{
Vec3f diff = m_a - ray.origin();
float t = diff.dot(m_n) / ray.direction().dot(m_n);
- if (t < 1e-5 || t > ray.t())
+ if (t < Epsilon || t > ray.t())
return false;
+
ray.setT(t);
+ ray.setHit(this);
+
return true;
}
Vec3f
InfinitePlane::GetNormal(Ray& ray)
{
- // We already have the surface normal
return m_n;
}
+
+Box
+InfinitePlane::CalcBounds()
+{
+ if(fabs(m_n[0]-1) < Epsilon && m_n[1] < Epsilon && m_n[2] < Epsilon) {
+ // plane is parallel to y and z axes
+ return Box(Vec3f(m_a[0]-Epsilon, Infinity, Infinity),
+ Vec3f(m_a[0]+Epsilon, Infinity, Infinity));
+ } else if(m_n[0] < Epsilon && fabs(m_n[1]-1) < Epsilon && m_n[2] < Epsilon) {
+ // plane is parallel to x and z axes
+ return Box(Vec3f(Infinity, m_a[1]-Epsilon, Infinity),
+ Vec3f(Infinity, m_a[1]+Epsilon, Infinity));
+ } else if(m_n[0] < Epsilon && m_n[1] < Epsilon && fabs(m_n[2]-1) < Epsilon ) {
+ // plane is parallel to x and y axes
+ return Box(Vec3f(Infinity, Infinity, m_a[2]-Epsilon),
+ Vec3f(Infinity, Infinity, m_a[2]+Epsilon));
+ } else
+ // no real border
+ return Box();
+}
+
+bool
+InfinitePlane::InVoxel(const Box& box)
+{
+ return false;
+}