 18
++#define CRYPTO_SHA2_384_HMAC 19
++#define CRYPTO_SHA2_512_HMAC 20
++#define CRYPTO_CAMELLIA_CBC 21
++#define CRYPTO_SHA2_256 22
++#define CRYPTO_SHA2_384 23
++#define CRYPTO_SHA2_512 24
++#define CRYPTO_RIPEMD160 25
++#define CRYPTO_ALGORITHM_MAX 25 /* Keep updated - see below */
++
++/* Algorithm flags */
++#define CRYPTO_ALG_FLAG_SUPPORTED 0x01 /* Algorithm is supported */
++#define CRYPTO_ALG_FLAG_RNG_ENABLE 0x02 /* Has HW RNG for DH/DSA */
++#define CRYPTO_ALG_FLAG_DSA_SHA 0x04 /* Can do SHA on msg */
++
++/*
++ * Crypto driver/device flags. They can set in the crid
++ * parameter when creating a session or submitting a key
++ * op to affect the device/driver assigned. If neither
++ * of these are specified then the crid is assumed to hold
++ * the driver id of an existing (and suitable) device that
++ * must be used to satisfy the request.
++ */
++#define CRYPTO_FLAG_HARDWARE 0x01000000 /* hardware accelerated */
++#define CRYPTO_FLAG_SOFTWARE 0x02000000 /* software implementation */
++
++/* NB: deprecated */
++struct session_op {
++ u_int32_t cipher; /* ie. CRYPTO_DES_CBC */
++ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */
++
++ u_int32_t keylen; /* cipher key */
++ caddr_t key;
++ int mackeylen; /* mac key */
++ caddr_t mackey;
++
++ u_int32_t ses; /* returns: session # */
++};
++
++struct session2_op {
++ u_int32_t cipher; /* ie. CRYPTO_DES_CBC */
++ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */
++
++ u_int32_t keylen; /* cipher key */
++ caddr_t key;
++ int mackeylen; /* mac key */
++ caddr_t mackey;
++
++ u_int32_t ses; /* returns: session # */
++ int crid; /* driver id + flags (rw) */
++ int pad[4]; /* for future expansion */
++};
++
++struct crypt_op {
++ u_int32_t ses;
++ u_int16_t op; /* i.e. COP_ENCRYPT */
++#define COP_NONE 0
++#define COP_ENCRYPT 1
++#define COP_DECRYPT 2
++ u_int16_t flags;
++#define COP_F_BATCH 0x0008 /* Batch op if possible */
++ u_int len;
++ caddr_t src, dst; /* become iov[] inside kernel */
++ caddr_t mac; /* must be big enough for chosen MAC */
++ caddr_t iv;
++};
++
++/*
++ * Parameters for looking up a crypto driver/device by
++ * device name or by id. The latter are returned for
++ * created sessions (crid) and completed key operations.
++ */
++struct crypt_find_op {
++ int crid; /* driver id + flags */
++ char name[32]; /* device/driver name */
++};
++
++/* bignum parameter, in packed bytes, ... */
++struct crparam {
++ caddr_t crp_p;
++ u_int crp_nbits;
++};
++
++#define CRK_MAXPARAM 8
++
++struct crypt_kop {
++ u_int crk_op; /* ie. CRK_MOD_EXP or other */
++ u_int crk_status; /* return status */
++ u_short crk_iparams; /* # of input parameters */
++ u_short crk_oparams; /* # of output parameters */
++ u_int crk_crid; /* NB: only used by CIOCKEY2 (rw) */
++ struct crparam crk_param[CRK_MAXPARAM];
++};
++#define CRK_ALGORITM_MIN 0
++#define CRK_MOD_EXP 0
++#define CRK_MOD_EXP_CRT 1
++#define CRK_DSA_SIGN 2
++#define CRK_DSA_VERIFY 3
++#define CRK_DH_COMPUTE_KEY 4
++#define CRK_ALGORITHM_MAX 4 /* Keep updated - see below */
++
++#define CRF_MOD_EXP (1 << CRK_MOD_EXP)
++#define CRF_MOD_EXP_CRT (1 << CRK_MOD_EXP_CRT)
++#define CRF_DSA_SIGN (1 << CRK_DSA_SIGN)
++#define CRF_DSA_VERIFY (1 << CRK_DSA_VERIFY)
++#define CRF_DH_COMPUTE_KEY (1 << CRK_DH_COMPUTE_KEY)
++
++/*
++ * done against open of /dev/crypto, to get a cloned descriptor.
++ * Please use F_SETFD against the cloned descriptor.
++ */
++#define CRIOGET _IOWR('c', 100, u_int32_t)
++#define CRIOASYMFEAT CIOCASYMFEAT
++#define CRIOFINDDEV CIOCFINDDEV
++
++/* the following are done against the cloned descriptor */
++#define CIOCGSESSION _IOWR('c', 101, struct session_op)
++#define CIOCFSESSION _IOW('c', 102, u_int32_t)
++#define CIOCCRYPT _IOWR('c', 103, struct crypt_op)
++#define CIOCKEY _IOWR('c', 104, struct crypt_kop)
++#define CIOCASYMFEAT _IOR('c', 105, u_int32_t)
++#define CIOCGSESSION2 _IOWR('c', 106, struct session2_op)
++#define CIOCKEY2 _IOWR('c', 107, struct crypt_kop)
++#define CIOCFINDDEV _IOWR('c', 108, struct crypt_find_op)
++
++struct cryptotstat {
++ struct timespec acc; /* total accumulated time */
++ struct timespec min; /* min time */
++ struct timespec max; /* max time */
++ u_int32_t count; /* number of observations */
++};
++
++struct cryptostats {
++ u_int32_t cs_ops; /* symmetric crypto ops submitted */
++ u_int32_t cs_errs; /* symmetric crypto ops that failed */
++ u_int32_t cs_kops; /* asymetric/key ops submitted */
++ u_int32_t cs_kerrs; /* asymetric/key ops that failed */
++ u_int32_t cs_intrs; /* crypto swi thread activations */
++ u_int32_t cs_rets; /* crypto return thread activations */
++ u_int32_t cs_blocks; /* symmetric op driver block */
++ u_int32_t cs_kblocks; /* symmetric op driver block */
++ /*
++ * When CRYPTO_TIMING is defined at compile time and the
++ * sysctl debug.crypto is set to 1, the crypto system will
++ * accumulate statistics about how long it takes to process
++ * crypto requests at various points during processing.
++ */
++ struct cryptotstat cs_invoke; /* crypto_dipsatch -> crypto_invoke */
++ struct cryptotstat cs_done; /* crypto_invoke -> crypto_done */
++ struct cryptotstat cs_cb; /* crypto_done -> callback */
++ struct cryptotstat cs_finis; /* callback -> callback return */
++
++ u_int32_t cs_drops; /* crypto ops dropped due to congestion */
++};
++
++#ifdef __KERNEL__
++
++/* Standard initialization structure beginning */
++struct cryptoini {
++ int cri_alg; /* Algorithm to use */
++ int cri_klen; /* Key length, in bits */
++ int cri_mlen; /* Number of bytes we want from the
++ entire hash. 0 means all. */
++ caddr_t cri_key; /* key to use */
++ u_int8_t cri_iv[EALG_MAX_BLOCK_LEN]; /* IV to use */
++ struct cryptoini *cri_next;
++};
++
++/* Describe boundaries of a single crypto operation */
++struct cryptodesc {
++ int crd_skip; /* How many bytes to ignore from start */
++ int crd_len; /* How many bytes to process */
++ int crd_inject; /* Where to inject results, if applicable */
++ int crd_flags;
++
++#define CRD_F_ENCRYPT 0x01 /* Set when doing encryption */
++#define CRD_F_IV_PRESENT 0x02 /* When encrypting, IV is already in
++ place, so don't copy. */
++#define CRD_F_IV_EXPLICIT 0x04 /* IV explicitly provided */
++#define CRD_F_DSA_SHA_NEEDED 0x08 /* Compute SHA-1 of buffer for DSA */
++#define CRD_F_KEY_EXPLICIT 0x10 /* Key explicitly provided */
++#define CRD_F_COMP 0x0f /* Set when doing compression */
++
++ struct cryptoini CRD_INI; /* Initialization/context data */
++#define crd_iv CRD_INI.cri_iv
++#define crd_key CRD_INI.cri_key
++#define crd_alg CRD_INI.cri_alg
++#define crd_klen CRD_INI.cri_klen
++
++ struct cryptodesc *crd_next;
++};
++
++/* Structure describing complete operation */
++struct cryptop {
++ struct list_head crp_next;
++ wait_queue_head_t crp_waitq;
++
++ u_int64_t crp_sid; /* Session ID */
++ int crp_ilen; /* Input data total length */
++ int crp_olen; /* Result total length */
++
++ int crp_etype; /*
++ * Error type (zero means no error).
++ * All error codes except EAGAIN
++ * indicate possible data corruption (as in,
++ * the data have been touched). On all
++ * errors, the crp_sid may have changed
++ * (reset to a new one), so the caller
++ * should always check and use the new
++ * value on future requests.
++ */
++ int crp_flags;
++
++#define CRYPTO_F_SKBUF 0x0001 /* Input/output are skbuf chains */
++#define CRYPTO_F_IOV 0x0002 /* Input/output are uio */
++#define CRYPTO_F_REL 0x0004 /* Must return data in same place */
++#define CRYPTO_F_BATCH 0x0008 /* Batch op if possible */
++#define CRYPTO_F_CBIMM 0x0010 /* Do callback immediately */
++#define CRYPTO_F_DONE 0x0020 /* Operation completed */
++#define CRYPTO_F_CBIFSYNC 0x0040 /* Do CBIMM if op is synchronous */
++
++ caddr_t crp_buf; /* Data to be processed */
++ caddr_t crp_opaque; /* Opaque pointer, passed along */
++ struct cryptodesc *crp_desc; /* Linked list of processing descriptors */
++
++ int (*crp_callback)(struct cryptop *); /* Callback function */
++};
++
++#define CRYPTO_BUF_CONTIG 0x0
++#define CRYPTO_BUF_IOV 0x1
++#define CRYPTO_BUF_SKBUF 0x2
++
++#define CRYPTO_OP_DECRYPT 0x0
++#define CRYPTO_OP_ENCRYPT 0x1
++
++/*
++ * Hints passed to process methods.
++ */
++#define CRYPTO_HINT_MORE 0x1 /* more ops coming shortly */
++
++struct cryptkop {
++ struct list_head krp_next;
++ wait_queue_head_t krp_waitq;
++
++ int krp_flags;
++#define CRYPTO_KF_DONE 0x0001 /* Operation completed */
++#define CRYPTO_KF_CBIMM 0x0002 /* Do callback immediately */
++
++ u_int krp_op; /* ie. CRK_MOD_EXP or other */
++ u_int krp_status; /* return status */
++ u_short krp_iparams; /* # of input parameters */
++ u_short krp_oparams; /* # of output parameters */
++ u_int krp_crid; /* desired device, etc. */
++ u_int32_t krp_hid;
++ struct crparam krp_param[CRK_MAXPARAM]; /* kvm */
++ int (*krp_callback)(struct cryptkop *);
++};
++
++#include <ocf-compat.h>
++
++/*
++ * Session ids are 64 bits. The lower 32 bits contain a "local id" which
++ * is a driver-private session identifier. The upper 32 bits contain a
++ * "hardware id" used by the core crypto code to identify the driver and
++ * a copy of the driver's capabilities that can be used by client code to
++ * optimize operation.
++ */
++#define CRYPTO_SESID2HID(_sid) (((_sid) >> 32) & 0x00ffffff)
++#define CRYPTO_SESID2CAPS(_sid) (((_sid) >> 32) & 0xff000000)
++#define CRYPTO_SESID2LID(_sid) (((u_int32_t) (_sid)) & 0xffffffff)
++
++extern int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard);
++extern int crypto_freesession(u_int64_t sid);
++#define CRYPTOCAP_F_HARDWARE CRYPTO_FLAG_HARDWARE
++#define CRYPTOCAP_F_SOFTWARE CRYPTO_FLAG_SOFTWARE
++#define CRYPTOCAP_F_SYNC 0x04000000 /* operates synchronously */
++extern int32_t crypto_get_driverid(device_t dev, int flags);
++extern int crypto_find_driver(const char *);
++extern device_t crypto_find_device_byhid(int hid);
++extern int crypto_getcaps(int hid);
++extern int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
++ u_int32_t flags);
++extern int crypto_kregister(u_int32_t, int, u_int32_t);
++extern int crypto_unregister(u_int32_t driverid, int alg);
++extern int crypto_unregister_all(u_int32_t driverid);
++extern int crypto_dispatch(struct cryptop *crp);
++extern int crypto_kdispatch(struct cryptkop *);
++#define CRYPTO_SYMQ 0x1
++#define CRYPTO_ASYMQ 0x2
++extern int crypto_unblock(u_int32_t, int);
++extern void crypto_done(struct cryptop *crp);
++extern void crypto_kdone(struct cryptkop *);
++extern int crypto_getfeat(int *);
++
++extern void crypto_freereq(struct cryptop *crp);
++extern struct cryptop *crypto_getreq(int num);
++
++extern int crypto_usercrypto; /* userland may do crypto requests */
++extern int crypto_userasymcrypto; /* userland may do asym crypto reqs */
++extern int crypto_devallowsoft; /* only use hardware crypto */
++
++/*
++ * random number support, crypto_unregister_all will unregister
++ */
++extern int crypto_rregister(u_int32_t driverid,
++ int (*read_random)(void *arg, u_int32_t *buf, int len), void *arg);
++extern int crypto_runregister_all(u_int32_t driverid);
++
++/*
++ * Crypto-related utility routines used mainly by drivers.
++ *
++ * XXX these don't really belong here; but for now they're
++ * kept apart from the rest of the system.
++ */
++struct uio;
++extern void cuio_copydata(struct uio* uio, int off, int len, caddr_t cp);
++extern void cuio_copyback(struct uio* uio, int off, int len, caddr_t cp);
++extern struct iovec *cuio_getptr(struct uio *uio, int loc, int *off);
++
++extern void crypto_copyback(int flags, caddr_t buf, int off, int size,
++ caddr_t in);
++extern void crypto_copydata(int flags, caddr_t buf, int off, int size,
++ caddr_t out);
++extern int crypto_apply(int flags, caddr_t buf, int off, int len,
++ int (*f)(void *, void *, u_int), void *arg);
++
++#endif /* __KERNEL__ */
++#endif /* _CRYPTO_CRYPTO_H_ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ocfnull/ocfnull.c 2007-07-13 16:02:05.000000000 +1000
+@@ -0,0 +1,203 @@
++/*
++ * An OCF module for determining the cost of crypto versus the cost of
++ * IPSec processing outside of OCF. This modules gives us the effect of
++ * zero cost encryption, of course you will need to run it at both ends
++ * since it does no crypto at all.
++ *
++ * Written by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/sched.h>
++#include <linux/wait.h>
++#include <linux/crypto.h>
++#include <linux/interrupt.h>
++
++#include <cryptodev.h>
++#include <uio.h>
++
++static int32_t null_id = -1;
++static u_int32_t null_sesnum = 0;
++
++static int null_process(device_t, struct cryptop *, int);
++static int null_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int null_freesession(device_t, u_int64_t);
++
++#define debug ocfnull_debug
++int ocfnull_debug = 0;
++module_param(ocfnull_debug, int, 0644);
++MODULE_PARM_DESC(ocfnull_debug, "Enable debug");
++
++/*
++ * dummy device structure
++ */
++
++static struct {
++ softc_device_decl sc_dev;
++} nulldev;
++
++static device_method_t null_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, null_newsession),
++ DEVMETHOD(cryptodev_freesession,null_freesession),
++ DEVMETHOD(cryptodev_process, null_process),
++};
++
++/*
++ * Generate a new software session.
++ */
++static int
++null_newsession(device_t arg, u_int32_t *sid, struct cryptoini *cri)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ if (sid == NULL || cri == NULL) {
++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ if (null_sesnum == 0)
++ null_sesnum++;
++ *sid = null_sesnum++;
++ return 0;
++}
++
++
++/*
++ * Free a session.
++ */
++static int
++null_freesession(device_t arg, u_int64_t tid)
++{
++ u_int32_t sid = CRYPTO_SESID2LID(tid);
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (sid > null_sesnum) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ /* Silently accept and return */
++ if (sid == 0)
++ return 0;
++ return 0;
++}
++
++
++/*
++ * Process a request.
++ */
++static int
++null_process(device_t arg, struct cryptop *crp, int hint)
++{
++ unsigned int lid;
++
++ dprintk("%s()\n", __FUNCTION__);
++
++ /* Sanity check */
++ if (crp == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ crp->crp_etype = 0;
++
++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ crp->crp_etype = EINVAL;
++ goto done;
++ }
++
++ /*
++ * find the session we are using
++ */
++
++ lid = crp->crp_sid & 0xffffffff;
++ if (lid >= null_sesnum || lid == 0) {
++ crp->crp_etype = ENOENT;
++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
++ goto done;
++ }
++
++done:
++ crypto_done(crp);
++ return 0;
++}
++
++
++/*
++ * our driver startup and shutdown routines
++ */
++
++static int
++null_init(void)
++{
++ dprintk("%s(%p)\n", __FUNCTION__, null_init);
++
++ memset(&nulldev, 0, sizeof(nulldev));
++ softc_device_init(&nulldev, "ocfnull", 0, null_methods);
++
++ null_id = crypto_get_driverid(softc_get_device(&nulldev),
++ CRYPTOCAP_F_HARDWARE);
++ if (null_id < 0)
++ panic("ocfnull: crypto device cannot initialize!");
++
++#define REGISTER(alg) \
++ crypto_register(null_id,alg,0,0)
++ REGISTER(CRYPTO_DES_CBC);
++ REGISTER(CRYPTO_3DES_CBC);
++ REGISTER(CRYPTO_RIJNDAEL128_CBC);
++ REGISTER(CRYPTO_MD5);
++ REGISTER(CRYPTO_SHA1);
++ REGISTER(CRYPTO_MD5_HMAC);
++ REGISTER(CRYPTO_SHA1_HMAC);
++#undef REGISTER
++
++ return 0;
++}
++
++static void
++null_exit(void)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ crypto_unregister_all(null_id);
++ null_id = -1;
++}
++
++module_init(null_init);
++module_exit(null_exit);
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("ocfnull - claims a lot but does nothing");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/cryptosoft.c 2008-02-14 14:59:01.000000000 +1000
+@@ -0,0 +1,898 @@
++/*
++ * An OCF module that uses the linux kernel cryptoapi, based on the
++ * original cryptosoft for BSD by Angelos D. Keromytis (angelos@cis.upenn.edu)
++ * but is mostly unrecognisable,
++ *
++ * Written by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2004-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this product
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ * ---------------------------------------------------------------------------
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/list.h>
++#include <linux/slab.h>
++#include <linux/sched.h>
++#include <linux/wait.h>
++#include <linux/crypto.h>
++#include <linux/mm.h>
++#include <linux/skbuff.h>
++#include <linux/random.h>
++#include <asm/scatterlist.h>
++
++#include <cryptodev.h>
++#include <uio.h>
++
++struct {
++ softc_device_decl sc_dev;
++} swcr_softc;
++
++#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
++
++/* Software session entry */
++
++#define SW_TYPE_CIPHER 0
++#define SW_TYPE_HMAC 1
++#define SW_TYPE_AUTH2 2
++#define SW_TYPE_HASH 3
++#define SW_TYPE_COMP 4
++#define SW_TYPE_BLKCIPHER 5
++
++struct swcr_data {
++ int sw_type;
++ int sw_alg;
++ struct crypto_tfm *sw_tfm;
++ union {
++ struct {
++ char *sw_key;
++ int sw_klen;
++ int sw_mlen;
++ } hmac;
++ void *sw_comp_buf;
++ } u;
++ struct swcr_data *sw_next;
++};
++
++#ifndef CRYPTO_TFM_MODE_CBC
++/*
++ * As of linux-2.6.21 this is no longer defined, and presumably no longer
++ * needed to be passed into the crypto core code.
++ */
++#define CRYPTO_TFM_MODE_CBC 0
++#define CRYPTO_TFM_MODE_ECB 0
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
++ /*
++ * Linux 2.6.19 introduced a new Crypto API, setup macro's to convert new
++ * API into old API.
++ */
++
++ /* Symmetric/Block Cipher */
++ struct blkcipher_desc
++ {
++ struct crypto_tfm *tfm;
++ void *info;
++ };
++ #define ecb(X) #X
++ #define cbc(X) #X
++ #define crypto_has_blkcipher(X, Y, Z) crypto_alg_available(X, 0)
++ #define crypto_blkcipher_cast(X) X
++ #define crypto_blkcipher_tfm(X) X
++ #define crypto_alloc_blkcipher(X, Y, Z) crypto_alloc_tfm(X, mode)
++ #define crypto_blkcipher_ivsize(X) crypto_tfm_alg_ivsize(X)
++ #define crypto_blkcipher_blocksize(X) crypto_tfm_alg_blocksize(X)
++ #define crypto_blkcipher_setkey(X, Y, Z) crypto_cipher_setkey(X, Y, Z)
++ #define crypto_blkcipher_encrypt_iv(W, X, Y, Z) \
++ crypto_cipher_encrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info))
++ #define crypto_blkcipher_decrypt_iv(W, X, Y, Z) \
++ crypto_cipher_decrypt_iv((W)->tfm, X, Y, Z, (u8 *)((W)->info))
++
++ /* Hash/HMAC/Digest */
++ struct hash_desc
++ {
++ struct crypto_tfm *tfm;
++ };
++ #define hmac(X) #X
++ #define crypto_has_hash(X, Y, Z) crypto_alg_available(X, 0)
++ #define crypto_hash_cast(X) X
++ #define crypto_hash_tfm(X) X
++ #define crypto_alloc_hash(X, Y, Z) crypto_alloc_tfm(X, mode)
++ #define crypto_hash_digestsize(X) crypto_tfm_alg_digestsize(X)
++ #define crypto_hash_digest(W, X, Y, Z) \
++ crypto_digest_digest((W)->tfm, X, sg_num, Z)
++
++ /* Asymmetric Cipher */
++ #define crypto_has_cipher(X, Y, Z) crypto_alg_available(X, 0)
++
++ /* Compression */
++ #define crypto_has_comp(X, Y, Z) crypto_alg_available(X, 0)
++ #define crypto_comp_tfm(X) X
++ #define crypto_comp_cast(X) X
++ #define crypto_alloc_comp(X, Y, Z) crypto_alloc_tfm(X, mode)
++#else
++ #define ecb(X) "ecb(" #X ")"
++ #define cbc(X) "cbc(" #X ")"
++ #define hmac(X) "hmac(" #X ")"
++#endif /* if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */
++
++struct crypto_details
++{
++ char *alg_name;
++ int mode;
++ int sw_type;
++};
++
++/*
++ * This needs to be kept updated with CRYPTO_xxx list (cryptodev.h).
++ * If the Algorithm is not supported, then insert a {NULL, 0, 0} entry.
++ *
++ * IMPORTANT: The index to the array IS CRYPTO_xxx.
++ */
++static struct crypto_details crypto_details[CRYPTO_ALGORITHM_MAX + 1] = {
++ { NULL, 0, 0 },
++ /* CRYPTO_xxx index starts at 1 */
++ { cbc(des), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { cbc(des3_ede), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { cbc(blowfish), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { cbc(cast5), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { cbc(skipjack), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { hmac(md5), 0, SW_TYPE_HMAC },
++ { hmac(sha1), 0, SW_TYPE_HMAC },
++ { hmac(ripemd160), 0, SW_TYPE_HMAC },
++ { "md5-kpdk??", 0, SW_TYPE_HASH },
++ { "sha1-kpdk??", 0, SW_TYPE_HASH },
++ { cbc(aes), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { ecb(arc4), CRYPTO_TFM_MODE_ECB, SW_TYPE_BLKCIPHER },
++ { "md5", 0, SW_TYPE_HASH },
++ { "sha1", 0, SW_TYPE_HASH },
++ { hmac(digest_null), 0, SW_TYPE_HMAC },
++ { cbc(cipher_null), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { "deflate", 0, SW_TYPE_COMP },
++ { hmac(sha256), 0, SW_TYPE_HMAC },
++ { hmac(sha384), 0, SW_TYPE_HMAC },
++ { hmac(sha512), 0, SW_TYPE_HMAC },
++ { cbc(camellia), CRYPTO_TFM_MODE_CBC, SW_TYPE_BLKCIPHER },
++ { "sha256", 0, SW_TYPE_HASH },
++ { "sha384", 0, SW_TYPE_HASH },
++ { "sha512", 0, SW_TYPE_HASH },
++ { "ripemd160", 0, SW_TYPE_HASH },
++};
++
++int32_t swcr_id = -1;
++module_param(swcr_id, int, 0444);
++MODULE_PARM_DESC(swcr_id, "Read-Only OCF ID for cryptosoft driver");
++
++int swcr_fail_if_compression_grows = 1;
++module_param(swcr_fail_if_compression_grows, int, 0644);
++MODULE_PARM_DESC(swcr_fail_if_compression_grows,
++ "Treat compression that results in more data as a failure");
++
++static struct swcr_data **swcr_sessions = NULL;
++static u_int32_t swcr_sesnum = 0;
++
++static int swcr_process(device_t, struct cryptop *, int);
++static int swcr_newsession(device_t, u_int32_t *, struct cryptoini *);
++static int swcr_freesession(device_t, u_int64_t);
++
++static device_method_t swcr_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, swcr_newsession),
++ DEVMETHOD(cryptodev_freesession,swcr_freesession),
++ DEVMETHOD(cryptodev_process, swcr_process),
++};
++
++#define debug swcr_debug
++int swcr_debug = 0;
++module_param(swcr_debug, int, 0644);
++MODULE_PARM_DESC(swcr_debug, "Enable debug");
++
++/*
++ * Generate a new software session.
++ */
++static int
++swcr_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri)
++{
++ struct swcr_data **swd;
++ u_int32_t i;
++ int error;
++ char *algo;
++ int mode, sw_type;
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (sid == NULL || cri == NULL) {
++ dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ if (swcr_sessions) {
++ for (i = 1; i < swcr_sesnum; i++)
++ if (swcr_sessions[i] == NULL)
++ break;
++ } else
++ i = 1; /* NB: to silence compiler warning */
++
++ if (swcr_sessions == NULL || i == swcr_sesnum) {
++ if (swcr_sessions == NULL) {
++ i = 1; /* We leave swcr_sessions[0] empty */
++ swcr_sesnum = CRYPTO_SW_SESSIONS;
++ } else
++ swcr_sesnum *= 2;
++
++ swd = kmalloc(swcr_sesnum * sizeof(struct swcr_data *), SLAB_ATOMIC);
++ if (swd == NULL) {
++ /* Reset session number */
++ if (swcr_sesnum == CRYPTO_SW_SESSIONS)
++ swcr_sesnum = 0;
++ else
++ swcr_sesnum /= 2;
++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++ memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
++
++ /* Copy existing sessions */
++ if (swcr_sessions) {
++ memcpy(swd, swcr_sessions,
++ (swcr_sesnum / 2) * sizeof(struct swcr_data *));
++ kfree(swcr_sessions);
++ }
++
++ swcr_sessions = swd;
++ }
++
++ swd = &swcr_sessions[i];
++ *sid = i;
++
++ while (cri) {
++ *swd = (struct swcr_data *) kmalloc(sizeof(struct swcr_data),
++ SLAB_ATOMIC);
++ if (*swd == NULL) {
++ swcr_freesession(NULL, i);
++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++ memset(*swd, 0, sizeof(struct swcr_data));
++
++ if (cri->cri_alg > CRYPTO_ALGORITHM_MAX) {
++ printk("cryptosoft: Unknown algorithm 0x%x\n", cri->cri_alg);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++
++ algo = crypto_details[cri->cri_alg].alg_name;
++ if (!algo || !*algo) {
++ printk("cryptosoft: Unsupported algorithm 0x%x\n", cri->cri_alg);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++
++ mode = crypto_details[cri->cri_alg].mode;
++ sw_type = crypto_details[cri->cri_alg].sw_type;
++
++ /* Algorithm specific configuration */
++ switch (cri->cri_alg) {
++ case CRYPTO_NULL_CBC:
++ cri->cri_klen = 0; /* make it work with crypto API */
++ break;
++ default:
++ break;
++ }
++
++ if (sw_type == SW_TYPE_BLKCIPHER) {
++ dprintk("%s crypto_alloc_blkcipher(%s, 0x%x)\n", __FUNCTION__,
++ algo, mode);
++
++ (*swd)->sw_tfm = crypto_blkcipher_tfm(
++ crypto_alloc_blkcipher(algo, 0,
++ CRYPTO_ALG_ASYNC));
++ if (!(*swd)->sw_tfm) {
++ dprintk("cryptosoft: crypto_alloc_blkcipher failed(%s,0x%x)\n",
++ algo,mode);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++
++ if (debug) {
++ dprintk("%s key:cri->cri_klen=%d,(cri->cri_klen + 7)/8=%d",
++ __FUNCTION__,cri->cri_klen,(cri->cri_klen + 7)/8);
++ for (i = 0; i < (cri->cri_klen + 7) / 8; i++)
++ {
++ dprintk("%s0x%x", (i % 8) ? " " : "\n ",cri->cri_key[i]);
++ }
++ dprintk("\n");
++ }
++ error = crypto_blkcipher_setkey(
++ crypto_blkcipher_cast((*swd)->sw_tfm), cri->cri_key,
++ (cri->cri_klen + 7) / 8);
++ if (error) {
++ printk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n", error,
++ (*swd)->sw_tfm->crt_flags);
++ swcr_freesession(NULL, i);
++ return error;
++ }
++ } else if (sw_type == SW_TYPE_HMAC || sw_type == SW_TYPE_HASH) {
++ dprintk("%s crypto_alloc_hash(%s, 0x%x)\n", __FUNCTION__,
++ algo, mode);
++
++ (*swd)->sw_tfm = crypto_hash_tfm(
++ crypto_alloc_hash(algo, 0, CRYPTO_ALG_ASYNC));
++
++ if (!(*swd)->sw_tfm) {
++ dprintk("cryptosoft: crypto_alloc_hash failed(%s,0x%x)\n",
++ algo, mode);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++
++ (*swd)->u.hmac.sw_klen = (cri->cri_klen + 7) / 8;
++ (*swd)->u.hmac.sw_key = (char *)kmalloc((*swd)->u.hmac.sw_klen,
++ SLAB_ATOMIC);
++ if ((*swd)->u.hmac.sw_key == NULL) {
++ swcr_freesession(NULL, i);
++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++ memcpy((*swd)->u.hmac.sw_key, cri->cri_key, (*swd)->u.hmac.sw_klen);
++ if (cri->cri_mlen) {
++ (*swd)->u.hmac.sw_mlen = cri->cri_mlen;
++ } else {
++ (*swd)->u.hmac.sw_mlen =
++ crypto_hash_digestsize(
++ crypto_hash_cast((*swd)->sw_tfm));
++ }
++ } else if (sw_type == SW_TYPE_COMP) {
++ (*swd)->sw_tfm = crypto_comp_tfm(
++ crypto_alloc_comp(algo, 0, CRYPTO_ALG_ASYNC));
++ if (!(*swd)->sw_tfm) {
++ dprintk("cryptosoft: crypto_alloc_comp failed(%s,0x%x)\n",
++ algo, mode);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++ (*swd)->u.sw_comp_buf = kmalloc(CRYPTO_MAX_DATA_LEN, SLAB_ATOMIC);
++ if ((*swd)->u.sw_comp_buf == NULL) {
++ swcr_freesession(NULL, i);
++ dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
++ return ENOBUFS;
++ }
++ } else {
++ printk("cryptosoft: Unhandled sw_type %d\n", sw_type);
++ swcr_freesession(NULL, i);
++ return EINVAL;
++ }
++
++ (*swd)->sw_alg = cri->cri_alg;
++ (*swd)->sw_type = sw_type;
++
++ cri = cri->cri_next;
++ swd = &((*swd)->sw_next);
++ }
++ return 0;
++}
++
++/*
++ * Free a session.
++ */
++static int
++swcr_freesession(device_t dev, u_int64_t tid)
++{
++ struct swcr_data *swd;
++ u_int32_t sid = CRYPTO_SESID2LID(tid);
++
++ dprintk("%s()\n", __FUNCTION__);
++ if (sid > swcr_sesnum || swcr_sessions == NULL ||
++ swcr_sessions[sid] == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return(EINVAL);
++ }
++
++ /* Silently accept and return */
++ if (sid == 0)
++ return(0);
++
++ while ((swd = swcr_sessions[sid]) != NULL) {
++ swcr_sessions[sid] = swd->sw_next;
++ if (swd->sw_tfm)
++ crypto_free_tfm(swd->sw_tfm);
++ if (swd->sw_type == SW_TYPE_COMP) {
++ if (swd->u.sw_comp_buf)
++ kfree(swd->u.sw_comp_buf);
++ } else {
++ if (swd->u.hmac.sw_key)
++ kfree(swd->u.hmac.sw_key);
++ }
++ kfree(swd);
++ }
++ return 0;
++}
++
++/*
++ * Process a software request.
++ */
++static int
++swcr_process(device_t dev, struct cryptop *crp, int hint)
++{
++ struct cryptodesc *crd;
++ struct swcr_data *sw;
++ u_int32_t lid;
++#define SCATTERLIST_MAX 16
++ struct scatterlist sg[SCATTERLIST_MAX];
++ int sg_num, sg_len, skip;
++ struct sk_buff *skb = NULL;
++ struct uio *uiop = NULL;
++
++ dprintk("%s()\n", __FUNCTION__);
++ /* Sanity check */
++ if (crp == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ return EINVAL;
++ }
++
++ crp->crp_etype = 0;
++
++ if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ crp->crp_etype = EINVAL;
++ goto done;
++ }
++
++ lid = crp->crp_sid & 0xffffffff;
++ if (lid >= swcr_sesnum || lid == 0 || swcr_sessions == NULL ||
++ swcr_sessions[lid] == NULL) {
++ crp->crp_etype = ENOENT;
++ dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
++ goto done;
++ }
++
++ /*
++ * do some error checking outside of the loop for SKB and IOV processing
++ * this leaves us with valid skb or uiop pointers for later
++ */
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ skb = (struct sk_buff *) crp->crp_buf;
++ if (skb_shinfo(skb)->nr_frags >= SCATTERLIST_MAX) {
++ printk("%s,%d: %d nr_frags > SCATTERLIST_MAX", __FILE__, __LINE__,
++ skb_shinfo(skb)->nr_frags);
++ goto done;
++ }
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ uiop = (struct uio *) crp->crp_buf;
++ if (uiop->uio_iovcnt > SCATTERLIST_MAX) {
++ printk("%s,%d: %d uio_iovcnt > SCATTERLIST_MAX", __FILE__, __LINE__,
++ uiop->uio_iovcnt);
++ goto done;
++ }
++ }
++
++ /* Go through crypto descriptors, processing as we go */
++ for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
++ /*
++ * Find the crypto context.
++ *
++ * XXX Note that the logic here prevents us from having
++ * XXX the same algorithm multiple times in a session
++ * XXX (or rather, we can but it won't give us the right
++ * XXX results). To do that, we'd need some way of differentiating
++ * XXX between the various instances of an algorithm (so we can
++ * XXX locate the correct crypto context).
++ */
++ for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg;
++ sw = sw->sw_next)
++ ;
++
++ /* No such context ? */
++ if (sw == NULL) {
++ crp->crp_etype = EINVAL;
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ goto done;
++ }
++
++ skip = crd->crd_skip;
++
++ /*
++ * setup the SG list skip from the start of the buffer
++ */
++ memset(sg, 0, sizeof(sg));
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ int i, len;
++
++ sg_num = 0;
++ sg_len = 0;
++
++ if (skip < skb_headlen(skb)) {
++ len = skb_headlen(skb) - skip;
++ if (len + sg_len > crd->crd_len)
++ len = crd->crd_len - sg_len;
++ sg_set_page(&sg[sg_num],
++ virt_to_page(skb->data + skip), len,
++ offset_in_page(skb->data + skip));
++ sg_len += len;
++ sg_num++;
++ skip = 0;
++ } else
++ skip -= skb_headlen(skb);
++
++ for (i = 0; sg_len < crd->crd_len &&
++ i < skb_shinfo(skb)->nr_frags &&
++ sg_num < SCATTERLIST_MAX; i++) {
++ if (skip < skb_shinfo(skb)->frags[i].size) {
++ len = skb_shinfo(skb)->frags[i].size - skip;
++ if (len + sg_len > crd->crd_len)
++ len = crd->crd_len - sg_len;
++ sg_set_page(&sg[sg_num],
++ skb_shinfo(skb)->frags[i].page,
++ len,
++ skb_shinfo(skb)->frags[i].page_offset + skip);
++ sg_len += len;
++ sg_num++;
++ skip = 0;
++ } else
++ skip -= skb_shinfo(skb)->frags[i].size;
++ }
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ int len;
++
++ sg_len = 0;
++ for (sg_num = 0; sg_len <= crd->crd_len &&
++ sg_num < uiop->uio_iovcnt &&
++ sg_num < SCATTERLIST_MAX; sg_num++) {
++ if (skip <= uiop->uio_iov[sg_num].iov_len) {
++ len = uiop->uio_iov[sg_num].iov_len - skip;
++ if (len + sg_len > crd->crd_len)
++ len = crd->crd_len - sg_len;
++ sg_set_page(&sg[sg_num],
++ virt_to_page(uiop->uio_iov[sg_num].iov_base+skip),
++ len,
++ offset_in_page(uiop->uio_iov[sg_num].iov_base+skip));
++ sg_len += len;
++ skip = 0;
++ } else
++ skip -= uiop->uio_iov[sg_num].iov_len;
++ }
++ } else {
++ sg_len = (crp->crp_ilen - skip);
++ if (sg_len > crd->crd_len)
++ sg_len = crd->crd_len;
++ sg_set_page(&sg[0], virt_to_page(crp->crp_buf + skip),
++ sg_len, offset_in_page(crp->crp_buf + skip));
++ sg_num = 1;
++ }
++
++
++ switch (sw->sw_type) {
++ case SW_TYPE_BLKCIPHER: {
++ unsigned char iv[EALG_MAX_BLOCK_LEN];
++ unsigned char *ivp = iv;
++ int ivsize =
++ crypto_blkcipher_ivsize(crypto_blkcipher_cast(sw->sw_tfm));
++ struct blkcipher_desc desc;
++
++ if (sg_len < crypto_blkcipher_blocksize(
++ crypto_blkcipher_cast(sw->sw_tfm))) {
++ crp->crp_etype = EINVAL;
++ dprintk("%s,%d: EINVAL len %d < %d\n", __FILE__, __LINE__,
++ sg_len, crypto_blkcipher_blocksize(
++ crypto_blkcipher_cast(sw->sw_tfm)));
++ goto done;
++ }
++
++ if (ivsize > sizeof(iv)) {
++ crp->crp_etype = EINVAL;
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ goto done;
++ }
++
++ if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
++ int i, error;
++
++ if (debug) {
++ dprintk("%s key:", __FUNCTION__);
++ for (i = 0; i < (crd->crd_klen + 7) / 8; i++)
++ dprintk("%s0x%x", (i % 8) ? " " : "\n ",
++ crd->crd_key[i]);
++ dprintk("\n");
++ }
++ error = crypto_blkcipher_setkey(
++ crypto_blkcipher_cast(sw->sw_tfm), crd->crd_key,
++ (crd->crd_klen + 7) / 8);
++ if (error) {
++ dprintk("cryptosoft: setkey failed %d (crt_flags=0x%x)\n",
++ error, sw->sw_tfm->crt_flags);
++ crp->crp_etype = -error;
++ }
++ }
++
++ memset(&desc, 0, sizeof(desc));
++ desc.tfm = crypto_blkcipher_cast(sw->sw_tfm);
++
++ if (crd->crd_flags & CRD_F_ENCRYPT) { /* encrypt */
++
++ if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
++ ivp = crd->crd_iv;
++ } else {
++ get_random_bytes(ivp, ivsize);
++ }
++ /*
++ * do we have to copy the IV back to the buffer ?
++ */
++ if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject, ivsize, (caddr_t)ivp);
++ }
++ desc.info = ivp;
++ crypto_blkcipher_encrypt_iv(&desc, sg, sg, sg_len);
++
++ } else { /*decrypt */
++
++ if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
++ ivp = crd->crd_iv;
++ } else {
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject, ivsize, (caddr_t)ivp);
++ }
++ desc.info = ivp;
++ crypto_blkcipher_decrypt_iv(&desc, sg, sg, sg_len);
++ }
++ } break;
++ case SW_TYPE_HMAC:
++ case SW_TYPE_HASH:
++ {
++ char result[HASH_MAX_LEN];
++ struct hash_desc desc;
++
++ /* check we have room for the result */
++ if (crp->crp_ilen - crd->crd_inject < sw->u.hmac.sw_mlen) {
++ dprintk(
++ "cryptosoft: EINVAL crp_ilen=%d, len=%d, inject=%d digestsize=%d\n",
++ crp->crp_ilen, crd->crd_skip + sg_len, crd->crd_inject,
++ sw->u.hmac.sw_mlen);
++ crp->crp_etype = EINVAL;
++ goto done;
++ }
++
++ memset(&desc, 0, sizeof(desc));
++ desc.tfm = crypto_hash_cast(sw->sw_tfm);
++
++ memset(result, 0, sizeof(result));
++
++ if (sw->sw_type == SW_TYPE_HMAC) {
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
++ crypto_hmac(sw->sw_tfm, sw->u.hmac.sw_key, &sw->u.hmac.sw_klen,
++ sg, sg_num, result);
++#else
++ crypto_hash_setkey(desc.tfm, sw->u.hmac.sw_key,
++ sw->u.hmac.sw_klen);
++ crypto_hash_digest(&desc, sg, sg_len, result);
++#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) */
++
++ } else { /* SW_TYPE_HASH */
++ crypto_hash_digest(&desc, sg, sg_len, result);
++ }
++
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject, sw->u.hmac.sw_mlen, result);
++ }
++ break;
++
++ case SW_TYPE_COMP: {
++ void *ibuf = NULL;
++ void *obuf = sw->u.sw_comp_buf;
++ int ilen = sg_len, olen = CRYPTO_MAX_DATA_LEN;
++ int ret = 0;
++
++ /*
++ * we need to use an additional copy if there is more than one
++ * input chunk since the kernel comp routines do not handle
++ * SG yet. Otherwise we just use the input buffer as is.
++ * Rather than allocate another buffer we just split the tmp
++ * buffer we already have.
++ * Perhaps we should just use zlib directly ?
++ */
++ if (sg_num > 1) {
++ int blk;
++
++ ibuf = obuf;
++ for (blk = 0; blk < sg_num; blk++) {
++ memcpy(obuf, sg_virt(&sg[blk]),
++ sg[blk].length);
++ obuf += sg[blk].length;
++ }
++ olen -= sg_len;
++ } else
++ ibuf = sg_virt(&sg[0]);
++
++ if (crd->crd_flags & CRD_F_ENCRYPT) { /* compress */
++ ret = crypto_comp_compress(crypto_comp_cast(sw->sw_tfm),
++ ibuf, ilen, obuf, &olen);
++ if (!ret && olen > crd->crd_len) {
++ dprintk("cryptosoft: ERANGE compress %d into %d\n",
++ crd->crd_len, olen);
++ if (swcr_fail_if_compression_grows)
++ ret = ERANGE;
++ }
++ } else { /* decompress */
++ ret = crypto_comp_decompress(crypto_comp_cast(sw->sw_tfm),
++ ibuf, ilen, obuf, &olen);
++ if (!ret && (olen + crd->crd_inject) > crp->crp_olen) {
++ dprintk("cryptosoft: ETOOSMALL decompress %d into %d, "
++ "space for %d,at offset %d\n",
++ crd->crd_len, olen, crp->crp_olen, crd->crd_inject);
++ ret = ETOOSMALL;
++ }
++ }
++ if (ret)
++ dprintk("%s,%d: ret = %d\n", __FILE__, __LINE__, ret);
++
++ /*
++ * on success copy result back,
++ * linux crpyto API returns -errno, we need to fix that
++ */
++ crp->crp_etype = ret < 0 ? -ret : ret;
++ if (ret == 0) {
++ /* copy back the result and return it's size */
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ crd->crd_inject, olen, obuf);
++ crp->crp_olen = olen;
++ }
++
++
++ } break;
++
++ default:
++ /* Unknown/unsupported algorithm */
++ dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
++ crp->crp_etype = EINVAL;
++ goto done;
++ }
++ }
++
++done:
++ crypto_done(crp);
++ return 0;
++}
++
++static int
++cryptosoft_init(void)
++{
++ int i, sw_type, mode;
++ char *algo;
++
++ dprintk("%s(%p)\n", __FUNCTION__, cryptosoft_init);
++
++ softc_device_init(&swcr_softc, "cryptosoft", 0, swcr_methods);
++
++ swcr_id = crypto_get_driverid(softc_get_device(&swcr_softc),
++ CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC);
++ if (swcr_id < 0) {
++ printk("Software crypto device cannot initialize!");
++ return -ENODEV;
++ }
++
++#define REGISTER(alg) \
++ crypto_register(swcr_id, alg, 0,0);
++
++ for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; ++i)
++ {
++
++ algo = crypto_details[i].alg_name;
++ if (!algo || !*algo)
++ {
++ dprintk("%s:Algorithm %d not supported\n", __FUNCTION__, i);
++ continue;
++ }
++
++ mode = crypto_details[i].mode;
++ sw_type = crypto_details[i].sw_type;
++
++ switch (sw_type)
++ {
++ case SW_TYPE_CIPHER:
++ if (crypto_has_cipher(algo, 0, CRYPTO_ALG_ASYNC))
++ {
++ REGISTER(i);
++ }
++ else
++ {
++ dprintk("%s:CIPHER algorithm %d:'%s' not supported\n",
++ __FUNCTION__, i, algo);
++ }
++ break;
++ case SW_TYPE_HMAC:
++ if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC))
++ {
++ REGISTER(i);
++ }
++ else
++ {
++ dprintk("%s:HMAC algorithm %d:'%s' not supported\n",
++ __FUNCTION__, i, algo);
++ }
++ break;
++ case SW_TYPE_HASH:
++ if (crypto_has_hash(algo, 0, CRYPTO_ALG_ASYNC))
++ {
++ REGISTER(i);
++ }
++ else
++ {
++ dprintk("%s:HASH algorithm %d:'%s' not supported\n",
++ __FUNCTION__, i, algo);
++ }
++ break;
++ case SW_TYPE_COMP:
++ if (crypto_has_comp(algo, 0, CRYPTO_ALG_ASYNC))
++ {
++ REGISTER(i);
++ }
++ else
++ {
++ dprintk("%s:COMP algorithm %d:'%s' not supported\n",
++ __FUNCTION__, i, algo);
++ }
++ break;
++ case SW_TYPE_BLKCIPHER:
++ if (crypto_has_blkcipher(algo, 0, CRYPTO_ALG_ASYNC))
++ {
++ REGISTER(i);
++ }
++ else
++ {
++ dprintk("%s:BLKCIPHER algorithm %d:'%s' not supported\n",
++ __FUNCTION__, i, algo);
++ }
++ break;
++ default:
++ dprintk(
++ "%s:Algorithm Type %d not supported (algorithm %d:'%s')\n",
++ __FUNCTION__, sw_type, i, algo);
++ break;
++ }
++ }
++
++ return(0);
++}
++
++static void
++cryptosoft_exit(void)
++{
++ dprintk("%s()\n", __FUNCTION__);
++ crypto_unregister_all(swcr_id);
++ swcr_id = -1;
++}
++
++module_init(cryptosoft_init);
++module_exit(cryptosoft_exit);
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
++MODULE_DESCRIPTION("Cryptosoft (OCF module for kernel crypto)");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/rndtest.c 2007-07-20 13:22:03.000000000 +1000
+@@ -0,0 +1,300 @@
++/* $OpenBSD$ */
++
++/*
++ * OCF/Linux port done by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2006-2007 David McCullough
++ * Copyright (C) 2004-2005 Intel Corporation.
++ * The license and original author are listed below.
++ *
++ * Copyright (c) 2002 Jason L. Wright (jason@thought.net)
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. All advertising materials mentioning features or use of this software
++ * must display the following acknowledgement:
++ * This product includes software developed by Jason L. Wright
++ * 4. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
++ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
++ * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
++ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
++ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
++ * POSSIBILITY OF SUCH DAMAGE.
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/list.h>
++#include <linux/wait.h>
++#include <linux/time.h>
++#include <linux/version.h>
++#include <linux/unistd.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/time.h>
++#include <cryptodev.h>
++#include "rndtest.h"
++
++static struct rndtest_stats rndstats;
++
++static void rndtest_test(struct rndtest_state *);
++
++/* The tests themselves */
++static int rndtest_monobit(struct rndtest_state *);
++static int rndtest_runs(struct rndtest_state *);
++static int rndtest_longruns(struct rndtest_state *);
++static int rndtest_chi_4(struct rndtest_state *);
++
++static int rndtest_runs_check(struct rndtest_state *, int, int *);
++static void rndtest_runs_record(struct rndtest_state *, int, int *);
++
++static const struct rndtest_testfunc {
++ int (*test)(struct rndtest_state *);
++} rndtest_funcs[] = {
++ { rndtest_monobit },
++ { rndtest_runs },
++ { rndtest_chi_4 },
++ { rndtest_longruns },
++};
++
++#define RNDTEST_NTESTS (sizeof(rndtest_funcs)/sizeof(rndtest_funcs[0]))
++
++static void
++rndtest_test(struct rndtest_state *rsp)
++{
++ int i, rv = 0;
++
++ rndstats.rst_tests++;
++ for (i = 0; i < RNDTEST_NTESTS; i++)
++ rv |= (*rndtest_funcs[i].test)(rsp);
++ rsp->rs_discard = (rv != 0);
++}
++
++
++extern int crypto_debug;
++#define rndtest_verbose 2
++#define rndtest_report(rsp, failure, fmt, a...) \
++ { if (failure || crypto_debug) { printk("rng_test: " fmt "\n", a); } else; }
++
++#define RNDTEST_MONOBIT_MINONES 9725
++#define RNDTEST_MONOBIT_MAXONES 10275
++
++static int
++rndtest_monobit(struct rndtest_state *rsp)
++{
++ int i, ones = 0, j;
++ u_int8_t r;
++
++ for (i = 0; i < RNDTEST_NBYTES; i++) {
++ r = rsp->rs_buf[i];
++ for (j = 0; j < 8; j++, r <<= 1)
++ if (r & 0x80)
++ ones++;
++ }
++ if (ones > RNDTEST_MONOBIT_MINONES &&
++ ones < RNDTEST_MONOBIT_MAXONES) {
++ if (rndtest_verbose > 1)
++ rndtest_report(rsp, 0, "monobit pass (%d < %d < %d)",
++ RNDTEST_MONOBIT_MINONES, ones,
++ RNDTEST_MONOBIT_MAXONES);
++ return (0);
++ } else {
++ if (rndtest_verbose)
++ rndtest_report(rsp, 1,
++ "monobit failed (%d ones)", ones);
++ rndstats.rst_monobit++;
++ return (-1);
++ }
++}
++
++#define RNDTEST_RUNS_NINTERVAL 6
++
++static const struct rndtest_runs_tabs {
++ u_int16_t min, max;
++} rndtest_runs_tab[] = {
++ { 2343, 2657 },
++ { 1135, 1365 },
++ { 542, 708 },
++ { 251, 373 },
++ { 111, 201 },
++ { 111, 201 },
++};
++
++static int
++rndtest_runs(struct rndtest_state *rsp)
++{
++ int i, j, ones, zeros, rv = 0;
++ int onei[RNDTEST_RUNS_NINTERVAL], zeroi[RNDTEST_RUNS_NINTERVAL];
++ u_int8_t c;
++
++ bzero(onei, sizeof(onei));
++ bzero(zeroi, sizeof(zeroi));
++ ones = zeros = 0;
++ for (i = 0; i < RNDTEST_NBYTES; i++) {
++ c = rsp->rs_buf[i];
++ for (j = 0; j < 8; j++, c <<= 1) {
++ if (c & 0x80) {
++ ones++;
++ rndtest_runs_record(rsp, zeros, zeroi);
++ zeros = 0;
++ } else {
++ zeros++;
++ rndtest_runs_record(rsp, ones, onei);
++ ones = 0;
++ }
++ }
++ }
++ rndtest_runs_record(rsp, ones, onei);
++ rndtest_runs_record(rsp, zeros, zeroi);
++
++ rv |= rndtest_runs_check(rsp, 0, zeroi);
++ rv |= rndtest_runs_check(rsp, 1, onei);
++
++ if (rv)
++ rndstats.rst_runs++;
++
++ return (rv);
++}
++
++static void
++rndtest_runs_record(struct rndtest_state *rsp, int len, int *intrv)
++{
++ if (len == 0)
++ return;
++ if (len > RNDTEST_RUNS_NINTERVAL)
++ len = RNDTEST_RUNS_NINTERVAL;
++ len -= 1;
++ intrv[len]++;
++}
++
++static int
++rndtest_runs_check(struct rndtest_state *rsp, int val, int *src)
++{
++ int i, rv = 0;
++
++ for (i = 0; i < RNDTEST_RUNS_NINTERVAL; i++) {
++ if (src[i] < rndtest_runs_tab[i].min ||
++ src[i] > rndtest_runs_tab[i].max) {
++ rndtest_report(rsp, 1,
++ "%s interval %d failed (%d, %d-%d)",
++ val ? "ones" : "zeros",
++ i + 1, src[i], rndtest_runs_tab[i].min,
++ rndtest_runs_tab[i].max);
++ rv = -1;
++ } else {
++ rndtest_report(rsp, 0,
++ "runs pass %s interval %d (%d < %d < %d)",
++ val ? "ones" : "zeros",
++ i + 1, rndtest_runs_tab[i].min, src[i],
++ rndtest_runs_tab[i].max);
++ }
++ }
++ return (rv);
++}
++
++static int
++rndtest_longruns(struct rndtest_state *rsp)
++{
++ int i, j, ones = 0, zeros = 0, maxones = 0, maxzeros = 0;
++ u_int8_t c;
++
++ for (i = 0; i < RNDTEST_NBYTES; i++) {
++ c = rsp->rs_buf[i];
++ for (j = 0; j < 8; j++, c <<= 1) {
++ if (c & 0x80) {
++ zeros = 0;
++ ones++;
++ if (ones > maxones)
++ maxones = ones;
++ } else {
++ ones = 0;
++ zeros++;
++ if (zeros > maxzeros)
++ maxzeros = zeros;
++ }
++ }
++ }
++
++ if (maxones < 26 && maxzeros < 26) {
++ rndtest_report(rsp, 0, "longruns pass (%d ones, %d zeros)",
++ maxones, maxzeros);
++ return (0);
++ } else {
++ rndtest_report(rsp, 1, "longruns fail (%d ones, %d zeros)",
++ maxones, maxzeros);
++ rndstats.rst_longruns++;
++ return (-1);
++ }
++}
++
++/*
++ * chi^2 test over 4 bits: (this is called the poker test in FIPS 140-2,
++ * but it is really the chi^2 test over 4 bits (the poker test as described
++ * by Knuth vol 2 is something different, and I take him as authoritative
++ * on nomenclature over NIST).
++ */
++#define RNDTEST_CHI4_K 16
++#define RNDTEST_CHI4_K_MASK (RNDTEST_CHI4_K - 1)
++
++/*
++ * The unnormalized values are used so that we don't have to worry about
++ * fractional precision. The "real" value is found by:
++ * (V - 1562500) * (16 / 5000) = Vn (where V is the unnormalized value)
++ */
++#define RNDTEST_CHI4_VMIN 1563181 /* 2.1792 */
++#define RNDTEST_CHI4_VMAX 1576929 /* 46.1728 */
++
++static int
++rndtest_chi_4(struct rndtest_state *rsp)
++{
++ unsigned int freq[RNDTEST_CHI4_K], i, sum;
++
++ for (i = 0; i < RNDTEST_CHI4_K; i++)
++ freq[i] = 0;
++
++ /* Get number of occurances of each 4 bit pattern */
++ for (i = 0; i < RNDTEST_NBYTES; i++) {
++ freq[(rsp->rs_buf[i] >> 4) & RNDTEST_CHI4_K_MASK]++;
++ freq[(rsp->rs_buf[i] >> 0) & RNDTEST_CHI4_K_MASK]++;
++ }
++
++ for (i = 0, sum = 0; i < RNDTEST_CHI4_K; i++)
++ sum += freq[i] * freq[i];
++
++ if (sum >= 1563181 && sum <= 1576929) {
++ rndtest_report(rsp, 0, "chi^2(4): pass (sum %u)", sum);
++ return (0);
++ } else {
++ rndtest_report(rsp, 1, "chi^2(4): failed (sum %u)", sum);
++ rndstats.rst_chi++;
++ return (-1);
++ }
++}
++
++int
++rndtest_buf(unsigned char *buf)
++{
++ struct rndtest_state rsp;
++
++ memset(&rsp, 0, sizeof(rsp));
++ rsp.rs_buf = buf;
++ rndtest_test(&rsp);
++ return(rsp.rs_discard);
++}
++
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/rndtest.h 2005-05-20 10:28:26.000000000 +1000
+@@ -0,0 +1,54 @@
++/* $FreeBSD: src/sys/dev/rndtest/rndtest.h,v 1.1 2003/03/11 22:54:44 sam Exp $ */
++/* $OpenBSD$ */
++
++/*
++ * Copyright (c) 2002 Jason L. Wright (jason@thought.net)
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. All advertising materials mentioning features or use of this software
++ * must display the following acknowledgement:
++ * This product includes software developed by Jason L. Wright
++ * 4. The name of the author may not be used to endorse or promote products
++ * derived from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
++ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
++ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
++ * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
++ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
++ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
++ * POSSIBILITY OF SUCH DAMAGE.
++ */
++
++
++/* Some of the tests depend on these values */
++#define RNDTEST_NBYTES 2500
++#define RNDTEST_NBITS (8 * RNDTEST_NBYTES)
++
++struct rndtest_state {
++ int rs_discard; /* discard/accept random data */
++ u_int8_t *rs_buf;
++};
++
++struct rndtest_stats {
++ u_int32_t rst_discard; /* number of bytes discarded */
++ u_int32_t rst_tests; /* number of test runs */
++ u_int32_t rst_monobit; /* monobit test failures */
++ u_int32_t rst_runs; /* 0/1 runs failures */
++ u_int32_t rst_longruns; /* longruns failures */
++ u_int32_t rst_chi; /* chi^2 failures */
++};
++
++extern int rndtest_buf(unsigned char *buf);
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/ocf-compat.h 2008-04-27 09:30:47.000000000 +1000
+@@ -0,0 +1,268 @@
++#ifndef _BSD_COMPAT_H_
++#define _BSD_COMPAT_H_ 1
++/****************************************************************************/
++/*
++ * Provide compat routines for older linux kernels and BSD kernels
++ *
++ * Written by David McCullough <david_mccullough@securecomputing.com>
++ * Copyright (C) 2007 David McCullough <david_mccullough@securecomputing.com>
++ *
++ * LICENSE TERMS
++ *
++ * The free distribution and use of this software in both source and binary
++ * form is allowed (with or without changes) provided that:
++ *
++ * 1. distributions of this source code include the above copyright
++ * notice, this list of conditions and the following disclaimer;
++ *
++ * 2. distributions in binary form include the above copyright
++ * notice, this list of conditions and the following disclaimer
++ * in the documentation and/or other associated materials;
++ *
++ * 3. the copyright holder's name is not used to endorse products
++ * built using this software without specific written permission.
++ *
++ * ALTERNATIVELY, provided that this notice is retained in full, this file
++ * may be distributed under the terms of the GNU General Public License (GPL),
++ * in which case the provisions of the GPL apply INSTEAD OF those given above.
++ *
++ * DISCLAIMER
++ *
++ * This software is provided 'as is' with no explicit or implied warranties
++ * in respect of its properties, including, but not limited to, correctness
++ * and/or fitness for purpose.
++ */
++/****************************************************************************/
++#ifdef __KERNEL__
++/*
++ * fake some BSD driver interface stuff specifically for OCF use
++ */
++
++typedef struct ocf_device *device_t;
++
++typedef struct {
++ int (*cryptodev_newsession)(device_t dev, u_int32_t *sidp, struct cryptoini *cri);
++ int (*cryptodev_freesession)(device_t dev, u_int64_t tid);
++ int (*cryptodev_process)(device_t dev, struct cryptop *crp, int hint);
++ int (*cryptodev_kprocess)(device_t dev, struct cryptkop *krp, int hint);
++} device_method_t;
++#define DEVMETHOD(id, func) id: func
++
++struct ocf_device {
++ char name[32]; /* the driver name */
++ char nameunit[32]; /* the driver name + HW instance */
++ int unit;
++ device_method_t methods;
++ void *softc;
++};
++
++#define CRYPTODEV_NEWSESSION(dev, sid, cri) \
++ ((*(dev)->methods.cryptodev_newsession)(dev,sid,cri))
++#define CRYPTODEV_FREESESSION(dev, sid) \
++ ((*(dev)->methods.cryptodev_freesession)(dev, sid))
++#define CRYPTODEV_PROCESS(dev, crp, hint) \
++ ((*(dev)->methods.cryptodev_process)(dev, crp, hint))
++#define CRYPTODEV_KPROCESS(dev, krp, hint) \
++ ((*(dev)->methods.cryptodev_kprocess)(dev, krp, hint))
++
++#define device_get_name(dev) ((dev)->name)
++#define device_get_nameunit(dev) ((dev)->nameunit)
++#define device_get_unit(dev) ((dev)->unit)
++#define device_get_softc(dev) ((dev)->softc)
++
++#define softc_device_decl \
++ struct ocf_device _device; \
++ device_t
++
++#define softc_device_init(_sc, _name, _unit, _methods) \
++ if (1) {\
++ strncpy((_sc)->_device.name, _name, sizeof((_sc)->_device.name) - 1); \
++ snprintf((_sc)->_device.nameunit, sizeof((_sc)->_device.name), "%s%d", _name, _unit); \
++ (_sc)->_device.unit = _unit; \
++ (_sc)->_device.methods = _methods; \
++ (_sc)->_device.softc = (void *) _sc; \
++ *(device_t *)((softc_get_device(_sc))+1) = &(_sc)->_device; \
++ } else
++
++#define softc_get_device(_sc) (&(_sc)->_device)
++
++/*
++ * iomem support for 2.4 and 2.6 kernels
++ */
++#include <linux/version.h>
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++#define ocf_iomem_t unsigned long
++
++/*
++ * implement simple workqueue like support for older kernels
++ */
++
++#include <linux/tqueue.h>
++
++#define work_struct tq_struct
++
++#define INIT_WORK(wp, fp, ap) \
++ do { \
++ (wp)->sync = 0; \
++ (wp)->routine = (fp); \
++ (wp)->data = (ap); \
++ } while (0)
++
++#define schedule_work(wp) \
++ do { \
++ queue_task((wp), &tq_immediate); \
++ mark_bh(IMMEDIATE_BH); \
++ } while (0)
++
++#define flush_scheduled_work() run_task_queue(&tq_immediate)
++
++#else
++#define ocf_iomem_t void __iomem *
++
++#include <linux/workqueue.h>
++
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11)
++#define files_fdtable(files) (files)
++#endif
++
++#ifdef MODULE_PARM
++#undef module_param /* just in case */
++#define module_param(a,b,c) MODULE_PARM(a,"i")
++#endif
++
++#define bzero(s,l) memset(s,0,l)
++#define bcopy(s,d,l) memcpy(d,s,l)
++#define bcmp(x, y, l) memcmp(x,y,l)
++
++#define MIN(x,y) ((x) < (y) ? (x) : (y))
++
++#define device_printf(dev, a...) ({ \
++ printk("%s: ", device_get_nameunit(dev)); printk(a); \
++ })
++
++#undef printf
++#define printf(fmt...) printk(fmt)
++
++#define KASSERT(c,p) if (!(c)) { printk p ; } else
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++#define ocf_daemonize(str) \
++ daemonize(); \
++ spin_lock_irq(¤t->sigmask_lock); \
++ sigemptyset(¤t->blocked); \
++ recalc_sigpending(current); \
++ spin_unlock_irq(¤t->sigmask_lock); \
++ sprintf(current->comm, str);
++#else
++#define ocf_daemonize(str) daemonize(str);
++#endif
++
++#define TAILQ_INSERT_TAIL(q,d,m) list_add_tail(&(d)->m, (q))
++#define TAILQ_EMPTY(q) list_empty(q)
++#define TAILQ_FOREACH(v, q, m) list_for_each_entry(v, q, m)
++
++#define read_random(p,l) get_random_bytes(p,l)
++
++#define DELAY(x) ((x) > 2000 ? mdelay((x)/1000) : udelay(x))
++#define strtoul simple_strtoul
++
++#define pci_get_vendor(dev) ((dev)->vendor)
++#define pci_get_device(dev) ((dev)->device)
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
++#define pci_set_consistent_dma_mask(dev, mask) (0)
++#endif
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++#define pci_dma_sync_single_for_cpu pci_dma_sync_single
++#endif
++
++#ifndef DMA_32BIT_MASK
++#define DMA_32BIT_MASK 0x00000000ffffffffULL
++#endif
++
++#define htole32(x) cpu_to_le32(x)
++#define htobe32(x) cpu_to_be32(x)
++#define htole16(x) cpu_to_le16(x)
++#define htobe16(x) cpu_to_be16(x)
++
++/* older kernels don't have these */
++
++#ifndef IRQ_NONE
++#define IRQ_NONE
++#define IRQ_HANDLED
++#define irqreturn_t void
++#endif
++#ifndef IRQF_SHARED
++#define IRQF_SHARED SA_SHIRQ
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++# define strlcpy(dest,src,len) \
++ ({strncpy(dest,src,(len)-1); ((char *)dest)[(len)-1] = '\0'; })
++#endif
++
++#ifndef MAX_ERRNO
++#define MAX_ERRNO 4095
++#endif
++#ifndef IS_ERR_VALUE
++#define IS_ERR_VALUE(x) ((unsigned long)(x) >= (unsigned long)-MAX_ERRNO)
++#endif
++
++/*
++ * common debug for all
++ */
++#if 1
++#define dprintk(a...) do { if (debug) printk(a); } while(0)
++#else
++#define dprintk(a...)
++#endif
++
++#ifndef SLAB_ATOMIC
++/* Changed in 2.6.20, must use GFP_ATOMIC now */
++#define SLAB_ATOMIC GFP_ATOMIC
++#endif
++
++/*
++ * need some additional support for older kernels */
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,2)
++#define pci_register_driver_compat(driver, rc) \
++ do { \
++ if ((rc) > 0) { \
++ (rc) = 0; \
++ } else if (rc == 0) { \
++ (rc) = -ENODEV; \
++ } else { \
++ pci_unregister_driver(driver); \
++ } \
++ } while (0)
++#elif LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++#define pci_register_driver_compat(driver,rc) ((rc) = (rc) < 0 ? (rc) : 0)
++#else
++#define pci_register_driver_compat(driver,rc)
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24)
++
++#include <asm/scatterlist.h>
++
++static inline void sg_set_page(struct scatterlist *sg, struct page *page,
++ unsigned int len, unsigned int offset)
++{
++ sg->page = page;
++ sg->offset = offset;
++ sg->length = len;
++}
++
++static inline void *sg_virt(struct scatterlist *sg)
++{
++ return page_address(sg->page) + sg->offset;
++}
++
++#endif
++
++#endif /* __KERNEL__ */
++
++/****************************************************************************/
++#endif /* _BSD_COMPAT_H_ */
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/pasemi/pasemi.c 2007-12-12 11:36:18.000000000 +1000
+@@ -0,0 +1,1009 @@
++/*
++ * Copyright (C) 2007 PA Semi, Inc
++ *
++ * Driver for the PA Semi PWRficient DMA Crypto Engine
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++
++#ifndef AUTOCONF_INCLUDED
++#include <linux/config.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/interrupt.h>
++#include <linux/timer.h>
++#include <linux/random.h>
++#include <linux/skbuff.h>
++#include <asm/scatterlist.h>
++#include <linux/moduleparam.h>
++#include <linux/pci.h>
++#include <cryptodev.h>
++#include <uio.h>
++#include "pasemi_fnu.h"
++
++#define DRV_NAME "pasemi"
++
++#define TIMER_INTERVAL 1000
++
++static void __devexit pasemi_dma_remove(struct pci_dev *pdev);
++static struct pasdma_status volatile * dma_status;
++
++static int debug;
++module_param(debug, int, 0644);
++MODULE_PARM_DESC(debug, "Enable debug");
++
++static void pasemi_desc_start(struct pasemi_desc *desc, u64 hdr)
++{
++ desc->postop = 0;
++ desc->quad[0] = hdr;
++ desc->quad_cnt = 1;
++ desc->size = 1;
++}
++
++static void pasemi_desc_build(struct pasemi_desc *desc, u64 val)
++{
++ desc->quad[desc->quad_cnt++] = val;
++ desc->size = (desc->quad_cnt + 1) / 2;
++}
++
++static void pasemi_desc_hdr(struct pasemi_desc *desc, u64 hdr)
++{
++ desc->quad[0] |= hdr;
++}
++
++static int pasemi_desc_size(struct pasemi_desc *desc)
++{
++ return desc->size;
++}
++
++static void pasemi_ring_add_desc(
++ struct pasemi_fnu_txring *ring,
++ struct pasemi_desc *desc,
++ struct cryptop *crp) {
++ int i;
++ int ring_index = 2 * (ring->next_to_fill & (TX_RING_SIZE-1));
++
++ TX_DESC_INFO(ring, ring->next_to_fill).desc_size = desc->size;
++ TX_DESC_INFO(ring, ring->next_to_fill).desc_postop = desc->postop;
++ TX_DESC_INFO(ring, ring->next_to_fill).cf_crp = crp;
++
++ for (i = 0; i < desc->quad_cnt; i += 2) {
++ ring_index = 2 * (ring->next_to_fill & (TX_RING_SIZE-1));
++ ring->desc[ring_index] = desc->quad[i];
++ ring->desc[ring_index + 1] = desc->quad[i + 1];
++ ring->next_to_fill++;
++ }
++
++ if (desc->quad_cnt & 1)
++ ring->desc[ring_index + 1] = 0;
++}
++
++static void pasemi_ring_incr(struct pasemi_softc *sc, int chan_index, int incr)
++{
++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_INCR(sc->base_chan + chan_index),
++ incr);
++}
++
++/*
++ * Generate a new software session.
++ */
++static int
++pasemi_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
++{
++ struct cryptoini *c, *encini = NULL, *macini = NULL;
++ struct pasemi_softc *sc = device_get_softc(dev);
++ struct pasemi_session *ses = NULL, **sespp;
++ int sesn, blksz = 0;
++ u64 ccmd = 0;
++ unsigned long flags;
++ struct pasemi_desc init_desc;
++ struct pasemi_fnu_txring *txring;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++ if (sidp == NULL || cri == NULL || sc == NULL) {
++ DPRINTF("%s,%d - EINVAL\n", __FILE__, __LINE__);
++ return -EINVAL;
++ }
++ for (c = cri; c != NULL; c = c->cri_next) {
++ if (ALG_IS_SIG(c->cri_alg)) {
++ if (macini)
++ return -EINVAL;
++ macini = c;
++ } else if (ALG_IS_CIPHER(c->cri_alg)) {
++ if (encini)
++ return -EINVAL;
++ encini = c;
++ } else {
++ DPRINTF("UNKNOWN c->cri_alg %d\n", c->cri_alg);
++ return -EINVAL;
++ }
++ }
++ if (encini == NULL && macini == NULL)
++ return -EINVAL;
++ if (encini) {
++ /* validate key length */
++ switch (encini->cri_alg) {
++ case CRYPTO_DES_CBC:
++ if (encini->cri_klen != 64)
++ return -EINVAL;
++ ccmd = DMA_CALGO_DES;
++ break;
++ case CRYPTO_3DES_CBC:
++ if (encini->cri_klen != 192)
++ return -EINVAL;
++ ccmd = DMA_CALGO_3DES;
++ break;
++ case CRYPTO_AES_CBC:
++ if (encini->cri_klen != 128 &&
++ encini->cri_klen != 192 &&
++ encini->cri_klen != 256)
++ return -EINVAL;
++ ccmd = DMA_CALGO_AES;
++ break;
++ case CRYPTO_ARC4:
++ if (encini->cri_klen != 128)
++ return -EINVAL;
++ ccmd = DMA_CALGO_ARC;
++ break;
++ default:
++ DPRINTF("UNKNOWN encini->cri_alg %d\n",
++ encini->cri_alg);
++ return -EINVAL;
++ }
++ }
++
++ if (macini) {
++ switch (macini->cri_alg) {
++ case CRYPTO_MD5:
++ case CRYPTO_MD5_HMAC:
++ blksz = 16;
++ break;
++ case CRYPTO_SHA1:
++ case CRYPTO_SHA1_HMAC:
++ blksz = 20;
++ break;
++ default:
++ DPRINTF("UNKNOWN macini->cri_alg %d\n",
++ macini->cri_alg);
++ return -EINVAL;
++ }
++ if (((macini->cri_klen + 7) / 8) > blksz) {
++ DPRINTF("key length %d bigger than blksize %d not supported\n",
++ ((macini->cri_klen + 7) / 8), blksz);
++ return -EINVAL;
++ }
++ }
++
++ for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
++ if (sc->sc_sessions[sesn] == NULL) {
++ sc->sc_sessions[sesn] = (struct pasemi_session *)
++ kzalloc(sizeof(struct pasemi_session), GFP_ATOMIC);
++ ses = sc->sc_sessions[sesn];
++ break;
++ } else if (sc->sc_sessions[sesn]->used == 0) {
++ ses = sc->sc_sessions[sesn];
++ break;
++ }
++ }
++
++ if (ses == NULL) {
++ sespp = (struct pasemi_session **)
++ kzalloc(sc->sc_nsessions * 2 *
++ sizeof(struct pasemi_session *), GFP_ATOMIC);
++ if (sespp == NULL)
++ return -ENOMEM;
++ memcpy(sespp, sc->sc_sessions,
++ sc->sc_nsessions * sizeof(struct pasemi_session *));
++ kfree(sc->sc_sessions);
++ sc->sc_sessions = sespp;
++ sesn = sc->sc_nsessions;
++ ses = sc->sc_sessions[sesn] = (struct pasemi_session *)
++ kzalloc(sizeof(struct pasemi_session), GFP_ATOMIC);
++ if (ses == NULL)
++ return -ENOMEM;
++ sc->sc_nsessions *= 2;
++ }
++
++ ses->used = 1;
++
++ ses->dma_addr = pci_map_single(sc->dma_pdev, (void *) ses->civ,
++ sizeof(struct pasemi_session), DMA_TO_DEVICE);
++
++ /* enter the channel scheduler */
++ spin_lock_irqsave(&sc->sc_chnlock, flags);
++
++ /* ARC4 has to be processed by the even channel */
++ if (encini && (encini->cri_alg == CRYPTO_ARC4))
++ ses->chan = sc->sc_lastchn & ~1;
++ else
++ ses->chan = sc->sc_lastchn;
++ sc->sc_lastchn = (sc->sc_lastchn + 1) % sc->sc_num_channels;
++
++ spin_unlock_irqrestore(&sc->sc_chnlock, flags);
++
++ txring = &sc->tx[ses->chan];
++
++ if (encini) {
++ ses->ccmd = ccmd;
++
++ /* get an IV */
++ /* XXX may read fewer than requested */
++ get_random_bytes(ses->civ, sizeof(ses->civ));
++
++ ses->keysz = (encini->cri_klen - 63) / 64;
++ memcpy(ses->key, encini->cri_key, (ses->keysz + 1) * 8);
++
++ pasemi_desc_start(&init_desc,
++ XCT_CTRL_HDR(ses->chan, (encini && macini) ? 0x68 : 0x40, DMA_FN_CIV0));
++ pasemi_desc_build(&init_desc,
++ XCT_FUN_SRC_PTR((encini && macini) ? 0x68 : 0x40, ses->dma_addr));
++ }
++ if (macini) {
++ if (macini->cri_alg == CRYPTO_MD5_HMAC ||
++ macini->cri_alg == CRYPTO_SHA1_HMAC)
++ memcpy(ses->hkey, macini->cri_key, blksz);
++ else {
++ /* Load initialization constants(RFC 1321, 3174) */
++ ses->hiv[0] = 0x67452301efcdab89ULL;
++ ses->hiv[1] = 0x98badcfe10325476ULL;
++ ses->hiv[2] = 0xc3d2e1f000000000ULL;
++ }
++ ses->hseq = 0ULL;
++ }
++
++ spin_lock_irqsave(&txring->fill_lock, flags);
++
++ if (((txring->next_to_fill + pasemi_desc_size(&init_desc)) -
++ txring->next_to_clean) > TX_RING_SIZE) {
++ spin_unlock_irqrestore(&txring->fill_lock, flags);
++ return ERESTART;
++ }
++
++ if (encini) {
++ pasemi_ring_add_desc(txring, &init_desc, NULL);
++ pasemi_ring_incr(sc, ses->chan,
++ pasemi_desc_size(&init_desc));
++ }
++
++ txring->sesn = sesn;
++ spin_unlock_irqrestore(&txring->fill_lock, flags);
++
++ *sidp = PASEMI_SID(sesn);
++ return 0;
++}
++
++/*
++ * Deallocate a session.
++ */
++static int
++pasemi_freesession(device_t dev, u_int64_t tid)
++{
++ struct pasemi_softc *sc = device_get_softc(dev);
++ int session;
++ u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (sc == NULL)
++ return -EINVAL;
++ session = PASEMI_SESSION(sid);
++ if (session >= sc->sc_nsessions || !sc->sc_sessions[session])
++ return -EINVAL;
++
++ pci_unmap_single(sc->dma_pdev,
++ sc->sc_sessions[session]->dma_addr,
++ sizeof(struct pasemi_session), DMA_TO_DEVICE);
++ memset(sc->sc_sessions[session], 0,
++ sizeof(struct pasemi_session));
++
++ return 0;
++}
++
++static int
++pasemi_process(device_t dev, struct cryptop *crp, int hint)
++{
++
++ int err = 0, ivsize, srclen = 0, reinit = 0, reinit_size = 0, chsel;
++ struct pasemi_softc *sc = device_get_softc(dev);
++ struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
++ caddr_t ivp;
++ struct pasemi_desc init_desc, work_desc;
++ struct pasemi_session *ses;
++ struct sk_buff *skb;
++ struct uio *uiop;
++ unsigned long flags;
++ struct pasemi_fnu_txring *txring;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (crp == NULL || crp->crp_callback == NULL || sc == NULL)
++ return -EINVAL;
++
++ crp->crp_etype = 0;
++ if (PASEMI_SESSION(crp->crp_sid) >= sc->sc_nsessions)
++ return -EINVAL;
++
++ ses = sc->sc_sessions[PASEMI_SESSION(crp->crp_sid)];
++
++ crd1 = crp->crp_desc;
++ if (crd1 == NULL) {
++ err = -EINVAL;
++ goto errout;
++ }
++ crd2 = crd1->crd_next;
++
++ if (ALG_IS_SIG(crd1->crd_alg)) {
++ maccrd = crd1;
++ if (crd2 == NULL)
++ enccrd = NULL;
++ else if (ALG_IS_CIPHER(crd2->crd_alg) &&
++ (crd2->crd_flags & CRD_F_ENCRYPT) == 0)
++ enccrd = crd2;
++ else
++ goto erralg;
++ } else if (ALG_IS_CIPHER(crd1->crd_alg)) {
++ enccrd = crd1;
++ if (crd2 == NULL)
++ maccrd = NULL;
++ else if (ALG_IS_SIG(crd2->crd_alg) &&
++ (crd1->crd_flags & CRD_F_ENCRYPT))
++ maccrd = crd2;
++ else
++ goto erralg;
++ } else
++ goto erralg;
++
++ chsel = ses->chan;
++
++ txring = &sc->tx[chsel];
++
++ if (enccrd && !maccrd) {
++ if (enccrd->crd_alg == CRYPTO_ARC4)
++ reinit = 1;
++ reinit_size = 0x40;
++ srclen = crp->crp_ilen;
++
++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I
++ | XCT_FUN_FUN(chsel));
++ if (enccrd->crd_flags & CRD_F_ENCRYPT)
++ pasemi_desc_hdr(&work_desc, XCT_FUN_CRM_ENC);
++ else
++ pasemi_desc_hdr(&work_desc, XCT_FUN_CRM_DEC);
++ } else if (enccrd && maccrd) {
++ if (enccrd->crd_alg == CRYPTO_ARC4)
++ reinit = 1;
++ reinit_size = 0x68;
++
++ if (enccrd->crd_flags & CRD_F_ENCRYPT) {
++ /* Encrypt -> Authenticate */
++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_ENC_SIG
++ | XCT_FUN_A | XCT_FUN_FUN(chsel));
++ srclen = maccrd->crd_skip + maccrd->crd_len;
++ } else {
++ /* Authenticate -> Decrypt */
++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_SIG_DEC
++ | XCT_FUN_24BRES | XCT_FUN_FUN(chsel));
++ pasemi_desc_build(&work_desc, 0);
++ pasemi_desc_build(&work_desc, 0);
++ pasemi_desc_build(&work_desc, 0);
++ work_desc.postop = PASEMI_CHECK_SIG;
++ srclen = crp->crp_ilen;
++ }
++
++ pasemi_desc_hdr(&work_desc, XCT_FUN_SHL(maccrd->crd_skip / 4));
++ pasemi_desc_hdr(&work_desc, XCT_FUN_CHL(enccrd->crd_skip - maccrd->crd_skip));
++ } else if (!enccrd && maccrd) {
++ srclen = maccrd->crd_len;
++
++ pasemi_desc_start(&init_desc,
++ XCT_CTRL_HDR(chsel, 0x58, DMA_FN_HKEY0));
++ pasemi_desc_build(&init_desc,
++ XCT_FUN_SRC_PTR(0x58, ((struct pasemi_session *)ses->dma_addr)->hkey));
++
++ pasemi_desc_start(&work_desc, XCT_FUN_O | XCT_FUN_I | XCT_FUN_CRM_SIG
++ | XCT_FUN_A | XCT_FUN_FUN(chsel));
++ }
++
++ if (enccrd) {
++ switch (enccrd->crd_alg) {
++ case CRYPTO_3DES_CBC:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_3DES |
++ XCT_FUN_BCM_CBC);
++ ivsize = sizeof(u64);
++ break;
++ case CRYPTO_DES_CBC:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_DES |
++ XCT_FUN_BCM_CBC);
++ ivsize = sizeof(u64);
++ break;
++ case CRYPTO_AES_CBC:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_AES |
++ XCT_FUN_BCM_CBC);
++ ivsize = 2 * sizeof(u64);
++ break;
++ case CRYPTO_ARC4:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_ALG_ARC);
++ ivsize = 0;
++ break;
++ default:
++ printk(DRV_NAME ": unimplemented enccrd->crd_alg %d\n",
++ enccrd->crd_alg);
++ err = -EINVAL;
++ goto errout;
++ }
++
++ ivp = (ivsize == sizeof(u64)) ? (caddr_t) &ses->civ[1] : (caddr_t) &ses->civ[0];
++ if (enccrd->crd_flags & CRD_F_ENCRYPT) {
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ memcpy(ivp, enccrd->crd_iv, ivsize);
++ /* If IV is not present in the buffer already, it has to be copied there */
++ if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
++ crypto_copyback(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize, ivp);
++ } else {
++ if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
++ /* IV is provided expicitly in descriptor */
++ memcpy(ivp, enccrd->crd_iv, ivsize);
++ else
++ /* IV is provided in the packet */
++ crypto_copydata(crp->crp_flags, crp->crp_buf,
++ enccrd->crd_inject, ivsize,
++ ivp);
++ }
++ }
++
++ if (maccrd) {
++ switch (maccrd->crd_alg) {
++ case CRYPTO_MD5:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_MD5 |
++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4));
++ break;
++ case CRYPTO_SHA1:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_SHA1 |
++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4));
++ break;
++ case CRYPTO_MD5_HMAC:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_HMAC_MD5 |
++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4));
++ break;
++ case CRYPTO_SHA1_HMAC:
++ pasemi_desc_hdr(&work_desc, XCT_FUN_SIG_HMAC_SHA1 |
++ XCT_FUN_HSZ((crp->crp_ilen - maccrd->crd_inject) / 4));
++ break;
++ default:
++ printk(DRV_NAME ": unimplemented maccrd->crd_alg %d\n",
++ maccrd->crd_alg);
++ err = -EINVAL;
++ goto errout;
++ }
++ }
++
++ if (crp->crp_flags & CRYPTO_F_SKBUF) {
++ /* using SKB buffers */
++ skb = (struct sk_buff *)crp->crp_buf;
++ if (skb_shinfo(skb)->nr_frags) {
++ printk(DRV_NAME ": skb frags unimplemented\n");
++ err = -EINVAL;
++ goto errout;
++ }
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_DST_PTR(skb->len, pci_map_single(
++ sc->dma_pdev, skb->data,
++ skb->len, DMA_TO_DEVICE)));
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_SRC_PTR(
++ srclen, pci_map_single(
++ sc->dma_pdev, skb->data,
++ srclen, DMA_TO_DEVICE)));
++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen));
++ } else if (crp->crp_flags & CRYPTO_F_IOV) {
++ /* using IOV buffers */
++ uiop = (struct uio *)crp->crp_buf;
++ if (uiop->uio_iovcnt > 1) {
++ printk(DRV_NAME ": iov frags unimplemented\n");
++ err = -EINVAL;
++ goto errout;
++ }
++
++ /* crp_olen is never set; always use crp_ilen */
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_DST_PTR(crp->crp_ilen, pci_map_single(
++ sc->dma_pdev,
++ uiop->uio_iov->iov_base,
++ crp->crp_ilen, DMA_TO_DEVICE)));
++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen));
++
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_SRC_PTR(srclen, pci_map_single(
++ sc->dma_pdev,
++ uiop->uio_iov->iov_base,
++ srclen, DMA_TO_DEVICE)));
++ } else {
++ /* using contig buffers */
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_DST_PTR(crp->crp_ilen, pci_map_single(
++ sc->dma_pdev,
++ crp->crp_buf,
++ crp->crp_ilen, DMA_TO_DEVICE)));
++ pasemi_desc_build(
++ &work_desc,
++ XCT_FUN_SRC_PTR(srclen, pci_map_single(
++ sc->dma_pdev,
++ crp->crp_buf, srclen,
++ DMA_TO_DEVICE)));
++ pasemi_desc_hdr(&work_desc, XCT_FUN_LLEN(srclen));
++ }
++
++ spin_lock_irqsave(&txring->fill_lock, flags);
++
++ if (txring->sesn != PASEMI_SESSION(crp->crp_sid)) {
++ txring->sesn = PASEMI_SESSION(crp->crp_sid);
++ reinit = 1;
++ }
++
++ if (enccrd) {
++ pasemi_desc_start(&init_desc,
++ XCT_CTRL_HDR(chsel, reinit ? reinit_size : 0x10, DMA_FN_CIV0));
++ pasemi_desc_build(&init_desc,
++ XCT_FUN_SRC_PTR(reinit ? reinit_size : 0x10, ses->dma_addr));
++ }
++
++ if (((txring->next_to_fill + pasemi_desc_size(&init_desc) +
++ pasemi_desc_size(&work_desc)) -
++ txring->next_to_clean) > TX_RING_SIZE) {
++ spin_unlock_irqrestore(&txring->fill_lock, flags);
++ err = ERESTART;
++ goto errout;
++ }
++
++ pasemi_ring_add_desc(txring, &init_desc, NULL);
++ pasemi_ring_add_desc(txring, &work_desc, crp);
++
++ pasemi_ring_incr(sc, chsel,
++ pasemi_desc_size(&init_desc) +
++ pasemi_desc_size(&work_desc));
++
++ spin_unlock_irqrestore(&txring->fill_lock, flags);
++
++ mod_timer(&txring->crypto_timer, jiffies + TIMER_INTERVAL);
++
++ return 0;
++
++erralg:
++ printk(DRV_NAME ": unsupported algorithm or algorithm order alg1 %d alg2 %d\n",
++ crd1->crd_alg, crd2->crd_alg);
++ err = -EINVAL;
++
++errout:
++ if (err != ERESTART) {
++ crp->crp_etype = err;
++ crypto_done(crp);
++ }
++ return err;
++}
++
++static int pasemi_clean_tx(struct pasemi_softc *sc, int chan)
++{
++ int i, j, ring_idx;
++ struct pasemi_fnu_txring *ring = &sc->tx[chan];
++ u16 delta_cnt;
++ int flags, loops = 10;
++ int desc_size;
++ struct cryptop *crp;
++
++ spin_lock_irqsave(&ring->clean_lock, flags);
++
++ while ((delta_cnt = (dma_status->tx_sta[sc->base_chan + chan]
++ & PAS_STATUS_PCNT_M) - ring->total_pktcnt)
++ && loops--) {
++
++ for (i = 0; i < delta_cnt; i++) {
++ desc_size = TX_DESC_INFO(ring, ring->next_to_clean).desc_size;
++ crp = TX_DESC_INFO(ring, ring->next_to_clean).cf_crp;
++ if (crp) {
++ ring_idx = 2 * (ring->next_to_clean & (TX_RING_SIZE-1));
++ if (TX_DESC_INFO(ring, ring->next_to_clean).desc_postop & PASEMI_CHECK_SIG) {
++ /* Need to make sure signature matched,
++ * if not - return error */
++ if (!(ring->desc[ring_idx + 1] & (1ULL << 63)))
++ crp->crp_etype = -EINVAL;
++ }
++ crypto_done(TX_DESC_INFO(ring,
++ ring->next_to_clean).cf_crp);
++ TX_DESC_INFO(ring, ring->next_to_clean).cf_crp = NULL;
++ pci_unmap_single(
++ sc->dma_pdev,
++ XCT_PTR_ADDR_LEN(ring->desc[ring_idx + 1]),
++ PCI_DMA_TODEVICE);
++
++ ring->desc[ring_idx] = ring->desc[ring_idx + 1] = 0;
++
++ ring->next_to_clean++;
++ for (j = 1; j < desc_size; j++) {
++ ring_idx = 2 *
++ (ring->next_to_clean &
++ (TX_RING_SIZE-1));
++ pci_unmap_single(
++ sc->dma_pdev,
++ XCT_PTR_ADDR_LEN(ring->desc[ring_idx]),
++ PCI_DMA_TODEVICE);
++ if (ring->desc[ring_idx + 1])
++ pci_unmap_single(
++ sc->dma_pdev,
++ XCT_PTR_ADDR_LEN(
++ ring->desc[
++ ring_idx + 1]),
++ PCI_DMA_TODEVICE);
++ ring->desc[ring_idx] =
++ ring->desc[ring_idx + 1] = 0;
++ ring->next_to_clean++;
++ }
++ } else {
++ for (j = 0; j < desc_size; j++) {
++ ring_idx = 2 * (ring->next_to_clean & (TX_RING_SIZE-1));
++ ring->desc[ring_idx] =
++ ring->desc[ring_idx + 1] = 0;
++ ring->next_to_clean++;
++ }
++ }
++ }
++
++ ring->total_pktcnt += delta_cnt;
++ }
++ spin_unlock_irqrestore(&ring->clean_lock, flags);
++
++ return 0;
++}
++
++static void sweepup_tx(struct pasemi_softc *sc)
++{
++ int i;
++
++ for (i = 0; i < sc->sc_num_channels; i++)
++ pasemi_clean_tx(sc, i);
++}
++
++static irqreturn_t pasemi_intr(int irq, void *arg, struct pt_regs *regs)
++{
++ struct pasemi_softc *sc = arg;
++ unsigned int reg;
++ int chan = irq - sc->base_irq;
++ int chan_index = sc->base_chan + chan;
++ u64 stat = dma_status->tx_sta[chan_index];
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (!(stat & PAS_STATUS_CAUSE_M))
++ return IRQ_NONE;
++
++ pasemi_clean_tx(sc, chan);
++
++ stat = dma_status->tx_sta[chan_index];
++
++ reg = PAS_IOB_DMA_TXCH_RESET_PINTC |
++ PAS_IOB_DMA_TXCH_RESET_PCNT(sc->tx[chan].total_pktcnt);
++
++ if (stat & PAS_STATUS_SOFT)
++ reg |= PAS_IOB_DMA_RXCH_RESET_SINTC;
++
++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_RESET(chan_index), reg);
++
++
++ return IRQ_HANDLED;
++}
++
++static int pasemi_dma_setup_tx_resources(struct pasemi_softc *sc, int chan)
++{
++ u32 val;
++ int chan_index = chan + sc->base_chan;
++ int ret;
++ struct pasemi_fnu_txring *ring;
++
++ ring = &sc->tx[chan];
++
++ spin_lock_init(&ring->fill_lock);
++ spin_lock_init(&ring->clean_lock);
++
++ ring->desc_info = kzalloc(sizeof(struct pasemi_desc_info) *
++ TX_RING_SIZE, GFP_KERNEL);
++ if (!ring->desc_info)
++ return -ENOMEM;
++
++ /* Allocate descriptors */
++ ring->desc = dma_alloc_coherent(&sc->dma_pdev->dev,
++ TX_RING_SIZE *
++ 2 * sizeof(u64),
++ &ring->dma, GFP_KERNEL);
++ if (!ring->desc)
++ return -ENOMEM;
++
++ memset((void *) ring->desc, 0, TX_RING_SIZE * 2 * sizeof(u64));
++
++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_RESET(chan_index), 0x30);
++
++ ring->total_pktcnt = 0;
++
++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_BASEL(chan_index),
++ PAS_DMA_TXCHAN_BASEL_BRBL(ring->dma));
++
++ val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->dma >> 32);
++ val |= PAS_DMA_TXCHAN_BASEU_SIZ(TX_RING_SIZE >> 2);
++
++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_BASEU(chan_index), val);
++
++ out_le32(sc->dma_regs + PAS_DMA_TXCHAN_CFG(chan_index),
++ PAS_DMA_TXCHAN_CFG_TY_FUNC |
++ PAS_DMA_TXCHAN_CFG_TATTR(chan) |
++ PAS_DMA_TXCHAN_CFG_WT(2));
++
++ /* enable tx channel */
++ out_le32(sc->dma_regs +
++ PAS_DMA_TXCHAN_TCMDSTA(chan_index),
++ PAS_DMA_TXCHAN_TCMDSTA_EN);
++
++ out_le32(sc->iob_regs + PAS_IOB_DMA_TXCH_CFG(chan_index),
++ PAS_IOB_DMA_TXCH_CFG_CNTTH(1000));
++
++ ring->next_to_fill = 0;
++ ring->next_to_clean = 0;
++
++ snprintf(ring->irq_name, sizeof(ring->irq_name),
++ "%s%d", "crypto", chan);
++
++ ring->irq = irq_create_mapping(NULL, sc->base_irq + chan);
++ ret = request_irq(ring->irq, (irq_handler_t)
++ pasemi_intr, IRQF_DISABLED, ring->irq_name, sc);
++ if (ret) {
++ printk(KERN_ERR DRV_NAME ": failed to hook irq %d ret %d\n",
++ ring->irq, ret);
++ ring->irq = -1;
++ return ret;
++ }
++
++ setup_timer(&ring->crypto_timer, (void *) sweepup_tx, (unsigned long) sc);
++
++ return 0;
++}
++
++static device_method_t pasemi_methods = {
++ /* crypto device methods */
++ DEVMETHOD(cryptodev_newsession, pasemi_newsession),
++ DEVMETHOD(cryptodev_freesession, pasemi_freesession),
++ DEVMETHOD(cryptodev_process, pasemi_process),
++};
++
++/* Set up the crypto device structure, private data,
++ * and anything else we need before we start */
++
++static int __devinit
++pasemi_dma_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
++{
++ struct pasemi_softc *sc;
++ int ret, i;
++
++ DPRINTF(KERN_ERR "%s()\n", __FUNCTION__);
++
++ sc = kzalloc(sizeof(*sc), GFP_KERNEL);
++ if (!sc)
++ return -ENOMEM;
++
++ softc_device_init(sc, DRV_NAME, 1, pasemi_methods);
++
++ pci_set_drvdata(pdev, sc);
++
++ spin_lock_init(&sc->sc_chnlock);
++
++ sc->sc_sessions = (struct pasemi_session **)
++ kzalloc(PASEMI_INITIAL_SESSIONS *
++ sizeof(struct pasemi_session *), GFP_ATOMIC);
++ if (sc->sc_sessions == NULL) {
++ ret = -ENOMEM;
++ goto out;
++ }
++
++ sc->sc_nsessions = PASEMI_INITIAL_SESSIONS;
++ sc->sc_lastchn = 0;
++ sc->base_irq = pdev->irq + 6;
++ sc->base_chan = 6;
++ sc->sc_cid = -1;
++ sc->dma_pdev = pdev;
++
++ sc->iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL);
++ if (!sc->iob_pdev) {
++ dev_err(&pdev->dev, "Can't find I/O Bridge\n");
++ ret = -ENODEV;
++ goto out;
++ }
++
++ /* This is hardcoded and ugly, but we have some firmware versions
++ * who don't provide the register space in the device tree. Luckily
++ * they are at well-known locations so we can just do the math here.
++ */
++ sc->dma_regs =
++ ioremap(0xe0000000 + (sc->dma_pdev->devfn << 12), 0x2000);
++ sc->iob_regs =
++ ioremap(0xe0000000 + (sc->iob_pdev->devfn << 12), 0x2000);
++ if (!sc->dma_regs || !sc->iob_regs) {
++ dev_err(&pdev->dev, "Can't map registers\n");
++ ret = -ENODEV;
++ goto out;
++ }
++
++ dma_status = __ioremap(0xfd800000, 0x1000, 0);
++ if (!dma_status) {
++ ret = -ENODEV;
++ dev_err(&pdev->dev, "Can't map dmastatus space\n");
++ goto out;
++ }
++
++ sc->tx = (struct pasemi_fnu_txring *)
++ kzalloc(sizeof(struct pasemi_fnu_txring)
++ * 8, GFP_KERNEL);
++ if (!sc->tx) {
++ ret = -ENOMEM;
++ goto out;
++ }
++
++ /* Initialize the h/w */
++ out_le32(sc->dma_regs + PAS_DMA_COM_CFG,
++ (in_le32(sc->dma_regs + PAS_DMA_COM_CFG) |
++ PAS_DMA_COM_CFG_FWF));
++ out_le32(sc->dma_regs + PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN);
++
++ for (i = 0; i < PASEMI_FNU_CHANNELS; i++) {
++ sc->sc_num_channels++;
++ ret = pasemi_dma_setup_tx_resources(sc, i);
++ if (ret)
++ goto out;
++ }
++
++ sc->sc_cid = crypto_get_driverid(softc_get_device(sc),
++ CRYPTOCAP_F_HARDWARE);
++ if (sc->sc_cid < 0) {
++ printk(KERN_ERR DRV_NAME ": could not get crypto driver id\n");
++ ret = -ENXIO;
++ goto out;
++ }
++
++ /* register algorithms with the framework */
++ printk(DRV_NAME ":");
++
++ crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
++ crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
++
++ return 0;
++
++out:
++ pasemi_dma_remove(pdev);
++ return ret;
++}
++
++#define MAX_RETRIES 5000
++
++static void pasemi_free_tx_resources(struct pasemi_softc *sc, int chan)
++{
++ struct pasemi_fnu_txring *ring = &sc->tx[chan];
++ int chan_index = chan + sc->base_chan;
++ int retries;
++ u32 stat;
++
++ /* Stop the channel */
++ out_le32(sc->dma_regs +
++ PAS_DMA_TXCHAN_TCMDSTA(chan_index),
++ PAS_DMA_TXCHAN_TCMDSTA_ST);
++
++ for (retries = 0; retries < MAX_RETRIES; retries++) {
++ stat = in_le32(sc->dma_regs +
++ PAS_DMA_TXCHAN_TCMDSTA(chan_index));
++ if (!(stat & PAS_DMA_TXCHAN_TCMDSTA_ACT))
++ break;
++ cond_resched();
++ }
++
++ if (stat & PAS_DMA_TXCHAN_TCMDSTA_ACT)
++ dev_err(&sc->dma_pdev->dev, "Failed to stop tx channel %d\n",
++ chan_index);
++
++ /* Disable the channel */
++ out_le32(sc->dma_regs +
++ PAS_DMA_TXCHAN_TCMDSTA(chan_index),
++ 0);
++
++ if (ring->desc_info)
++ kfree((void *) ring->desc_info);
++ if (ring->desc)
++ dma_free_coherent(&sc->dma_pdev->dev,
++ TX_RING_SIZE *
++ 2 * sizeof(u64),
++ (void *) ring->desc, ring->dma);
++ if (ring->irq != -1)
++ free_irq(ring->irq, sc);
++
++ del_timer(&ring->crypto_timer);
++}
++
++static void __devexit pasemi_dma_remove(struct pci_dev *pdev)
++{
++ struct pasemi_softc *sc = pci_get_drvdata(pdev);
++ int i;
++
++ DPRINTF("%s()\n", __FUNCTION__);
++
++ if (sc->sc_cid >= 0) {
++ crypto_unregister_all(sc->sc_cid);
++ }
++
++ if (sc->tx) {
++ for (i = 0; i < sc->sc_num_channels; i++)
++ pasemi_free_tx_resources(sc, i);
++
++ kfree(sc->tx);
++ }
++ if (sc->sc_sessions) {
++ for (i = 0; i < sc->sc_nsessions; i++)
++ kfree(sc->sc_sessions[i]);
++ kfree(sc->sc_sessions);
++ }
++ if (sc->iob_pdev)
++ pci_dev_put(sc->iob_pdev);
++ if (sc->dma_regs)
++ iounmap(sc->dma_regs);
++ if (sc->iob_regs)
++ iounmap(sc->iob_regs);
++ kfree(sc);
++}
++
++static struct pci_device_id pasemi_dma_pci_tbl[] = {
++ { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa007) },
++};
++
++MODULE_DEVICE_TABLE(pci, pasemi_dma_pci_tbl);
++
++static struct pci_driver pasemi_dma_driver = {
++ .name = "pasemi_dma",
++ .id_table = pasemi_dma_pci_tbl,
++ .probe = pasemi_dma_probe,
++ .remove = __devexit_p(pasemi_dma_remove),
++};
++
++static void __exit pasemi_dma_cleanup_module(void)
++{
++ pci_unregister_driver(&pasemi_dma_driver);
++ __iounmap(dma_status);
++ dma_status = NULL;
++}
++
++int pasemi_dma_init_module(void)
++{
++ return pci_register_driver(&pasemi_dma_driver);
++}
++
++module_init(pasemi_dma_init_module);
++module_exit(pasemi_dma_cleanup_module);
++
++MODULE_LICENSE("Dual BSD/GPL");
++MODULE_AUTHOR("Egor Martovetsky egor@pasemi.com");
++MODULE_DESCRIPTION("OCF driver for PA Semi PWRficient DMA Crypto Engine");
+--- /dev/null 2007-07-04 13:54:27.000000000 +1000
++++ linux/crypto/ocf/pasemi/pasemi_fnu.h 2007-12-12 11:36:18.000000000 +1000
+@@ -0,0 +1,410 @@
++/*
++ * Copyright (C) 2007 PA Semi, Inc
++ *
++ * Driver for the PA Semi PWRficient DMA Crypto Engine, soft state and
++ * hardware register layouts.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++
++#ifndef PASEMI_FNU_H
++#define PASEMI_FNU_H
++
++#include <linux/spinlock.h>
++
++#define PASEMI_SESSION(sid) ((sid) & 0xffffffff)
++#define PASEMI_SID(sesn) ((sesn) & 0xffffffff)
++#define DPRINTF(a...) if (debug) { printk(DRV_NAME ": " a); }
++
++/* Must be a power of two */
++#define RX_RING_SIZE 512
++#define TX_RING_SIZE 512
++#define TX_DESC(ring, num) ((ring)->desc[2 * (num & (TX_RING_SIZE-1))])
++#define TX_DESC_INFO(ring, num) ((ring)->desc_info[(num) & (TX_RING_SIZE-1)])
++#define MAX_DESC_SIZE 8
++#define PASEMI_INITIAL_SESSIONS 10
++#define PASEMI_FNU_CHANNELS 8
++
++/* DMA descriptor */
++struct pasemi_desc {
++ u64 quad[2*MAX_DESC_SIZE];
++ int quad_cnt;
++ int size;
++ int postop;
++};
++
++/*
++ * Holds per descriptor data
++ */
++struct pasemi_desc_info {
++ int desc_size;
++ int desc_postop;
++#define PASEMI_CHECK_SIG 0x1
++
++ struct cryptop *cf_crp;
++};
++
++/*
++ * Holds per channel data
++ */
++struct pasemi_fnu_txring {
++ volatile u64 *desc;
++ volatile struct
++ pasemi_desc_info *desc_info;
++ dma_addr_t dma;
++ struct timer_list crypto_timer;
++ spinlock_t fill_lock;
++ spinlock_t clean_lock;
++ unsigned int next_to_fill;
++ unsigned int next_to_clean;
++ u16 total_pktcnt;
++ int irq;
++ int sesn;
++ char irq_name[10];
++};
++
++/*
++ * Holds data specific to a single pasemi device.
++ */
++struct pasemi_softc {
++ softc_device_decl sc_cdev;
++ struct pci_dev *dma_pdev; /* device backpointer */
++ struct pci_dev *iob_pdev; /* device backpointer */
++ void __iomem *dma_regs;
++ void __iomem *iob_regs;
++ int base_irq;
++ int base_chan;
++ int32_t sc_cid; /* crypto tag */
++ int sc_nsessions;
++ struct pasemi_session **sc_sessions;
++ int sc_num_channels;/* number of crypto channels */
++
++ /* pointer to the array of txring datastructures, one txring per channel */
++ struct pasemi_fnu_txring *tx;
++
++ /*
++ * mutual exclusion for the channel scheduler
++ */
++ spinlock_t sc_chnlock;
++ /* last channel used, for now use round-robin to allocate channels */
++ int sc_lastchn;
++};
++
++struct pasemi_session {
++ u64 civ[2];
++ u64 keysz;
++ u64 key[4];
++ u64 ccmd;
++ u64 hkey[4];
++ u64 hseq;
++ u64 giv[2];
++ u64 hiv[4];
++
++ int used;
++ dma_addr_t dma_addr;
++ int chan;
++};
++
++/* status register layout in IOB region, at 0xfd800000 */
++struct pasdma_status {
++ u64 rx_sta[64];
++ u64 tx_sta[20];
++};
++
++#define ALG_IS_CIPHER(alg) ((alg == CRYPTO_DES_CBC) || \
++ (alg == CRYPTO_3DES_CBC) || \
++ (alg == CRYPTO_AES_CBC) || \
++ (alg == CRYPTO_ARC4) || \
++ (alg == CRYPTO_NULL_CBC))
++
++#define ALG_IS_SIG(alg) ((alg == CRYPTO_MD5) || \
++ (alg == CRYPTO_MD5_HMAC) || \
++ (alg == CRYPTO_SHA1) || \
++ (alg == CRYPTO_SHA1_HMAC) || \
++ (alg == CRYPTO_NULL_HMAC))
++
++enum {
++ PAS_DMA_COM_TXCMD = 0x100, /* Transmit Command Register */
++ PAS_DMA_COM_TXSTA = 0x104, /* Transmit Status Register */
++ PAS_DMA_COM_RXCMD = 0x108, /* Receive Command Register */
++ PAS_DMA_COM_RXSTA = 0x10c, /* Receive Status Register */
++ PAS_DMA_COM_CFG = 0x114, /* DMA Configuration Register */
++};
++
++/* All these registers live in the PCI configuration space for the DMA PCI
++ * device. Use the normal PCI config access functions for them.
++ */
++
++#define PAS_DMA_COM_CFG_FWF 0x18000000
++
++#define PAS_DMA_COM_TXCMD_EN 0x00000001 /* enable */
++#define PAS_DMA_COM_TXSTA_ACT 0x00000001 /* active */
++#define PAS_DMA_COM_RXCMD_EN 0x00000001 /* enable */
++#define PAS_DMA_COM_RXSTA_ACT 0x00000001 /* active */
++
++#define _PAS_DMA_TXCHAN_STRIDE 0x20 /* Size per channel */
++#define _PAS_DMA_TXCHAN_TCMDSTA 0x300 /* Command / Status */
++#define _PAS_DMA_TXCHAN_CFG 0x304 /* Configuration */
++#define _PAS_DMA_TXCHAN_DSCRBU 0x308 /* Descriptor BU Allocation */
++#define _PAS_DMA_TXCHAN_INCR 0x310 /* Descriptor increment */
++#define _PAS_DMA_TXCHAN_CNT 0x314 /* Descriptor count/offset */
++#define _PAS_DMA_TXCHAN_BASEL 0x318 /* Descriptor ring base (low) */
++#define _PAS_DMA_TXCHAN_BASEU 0x31c /* (high) */
++#define PAS_DMA_TXCHAN_TCMDSTA(c) (0x300+(c)*_PAS_DMA_TXCHAN_STRIDE)
++#define PAS_DMA_TXCHAN_TCMDSTA_EN 0x00000001 /* Enabled */
++#define PAS_DMA_TXCHAN_TCMDSTA_ST 0x00000002 /* Stop interface */
++#define PAS_DMA_TXCHAN_TCMDSTA_ACT 0x00010000 /* Active */
++#define PAS_DMA_TXCHAN_CFG(c) (0x304+(c)*_PAS_DMA_TXCHAN_STRIDE)
++#define PAS_DMA_TXCHAN_CFG_TY_FUNC 0x00000002 /* Type = interface */
++#define PAS_DMA_TXCHAN_CFG_TY_IFACE 0x00000000 /* Type = interface */
++#define PAS_DMA_TXCHAN_CFG_TATTR_M 0x0000003c
++#define PAS_DMA_TXCHAN_CFG_TATTR_S 2
++#define PAS_DMA_TXCHAN_CFG_TATTR(x) (((x) << PAS_DMA_TXCHAN_CFG_TATTR_S) & \
++ PAS_DMA_TXCHAN_CFG_TATTR_M)
++#define PAS_DMA_TXCHAN_CFG_WT_M 0x000001c0
++#define PAS_DMA_TXCHAN_CFG_WT_S 6
++#define PAS_DMA_TXCHAN_CFG_WT(x) (((x) << PAS_DMA_TXCHAN_CFG_WT_S) & \
++ PAS_DMA_TXCHAN_CFG_WT_M)
++#define PAS_DMA_TXCHAN_CFG_LPSQ_FAST 0x00000400
++#define PAS_DMA_TXCHAN_CFG_LPDQ_FAST 0x00000800
++#define PAS_DMA_TXCHAN_CFG_CF 0x00001000 /* Clean first line */
++#define PAS_DMA_TXCHAN_CFG_CL 0x00002000 /* Clean last line */
++#define PAS_DMA_TXCHAN_CFG_UP 0x00004000 /* update tx descr when sent */
++#define PAS_DMA_TXCHAN_INCR(c) (0x310+(c)*_PAS_DMA_TXCHAN_STRIDE)
++#define PAS_DMA_TXCHAN_BASEL(c) (0x318+(c)*_PAS_DMA_TXCHAN_STRIDE)
++#define PAS_DMA_TXCHAN_BASEL_BRBL_M 0xffffffc0
++#define PAS_DMA_TXCHAN_BASEL_BRBL_S 0
++#define PAS_DMA_TXCHAN_BASEL_BRBL(x) (((x) << PAS_DMA_TXCHAN_BASEL_BRBL_S) & \
++ PAS_DMA_TXCHAN_BASEL_BRBL_M)
++#define PAS_DMA_TXCHAN_BASEU(c) (0x31c+(c)*_PAS_DMA_TXCHAN_STRIDE)
++#define PAS_DMA_TXCHAN_BASEU_BRBH_M 0x00000fff
++#define PAS_DMA_TXCHAN_BASEU_BRBH_S 0
++#define PAS_DMA_TXCHAN_BASEU_BRBH(x) (((x) << PAS_DMA_TXCHAN_BASEU_BRBH_S) & \
++ PAS_DMA_TXCHAN_BASEU_BRBH_M)
++/* # of cache lines worth of buffer ring */
++#define PAS_DMA_TXCHAN_BASEU_SIZ_M 0x3fff0000
++#define PAS_DMA_TXCHAN_BASEU_SIZ_S 16 /* 0 = 16K */
++#define PAS_DMA_TXCHAN_BASEU_SIZ(x) (((x) << PAS_DMA_TXCHAN_BASEU_SIZ_S) & \
++ PAS_DMA_TXCHAN_BASEU_SIZ_M)
++
++#define PAS_STATUS_PCNT_M 0x000000000000ffffull
++#define PAS_STATUS_PCNT_S 0
++#define PAS_STATUS_DCNT_M 0x00000000ffff0000ull
++#define PAS_STATUS_DCNT_S 16
++#define PAS_STATUS_BPCNT_M 0x0000ffff00000000ull
++#define PAS_STATUS_BPCNT_S 32
++#define PAS_STATUS_CAUSE_M 0xf000000000000000ull
++#define PAS_STATUS_TIMER 0x1000000000000000ull
++#define PAS_STATUS_ERROR 0x2000000000000000ull
++#define PAS_STATUS_SOFT 0x4000000000000000ull
++#define PAS_STATUS_INT 0x8000000000000000ull
++
++#define PAS_IOB_DMA_RXCH_CFG(i) (0x1100 + (i)*4)
++#define PAS_IOB_DMA_RXCH_CFG_CNTTH_M 0x00000fff
++#define PAS_IOB_DMA_RXCH_CFG_CNTTH_S 0
++#define PAS_IOB_DMA_RXCH_CFG_CNTTH(x) (((x) << PAS_IOB_DMA_RXCH_CFG_CNTTH_S) & \
++ PAS_IOB_DMA_RXCH_CFG_CNTTH_M)
++#define PAS_IOB_DMA_TXCH_CFG(i) (0x1200 + (i)*4)
++#define PAS_IOB_DMA_TXCH_CFG_CNTTH_M 0x00000fff
++#define PAS_IOB_DMA_TXCH_CFG_CNTTH_S 0
++#define PAS_IOB_DMA_TXCH_CFG_CNTTH(x) (((x) << PAS_IOB_DMA_TXCH_CFG_CNTTH_S) & \
++ PAS_IOB_DMA_TXCH_CFG_CNTTH_M)
++#define PAS_IOB_DMA_RXCH_STAT(i) (0x1300 + (i)*4)
++#define PAS_IOB_DMA_RXCH_STAT_INTGEN 0x00001000
++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL_M 0x00000fff
++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL_S 0
++#define PAS_IOB_DMA_RXCH_STAT_CNTDEL(x) (((x) << PAS_IOB_DMA_RXCH_STAT_CNTDEL_S) &\
++ PAS_IOB_DMA_RXCH_STAT_CNTDEL_M)
++#define PAS_IOB_DMA_TXCH_STAT(i) (0x1400 + (i)*4)
++#define PAS_IOB_DMA_TXCH_STAT_INTGEN 0x00001000
++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL_M 0x00000fff
++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL_S 0
++#define PAS_IOB_DMA_TXCH_STAT_CNTDEL(x) (((x) << PAS_IOB_DMA_TXCH_STAT_CNTDEL_S) &\
++ PAS_IOB_DMA_TXCH_STAT_CNTDEL_M)
++#define PAS_IOB_DMA_RXCH_RESET(i) (0x1500 + (i)*4)
++#define PAS_IOB_DMA_RXCH_RESET_PCNT_M 0xffff0000
++#define PAS_IOB_DMA_RXCH_RESET_PCNT_S 16
++#define PAS_IOB_DMA_RXCH_RESET_PCNT(x) (((x) << PAS_IOB_DMA_RXCH_RESET_PCNT_S) & \
++ PAS_IOB_DMA_RXCH_RESET_PCNT_M)
++#define PAS_IOB_DMA_RXCH_RESET_PCNTRST 0x00000020
++#define PAS_IOB_DMA_RXCH_RESET_DCNTRST 0x00000010
++#define PAS_IOB_DMA_RXCH_RESET_TINTC 0x00000008
++#define PAS_IOB_DMA_RXCH_RESET_DINTC 0x00000004
++#define PAS_IOB_DMA_RXCH_RESET_SINTC 0x00000002
++#define PAS_IOB_DMA_RXCH_RESET_PINTC 0x00000001
++#define PAS_IOB_DMA_TXCH_RESET(i) (0x1600 + (i)*4)
++#define PAS_IOB_DMA_TXCH_RESET_PCNT_M 0xffff0000
++#define PAS_IOB_DMA_TXCH_RESET_PCNT_S 16
++#define PAS_IOB_DMA_TXCH_RESET_PCNT(x) (((x) << PAS_IOB_DMA_TXCH_RESET_PCNT_S) & \
++ PAS_IOB_DMA_TXCH_RESET_PCNT_M)
++#define PAS_IOB_DMA_TXCH_RESET_PCNTRST 0x00000020
++#define PAS_IOB_DMA_TXCH_RESET_DCNTRST 0x00000010
++#define PAS_IOB_DMA_TXCH_RESET_TINTC 0x00000008
++#define PAS_IOB_DMA_TXCH_RESET_DINTC 0x00000004
++#define PAS_IOB_DMA_TXCH_RESET_SINTC 0x00000002
++#define PAS_IOB_DMA_TXCH_RESET_PINTC 0x00000001
++
++#define PAS_IOB_DMA_COM_TIMEOUTCFG 0x1700
++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_M 0x00ffffff
++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_S 0
++#define PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(x) (((x) << PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_S) & \
++ PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT_M)
++
++/* Transmit descriptor fields */
++#define XCT_MACTX_T 0x8000000000000000ull
++#define XCT_MACTX_ST 0x4000000000000000ull
++#define XCT_MACTX_NORES 0x0000000000000000ull
++#define XCT_MACTX_8BRES 0x1000000000000000ull
++#define XCT_MACTX_24BRES 0x2000000000000000ull
++#define XCT_MACTX_40BRES 0x3000000000000000ull
++#define XCT_MACTX_I 0x0800000000000000ull
++#define XCT_MACTX_O 0x0400000000000000ull
++#define XCT_MACTX_E 0x0200000000000000ull
++#define XCT_MACTX_VLAN_M 0x0180000000000000ull
++#define XCT_MACTX_VLAN_NOP 0x0000000000000000ull
++#define XCT_MACTX_VLAN_REMOVE 0x0080000000000000ull
++#define XCT_MACTX_VLAN_INSERT 0x0100000000000000ull
++#define XCT_MACTX_VLAN_REPLACE 0x0180000000000000ull
++#define XCT_MACTX_CRC_M 0x0060000000000000ull
++#define XCT_MACTX_CRC_NOP 0x0000000000000000ull
++#define XCT_MACTX_CRC_INSERT 0x0020000000000000ull
++#define XCT_MACTX_CRC_PAD 0x0040000000000000ull
++#define XCT_MACTX_CRC_REPLACE 0x0060000000000000ull
++#define XCT_MACTX_SS 0x0010000000000000ull
++#define XCT_MACTX_LLEN_M 0x00007fff00000000ull
++#define XCT_MACTX_LLEN_S 32ull
++#define XCT_MACTX_LLEN(x) ((((long)(x)) << XCT_MACTX_LLEN_S) & \
++ XCT_MACTX_LLEN_M)
++#define XCT_MACTX_IPH_M 0x00000000f8000000ull
++#define XCT_MACTX_IPH_S 27ull
++#define XCT_MACTX_IPH(x) ((((long)(x)) << XCT_MACTX_IPH_S) & \
++ XCT_MACTX_IPH_M)
++#define XCT_MACTX_IPO_M 0x0000000007c00000ull
++#define XCT_MACTX_IPO_S 22ull
++#define XCT_MACTX_IPO(x) ((((long)(x)) << XCT_MACTX_IPO_S) & \
++ XCT_MACTX_IPO_M)
++#define XCT_MACTX_CSUM_M 0x0000000000000060ull
++#define XCT_MACTX_CSUM_NOP 0x0000000000000000ull
++#define XCT_MACTX_CSUM_TCP 0x0000000000000040ull
++#define XCT_MACTX_CSUM_UDP 0x0000000000000060ull
++#define XCT_MACTX_V6 0x0000000000000010ull
++#define XCT_MACTX_C 0x0000000000000004ull
++#define XCT_MACTX_AL2 0x0000000000000002ull
++
++#define XCT_PTR_T 0x8000000000000000ull
++#define XCT_PTR_LEN_M 0x7ffff00000000000ull
++#define XCT_PTR_LEN_S 44
++#define XCT_PTR_LEN(x) ((((long)(x)) << XCT_PTR_LEN_S) & \
++ XCT_PTR_LEN_M)
++#define XCT_PTR_ADDR_M 0x00000fffffffffffull
++#define XCT_PTR_ADDR_S 0
++#define XCT_PTR_ADDR(x) ((((long)(x)) << XCT_PTR_ADDR_S) & \
++ XCT_PTR_ADDR_M)
++
++/* Function descriptor fields */
++#define XCT_FUN_T 0x8000000000000000ull
++#define XCT_FUN_ST 0x4000000000000000ull
++#define XCT_FUN_NORES 0x0000000000000000ull
++#define XCT_FUN_8BRES 0x1000000000000000ull
++#define XCT_FUN_24BRES 0x2000000000000000ull
++#define XCT_FUN_40BRES 0x3000000000000000ull
++#define XCT_FUN_I 0x0800000000000000ull
++#define XCT_FUN_O 0x0400000000000000ull
++#define XCT_FUN_E 0x0200000000000000ull
++#define XCT_FUN_FUN_S 54
++#define XCT_FUN_FUN_M 0x01c0000000000000ull
++#define XCT_FUN_FUN(num) ((((long)(num)) << XCT_FUN_FUN_S) & \
++ XCT_FUN_FUN_M)
++#define XCT_FUN_CRM_NOP 0x0000000000000000ull
++#define XCT_FUN_CRM_SIG 0x0008000000000000ull
++#define XCT_FUN_CRM_ENC 0x0010000000000000ull
++#define XCT_FUN_CRM_DEC 0x0018000000000000ull
++#define XCT_FUN_CRM_SIG_ENC 0x0020000000000000ull
++#define XCT_FUN_CRM_ENC_SIG 0x0028000000000000ull
++#define XCT_FUN_CRM_SIG_DEC 0x0030000000000000ull
++#define XCT_FUN_CRM_DEC_SIG 0x0038000000000000ull
++#define XCT_FUN_LLEN_M 0x0007ffff00000000ull
++#define XCT_FUN_LLEN_S 32ULL
++#define XCT_FUN_LLEN(x) ((((long)(x)) << XCT_FUN_LLEN_S) & \
++ XCT_FUN_LLEN_M)
++#define XCT_FUN_SHL_M 0x00000000f8000000ull
++#define XCT_FUN_SHL_S 27ull
++#define XCT_FUN_SHL(x) ((((long)(x)) << XCT_FUN_SHL_S) & \
++ XCT_FUN_SHL_M)
++#define XCT_FUN_CHL_M 0x0000000007c00000ull
++#define XCT_FUN_CHL_S 22ull
++#define XCT_FUN_CHL(x) ((((long)(x)) << XCT_FUN_CHL_S) & \
++ XCT_FUN_CHL_M)
++#define XCT_FUN_HSZ_M 0x00000000003c0000ull
++#define XCT_FUN_HSZ_S 18ull
++#define XCT_FUN_HSZ(x) ((((long)(x)) << XCT_FUN_HSZ_S) & \
++ XCT_FUN_HSZ_M)
++#define XCT_FUN_ALG_DES 0x0000000000000000ull
++#define XCT_FUN_ALG_3DES 0x0000000000008000ull
++#define XCT_FUN_ALG_AES 0x0000000000010000ull
++#define XCT_FUN_ALG_ARC 0x0000000000018000ull
++#define XCT_FUN_ALG_KASUMI 0x0000000000020000ull
++#define XCT_FUN_BCM_ECB 0x0000000000000000ull
++#define XCT_FUN_BCM_CBC 0x0000000000001000ull
++#define XCT_FUN_BCM_CFB 0x0000000000002000ull
++#define XCT_FUN_BCM_OFB 0x0000000000003000ull
++#define XCT_FUN_BCM_CNT 0x0000000000003800ull
++#define XCT_FUN_BCM_KAS_F8 0x0000000000002800ull
++#define XCT_FUN_BCM_KAS_F9 0x0000000000001800ull
++#define XCT_FUN_BCP_NO_PAD 0x0000000000000000ull
++#define XCT_FUN_BCP_ZRO 0x0000000000000200ull
++#define XCT_FUN_BCP_PL 0x0000000000000400ull
++#define XCT_FUN_BCP_INCR 0x0000000000000600ull
++#define XCT_FUN_SIG_MD5 (0ull << 4)
++#define XCT_FUN_SIG_SHA1 (2ull << 4)
++#define XCT_FUN_SIG_HMAC_MD5 (8ull << 4)
++#define XCT_FUN_SIG_HMAC_SHA1 (10ull << 4)
++#define XCT_FUN_A 0x0000000000000008ull
++#define XCT_FUN_C 0x0000000000000004ull
++#define XCT_FUN_AL2 0x0000000000000002ull
++#define XCT_FUN_SE 0x0000000000000001ull
++
++#define XCT_FUN_SRC_PTR(len, addr) (XCT_PTR_LEN(len) | XCT_PTR_ADDR(addr))
++#define XCT_FUN_DST_PTR(len, addr) (XCT_FUN_SRC_PTR(len, addr) | \
++ 0x8000000000000000ull)
++
++#define XCT_CTRL_HDR_FUN_NUM_M 0x01c0000000000000ull
++#define XCT_CTRL_HDR_FUN_NUM_S 54
++#define XCT_CTRL_HDR_LEN_M 0x0007ffff00000000ull
++#define XCT_CTRL_HDR_LEN_S 32
++#define XCT_CTRL_HDR_REG_M 0x00000000000000ffull
++#define XCT_CTRL_HDR_REG_S 0
++
++#define XCT_CTRL_HDR(funcN,len,reg) (0x9400000000000000ull | \
++ ((((long)(funcN)) << XCT_CTRL_HDR_FUN_NUM_S) \
++ & XCT_CTRL_HDR_FUN_NUM_M) | \
++ ((((long)(len)) << \
++ XCT_CTRL_HDR_LEN_S) & XCT_CTRL_HDR_LEN_M) | \
++ ((((long)(reg)) << \
++ XCT_CTRL_HDR_REG_S) & XCT_CTRL_HDR_REG_M))
++
++/* Function config command options */
++#define DMA_CALGO_DES 0x00
++#define DMA_CALGO_3DES 0x01
++#define DMA_CALGO_AES 0x02
++#define DMA_CALGO_ARC 0x03
++
++#define DMA_FN_CIV0 0x02
++#define DMA_FN_CIV1 0x03
++#define DMA_FN_HKEY0 0x0a
++
++#define XCT_PTR_ADDR_LEN(ptr) ((ptr) & XCT_PTR_ADDR_M), \
++ (((ptr) & XCT_PTR_LEN_M) >> XCT_PTR_LEN_S)
++
++#endif /* PASEMI_FNU_H */